Science.gov

Sample records for adenocarcinoma epithelial cell

  1. Epithelial-Mesenchymal Transition Protein Expression in Basal Cell Adenomas and Basal Cell Adenocarcinomas.

    PubMed

    Tesdahl, Brennan A; Wilson, Thomas C; Hoffman, Henry T; Robinson, Robert A

    2016-06-01

    Basal cell adenomas and basal cell adenocarcinomas show marked histomorphologic similarity and are separated microscopically primarily by the invasive characteristics of the adenocarcinomas. We wished to explore potential differences in the expression of epithelial-mesenchymal transition associated proteins in these two tumor types. A tissue microarray was constructed utilizing 29 basal cell adenomas and 16 basal cell adenocarcinomas. Immunohistochemical expression of E-cadherin, beta-catenin, Twist 1 and vimentin were investigated. Both tumors expressed all proteins in a relatively similar manner. Nuclear beta-catenin was essentially limited to the abluminal cell populations in both tumor types. E-cadherin was limited largely to luminal locations but was more prevalent in the adenocarcinomas as compared to the adenomas. Primarily abluminal expression for vimentin was seen, sometimes present in an apical dot-like pattern. Distinct populations of cellular expression of these four markers of epithelial mesenchymal transition were present but were similar in locations in both tumors with no patterns discerned to separate basal cell adenoma from basal cell adenocarcinoma. Given these findings, the mechanisms by which basal cell adenocarcinoma is able to invade while its counterpart, basal cell adenoma can not, may be more complex than in other tumor types. PMID:26442856

  2. Intratumoral neutrophil granulocytes contribute to epithelial-mesenchymal transition in lung adenocarcinoma cells.

    PubMed

    Hu, Pingping; Shen, Meixiao; Zhang, Ping; Zheng, Chunlong; Pang, Zhaofei; Zhu, Linhai; Du, Jiajun

    2015-09-01

    We previously demonstrated that haemoptysis as a prognostic factor in lung adenocarcinoma and haemoptysis was associated with severe vascular invasion and high circulating white blood cell count. Epithelial-mesenchymal transition (EMT) plays an important role in tumor invasion. We hypothesized there was some relationship between tumor-associated inflammatory cells, tumor invasion, EMT, and haemoptysis. Immunohistochemistry (IHC) was used to detect CD66b and E-cadherin expression in tumor tissue. By co-culture tumor cells with polymorphonuclear neutrophils (PMNs), the expressions of EMT markers were assessed by western blotting. TGF-β1 concentrations in the supernatant and the migration activities of tumor cells were performed by ELISA and migration assays. Intratumoral CD66b(+) PMN expression was negatively associated with E-cadherin expression. Haemoptysis was significantly associated with neutrophil infiltration (OR = 4.25, 95 % CI 1.246-14.502). Neutrophils promoted EMT of tumor cells in vitro and enhanced the migration activity of tumor cells. In addition, TGF-β1 was up-regulated and Smad4 translocated into nucleus, indicating that TGF-β/Smad signaling pathway was initiated during the process. We indicated that lung adenocarcinoma with haemoptysis was associated with more PMN infiltration and PMNs promoted EMT, partly via TGF-β/Smad signal pathway. This may provide mechanistic reasons for why haemoptysis was associated with poor outcome in lung adenocarcinoma. PMID:25944163

  3. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  4. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  5. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  6. Epithelial-mesenchymal transition in patients of pulmonary adenocarcinoma: correlation with cancer stem cell markers and prognosis.

    PubMed

    Sung, Woo Jung; Park, Ki-Sung; Kwak, Sang Gyu; Hyun, Dae-Sung; Jang, Jae Seok; Park, Kwan-Kyu

    2015-01-01

    Adenocarcinoma is the most common histologic type of non-small cell lung carcinomas. The existence of lung cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) in human tissue is controversy. The aim of this study is to investigate the expression and clinical significance of CSCs and EMT markers and evaluate the correlation between the two in lung adenocarcinoma. A total of 97 cases comprise the tissue microarray from surgical resection for primary lung adenocarcinoma. Immunohistochemistry for ALDH1 and CD44 as CSC markers and E-cadherin, vimentin, fibronectin, SMA as EMT markers was performed. High ALDH1A1 expression was statistically associated with female gender (P=0.001), smoker (P=0.012), and high pT stages (P=0.046). High CD44 expression was statistically associated with female gender (P=0.008), non-smoker (P=0.000), and no pleural invasion (P=0.039). High expression of ALDH1 was associated with good overall survival (P=0.021). High expression of CD44 was correlated with both good overall survival (P=0.024) and disease-free survival (P=0.000). Vimentin expression was associated with pT stage (P=0.001) and pleural invasion (P=0.028). E-cadherin, fibronectin and SMA were not associated with clinicopathologic correlation and all EMT markers were not correlated with survival of lung adenocarcinoma. CSC markers expression was not related to EMT. Our results showed that the expression of CSCs was associated with a good prognosis in lung adenocarcinoma. The prognostic significance of EMT markers was skeptical in this study. There is a need for more research about CSC, EMT, and the relation between these two in human lung adenocarcinoma. PMID:26464642

  7. Prolyl isomerase Pin1 promotes survival in EGFR-mutant lung adenocarcinoma cells with an epithelial-mesenchymal transition phenotype.

    PubMed

    Sakuma, Yuji; Nishikiori, Hirotaka; Hirai, Sachie; Yamaguchi, Miki; Yamada, Gen; Watanabe, Atsushi; Hasegawa, Tadashi; Kojima, Takashi; Niki, Toshiro; Takahashi, Hiroki

    2016-04-01

    The secondary epidermal growth factor receptor (EGFR) T790M mutation is the most prominent mechanism that confers resistance to first- or second-generation EGFR tyrosine kinase inhibitors (TKIs) in lung cancer treatment. Although third-generation EGFR TKIs can suppress the kinase activity of T790M-positive EGFR, they still cannot eradicate EGFR-mutated cancer cells. We previously reported that a subpopulation of EGFR-mutant lung adenocarcinomas depends on enhanced autophagy, instead of EGFR, for survival, and in this study we explore another mechanism that contributes to TKI resistance. We demonstrate here that an EGFR-mutant lung adenocarcinoma cell line, H1975 (L858R+T790M), has a subset of cells that exhibits an epithelial-mesenchymal transition (EMT) phenotype and can thrive in the presence of third-generation EGFR TKIs. These cells depend on not only autophagy but also on the isomerase Pin1 for survival in vitro, unlike their parental cells. The Pin1 protein was expressed in an EGFR-mutant lung cancer tissue that has undergone partial EMT and acquired resistance to EGFR TKIs, but not its primary tumor. These findings suggest that inhibition of Pin1 activity can be a novel strategy in lung cancer treatment. PMID:26752745

  8. Two-dimensional culture of human pancreatic adenocarcinoma cells results in an irreversible transition from epithelial to mesenchymal phenotype

    PubMed Central

    Kang, Ya'an; Zhang, Ran; Suzuki, Rei; Li, Shao-qiang; Roife, David; Truty, Mark J.; Chatterjee, Deyali; Thomas, Ryan M.; Cardwell, James; Wang, Yu; Wang, Huamin; Katz, Matthew H.; Fleming, Jason B.

    2015-01-01

    Many commercially available cell lines have been in culture for ages, acquiring phenotypes that differ from the original cancers from which these cell lines were derived. Therefore, research on new cell lines could improve the success rates of translational research in cancer. We have developed methods for the isolation and culture of human pancreatic ductal adenocarcinoma (PDAC) cells from murine xenografts of human PDAC. We hypothesize that phenotypes of PDAC cells are modified by in vitro culture conditions over time and by in vivo implantation. Patient-derived xenografts were created in immunodeficient mice using surgically resected tumor specimens. These murine xenografts were then used to establish human PDAC cell lines in culture. Earlier (<5) passage and later (>20) passage cell lines were evaluated separately regarding proliferation, cell cycle, genetic mutations, invasiveness, chemosensitivity, tumorigenesis, epithelial-mesenchymal transition (EMT) status, and proteomics. Later passage cells accelerated their doubling time and colony formation, and were more concentrated in the G0/G1 phase and less in the G2/M checkpoint phase. Later passage cells were more sensitive to gemcitabine and 5-fluorouracil than earlier passage cells, but all four new cell lines were more chemo-resistant compared to commercial ATCC cell lines. EMT induction was observed when establishing and passaging cell lines in vitro and furthermore by growing them as subcutaneous tumors in vivo. This study demonstrates a novel approach to the establishment of PDAC cell lines and observes a process by which newly established cell lines undergo phenotypic changes during in vitro culture and in vivo tumorigenesis. This may help explain differences of treatment effects often observed between experiments conducted in vitro, in vivo, and in human clinical trials. PMID:25485535

  9. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model

    PubMed Central

    Gagliano, Nicoletta; Celesti, Giuseppe; Tacchini, Lorenza; Pluchino, Stefano; Sforza, Chiarella; Rasile, Marco; Valerio, Vincenza; Laghi, Luigi; Conte, Vincenzo; Procacci, Patrizia

    2016-01-01

    AIM: To analyze the effect of three-dimensional (3D)-arrangement on the expression of epithelial-to-mesenchymal transition markers in pancreatic adenocarcinoma (PDAC) cells. METHODS: HPAF-II, HPAC, and PL45 PDAC cells were cultured in either 2D-monolayers or 3D-spheroids. Ultrastructure was analyzed by transmission electron microscopy. The expression of E-cadherin, β-catenin, N-cadherin, collagen type I (COL-I), vimentin, α-smooth muscle actin (αSMA), and podoplanin was assayed by confocal microscopy in cells cultured on 12-mm diameter round coverslips and in 3D-spheroids. Gene expression for E-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 was quantified by real-time PCR. E-cadherin protein level and its electrophoretic pattern were studied by Western blot in cell lysates obtained from cells grown in 2D-monolayers and 3D-spheroids. RESULTS: The E-cadherin/β-catenin complex was expressed in a similar way in plasma membrane cell boundaries in both 2D-monolayers and 3D-spheroids. E-cadherin increased in lysates obtained from 3D-spheroids, while cleavage fragments were more evident in 2D-monolayers. N-cadherin expression was observed in very few PDAC cells grown in 2D-monolayers, but was more evident in 3D-spheroids. Some cells expressing COL-I were observed in 3D-spheroids. Podoplanin, expressed in collectively migrating cells, and αSMA were similarly expressed in both experimental conditions. The concomitant maintenance of the E-cadherin/β-catenin complex at cell boundaries supports the hypothesis of a collective migration for these cells, which is consistent with podoplanin expression. CONCLUSION: We show that a 3D-cell culture model could provide deeper insight into understanding the biology of PDAC and allow for the detection of marked differences in the phenotype of PDAC cells grown in 3D-spheroids. PMID:27182158

  10. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells.

    PubMed

    Alwarsamy, Madhavarani; Gooneratne, Ravi; Ravichandran, Ramanibai

    2016-11-01

    Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells. PMID:27516266

  11. Glycosaminoglycan synthesis by subpopulations of epithelial cells from a mammary adenocarcinoma

    SciTech Connect

    Angello, J.C.; Danielson, K.G.; Anderson, L.W.; Hosick, H.L.

    1982-06-01

    Glycosaminoglycan synthesis by two subpopulations of a mouse mammary tumor cell line was compared. The two sublines express distinctly different growth characteristics in vitro and in vivo which indicate differences in growth regulation. Newly made glycosaminoglycans were recovered from the culture media, the cell surfaces, and residual cellular material. The cell population which grows more aggressively in vivo (+SA subline, a subline that grows in soft agarose) incorporated about 8 times more (/sup 14/C)glucosamine per cell into total glycosaminoglycans than did the slower-growing population (-SA subline, which does not grow in soft agarose). Appropriate control experiments indicated that the apparent difference in rates of synthesis was not due to discrepancies in glucosamine uptake. The main residual cellular molecule labeled was heparan sulfate, but the predominant molecule at the cell surface and in the culture fluid was hyaluronic acid. Overall, +SA cells synthesized more hyaluronic acid and -SA cells synthesized more heparan sulfate; in both cell populations, these two molecules accounted for about 90% of total glycosaminoglycans produced.

  12. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells.

    PubMed

    Kim, Jiyeon; Kim, Tae Yeon; Lee, Myung Shin; Mun, Ji Young; Ihm, Chunhwa; Kim, Soon Ae

    2016-09-16

    It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling. PMID:27492069

  13. Epithelial cell adhesion molecule aptamer conjugated PEG-PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro.

    PubMed

    Alibolandi, Mona; Ramezani, Mohammad; Sadeghi, Fatemeh; Abnous, Khalil; Hadizadeh, Farzin

    2015-02-01

    Targeted delivery of anti-cancer agents exclusively to tumor cells introduces an attractive strategy because it increases the therapeutic index compared with untargeted drugs. Aptamer conjugated nanoparticles that can specifically bind to the proteins on a tumor cell surface are capable nanoscale delivery systems for enhancing cellular uptake of chemotherapeutic agents. The epithelial cell adhesion molecule (EpCAM) as a cancer stem cell marker emerges as a versatile target for aptamer-based cancer therapy due to its high expression level in various adenocarcinoma cell lines and its very low expression level in normal cells. We developed EpCAM-targeted PEG-PLGA nanopolymersomes by covalently coupling the EpCAM aptamer to the surface of nanopolymersomes loaded with the anticancer agent doxorubicin via pH gradient method. The results indicated that doxorubicin was entrapped in PEG-PLGA nanopolymersomes with encapsulation efficiency and loading content of 91.25±4.27% and 7.3±0.34%, respectively. Over a period of 5 days, up to 8% of the DOX was released through this system. The doxorubicin-loaded aptamer conjugated nanopolymersomes exhibited efficient cell uptake and internalization, and were significantly more cytotoxic (P<0.01) toward EpCAM-positive tumor cells (MCF-7) than non-targeted nanopolymersomes. Our data suggest that EpCAM-targeted nanopolymersomes will lead to an improved therapeutic index of doxorubicin to EpCAM positive cancer cells. PMID:25529433

  14. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells

    PubMed Central

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells. PMID:24591829

  15. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    PubMed Central

    Kondo, Hiroshi; Miyoshi, Keiko; Sakiyama, Shoji; Tangoku, Akira; Noma, Takafumi

    2015-01-01

    Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII) cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12) were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC), an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5), an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1) expression levels were enhanced. After treatment with dexamethasone (DEX), 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine (IBMX), and keratinocyte growth factor (KGF), surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation. PMID:26167183

  16. A human gallbladder adenocarcinoma cell line.

    PubMed

    Johzaki, H; Iwasaki, H; Nishida, T; Isayama, T; Kikuchi, M

    1989-12-01

    A cell strain (FU-GBC-1) was established from cancerous ascites of a 68-year-old male patient with well-differentiated adenocarcinoma of the gallbladder. By light and electron microscopy, the cultured cells showed the morphologic features of adenocarcinoma characterized by gland-like structures, intracellular microcystic spaces, and mucous production. Immunoperoxidase stains showed that FU-GBC-1 cells expressed several epithelial tumor antigens including CA 19-9, carcinoembryonic antigen (CEA), and epithelial membrane antigen (EMA). The cell strain has been in continuous culture up to passage 44 for 1 1/2 years, with the population doubling time of 120 hours. The cytogenetic analysis by a G-band technique showed a constant loss of chromosome Y in FU-GBC-1 cells. The modal chromosome number at passage 12 was 82 with a range of 77 to 85. Flow cytometry with an ethidium bromide technique additionally confirmed aneuploid DNA content (4C) in the cultured cells at passage 12 and 35. Inoculation of FU-GBC-1 cells into the dermis of BALB/c nude mice produced transplantable adenocarcinoma identical to the original tumor. Because no continuous cell lines of the well-differentiated type of gallbladder adenocarcinoma have been reported in the literature currently, the newly established cell strain we report may yield a useful system for studying the morphologic and biologic characteristics of gallbladder adenocarcinoma. PMID:2680052

  17. Reduction in membranous immunohistochemical staining for the intracellular domain of epithelial cell adhesion molecule correlates with poor patient outcome in primary colorectal adenocarcinoma

    PubMed Central

    Wang, A.; Ramjeesingh, R.; Chen, C.H.; Hurlbut, D.; Hammad, N.; Mulligan, L.M.; Nicol, C.; Feilotter, H.E.; Davey, S.

    2016-01-01

    Background Epithelial cell adhesion molecule (epcam) is a multifunctional transmembrane glycoprotein expressed on both normal epithelium and epithelial neoplasms such as gastric, breast, and renal carcinomas. Recent studies have proposed that the proteolytic cleavage of the intracellular domain of epcam (epcam-icd) can trigger signalling cascades leading to aggressive tumour behavior. The expression profile of epcam-icd has not been elucidated for primary colorectal carcinoma. In the present study, we examined epcam-icd immunohistochemical staining in a large cohort of patients with primary colorectal adenocarcinoma and assessed its performance as a potential prognostic marker. Methods Immunohistochemical staining for epcam-icd was assessed on tissue microarrays consisting of 137 primary colorectal adenocarcinoma samples. Intensity of staining for each core was scored by 3 independent pathologists. The membranous epcam-icd staining score was calculated as a weighted average from 3 core samples per tumour. Univariate analysis of the average scores and clinical outcome measures was performed. Results The level of membranous epcam-icd staining was positively associated with well-differentiated tumours (p = 0.01); low preoperative carcinoembryonic antigen (p = 0.001); and several measures of survival, including 2-year (p = 0.02) and 5-year survival (p = 0.05), and length of time post-diagnosis (p = 0.03). A number of other variables—including stage, grade, and lymph node status—showed correlations with epcam staining and markers of poor outcome, but did not reach statistical significance. Conclusions Low membranous epcam-icd staining might be a useful marker to identify tumours with aggressive clinical behavior and potential poor prognosis and might help to select candidates who could potentially benefit from treatment targeting epcam. PMID:27330354

  18. Metformin inhibits 17β-estradiol-induced epithelial-to-mesenchymal transition via βKlotho-related ERK1/2 signaling and AMPKα signaling in endometrial adenocarcinoma cells

    PubMed Central

    Liu, Zhao; Qi, Shasha; Zhao, Xingbo; Li, Mingjiang; Ding, Sentai; Lu, Jiaju; Zhang, Hui

    2016-01-01

    The potential role of metformin in treating endometrial cancer remains to be explored. The current study investigated the role of metformin in 17β-estradiol-induced epithelial-mesenchymal transition (EMT) in endometrial adenocarcinoma cells. We found that 17β-estradiol promoted proliferation and migration, attenuated apoptosis in both estrogen receptor (ER) positive and ER negative endometrial adenocarcinoma cells (Ishikawa and KLE cells, respectively). Metformin abolished 17β-estradiol-induced cell proliferation and reversed 17β-estradiol-induced EMT in Ishikawa cells. In addition, metformin increased the expression of βKlotho, a fibroblast growth factors (FGFs) coreceptor, and decreased ERK1/2 phosphorylation in both Ishikawa and KLE cells. Decreased expression of βKlotho was noted in human endometrial adenocarcinomas, and plasmid-driven expression of βKlotho in Ishikawa cells abolished 17β-estradiol-induced EMT via inhibiting ERK1/2 signaling. βKlotho expression and metformin show synergetic effects on the proliferation and the EMT in Ishikawa cells. Furthermore, we demonstrated that the anti-EMT effects of metformin could be partly abolished by introducing Compound C, a specific AMPKα signaling inhibitor. In conclusion, metformin abolishes 17β-estradiol-induced cell proliferation and EMT in endometrial adenocarcinoma cells by upregulating βKlotho expression, inhibiting ERK1/2 signaling, and activating AMPKα signaling. Our study provides novel mechanistic insight into the anti-tumor effects of metformin. PMID:26824324

  19. Embigin is overexpressed in pancreatic ductal adenocarcinoma and regulates cell motility through epithelial to mesenchymal transition via the TGF-β pathway.

    PubMed

    Jung, Dawoon E; Kim, Jeong Mi; Kim, Chanyang; Song, Si Young

    2016-05-01

    Embigin is a member of the immunoglobulin superfamily and encodes a transmembrane glycoprotein. There have been reports of Embigin involvement in neuromuscular junction formation and plasticity; however, the molecular functions of Embigin in other organs are unknown. Our aim was to investigate the possible role of Embigin in pancreatic cancer. In pancreatic ductal adenocarcinoma tissues, Embigin expression was higher than that in normal pancreatic tissues. Immunohistochemical analysis revealed expression of Embigin in pancreatic cancer cells, as well as expression of monocarboxylate transporter 2 (MCT2) in cancer tissues. To gain further insight, we transfected BxPC-3 and HPAC pancreatic cancer cells with siRNA or shRNA targeting Embigin and observed reductions in cell proliferation, migration, invasion, wound healing, and reduced levels of matrix metalloproteinases-2 and -9. Silencing of Embigin increased intracellular L-lactate concentration by 1.5-fold and decreased MCT2 levels at the plasma membrane. Furthermore, Embigin silencing led to a reduced expression of PI3K, GSK3-β, and Snail/Slug. Upon treating BxPC-3 cells with transforming growth factor-β (TGF-β), we observed elevated expression of Snail/Slug, Embigin, and Vimentin; meanwhile, when treating cells with SB-216763, a GSK3-β inhibitor, we noted decreases in GSK3-β, Snail/Slug, and Embigin expression, suggesting that the TGF-β signaling cascade, comprising PI3K, GSK3-β, Snail/Slug, and Embigin signals, mediates epithelial to mesenchymal transition (EMT) in pancreatic cancer cells. These findings indicate the involvement of Embigin in EMT in pancreatic cancer progression and suggest Embigin as a putative target for the detection and/or treatment of pancreatic cancer. © 2015 Wiley Periodicals, Inc. PMID:25773908

  20. Molecular portraits of epithelial, mesenchymal, and hybrid States in lung adenocarcinoma and their relevance to survival.

    PubMed

    Schliekelman, Mark J; Taguchi, Ayumu; Zhu, Jun; Dai, Xudong; Rodriguez, Jaime; Celiktas, Muge; Zhang, Qing; Chin, Alice; Wong, Chee-Hong; Wang, Hong; McFerrin, Lisa; Selamat, Suhaida A; Yang, Chenchen; Kroh, Evan M; Garg, Kavita S; Behrens, Carmen; Gazdar, Adi F; Laird-Offringa, Ite A; Tewari, Muneesh; Wistuba, Ignacio I; Thiery, Jean P; Hanash, Samir M

    2015-05-01

    Epithelial-to-mesenchymal transition (EMT) is a key process associated with tumor progression and metastasis. To define molecular features associated with EMT states, we undertook an integrative approach combining mRNA, miRNA, DNA methylation, and proteomic profiles of 38 cell populations representative of the genomic heterogeneity in lung adenocarcinoma. The resulting data were integrated with functional profiles consisting of cell invasiveness, adhesion, and motility. A subset of cell lines that were readily defined as epithelial or mesenchymal based on their morphology and E-cadherin and vimentin expression elicited distinctive molecular signatures. Other cell populations displayed intermediate/hybrid states of EMT, with mixed epithelial and mesenchymal characteristics. A dominant proteomic feature of aggressive hybrid cell lines was upregulation of cytoskeletal and actin-binding proteins, a signature shared with mesenchymal cell lines. Cytoskeletal reorganization preceded loss of E-cadherin in epithelial cells in which EMT was induced by TGFβ. A set of transcripts corresponding to the mesenchymal protein signature enriched in cytoskeletal proteins was found to be predictive of survival in independent datasets of lung adenocarcinomas. Our findings point to an association between cytoskeletal and actin-binding proteins, a mesenchymal or hybrid EMT phenotype and invasive properties of lung adenocarcinomas. PMID:25744723

  1. Proteomics indicates modulation of tubulin polymerization by L-menthol inhibiting human epithelial colorectal adenocarcinoma cell proliferation.

    PubMed

    Faridi, Uzma; Sisodia, Brijesh S; Shukla, Ashutosh K; Shukla, Rakesh K; Darokar, Mahendra P; Dwivedi, Upendra N; Shasany, Ajit K

    2011-05-01

    Menthol is a naturally occurring cyclic monoterpene used in oral hygiene products, confectionary, pharmaceuticals, cosmetics, pesticides, and as a flavoring agent. In the present study, we analyzed the differentially expressing proteome in L-menthol-treated Caco-2 cell line as it was found to inhibit cell proliferation. Interestingly, free tubulin proteins were observed to be limited after menthol treatment. Semiquantitative RT-PCR with α-tubulin primers showed no change in the level of RNA expression in menthol-treated cell line. However, tubulin polymerization assay with menthol indicated a trend similar to taxol in promoting microtubule assembly. Further, physical counting of apoptotic nuclei and active caspase-3 assays confirmed onset of apoptosis though the rate was slower as compared with that of taxol treatment. This study is the first report of a monoterpene L-menthol modulating tubulin polymerization and apoptosis to inhibit cancer cell proliferation. PMID:21472860

  2. Metformin Inhibits the IL-6-Induced Epithelial-Mesenchymal Transition and Lung Adenocarcinoma Growth and Metastasis

    PubMed Central

    Wang, Yubo; Han, Rui; Li, Li; Xiang, Tong; He, Luhang; Long, Haixia; Zhu, Bo; He, Yong

    2014-01-01

    Objective Epithelial-mesenchymal transition (EMT) plays an important role in cancer tumorigenesis. However, the underlying mechanisms of EMT in lung adenocarcinoma, and how this process might be inhibited, remain to be explored. This study investigated the role of IL-6 in lung adenocarcinoma cell EMT and explored the potential effects of metformin on this process. Methods Invasion assay and MTT assay was performed to determine cell invasion and cell proliferation. Western blotting, immunofluorescence, real-time PCR, ELISA, and immunohistochemistry were performed to detect the expression of IL-6, E-cadherin, Vimentin, and p-STAT3. Results We discovered that IL-6, via STAT3 phosphorylation, could promote lung adenocarcinoma cell invasion via EMT in vitro. This was supported by the inverse correlation between E-cadherin and IL-6 expression, positive correlation between IL-6 and vimentin mRNA expression and between STAT3 phosphorylation and IL-6 expression in tumor tissues. Importantly, metformin inhibited tumor growth and distant metastases in tumor-bearing nude mice and reversed IL-6-induced EMT both in vitro and in vivo. Furthermore, we found that blockade of STAT3 phosphorylation might be the underlying mechanism of metformin inhibition of IL-6-induced EMT. Conclusions Collectively, our present results show that enhanced IL-6 expression, via STAT3 phosphorylation, is a mechanism of EMT in lung adenocarcinoma. We found that metformin could inhibit IL-6-induced EMT possibly by blocking STAT3 phosphorylation. PMID:24789104

  3. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation

    PubMed Central

    KURIMOTO, RYOTA; IWASAWA, SHUNICHIRO; EBATA, TAKAHIRO; ISHIWATA, TSUKASA; SEKINE, IKUO; TADA, YUJI; TATSUMI, KOICHIRO; KOIDE, SHUHEI; IWAMA, ATSUSHI; TAKIGUCHI, YUICHI

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is a malignant cancer phenotype characterized by augmented invasion and metastasis, chemoresistance, and escape from host-immunity. This study sought to identify efficient methods for inducing EMT reversion, to evaluate alterations in chemosensitivity and immune-protectiveness, and to elucidate the underlying mechanisms. In this study, the human lung adenocarcinoma cell lines PC-9 and HCC-827, harboring an EGFR mutation, were treated with TGF-β and FGF-2 to induce EMT. The phenotypic alterations were evaluated by RT-PCR, fluorescent immunohistochemistry, cell-mobility, and flow cytometry. Chemosensitivity to gefitinib and cisplatin was evaluated using an MTT assay and apoptosis. Immune-protectiveness was evaluated by PD-L1 expression. A combination of TGF-β and FGF-2 efficiently induced EMT in both cell lines: through Smad3 pathway in PC-9, and through Smad3, MEK/Erk, and mTOR pathways in HCC-827. The mTOR inhibitor PP242, metformin, and DMSO reverted EMT to different extent and through different pathways, depending on the cell lines. EMT induction reduced the sensitivity to gefitinib in both cell lines and to cisplatin in HCC-827, and it increased PD-L1 expression in both cell lines. EMT reversion using each of the 3 agents partly restored chemosensitivity and suppressed PD-L1 expression. Thus, chemoresistance and increased PD-L1 expression caused by EMT can be successfully reverted by EMT-reverting agents. PMID:26984042

  4. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation.

    PubMed

    Kurimoto, Ryota; Iwasawa, Shunichiro; Ebata, Takahiro; Ishiwata, Tsukasa; Sekine, Ikuo; Tada, Yuji; Tatsumi, Koichiro; Koide, Shuhei; Iwama, Atsushi; Takiguchi, Yuichi

    2016-05-01

    Epithelial-to-mesenchymal transition (EMT) is a malignant cancer phenotype characterized by augmented invasion and metastasis, chemoresistance, and escape from host-immunity. This study sought to identify efficient methods for inducing EMT reversion, to evaluate alterations in chemosensitivity and immune-protectiveness, and to elucidate the underlying mechanisms. In this study, the human lung adenocarcinoma cell lines PC-9 and HCC-827, harboring an EGFR mutation, were treated with TGF-β and FGF-2 to induce EMT. The phenotypic alterations were evaluated by RT-PCR, fluorescent immunohistochemistry, cell-mobility, and flow cytometry. Chemosensitivity to gefitinib and cisplatin was evaluated using an MTT assay and apoptosis. Immune-protectiveness was evaluated by PD-L1 expression. A combination of TGF-β and FGF-2 efficiently induced EMT in both cell lines: through Smad3 pathway in PC-9, and through Smad3, MEK/Erk, and mTOR pathways in HCC-827. The mTOR inhibitor PP242, metformin, and DMSO reverted EMT to different extent and through different pathways, depending on the cell lines. EMT induction reduced the sensitivity to gefitinib in both cell lines and to cisplatin in HCC-827, and it increased PD-L1 expression in both cell lines. EMT reversion using each of the 3 agents partly restored chemosensitivity and suppressed PD-L1 expression. Thus, chemoresistance and increased PD-L1 expression caused by EMT can be successfully reverted by EMT-reverting agents. PMID:26984042

  5. MiR-134/487b/655 cluster regulates TGF-β-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells.

    PubMed

    Kitamura, Kazuhiro; Seike, Masahiro; Okano, Tetsuya; Matsuda, Kuniko; Miyanaga, Akihiko; Mizutani, Hideaki; Noro, Rintaro; Minegishi, Yuji; Kubota, Kaoru; Gemma, Akihiko

    2014-02-01

    Epithelial-mesenchymal transition (EMT) has recently been recognized as a key element of cell invasion, migration, metastasis, and drug resistance in several types of cancer, including non-small cell lung cancer (NSCLC). Our aim was to clarify microRNA (miRNA)-related mechanisms underlying EMT followed by acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in NSCLC. miRNA expression profiles were examined before and after transforming growth factor β1 (TGF-β1) exposure in four human adenocarcinoma cell lines with or without EMT. Correlation between expressions of EMT-related miRNAs and resistance to EGFR-TKI gefitinib was evaluated. miRNA array and real-time quantitative reverse transcription PCR (qRT-PCR) revealed that TGF-β1 significantly induced overexpression of miR-134, miR-487b, and miR-655, which belong to the same cluster located on chromosome 14q32, in lung adenocarcinoma cells with EMT. MAGI2 (membrane-associated guanylate kinase, WW, and PDZ domain-containing protein 2), a predicted target of these miRNAs and a scaffold protein required for PTEN, was diminished in A549 cells with EMT after the TGF-β1 stimulation. Overexpression of miR-134 and miR-487b promoted the EMT phenomenon and affected the drug resistance to gefitinib, whereas knockdown of these miRNAs inhibited the EMT process and reversed TGF-β1-induced resistance to gefitinib. Our study demonstrated that the miR-134/487b/655 cluster contributed to the TGF-β1-induced EMT phenomenon and affected the resistance to gefitinib by directly targeting MAGI2, in which suppression subsequently caused loss of PTEN stability in lung cancer cells. The miR-134/miR-487b/miR-655 cluster may be a new therapeutic target in patients with advanced lung adenocarcinoma, depending on the EMT phenomenon. PMID:24258346

  6. Napsin A is a specific marker for ovarian clear cell adenocarcinoma.

    PubMed

    Yamashita, Yoriko; Nagasaka, Tetsuro; Naiki-Ito, Aya; Sato, Shinya; Suzuki, Shugo; Toyokuni, Shinya; Ito, Masafumi; Takahashi, Satoru

    2015-01-01

    Ovarian clear cell adenocarcinoma has a relatively poor prognosis among the ovarian cancer subtypes because of its high chemoresistance. Differential diagnosis of clear cell adenocarcinoma from other ovarian surface epithelial tumors is important for its treatment. Napsin A is a known diagnostic marker for lung adenocarcinoma, and expression of napsin A is reported in a certain portion of thyroid and renal carcinomas. However, napsin A expression in ovarian surface epithelial tumors has not previously been examined. In this study, immunohistochemical analysis revealed that in 71 of 86 ovarian clear cell adenocarcinoma patients (83%) and all of the 13 patients with ovarian clear cell adenofibroma, positive napsin A staining was evident. No expression was observed in 30 serous adenocarcinomas, 11 serous adenomas or borderline tumors, 19 endometrioid adenocarcinomas, 22 mucinous adenomas or borderline tumors, 10 mucinous adenocarcinomas, or 3 yolk sac tumors of the ovary. Furthermore, expression of napsin A was not observed in the normal surface epithelium of the ovary, epithelia of the fallopian tubes, squamous epithelium, endocervical epithelium, or the endometrium of the uterus. Therefore, we propose that napsin A is another sensitive and specific marker for distinguishing ovarian clear cell tumors (especially adenocarcinomas) from other ovarian tumors. PMID:24721826

  7. Denileukin Diftitox Used in Treating Patients With Advanced Refractory Ovarian Cancer, Primary Peritoneal Carcinoma, or Epithelial Fallopian Tube Cancer

    ClinicalTrials.gov

    2016-05-02

    Fallopian Tube Cancer; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Peritoneal Cavity Cancer; Recurrent Ovarian Epithelial Cancer; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  8. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  9. Trefoil factor 3 as a novel biomarker to distinguish between adenocarcinoma and squamous cell carcinoma.

    PubMed

    Wang, Xiao-Nan; Wang, Shu-Jing; Pandey, Vijay; Chen, Ping; Li, Qing; Wu, Zheng-Sheng; Wu, Qiang; Lobie, Peter E

    2015-05-01

    In carcinoma, such as of the lung, the histological subtype is important to select an appropriate therapeutic strategy for patients. However, carcinomas with poor differentiation cannot always be distinguished on the basis of morphology alone nor on clinical findings. Hence, delineation of poorly differentiated adenocarcinoma and squamous cell carcinoma, the 2 most common epithelial-origin carcinomas, is pivotal for selection of optimum therapy. Herein, we explored the potential utility of trefoil factor 3 (TFF3) as a biomarker for primary lung adenocarcinoma and extrapulmonary adenocarcinomas derived from different organs. We observed that 90.9% of lung adenocarcinomas were TFF3-positive, whereas no expression of TFF3 was observed in squamous cell carcinomas. The subtype of lung carcinoma was confirmed by four established biomarkers, cytokeratin 7 and thyroid transcription factor 1 for adenocarcinoma and P63 and cytokeratin 5/6 for squamous cell carcinoma. Furthermore, expression of TFF3 mRNA was observed by quantitative PCR in all of 11 human lung adenocarcinoma cell lines and highly correlated with markers of the adenocarcinomatous lineage. In contrast, little or no expression of TFF3 was observed in 4 lung squamous cell carcinoma cell lines. By use of forced expression, or siRNA-mediated depletion of TFF3, we determined that TFF3 appeared to maintain rather than promote glandular differentiation of lung carcinoma cells. In addition, TFF3 expression was also determined in adenocarcinomas from colorectum, stomach, cervix, esophagus, and larynx. Among all these extrapulmonary carcinomas, 93.7% of adenocarcinomas exhibited TFF3 positivity, whereas only 2.9% of squamous cell carcinomas were TFF3-positive. Totally, 92.9% of both pulmonary and extrapulmonary adenocarcinomas exhibited TFF3 positivity, whereas only 1.5% of squamous cell carcinomas were TFF3-positive. In conclusion, TFF3 is preferentially expressed in adenocarcinoma and may function as an additional

  10. Epithelial stem cells.

    PubMed

    Draheim, Kyle M; Lyle, Stephen

    2011-01-01

    It is likely that adult epithelial stem cells will be useful in the treatment of diseases, such as ectodermal dysplasias, monilethrix, Netherton syndrome, Menkes disease, hereditary epidermolysis bullosa, and alopecias. Additionally, other skin problems such as burn wounds, chronic wounds, and ulcers will benefit from stem cell-related therapies. However, there are many questions that need to be answered before this goal can be realized. The most important of these questions is what regulates the adhesion of stem cells to the niche versus migration to the site of injury. We have started to identify the mechanisms involved in this decision-making process. PMID:21618097

  11. Hyperoxic Treatment Induces Mesenchymal-to-Epithelial Transition in a Rat Adenocarcinoma Model

    PubMed Central

    Moen, Ingrid; Øyan, Anne Margrete; Kalland, Karl-Henning; Tronstad, Karl Johan; Akslen, Lars Andreas; Chekenya, Martha; Sakariassen, Per Øystein; Reed, Rolf Kåre; Stuhr, Linda Elin Birkhaug

    2009-01-01

    Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT). We report that hyperbaric oxygen (HBO) treatment induced mesenchymal-to-epithelial transition (MET) in a dimetyl-α-benzantracene induced mammary rat adenocarcinoma model, and the MET was associated with extensive coordinated gene expression changes and less aggressive tumors. One group of tumor bearing rats was exposed to HBO (2 bar, pO2 = 2 bar, 4 exposures à 90 minutes), whereas the control group was housed under normal atmosphere (1 bar, pO2 = 0.2 bar). Treatment effects were determined by assessment of tumor growth, tumor vascularisation, tumor cell proliferation, cell death, collagen fibrils and gene expression profile. Tumor growth was significantly reduced (∼16%) after HBO treatment compared to day 1 levels, whereas control tumors increased almost 100% in volume. Significant decreases in tumor cell proliferation, tumor blood vessels and collagen fibrils, together with an increase in cell death, are consistent with tumor growth reduction and tumor stroma influence after hyperoxic treatment. Gene expression profiling showed that HBO induced MET. In conclusion, hyperoxia induced MET with coordinated expression of gene modules involved in cell junctions and attachments together with a shift towards non-tumorigenic metabolism. This leads to more differentiated and less aggressive tumors, and indicates that oxygen per se might be an important factor in the “switches” of EMT and MET in vivo. HBO treatment also attenuated tumor growth and changed tumor stroma, by targeting the vascular system, having anti-proliferative and pro-apoptotic effects. PMID:19636430

  12. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model.

    PubMed

    Moen, Ingrid; Øyan, Anne Margrete; Kalland, Karl-Henning; Tronstad, Karl Johan; Akslen, Lars Andreas; Chekenya, Martha; Sakariassen, Per Øystein; Reed, Rolf Kåre; Stuhr, Linda Elin Birkhaug

    2009-01-01

    Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT). We report that hyperbaric oxygen (HBO) treatment induced mesenchymal-to-epithelial transition (MET) in a dimethyl-alpha-benzantracene induced mammary rat adenocarcinoma model, and the MET was associated with extensive coordinated gene expression changes and less aggressive tumors. One group of tumor bearing rats was exposed to HBO (2 bar, pO(2) = 2 bar, 4 exposures à 90 minutes), whereas the control group was housed under normal atmosphere (1 bar, pO(2) = 0.2 bar). Treatment effects were determined by assessment of tumor growth, tumor vascularisation, tumor cell proliferation, cell death, collagen fibrils and gene expression profile. Tumor growth was significantly reduced (approximately 16%) after HBO treatment compared to day 1 levels, whereas control tumors increased almost 100% in volume. Significant decreases in tumor cell proliferation, tumor blood vessels and collagen fibrils, together with an increase in cell death, are consistent with tumor growth reduction and tumor stroma influence after hyperoxic treatment. Gene expression profiling showed that HBO induced MET. In conclusion, hyperoxia induced MET with coordinated expression of gene modules involved in cell junctions and attachments together with a shift towards non-tumorigenic metabolism. This leads to more differentiated and less aggressive tumors, and indicates that oxygen per se might be an important factor in the "switches" of EMT and MET in vivo. HBO treatment also attenuated tumor growth and changed tumor stroma, by targeting the vascular system, having anti-proliferative and pro-apoptotic effects. PMID:19636430

  13. Paclitaxel, Cisplatin, and Topotecan With or Without Filgrastim in Treating Patients With Newly Diagnosed Stage III or Stage IV Epithelial Ovarian Cancer

    ClinicalTrials.gov

    2013-01-23

    Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  14. Generation of Mouse Lung Epithelial Cells

    PubMed Central

    Kasinski, Andrea L.; Slack, Frank J.

    2016-01-01

    Although in vivo models are excellent for assessing various facets of whole organism physiology, pathology, and overall response to treatments, evaluating basic cellular functions, and molecular events in mammalian model systems is challenging. It is therefore advantageous to perform these studies in a refined and less costly setting. One approach involves utilizing cells derived from the model under evaluation. The approach to generate such cells varies based on the cell of origin and often the genetics of the cell. Here we describe the steps involved in generating epithelial cells from the lungs of KrasLSL-G12D/+; p53LSL-R172/+ mice (Kasinski and Slack, 2012). These mice develop aggressive lung adenocarcinoma following cre-recombinase dependent removal of a stop cassette in the transgenes and subsequent expression of Kra-G12D and p53R172. While this protocol may be useful for the generation of epithelial lines from other genetic backgrounds, it should be noted that the Kras; p53 cell line generated here is capable of proliferating in culture without any additional genetic manipulation that is often needed for less aggressive backgrounds.

  15. A human gallbladder adenocarcinoma cell line.

    PubMed

    Morgan, R T; Woods, L K; Moore, G E; McGavran, L; Quinn, L A; Semple, T U

    1981-06-01

    A continuous cell line, COLO 346, was established from a liver metastasis in a patient with adenocarcinoma of the gallbladder. COLO 346 grew as an adherent monolayer of pleomorphic epithelioid cells. COLO 346 cells produced esterone, but no estradiol, progesterone, or cortisol. No adrenocorticotropic hormones, beta-subunit of human chorionic gonadotropin, carcinoembryonic antigen, or alpha-fetoprotein production by the cells was detected. Cell doubling time was 36 h. Seven allelic isozymes were assayed. COLO 346 had a chromosome mode of 74 at 21 months postestablishment with 6 marker chromosomes present in 100% of the cells analyzed. COLO 346 has been in continuous culture for over 2 yr and is available to other investigators for their studies. PMID:7262900

  16. Integrins and epithelial cell polarity

    PubMed Central

    Lee, Jessica L.; Streuli, Charles H.

    2014-01-01

    ABSTRACT Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell–matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical–basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity. For further reading, please see related articles: ‘ERM proteins at a glance’ by Andrea McClatchey (J. Cell Sci. 127, 3199–3204). ‘Establishment of epithelial polarity – GEF who's minding the GAP?’ by Siu Ngok et al. (J. Cell Sci. 127, 3205–3215). PMID:24994933

  17. Gender difference in the activity but not expression of estrogen receptors α and β in human lung adenocarcinoma cells

    PubMed Central

    Dougherty, Susan M; Mazhawidza, Williard; Bohn, Aimee R; Robinson, Krista A; Mattingly, Kathleen A; Blankenship, Kristy A; Huff, Mary O; McGregor, William G; Klinge, Carolyn M

    2006-01-01

    The higher frequency of lung adenocarcinoma in women smokers than in men smokers suggests a role for gender-dependent factors in the etiology of lung cancer. We evaluated estrogen receptor (ER) α and β expression and activity in human lung adenocarcinoma cell lines and normal lung fibroblasts. Full-length ERα and ERβ proteins were expressed in all cell lines with higher ERβ than ERα. Although estradiol (E2) binding was similar, E2 stimulated proliferation only in cells from females, and this response was inhibited by anti-estrogens 4-hydroxytamoxifen (4-OHT) and ICI 182,780. In contrast, E2 did not stimulate replication of lung adenocarcinoma cells from males and 4-OHT or ICI did not block cell proliferation. Similarly, transcription of an estrogen response element-driven reporter gene was stimulated by E2 in lung adenocarcinoma cells from females, but not males. Progesterone receptor (PR) expression was increased by E2 in two out of five adenocarcinoma cell lines from females, but none from males. E2 decreased E-cadherin protein expression in some of the cell lines from females, as it did in MCF-7 breast cancer cells, but not in the cell lines from males. Thus, ERα and ERβ expression does not correlate with the effect of ER ligands on cellular activities in lung adenocarcinoma cells. On the other hand, coactivator DRIP205 expression was higher in lung adenocarcinoma cells from females versus males and higher in adenocarcinoma cells than in normal human bronchial epithelial cells. DRIP205 and other ER coregulators may contribute to differences in estrogen responsiveness between lung adenocarcinoma cells in females and males. PMID:16601283

  18. Targeting cancer cell metabolism in pancreatic adenocarcinoma

    PubMed Central

    Cohen, Romain; Neuzillet, Cindy; Tijeras-Raballand, Annemilaï; Faivre, Sandrine; de Gramont, Armand; Raymond, Eric

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer death by 2030. Current therapeutic options are limited, warranting an urgent need to explore innovative treatment strategies. Due to specific microenvironment constraints including an extensive desmoplastic stroma reaction, PDAC faces major metabolic challenges, principally hypoxia and nutrient deprivation. Their connection with oncogenic alterations such as KRAS mutations has brought metabolic reprogramming to the forefront of PDAC therapeutic research. The Warburg effect, glutamine addiction, and autophagy stand as the most important adaptive metabolic mechanisms of cancer cells themselves, however metabolic reprogramming is also an important feature of the tumor microenvironment, having a major impact on epigenetic reprogramming and tumor cell interactions with its complex stroma. We present a comprehensive overview of the main metabolic adaptations contributing to PDAC development and progression. A review of current and future therapies targeting this range of metabolic pathways is provided. PMID:26164081

  19. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  20. Effect of anthralin on cell viability in human prostate adenocarcinoma.

    PubMed

    Raevskaya, A A; Gorbunova, S L; Savvateeva, M V; Severin, S E; Kirpichnikov, M P

    2012-07-01

    The study revealed the key role of serine protease hepsin activity in transition of in situ prostate adenocarcinoma into the metastasizing form. Inhibition of hepsin activity suppresses the invasive growth of the tumor. Hepsin is an convenient target for pharmacological agents, so the study of its inhibitory mechanisms is a promising avenue in drug development. Assay of proteolytic activity in various tumor cell lines in vitro showed that this activity in prostate adenocarcinoma cells significantly surpasses proteolytic activity in other examined tumor cell lines. Selective cytotoxic action of anthralin, an inhibitor of hepsin activity, on human adenocarcinoma cells was demonstrated in comparison with other tumor cell lines. PMID:22866312

  1. Early Human Prostate Adenocarcinomas Harbor Androgen-Independent Cancer Cells

    PubMed Central

    Fiñones, Rita R.; Yeargin, Jo; Lee, Melissa; Kaur, Aman Preet; Cheng, Clari; Sun, Paulina; Wu, Christopher; Nguyen, Catherine; Wang-Rodriguez, Jessica; Meyer, April N.; Baird, Stephen M.; Donoghue, Daniel J.; Haas, Martin

    2013-01-01

    Although blockade of androgen receptor (AR) signaling represents the main treatment for advanced prostate cancer (PrCa), many patients progress to a lethal phenotype of “Castration-Resistant” prostate cancer (CR-PrCa). With the hypothesis that early PrCa may harbor a population of androgen-unresponsive cancer cells as precursors to CR-recurrent disease, we undertook the propagation of androgen-independent cells from PrCa-prostatectomy samples of early, localized (Stage-I) cases. A collection of 120 surgical specimens from prostatectomy cases was established, among which 54 were adenocarcinomas. Hormone-free cell culture conditions were developed allowing routine propagation of cells expressing prostate basal cell markers and stem/progenitor cell markers, and which proliferated as spheres/spheroids in suspension cultures. Colonies of androgen-independent epithelial cells grew out from 30/43 (70%) of the adenocarcinoma cases studied in detail. Fluorescence microscopy and flow cytometry showed that CR-PrCa cells were positive for CD44, CD133, CK5/14, c-kit, integrin α2β1, SSEA4, E-Cadherin and Aldehyde Dehydrogenase (ALDH). All 30 CR-PrCa cell cultures were also TERT-positive, but negative for TMPRSS2-ERG. Additionally, a subset of 22 of these CR-PrCa cell cultures was examined by orthotopic xenografting in intact and castrated SCID mice, generating histologically typical locally-invasive human PrCa or undifferentiated cancers, respectively, in 6–8 weeks. Cultured PrCa cells and orthotopically-induced in vivo cancers lacked PSA expression. We report here the propagation of Cancer Initiating Cells (CIC) directly from Stage I human PrCa tissue without selection or genetic manipulation. The propagation of stem/progenitor-like CR-PrCa cells derived from early human prostate carcinomas suggests the existence of a subpopulation of cells resistant to androgen-deprivation therapy and which may drive the subsequent emergence of disseminated CR-PrCa. PMID:24086346

  2. Clear cell adenocarcinoma arising from adenomyosis.

    PubMed

    Hirabayashi, Kenichi; Yasuda, Masanori; Kajiwara, Hiroshi; Nakamura, Naoya; Sato, Shigeru; Nishijima, Yoshihiro; Mikami, Mikio; Osamura, Robert Yoshiyuki

    2009-05-01

    A 73-year-old postmenopausal Japanese woman presented with a complaint of slight fever and weight loss. An elevated level of CA125 in the blood favored a diagnosis of malignant uterine body tumor, but was not confirmed by endometrial cytology and biopsy. Resection of the uterus revealed a solid whitish tumor in the myometrium that was diagnosed as clear cell adenocarcinoma (CCA) arising from adenomyosis. There were transitions between endometrial epithelium of adenomyosis, noninvasive CCA, and invasive CCA. Immunohistochemical expression of hepatocyte nuclear factor-1beta supported the diagnosis of CCA. Only one other English language document pertaining to CCA arising from adenomyosis exists. Malignant tumor arising from adenomyosis should be considered as a differential diagnosis when the serum level of tumor markers such as CA125 is high and when the tumor is intramyometrial. PMID:19620944

  3. The limited difference between keratin patterns of squamous cell carcinomas and adenocarcinomas is explicable by both cell lineage and state of differentiation of tumour cells.

    PubMed Central

    van Dorst, E B; van Muijen, G N; Litvinov, S V; Fleuren, G J

    1998-01-01

    AIM: To study the differentiation of epithelial tissues within their histological context, and to identify hypothetically, on the basis of keratin pattern, the putative tissue origin of a (metastatic) carcinoma. METHODS: Using well characterised monoclonal antibodies against individual keratins 7, 8, 18, and 19, which are predominantly found in columnar epithelia, and keratins 4, 10, 13, and 14, predominantly expressed in (non)-keratinising squamous epithelia, the keratin patterns for a series of 45 squamous cell carcinomas and 44 adenocarcinomas originating from various epithelial tissues were characterised. RESULTS: The predominant keratins in all adenocarcinomas proved to be 8, 18, and 19. In addition, these keratins were also abundantly present in squamous cell carcinomas of the lung, cervix, and rectum and, to a lesser extent, of the larynx, oesophagus, and tongue, but not in those of the vulva and skin. Keratins 4, 10, 13, and 14 were present in almost all squamous cell carcinomas, but also focally in some of the adenocarcinomas studied. CONCLUSIONS: There is a limited differential expression of distinctive keratin filaments between squamous cell carcinomas and adenocarcinomas. Apparently, squamous cell carcinomas that originate from columnar epithelium by squamous metaplasia gain the keratins of squamous cells but retain the keratins of columnar epithelial cells. However, the simultaneous expression of two of three squamous keratins (4, 10, and 13) identifies a squamous cell carcinoma, and thus might be useful in solving differential diagnostic problems. Images PMID:9930073

  4. DNA Damage in CD133-Positive Cells in Barrett's Esophagus and Esophageal Adenocarcinoma

    PubMed Central

    Thanan, Raynoo; Ma, Ning; Hiraku, Yusuke; Iijima, Katsunori; Koike, Tomoyuki; Shimosegawa, Tooru

    2016-01-01

    Barrett's esophagus (BE) caused by gastroesophageal reflux is a major risk factor of Barrett's esophageal adenocarcinoma (BEA), an inflammation-related cancer. Chronic inflammation and following tissue damage may activate progenitor cells under reactive oxygen/nitrogen species-rich environment. We previously reported the formation of oxidative/nitrative stress-mediated mutagenic DNA lesions, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-nitroguanine, in columnar epithelial cells of BE tissues and cancer cells of BEA tissues. We investigated the mechanisms of BEA development in relation to oxidative/nitrative DNA damage and stem cell hypothesis. We examined 8-nitroguanine and 8-oxodG formation and the expression of stem cell marker (CD133) in biopsy specimens of patients with BE and BEA by immunohistochemical analysis in comparison with those of normal subjects. CD133 was detected at apical surface of columnar epithelial cells of BE and BEA tissues, and the cytoplasm and cell membrane of cancer cells in BEA tissues. DNA lesions and CD133 were colocalized in columnar epithelial cells and cancer cells. Their relative staining intensities in these tissues were significantly higher than those in normal subjects. Our results suggest that BE columnar epithelial cells with CD133 expression in apical surface undergo inflammation-mediated DNA damage, and mutated cells acquire the property of cancer stem cells with cytoplasmic CD133 expression. PMID:27069317

  5. Activin a signaling regulates cell invasion and proliferation in esophageal adenocarcinoma

    PubMed Central

    Le Bras, Gregoire F.; Koumangoye, Rainelli B.; Romero-Morales, Alejandra I.; Quast, Laura L.; Zaika, Alexander I.; El-Rifai, Wael; Andl, Thomas; Andl, Claudia D.

    2015-01-01

    TGFβ signaling has been implicated in the metaplasia from squamous epithelia to Barrett's esophagus and, ultimately, esophageal adenocarcinoma. The role of the family member Activin A in Barrett's tumorigenesis is less well established. As tumorigenesis is influenced by factors in the tumor microenvironment, such as fibroblasts and the extracellular matrix, we aimed to determine if epithelial cell-derived Activin affects initiation and progression differently than Activin signaling stimulation from a mimicked stromal source. Using Barrett's esophagus cells, CPB, and the esophageal adenocarcinoma cell lines OE33 and FLO-1, we showed that Activin reduces colony formation only in CPB cells. Epithelial cell overexpression of Activin increased cell migration and invasion in Boyden chamber assays in CPB and FLO-1 cells, which exhibited mesenchymal features such as the expression of the CD44 standard form, vimentin, and MT1-MMP. When grown in organotypic reconstructs, OE33 cells expressed E-cadherin and Keratin 8. As mesenchymal characteristics have been associated with the acquisition of stem cell-like features, we analyzed the expression and localization of SOX9, showing nuclear localization of SOX9 in esophageal CPB and FLO-1 cells. In conclusion, we show a role for autocrine Activin signaling in the regulation of colony formation, cell migration and invasion in Barrett's tumorigenesis. PMID:26447543

  6. Activin a signaling regulates cell invasion and proliferation in esophageal adenocarcinoma.

    PubMed

    Taylor, Chase; Loomans, Holli A; Le Bras, Gregoire F; Koumangoye, Rainelli B; Romero-Morales, Alejandra I; Quast, Laura L; Zaika, Alexander I; El-Rifai, Wael; Andl, Thomas; Andl, Claudia D

    2015-10-27

    TGFβ signaling has been implicated in the metaplasia from squamous epithelia to Barrett's esophagus and, ultimately, esophageal adenocarcinoma. The role of the family member Activin A in Barrett's tumorigenesis is less well established. As tumorigenesis is influenced by factors in the tumor microenvironment, such as fibroblasts and the extracellular matrix, we aimed to determine if epithelial cell-derived Activin affects initiation and progression differently than Activin signaling stimulation from a mimicked stromal source. Using Barrett's esophagus cells, CPB, and the esophageal adenocarcinoma cell lines OE33 and FLO-1, we showed that Activin reduces colony formation only in CPB cells. Epithelial cell overexpression of Activin increased cell migration and invasion in Boyden chamber assays in CPB and FLO-1 cells, which exhibited mesenchymal features such as the expression of the CD44 standard form, vimentin, and MT1-MMP. When grown in organotypic reconstructs, OE33 cells expressed E-cadherin and Keratin 8. As mesenchymal characteristics have been associated with the acquisition of stem cell-like features, we analyzed the expression and localization of SOX9, showing nuclear localization of SOX9 in esophageal CPB and FLO-1 cells.In conclusion, we show a role for autocrine Activin signaling in the regulation of colony formation, cell migration and invasion in Barrett's tumorigenesis. PMID:26447543

  7. Epithelial Sodium Channels in Pulmonary Epithelial Progenitor and Stem Cells

    PubMed Central

    Liu, Yang; Jiang, Bi-Jie; Zhao, Run-Zhen; Ji, Hong-Long

    2016-01-01

    Regeneration of the epithelium of mammalian lungs is essential for restoring normal function following injury, and various cells and mechanisms contribute to this regeneration and repair. Club cells, bronchioalveolar stem cells (BASCs), and alveolar type II epithelial cells (ATII) are dominant stem/progenitor cells for maintaining epithelial turnover and repair. Epithelial Na+ channels (ENaC), a critical pathway for transapical salt and fluid transport, are expressed in lung epithelial progenitors, including club and ATII cells. Since ENaC activity and expression are development- and differentiation-dependent, apically located ENaC activity has therefore been used as a functional biomarker of lung injury repair. ENaC activity may be involved in the migration and differentiation of local and circulating stem/progenitor cells with diverse functions, eventually benefiting stem cells spreading to re-epithelialize injured lungs. This review summarizes the potential roles of ENaC expressed in native progenitor and stem cells in the development and regeneration of the respiratory epithelium. PMID:27570489

  8. Belinostat and Carboplatin in Treating Patients With Recurrent or Persistent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer That Did Not Respond to Carboplatin or Cisplatin

    ClinicalTrials.gov

    2014-06-18

    Brenner Tumor; Fallopian Tube Cancer; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Primary Peritoneal Cavity Cancer; Recurrent Ovarian Epithelial Cancer

  9. EGEN-001 and Pegylated Liposomal Doxorubicin Hydrochloride in Treating Patients With Recurrent or Persistent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2014-08-11

    Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Primary Peritoneal Cavity Cancer

  10. Neu proto-oncogene amplification and expression in ovarian adenocarcinoma cell lines.

    PubMed Central

    King, B. L.; Carter, D.; Foellmer, H. G.; Kacinski, B. M.

    1992-01-01

    In this communication, the authors summarize their characterization of eight ovarian adenocarcinoma-derived cell lines for level of neu gene amplification, expression of neu transcripts and protein, and intraperitoneal tumorigenicity in nude mice. Two of the eight cell lines in our study (SKOV3 and YAOVBIX1) exhibited five- to ninefold neu DNA sequence amplification, accompanied by up to 200-fold overexpression of transcripts and protein (p185). Both of these cell lines expressed a major approximately 7.5 kb neu-complementary transcript not previously reported in other neu-positive tumor cell lines. One pair of cell lines (YAOVBIX1 and YAOVBIX3), isolated from a single ovarian carcinoma patient's ascites sample differed dramatically in regard to level of neu gene amplification and expression. Immunohistochemical staining of the primary ovarian tumor from which these two lines were derived demonstrated populations of both neu-positive and neu-negative malignant epithelial cells. Seven of the eight ovarian carcinoma lines produced intra-abdominal tumors after intraperitoneal injection into nude mice, irrespective of level of neu gene expression. This study demonstrates tumor cell heterogeneity with regard to neu gene amplification and expression in an ovarian adenocarcinoma, reveals the overexpression of novel neu-complementary transcripts in two independently isolated ovarian adenocarcinoma cell lines, and suggests that neu gene expression is not required for intraperitoneal tumorigenicity of ovarian carcinoma xenografts in a nude mouse model system. Images Figure 4 Figure 1 Figure 2 Figure 3 PMID:1346236

  11. Poly-lactic-glycolic-acid surface nanotopographies selectively decrease breast adenocarcinoma cell functions

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Webster, Thomas J.

    2012-04-01

    The ability of poly(lactic-co-glycolic acid) (PLGA, 50:50 PLG/PGA, wt%) nanotopographies to decrease lung epithelial carcinoma cell functions (including adhesion, proliferation, apoptosis and vascular endothelial growth factor (VEGF) secretion) has been previously reported. Specifically, results demonstrated decreased lung epithelial carcinoma cell VEGF synthesis on 23 nm surface-featured PLGA compared to traditional nanosmooth PLGA. However, clearly, different cell lines could have different behaviors on similar biomaterials. Thus, to investigate the universality of nanopatterned PLGA substrates to inhibit numerous cancer cell functions, here, breast epithelial adenocarcinoma cell (MCF-7) adhesion, proliferation, apoptosis and VEGF secretion were determined on different PLGA nanometer surface topographies. To isolate surface nanotopographical effects from all other surface properties, PLGA surfaces with various nanotopographies but similar chemistry and hydrophobicity were fabricated here. Atomic force microscopy (AFM) verified the varied nanotopographies on the PLGA surfaces prepared in this study. Importantly, results demonstrated for the first time significantly decreased breast adenocarcinoma cell functions (including decreased proliferation rate, increased apoptosis and decreased VEGF synthesis) on 23 nm featured PLGA surfaces compared to all other PLGA surface topographies fabricated (specifically, nanosmooth, 300 and 400 nm surface-featured PLGA surfaces). In contrast, healthy breast epithelial cells proliferated more (24%) on the 23 nm featured PLGA surfaces compared to all other PLGA samples. In summary, these results provided further insights into understanding the role PLGA surface nanotopographies can have on cancer cell functions and, more importantly, open the possibility of using polymer nanotopographies for a wide range of anticancer regenerative medicine applications (without resorting to the use of chemotherapeutics).

  12. Epithelial cells and Von Gierke's disease.

    PubMed

    Negishi, H; Benke, P J

    1977-08-01

    Epithelial cells and not fibroblasts from human liver and amniotic fluid contain inducible glucose-6-phosphatase (G-6-Pase) activity. The diagnosis of Von Gierke's disease has been made in a patient with hepatomegaly utilizing cultured epithelial cells grown from a liver biopsy. G-6-Pase activity in epithelial cells from this patient could not be induced by dibutyryl cyclic AMP and theophylline. This is the first use of epithelial cells for diagnosis of a metabolic disease. G-6-Pase activity in cloned epithelial cells from amniotic fluid increases 2- to 3-fold after 24-hr exposure to dibutyryl cyclic AMP and theophylline. The prenatal diagnosis of Von Gierke's disease may be possible in a laboratory experienced with these techniques if epithelial cell growth is obtained from amniotic fluid. PMID:196249

  13. Distinctive Patterns of CTNNB1 (β-Catenin) Alterations in Salivary Gland Basal Cell Adenoma and Basal Cell Adenocarcinoma.

    PubMed

    Jo, Vickie Y; Sholl, Lynette M; Krane, Jeffrey F

    2016-08-01

    Salivary gland basaloid neoplasms are diagnostically challenging. Limited publications report that some basal cell adenomas harbor CTNNB1 mutations, and nuclear β-catenin expression is prevalent. We evaluated β-catenin expression in basal cell adenomas and adenocarcinomas in comparison with salivary tumors in the differential diagnosis and performed targeted genetic analysis on a subset of cases. β-catenin immunohistochemistry was performed on formalin-fixed, paraffin-embedded whole sections from 73 tumors. Nuclear staining was scored semiquantitatively by extent and intensity. DNA was extracted from 6 formalin-fixed, paraffin-embedded samples (5 basal cell adenomas, 1 basal cell adenocarcinoma) for next-generation sequencing. Nuclear β-catenin staining was present in 18/22 (82%) basal cell adenomas; most were diffuse and strong and predominant in the basal component. Two of 3 basal cell adenocarcinomas were positive (1 moderate focal; 1 moderate multifocal). All adenoid cystic carcinomas (0/20) and pleomorphic adenomas (0/20) were negative; 2/8 epithelial-myoepithelial carcinomas showed focal nuclear staining. Most β-catenin-negative tumors showed diffuse membranous staining in the absence of nuclear staining. Four of 5 basal cell adenomas had exon 3 CTNNB1 mutations, all c.104T>C (p.I35T). Basal cell adenocarcinoma showed a more complex genomic profile, with activating mutations in PIK3CA, biallelic inactivation of NFKBIA, focal CYLD deletion, and without CTNNB1 mutation despite focal β-catenin expression. Nuclear β-catenin expression has moderate sensitivity (82%) for basal cell adenoma but high specificity (96%) in comparison with its morphologic mimics. CTNNB1 mutation was confirmed in most basal cell adenomas tested, and findings in basal cell adenocarcinoma suggest possible tumorigenic mechanisms, including alterations in PI3K and NF-κB pathways and transcriptional regulation. PMID:27259009

  14. A novel aminothiazole KY-05009 with potential to inhibit Traf2- and Nck-interacting kinase (TNIK) attenuates TGF-β1-mediated epithelial-to-mesenchymal transition in human lung adenocarcinoma A549 cells.

    PubMed

    Kim, Jiyeon; Moon, Seong-Hee; Kim, Bum Tae; Chae, Chong Hak; Lee, Joo Yun; Kim, Seong Hwan

    2014-01-01

    Transforming growth factor (TGF)-β triggers the epithelial-to-mesenchymal transition (EMT) of cancer cells via well-orchestrated crosstalk between Smad and non-Smad signaling pathways, including Wnt/β-catenin. Since EMT-induced motility and invasion play a critical role in cancer metastasis, EMT-related molecules are emerging as novel targets of anti-cancer therapies. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as a first-in-class anti-cancer target molecule to regulate Wnt signaling pathway, but pharmacologic inhibition of its EMT activity has not yet been studied. Here, using 5-(4-methylbenzamido)-2-(phenylamino)thiazole-4-carboxamide (KY-05009) with TNIK-inhibitory activity, its efficacy to inhibit EMT in cancer cells was validated. The molecular docking/binding study revealed the binding of KY-05009 in the hinge region of TNIK, and the inhibitory activity of KY-05009 against TNIK was confirmed by an ATP competition assay (Ki, 100 nM). In A549 cells, KY-05009 significantly and strongly inhibited the TGF-β-activated EMT through the attenuation of Smad and non-Smad signaling pathways, including the Wnt, NF-κB, FAK-Src-paxillin-related focal adhesion, and MAP kinases (ERK and JNK) signaling pathways. Continuing efforts to identify and validate potential therapeutic targets associated with EMT, such as TNIK, provide new and improved therapies for treating and/or preventing EMT-based disorders, such as cancer metastasis and fibrosis. PMID:25337707

  15. [Gastric signet ring cell adenocarcinoma: A distinct entity].

    PubMed

    Tabouret, Tessa; Dhooge, Marion; Rouquette, Alexandre; Brezault, Catherine; Beuvon, Frédéric; Chaussade, Stanislas; Coriat, Romain

    2014-04-01

    Gastric signet ring cell carcinoma (GSRC) is a distinct entity. Their incidence is increasing. The pathologist plays a central role in the identification of this entity. Diagnosis is based on an adenocarcinoma containing a majority of signet ring cells (above 50 %). The prognosis of GSRC is the same as gastric adenocarcinoma while GSRC appeared more aggressive. Signet ring cells present a low sensitivity to chemotherapy. This review aimed to discuss the histological, the prognostic and the therapeutic aspect of this entity. PMID:24440764

  16. Epithelial organization, cell polarity and tumorigenesis.

    PubMed

    McCaffrey, Luke Martin; Macara, Ian G

    2011-12-01

    Epithelial cells comprise the foundation for the majority of organs in the mammalian body, and are the source of approximately 90% of all human cancers. Characteristically, epithelial cells form intercellular adhesions, exhibit apical/basal polarity, and orient their mitotic spindles in the plane of the epithelial sheet. Defects in these attributes result in the tissue disorganization associated with cancer. Epithelia undergo self-renewal from stem cells, which might in some cases be the cell of origin for cancers. The PAR polarity proteins are master regulators of epithelial organization, and are closely linked to signaling pathways such as Hippo, which orchestrate proliferation and apoptosis to control organ size. 3D ex vivo culture systems can now faithfully recapitulate epithelial organ morphogenesis, providing a powerful approach to study both normal development and the initiating events in carcinogenesis. PMID:21782440

  17. Epithelial TRPV1 signaling accelerates gingival epithelial cell proliferation.

    PubMed

    Takahashi, N; Matsuda, Y; Yamada, H; Tabeta, K; Nakajima, T; Murakami, S; Yamazaki, K

    2014-11-01

    Transient receptor potential cation channel subfamily V member 1 (TRPV1), a member of the calcium-permeable thermosensitive transient receptor potential superfamily, is a sensor of thermal and chemical stimuli. TRPV1 is activated by noxious heat (> 43°C), acidic conditions (pH < 6.6), capsaicin, and endovanilloids. This pain receptor was discovered on nociceptive fibers in the peripheral nervous system. TRPV1 was recently found to be expressed by non-neuronal cells, such as epithelial cells. The oral gingival epithelium is exposed to multiple noxious stimuli, including heat and acids derived from endogenous and exogenous substances; however, whether gingival epithelial cells (GECs) express TRPV1 is unknown. We show that both TRPV1 mRNA and protein are expressed by GECs. Capsaicin, a TRPV1 agonist, elevated intracellular Ca(2+) levels in the gingival epithelial cell line, epi 4. Moreover, TRPV1 activation in epi 4 cells accelerated proliferation. These responses to capsaicin were inhibited by a specific TRPV1 antagonist, SB-366791. We also observed GEC proliferation in capsaicin-treated mice in vivo. No effects were observed on GEC apoptosis by epithelial TRPV1 signaling. To examine the molecular mechanisms underlying this proliferative effect, we performed complementary (c)DNA microarray analysis of capsaicin-stimulated epi 4 cells. Compared with control conditions, 227 genes were up-regulated and 232 genes were down-regulated following capsaicin stimulation. Several proliferation-related genes were validated by independent experiments. Among them, fibroblast growth factor-17 and neuregulin 2 were significantly up-regulated in capsaicin-treated epi 4 cells. Our results suggest that functional TRPV1 is expressed by GECs and contributes to the regulation of cell proliferation. PMID:25266715

  18. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions.

    PubMed

    Rhim, Andrew D; Thege, Fredrik I; Santana, Steven M; Lannin, Timothy B; Saha, Trisha N; Tsai, Shannon; Maggs, Lara R; Kochman, Michael L; Ginsberg, Gregory G; Lieb, John G; Chandrasekhara, Vinay; Drebin, Jeffrey A; Ahmad, Nuzhat; Yang, Yu-Xiao; Kirby, Brian J; Stanger, Ben Z

    2014-03-01

    Hematogenous dissemination is thought to be a late event in cancer progression. We recently showed in a genetic model of pancreatic ductal adenocarcinoma that pancreas cells can be detected in the bloodstream before tumor formation. To confirm these findings in humans, we used microfluidic geometrically enhanced differential immunocapture to detect circulating pancreas epithelial cells in patient blood samples. We captured more than 3 circulating pancreas epithelial cells/mL in 7 of 21 (33%) patients with cystic lesions and no clinical diagnosis of cancer (Sendai criteria negative), 8 of 11 (73%) with pancreatic ductal adenocarcinoma, and in 0 of 19 patients without cysts or cancer (controls). These findings indicate that cancer cells are present in the circulation of patients before tumors are detected, which might be used in risk assessment. PMID:24333829

  19. Clear cell adenocarcinoma of the bladder with intravesical cervical invasion.

    PubMed

    Marchalik, Daniel; Krishnan, Jayashree; Verghese, Mohan; Venkatesan, Krishnan

    2015-01-01

    A 26-year-old woman with a complicated urological and gynecological history with uterine didelphys with bilaterally inserting intravesical cervical oses presented with cyclical haematuria. Work up revealed a mass in the ectopic cervical os and adjacent bladder wall. Subsequent resection confirmed a clear cell adenocarcinoma of urological origin with invasion into neighbouring os. PMID:26109625

  20. Symmetry breaking mechanism for epithelial cell polarization

    NASA Astrophysics Data System (ADS)

    Veglio, A.; Gamba, A.; Nicodemi, M.; Bussolino, F.; Serini, G.

    2009-09-01

    In multicellular organisms, epithelial cells form layers separating compartments responsible for different physiological functions. At the early stage of epithelial layer formation, each cell of an aggregate defines an inner and an outer side by breaking the symmetry of its initial state, in a process known as epithelial polarization. By integrating recent biochemical and biophysical data with stochastic simulations of the relevant reaction-diffusion system, we provide evidence that epithelial cell polarization is a chemical phase-separation process induced by a local bistability in the signaling network at the level of the cell membrane. The early symmetry breaking event triggering phase separation is induced by adhesion-dependent mechanical forces localized in the point of convergence of cell surfaces when a threshold number of confluent cells is reached. The generality of the emerging phase-separation scenario is likely common to many processes of cell polarity formation.

  1. Airway epithelial cell responses to ozone injury

    SciTech Connect

    Leikauf, G.D.; Simpson, L.G.; Zhao, Qiyu

    1995-03-01

    The airway epithelial cell is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products-hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists; of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines-macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretary leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease. 51 refs., 2 figs., 3 tabs.

  2. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood

    PubMed Central

    Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Glazyrin, Yury E; Krat, Alexey V; Zubkova, Olga; Spivak, Ekaterina; Wehbe, Mohammed; Gargaun, Ana; Muharemagic, Darija; Komarova, Mariia; Grigorieva, Valentina; Savchenko, Andrey; Modestov, Andrey A; Berezovski, Maxim V; Zamay, Anna S

    2015-01-01

    Circulating tumor cells (CTCs) are rare cells and valuable clinical markers of prognosis of metastasis formation and prediction of patient survival. Most CTC analyses are based on the antibody-based detection of a few epithelial markers; therefore miss an important portion of mesenchymal cancer cells circulating in blood. In this work, we selected and identified DNA aptamers as specific affinity probes that bind to lung adenocarcinoma cells derived from postoperative tissues. The unique feature of our selection strategy is that aptamers are produced for lung cancer cell biomarkers in their native state and conformation without previous knowledge of the biomarkers. The aptamers did not bind to normal lung cells and lymphocytes, and had very low affinity to A549 lung adenocarcinoma culture. We applied these aptamers to detect CTCs, apoptotic bodies, and microemboli in clinical samples of peripheral blood of lung cancer and metastatic lung cancer patients. We identified aptamer-associated protein biomarkers for lung cancer such as vimentin, annexin A2, annexin A5, histone 2B, neutrophil defensin, and clusterin. Tumor-specific aptamers can be produced for individual patients and synthesized many times during anticancer therapy, thereby opening up the possibility of personalized diagnostics. PMID:26061649

  3. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood.

    PubMed

    Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Glazyrin, Yury E; Krat, Alexey V; Zubkova, Olga; Spivak, Ekaterina; Wehbe, Mohammed; Gargaun, Ana; Muharemagic, Darija; Komarova, Mariia; Grigorieva, Valentina; Savchenko, Andrey; Modestov, Andrey A; Berezovski, Maxim V; Zamay, Anna S

    2015-09-01

    Circulating tumor cells (CTCs) are rare cells and valuable clinical markers of prognosis of metastasis formation and prediction of patient survival. Most CTC analyses are based on the antibody-based detection of a few epithelial markers; therefore miss an important portion of mesenchymal cancer cells circulating in blood. In this work, we selected and identified DNA aptamers as specific affinity probes that bind to lung adenocarcinoma cells derived from postoperative tissues. The unique feature of our selection strategy is that aptamers are produced for lung cancer cell biomarkers in their native state and conformation without previous knowledge of the biomarkers. The aptamers did not bind to normal lung cells and lymphocytes, and had very low affinity to A549 lung adenocarcinoma culture. We applied these aptamers to detect CTCs, apoptotic bodies, and microemboli in clinical samples of peripheral blood of lung cancer and metastatic lung cancer patients. We identified aptamer-associated protein biomarkers for lung cancer such as vimentin, annexin A2, annexin A5, histone 2B, neutrophil defensin, and clusterin. Tumor-specific aptamers can be produced for individual patients and synthesized many times during anticancer therapy, thereby opening up the possibility of personalized diagnostics. PMID:26061649

  4. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick.

    PubMed

    Firmino, Joao; Rocancourt, Didier; Saadaoui, Mehdi; Moreau, Chloe; Gros, Jerome

    2016-02-01

    During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes. PMID:26859350

  5. Vitamin D inhibition of lung adenocarcinoma cell proliferation in vitro.

    PubMed

    Li, Rong; Lou, Yuqing; Zhang, Weiyan; Dong, Qianggang; Han, Baohui

    2014-11-01

    Vitamin D has the capability to inhibit tumor cell proliferation and promote tumor cell apoptosis but whether this mechanism exists in lung adenocarcinoma cells remains to be studied. Our objective is to explore whether vitamin D has the capability to inhibit lung adenocarcinoma cell proliferation and synergize with cisplatin. Our method was to explore the effect of different concentrations of 1,25(OH)2D3 with or without cisplatin on lung adenocarcinoma cells by detecting cell proliferation rates at different time points. 1,25(OH)2D3 was capsulated with nanomaterial before acting on lung adenocarcinoma cells, and cell proliferation rates at different time points were detected with the CCK-8 method. When vitamin D was applied at a concentration of 1 × 10(-7) and 1 × 10(-6) mol/L on A549, PC9, SPC-A1, and H1650 cells for 72 h, no inhibition occurred on cell proliferation. Between the concentrations of 1 × 10(-5) and 0.5 × 10(-5) mol/L, inhibition on cell proliferation increased with drug action time. Between the concentration of 2.5 × 10(-5) and 0.03 × 10(-5) mol/L, inhibition on cell proliferation increased with increasing drug concentration. Analysis using bivariate correlations showed that the correlation coefficient of the proliferation inhibition rate and drug content was 0.580 (p < 0.0001). The correlation coefficient of proliferation inhibition rate and the drug action time was 0.379 (p = 0.01). The combined use of vitamin D and dichlorodiammine-platinum(II) (DDP) significantly increased the inhibition rate on A549 cell proliferation, which peaked after culturing for 96 h (Table 4). Further analysis using bivariate correlations showed that the correlation coefficient between proliferation inhibition rate and DDP concentration was 0.319 (p < 0.0001). The correlation coefficient of the proliferation inhibition rate and vitamin D concentration was 0.269 (p < 0.0001). The correlation coefficient of proliferation inhibition and drug action time was 0.221(p

  6. Adenocarcinoma of the rete testis with prominent papillary structure and clear neoplastic cells: morphologic and immunohistochemical findings and differential diagnosis.

    PubMed

    Huang, Pei-Wen; Chang, Kuo-Ming

    2015-01-01

    Adenocarcinoma of the rete testis is rare, and its etiology is unknown. The definite diagnosis merely depends on the exclusion of other tumors and histological features. We first describe a 38-year-old man with a carcinoma arising in the rete testis. The tumor was characterized by clear neoplastic cells and branching papillary growth. Focal stromal invasion and transition of normal rete epithelium to neoplastic cells were seen. The neoplastic cells were positive for epithelial membrane antigen, Ber-Ep4, vimentin, renal cell carcinoma marker, and CD10, while negative for Wilms' tumor 1, thyroid transcription factor-1, estrogen receptor, prostate specific antigen, placental alkaline phosphate, CD117, and alpha-1-fetoprotein. According to the above features, we diagnosed this tumor as adenocarcinoma of the rete testis. To our best knowledge, this is the first reported case of adenocarcinoma of the rete testis with prominently papillary structure and clear neoplastic cells. The rarity of adenocarcinoma of the rete testis and the unique features in our case cause diagnostic pitfalls. A complete clinicopathological study and thorough differential diagnosis are crucial for the correct result. PMID:25885143

  7. Alternaria extract activates autophagy that induces IL-18 release from airway epithelial cells.

    PubMed

    Murai, Hiroki; Okazaki, Shintaro; Hayashi, Hisako; Kawakita, Akiko; Hosoki, Koa; Yasutomi, Motoko; Sur, Sanjiv; Ohshima, Yusei

    2015-09-01

    Alternaria alternata is a major outdoor allergen that causes allergic airway diseases. Alternaria extract (ALT-E) has been shown to induce airway epithelial cells to release IL-18 and thereby initiate Th2-type responses. We investigated the underlying mechanisms involved in IL-18 release from ALT-E-stimulated airway epithelial cells. Normal human bronchial epithelial cells and A549 human lung adenocarcinoma cells were stimulated with ALT-E in the presence of different inhibitors of autophagy or caspases. IL-18 levels in culture supernatants were measured by ELISA. The numbers of autophagosomes, an LC3-I to LC3-II conversion, and p62 degradation were determined by immunofluorescence staining and immunoblotting. 3-methyladenine and bafilomycin, which inhibit the formation of preautophagosomal structures and autolysosomes, respectively, suppressed ALT-E-induced IL-18 release by cells, whereas caspase 1 and 8 inhibitors did not. ALT-E-stimulation increased autophagosome formation, LC-3 conversion, and p62 degradation in airway epithelial cells. LPS-stimulation induced the LC3 conversion in A549 cells, but did not induce IL-18 release or p62 degradation. Unlike LPS, ALT-E induced airway epithelial cells to release IL-18 via an autophagy dependent, caspase 1 and 8 independent pathway. Although autophagy has been shown to negatively regulate canonical inflammasome activity in TLR-stimulated macrophages, our data indicates that this process is an unconventional mechanism of IL-18 secretion by airway epithelial cells. PMID:26032499

  8. Silencing Aurora-A with siRNA inhibits cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Zhong, Ning; Shi, Shunbin; Wang, Hongzhen; Wu, Guangzhou; Wang, Yunliang; Ma, Qiang; Wang, Hongwei; Liu, Yuanhua; Wang, Jinzhi

    2016-09-01

    Aurora kinase A (AURKA) is an oncogenic serine/threonine kinase, it plays important roles in tumorigenesis and chemoresistance. In this study, we investigated the expression of AURKA in lung adenocarcinoma tissues, the role of small interference RNA targeting AURKA on growth, cell cycle, and apoptosis of lung adenocarcinoma cell lines in vitro. The AURKA is highly expressed in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines. Lentivirus-mediated short hairpin RNA (shRNA) was used to knock down AURKA expression in human lung adenocarcinoma cell lines H1299 and A549. The results indicated that depletion of AURKA could inhibit cell growth, cause cell cycle arrest and apoptosis. The potential mechanisms of AURKA inhibition induced cell cycle arrest and apoptosis are associated with downregulated RAF-1, CCND2, CCND3, CDK4, PAK4, EGFR and upregulated WEE1 expression. Furthermore, AURKA knockdown cooperated with vincristine (VCR) to repress A549 cell proliferation. Therefore, AURKA plays important roles in the proliferation of human lung adenocarcinoma cells, which suggests that AURKA could be a promising tool for lung adenocarcinoma therapy. PMID:27571708

  9. Odontogenic epithelial stem cells: hidden sources.

    PubMed

    Padma Priya, Sivan; Higuchi, Akon; Abu Fanas, Salem; Pooi Ling, Mok; Kumari Neela, Vasantha; Sunil, P M; Saraswathi, T R; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh

    2015-12-01

    The ultimate goal of dental stem cell research is to construct a bioengineered tooth. Tooth formation occurs based on the well-organized reciprocal interaction of epithelial and mesenchymal cells. The dental mesenchymal stem cells are the best explored, but because the human odontogenic epithelium is lost after the completion of enamel formation, studies on these cells are scarce. The successful creation of a bioengineered tooth is achievable only when the odontogenic epithelium is reconstructed to produce a replica of natural enamel. This article discusses the untapped sources of odontogenic epithelial stem cells in humans, such as those present in the active dental lamina in postnatal life, in remnants of dental lamina (the gubernaculum cord), in the epithelial cell rests of Malassez, and in reduced enamel epithelium. The possible uses of these stem cells in regenerative medicine, not just for enamel formation, are discussed. PMID:26367485

  10. ALDH1-High Ovarian Cancer Stem-Like Cells Can Be Isolated from Serous and Clear Cell Adenocarcinoma Cells, and ALDH1 High Expression Is Associated with Poor Prognosis

    PubMed Central

    Kuroda, Takafumi; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Yasuda, Kazuyo; Takahashi, Akari; Asanuma, Hiroko; Morita, Rena; Mariya, Tasuku; Asano, Takuya; Mizuuchi, Masahito; Saito, Tsuyoshi; Sato, Noriyuki

    2013-01-01

    Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC) cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma) and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1high) population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas) by the ALDEFLUOR assay. ALDH1high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1high cells. ALDH1high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis. PMID:23762304

  11. The uteroglobin promoter targets expression of the SV40 T antigen to a variety of secretory epithelial cells in transgenic mice.

    PubMed

    Sandmöller, A; Halter, R; Gómez-La-Hoz, E; Gröne, H J; Suske, G; Paul, D; Beato, M

    1994-10-01

    Adenocarcinomas derived from the lining epithelia of various organs are the most common malignant tumors in human pathology and about 50% are hormone dependent. The tissue-specific and hormally regulated expression of the rabbit uteroglobin gene is secretory epithelial cells could provide a means of establishing in vivo models for a variety of human tumors originating from such tissues. We have generated trangenic mice inheriting a hybrid gene containing 4.7 kb of the rabbit uteroglobin 5'-flanking sequences fused to the SV40 T antigen encoding region. All transgenic founders examined exhibited bronchio-alveolar adenocarcinomas, probably due to expression of the transgene in Clara cells. Most founders also developed tumors of the submandibular salivary gland, and adenocarcinomas of the stomach. Adenocarcinomas and dysplasias in epithelial cells of the male and female genital tract were found in single founders. Immunohistochemical analysis showed that T antigen expression interfered with stable maintenance of the differentiated phenotype as documented by expression of the endogenous uteroglobin gene. One founder gave rise to a mouse line, UT7.1. Transgenic descendants of UT7.1 developed lung adenocarcinomas and, depending on the genetic background, exhibited tumors of the stomach, the salivary gland and the pancreas. Sporadically male descendants developed prostatic adenocarcinoma whereas females developed dysplasias and adenocarcinomas of the uterus and the oviduct. Thus, the UT7.1 mouse line could be a useful model for several epithelial neoplasias. PMID:8084586

  12. Programmed cell death 4 (Pdcd4) expression in colorectal adenocarcinoma: Association with clinical stage

    PubMed Central

    LIM, SUNG-CHUL; HONG, RAN

    2011-01-01

    The aim of this study was to examine the role of Programmed cell death 4 (Pdcd4) in colorectal adenocarcinoma (CRA). Pdcd4 expression was observed in both the nucleus and cytoplasm in colorectal adenocarcinoma, whereas Pdcd4 was expressed in the nucleus in normal colonic epithelial cells. Loss or weak expression of Pdcd4 was identified in 44 cases (40.7%) of cancer cells. Pdcd4 expression was associated with an increase in the nodal and clinical stage (p=0.022 and p=0.016, respectively). Nuclear staining was identified in 66 cases (61.15%), with no correlation with clinicopathological factors. Conversely, cytoplasmic staining for Pdcd4 was observed in 45 cases (41.7%), and increased according to nodal and clinical stage (p=0.011 and p=0.009, respectively), indicating that aberrant Pdcd4 expression leads to tumor progression. However, Pdcd4 expression was not correlated to disease-free survival time. This study demonstrated that during the tumorigenesis of CRA, loss of nuclear Pdcd4 expression occurs, and during tumor progression, aberrant cytoplasmic expression is present, suggesting a higher clinical stage. Although loss of Pdcd4 was not significantly correlated with survival time, as the prognosis of colorectal cancer varies depending on clinical stage including invasion depth, nodal status and metastatic status, cytoplasmic Pdcd4 expression may be a favorable prognostic marker in CRA. PMID:23049623

  13. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.

    PubMed

    Lee, John K; Phillips, John W; Smith, Bryan A; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M; Shokat, Kevan M; Gustafson, W Clay; Huang, Jiaoti; Witte, Owen N

    2016-04-11

    MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance, and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention. PMID:27050099

  14. Induced pluripotency of human prostatic epithelial cells.

    PubMed

    Zhao, Hongjuan; Sun, Ning; Young, Sarah R; Nolley, Rosalie; Santos, Jennifer; Wu, Joseph C; Peehl, Donna M

    2013-01-01

    Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that

  15. Effect of TRAF6 on the biological behavior of human lung adenocarcinoma cell.

    PubMed

    Zhong, Lou; Cao, Fei; You, Qingsheng

    2013-02-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a unique adaptor protein of the tumor necrosis factor receptor-associated factor family that mediates both tumor necrosis factor receptor and interleukin-1 receptor/Toll-like receptor signaling. A recent study showed that TRAF6 played an important role in tumorigenesis and invasion through activation of nuclear factor kappa B (NF-κB). However, the biological role of TRAF6 remains unknown in lung cancer up to now. To address the expression of TRAF6 in lung cancer cells, four lung cancer cell lines (A549, HCC827, NCI-H292, and 95-D) and human bronchial epithelial cells were used to detect the expression of TRAF6 protein by western blotting. Results indicated that TRAF6 displayed an upregulation in human lung cancer cell lines. To investigate the effects of TRAF6 on the biological behavior of human lung adenocarcinoma cell, we generated human lung adenocarcinoma A549 cell line in which TRAF6 was depleted. The results showed that downregulation of TRAF6 could decrease cell viability, suppress cell proliferation and invasion, and promote cell apoptosis. At the same time, we explored the effects of TRAF6 on the expression of the following proteins: phosphor-NF-κB (p-p65), cyclin D1, caspase-3, and matrix metalloproteinase 9 (MMP9). Downregulation of TRAF6 could decrease the expression of p-p65, cyclin D1, and MMP9 and increase the expression of caspase-3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, and invasion of A549 cell line, as well as the inhibition of A549 cell apoptosis by the activation of NF-κB. To make a long story short, the overexpression of TRAF6 might be related to the tumorigenesis and invasion of lung cancer. PMID:23055197

  16. Epithelial Cell Shedding and Barrier Function

    PubMed Central

    Williams, J. M.; Duckworth, C. A.; Burkitt, M. D.; Watson, A. J. M.; Campbell, B. J.

    2015-01-01

    The intestinal epithelium is a critical component of the gut barrier. Composed of a single layer of intestinal epithelial cells (IECs) held together by tight junctions, this delicate structure prevents the transfer of harmful microorganisms, antigens, and toxins from the gut lumen into the circulation. The equilibrium between the rate of apoptosis and shedding of senescent epithelial cells at the villus tip, and the generation of new cells in the crypt, is key to maintaining tissue homeostasis. However, in both localized and systemic inflammation, this balance may be disturbed as a result of pathological IEC shedding. Shedding of IECs from the epithelial monolayer may cause transient gaps or microerosions in the epithelial barrier, resulting in increased intestinal permeability. Although pathological IEC shedding has been observed in mouse models of inflammation and human intestinal conditions such as inflammatory bowel disease, understanding of the underlying mechanisms remains limited. This process may also be an important contributor to systemic and intestinal inflammatory diseases and gut barrier dysfunction in domestic animal species. This review aims to summarize current knowledge about intestinal epithelial cell shedding, its significance in gut barrier dysfunction and host-microbial interactions, and where research in this field is directed. PMID:25428410

  17. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  18. Epithelial Cell Regulation of Allergic Diseases.

    PubMed

    Gour, Naina; Lajoie, Stephane

    2016-09-01

    Allergic diseases, which have escalated in prevalence in recent years, arise as a result of maladaptive immune responses to ubiquitous environmental stimuli. Why only certain individuals mount inappropriate type 2 immune responses to these otherwise harmless allergens has remained an unanswered question. Mounting evidence suggests that the epithelium, by sensing its environment, is the central regulator of allergic diseases. Once considered to be a passive barrier to allergens, epithelial cells at mucosal surfaces are now considered to be the cornerstone of the allergic diathesis. Beyond their function as maintaining barrier at mucosal surfaces, mucosal epithelial cells through the secretion of mediators like IL-25, IL-33, and TSLP control the fate of downstream allergic immune responses. In this review, we will discuss the advances in recent years regarding the process of allergen recognition and secretion of soluble mediators by epithelial cells that shape the development of the allergic response. PMID:27534656

  19. Carboplatin and Paclitaxel With or Without Bevacizumab Compared to Docetaxel, Carboplatin, and Paclitaxel in Treating Patients With Stage II, Stage III, or Stage IV Ovarian Epithelial, Fallopian Tube, or Primary Peritoneal Cavity Carcinoma (Cancer)

    ClinicalTrials.gov

    2013-03-18

    Brenner Tumor; Fallopian Tube Cancer; Ovarian Carcinosarcoma; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Primary Peritoneal Cavity Cancer; Stage II Ovarian Epithelial Cancer; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  20. Paclitaxel, Bevacizumab And Adjuvant Intraperitoneal Carboplatin in Treating Patients Who Had Initial Debulking Surgery for Stage II, Stage III, or Stage IV Ovarian Epithelial, Primary Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2014-06-18

    Brenner Tumor; Fallopian Tube Cancer; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Primary Peritoneal Cavity Cancer; Stage II Ovarian Epithelial Cancer; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  1. Inhibition of the transient receptor potential melastatin-2 channel causes increased DNA damage and decreased proliferation in breast adenocarcinoma cells

    PubMed Central

    HOPKINS, MANDI M.; FENG, XIAOXING; LIU, MENGWEI; PARKER, LAUREN P.; KOH, DAVID W.

    2015-01-01

    Transient receptor potential, melastatin-2 (TRPM2) is a plasma membrane cation channel with important roles in sensory functions and promoting cell death. However, we demonstrated here that TRPM2 was present in the nuclei of MCF-7 and MDA-MB-231 human breast adenocarcinoma cells, and its pharmacologic inhibition or RNAi silencing caused decreased cell proliferation. Neither an effect on proliferation nor a localization of TRPM2 in the nucleus was observed in noncancerous HMEC and MCF-10A human mammary epithelial cells. Investigation of possible effects of TRPM2 function in the nucleus demonstrated that pharmacologic inhibition or RNAi silencing of TRPM2 in MCF-7 and MDA-MB-231 human breast adenocarcinoma cells caused up to 4-fold increases in DNA damage levels, as compared to noncancerous breast cells after equivalent treatments. These results indicate that TRPM2 has a novel nuclear function in human breast adenocarcinoma cells that facilitates the integrity of genomic DNA, a finding that is distinct from its previously reported role as a plasma membrane cation channel in noncancerous cells. In summary, we report here a novel effect promoted by TRPM2, where it functions to minimize DNA damage and thus may have a role in the protection of genomic DNA in breast cancer cells. Our study therefore provides compelling evidence that TRPM2 has a unique role in breast adenocarcinoma cells. Accordingly, these studies suggest that TRPM2 is a potential therapeutic target, where its pharmacologic inhibition may provide an innovative strategy to selectively increase DNA damage levels in breast cancer cells. PMID:25760245

  2. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    PubMed Central

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  3. Effects of acetaldehyde on brush border enzyme activities in human colon adenocarcinoma cell line Caco-2.

    PubMed

    Koivisto, T; Salaspuro, M

    1997-12-01

    The treatment of Caco-2 cells, a human colon adenocarcinoma cell line that closely resembles normal human small intestinal epithelial cells, with acetaldehyde resulted in significantly decreased activities of brush border enzymes sucrase, maltase, lactase, and gamma-glutamyltransferase; alkaline phosphatase activity was not affected. In the case of sucrase and maltase, the activities were also decreased by a combination of acetaldehyde and ethanol, although ethanol alone markedly increased them. The possibility that intraintestinal acetaldehyde, formed by intestinal microbes, might play a role in some small intestinal enzyme deficiencies observed earlier in alcoholics should therefore be considered. The mechanism by which acetaldehyde alters these enzyme activities remains unclear. The observation that acetaldehyde also disturbed cell polarization, an initial step in the process of differentiation in Caco-2 cells, indicates that acetaldehyde might decrease these enzyme activities by interfering with cell differentiation. Because ethanol and acetaldehyde metabolizing enzymes have not been previously studied from Caco-2 cells, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities were also measured from these cells, and their ALDH isoenzyme pattern was characterized. Like many cancerous cell lines, Caco-2 cells were found to express no ADH. They, however, possessed ALDH activity that was comparable with normal colonic mucosal activity and also expressed the same ALDH classes (ALDHs 1 to 3) than normal human colonic mucosa. PMID:9438518

  4. Innate lymphoid cells regulate intestinal epithelial cell glycosylation.

    PubMed

    Goto, Yoshiyuki; Obata, Takashi; Kunisawa, Jun; Sato, Shintaro; Ivanov, Ivaylo I; Lamichhane, Aayam; Takeyama, Natsumi; Kamioka, Mariko; Sakamoto, Mitsuo; Matsuki, Takahiro; Setoyama, Hiromi; Imaoka, Akemi; Uematsu, Satoshi; Akira, Shizuo; Domino, Steven E; Kulig, Paulina; Becher, Burkhard; Renauld, Jean-Christophe; Sasakawa, Chihiro; Umesaki, Yoshinori; Benno, Yoshimi; Kiyono, Hiroshi

    2014-09-12

    Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host-microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the molecular and cellular mechanisms that regulate the induction of epithelial fucosylation are unknown. Here, we show that type 3 innate lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal bacteria-dependent and -independent manner, respectively. Disruption of intestinal fucosylation led to increased susceptibility to infection by Salmonella typhimurium. Our data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of epithelial glycosylation. PMID:25214634

  5. microRNA-214 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma by targeting the suppressor-of-fused protein (Sufu)

    PubMed Central

    Chen, Junying; Xiang, Tong; Li, Qijing; Diao, Xinwei; Zhu, Bo

    2015-01-01

    Distant metastasis is the major cause of cancer-related deaths in patients with lung adenocarcinoma (LAD). Emerging evidence reveals that miRNA is critical for tumor metastasis. miR-214 expression has been associated with LAD progression. However, whether and how miR-214 is involved in the development and metastasis of LAD remain unaddressed. Here, we found that the expression of miR-214 was elevated in LAD and correlated positively with LAD metastasis and epithelial-mesenchymal transition (EMT). In addition, we found that miR-214 enhanced the molecular program controlling the EMT of LAD cells and promoted LAD cell metastasis both in vitro and in vivo. This study thus provides the first evidence to show that the miR-214 expression by LAD cells contributes to the EMT and metastasis of LAD. Mechanistically, Sufu was identified as an important miR-214 functional target for the EMT and metastasis of LAD, ectopic expression of Sufu alleviated miR-214 promoted EMT and metastasis. Importantly, the expression of Sufu inversely correlated with the expression of miR-214 and vimentin and positively associated with the expression of E-cadherin in the tumor cells from human LAD patients. Collectively, this study uncovers a previously unappreciated miR-214-Sufu pathway in controlling EMT and metastasis of LAD and suggests that interfering with miR-214 and Sufu could be a viable approach to treat late stage metastatic LAD patients. PMID:26462018

  6. Biological and clinical relevance of stem cells in pancreatic adenocarcinoma

    PubMed Central

    Rasheed, Zeshaan A; Matsui, William

    2013-01-01

    Cancer stem cells (CSC) have been identified in a growing number of human malignancies. CSC are functionally defined by their ability to self-renew and recapitulate tumors in the ectopic setting, and a growing number of studies have shown that they display other functional characteristics, such as invasion and drug resistance. These unique functional properties implicate a role for CSC in clinical consequences, such as initial tumor formation, relapse following treatment, metastasis, and resistance, suggesting they are a major factor in directing clinical outcomes. Pancreatic adenocarcinoma is a highly-aggressive disease with a propensity for early metastasis and drug resistance. Tumorigenic pancreatic cancer cells have been identified using the cell surface antigens CD44, CD24, and CD133, as well as the high expression of aldehyde dehydrogenase (ALDH). In vitro and in vivo studies have shown that ALDH- and CD133-expressing pancreatic CSC have a greater propensity for metastasis, and ALDH-expressing CSC have been shown to be resistant to conventional chemotherapy. In clinical samples from patients with resected pancreatic adenocarcinoma, the presence of ALDH-expressing CSC was associated with worse overall survival. The development of CSC-targeting therapies might be important in changing the clinical outcomes of patients with this disease, and others and we have begun to identify novel compounds that block CSC function. This review will discuss the biological and clinical relevance of CSC in pancreatic cancer, and will discuss novel therapeutic strategies to target them. PMID:22320910

  7. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    PubMed Central

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  8. Respiratory epithelial cells orchestrate pulmonary innate immunity.

    PubMed

    Whitsett, Jeffrey A; Alenghat, Theresa

    2015-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury. PMID:25521682

  9. Mixed angiosarcoma, clear cell adenocarcinoma and mature teratoma elements in an ovarian tumor: a case report and literature review.

    PubMed

    Takahashi, Hiroyuki; Chaopotong, Pattama; Kajita, Sabine; Hashimura, Miki; Yamazaki, Hitoshi; Saegusa, Makoto

    2012-08-01

    Malignant transformation of a mature teratoma in the ovary is a rare event, with an approximate rate of only 1-2%. Here, we report an ovarian tumor with a unique combination of epithelial and non-epithelial malignant components, including mature teratoma elements. A 59 year-old postmenopusal woman underwent total hysterectomy and bilateral salpingo-oophorectomy to remove a huge solid mass of the right ovary. The ovarian tumor was 16 × 12 × 4.5 cm in dimensions, composed of red-brown and greyish-white tissue with several cystic areas. Microscopically, atypical cells immunopositive for both CD31 and CD34 formed irregular ectatic vascular patterns with a high MIB-1 labeling index in red-brown areas. In contrast, tubule-cystic and papillary structures were lined by HNF-1β-immunopositive atypical cuboidal and hobnail cells with clear cytoplasm in greyish-white areas. In addition, normal-looking epithelial and stromal components, including mature squamous, cuboidal and ciliated epithelial cells, and adipose tissues, were observed in red-brown areas, suggesting an ovarian tumor combining angiosarcoma, clear cell adenocarcinoma, and mature teratoma features. We could demonstrate identical X-chromosome inactivation patterns among all three components by human androgen receptor gene (HUMARA) assays, pointing to complex inter-relationships regarding their pathogenesis. These observations suggest that a malignant tumor composed of two characteristic phenotypes arose in mature teratoma. PMID:22827762

  10. Clear Cell Adenocarcinoma of the Urethra: Review of the Literature

    PubMed Central

    Venyo, Anthony Kodzo-Grey

    2015-01-01

    Background. Clear cell adenocarcinoma of the urethra (CCAU) is extremely rare and a number of clinicians may be unfamiliar with its diagnosis and biological behaviour. Aims. To review the literature on CCAU. Methods. Various internet databases were used. Results/Literature Review. (i) CCAU occurs in adults and in women in the great majority of cases. (ii) It has a particular association with urethral diverticulum, which has been present in 56% of the patients; is indistinguishable from clear cell adenocarcinoma of the female genital tract but is not associated with endometriosis; and probably does not arise by malignant transformation of nephrogenic adenoma. (iii) It is usually, readily distinguished from nephrogenic adenoma because of greater cytological a-typicality and mitotic activity and does not stain for prostate-specific antigen or prostatic acid phosphatase. (iv) It has been treated by anterior exenteration in women and cystoprostatectomy in men and at times by radiotherapy; chemotherapy has rarely been given. (v) CCAU is aggressive with low 5-year survival rates. (vi) There is no consensus opinion of treatment options that would improve the prognosis. Conclusions. Few cases of CCAU have been reported. Urologists, gynaecologists, pathologists, and oncologists should report cases of CCAU they encounter and enter them into a multicentric trial to determine the best treatment options that would improve the prognosis. PMID:25685552

  11. Esophageal epithelial cells acquire functional characteristics of activated myofibroblasts after undergoing an epithelial to mesenchymal transition

    PubMed Central

    Muir, Amanda B.; Dods, Kara; Noah, Yuli; Toltzis, Sarit; Chandramouleeswaran, Prasanna Modayur; Lee, Anna; Benitez, Alain; Bedenbaugh, Adam; Falk, Gary W.; Wells, Rebecca G.; Nakagawa, Hiroshi; Wang, Mei-Lun

    2015-01-01

    Background and Aims Eosinophilic esophagitis (EoE) is an allergic inflammatory disease that leads to esophageal fibrosis and stricture. We have recently shown that in EoE, esophageal epithelial cells undergo an epithelial to mesenchymal transition (EMT), characterized by gain of mesenchymal markers and loss of epithelial gene expression. Whether epithelial cells exposed to profibrotic cytokines can also acquire the functional characteristics of activated myofibroblasts, including migration, contraction, and extracellular matrix deposition, is relevant to our understanding and treatment of EoE-associated fibrogenesis. In the current study, we characterize cell migration, contraction, and collagen production by esophageal epithelial cells that have undergone cytokine-induced EMT in vitro. Methods and Results Stimulation of human non-transformed immortalized esophageal epithelial cells (EPC2-hTERT) with profibrotic cytokines TNFα, TGFβ, and IL1β for three weeks led to acquisition of mesenchymal αSMA and vimentin, and loss of epithelial E-cadherin expression. Upon removal of the profibrotic stimulus, epithelial characteristics were partially rescued. TGFβ stimulation had a robust effect upon epithelial collagen production. Surprisingly, TNFα stimulation had the most potent effect upon cell migration and contraction, exceeding the effects of the prototypical profibrotic cytokine TGFβ. IL1β stimulation alone had minimal effect upon esophageal epithelial migration, contraction, and collagen production. Conclusions Esophageal epithelial cells that have undergone EMT acquire functional characteristics of activated myofibroblasts in vitro. Profibrotic cytokines exert differential effects upon esophageal epithelial cells, underscoring complexities of fibrogenesis in EoE, and implicating esophageal epithelial cells as effector cells in EoE-associated fibrogenesis. PMID:25183431

  12. EDAC: Epithelial defence against cancer-cell competition between normal and transformed epithelial cells in mammals.

    PubMed

    Kajita, Mihoko; Fujita, Yasuyuki

    2015-07-01

    During embryonic development or under certain pathological conditions, viable but suboptimal cells are often eliminated from the cellular society through a process termed cell competition. Cell competition was originally identified in Drosophila where cells with different properties compete for survival; 'loser' cells are eliminated from tissues and consequently 'winner' cells become dominant. Recent studies have shown that cell competition also occurs in mammals. While apoptotic cell death is the major fate for losers in Drosophila, outcompeted cells show more variable phenotypes in mammals, such as cell death-independent apical extrusion and cellular senescence. Molecular mechanisms underlying these processes have been recently revealed. Especially, in epithelial tissues, normal cells sense and actively eliminate the neighbouring transformed cells via cytoskeletal proteins by the process named epithelial defence against cancer (EDAC). Here, we introduce this newly emerging research field: cell competition in mammals. PMID:25991731

  13. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  14. Molecular basis of potassium channels in pancreatic duct epithelial cells

    PubMed Central

    Hayashi, Mikio; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance. PMID:23962792

  15. Translocation of Helicobacter pylori CagA into Gastric Epithelial Cells by Type IV Secretion

    NASA Astrophysics Data System (ADS)

    Odenbreit, Stefan; Püls, Jürgen; Sedlmaier, Bettina; Gerland, Elke; Fischer, Wolfgang; Haas, Rainer

    2000-02-01

    The Gram-negative bacterium Helicobacter pylori is a causative agent of gastritis and peptic ulcer disease in humans. Strains producing the CagA antigen (cagA+) induce strong gastric inflammation and are strongly associated with gastric adenocarcinoma and MALT lymphoma. We show here that such strains translocate the bacterial protein CagA into gastric epithelial cells by a type IV secretion system, encoded by the cag pathogenicity island. CagA is tyrosine-phosphorylated and induces changes in the tyrosine phosphorylation state of distinct cellular proteins. Modulation of host cells by bacterial protein translocation adds a new dimension to the chronic Helicobacter infection with yet unknown consequences.

  16. BMP4 Signaling Is Able to Induce an Epithelial-Mesenchymal Transition-Like Phenotype in Barrett’s Esophagus and Esophageal Adenocarcinoma through Induction of SNAIL2

    PubMed Central

    Kestens, Christine; Siersema, Peter D.; Offerhaus, G. Johan A.; van Baal, Jantine W. P. M.

    2016-01-01

    Background Bone morphogenetic protein 4 (BMP4) signaling is involved in the development of Barrett’s esophagus (BE), a precursor of esophageal adenocarcinoma (EAC). In various cancers, BMP4 has been found to induce epithelial-mesenchymal transition (EMT) but its function in the development of EAC is currently unclear. Aim To investigate the expression of BMP4 and several members of the BMP4 pathway in EAC. Additionally, to determine the effect of BMP4 signaling in a human Barrett’s esophagus (BAR-T) and adenocarcinoma (OE33) cell line. Methods Expression of BMP4, its downstream target ID2 and members of the BMP4 pathway were determined by Q-RT-PCR, immunohistochemistry and Western blot analysis using biopsy samples from EAC patients. BAR-T and OE33 cells were incubated with BMP4 or the BMP4 antagonist, Noggin, and cell viability and migration assays were performed. In addition, expression of factors associated with EMT (SNAIL2, CDH1, CDH2 and Vimentin) was evaluated by Q-RT-PCR and Western blot analysis. Results Compared to squamous epithelium (SQ), BMP4 expression was significantly upregulated in EAC and BE. In addition, the expression of ID2 was significantly upregulated in EAC and BE compared to SQ. Western blot analysis confirmed our results, showing an upregulated expression of BMP4 and ID2 in both BE and EAC. In addition, more phosphorylation of SMAD1/5/8 was observed. BMP4 incubation inhibited cell viability, but induced cell migration in both BAR-T and OE33 cells. Upon BMP4 incubation, SNAIL2 expression was significantly upregulated in BAR-T and OE33 cells while CDH1 expression was significantly downregulated. These results were confirmed by Western blot analysis. Conclusion Our results indicate active BMP4 signaling in BE and EAC and suggest that this results in an invasive phenotype by inducing an EMT-like response through upregulation of SNAIL2 and subsequent downregulation of CDH1. PMID:27191723

  17. Bilateral ovarian mixed epithelial adenocarcinoma in a postmenopausal woman with unilateral ovarian yolk sac tumor component.

    PubMed

    Chen, Qin; Chen, Xiaoduan

    2014-01-01

    Ovarian yolk sac tumors (YSTs) usually occur in the young women and have been rarely documented in perimenopausal and postmenopausal women. The different age distribution supposes their complex nomenclature and histogenesis. We report a case of bilateral ovarian epithelial carcinoma with right ovarian YST component in a postmenopausal woman. The patient was treated by surgery and adjuvant combination chemotherapy of taxol and carboplatin for 6 courses and has been clinically free of tumor for 6 months. The correlation between the YST and the epithelial components always confuse us. Ovarian yolk sac tumors are not a discrete entity and represent a multifaceted group of neoplasms. The conjunction of multi antibodies help in differential diagnoses. In addition to a thorough case description, the literature concerning this entity is reviewed and discussed. PMID:25550883

  18. Stem cells as the root of pancreatic ductal adenocarcinoma

    SciTech Connect

    Balic, Anamaria; Dorado, Jorge; Alonso-Gomez, Mercedes; Heeschen, Christopher

    2012-04-01

    Emerging evidence suggests that stem cells play a crucial role not only in the generation and maintenance of different tissues, but also in the development and progression of malignancies. For the many solid cancers, it has now been shown that they harbor a distinct subpopulation of cancer cells that bear stem cell features and therefore, these cells are termed cancer stem cells (CSC) or tumor-propagating cells. CSC are exclusively tumorigenic and essential drivers for tumor progression and metastasis. Moreover, it has been shown that pancreatic ductal adenocarcinoma does not only contain one homogeneous population of CSC rather than diverse subpopulations that may have evolved during tumor progression. One of these populations is called migrating CSC and can be characterized by CXCR4 co-expression. Only these cells are capable of evading the primary tumor and traveling to distant sites such as the liver as the preferred site of metastatic spread. Clinically even more important, however, is the observation that CSC are highly resistant to chemo- and radiotherapy resulting in their relative enrichment during treatment and rapid relapse of disease. Many laboratories are now working on the further in-depth characterization of these cells, which may eventually allow for the identification of their Achilles heal and lead to novel treatment modalities for fighting this deadly disease.

  19. Invasive mouse gastric adenocarcinomas arising from Lgr5+ stem cells are dependent on crosstalk between the Hedgehog/GLI2 and mTOR pathways

    PubMed Central

    Syu, Li-Jyun; Zhao, Xinyi; Zhang, Yaqing; Grachtchouk, Marina; Demitrack, Elise; Ermilov, Alexandre; Wilbert, Dawn M.; Zheng, Xinlei; Kaatz, Ashley; Greenson, Joel K.; Gumucio, Deborah L.; Merchant, Juanita L.; di Magliano, Marina Pasca; Samuelson, Linda C.; Dlugosz, Andrzej A.

    2016-01-01

    Gastric adenocarcinoma is the third most common cause of cancer-related death worldwide. Here we report a novel, highly-penetrant mouse model of invasive gastric cancer arising from deregulated Hedgehog/Gli2 signaling targeted to Lgr5-expressing stem cells in adult stomach. Tumor development progressed rapidly: three weeks after inducing the Hh pathway oncogene GLI2A, 65% of mice harbored in situ gastric cancer, and an additional 23% of mice had locally invasive tumors. Advanced mouse gastric tumors had multiple features in common with human gastric adenocarcinomas, including characteristic histological changes, expression of RNA and protein markers, and the presence of major inflammatory and stromal cell populations. A subset of tumor cells underwent epithelial-mesenchymal transition, likely mediated by focal activation of canonical Wnt signaling and Snail1 induction. Strikingly, mTOR pathway activation, based on pS6 expression, was robustly activated in mouse gastric adenocarcinomas from the earliest stages of tumor development, and treatment with rapamycin impaired tumor growth. GLI2A-expressing epithelial cells were detected transiently in intestine, which also contains Lgr5+ stem cells, but they did not give rise to epithelial tumors in this organ. These findings establish that deregulated activation of Hedgehog/Gli2 signaling in Lgr5-expressing stem cells is sufficient to drive gastric adenocarcinoma development in mice, identify a critical requirement for mTOR signaling in the pathogenesis of these tumors, and underscore the importance of tissue context in defining stem cell responsiveness to oncogenic stimuli. PMID:26859571

  20. DNA typing of epithelial cells after strangulation.

    PubMed

    Wiegand, P; Kleiber, M

    1997-01-01

    DNA typing was carried out on epithelial cells which were transferred from the hands of the suspect onto the neck of the victim. In an experimental study 16 suspect-victim combinations were investigated for estimating the typing success. Alternatively to an attack against the neck, the upper arm was used for "strangulation". PCR typing was carried out using the short tandem repeat systems (STRs) HumCD4, HumVWF31A (VWA) and Hum-FIBRA (FGA) and the success rate was > 70% for all 3 systems. In most of the cases mixed patterns containing the phenotype of the suspect and the victim were obtained. In a case where strangulation was the cause of death, epithelial cells could be removed from the neck of the victim. The DNA pattern of the suspect could be successfully amplified using four STRs, demonstrating the applicability of this approach for practical casework. PMID:9274940

  1. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  2. Can Villin be Used to Identify Malignant and Undifferentiated Normal Digestive Epithelial Cells?

    NASA Astrophysics Data System (ADS)

    Robine, S.; Huet, C.; Moll, R.; Sahuquillo-Merino, C.; Coudrier, E.; Zweibaum, A.; Louvard, D.

    1985-12-01

    We have investigated the presence of villin (a Ca2+-regulated actin binding protein) in various tissues (normal or malignant) and in established cell lines by using sensitive immunochemical techniques on cell extracts and immunofluorescence analysis on frozen sections. Our results show that villin is a marker that can be used to distinguish normal differentiated epithelial cells from the simple epithelia lining the gastrointestinal tract and renal tubules. Villin is found in the absorptive cells of the small and large intestines, in the duct cells of pancreas and biliary system, and in the cells of kidney proximal tubules. Furthermore, undifferentiated normal and tumoral cells of intestinal origin in vivo and in cell culture express villin. Therefore, expression of villin is seen in cells that do not necessarily display the morphological features characteristic of their terminally differentiated state, such as the microvilli-lined brush border. We suggest the possible clinical implications of using villin as a marker in the diagnosis of metastatic adenocarcinomas.

  3. MDA-9/Syntenin-Slug transcriptional complex promote epithelial-mesenchymal transition and invasion/metastasis in lung adenocarcinoma

    PubMed Central

    Wang, Lu-Kai; Pan, Szu-Hua; Chang, Yih-Leong; Hung, Pei-Fang; Kao, Shih-Han; Wang, Wen-Lung; Lin, Ching-Wen; Yang, Shuenn-Chen; Liang, Chen-Hsien; Wu, Chen-Tu; Hsiao, Tzu-Hung

    2016-01-01

    Melanoma differentiation-associated gene-9 (MDA-9)/Syntenin is a novel therapeutic target because it plays critical roles in cancer progression and exosome biogenesis. Here we show that Slug, a key epithelial-mesenchymal-transition (EMT) regulator, is a MDA-9/Syntenin downstream target. Mitogen EGF stimulation increases Slug expression and MDA-9/Syntenin nuclear translocation. MDA-9/Syntenin uses its PDZ1 domain to bind with Slug, and this interaction further leads to HDAC1 recruitment, up-regulation of Slug transcriptional repressor activity, enhanced Slug-mediated EMT, and promotion of cancer invasion and metastasis. The PDZ domains and nuclear localization of MDA-9/Syntenin are both required for promoting Slug-mediated cancer invasion. Clinically, patients with high MDA-9/Syntenin and high Slug expressions were associated with poor overall survival compared to those with low expression in lung adenocarcinomas. Our findings provide evidence that MDA-9/Syntenin acts as a pivotal adaptor of Slug and it transcriptionally enhances Slug-mediated EMT to promote cancer invasion and metastasis. PMID:26561205

  4. MDA-9/Syntenin-Slug transcriptional complex promote epithelial-mesenchymal transition and invasion/metastasis in lung adenocarcinoma.

    PubMed

    Wang, Lu-Kai; Pan, Szu-Hua; Chang, Yih-Leong; Hung, Pei-Fang; Kao, Shih-Han; Wang, Wen-Lung; Lin, Ching-Wen; Yang, Shuenn-Chen; Liang, Chen-Hsien; Wu, Chen-Tu; Hsiao, Tzu-Hung; Hong, Tse-Ming; Yang, Pan-Chyr

    2016-01-01

    Melanoma differentiation-associated gene-9 (MDA-9)/Syntenin is a novel therapeutic target because it plays critical roles in cancer progression and exosome biogenesis. Here we show that Slug, a key epithelial-mesenchymal-transition (EMT) regulator, is a MDA-9/Syntenin downstream target. Mitogen EGF stimulation increases Slug expression and MDA-9/Syntenin nuclear translocation. MDA-9/Syntenin uses its PDZ1 domain to bind with Slug, and this interaction further leads to HDAC1 recruitment, up-regulation of Slug transcriptional repressor activity, enhanced Slug-mediated EMT, and promotion of cancer invasion and metastasis. The PDZ domains and nuclear localization of MDA-9/Syntenin are both required for promoting Slug-mediated cancer invasion. Clinically, patients with high MDA-9/Syntenin and high Slug expressions were associated with poor overall survival compared to those with low expression in lung adenocarcinomas. Our findings provide evidence that MDA-9/Syntenin acts as a pivotal adaptor of Slug and it transcriptionally enhances Slug-mediated EMT to promote cancer invasion and metastasis. PMID:26561205

  5. Control of local immunity by airway epithelial cells.

    PubMed

    Weitnauer, M; Mijošek, V; Dalpke, A H

    2016-03-01

    The lung is ventilated by thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbial compounds, most of them harmless contaminants. Airway epithelial cells are known to have innate sensor functions, thus being able to detect microbial danger. To avoid chronic inflammation, the pulmonary system has developed specific means to control local immune responses. Even though airway epithelial cells can act as proinflammatory promoters, we propose that under homeostatic conditions airway epithelial cells are important modulators of immune responses in the lung. In this review, we discuss epithelial cell regulatory functions that control reactivity of professional immune cells within the microenvironment of the airways and how these mechanisms are altered in pulmonary diseases. Regulation by epithelial cells can be divided into two mechanisms: (1) mediators regulate epithelial cells' innate sensitivity in cis and (2) factors are produced that limit reactivity of immune cells in trans. PMID:26627458

  6. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    SciTech Connect

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J.

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  7. Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes.

    PubMed

    Bessède, E; Staedel, C; Acuña Amador, L A; Nguyen, P H; Chambonnier, L; Hatakeyama, M; Belleannée, G; Mégraud, F; Varon, C

    2014-08-01

    Helicobacter pylori infection is the major risk factor for gastric adenocarcinoma. The link with gastric adenocarcinoma is partly due to the H. pylori CagA oncoprotein. CagA is responsible for a particular cell phenotype in vitro, the 'hummingbird' phenotype, that corresponds to an elongation of the cells, mimicking an epithelial-mesenchymal transition (EMT). EMT participates in the carcinogenesis process, and is involved in the generation of cancer stem cells (CSCs). However, its involvement in gastric carcinogenesis has yet not been studied. Therefore, the aim of this study was to determine the role of H. pylori in EMT and in the emergence of gastric CSCs. For this purpose, gastric epithelial cells were cocultured with a cagA-positive H. pylori strain or its isogenic-deleted mutants or were transfected with CagA expression vectors. Study of the expression of epithelial and mesenchymal markers showed that H. pylori, via CagA, is responsible for an EMT phenotype associated with an increase in mesenchymal markers as well as CD44 expression, a known gastric CSC marker. Moreover, infection led to an increased ability to migrate, to invade and to form tumorspheres. Cell sorting experiments showed that only the CD44(high) cells induced by H. pylori infection displayed the mesenchymal phenotype and CSC properties in vitro, and had higher tumorigenic properties than CD44(low) cells in xenografted mice. Immunohistochemistry analyses on human and mouse gastric mucosa tissue samples confirmed a high expression of CD44 and mesenchymal markers in H. pylori-infected cases, and in gastric dysplasia and carcinoma. All of these data suggest that H. pylori, via CagA, unveils CSC-like properties by induction of EMT-like changes in gastric epithelial cells. PMID:24096479

  8. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    PubMed Central

    Gharib, Sina A.; Pippin, Jeffrey W.; Ohse, Takamoto; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire. PMID:25127402

  9. A case of simultaneous esophageal squamous cell carcinoma and Barrett's adenocarcinoma.

    PubMed

    Yamazaki, Tomoo; Iwaya, Yugo; Iwaya, Mai; Watanabe, Takayuki; Seki, Ayako; Ochi, Yasuhide; Hara, Etsuo; Sekiguchi, Tomohiro; Hosaka, Noriko; Arakura, Norikazu; Tanaka, Eiji; Hasebe, Osamu

    2016-08-01

    A 77-year-old male with a long history of alcohol consumption and smoking was admitted for hoarseness and dysphagia. Computed tomography revealed thickening of the middle intrathoracic esophageal wall and multiple mediastinal lymph node swellings. Esophagogastroduodenoscopic examination disclosed an advanced-stage squamous cell carcinoma lesion in the middle intrathoracic esophagus with synchronous early stage Barrett's adenocarcinoma. The patient underwent endoscopic submucosal dissection for the adenocarcinoma followed by chemoradiation therapy for the squamous cell carcinoma. In spite of their common risk factors, the simultaneous manifestation of esophageal squamous cell carcinoma and Barrett's adenocarcinoma is extremely rare and requires further study. PMID:27220657

  10. Whole-genome sequencing of nine esophageal adenocarcinoma cell lines.

    PubMed

    Contino, Gianmarco; Eldridge, Matthew D; Secrier, Maria; Bower, Lawrence; Fels Elliott, Rachael; Weaver, Jamie; Lynch, Andy G; Edwards, Paul A W; Fitzgerald, Rebecca C

    2016-01-01

    Esophageal adenocarcinoma (EAC) is highly mutated and molecularly heterogeneous. The number of cell lines available for study is limited and their genome has been only partially characterized. The availability of an accurate annotation of their mutational landscape is crucial for accurate experimental design and correct interpretation of genotype-phenotype findings. We performed high coverage, paired end whole genome sequencing on eight EAC cell lines-ESO26, ESO51, FLO-1, JH-EsoAd1, OACM5.1 C, OACP4 C, OE33, SK-GT-4-all verified against original patient material, and one esophageal high grade dysplasia cell line, CP-D. We have made available the aligned sequence data and report single nucleotide variants (SNVs), small insertions and deletions (indels), and copy number alterations, identified by comparison with the human reference genome and known single nucleotide polymorphisms (SNPs). We compare these putative mutations to mutations found in primary tissue EAC samples, to inform the use of these cell lines as a model of EAC. PMID:27594985

  11. Whole-genome sequencing of nine esophageal adenocarcinoma cell lines

    PubMed Central

    Contino, Gianmarco; Eldridge, Matthew D.; Secrier, Maria; Bower, Lawrence; Fels Elliott, Rachael; Weaver, Jamie; Lynch, Andy G.; Edwards, Paul A.W.; Fitzgerald, Rebecca C.

    2016-01-01

    Esophageal adenocarcinoma (EAC) is highly mutated and molecularly heterogeneous. The number of cell lines available for study is limited and their genome has been only partially characterized. The availability of an accurate annotation of their mutational landscape is crucial for accurate experimental design and correct interpretation of genotype-phenotype findings. We performed high coverage, paired end whole genome sequencing on eight EAC cell lines—ESO26, ESO51, FLO-1, JH-EsoAd1, OACM5.1 C, OACP4 C, OE33, SK-GT-4—all verified against original patient material, and one esophageal high grade dysplasia cell line, CP-D. We have made available the aligned sequence data and report single nucleotide variants (SNVs), small insertions and deletions (indels), and copy number alterations, identified by comparison with the human reference genome and known single nucleotide polymorphisms (SNPs). We compare these putative mutations to mutations found in primary tissue EAC samples, to inform the use of these cell lines as a model of EAC.

  12. Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1

    PubMed Central

    Garcia, Edwin; Hayden, Annette; Birts, Charles; Britton, Edward; Cowie, Andrew; Pickard, Karen; Mellone, Massimiliano; Choh, Clarisa; Derouet, Mathieu; Duriez, Patrick; Noble, Fergus; White, Michael J.; Primrose, John N.; Strefford, Jonathan C.; Rose-Zerilli, Matthew; Thomas, Gareth J.; Ang, Yeng; Sharrocks, Andrew D.; Fitzgerald, Rebecca C.; Underwood, Timothy J.; MacRae, Shona; Grehan, Nicola; Abdullahi, Zarah; de la Rue, Rachel; Noorani, Ayesha; Elliott, Rachael Fels; de Silva, Nadeera; Bornschein, Jan; O’Donovan, Maria; Contino, Gianmarco; Yang, Tsun-Po; Chettouh, Hamza; Crawte, Jason; Nutzinger, Barbara; Edwards, Paul A. W.; Smith, Laura; Miremadi, Ahmad; Malhotra, Shalini; Cluroe, Alison; Hardwick, Richard; Davies, Jim; Ford, Hugo; Gilligan, David; Safranek, Peter; Hindmarsh, Andy; Sujendran, Vijayendran; Carroll, Nick; Turkington, Richard; Hayes, Stephen J.; Ang, Yeng; Preston, Shaun R.; Oakes, Sarah; Bagwan, Izhar; Save, Vicki; Skipworth, Richard J. E.; Hupp, Ted R.; O’Neill, J. Robert; Tucker, Olga; Taniere, Philippe; Owsley, Jack; Crichton, Charles; Schusterreiter, Christian; Barr, Hugh; Shepherd, Neil; Old, Oliver; Lagergren, Jesper; Gossage, James; Davies, Andrew; Chang, Fuju; Zylstra, Janine; Sanders, Grant; Berrisford, Richard; Harden, Catherine; Bunting, David; Lewis, Mike; Cheong, Ed; Kumar, Bhaskar; Parsons, Simon L.; Soomro, Irshad; Kaye, Philip; Saunders, John; Lovat, Laurence; Haidry, Rehan; Eneh, Victor; Igali, Laszlo; Welch, Ian; Scott, Michael; Sothi, Shamila; Suortamo, Sari; Lishman, Suzy; Beardsmore, Duncan; Anderson, Charlotte; Smith, Mike L.; Secrier, Maria; Eldridge, Matthew D.; Bower, Lawrence; Achilleos, Achilleas; Lynch, Andy G.; Tavare, Simon

    2016-01-01

    New biological tools are required to understand the functional significance of genetic events revealed by whole genome sequencing (WGS) studies in oesophageal adenocarcinoma (OAC). The MFD-1 cell line was isolated from a 55-year-old male with OAC without recombinant-DNA transformation. Somatic genetic variations from MFD-1, tumour, normal oesophagus, and leucocytes were analysed with SNP6. WGS was performed in tumour and leucocytes. RNAseq was performed in MFD-1, and two classic OAC cell lines FLO1 and OE33. Transposase-accessible chromatin sequencing (ATAC-seq) was performed in MFD-1, OE33, and non-neoplastic HET1A cells. Functional studies were performed. MFD-1 had a high SNP genotype concordance with matched germline/tumour. Parental tumour and MFD-1 carried four somatically acquired mutations in three recurrent mutated genes in OAC: TP53, ABCB1 and SEMA5A, not present in FLO-1 or OE33. MFD-1 displayed high expression of epithelial and glandular markers and a unique fingerprint of open chromatin. MFD-1 was tumorigenic in SCID mouse and proliferative and invasive in 3D cultures. The clinical utility of whole genome sequencing projects will be delivered using accurate model systems to develop molecular-phenotype therapeutics. We have described the first such system to arise from the oesophageal International Cancer Genome Consortium project. PMID:27600491

  13. Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1.

    PubMed

    Garcia, Edwin; Hayden, Annette; Birts, Charles; Britton, Edward; Cowie, Andrew; Pickard, Karen; Mellone, Massimiliano; Choh, Clarisa; Derouet, Mathieu; Duriez, Patrick; Noble, Fergus; White, Michael J; Primrose, John N; Strefford, Jonathan C; Rose-Zerilli, Matthew; Thomas, Gareth J; Ang, Yeng; Sharrocks, Andrew D; Fitzgerald, Rebecca C; Underwood, Timothy J

    2016-01-01

    New biological tools are required to understand the functional significance of genetic events revealed by whole genome sequencing (WGS) studies in oesophageal adenocarcinoma (OAC). The MFD-1 cell line was isolated from a 55-year-old male with OAC without recombinant-DNA transformation. Somatic genetic variations from MFD-1, tumour, normal oesophagus, and leucocytes were analysed with SNP6. WGS was performed in tumour and leucocytes. RNAseq was performed in MFD-1, and two classic OAC cell lines FLO1 and OE33. Transposase-accessible chromatin sequencing (ATAC-seq) was performed in MFD-1, OE33, and non-neoplastic HET1A cells. Functional studies were performed. MFD-1 had a high SNP genotype concordance with matched germline/tumour. Parental tumour and MFD-1 carried four somatically acquired mutations in three recurrent mutated genes in OAC: TP53, ABCB1 and SEMA5A, not present in FLO-1 or OE33. MFD-1 displayed high expression of epithelial and glandular markers and a unique fingerprint of open chromatin. MFD-1 was tumorigenic in SCID mouse and proliferative and invasive in 3D cultures. The clinical utility of whole genome sequencing projects will be delivered using accurate model systems to develop molecular-phenotype therapeutics. We have described the first such system to arise from the oesophageal International Cancer Genome Consortium project. PMID:27600491

  14. Taenia solium Oncosphere Adhesion to Intestinal Epithelial and Chinese Hamster Ovary Cells In Vitro▿

    PubMed Central

    Verastegui, Manuela; Gilman, Robert H.; Arana, Yanina; Barber, Dylan; Velásquez, Jeanette; Farfán, Marilu; Chile, Nancy; Kosek, Jon C.; Kosek, Margaret; Garcia, Hector H.; Gonzalez, Armando

    2007-01-01

    The specific mechanisms underlying Taenia solium oncosphere adherence and penetration in the host have not been studied previously. We developed an in vitro adhesion model assay to evaluate the mechanisms of T. solium oncosphere adherence to the host cells. The following substrates were used: porcine intestinal mucosal scrapings (PIMS), porcine small intestinal mucosal explants (PSIME), Chinese hamster ovary cells (CHO cells), epithelial cells from ileocecal colorectal adenocarcinoma (HCT-8 cells), and epithelial cells from colorectal adenocarcinoma (Caco-2 cells). CHO cells were used to compare oncosphere adherence to fixed and viable cells, to determine the optimum time of oncosphere incubation, to determine the role of sera and monolayer cell maturation, and to determine the effect of temperature on oncosphere adherence. Light microscopy, scanning microscopy, and transmission microscopy were used to observe morphological characteristics of adhered oncospheres. This study showed in vitro adherence of activated T. solium oncospheres to PIMS, PSIME, monolayer CHO cells, Caco-2 cells, and HCT-8 cells. The reproducibility of T. solium oncosphere adherence was most easily measured with CHO cells. Adherence was enhanced by serum-binding medium with >5% fetal bovine serum, which resulted in a significantly greater number of oncospheres adhering than the number adhering when serum at a concentration less than 2.5% was used (P < 0.05). Oncosphere adherence decreased with incubation of cells at 4°C compared with the adherence at 37°C. Our studies also demonstrated that T. solium oncospheres attach to cells with elongated microvillus processes and that the oncospheres expel external secretory vesicles that have the same oncosphere processes. PMID:17698575

  15. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  16. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells.

    PubMed

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W; Basse, Per H; Wang, Hong; Wang, Xinhui; Proia, David A; Greenberger, Joel S; Socinski, Mark A; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  17. Formation of a Neurosensory Organ by Epithelial Cell Slithering.

    PubMed

    Kuo, Christin S; Krasnow, Mark A

    2015-10-01

    Epithelial cells are normally stably anchored, maintaining their relative positions and association with the basement membrane. Developmental rearrangements occur through cell intercalation, and cells can delaminate during epithelial-mesenchymal transitions and metastasis. We mapped the formation of lung neuroepithelial bodies (NEBs), innervated clusters of neuroendocrine/neurosensory cells within the bronchial epithelium, revealing a targeted mode of cell migration that we named "slithering," in which cells transiently lose epithelial character but remain associated with the membrane while traversing neighboring epithelial cells to reach cluster sites. Immunostaining, lineage tracing, clonal analysis, and live imaging showed that NEB progenitors, initially distributed randomly, downregulate adhesion and polarity proteins, crawling over and between neighboring cells to converge at diametrically opposed positions at bronchial branchpoints, where they reestablish epithelial structure and express neuroendocrine genes. There is little accompanying progenitor proliferation or apoptosis. Activation of the slithering program may explain why lung cancers arising from neuroendocrine cells are highly metastatic. PMID:26435104

  18. Ouabain modulates ciliogenesis in epithelial cells

    PubMed Central

    Larre, Isabel; Castillo, Aida; Flores-Maldonado, Catalina; Contreras, Ruben G.; Galvan, Ivan; Muñoz-Estrada, Jesus; Cereijido, Marcelino

    2011-01-01

    The exchange of substances between higher organisms and the environment occurs across transporting epithelia whose basic features are tight junctions (TJs) that seal the intercellular space, and polarity, which enables cells to transport substances vectorially. In a previous study, we demonstrated that 10 nM ouabain modulates TJs, and we now show that it controls polarity as well. We gauge polarity through the development of a cilium at the apical domain of Madin-Darby canine kidney cells (MDCK, epithelial dog kidney). Ouabain accelerates ciliogenesis in an ERK1/2-dependent manner. Claudin-2, a molecule responsible for the Na+ and H2O permeability of the TJs, is also present at the cilium, as it colocalizes and coprecipitates with acetylated α-tubulin. Ouabain modulates claudin-2 localization at the cilium through ERK1/2. Comparing wild-type and ouabain-resistant MDCK cells, we show that ouabain acts through Na+,K+-ATPase. Taken together, our previous and present results support the possibility that ouabain constitutes a hormone that modulates the transporting epithelial phenotype, thereby playing a crucial role in metazoan life. PMID:22143774

  19. Is the inflammasome relevant for epithelial cell function?

    PubMed

    Santana, Patricia T; Martel, Jan; Lai, Hsin-Chih; Perfettini, Jean-Luc; Kanellopoulos, Jean M; Young, John D; Coutinho-Silva, Robson; Ojcius, David M

    2016-02-01

    Inflammasomes are intracellular protein complexes that sense microbial components and damage of infected cells. Following activation by molecules released by pathogens or injured cells, inflammasomes activate caspase-1, allowing secretion of the pro-inflammatory cytokines IL-1β and IL-18 from innate immune cells. Inflammasomes are also expressed in epithelial cells, where their function has attracted less attention. Nonetheless, depending on the tissue, epithelial inflammasomes can mediate inflammation, wound healing, and pain sensitivity. We review here recent findings on inflammasomes found in epithelial tissues, highlighting the importance of these protein complexes in the response of epithelial tissues to microbial infections. PMID:26546965

  20. Cell-surface markers for colon adenoma and adenocarcinoma

    PubMed Central

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S.; Wojtkowiak, Jonathan W.; Stark, Valerie E.; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L.

    2016-01-01

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC. PMID:26894861

  1. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells.

    PubMed

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-01-01

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1(nu)/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells. PMID:27250766

  2. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells

    PubMed Central

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-01-01

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1nu/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells. PMID:27250766

  3. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells

    PubMed Central

    Zhang, Shiwu; Mercado-Uribe, Imelda; Sood, Anil; Bast, Robert C.; Liu, Jinsong

    2016-01-01

    Stromal cells are generally considered to be derived primarily from the host's normal mesenchymal stromal cells or bone marrow. However, the origins of stromal cells have been quite controversial. To determine the role of polyploidy in tumor development, we examined the fate of normal mullerian epithelial cells during the immortalization and transformation process by tracing the expression of SV40 large T antigen. Here we show that immortalized or HRAS-transformed mullerian epithelial cells contain a subpopulation of polyploid giant cells that grow as multicellular spheroids expressing hematopoietic markers in response to treatment with CoCl2. The immortalized or transformed epithelial cells can transdifferentiate into stromal cells when transplanted into nude mice. Immunofluorescent staining revealed expression of stem cell factors OCT4, Nanog, and SOX-2 in spheroid, whereas expression of embryonic stem cell marker SSEA1 was increased in HRAS-transformed cells compared with their immortalized isogenic counterparts. These results suggest that normal mullerian epithelial cells are intrinsically highly plastic, via the formation of polyploid giant cells and activation of embryonic stem-like program, which work together to promote the coevolution of neoplastic epithelial cells and multiple lineage stromal cells. PMID:27382431

  4. Establishment of Hertwig's epithelial root sheath/epithelial rests of Malassez cell line from human periodontium.

    PubMed

    Nam, Hyun; Kim, Ji-Hye; Kim, Jae-Won; Seo, Byoung-Moo; Park, Joo-Cheol; Kim, Jung-Wook; Lee, Gene

    2014-07-01

    Human Hertwig's epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cells are epithelial remnants of teeth residing in the periodontium. Although the functional roles of HERS/ERM cells have yet to be elucidated, they are a unique epithelial cell population in adult teeth and are reported to have stem cell characteristics. Therefore, HERS/ERM cells might play a role as an epithelial component for the repair or regeneration of dental hard tissues; however, they are very rare population in periodontium and the primary isolation of them is considered to be difficult. To overcome these problems, we immortalized primary HERS/ERM cells isolated from human periodontium using SV40 large T antigen (SV40 LT) and performed a characterization of the immortalized cell line. Primary HERS/ERM cells could not be maintained for more than 6 passages; however, immortalized HERS/ERM cells were maintained for more than 20 passages. There were no differences in the morphological and immunophenotypic characteristics of HERS/ERM cells and immortalized HERS/ERM cells. The expression of epithelial stem cell and embryonic stem cell markers was maintained in immortalized HERS/ERM cells. Moreover, immortalized HERS/ERM cells could acquire mesenchymal phenotypes through the epithelial-mesenchymal transition via TGF-β1. In conclusion, we established an immortalized human HERS/ERM cell line with SV40 LT and expect this cell line to contribute to the understanding of the functional roles of HERS/ERM cells and the tissue engineering of teeth. PMID:25081036

  5. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    SciTech Connect

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  6. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation

    PubMed Central

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2016-01-01

    Summary Cellular senescence suppresses cancer by arresting cells at risk of malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation and branching morphogenesis. Furthermore, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts – the ability to alter epithelial differentiation – that might also explain the loss of tissue function and organization that is a hallmark of aging. PMID:15657080

  7. Henipavirus Pathogenesis in Human Respiratory Epithelial Cells

    PubMed Central

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J. Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  8. Henipavirus pathogenesis in human respiratory epithelial cells.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz; Rockx, Barry

    2013-03-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  9. TGM2 A Cell Surface Marker in Esophageal Adenocarcinomas

    PubMed Central

    Leicht, Deborah T.; Kausar, Tasneem; Wang, Zhuwen; Ferrer-Torres, Daysha; Wang, Thomas D.; Thomas, Dafydd G.; Lin, Jules; Chang, Andrew C.; Lin, Lin; Beer, David G.

    2014-01-01

    Introduction Esophageal adenocarcinomas (EAC) are aggressive cancers that are increasing in incidence and associated with a poor prognosis. The identification of highly expressed genes in EAC relative to metaplastic Barrett’s esophagus (BE) may provide new targets for novel early cancer detection strategies using endoscopically administered, fluorescently labeled peptides. Methods Gene expression analysis of BE and EACs were used to identify the cell surface marker transglutaminase 2 (TGM2) as overexpressed in cancer. The expression of two major isoforms of TGM2 was determined by qRT-polymerase chain reaction in an independent cohort of 128 EACs. Protein expression was confirmed by tissue microarrays and immunoblot analysis of EAC cell lines. TGM2 DNA copy number was assessed using single nucleotide polymorphism microarrays and confirmed by qPCR. TGM2 expression in neoadjuvantly treated EACs and following small interfering RNA-mediated knockdown in cisplatin-treated EAC cells was used to determine its possible role in chemoresistance. Results TGM2 is overexpressed in 15 EACs relative to 26 BE samples. Overexpression of both TGM2 isoforms was confirmed in 128 EACs and associated with higher tumor stage, poor differentiation, and increased inflammatory and desmoplastic response. Tissue microarrays and immunohistochemistry confirmed elevated TGM2 protein expression in EAC. Single nucleotide polymorphism and qPCR analysis revealed increased TGM2 gene copy number as one mechanism underlying elevated TGM2 expression. TGM2 was highly expressed in resistant EAC after patient treatment with neoadjuvant chemotherapy/radiation suggesting a role for TGM2 in chemoresistance. Conclusion TGM2 may be a useful cell surface biomarker for early detection of EAC. PMID:24828664

  10. Nuclear microscopy of rat colon epithelial cells

    NASA Astrophysics Data System (ADS)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  11. Circulating Tumor Cells in the Adenocarcinoma of the Esophagus

    PubMed Central

    Gallerani, Giulia; Fabbri, Francesco

    2016-01-01

    Circulating tumor cells (CTCs) are elements of indisputable significance as they seem to be responsible for the onset of metastasis. Despite this, research into CTCs and their clinical application have been hindered by their rarity and heterogeneity at the molecular and cellular level, and also by a lack of technical standardization. Esophageal adenocarcinoma (EAC) is a highly aggressive cancer that is often diagnosed at an advanced stage. Its incidence has increased so much in recent years that new diagnostic, prognostic and predictive biomarkers are urgently needed. Preliminary findings suggest that CTCs could represent an effective, non-invasive, real-time assessable biomarker in all stages of EAC. This review provides an overview of EAC and CTC characteristics and reports the main research results obtained on CTCs in this setting. The need to carry out further basic and translational research in this area to confirm the clinical usefulness of CTCs and to provide oncologists with a tool to improve therapeutic strategies for EAC patients was herein highlighted. PMID:27527155

  12. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions

    PubMed Central

    2009-01-01

    Background Emerging evidences suggest that enteric glial cells (EGC), a major constituent of the enteric nervous system (ENS), are key regulators of intestinal epithelial barrier (IEB) functions. Indeed EGC inhibit intestinal epithelial cells (IEC) proliferation and increase IEB paracellular permeability. However, the role of EGC on other important barrier functions and the signalling pathways involved in their effects are currently unknown. To achieve this goal, we aimed at identifying the impact of EGC upon IEC transcriptome by performing microarray studies. Results EGC induced significant changes in gene expression profiling of proliferating IEC after 24 hours of co-culture. 116 genes were identified as differentially expressed (70 up-regulated and 46 down-regulated) in IEC cultured with EGC compared to IEC cultured alone. By performing functional analysis of the 116 identified genes using Ingenuity Pathway Analysis, we showed that EGC induced a significant regulation of genes favoring both cell-to-cell and cell-to-matrix adhesion as well as cell differentiation. Consistently, functional studies showed that EGC induced a significant increase in cell adhesion. EGC also regulated genes involved in cell motility towards an enhancement of cell motility. In addition, EGC profoundly modulated expression of genes involved in cell proliferation and cell survival, although no clear functional trend could be identified. Finally, important genes involved in lipid and protein metabolism of epithelial cells were shown to be differentially regulated by EGC. Conclusion This study reinforces the emerging concept that EGC have major protective effects upon the IEB. EGC have a profound impact upon IEC transcriptome and induce a shift in IEC phenotype towards increased cell adhesion and cell differentiation. This concept needs to be further validated under both physiological and pathophysiological conditions. PMID:19883504

  13. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  14. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  15. Somatic Copy Number Alterations Associated with Japanese or Endometriosis in Ovarian Clear Cell Adenocarcinoma

    PubMed Central

    Okamoto, Aikou; Sehouli, Jalid; Yanaihara, Nozomu; Hirata, Yukihiro; Braicu, Ioana; Kim, Byoung-Gie; Takakura, Satoshi; Saito, Misato; Yanagida, Satoshi; Takenaka, Masataka; Yamaguchi, Noriko; Morikawa, Asuka; Tanabe, Hiroshi; Yamada, Kyosuke; Yoshihara, Kosuke; Enomoto, Takayuki; Itamochi, Hiroaki; Kigawa, Junzo; Matsumura, Noriomi; Konishi, Ikuo; Aida, Satoshi; Aoki, Yuko; Ishii, Nobuya; Ochiai, Kazunori; Akiyama, Tetsu; Urashima, Mitsuyoshi

    2015-01-01

    When compared with other epithelial ovarian cancers, the clinical characteristics of ovarian clear cell adenocarcinoma (CCC) include 1) a higher incidence among Japanese, 2) an association with endometriosis, 3) poor prognosis in advanced stages, and 4) a higher incidence of thrombosis as a complication. We used high resolution comparative genomic hybridization (CGH) to identify somatic copy number alterations (SCNAs) associated with each of these clinical characteristics of CCC. The Human Genome CGH 244A Oligo Microarray was used to examine 144 samples obtained from 120 Japanese, 15 Korean, and nine German patients with CCC. The entire 8q chromosome (minimum corrected p-value: q = 0.0001) and chromosome 20q13.2 including the ZNF217 locus (q = 0.0078) were amplified significantly more in Japanese than in Korean or German samples. This copy number amplification of the ZNF217 gene was confirmed by quantitative real-time polymerase chain reaction (Q-PCR). ZNF217 RNA levels were also higher in Japanese tumor samples than in non-Japanese samples (P = 0.027). Moreover, endometriosis was associated with amplification of EGFR gene (q = 0.047), which was again confirmed by Q-PCR and correlated with EGFR RNA expression. However, no SCNAs were significantly associated with prognosis or thrombosis. These results indicated that there may be an association between CCC and ZNF217 amplification among Japanese patients as well as between endometriosis and EGFR gene amplifications. PMID:25658832

  16. Applications of mouse airway epithelial cell culture for asthma research.

    PubMed

    Horani, Amjad; Dickinson, John D; Brody, Steven L

    2013-01-01

    Primary airway epithelial cell culture provides a valuable tool for studying cell differentiation, cell-cell interactions, and the role of immune system factors in asthma pathogenesis. In this chapter, we discuss the application of mouse tracheal epithelial cell cultures for the study of asthma biology. A major advantage of this system is the ability to use airway epithelial cells from mice with defined genetic backgrounds. The in vitro proliferation and differentiation of mouse airway epithelial cells uses the air-liquid interface condition to generate well-differentiated epithelia with characteristics of native airways. Protocols are provided for manipulation of differentiation, induction of mucous cell metaplasia, genetic modification, and cell and pathogen coculture. Assays for the assessment of gene expression, responses of cells, and analysis of specific cell subpopulations within the airway epithelium are included. PMID:23943446

  17. Klebsiella pneumoniae Is Able to Trigger Epithelial-Mesenchymal Transition Process in Cultured Airway Epithelial Cells

    PubMed Central

    Leone, Laura; Mazzetta, Francesca; Martinelli, Daniela; Valente, Sabatino; Alimandi, Maurizio; Raffa, Salvatore; Santino, Iolanda

    2016-01-01

    The ability of some bacterial pathogens to activate Epithelial-Mesenchymal Transition normally is a consequence of the persistence of a local chronic inflammatory response or depends on a direct interaction of the pathogens with the host epithelial cells. In this study we monitored the abilities of the K. pneumoniae to activate the expression of genes related to EMT-like processes and the occurrence of phenotypic changes in airway epithelial cells during the early steps of cell infection. We describe changes in the production of intracellular reactive oxygen species and increased HIF-1α mRNA expression in cells exposed to K. pneumoniae infection. We also describe the upregulation of a set of transcription factors implicated in the EMT processes, such as Twist, Snail and ZEB, indicating that the morphological changes of epithelial cells already appreciable after few hours from the K. pneumoniae infection are tightly regulated by the activation of transcriptional pathways, driving epithelial cells to EMT. These effects appear to be effectively counteracted by resveratrol, an antioxidant that is able to exert a sustained scavenging of the intracellular ROS. This is the first report indicating that strains of K. pneumoniae may promote EMT-like programs through direct interaction with epithelial cells without the involvement of inflammatory cells. PMID:26812644

  18. Phase I/II Study of IMMU-132 in Patients With Epithelial Cancers

    ClinicalTrials.gov

    2016-07-29

    Colorectal Cancer; Gastric Adenocarcinoma; Esophageal Cancer; Hepatocellular Carcinoma; Non-small Cell Lung Cancer; Small Cell Lung Cancer; Ovarian Epithelial Cancer; Carcinoma Breast Stage IV; Hormone-refractory Prostate Cancer; Pancreatic Ductal Adenocarcinoma; Head and Neck Cancers- Squamous Cell; Renal Cell Cancer; Urinary Bladder Neoplasms; Cervical Cancer; Endometrial Cancer; Follicular Thyroid Cancer; Glioblastoma Multiforme

  19. HDAC6 promotes cell proliferation and confers resistance to gefitinib in lung adenocarcinoma.

    PubMed

    Wang, Zhihao; Tang, Fang; Hu, Pengchao; Wang, Ying; Gong, Jun; Sun, Shaoxing; Xie, Conghua

    2016-07-01

    Histone deacetylases (HDACs) are promising targets for cancer therapy, and first-generation HDAC inhibitors are currently in clinical trials for the treatment of cancer patients. HDAC6, which is a key regulator of many signaling pathways that are linked to cancer, has recently emerged as an attractive target for the treatment of cancer. In the present study, HDAC6 was found to be overexpressed in lung adenocarcinoma cell lines and was negatively correlated with the prognosis of patients with lung adenocarcinoma. Overexpression of HDAC6 promoted the proliferation of lung adenocarcinoma cells in a deacetylase activity-dependent manner. HDAC6 overexpression conferred resistance to gefitinib via the stabilization of epidermal growth factor receptor (EGFR). The inhibition of HDAC6 by CAY10603, a potent and selective inhibitor of HDAC6, inhibited the proliferation of lung adenocarcinoma cells and induced apoptosis. CAY10603 downregulated the levels of EGFR protein, which in turn inhibited activation of the EGFR signaling pathway. Moreover, CAY10603 synergized with gefitinib to induce apoptosis of the lung adenocarcinoma cell lines via the destabilization of EGFR. Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of lung adenocarcinoma. PMID:27221381

  20. Epithelial in vitro cell systems in carcinogenesis studies

    SciTech Connect

    Borek, C.

    1983-01-01

    The development of epithelial cells systems to study oncogenic transformation has presented a major challenge in the field of carcinogenesis. Because there exists in man a preponderance of carcinomas over sarcomas, the importance of studying oncogenic transformation in epithelial cells is of great relevance to human disease. The difficulty lies in the fact that different tissues contain epithelial cells with singular differentiated characteristics, which must be defined to assert the different nature of the cells being used. Liver cells in culture are a case in point. By careful maintenance and optimal culture conditions, one can maintain many of the differentiated characteristics of the cells for prolonged periods of time.

  1. microRNA-25 Inhibits Cell Apoptosis of Human Gastric Adenocarcinoma Cell Line AGS via Regulating CCNE1 and MYC

    PubMed Central

    Zhang, Yong; Peng, Zheng; Zhao, Yunshan; Chen, Lin

    2016-01-01

    Background Gastric carcinoma is the second leading cause of cancer death. microRNAs play vital roles in regulating expression of related oncogenes. microRNA-25 (miR-25) has been found to be up-regulated in gastric carcinoma. However, its roles in affecting cell apoptosis of gastric carcinoma and the related mechanism remain elusive. This study aimed to uncover the influences of miR-25 on gastric carcinoma cell apoptosis and the possible functional mechanisms involved. Material/Methods Human gastric adenocarcinoma cell line AGS was used and transfected with lentivirus containing miR-25-specifc inhibitor sponge or expression vector to analyze the effects of miR-25. Results miR-25 had higher expression in AGS than in human gastric epithelial cell line GES-1 (P<0.01). Inhibition of miR-25 by its sponge in AGS cells resulted in suppressed cell viability (P<0.01) and promoted cell apoptosis (P<0.01), while overexpression of miR-25 abrogated these effects (P<0.01 and P<0.05), indicating that miR-25 can promote cell viability and inhibit cell apoptosis in AGS cells. Expression analysis of related factors by Western blot showed that inhibiting miR-25 led to the up-regulation of F-box and WD repeat domain-containing 7 (FBXW7, P<0.01) and the down-regulation of FBXW7 substrates, cyclin E1 (CCNE1, P<0.01), and v-myc avian myelocytomatosis viral oncogene homolog (MYC, P<0.001). Conclusions These results indicate that miR-25 has anti-apoptosis roles in AGS cells, possibly via inhibiting FBXW7 and thus promoting oncogenes, such as CCNE1 and MYC. This study provides basic evidence for using miR-25 as a possible therapeutic target in treating gastric carcinoma. PMID:27120728

  2. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling.

    PubMed

    Kamimoto, Kenji; Kaneko, Kota; Kok, Cindy Yuet-Yin; Okada, Hajime; Miyajima, Atsushi; Itoh, Tohru

    2016-01-01

    Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. PMID:27431614

  3. Comparative evaluation of viral, nonviral and physical methods of gene delivery to normal and transformed lung epithelial cells.

    PubMed

    Gilbert, Jennifer L; Purcell, James; Strappe, Padraig; McCabe, Matthew; O'Brien, Timothy; O'Dea, Shirley

    2008-09-01

    Few studies have directly compared the efficiencies of gene delivery methods that target normal lung cells versus lung tumor cells. We report the first study directly comparing the efficiency and toxicity of viral [adeno-associated virus (AAV2, 5, 6) and lentivirus], nonviral (Effectene, SuperFect and Lipofectamine 2000) and physical [particle-mediated gene transfer (PMGT)] methods of gene delivery in normal mouse lung cells and in mouse adenocarcinoma cells. Lentivirus pseudotyped with the vesicular stomatitis virus glycoprotein was the most efficient gene transfer method for normal mouse airway epithelial cells [25.95 (+/-3.57) %] whereas AAV6 was most efficient for MLE-12 adenocarcinoma cells [68.2 (+/-3.2) %]. PMGT was more efficient in normal mouse airway epithelial cells than AAV5, Lipofectamine 2000 and SuperFect. AAV5 displayed the lowest transfection efficiency at less than 10% in both cell types. PMGT was the only method that resulted in significant toxicity. In summary, for all of the gene delivery methods examined here, lung tumor cells were transfected more easily than normal lung cells. Lipofectamine 2000 is potentially highly selective for lung tumor cells whereas AAV6 and lentivirus vesicular stomatitis virus glycoprotein may be useful for gene delivery strategies that require targeting of both normal and tumor cells. PMID:18690089

  4. Isolation of Cancer Epithelial Cells from Mouse Mammary Tumors

    PubMed Central

    Johnson, Sara; Chen, Hexin; Lo, Pang-Kuo

    2016-01-01

    The isolation of cancer epithelial cells from mouse mammary tumor is accomplished by digestion of the solid tumor. Red blood cells and other contaminates are removed using several washing techniques such that primary epithelial cells can further enriched. This procedure yields primary tumor cells that can be used for in vitro tissue culture, fluorescence-activated cell sorting (FACS) and a wide variety of other experiments (Lo et al., 2012).

  5. Small colonic microsatellite unstable adenocarcinomas and high-grade epithelial dysplasias in sessile serrated adenoma polypectomy specimens: a study of eight cases.

    PubMed

    Goldstein, Neal S

    2006-01-01

    Eight sessile serrated adenoma (SSA), right colon polypectomies with focal invasive adenocarcinoma or high-grade dysplasia were studied to identify features indicating a high risk of transformation and characterize the morphologic features of serrated dysplasia; 6 cases had invasive adenocarcinoma; 2 were high-grade dysplasia. All 8 were microsatellite unstable-high and had absent hMLH1 nuclear immunoreactivity. The mean patient age at polypectomy was 69.5 years (range, 57.1-83.9 years). Mean polyp maximum dimension was 8.5 mm (range, 6-12 mm). The majority of each polyp was nonmalignant SSA. All 8 cases had an abrupt transition from benign to high-grade in situ or invasive malignancy. In the 6 invasive adenocarcinomas, the neoplasm extended directly down into the submucosa without lateral intramucosal spread. The mean maximum dimension of the invasive adenocarcinoma was 2.9 mm (range, 2-4 mm). All 8 cases had high-grade serrated-type dysplasia. The nonmalignant SSAs had marked expansion of the proliferative zone. Crypts adjacent to malignancy had moderately enlarged nuclei, irregular nuclear membranes, and overly prominent nucleoli. SSA crypts were lined by a variety of gastric-type cells; no cell type predominated. Foci of adjacent crypts had similar cytologic features. Small proximal SSAs can transform into adenocarcinoma without a component of adenomatous dysplasia. PMID:16483002

  6. Multi-functionality and plasticity characterize epithelial cells in Hydra

    PubMed Central

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  7. Multi-functionality and plasticity characterize epithelial cells in Hydra.

    PubMed

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  8. Sonic Hedgehog regulates thymic epithelial cell differentiation

    PubMed Central

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L.; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-01-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. PMID

  9. Sonic Hedgehog regulates thymic epithelial cell differentiation.

    PubMed

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-04-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. PMID

  10. Mesotheliomas show higher hyaluronan positivity around tumor cells than metastatic pulmonary adenocarcinomas.

    PubMed

    Törrönen, Kari; Soini, Ylermi; Pääkkö, Paavo; Parkkinen, Jyrki; Sironen, Reijo; Rilla, Kirsi

    2016-10-01

    Hyaluronan is a unique glycosaminoglycan of the extracellular matrix, abundant in normal connective tissues but highly increased in many pathological conditions like cancer. Mesothelioma, one of the most malignant cancer types, is associated with high content of hyaluronan, with elevated levels of hyaluronan in pleural effusions and serum of the patients. Metastatic lung adenocarcinomas are typically less aggressive and have a better prognosis as compared to mesotheliomas, a reason why it is highly important to find reliable tools to differentiate these cancer types. The main purpose of this study was to evaluate the amount of hyaluronan, hyaluronan producing synthases (HAS's) and hyaluronan receptor CD44, in mesothelioma and metastatic lung adenocarcinomas. Furthermore, we wanted to clarify the role of hyaluronan, CD44 and HAS's as putative markers for differentiating malignant mesothelioma from metastatic lung adenocarcinomas. The main finding of this study was that mesotheliomas are significantly more positive for hyaluronan staining than metastatic adenocarcinomas. Unexceptionally, a trend of CD44 positivity of stromal cells was higher in adenocarcinomas as compared to mesotheliomas. However, no statistically significant differences were found between the staining of any of the HAS isoenzymes either in tumor cells or stromal cells of different groups of cases. The results show that there are significant differences in hyaluronan content between metastatic lung adenocarcinomas and mesotheliomas. However, as previous studies have suggested, hyaluronan alone is not a sufficient independent marker for diagnostic differentiation of these cancer types, but could be utilized as a combination together with other specific markers. PMID:26912058

  11. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    NASA Astrophysics Data System (ADS)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  12. Collective Epithelial Migration and Cell Rearrangements Drive Mammary Branching Morphogenesis

    PubMed Central

    Ewald, Andrew J.; Brenot, Audrey; Duong, Myhanh; Chan, Bianca S.; Werb, Zena

    2009-01-01

    Summary Epithelial organs are built through the movement of groups of interconnected cells. We observed cells in elongating mammary ducts reorganize into a multilayered epithelium, migrate collectively, and rearrange dynamically, all without forming leading cellular extensions. Duct initiation required proliferation, Rac, and myosin light-chain kinase, whereas repolarization to a bilayer depended on Rho kinase. We observed that branching morphogenesis results from the active motility of both luminal and myoepithelial cells. Luminal epithelial cells advanced collectively, whereas myoepithelial cells appeared to restrain elongating ducts. Significantly, we observed that normal epithelium and neoplastic hyperplasias are organized similarly during morphogenesis, suggesting common mechanisms of epithelial growth. PMID:18410732

  13. Observing planar cell polarity in multiciliated mouse airway epithelial cells

    PubMed Central

    Vladar, Eszter K.; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D.

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type. PMID:25837385

  14. Technical note: Isolation and characterization of porcine mammary epithelial cells.

    PubMed

    Dahanayaka, S; Rezaei, R; Porter, W W; Johnson, G A; Burghardt, R C; Bazer, F W; Hou, Y Q; Wu, Z L; Wu, G

    2015-11-01

    Within the mammary gland, functional synthesis of milk is performed by its epithelial (alveolar) cells. The availability of a stable mammary epithelial cell line is essential for biochemical studies to elucidate cellular and molecular mechanisms responsible for nutritional regulation of lactation. Therefore, porcine mammary epithelial cells (PMEC) were isolated from mammary glands of a 9-mo-old nonpregnant and nonlactating gilt and cultured to establish a nonimmortalized cell line. These cells were characterized by expression of cytokeratin-18 (an intermediate filament specific for epithelial cells), β-casein (a specific marker for mammary epithelial cells), and α-lactalbumin. In culture, the PMEC doubled in number every 24 h and maintained a cobblestone morphology, typical for cultured epithelial cells, for at least 15 passages. Addition of 0.2 to 2 μg/mL prolactin to culture medium for 3 d induced the production of β-casein and α-lactalbumin by PMEC in a dose-dependent manner. Thus, we have successfully developed a useful PMEC line for future studies of cellular and molecular regulation of milk synthesis by mammary epithelial cells of the sow. PMID:26641038

  15. Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration.

    PubMed

    Le Guen, Ludovic; Marchal, Stéphane; Faure, Sandrine; de Santa Barbara, Pascal

    2015-10-01

    The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior-posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal-epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal-epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal-epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration. PMID:26126787

  16. Cell Chirality Induces Collective Cell Migration in Epithelial Sheets

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Shibata, Tatsuo

    2015-10-01

    During early development, epithelial cells form a monolayer sheet and migrate in a uniform direction. Here, we address how this collective migration can occur without breaking the cell-to-cell attachments. Repeated contraction and expansion of the cell-to-cell interfaces enables the cells to rearrange their positions autonomously within the sheet. We show that when the interface tension is strengthened in a direction that is tilted from the body axis, cell rearrangements occur in such a way that unidirectional movement is induced. We use a vertex model to demonstrate that such anisotropic tension can generate the unidirectional motion of cell sheets. Our results suggest that cell chirality facilitates collective cell migration during tissue morphogenesis.

  17. Fungal glycan interactions with epithelial cells in allergic airway disease

    PubMed Central

    Roy, René M.; Klein, Bruce S.

    2014-01-01

    Human exposure to fungi results in a wide range of health outcomes, from invasive disease or allergy to immune tolerance. Inhaled fungi contact airway epithelial cells as an early event, and this host:fungal interaction can shape the eventual immunological outcome. Emerging evidence points to exposure to fungal cell wall carbohydrates in the development of allergic airway disease. Herein, we describe determinants of fungal allergenicity, and review the responses of airway epithelial cells to fungal carbohydrates. A greater understanding of the recognition of and response to fungal carbohydrates by airway epithelial cells may lead to the development of targeted therapies that ameliorate allergic airway disease. PMID:23602359

  18. Quantitative Assessment of Cytosolic Salmonella in Epithelial Cells

    PubMed Central

    Knodler, Leigh A.; Nair, Vinod; Steele-Mortimer, Olivia

    2014-01-01

    Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium) inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV). We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1), but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol. PMID:24400108

  19. Lung epithelial cells modulate the inflammatory response of alveolar macrophages.

    PubMed

    Rubovitch, Vardit; Gershnabel, Shoham; Kalina, Moshe

    2007-12-01

    The goal of this study was to examine the effect of alveolar epithelial cells on inflammatory responses in macrophages. Lung epithelial cells (either rat RLE-6TN or human A549 cells) reduced LPS-induced NO production in alveolar macrophages (AM) in a contact-independent mechanism. The inhibitory effect of the epithelial cells was present already at the transcriptional level: LPS-induced inducible NO synthase (iNOS) expression was significantly smaller. Surfactant protein A (SP-A)-induced NO production by alveolar macrophages was also reduced in the presence of A549 cells, though, by a different kinetics. LPS-induced interleukin-6 (IL-6) production (another inflammatory pathway) by alveolar macrophages was also reduced in the presence of RLE-6TN cells. These data suggest a role for lung epithelial cells in the complicated modulation of inflammatory processes, and provide an insight into the mechanism underlying. PMID:17851743

  20. Detection of Circulating Pancreas Epithelial Cells in Patients with Pancreatic Cystic Lesions

    PubMed Central

    Rhim, Andrew D.; Thege, Fredrik I.; Santana, Steven M.; Lannin, Timothy B.; Saha, Trisha N.; Tsai, Shannon; Maggs, Lara R.; Kochman, Michael L.; Ginsberg, Gregory G.; Lieb, John G.; Chandrasekhara, Vinay; Drebin, Jeffrey A.; Ahmad, Nuzhat; Yang, Yu-Xiao; Kirby, Brian J.; Stanger, Ben Z.

    2014-01-01

    Hematogenous dissemination is thought to be a late event in cancer progression. We showed recently that pancreas cells can be detected in the bloodstream before tumor formation, in a genetic model of pancreatic ductal adenocarcinoma (PDAC). To confirm these findings in humans, we used microfluidic geometrically enhanced immunocapture to detect circulating pancreas epithelial cells (CECs) in patient blood samples. We captured >3 CECs/ml in 7 of 21 (33%) of patients with cystic lesions and no clinical diagnosis of cancer (Sendai criteria negative), 8 of 11 (73%) with PDAC, and in 0 of 19 patients without cysts or cancer (controls). These findings indicate that cancer cells are present in the circulation of patients before tumors develop, which might be used in risk assessment. PMID:24333829

  1. Gene expression profiling of cancer stem cell in human lung adenocarcinoma A549 cells

    PubMed Central

    Seo, Dong-Cheol; Sung, Ji-Min; Cho, Hee-Jung; Yi, Hee; Seo, Kun-Ho; Choi, In-Soo; Kim, Dong-Ku; Kim, Jin-Suk; El-Aty AM, Abd; Shin, Ho-Chul

    2007-01-01

    Background The studies on cancer-stem-cells (CSCs) have attracted so much attention in recent years as possible therapeutic implications. This study was carried out to investigate the gene expression profile of CSCs in human lung adenocarcinoma A549 cells. Results We isolated CSCs from A549 cell line of which side population (SP) phenotype revealed several stem cell properties. After staining the cell line with Hoechst 33342 dye, the SP and non-side population (non-SP) cells were sorted using flow cytometric analysis. The mRNA expression profiles were measured using an Affymetrix GeneChip® oligonucleotide array. Among the sixty one differentially expressed genes, the twelve genes inclusive three poor prognostic genes; Aldo-keto reductase family 1, member C1/C2 (AKR1C1/C2), Transmembrane 4 L six family member 1 nuclear receptor (TM4SF1), and Nuclear receptor subfamily 0, group B, member 1 (NR0B1) were significantly up-regulated in SP compared to non-SP cells. Conclusion This is the first report indicating the differences of gene expression pattern between SP and non-SP cells in A549 cells. We suggest that the up-regulations of the genes AKR1C1/C2, TM4SF1 and NR0B1 in SP of human adenocarcinoma A549 cells could be a target of poor prognosis in anti-cancer therapy. PMID:18034892

  2. Epithelial cells as alternative human biomatrices for comet assay

    PubMed Central

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases. PMID:25506353

  3. Cytotoxic effects of four aescin types on human colon adenocarcinoma cell lines.

    PubMed

    Seweryn, Ewa; Gleńsk, Michal; Sroda-Pomianek, Kamila; Ceremuga, Ireneusz; Wlodarczyk, Maciej; Gamian, Andrzej

    2014-03-01

    Four types of aescin that are available on the pharmaceutical market, beta-aescin crystalline, beta-aescin amorphous, beta-aescin sodium and aescin polysulfate, have been analyzed for their cytotoxic effects on human colon adenocarcinoma (LoVo) and doxorubicin-resistant human colon adenocarcinoma cell lines (LoVo/Dx). Their cytotoxic activities were evaluated by sulforhodamine B (SRB) and methyl tetrazolium (MTT) assays. All four types of aescin exerted strong dose-dependent cytotoxicity to LoVo and, to a lesser degree, LoVo/Dx cell lines. The IC50 value for the LoVo/Dx cell line was higher, but still dose-dependent. Results from both assays demonstrated that p-aescin crystalline has the most cytotoxic activity toward human colon adenocarcinoma cell lines. PMID:24689224

  4. Intrinsic epithelial cells repair the kidney after injury.

    PubMed

    Humphreys, Benjamin D; Valerius, M Todd; Kobayashi, Akio; Mugford, Joshua W; Soeung, Savuth; Duffield, Jeremy S; McMahon, Andrew P; Bonventre, Joseph V

    2008-03-01

    Understanding the mechanisms of nephron repair is critical for the design of new therapeutic approaches to treat kidney disease. The kidney can repair after even a severe insult, but whether adult stem or progenitor cells contribute to epithelial renewal after injury and the cellular origin of regenerating cells remain controversial. Using genetic fate-mapping techniques, we generated transgenic mice in which 94%-95% of tubular epithelial cells, but no interstitial cells, were labeled with either beta-galactosidase (lacZ) or red fluorescent protein (RFP). Two days after ischemia-reperfusion injury (IRI), 50.5% of outer medullary epithelial cells coexpress Ki67 and RFP, indicating that differentiated epithelial cells that survived injury undergo proliferative expansion. After repair was complete, 66.9% of epithelial cells had incorporated BrdU, compared to only 3.5% of cells in the uninjured kidney. Despite this extensive cell proliferation, no dilution of either cell-fate marker was observed after repair. These results indicate that regeneration by surviving tubular epithelial cells is the predominant mechanism of repair after ischemic tubular injury in the adult mammalian kidney. PMID:18371453

  5. Clinical implications of epithelial cell plasticity in cancer progression.

    PubMed

    Aparicio, Luis A; Blanco, Moisés; Castosa, Raquel; Concha, Ángel; Valladares, Manuel; Calvo, Lourdes; Figueroa, Angélica

    2015-09-28

    In the last few years, the role of epithelial cell plasticity in cancer biology research has gained increasing attention. This concept refers to the ability of the epithelial cells to dynamically switch between different phenotypic cellular states. This programme is particularly relevant during the epithelial-to-mesenchymal transition (EMT) in cancer progression. During colonization, epithelial cells first activate the EMT programme to disseminate from a primary tumour to reach a distant tissue site. During this process, cells are transported into the circulation and are able to escape the immune system of the host. Then, a reverse process called mesenchymal-to-epithelial transition (MET) occurs on cells that settle in the distant organs. Although epithelial cell plasticity has an important impact on tumour biology, the clinical relevance of this concept remains to be recapitulated. In this review, we will update the current state of epithelial cell plasticity in cancer progression and its clinical implications for the design of therapeutic strategies, the acquisition of multidrug resistance, and future perspectives for the management of cancer patients. PMID:26099173

  6. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    PubMed

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  7. Clear cell adenocarcinoma of the renal pelvis: an extremely rare neoplasm of the upper urinary tract.

    PubMed

    Liu, K-W; Lin, V C-H; Chang, I-W

    2013-12-01

    Clear cell adenocarcinoma (CCA) in the urinary tract is a rare neoplasm morphologically identical to the Müllerian counterpart. Clear cell adenocarcinoma is extremely rare in the upper urinary tract. We present a case with CCA of the renal pelvis. Microscopically, the tumor exhibited exophytic growth with predominantly tubulocystic structures, as well as solid and papillary patterns. The neoplastic cells were cuboidal with clear to pale eosinophilic cytoplasm and abundant intracellular and extracellular eosinophilic hyaline globules. By immunohistochemically, the tumor was labeled by cytokeratins and hepatocyte nuclear factor-1β. The patient was still alive without evidence of recurrence in the follow-up period of nineteen months after diagnosis. PMID:24375047

  8. Sodium selectivity of Reissner's membrane epithelial cells

    PubMed Central

    2011-01-01

    Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC), which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196), RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b) nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3). By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala media. PMID:21284860

  9. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells.

    PubMed

    Kayastha, Forum; Johar, Kaid; Gajjar, Devarshi; Arora, Anshul; Madhu, Hardik; Ganatra, Darshini; Vasavada, Abhay

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO. PMID:25963259

  10. Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

    2014-01-01

    Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

  11. Sepsis-associated AKI: epithelial cell dysfunction.

    PubMed

    Emlet, David R; Shaw, Andrew D; Kellum, John A

    2015-01-01

    Acute kidney injury (AKI) occurs frequently in critically ill patients with sepsis, in whom it doubles the mortality rate and half of the survivors suffer permanent kidney damage or chronic kidney disease. Failure in the development of viable therapies has prompted studies to better elucidate the cellular and molecular etiologies of AKI, which have generated novel theories and paradigms for the mechanisms of this disease. These studies have shown multifaceted origins and elements of AKI that, in addition to/in lieu of ischemia, include the generation of damage-associated molecular patterns and pathogen-associated molecular patterns, the inflammatory response, humoral and cellular immune activation, perturbation of microvascular flow and oxidative stress, bioenergetic alterations, cell-cycle alterations, and cellular de-differentiation/re-differentiation. It is becoming clear that a major etiologic effector of all these inputs is the renal tubule epithelial cell (RTEC). This review discusses these elements and their effects on RTECs, and reviews the current hypotheses of how these effects may determine the fate of RTECs during sepsis-induced AKI. PMID:25795502

  12. Genetics and epithelial cell dysfunction in cystic fibrosis

    SciTech Connect

    Riordan, J.R.; Buchwald, M.

    1987-01-01

    This book examines the advances being made in the study of the physiology, cell biology, and molecular genetics of cystic fibrosis. Emphasis is placed on various areas of research that involve epithelial cells (e.g., the CF-specific phenotypes exhibited by epithelial cells, abnormalities in epithelium ion transport, chloride channel regulation in CF epithelial.) Coverage is presented on the current status of CF, including data on the incidence of the disease, its mode of inheritance, chromosomal localization, genetic heterogeneity, and screening and management.

  13. Alignment of cell division axes in directed epithelial cell migration

    NASA Astrophysics Data System (ADS)

    Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens

    2014-11-01

    Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.

  14. Activity and intracellular location of estrogen receptors α and β in human bronchial epithelial cells

    PubMed Central

    Ivanova, Margarita M.; Mazhawidza, Williard; Dougherty, Susan M.; Minna, John D.; Klinge, Carolyn M.

    2009-01-01

    Gender differences in lung disease and cancer are well-established. We reported estrogenic transcriptional responses in lung adenocarcinoma cells from females but not males despite similar estrogen receptor (ER) expression. Here we tested the hypothesis that normal human bronchial epithelial cells (HBECs) show gender-independent estrogenic responses. We report that a small sample of HBECs express ~twice as much ERβ as ERα.ERα and ERβ were located in the cytoplasm, nucleus, and mitochondria. In contrast to lung adenocarcinoma cells, estradiol (E2) induced estrogen response element (ERE)-mediated luciferase reporter activity in transiently transfected HBECs regardless of donor gender. Overexpression of ERα-VP16 increased ERE-mediated transcriptional activity in all HBECs. E2 increased and 4-hydroxytamoxifen and ICI 182,780 inhibited HBEC proliferation and cyclin D1 expression in a cell line-specific manner. In conclusion, the response of HBECs to ER ligands is gender-independent suggesting that estrogenic sensitivity may be acquired during lung carcinogenesis. PMID:19433257

  15. Cancer-initiating cells derived from human rectal adenocarcinoma tissues carry mesenchymal phenotypes and resist drug therapies.

    PubMed

    Fan, C-W; Chen, T; Shang, Y-N; Gu, Y-Z; Zhang, S-L; Lu, R; OuYang, S-R; Zhou, X; Li, Y; Meng, W-T; Hu, J-K; Lu, Y; Sun, X-F; Bu, H; Zhou, Z-G; Mo, X-M

    2013-01-01

    Accumulating evidence indicates that cancer-initiating cells (CICs) are responsible for cancer initiation, relapse, and metastasis. Colorectal carcinoma (CRC) is typically classified into proximal colon, distal colon, and rectal cancer. The gradual changes in CRC molecular features within the bowel may have considerable implications in colon and rectal CICs. Unfortunately, limited information is available on CICs derived from rectal cancer, although colon CICs have been described. Here we identified rectal CICs (R-CICs) that possess differentiation potential in tumors derived from patients with rectal adenocarcinoma. The R-CICs carried both CD44 and CD54 surface markers, while R-CICs and their immediate progenies carried potential epithelial-mesenchymal transition characteristics. These R-CICs generated tumors similar to their tumor of origin when injected into immunodeficient mice, differentiated into rectal epithelial cells in vitro, and were capable of self-renewal both in vitro and in vivo. More importantly, subpopulations of R-CICs resisted both 5-fluorouracil/calcium folinate/oxaliplatin (FolFox) and cetuximab treatment, which are the most common therapeutic regimens used for patients with advanced or metastatic rectal cancer. Thus, the identification, expansion, and properties of R-CICs provide an ideal cellular model to further investigate tumor progression and determine therapeutic resistance in these patients. PMID:24091671

  16. Microfluidic approaches for epithelial cell layer culture and characterisation

    PubMed Central

    Thuenauer, Roland; Rodriguez-Boulan, Enrique; Römer, Winfried

    2014-01-01

    In higher eukaryotes, epithelial cell layers line most body cavities and form selective barriers that regulate the exchange of solutes between compartments. In order to fulfil these functions, the cells assume a polarised architecture and maintain two distinct plasma membrane domains, the apical domain facing the lumen and the basolateral domain facing other cells and the extracellular matrix. Microfluidic biochips offer the unique opportunity to establish novel in vitro models of epithelia in which the in vivo microenvironment of epithelial cells is precisely reconstituted. In addition, analytical tools to monitor biologically relevant parameters can be directly integrated on-chip. In this review we summarise recently developed biochip designs for culturing epithelial cell layers. Since endothelial cell layers, which line blood vessels, have similar barrier functions and polar organisation as epithelial cell layers, we also discuss biochips for culturing endothelial cell layers. Furthermore, we review approaches to integrate tools to analyse and manipulate epithelia and endothelia in microfluidic biochips, including methods to perform electrical impedance spectroscopy, methods to detect substances undergoing trans-epithelial transport via fluorescence, spectrophotometry, and mass spectrometry, techniques to mechanically stimulate cells via stretching and fluid flow-induced shear stress, and methods to carry out high-resolution imaging of vesicular trafficking with light microscopy. Taken together, this versatile microfluidic toolbox enables novel experimental approaches to characterise epithelial monolayers. PMID:24668405

  17. Microfluidic approaches for epithelial cell layer culture and characterisation.

    PubMed

    Thuenauer, Roland; Rodriguez-Boulan, Enrique; Römer, Winfried

    2014-07-01

    In higher eukaryotes, epithelial cell layers line most body cavities and form selective barriers that regulate the exchange of solutes between compartments. In order to fulfil these functions, the cells assume a polarised architecture and maintain two distinct plasma membrane domains, the apical domain facing the lumen and the basolateral domain facing other cells and the extracellular matrix. Microfluidic biochips offer the unique opportunity to establish novel in vitro models of epithelia in which the in vivo microenvironment of epithelial cells is precisely reconstituted. In addition, analytical tools to monitor biologically relevant parameters can be directly integrated on-chip. In this review we summarise recently developed biochip designs for culturing epithelial cell layers. Since endothelial cell layers, which line blood vessels, have similar barrier functions and polar organisation as epithelial cell layers, we also discuss biochips for culturing endothelial cell layers. Furthermore, we review approaches to integrate tools to analyse and manipulate epithelia and endothelia in microfluidic biochips; including methods to perform electrical impedance spectroscopy; methods to detect substances undergoing trans-epithelial transport via fluorescence, spectrophotometry, and mass spectrometry; techniques to mechanically stimulate cells via stretching and fluid flow-induced shear stress; and methods to carry out high-resolution imaging of vesicular trafficking using light microscopy. Taken together, this versatile microfluidic toolbox enables novel experimental approaches to characterise epithelial monolayers. PMID:24668405

  18. miR-141 and miR-200c as Markers of Overall Survival in Early Stage Non-Small Cell Lung Cancer Adenocarcinoma

    PubMed Central

    Campayo, Marc; Viñolas, Nuria; Marrades, Ramon M.; Cordeiro, Anna; Ruíz-Martínez, Marc; Santasusagna, Sandra; Molins, Laureano; Ramirez, Josep; Monzó, Mariano

    2014-01-01

    Background Several treatments in non-small cell lung cancer (NSCLC) are histology-dependent, and the need for histology-related markers is increasing. MicroRNAs (miRNAs) are promising molecular markers in multiple cancers and show differences in expression depending on histological subtype. The miRNA family miR-200 has been associated with the regulation of epithelial-mesenchymal (EMT)/mesenchymal-epithelial transition (MET). EMT involves profound phenotypic changes that include the loss of cell-cell adhesion, the loss of cell polarity, and the acquisition of migratory and invasive properties that facilitates metastasis. A dual role for the miR-200 family in the prognosis of several tumors has been related to tumor cell origin. However, the prognostic role and function of miR-200 family in early-stage NSCLC adenocarcinoma and squamous cell carcinoma (SCC) have not been well established. Methods miRNA expression was determined using TaqMan assays in 155 tumors from resected NSCLC patients. Functional studies were conducted in three NSCLC cell lines: H23, A-549 and HCC-44. Results High miR-200c expression was associated with shorter overall survival (OS) in the entire cohort (p = 0.024). High miR-200c (p = 0.0004) and miR-141 (p = 0.009) expression correlated with shorter OS in adenocarcinoma – but not in SCC. In the multivariate analysis, a risk score based on miR-141 and miR-200c expression emerged as an independent prognostic factor for OS in the entire cohort (OR, 2.787; p = 0.033) and in adenocarcinoma patients (OR, 10.649; p = 0.002). Functional analyses showed that miR-200c, was related to mesenchymal-epithelial transition (MET) and affected cell migration and E-cadherin levels, while overexpression of miR-141 reduced KLF6 protein levels and produced an increase of secretion of VEGFA in vitro (H23, p = 0.04; A-549, p = 0.03; HCC-44, p = 0.02) and was associated with higher blood microvessel density in patient tumor samples (p

  19. Molecular responses of rat tracheal epithelial cells to transmembrane pressure.

    PubMed

    Ressler, B; Lee, R T; Randell, S H; Drazen, J M; Kamm, R D

    2000-06-01

    Smooth muscle constriction in asthma causes the airway to buckle into a rosette pattern, folding the epithelium into deep crevasses. The epithelial cells in these folds are pushed up against each other and thereby experience compressive stresses. To study the epithelial cell response to compressive stress, we subjected primary cultures of rat tracheal epithelial cells to constant elevated pressures on their apical surface (i.e., a transmembrane pressure) and examined changes in the expression of genes that are important for extracellular matrix production and maintenance of smooth muscle activation. Northern blot analysis of RNA extracted from cells subjected to transmembrane pressure showed induction of early growth response-1 (Egr-1), endothelin-1, and transforming growth factor-beta1 in a pressure-dependent and time-dependent manner. Increases in Egr-1 protein were detected by immunohistochemistry. Our results demonstrate that airway epithelial cells respond rapidly to compressive stresses. Potential transduction mechanisms of transmembrane pressure were also investigated. PMID:10835333

  20. cis-acting elements that confer lung epithelial cell expression of the CC10 gene.

    PubMed

    Stripp, B R; Sawaya, P L; Luse, D S; Wikenheiser, K A; Wert, S E; Huffman, J A; Lattier, D L; Singh, G; Katyal, S L; Whitsett, J A

    1992-07-25

    To define cis-acting genetic elements responsible for cell-specific transcriptional regulation of the CC10 gene, DNA sequences spanning nucleotides -2338 to +49 of the rat CC10 gene were linked to a reporter gene coding for chloramphenicol acetyltransferase (CAT). In transient expression assays, CC10 sequences were capable of restricting CAT expression to a human lung adenocarcinoma cell line similar to pulmonary Clara cells. Transgenic mice harboring the hybrid RtCC10-CAT construct expressed high levels of CAT activity specifically within protein extracts of lung and trachea. Transcripts for the CAT reporter gene colocalized with those for the endogenous murine CC10 gene within the airways of transgenic mice. Functional analysis of deletion mutants identified stimulatory, inhibitory, and cell type-specific transcriptional regulatory elements. The results of gel retention and DNaseI protection assays suggest that a transcriptional stimulatory region located between -320 and -175, and a cell type-specific regulatory element located between -175 and +49, result from a series of protein-DNA interactions occurring at -220 to -205 and -128 to -86, respectively. Lung epithelial specific transcriptional regulatory elements described herein will be useful for expression of chimeric genes within epithelial cells lining the trachea, bronchi, and bronchioles of mice. PMID:1634515

  1. miR-873 induces lung adenocarcinoma cell proliferation and migration by targeting SRCIN1

    PubMed Central

    Gao, Yushun; Xue, Qi; Wang, Dali; Du, Minjun; Zhang, Yanjiao; Gao, Shugeng

    2015-01-01

    microRNAs (miRNAs) are endogenously expressed, conserved and small noncoding RNA that regulate gene expression by the post-transcriptional level. In this study, we aim to examine the role of miR-873 in lung adenocarcinoma. We found that the expression of miR-873 was upregulated in four lung adenocarcinoma cell lines and tissues. In addition, the expression levels of SRCIN1 were inversely correlated with the expression levels of miR-873 in lung adenocarcinoma tissues. Furthermore, SRCIN1 was confirmed asthe direct target of miR-873 by luciferase reporter assay and Western blotting. Overexpression of miR-873 promoted the proliferation and migration of lung adenocarcinoma cells, while SRCIN1 upregulation inhibited their proliferation and migration. Restoration of SRCIN1 could significantly reverse the proliferation and migration promotion imposed by miR-873. In summary, this study reveals for the first time that miR-873 increase the lung adenocarcinoma cell proliferation and migration through directly inhibiting SRCIN1 expression. PMID:26807196

  2. Alveolar Epithelial Cells Undergo Epithelial-to-Mesenchymal Transition in Response to Endoplasmic Reticulum Stress*

    PubMed Central

    Tanjore, Harikrishna; Cheng, Dong-Sheng; Degryse, Amber L.; Zoz, Donald F.; Abdolrasulnia, Rasul; Lawson, William E.; Blackwell, Timothy S.

    2011-01-01

    Expression of mutant surfactant protein C (SFTPC) results in endoplasmic reticulum (ER) stress in type II alveolar epithelial cells (AECs). AECs have been implicated as a source of lung fibroblasts via epithelial-to-mesenchymal transition (EMT); therefore, we investigated whether ER stress contributes to EMT as a possible mechanism for fibrotic remodeling. ER stress was induced by tunicamyin administration or stable expression of mutant (L188Q) SFTPC in type II AEC lines. Both tunicamycin treatment and mutant SFTPC expression induced ER stress and the unfolded protein response. With tunicamycin or mutant SFTPC expression, phase contrast imaging revealed a change to a fibroblast-like appearance. During ER stress, expression of epithelial markers E-cadherin and Zonula occludens-1 decreased while expression of mesenchymal markers S100A4 and α-smooth muscle actin increased. Following induction of ER stress, we found activation of a number of pathways, including MAPK, Smad, β-catenin, and Src kinase. Using specific inhibitors, the combination of a Smad2/3 inhibitor (SB431542) and a Src kinase inhibitor (PP2) blocked EMT with maintenance of epithelial appearance and epithelial marker expression. Similar results were noted with siRNA targeting Smad2 and Src kinase. Together, these studies reveal that induction of ER stress leads to EMT in lung epithelial cells, suggesting possible cross-talk between Smad and Src kinase pathways. Dissecting pathways involved in ER stress-induced EMT may lead to new treatment strategies to limit fibrosis. PMID:21757695

  3. Response of corneal epithelial cells to Staphylococcus aureus

    PubMed Central

    2010-01-01

    Staphylococcus aureus is a leading cause of invasive infection. It also infects wet mucosal tissues including the cornea and conjunctiva. Conflicting evidence exists on the expression of Toll-like receptors by human corneal epithelial cells. It was therefore of interest to determine how epithelial cells from this immune privileged tissue respond to S. aureus. Further, it was of interest to determine whether cytolytic toxins, with the potential to cause ion flux or potentially permit effector molecule movement across the target cell membrane, alter the response. Microarrays were used to globally assess the response of human corneal epithelial cells to S. aureus. A large increase in abundance of transcripts encoding the antimicrobial dendritic cell chemokine, CCL20, was observed. CCL20 release into the medium was detected, and this response was found to be largely TLR2 and NOD2 independent. Corneal epithelial cells also respond to S. aureus by increasing the intracellular abundance of mRNA for inflammatory mediators, transcription factors, and genes related to MAP kinase pathways, in ways similar to other cell types. The corneal epithelial cell response was surprisingly unaffected by toxin exposure. Toxin exposure did, however, induce a stress response. Although model toxigenic and non-toxigenic strains of S. aureus were employed in the present study, the results obtained were strikingly similar to those reported for stimulation of vaginal epithelial cells by clinical toxic shock toxin expressing isolates, demonstrating that the initial epithelial cellular responses to S. aureus are largely independent of strain as well as epithelial cell tissue source. PMID:21178447

  4. Flow Cytometry Analysis of Thymic Epithelial Cells and Their Subpopulations.

    PubMed

    Ohigashi, Izumi; Takahama, Yousuke

    2016-01-01

    The parenchyma of the thymus is compartmentalized into the cortex and the medulla, which are constructed by cortical thymic epithelial cells (cortical TECs, cTECs) and medullary thymic epithelial cells (mTECs), respectively. cTECs and mTECs essentially and differentially regulate the development and repertoire selection of T cells. Consequently, the biology of T cell development and selection includes the study of TECs in addition to the study of developing T cells and other hematopoietic cells including dendritic cells. In this chapter, we describe the methods for flow cytometric analysis and sorting of TECs and their subpopulations, including cTECs and mTECs. PMID:26294398

  5. Doublecortin-Like Kinase 1 Is Elevated Serologically in Pancreatic Ductal Adenocarcinoma and Widely Expressed on Circulating Tumor Cells

    PubMed Central

    Weygant, Nathaniel; May, Randal; Aiello, Nicole; Rhim, Andrew; Zhao, Lichao; Zheng, Wei; Lightfoot, Stanley; Pant, Shubham; Irvan, Jeremy; Postier, Russell; Hocker, James; Hanas, Jay S.; Ali, Naushad; Sureban, Sripathi M.; An, Guangyu; Schlosser, Michael J.; Stanger, Ben; Houchen, Courtney W.

    2015-01-01

    Doublecortin-like kinase 1 (DCLK1) is a putative pancreatic stem cell marker and is upregulated in pancreatic cancer, colorectal cancer, and many other solid tumors. It marks tumor stem cells in mouse models of intestinal neoplasia. Here we sought to determine whether DCLK1 protein can be detected in the bloodstream and if its levels in archived serum samples could be quantitatively assessed in pancreatic cancer patients. DCLK1 specific ELISA, western blotting, and immunohistochemical analyses were used to determine expression levels in the serum and staining intensity in archived tumor tissues of pancreatic ductal adenocarcinoma (PDAC) patients and in pancreatic cancer mouse models. DCLK1 levels in the serum were elevated in early stages of PDAC (stages I and II) compared to healthy volunteers (normal controls). No differences were observed between stages III/IV and normal controls. In resected surgical tissues, DCLK1 expression intensity in the stromal cells was significantly higher than that observed in tumor epithelial cells. Circulating tumor cells were isolated from KPCY mice and approximately 52% of these cells were positive for Dclk1 staining. Dclk1 levels in the serum of KPC mice were also elevated. We have previously demonstrated that DCLK1 plays a potential role in regulating epithelial mesenchymal transition (EMT). Given the increasingly recognized role of EMT derived stem cells in cancer progression and metastasis, we hypothesize that DCLK1 may contribute to the metastatic process. Taken together, our results suggest that DCLK1 serum levels and DCLK1 positive circulating tumor cells should be further assessed for their potential diagnostic and prognostic significance. PMID:25723399

  6. Diversity of epithelial stem cell types in adult lung.

    PubMed

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  7. Diversity of Epithelial Stem Cell Types in Adult Lung

    PubMed Central

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C.; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  8. HIV is inactivated after transepithelial migration via adult oral epithelial cells but not fetal epithelial cells

    PubMed Central

    Tugizov, Sharof M.; Herrera, Rossana; Veluppillai, Piri; Greenspan, Deborah; Soros, Vanessa; Greene, Warner C.; Levy, Jay A.; Palefsky, Joel M.

    2010-01-01

    Oral transmission of human immunodeficiency virus (HIV) in adult populations is rare. However, HIV spread across fetal/neonatal oropharyngeal epithelia could be important in mother-to-child transmission. Analysis of HIV transmission across polarized adult and fetal oral epithelial cells revealed that HIV transmigrates through both adult and fetal cells. However, only virions that passed through the fetal cells – and not those that passed through the adult cells – remained infectious. Analysis of expression of anti-HIV innate proteins beta-defensins 2 and 3, and secretory leukocyte protease inhibitor in adult, fetal, and infant oral epithelia showed that their expression is predominantly in the adult oral epithelium. Retention of HIV infectivity after transmigration correlated inversely with the expression of these innate proteins. Inactivation of innate proteins in adult oral keratinocytes restored HIV infectivity. These data suggest that high-level innate protein expression may contribute to the resistance of the adult oral epithelium to HIV transmission. PMID:21056450

  9. Combination Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Stage III Ovarian Cancer

    ClinicalTrials.gov

    2016-03-17

    Malignant Ovarian Mixed Epithelial Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Stage III Ovarian Cancer; Undifferentiated Ovarian Carcinoma

  10. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    SciTech Connect

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  11. Parvalbumin in cortical epithelial cells of the pigeon thymus

    PubMed Central

    ATOJI, YASURO; YAMAMOTO, YOSHIO; SUZUKI, YOSHITAKA

    2000-01-01

    We examined the distribution of parvalbumin in the pigeon thymus by light and electron microscopic immunohistochemistry. Tissues were also examined by conventional electron microscopy to determine the ultrastructure of immunoreactive cells. Parvalbumin immunoreaction was located in epithelial cells of the cortex, which formed dense mesh-like structures. Parvalbumin-positive epithelial cells were classified into 2 types. The first comprised elongated cells. In these, the nucleus was spindle-shaped, oval, or triangular, with a slightly irregular contour and contained rich heterochromatin peripherally. The cytoplasm was pale and processes extended laterally or ramified among the surrounding thymocytes. This type of cell formed the majority of immunoreactive cells. The other cell type consisted of polygonal epithelial cells. The nucleus was oval with deep indentations. Euchromatin occupied a large part of the nucleus. The cytoplasm contained numerous cell organelles compared with the elongated type, in particular, electron-dense vacuoles of various sizes and often bundles of tonofilaments. Both types of epithelial cell were interconnected by desmosomes. No secretory granules were found in the cytoplasm of elongated or polygonal cells. These results indicate the presence of heterogeneous group of parvalbumin-immunoreactive epithelial cells and suggest the likelihood of different functional roles for parvalbumin in the pigeon thymus. PMID:10853953

  12. Stochastic Terminal Dynamics in Epithelial Cell Intercalation

    NASA Astrophysics Data System (ADS)

    Eule, Stephan; Metzger, Jakob; Reichl, Lars; Kong, Deqing; Zhang, Yujun; Grosshans, Joerg; Wolf, Fred

    2015-03-01

    We found that the constriction of epithelial cell contacts during intercalation in germ band extension in Drosophila embryos follows intriguingly simple quantitative laws. The mean contact length < L > follows < L > (t) ~(T - t) α , where T is the finite collapse time; the time dependent variance of contact length is proportional to the square of the mean; finally the time dependent probability density of the contact lengths remains close to Gaussian during the entire process. These observations suggest that the dynamics of contact collapse can be captured by a stochastic differential equation analytically tractable in small noise approximation. Here, we present such a model, providing an effective description of the non-equilibrium statistical mechanics of contact collapse. All model parameters are fixed by measurements of time dependent mean and variance of contact lengths. The model predicts the contact length covariance function that we obtain in closed form. The contact length covariance function closely matches experimental observations suggesting that the model well captures the dynamics of contact collapse.

  13. Characteristics and EGFP expression of porcine mammary gland epithelial cells.

    PubMed

    Zheng, Yue-Mao; He, Xiao-Ying

    2010-12-01

    The aims of this study were to establish a porcine mammary gland epithelial (PMGE) cell line, and to determine if these PMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of PMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating pig. The passage sixteen PMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in PMGE cells was tested by immunofluorescence. Βeta-Casein gene mRNA was tested for PMGE cells by RT-PCR. The results showed that PMGE cells could form dome-like structure which looked like nipple, and the cells contained different cell types. The expression of Cell keratins demonstrated the property of epithelial cells, and the PMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the PMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected porcine mammary gland epithelial (ET-PMGE) cell line. PMID:20400167

  14. Sex Differences in Estrogen Receptor Subcellular Location and Activity in Lung Adenocarcinoma Cells

    PubMed Central

    Ivanova, Margarita M.; Mazhawidza, Williard; Dougherty, Susan M.; Klinge, Carolyn M.

    2010-01-01

    The role of estrogens in the increased risk of lung adenocarcinoma in women remains uncertain. We reported that lung adenocarcinoma cell lines from female, but not male, patients with non–small cell lung cancer respond proliferatively and transcriptionally to estradiol (E2), despite equal protein expression of estrogen receptors (ER) α and β. To test the hypothesis that nuclear localization of ERα corresponds to genomic E2 activity in lung adenocarcinoma cells from females, cell fractionation, immunoblot, and confocal immunohistochemical microscopy were performed. We report for the first time that E2 increases phospho-serine-118-ERα (P-ser118-ERα) and cyclin D1 (CCND1) nuclear colocalization in H1793, but not A549 lung adenocarcinoma cells, derived from a female and male patient, respectively. ERβ was primarily in the cytoplasm and mitochondria, independent of E2 treatment, and showed no difference between H1793 and A549 cells. E2 induced higher transcription of endogenous ERα-regulated CCND1 in H1793 than in A549 cells. Likewise, higher rapid, non-genomic E2-induced extracellular signal–regulated kinase 1/2 activation was detected in H1793 compared with A549 cells, linking extracellular signal–regulated kinase activation to increased P-ser118-ERα. Furthermore, E2 increased cyclin D1 and P-ser118-ERα nuclear localization in H1793, but not A549 cells. Together, our results indicate that nuclear localization of P-ser118-ERα provides one explanation for sex-dependent differences in E2-genomic responses in lung adenocarcinoma cell lines. PMID:19556604

  15. Cell volume regulation in epithelial physiology and cancer

    PubMed Central

    Pedersen, Stine F.; Hoffmann, Else K.; Novak, Ivana

    2013-01-01

    The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume regulation both rely on the spatially and temporally coordinated function of ion channels and transporters. In healthy epithelia, specific ion channels/transporters localize to the luminal and basolateral membranes, contributing to functional epithelial polarity. In pathophysiological processes such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed. PMID:24009588

  16. Mounting Pressure in the Microenvironment: Fluids, Solids, and Cells in Pancreatic Ductal Adenocarcinoma.

    PubMed

    DuFort, Christopher C; DelGiorno, Kathleen E; Hingorani, Sunil R

    2016-06-01

    The microenvironment influences the pathogenesis of solid tumors and plays an outsized role in some. Our understanding of the stromal response to cancers, particularly pancreatic ductal adenocarcinoma, has evolved from that of host defense to tumor offense. We know that most, although not all, of the factors and processes in the microenvironment support tumor epithelial cells. This reappraisal of the roles of stromal elements has also revealed potential vulnerabilities and therapeutic opportunities to exploit. The high concentration in the stroma of the glycosaminoglycan hyaluronan, together with the large gel-fluid phase and pressures it generates, were recently identified as primary sources of treatment resistance in pancreas cancer. Whereas the relatively minor role of free interstitial fluid in the fluid mechanics and perfusion of tumors has been long appreciated, the less mobile, gel-fluid phase has been largely ignored for historical and technical reasons. The inability of classic methods of fluid pressure measurement to capture the gel-fluid phase, together with a dependence on xenograft and allograft systems that inaccurately model tumor vascular biology, has led to an undue emphasis on the role of free fluid in impeding perfusion and drug delivery and an almost complete oversight of the predominant role of the gel-fluid phase. We propose that a hyaluronan-rich, relatively immobile gel-fluid phase induces vascular collapse and hypoperfusion as a primary mechanism of treatment resistance in pancreas cancers. Similar properties may be operant in other solid tumors as well, so revisiting and characterizing fluid mechanics with modern techniques in other autochthonous cancers may be warranted. PMID:27072672

  17. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    SciTech Connect

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  18. MFGE8 regulates TGF-β-induced epithelial mesenchymal transition in endometrial epithelial cells in vitro.

    PubMed

    Yu, Liang; Hu, Rong; Sullivan, Claretta; Swanson, R James; Oehninger, Sergio; Sun, Ying-Pu; Bocca, Silvina

    2016-09-01

    This study investigated the role of milk fat globule-epidermal growth factor-factor 8 (MFGE8) in TGF-β-induced epithelial-mesenchymal transition (EMT) of endometrial epithelial cells. These were in vitro studies using human endometrial epithelial cells and mouse blastocysts. We investigated the ability of TGF-β to induce EMT in endometrial epithelial cells (HEC-1A) by assessment of cytological phenotype (by light and atomic force microscopy), changes in expression of the markers of cell adhesion/differentiation E- and N-cadherin, and of the transcription factor Snail (by immunofluorescence and immunoblotting), and competence to support embryo attachment in a mouse blastocyst outgrowth assay. We also studied the effects of E-cadherin expression in cells transfected by retroviral shRNA vectors specifically silencing MFGE8. Results demonstrated that TGF-β induced EMT as demonstrated by phenotypic cell changes, by a switch of cadherin expression as well as by upregulation of the expression of the mesenchymal markers Snail and Vimentin. Upon MFGE8 knockdown, these processes were interfered with, suggesting that MFGE8 and TGF-β together may participate in regulation of EMT. This study demonstrated for the first time that endometrial MFGE8 modulates TGF-β-induced EMT in human endometrium cells. PMID:27340235

  19. Morphological appearances of human lens epithelial cells in culture.

    PubMed

    Power, W; Neylan, D; Collum, L

    1993-01-01

    A system for culturing human lens epithelial cells in the laboratory was developed. The morphological appearances of the cells was studied using phase contrast, scanning and transmission electron microscopy. Cell marker studies using monoclonal antibodies to cytokeratin, vimentin and epithelial membrane antigen were also performed. There was a marked increase in cell size as a function of time in culture. After 3 to 4 weeks cells showed early signs of ageing. By 6 to 8 weeks the majority of the cells had become very irregular in shape and demonstrated irregularities of the plasma membrane and intra-cytoplasmic vacuole formation. The cells stained strongly for vimentin and epithelial membrane antigen. Staining with cytokeratin was somewhat weaker. This culture technique provides us with a suitable model for studying the growth behavior of these cells. PMID:7512459

  20. Regulated Mucin Secretion from Airway Epithelial Cells

    PubMed Central

    Adler, Kenneth B.; Tuvim, Michael J.; Dickey, Burton F.

    2013-01-01

    Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3 × 106 Da per monomer) whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ∼1 μm in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among myristoylated alanine-rich C kinase substrate, cysteine string protein, heat shock protein 70, and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG). Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to

  1. Effect of freezing on lens epithelial cell growth.

    PubMed

    Fukaya, Y; Hara, T; Hara, T; Iwata, S

    1988-05-01

    The effect of freezing on the growth of rat lens epithelial cells was studied in vitro. We found that 80% of the lens epithelial cells died after freezing at -45 degrees C for two hours and that the surviving cells could grow with the addition of growth factors or when placed on a sheet of type 4 collagen, but not when placed on a plain plastic culture dish. These results suggest that the surviving cells are at the Go phase of the cell cycle and that type 4 collagen or growth factors can initiate cell division. PMID:3294380

  2. Effect of recombinant Newcastle disease virus transfection on lung adenocarcinoma A549 cells in vivo

    PubMed Central

    YAN, YULAN; JIA, LIJUAN; ZHANG, JIN; LIU, YANG; BU, XUEFENG

    2014-01-01

    Newcastle disease virus (NDV) has been reported to selectively duplicate in and then destroy tumor cells, whilst sparing normal cells. However, the effect of NDV on lung cancer has yet to be elucidated. In the present study, recombinant NDV (rl-RVG) was applied to lung adenocarcinoma A549 cell tumor-bearing mice to explore its effect on the proliferation of the cells and the immune response of the mice. Following rl-RVG transfection, RVG and NDV gene expression, decreased tumor growth, subcutaneous tumor necrosis, tumor apoptosis and an increased number of cluster of differentiation (CD)3−/CD49+ natural killer cells were more evident in the rl-RVG group. The present study demonstrated that rl-RVG transfection effectively restrained lung adenocarcinoma A549 cell growth in vivo, which may have been accomplish by inducing tumor cell apoptosis and regulating the cell immune response. PMID:25364430

  3. ONCOGENE ALTERNATIONS IN IN VITRO TRANSFORMED RAT TRACHEAL EPITHELIAL CELLS

    EPA Science Inventory

    Ten derivations of rat tracheal epithelial (RTE) cells, including normal cells, normal primary cultures, 7 tumorigenic cell lines and 1 non-tumorigenic cell line transformed by treatment with 7,12-dimethylbenz(a)anthracene (DMBA), benzo(a)pyrene (BP) and/or 12-0-tetradecanoylphor...

  4. Identification of Hyal2 as the cell-surface receptor for jaagsiekte sheep retrovirus and ovine nasal adenocarcinoma virus.

    PubMed

    Miller, A D

    2003-01-01

    Jaagsiekte sheep retrovirus (JSRV) and ovine nasal adenocarcinoma virus (ONAV) replicate in the airway and cause epithelial cell tumors through the activity of their envelope (Env) proteins. Identification of the receptor(s) that mediate cell entry by these viruses is crucial to understanding the oncogenic activity of Env and for the development of gene therapy vectors based on these viruses that are capable of targeting airway cells. To identify the viral receptor(s) and to further study the biology of JSRV and ONAV, we developed retroviral vectors containing Moloney murine leukemia virus components and the Env proteins of JSRV or ONAV. We used a new technique involving positional cloning by phenotypic mapping in radiation hybrid cells to identify and clone the human receptor for JSRV, Hyal2, which also serves as the receptor for ONAV. Hyal2 is a glycosylphosphatidylinositol-anchored cell-surface protein that has low hyaluronidase activity and is a member of a large family that includes sperm hyaluronidase (Spam) and serum hyaluronidase (Hyal1). Hyal2 is located in a region of human chromosome 3p21.3 that is often deleted in lung cancer, suggesting that it may be a tumor suppressor. However, its role in JSRV or ONAV tumorigenesis, if any, is still unclear. JSRV vectors are capable of transducing various human cells, and are being further evaluated for gene therapy purposes. PMID:12596899

  5. Left-right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Maekawa, Emi; Isomura, Ayako; Shibata, Tatsuo; Kuranaga, Erina

    2015-12-01

    Morphogenetic epithelial movement occurs during embryogenesis and drives complex tissue formation. However, how epithelial cells coordinate their unidirectional movement while maintaining epithelial integrity is unclear. Here we propose a novel mechanism for collective epithelial cell movement based on Drosophila genitalia rotation, in which epithelial tissue rotates clockwise around the genitalia. We found that this cell movement occurs autonomously and requires myosin II. The moving cells exhibit repeated left-right-biased junction remodelling, while maintaining adhesion with their neighbours, in association with a polarized myosin II distribution. Reducing myosinID, known to cause counter-clockwise epithelial-tissue movement, reverses the myosin II distribution. Numerical simulations revealed that a left-right asymmetry in cell intercalation is sufficient to induce unidirectional cellular movement. The cellular movement direction is also associated with planar cell-shape chirality. These findings support a model in which left-right asymmetric cell intercalation within an epithelial sheet drives collective cellular movement in the same direction.

  6. Control of Francisella tularensis Intracellular Growth by Pulmonary Epithelial Cells

    PubMed Central

    Maggio, Savannah; Takeda, Kazuyo; Stark, Felicity; Meierovics, Anda I.; Yabe, Idalia; Cowley, Siobhan C.

    2015-01-01

    The virulence of F. tularensis is often associated with its ability to grow in macrophages, although recent studies show that Francisella proliferates in multiple host cell types, including pulmonary epithelial cells. Thus far little is known about the requirements for killing of F. tularensis in the non-macrophage host cell types that support replication of this organism. Here we sought to address this question through the use of a murine lung epithelial cell line (TC-1 cells). Our data show that combinations of the cytokines IFN-γ, TNF, and IL-17A activated murine pulmonary epithelial cells to inhibit the intracellular growth of the F. tularensis Live Vaccine Strain (LVS) and the highly virulent F. tularensis Schu S4 strain. Although paired combinations of IFN-γ, TNF, and IL-17A all significantly controlled LVS growth, simultaneous treatment with all three cytokines had the greatest effect on LVS growth inhibition. In contrast, Schu S4 was more resistant to cytokine-induced growth effects, exhibiting significant growth inhibition only in response to all three cytokines. Since one of the main antimicrobial mechanisms of activated macrophages is the release of reactive nitrogen intermediates (RNI) via the activity of iNOS, we investigated the role of RNI and iNOS in Francisella growth control by pulmonary epithelial cells. NOS2 gene expression was significantly up-regulated in infected, cytokine-treated pulmonary epithelial cells in a manner that correlated with LVS and Schu S4 growth control. Treatment of LVS-infected cells with an iNOS inhibitor significantly reversed LVS killing in cytokine-treated cultures. Further, we found that mouse pulmonary epithelial cells produced iNOS during in vivo respiratory LVS infection. Overall, these data demonstrate that lung epithelial cells produce iNOS both in vitro and in vivo, and can inhibit Francisella intracellular growth via reactive nitrogen intermediates. PMID:26379269

  7. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    SciTech Connect

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  8. Interferons Mediate Terminal Differentiation of Human Cortical Thymic Epithelial Cells

    PubMed Central

    Vidalain, Pierre-Olivier; Laine, David; Zaffran, Yona; Azocar, Olga; Servet-Delprat, Christine; Wild, T. Fabian; Rabourdin-Combe, Chantal; Valentin, Hélène

    2002-01-01

    In the thymus, epithelial cells comprise a heterogeneous population required for the generation of functional T lymphocytes, suggesting that thymic epithelium disruption by viruses may compromise T-cell lymphopoiesis in this organ. In a previous report, we demonstrated that in vitro, measles virus induced differentiation of cortical thymic epithelial cells as characterized by (i) cell growth arrest, (ii) morphological and phenotypic changes, and (iii) apoptotis as a final step of this process. In the present report, we have analyzed the mechanisms involved. First, measles virus-induced differentiation of thymic epithelial cells is shown to be strictly dependent on beta interferon (IFN-β) secretion. In addition, transfection with double-stranded RNA, a common intermediate of replication for a broad spectrum of viruses, is reported to similarly mediate thymic epithelial cell differentiation through IFN-β induction. Finally, we demonstrated that recombinant IFN-α, IFN-β, or IFN-γ was sufficient to induce differentiation and apoptosis of uninfected thymic epithelial cells. These observations suggested that interferon secretion by either infected cells or activated leukocytes, such as plasmacytoid dendritic cells or lymphocytes, may induce thymic epithelium disruption in a pathological context. Thus, we have identified a new mechanism that may contribute to thymic atrophy and altered T-cell lymphopoiesis associated with many infections. PMID:12050353

  9. Inhibition of corneal epithelial cell migration by cadmium and mercury

    SciTech Connect

    Ubels, J.L.; Osgood, T.B. Medical Coll. of Wisconsin, Milwaukee )

    1991-02-01

    In a previous comparative study of corneal healing in fish, the authors observed that corneal epithelial healing occurs very rapidly in vivo in the marine teleost Myoxocephalus octodecimspinosus (longhorn sculpin) with a 6-mm diameter wound on the mammalian cornea. This rapid healing which permits prompt restoration of the epithelial barrier is apparently an adaptation to the large ionic and osmotic gradients between the environment and the intraocular fluids of the fish. These observations suggested that epithelial healing in the sculpin cornea might be useful model in aquatic biomedical toxicology if an in vitro method for measurement of healing rates could be developed. In this report the authors demonstrate that sculpin eyes maintained in short-term organ culture have a rapid corneal epithelial healing response and that this model can be used to demonstrate the toxic effects of heavy metals on epithelial cell migration.

  10. Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma-Like by Reprogramming.

    PubMed

    Borges, Gisely T; Vêncio, Eneida F; Quek, Sue-Ing; Chen, Adeline; Salvanha, Diego M; Vêncio, Ricardo Z N; Nguyen, Holly M; Vessella, Robert L; Cavanaugh, Christopher; Ware, Carol B; Troisch, Pamela; Liu, Alvin Y

    2016-09-01

    The lineage relationship between prostate adenocarcinoma and small cell carcinoma was studied by using the LuCaP family of xenografts established from primary neoplasm to metastasis. Expression of four stem cell transcription factor (TF) genes, LIN28A, NANOG, POU5F1, SOX2, were analyzed in the LuCaP lines. These genes, when force expressed in differentiated cells, can reprogram the recipients into stem-like induced pluripotent stem (iPS) cells. Most LuCaP lines expressed POU5F1, while LuCaP 145.1, representative of small cell carcinoma, expressed all four. Through transcriptome database query, many small cell carcinoma genes were also found in stem cells. To test the hypothesis that prostate cancer progression from "differentiated" adenocarcinoma to "undifferentiated" small cell carcinoma could involve re-expression of stem cell genes, the four TF genes were transduced via lentiviral vectors into five adenocarcinoma LuCaP lines-70CR, 73CR, 86.2, 92, 105CR-as done in iPS cell reprogramming. The resultant cells from these five transductions displayed a morphology of small size and dark appearing unlike the parentals. Transcriptome analysis of LuCaP 70CR* ("*" to denote transfected progeny) revealed a unique gene expression close to that of LuCaP 145.1. In a prostate principal components analysis space based on cell-type transcriptomes, the different LuCaP transcriptome datapoints were aligned to suggest a possible ordered sequence of expression changes from the differentiated luminal-like adenocarcinoma cell types to the less differentiated, more stem-like small cell carcinoma types, and LuCaP 70CR*. Prostate cancer progression can thus be molecularly characterized by loss of differentiation with re-expression of stem cell genes. J. Cell. Physiol. 231: 2040-2047, 2016. © 2016 Wiley Periodicals, Inc. PMID:26773436

  11. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma.

    PubMed

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers-CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin-by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  12. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma

    PubMed Central

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers—CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin—by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  13. Elevated HOXB9 expression promotes differentiation and predicts a favourable outcome in colon adenocarcinoma patients

    PubMed Central

    Zhan, J; Niu, M; Wang, P; Zhu, X; Li, S; Song, J; He, H; Wang, Y; Xue, L; Fang, W; Zhang, H

    2014-01-01

    Background: Little is known about the tumour suppressive proteins and the underlying mechanisms that suppress colon cancer progression. Homeodomain-containing transcription factor HOXB9 plays an important role in embryogenesis and cancer development. We here aim to uncover the potential role of HOXB9 in the regulation of colon adenocarcinoma progression including epithelial-to-mesenchymal transition. Methods: HOXB9 expression in colon adenocarcinoma cells and patients was analysed by western blot and immunohistochemistry separately. Correlation between HOXB9 expressions with patients' survival was assessed by Kaplan–Meier analysis. HOXB9-regulated target gene expression was determined by RNA sequencing in HOXB9-overexpressing colon adenocarcinoma cells. Results: Elevated HOXB9 expression was identified in well-differentiated colon adenocarcinoma patients and was associated with a better overall patients' survival. Overexpression of HOXB9 inhibited colon adenocarcinoma cell growth, migration, invasion in vitro and tumour growth, liver as well as lung metastases in nude mice; whereas silencing HOXB9 promoted these functions. HOXB9 promoted colon adenocarcinoma differentiation via a mechanism that stimulates mesenchymal-to-epithelial transition, involving downregulation of EMT-promoting transcriptional factors including Snail, Twist, FOXC2 and ZEB1 and upregulation of epithelial proteins including E-cadherin, claudins-1, -4, -7, occludin and ZO-1. Conclusions: HOXB9 is a novel tumour suppressor that inhibits colon adenocarcinoma progression by inducing differentiation. Elevated expression of HOXB9 predicts a longer survival in colon adenocarcinoma patients. PMID:25025961

  14. Role of autophagy in the regulation of epithelial cell junctions.

    PubMed

    Nighot, Prashant; Ma, Thomas

    2016-01-01

    Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions. PMID:27583189

  15. Characteristics and EGFP expression of goat mammary gland epithelial cells.

    PubMed

    Zheng, Y-M; He, X-Y; Zhang, Y

    2010-12-01

    The aims of this study were (i) to establish a goat mammary gland epithelial (GMGE) cell line, and (ii) to determine if these GMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of GMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating goat. The passage 16 GMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in GMGE cells was test by immunofluorescence. Βeta-Casein gene mRNA was test for GMGE cells by RT-PCR. The results showed that when grown at low density on a plastic substratum, the GMGE cells formed islands, and when grown to confluency, the cells formed a monolayer and aggregated with the characteristic cobble-stone morphology of epithelial cells. GMGE cells could form dome-like structure which looked like nipple, and the lumen-like structures formed among the cells. Several blister-like structures appeared in the appearance of the cells. The GMGE cells contained different cell types, majority of the cells were short shuttle-like or polygon which were beehive-like. A part of cells were round and flat, a small number of cells were elongated. Some of the GMGE cells contained milk drops. The cell nuclei were round which had 2-4 obvious cores. The expression of Cell keratins demonstrated the property of epithelial cells in GMGE cells by immunofluorescence. The GMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the GMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected GMGE (ET-GMGE) cell line and maintained it long-term in culture by continuous subculturing. PMID:20113446

  16. The Epithelial Cell in Lung Health and Emphysema Pathogenesis

    PubMed Central

    Mercer, Becky A.; Lemaître, Vincent; Powell, Charles A.; D’Armiento, Jeanine

    2009-01-01

    Cigarette smoking is the primary cause of the irreversible lung disease emphysema. Historically, inflammatory cells such as macrophages and neutrophils have been studied for their role in emphysema pathology. However, recent studies indicate that the lung epithelium is an active participant in emphysema pathogenesis and plays a critical role in the lung’s response to cigarette smoke. Tobacco smoke increases protease production and alters cytokine expression in isolated epithelial cells, suggesting that these cells respond potently even in the absence of a complete inflammatory program. Tobacco smoke also acts as an immunosuppressant, reducing the defense function of airway epithelial cells and enhancing colonization of the lower airways. Thus, the paradigm that emphysema is strictly an inflammatory-cell based disease is shifting to consider the involvement of resident epithelial cells. Here we review the role of epithelial cells in lung development and emphysema. To better understand tobacco-epithelial interactions we performed microarray analyses of RNA from human airway epithelial cells exposed to smoke extract for 24 hours. These studies identified differential regulation of 425 genes involved in diverse biological processes, such as apoptosis, immune function, cell cycle, signal transduction, proliferation, and antioxidants. Some of these genes, including VEGF, glutathione peroxidase, IL-13 receptor, and cytochrome P450, have been previously reported to be altered in the lungs of smokers. Others, such as pirin, cathepsin L, STAT1, and BMP2, are shown here for the first time to have a potential role in smoke-associated injury. These data broaden our understanding of the importance of epithelial cells in lung health and cigarette smoke-induced emphysema. PMID:19662102

  17. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties

    PubMed Central

    Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William

    2002-01-01

    The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by

  18. Phototoxic aptamers selectively enter and kill epithelial cancer cells

    PubMed Central

    Ferreira, Cátia S. M.; Cheung, Melissa C.; Missailidis, Sotiris; Bisland, Stuart; Gariépy, Jean

    2009-01-01

    The majority of cancers arise from malignant epithelial cells. We report the design of synthetic oligonucleotides (aptamers) that are only internalized by epithelial cancer cells and can be precisely activated by light to kill such cells. Specifically, phototoxic DNA aptamers were selected to bind to unique short O-glycan-peptide signatures on the surface of breast, colon, lung, ovarian and pancreatic cancer cells. These surface antigens are not present on normal epithelial cells but are internalized and routed through endosomal and Golgi compartments by cancer cells, thus providing a focused mechanism for their intracellular delivery. When modified at their 5′ end with the photodynamic therapy agent chlorin e6 and delivered to epithelial cancer cells, these aptamers exhibited a remarkable enhancement (>500-fold increase) in toxicity upon light activation, compared to the drug alone and were not cytotoxic towards cell types lacking such O-glycan-peptide markers. Our findings suggest that these synthetic oligonucleotide aptamers can serve as delivery vehicles in precisely routing cytotoxic cargoes to and into epithelial cancer cells. PMID:19103663

  19. Polyglutamate Paclitaxel and Carboplatin in Treating Patients With Ovarian Epithelial, Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2015-05-07

    Fallopian Tube Carcinoma; Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Stage III Ovarian Cancer; Stage IV Ovarian Cancer; Undifferentiated Ovarian Carcinoma

  20. Carboplatin and Paclitaxel With or Without Bevacizumab in Treating Patients With Stage III or Stage IV Ovarian Epithelial, Primary Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2015-08-18

    Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Mucinous Adenocarcinoma; Fallopian Tube Serous Adenocarcinoma; Fallopian Tube Transitional Cell Carcinoma; Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Serous Adenocarcinoma; Ovarian Transitional Cell Carcinoma; Primary Peritoneal Serous Adenocarcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  1. Paclitaxel, Polyglutamate Paclitaxel, or Observation in Treating Patients With Stage III or Stage IV Ovarian Epithelial, Peritoneal Cancer, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2016-03-17

    Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Mucinous Adenocarcinoma; Fallopian Tube Serous Adenocarcinoma; Fallopian Tube Transitional Cell Carcinoma; Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Serous Adenocarcinoma; Ovarian Transitional Cell Carcinoma; Primary Peritoneal Serous Adenocarcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  2. Probiotics promote endocytic allergen degradation in gut epithelial cells

    SciTech Connect

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  3. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway. PMID:26919807

  4. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells

    PubMed Central

    Chakedis, Jeffery; French, Randall; Babicky, Michele; Jaquish, Dawn; Howard, Haleigh; Mose, Evangeline; Lam, Raymond; Holman, Patrick; Miyamoto, Jaclyn; Walterscheid, Zakk; Lowy, Andrew M.

    2015-01-01

    The MST1R gene is overexpressed in pancreatic cancer producing elevated levels of the RON tyrosine kinase receptor protein. While mutations in MST1R are rare, alternative splice variants have been previously reported in epithelial cancers. We report the discovery of a novel RON isoform discovered in human pancreatic cancer. Partial splicing of exons 5 and 6 (P5P6) produces a RON isoform that lacks the first extracellular immunoglobulin-plexin-transcription (IPT) domain. The splice variant is detected in 73% of pancreatic adenocarcinoma patient derived xenografts and 71% of pancreatic cancer cell lines. Peptides specific to RON P5P6 detected in human pancreatic cancer specimens by mass spectrometry confirms translation of the protein isoform. The P5P6 isoform is found to be constitutively phosphorylated, present in the cytoplasm, and it traffics to the plasma membrane. Expression of P5P6 in immortalized human pancreatic duct epithelial (HPDE) cells activates downstream AKT, and in human pancreatic epithelial nestin-expressing (HPNE) cells activates both the AKT and MAPK pathways. Inhibiting RON P5P6 in HPDE cells using a small molecule inhibitor BMS-777607 blocked constitutive activation and decreased AKT signaling. P5P6 transforms NIH3T3 cells and induces tumorigenicity in HPDE cells. Resultant HPDE-P5P6 tumors develop a dense stromal compartment similar to that seen in pancreatic cancer. In summary, we have identified a novel and constitutively active isoform of the RON tyrosine kinase receptor that has transforming activity and is expressed in human pancreatic cancer. These findings provide additional insight into the biology of the RON receptor in pancreatic cancer and are clinically relevant to the study of RON as a potential therapeutic target. PMID:26477314

  5. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells.

    PubMed

    Chakedis, J; French, R; Babicky, M; Jaquish, D; Howard, H; Mose, E; Lam, R; Holman, P; Miyamoto, J; Walterscheid, Z; Lowy, A M

    2016-06-23

    The MST1R gene is overexpressed in pancreatic cancer producing elevated levels of the RON tyrosine kinase receptor protein. While mutations in MST1R are rare, alternative splice variants have been previously reported in epithelial cancers. We report the discovery of a novel RON isoform discovered in human pancreatic cancer. Partial splicing of exons 5 and 6 (P5P6) produces a RON isoform that lacks the first extracellular immunoglobulin-plexin-transcription domain. The splice variant is detected in 73% of xenografts derived from pancreatic adenocarcinoma patients and 71% of pancreatic cancer cell lines. Peptides specific to RON P5P6 detected in human pancreatic cancer specimens by mass spectrometry confirm translation of the protein isoform. The P5P6 isoform is found to be constitutively phosphorylated, present in the cytoplasm, and it traffics to the plasma membrane. Expression of P5P6 in immortalized human pancreatic duct epithelial (HPDE) cells activates downstream AKT, and in human pancreatic epithelial nestin-expressing cells, activates both the AKT and MAPK pathways. Inhibiting RON P5P6 in HPDE cells using a small molecule inhibitor BMS-777607 blocked constitutive activation and decreased AKT signaling. P5P6 transforms NIH3T3 cells and induces tumorigenicity in HPDE cells. Resultant HPDE-P5P6 tumors develop a dense stromal compartment similar to that seen in pancreatic cancer. In summary, we have identified a novel and constitutively active isoform of the RON tyrosine kinase receptor that has transforming activity and is expressed in human pancreatic cancer. These findings provide additional insight into the biology of the RON receptor in pancreatic cancer and are clinically relevant to the study of RON as a potential therapeutic target. PMID:26477314

  6. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    PubMed

    Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel

    2015-11-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  7. Lingual Epithelial Stem Cells and Organoid Culture of Them

    PubMed Central

    Hisha, Hiroko; Tanaka, Toshihiro; Ueno, Hiroo

    2016-01-01

    As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine. PMID:26828484

  8. Effects of ethanol on an intestinal epithelial cell line

    SciTech Connect

    Nano, J.L.; Cefai, D.; Rampal, P. )

    1990-02-01

    The effect of exposure of an intestinal epithelial cell line to various concentrations of ethanol (217 mM (1%) to 652 mM (3%)) during 24, 48, and 72 hr was investigated in vitro using a rat intestinal epithelial cell line (IRD 98). Incubation of these cells in the presence of ethanol significantly decreased cell growth. This inhibition was accompanied by a strong increase in cellular protein. Stimulation of specific disaccharidases, gamma-glutamyl transferase, and aminopeptidase activities by ethanol was dose- and time-dependent. Ethanol induces a change in the relative proportions of the different lipid classes synthesized; triglycerides, fatty acids, and cholesterol esters were preferentially synthethysed. Our findings show that cell lines are good models for investigation of the effects of ethanol, and that alcohol considerably modifies the functions of intestinal epithelial cells.

  9. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  10. Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution.

    PubMed

    Hamazaki, Yoko; Sekai, Miho; Minato, Nagahiro

    2016-05-01

    The thymus consists of two distinct anatomical regions, the cortex and the medulla; medullary thymic epithelial cells (mTECs) play a crucial role in establishing central T-cell tolerance for self-antigens. Although the understanding of mTEC development in thymic organogenesis as well as the regulation of their differentiation and maturation has improved, the mechanisms of postnatal maintenance remain poorly understood. This issue has a central importance in immune homeostasis and physiological thymic involution as well as autoimmune disorders in various clinicopathological settings. Recently, several reports have demonstrated the existence of TEC stem or progenitor cells in the postnatal thymus, which are either bipotent or unipotent. We identified stem cells specified for mTEC-lineage that are generated in the thymic ontogeny and may sustain mTEC regeneration and lifelong central T-cell self-tolerance. This finding suggested that the thymic medulla is maintained autonomously by its own stem cells. Although several issues, including the relationship with other putative TEC stem/progenitors, remain unclear, further examination of mTEC stem cells (mTECSCs) and their regulatory mechanisms may contribute to the understanding of postnatal immune homeostasis. Possible relationships between decline of mTECSC activity and early thymic involution as well as various autoimmune disorders are discussed. PMID:27088906

  11. Surgical removal of a mammary adenocarcinoma and a granulosa cell tumor in an African pygmy hedgehog

    PubMed Central

    Wellehan, James F.X.; Southorn, Erin; Smith, Dale A.; Taylor, Michael

    2003-01-01

    A 3-year-old, female African pygmy hedgehog (Atelerix albiventris) was referred with a history of hematuria. Hyperglycemia and glucosuria were found at presentation. Mammary adenocarcinoma and a granulosa cell tumor were found and removed surgically. Glucosuria and hematuria resolved, and the hedgehog has done well for 10 mo postoperatively. PMID:12677695

  12. Surgical removal of a mammary adenocarcinoma and a granulosa cell tumor in an African pygmy hedgehog.

    PubMed

    Wellehan, James F X; Southorn, Erin; Smith, Dale A; Taylor, W Michael

    2003-03-01

    A 3-year-old, female African pygmy hedgehog (Atelerix albiventris) was referred with a history of hematuria. Hyperglycemia and glucosuria were found at presentation. Mammary adenocarcinoma and a granulosa cell tumor were found and removed surgically. Glucosuria and hematuria resolved, and the hedgehog has done well for 10 mo postoperatively. PMID:12677695

  13. Induction of apoptosis in oral epithelial cells by Candida albicans.

    PubMed

    Villar, C Cunha; Chukwuedum Aniemeke, J; Zhao, X-R; Huynh-Ba, G

    2012-12-01

    During infection, interactions between Candida albicans and oral epithelial cells result in oral epithelial cell death. This is clinically manifested by the development of oral mucosal ulcerations generally associated with discomfort. In vitro studies have shown that C. albicans induces early apoptotic alterations in oral epithelial cells; however, these studies have also shown that treatment of infected cells with caspase inhibitors does not prevent their death. The reasons for these contradictory results are unknown and it is still not clear if C. albicans stimulates oral epithelial signaling pathways that promote apoptotic cell death. Activation of specific death pathways in response to microbial organisms plays an essential role in modulating the pathogenesis of a variety of infectious diseases. The aim of this study was to (i) characterize C. albicans-induced apoptotic morphological alterations in oral epithelial cells, and (ii) investigate the activation of apoptotic signaling pathways and expression of apoptotic genes during infection. Candida albicans induced early apoptotic changes in over 50% of oral epithelial cells. However, only 15% of those showed mid-late apoptotic alterations. At the molecular level, C. albicans caused a loss of the mitochondrial transmembrane potential and translocation of mitochondrial cytochrome c. Caspase-3/9 activities increased only during the first hours of infection. Moreover, poly[ADP ribose] polymerase 1 was cleaved into apoptotic and necrotic-like fragments. Finally, five anti-apoptotic genes were significantly upregulated and two pro-apoptotic genes were downregulated during infection. Altogether, these findings indicate that epithelial apoptotic pathways are activated in response to C. albicans, but fail to progress and promote apoptotic cell death. PMID:23134609

  14. Fabrication of transplantable corneal epithelial and oral mucosal epithelial cell sheets using a novel temperature-responsive closed culture device.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Kikuchi, Tetsutaro; Kitano, Yuriko; Watanabe, Hiroya; Mizutani, Manabu; Nozaki, Takayuki; Senda, Naoko; Saitoh, Kazuo; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-05-01

    Temperature-responsive culture surfaces make it possible to harvest transplantable carrier-free cell sheets. Here, we applied temperature-responsive polymer for polycarbonate surfaces with previously developed closed culture devices for an automated culture system in order to fabricate transplantable stratified epithelial cell sheets. Histological and immunohistochemical analyses and colony-forming assays revealed that corneal epithelial and oral mucosal epithelial cell sheets could be harvested with the temperature-responsive closed culture devices. The results were similar to those obtained using temperature-responsive culture inserts. These results indicate that the novel temperature-responsive closed culture device is useful for fabricating transplantable stratified epithelial cell sheets. PMID:23475606

  15. Clear Cell Adenocarcinoma Arising from Adenofibroma in a Patient with Endometriosis of the Ovary.

    PubMed

    Cho, Inju; Lim, Sung-Chul

    2016-03-01

    Ovarian clear cell adenocarcinomas (CCACs) are frequently associated with endometriosis and, less often with clear cell adenofibromas (CCAFs). We encountered a case of ovarian CCAC arising from benign and borderline adenofibromas of the clear cell and endometrioid types with endometriosis in a 53-year-old woman. Regions of the adenofibromas showed transformation to CCAC and regions of the endometriosis showed atypical endometriotic cysts. This case demonstrates that CCAC can arise from CCAF or endometriosis. PMID:26498012

  16. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling

    PubMed Central

    Kamimoto, Kenji; Kaneko, Kota; Kok, Cindy Yuet-Yin; Okada, Hajime; Miyajima, Atsushi; Itoh, Tohru

    2016-01-01

    Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. DOI: http://dx.doi.org/10.7554/eLife.15034.001 PMID:27431614

  17. CHARACTERIZATION OF ALVEOLAR EPITHELIAL CELLS CULTURED IN SEMIPERMEABLE HOLLOW FIBERS

    PubMed Central

    Grek, Christina L.; Newton, Danforth A.; Qiu, Yonhzhi; Wen, Xuejun; Spyropoulos, Demetri D.; Baatz, John E.

    2012-01-01

    Cell culture methods commonly used to represent alveolar epithelial cells in vivo have lacked airflow, a 3-dimensional air-liquid interface, and dynamic stretching characteristics of native lung tissue—physiological parameters critical for normal phenotypic gene expression and cellular function. Here the authors report the development of a selectively semipermeable hollow fiber culture system that more accurately mimics the in vivo microenvironment experienced by mammalian distal airway cells than in conventional or standard air-liquid interface culture. Murine lung epithelial cells (MLE-15) were cultured within semipermeable polyurethane hollow fibers and introduced to controlled airflow through the microfiber interior. Under these conditions, MLE-15 cells formed confluent monolayers, demonstrated a cuboidal morphology, formed tight junctions, and produced and secreted surfactant proteins. Numerous lamellar bodies and microvilli were present in MLE-15 cells grown in hollow fiber culture. Conversely, these alveolar type II cell characteristics were reduced in MLE-15 cells cultured in conventional 2D static culture systems. These data support the hypothesis that MLE-15 cells grown within our microfiber culture system in the presence of airflow maintain the phenotypic characteristics of type II cells to a higher degree than those grown in standard in vitro cell culture models. Application of our novel model system may prove advantageous for future studies of specific gene and protein expression involving alveolar epithelial or bronchiolar epithelial cells. PMID:19263283

  18. Apoptotic epithelial cells control the abundance of Treg cells at barrier surfaces.

    PubMed

    Nakahashi-Oda, Chigusa; Udayanga, Kankanam Gamage Sanath; Nakamura, Yoshiyuki; Nakazawa, Yuta; Totsuka, Naoya; Miki, Haruka; Iino, Shuichi; Tahara-Hanaoka, Satoko; Honda, Shin-ichiro; Shibuya, Kazuko; Shibuya, Akira

    2016-04-01

    Epithelial tissues continually undergo apoptosis. Commensal organisms that inhabit the epithelium influence tissue homeostasis, in which regulatory T cells (Treg cells) have a central role. However, the physiological importance of epithelial cell apoptosis and how the number of Treg cells is regulated are both incompletely understood. Here we found that apoptotic epithelial cells negatively regulated the commensal-stimulated proliferation of Treg cells. Gut commensals stimulated CX3CR1(+)CD103(-)CD11b(+) dendritic cells (DCs) to produce interferon-β (IFN-β), which augmented the proliferation of Treg cells in the intestine. Conversely, phosphatidylserine exposed on apoptotic epithelial cells suppressed IFN-β production by the DCs via inhibitory signaling mediated by the cell-surface glycoprotein CD300a and thus suppressed Treg cell proliferation. Our findings reveal a regulatory role for apoptotic epithelial cells in maintaining the number of Treg cell and tissue homeostasis. PMID:26855029

  19. Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses

    PubMed Central

    Waters, Christopher M.; Roan, Esra; Navajas, Daniel

    2015-01-01

    Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969

  20. Chlorpyrifos promotes colorectal adenocarcinoma H508 cell growth through the activation of EGFR/ERK1/2 signaling pathway but not cholinergic pathway.

    PubMed

    Suriyo, Tawit; Tachachartvanich, Phum; Visitnonthachai, Daranee; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-12-01

    Aside from the effects on neuronal cholinergic system, epidemiological studies suggest an association between chlorpyrifos (CPF) exposure and cancer risk. This in vitro study examined the effects of CPF and its toxic metabolite, chlorpyrifos oxon (CPF-O), on the growth of human colorectal adenocarcinoma H508, colorectal adenocarcinoma HT-29, normal colon epithelial CCD841, liver hepatocellular carcinoma HepG2, and normal liver hepatocyte THLE-3 cells. The results showed that CPF (5-100 μM) concentration-dependently increased viability of H508 and CCD841 cells in serum-free conditions. This increasing trend was not found in HT-29, HepG2 and THLE-3 cells. In contrast, CPF-O (50-100 μM) reduced the viability of all cell lines. Cell cycle analysis showed the induction of cells in the S phase, and EdU incorporation assay revealed the induction of DNA synthesis in CPF-treated H508 cells indicating that CPF promotes cell cycle progression. Despite the observation of acetylcholinesterase activity inhibition and reactive oxygen species (ROS) generation, atropine (a non-selective muscarinic acetylcholine receptor antagonist) and N-acetylcysteine (a potent antioxidant) failed to inhibit the growth-promoting effect of CPF. CPF increased the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream effector, extracellular signal regulated kinase (ERK1/2), in H508 cells. AG-1478 (a specific EGFR tyrosine kinase inhibitor) and U0126 (a specific MEK inhibitor) completely mitigated the growth promoting effect of CPF. Altogether, these results suggest that EGFR/ERK1/2 signaling pathway but not cholinergic pathway involves in CPF-induced colorectal adenocarcinoma H508 cell growth. PMID:26514924

  1. Cytoskeletal changes induced by allosteric modulators of calcium-sensing receptor in esophageal epithelial cells

    PubMed Central

    Abdulnour-Nakhoul, Solange; Brown, Karen L; Rabon, Edd C; Al-Tawil, Youhanna; Islam, Mohammed T; Schmieg, John J; Nakhoul, Nazih L

    2015-01-01

    The calcium-sensing receptor (CaSR), a G-protein-coupled receptor, plays a role in glandular and fluid secretion in the gastrointestinal tract, and regulates differentiation and proliferation of epithelial cells. We examined the expression of CaSR in normal and pathological conditions of human esophagus and investigated the effect of a CaSR agonist, cinacalcet (CCT), and antagonist, calhex (CHX), on cell growth and cell–cell junctional proteins in primary cultures of porcine stratified squamous esophageal epithelium. We used immunohistochemistry and Western analysis to monitor expression of CaSR and cell–cell adhesion molecules, and MTT assay to monitor cell proliferation in cultured esophageal cells. CCT treatment significantly reduced proliferation, changed the cell shape from polygonal to spindle-like, and caused redistribution of E-cadherin and β-catenin from the cell membrane to the cytoplasm. Furthermore, it reduced expression of β-catenin by 35% (P < 0.02) and increased expression of a proteolysis cleavage fragment of E-cadherin, Ecad/CFT2, by 2.3 folds (P < 0.01). On the other hand, CHX treatment enhanced cell proliferation by 27% (P < 0.01), increased the expression of p120-catenin by 24% (P < 0.04), and of Rho, a GTPase involved in cytoskeleton remodeling, by 18% (P < 0.03). In conclusion, CaSR is expressed in normal esophagus as well as in Barrett’s, esophageal adenocarcinoma, squamous cell carcinoma, and eosinophilic esophagitis. Long-term activation of CaSR with CCT disrupted the cadherin–catenin complex, induced cytoskeletal remodeling, actin fiber formation, and redistribution of CaSR to the nuclear area. These changes indicate a significant and complex role of CaSR in epithelial remodeling and barrier function of esophageal cells. PMID:26603452

  2. Lymphotoxin beta receptor signaling limits mucosal damage through driving IL-23 production by epithelial cells.

    PubMed

    Macho-Fernandez, E; Koroleva, E P; Spencer, C M; Tighe, M; Torrado, E; Cooper, A M; Fu, Y-X; Tumanov, A V

    2015-03-01

    The immune mechanisms regulating epithelial cell repair after injury remain poorly defined. We demonstrate here that lymphotoxin beta receptor (LTβR) signaling in intestinal epithelial cells promotes self-repair after mucosal damage. Using a conditional gene-targeted approach, we demonstrate that LTβR signaling in intestinal epithelial cells is essential for epithelial interleukin-23 (IL-23) production and protection against epithelial injury. We further show that epithelial-derived IL-23 promotes mucosal wound healing by inducing the IL-22-mediated proliferation and survival of epithelial cells and mucus production. Additionally, we identified CD4(-)CCR6(+)T-bet(-) RAR-related orphan receptor gamma t (RORγt)(+) lymphoid tissue inducer cells as the main producers of protective IL-22 after epithelial damage. Thus, our results reveal a novel role for LTβR signaling in epithelial cells in the regulation of intestinal epithelial cell homeostasis to limit mucosal damage. PMID:25183367

  3. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    SciTech Connect

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  4. Porphyromonas gingivalis invades oral epithelial cells in vitro.

    PubMed

    Sandros, J; Papapanou, P; Dahlén, G

    1993-05-01

    The aim of the present study was to analyze the adhesive and invasive potential of a number of P. gingivalis strains, in an in vitro system utilizing cultures of human oral epithelial cells (KB cell line, ATCC CCL 17). P. gingivalis strains W50 and FDC 381 (laboratory strains) and OMGS 1738, 1743 and 1439 (clinical isolates) as well as E. coli strain HB 101 (non-adhering, non-invasive control) were used. Adherence was assessed by means of scintillation counting and light microscopy, after incubation of radiolabelled bacteria with epithelial cells. In the invasion assay, monolayers were infected with the P. gingivalis and E. coli strains and further incubated with an antibiotic mixture (metronidazole 0.1 mg/ml and gentamicin 0.5 mg/ml). Invasion was evaluated by (i) assessing presence of bacteria surviving the antibiotic treatment, and (ii) electron microscopy. All P. gingivalis strains adhered to and entered into the oral epithelial cells. After 3 hours of incubation, bacteria were frequently identified intracellularly by means of electron microscopy. The cellular membranes, encapsulating the microorganisms in early stages of the invasive process, appeared later to disintegrate. The presence of coated pits on the epithelial cell surfaces suggested that internalization of P. gingivalis was associated with receptor-mediated endocytosis (RME). Formation of outer membrane vesicles (blebs) by intracellular bacteria indicated that internalized P. gingivalis was able to retain its viability. E. coli strain HB 101 neither adhered to nor invaded epithelial cells. PMID:8388449

  5. Porphyromonas gingivalis Fimbriae Bind to Cytokeratin of Epithelial Cells

    PubMed Central

    Sojar, Hakimuddin T.; Sharma, Ashu; Genco, Robert J.

    2002-01-01

    The adherence of Porphyromonas gingivalis to host cells is likely a prerequisite step in the pathogenesis of P. gingivalis-induced periodontal disease. P. gingivalis binds to and invades epithelial cells, and fimbriae are shown to be involved in this process. Little is known regarding epithelial receptor(s) involved in binding of P. gingivalis fimbriae. Using an overlay assay with purified P. gingivalis fimbriae as a probe, two major epithelial cell proteins with masses of 50 and 40 kDa were identified by immunoblotting with fimbria-specific antibodies. Iodinated purified fimbriae also bound to the same two epithelial cell proteins. An affinity chromatography technique was utilized to isolate and purify the epithelial components to which P. gingivalis fimbriae bind. Purified fimbriae were coupled to CNBr-activated Sepharose-4B, and the solubilized epithelial cell extract proteins bound to the immobilized fimbriae were isolated from the column. A major 50-kDa component and a minor 40-kDa component were purified and could be digested with trypsin, suggesting that they were proteins. These affinity-eluted 50- and 40-kDa proteins were then subjected to amino-terminal sequencing, and no sequence could be determined, suggesting that these proteins have blocked amino-terminal residues. CNBr digestion of the 50-kDa component resulted in an internal sequence homologous to that of Keratin I molecules. Further evidence that P. gingivalis fimbriae bind to cytokeratin molecule(s) comes from studies showing that multicytokeratin rabbit polyclonal antibodies cross-react with the affinity-purified 50-kDa epithelial cell surface component. Also, binding of purified P. gingivalis fimbriae to epithelial components can be inhibited in an overlay assay by multicytokeratin rabbit polyclonal antibodies. Furthermore, we showed that biotinylated purified fimbriae bind to purified human epidermal keratin in an overlay assay. These studies suggest that the surface-accessible epithelial

  6. Differentiation of porcine mesenchymal stem cells into epithelial cells as a potential therapeutic application to facilitate epithelial regeneration.

    PubMed

    Kokubun, Kelsey; Pankajakshan, Divya; Kim, Min-Jung; Agrawal, Devendra K

    2016-02-01

    Epithelial denudation is one of the characteristics of chronic asthma. To restore its functions, the airway epithelium has to rapidly repair the injuries and regenerate its structure and integrity. Mesenchymal stem cells (MSCs) have the ability to differentiate into many cell lineages. However, the differentiation of MSCs into epithelial cells has not been fully studied. Here, we examined the differentiation of MSCs into epithelial cells using three different media compositions with various growth supplementations. The MSCs were isolated from porcine bone marrow by density gradient centrifugation. The isolated MSCs were CD11(-) CD34(-) CD45(-) CD44(+) CD90(+) and CD105(+) by immunostaining and flow cytometry. MSCs were stimulated with EpiGRO (Millipore), BEpiCM (ScienCell) and AECGM (PromoCell) media for 5 and 10 days, and epithelial differentiation was assessed by qPCR (keratin 14, 18 and EpCAM), fluorometry (cytokeratin 7-8, cytokeratin 14-15-16-19 and EpCAM), western blot analysis (pancytokeratin, EpCAM) and flow cytometry (cytokeratin 7-8, cytokeratin 14-15-16-19 and EpCAM). The functional marker MUC1 was also assessed after 10 days of air-liquid interface (ALI) culture in optimized media. Cells cultured in BEpiCM containing fibroblast growth factor and prostaglandin E2 showed the highest expression of the epithelial markers: CK7-8 (85.90%); CK-14-15-16-19 (10.14%); and EpCAM (64.61%). The cells also expressed functional marker MUC1 after ALI culture. The differentiated MSCs when cultured in BEpiCM medium ex vivo in a bioreactor on a decellularized trachea for 10 days retained the epithelial-like phenotype. In conclusion, porcine bone marrow-derived MSCs demonstrate commitment to the epithelial lineage and might be a potential therapy for facilitating the repair of denuded airway epithelium. PMID:23696537

  7. Amniotic epithelial cells promote wound healing in mice through high epithelialization and engraftment.

    PubMed

    Jin, Enze; Kim, Tae-Hee; Han, Seongho; Kim, Sung-Whan

    2016-07-01

    Although human amniotic epithelial cells (AMEs) are an attractive source of stem cells, their therapeutic potential in wound healing has not been fully investigated. We evaluated the therapeutic potential of AMEs for wound healing. Real-time PCR showed that the epithelialization growth factors epidermal growth factor (EGF), platelet-derived growth factor (PDGF)-B and chemotactic factors interleukin-8 (IL-8 or CXCL8) and neutrophil-activating protein-2 (NAP-2 or CXCL7) were upregulated in AMEs compared with adipose-derived mesenchymal stem cells (ADMs). In vitro scratch wound assays revealed that AME-derived conditioned medium substantially accelerated wound closure. Wounds in NOD/SCID mice were created by skin excision, followed by AME transplantation. AMEs implantation significantly accelerated wound healing and increased cellularity and re-epithelialization. Transplanted AMEs exhibited high engraftment rates and expressed keratinocyte-specific proteins and cytokeratin in the wound area, suggesting direct benefits for cutaneous closure. Taken together, these data indicate that AMEs possess therapeutic capability for wound healing through the secretion of epithelialization growth factors and enhanced engraftment properties. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26174407

  8. Effect of Rumex Aquaticus Herba Extract Against Helicobacter pylori-Induced Inflammation in Gastric Epithelial Cells.

    PubMed

    Han, Jeong Hoon; Khin, Phyu Phyu; Sohn, Uy Dong

    2016-01-01

    The purposes of this study were to examine the characteristics of Helicobacter pylori and the effect of Rumex Aquaticus Herba extract on the expression of cytokines in H. pylori-infected gastric epithelial cells. Cultured human adenocarcinoma gastric cells (AGS) were infected by H. pylori in RPMI 1640 media. Cell growth was measured by trypan blue assay. Western blot analysis was performed to investigate effect of extract containing Quercetin-3-O-β-d-glucuronopyranoside (ECQ) on the expression of inflammatory factors and the inhibition on cell growth. Furthermore, we compared the inhibitory effects with various combinations of clarithromycin, amoxicillin, omeprazole, and ECQ. The urease test with Christensen's Urea Agar was performed to identify the urease activity of H. pylori and the effect ECQ has on urease activity. When the cells were exposed to H. pylori, the trypan blue assay revealed a decrease in the rate of cell growth. Western blot analysis showed that H. pylori-infected cells had increased levels of degraded IκB-α and inflammatory factors. Pretreatment with ECQ inhibited interleukin expression induced by H. pylori in a dose-dependent manner. A combination of ECQ and antibiotics inhibited cytokine expression more effectively than other treatments. H. pylori displayed significant urease activity. ECQ did not significantly inhibit urease activity. These data suggest that H. pylori infection has cytotoxic effects against AGS cells, and ECQ may inhibit the production of proinflammatory cytokines in H. pylori-infected AGS cells. PMID:26580421

  9. Newly identified biomarkers for detecting circulating tumor cells in lung adenocarcinoma.

    PubMed

    Man, Yingchun; Cao, Jingyan; Jin, Shi; Xu, Gang; Pan, Bo; Shang, Lihua; Che, Dehai; Yu, Qin; Yu, Yan

    2014-01-01

    Circulating tumor cells (CTCs) have been implicated in cancer prognosis and follow up. Detection of CTCs was considered significant in cancer evaluation. However, due to the heterogeneity and rareness of CTCs, detecting them with a single maker is usually challenged with low specificity and sensitivity. Previous studies concerning CTCs detection in lung cancer mainly focused on non-small cell lung carcinoma. Currently, there is no report yet describing the CTC detection with multiple markers in lung adenocarcinoma. In this study, by employing quantitative real-time PCR, we identified four candidate genes (mRNA) that were significantly elevated in peripheral blood mononuclear cells and biopsy tissue samples from patients with lung adenocarcinoma: cytokeratin 7 (CK7), Ca(2+)-activated chloride channel-2 (CLCA2), hyaluronan-mediated motility receptor (HMMR), and human telomerase catalytic subunit (hTERT). Then, the four markers were used for CTC detection; namely, positive detection was defined if at least one of the four markers was elevated. The positive CTC detection rate was 74.0% in patients with lung adenocarcinoma while 2.2% for healthy controls, 6.3% for benign lung disease, and 48.0% for non-adenocarcinoma non-small cell lung carcinoma. Furthermore, in a three-year follow-up study, patients with an increase in the detection markers of CTCs (CK7, CLCA2, HMMR or hTERT) on day 90 after first detection had shorter survival time compared to those with a decrease. These results demonstrate that the combination of the four markers with specificity and sensitivity is of great value in lung adenocarcinoma prognosis and follow up. PMID:25175030

  10. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells.

    PubMed

    Chen, Yu-Ching; Statt, Sarah; Wu, Reen; Chang, Hao-Teng; Liao, Jiunn-Wang; Wang, Chien-Neng; Shyu, Woei-Cherng; Lee, Chen-Chen

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway. PMID:26739898

  11. Salivary epithelial cells: an unassuming target site for gene therapeutics

    PubMed Central

    Perez, Paola; Rowzee, Anne M.; Zheng, Changyu; Adriaansen, Janik; Baum, Bruce J.

    2010-01-01

    Salivary glands are classical exocrine glands whose external secretions result in the production of saliva. However, in addition to the secretion of exocrine proteins, salivary epithelial cells are also capable of secreting proteins internally, into the bloodstream. This brief review examines the potential for using salivary epithelial cells as a target site for in situ gene transfer, with an ultimate goal of producing therapeutic proteins for treating both systemic and upper gastrointestinal tract disorders. The review discusses the protein secretory pathways reported to be present in salivary epithelial cells, the viral gene transfer vectors shown useful for transducing these cells, model transgenic secretory proteins examined, and some clinical conditions that might benefit from such salivary gland gene transfer. PMID:20219693

  12. Transformation to Small Cell Lung Cancer of Pulmonary Adenocarcinoma: Clinicopathologic Analysis of Six Cases

    PubMed Central

    Ahn, Soomin; Hwang, Soo Hyun; Han, Joungho; Choi, Yoon-La; Lee, Se-Hoon; Ahn, Jin Seok; Park, Keunchil; Ahn, Myung-Ju; Park, Woong-Yang

    2016-01-01

    Background: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are considered the first line treatment for a subset of EGFR-mutated non-small cell lung cancer (NSCLC) patients. Although transformation to small cell lung cancer (SCLC) is one of the known mechanisms of resistance to EGFR TKIs, it is not certain whether transformation to SCLC is exclusively found as a mechanism of TKI resistance in EGFR-mutant tumors. Methods: We identified six patients with primary lung adenocarcinoma that showed transformation to SCLC on second biopsy (n = 401) during a 6-year period. Clinicopathologic information was analyzed and EGFR mutation results were compared between initial and second biopsy samples. Results: Six patients showed transformation from adenocarcinoma to SCLC, of which four were pure SCLCs and two were combined adenocarcinoma and SCLCs. Clinically, four cases were EGFR-mutant tumors from non-smoking females who underwent TKI treatment, and the EGFR mutation was retained in the transformed SCLC tumors. The remaining two adenocarcinomas were EGFR wild-type, and one of these patients received EGFR TKI treatment. Conclusions: NSCLC can acquire a neuroendocrine phenotype with or without EGFR TKI treatment. PMID:27160687

  13. Establishment and Characterization of Immortalized Human Amniotic Epithelial Cells

    PubMed Central

    Zhou, Kaixuan; Koike, Chika; Yoshida, Toshiko; Okabe, Motonori; Fathy, Moustafa; Kyo, Satoru; Kiyono, Tohru; Saito, Shigeru

    2013-01-01

    Abstract Human amniotic epithelial cells (HAEs) have a low immunogenic profile and possess potent immunosuppressive properties. HAEs also have several characteristics similar to stem cells, and they are discarded after parturition. Thus, they could potentially be used in cell therapy with fewer ethical problems. HAEs have a short life, so our aim is to establish and characterize immortalized human amniotic epithelial cells (iHAEs). HAEs were introduced with viral oncogenes E6/E7 and with human telomerase reverse transcriptase (hTERT) to create iHAEs. These iHAEs have proliferated around 200 population doublings (PDs) for at least 12 months. High expression of stem cell markers (Oct 3/4, Nanog, Sox2, Klf4) and epithelial markers (CK5, CK18) were detected by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). These iHAEs were expanded in ultra-low-attachment dishes to form spheroids similarly to epithelial stem/precursor cells. High expression of mesenchymal (CD44, CD73, CD90, CD105) and somatic (CD24, CD29, CD271, Nestin) stem cell markers was detected by flow cytometry. The iHAEs showed adipogenic, osteogenic, neuronal, and cardiac differentiation abilities. In conclusion, the immortalization of HAEs with the characteristics of stem cells has been established, allowing these iHAEs to become useful for cell therapy and regenerative medicine. PMID:23298399

  14. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  15. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers

    PubMed Central

    St Johnston, Daniel

    2016-01-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium1,2. Here we test this assumption in three types of Drosophila epithelia; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside of the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells appears to be driven by lateral adhesion, which pulls cells born outside the epithelia layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  16. Epithelial stem cells and implications for wound repair.

    PubMed

    Plikus, Maksim V; Gay, Denise L; Treffeisen, Elsa; Wang, Anne; Supapannachart, Rarinthip June; Cotsarelis, George

    2012-12-01

    Activation of epithelial stem cells and efficient recruitment of their proliferating progeny plays a critical role in cutaneous wound healing. The reepithelialized wound epidermis has a mosaic composition consisting of progeny that can be traced back both to epidermal and several types of hair follicle stem cells. The contribution of hair follicle stem cells to wound epidermis is particularly intriguing as it involves lineage identity change from follicular to epidermal. Studies from our laboratory show that hair follicle-fated bulge stem cells commit only transient amplifying epidermal progeny that participate in the initial wound re-epithelialization, but eventually are outcompeted by other epidermal clones and largely disappear after a few months. Conversely, recently described stem cell populations residing in the isthmus portion of hair follicle contribute long-lasting progeny toward wound epidermis and, arguably, give rise to new interfollicular epidermal stem cells. The role of epithelial stem cells during wound healing is not limited to regenerating stratified epidermis. By studying regenerative response in large cutaneous wounds, our laboratory uncovered that epithelial cells in the center of the wound can acquire greater morphogenetic plasticity and, together with the underlying wound dermis, can engage in an embryonic-like process of hair follicle neogenesis. Future studies should uncover the cellular and signaling basis of this remarkable adult wound regeneration phenomenon. PMID:23085626

  17. Epithelial Stem Cells and Implications for Wound Repair

    PubMed Central

    Plikus, Maksim V.; Gay, Denise L.; Treffeisen, Elsa; Wang, Anne; Supapannachart, Rarinthip June; Cotsarelis, George

    2012-01-01

    Activation of epithelial stem cells and efficient recruitment of their proliferating progeny plays a critical role in cutaneous wound healing. The reepithelialized wound epidermis hasa mosaic composition consisting of progeny that can be traced back both to epidermal and several types of hair follicle stem cells. The contribution of hair follicle stem cells to wound epidermis is particularly intriguing as it involves lineage identity change from follicular to epidermal. Studies from our laboratory show that hair follicle-fated bulge stem cells commit only transient amplifying epidermal progeny that participate in the initial wound re-epithelialization, but eventually are outcompeted by other epidermal clones and largely disappear after a few months. Conversely, recently described stem cell populations residing in the isthmus portion of hair follicle contribute long-lasting progeny toward wound epidermis and, arguably, give rise to new inter-follicular epidermal stem cells. The role of epithelial stem cells during wound healing is not limited to regenerating stratified epidermis. By studying regenerative response in large cutaneous wounds, our laboratory uncovered that epithelial cells in the center of the wound can acquire greater morphogenetic plasticity and, together with the underlying wound dermis, can engage in an embryonic-like process of hair follicle neogenesis. Future studies should uncover cellular and signaling basis of this remarkable adult wound regeneration phenomenon. PMID:23085626

  18. AN IN VITRO MODEL FOR MURINE URETERIC EPITHELIAL CELLS

    EPA Science Inventory

    This report presents a model developed to study growth and differentiation of primary cultures of ureteric epithelial cells from embryonic C57BL/6N mouse urinary tracts. Single cells were resuspended in medium and plated onto transwells coated with collagen IV and laminin. Basa...

  19. [Isolation, purification and identification of epithelial cells derived from fetal islet-like cell clusters].

    PubMed

    Qiao, Hai; Zhao, Ting; Wang, Yun; Yang, Chun-Rong; Xiao, Mei; Dou, Zhong-Ying

    2007-03-01

    The aim of this article is to provide methods for the isolation and identification of pancreatic stem cells and cell source for research and therapy of diabetes. ICCs were isolated by collagenase IV digesting and then cultured; epithelial cells were purified from monolayer cultured ICCs. The growth curve of the epithelial cells was measured by MTT. The expression of molecular markers in the cells was identified by immunohistochemical staining. The surface markers in the epithelial cells were analyzed by FACS. Epithelial cells were purified from isolated human fetal ICCs and passaged 40 times, and 10(6) - 10(8) cells were cryopreservated per passage. The growth curve demonstrated that the epithelial cells proliferated rapidly. The epithelial cells expressed PDX-1, PCNA, CK-7, CK-19, Nestin, Glut2, and Vimentin, but Insulin was undetected. The cells expressed CD29, CD44, and CD166, but did not express CD11a, CD14, CD34, CD45, CD90, CD105, and CD117. Taken together, these results indicate that self-renewable epithelial cells can be isolated and purified from human fetal pancreas. These also show that the epithelial cells originate from ducts and have the characteristics of pancreatic stem cells. PMID:17460896

  20. The syncytial nature of epithelial cells in the thymic cortex.

    PubMed Central

    Kendall, M D

    1986-01-01

    The epithelial cells of the cortex of human and rodent thymus glands were examined by light and electron microscopy, and the intracellular membrane potentials measured from the subcapsular, cortical and medullary regions. In the human thymus cortex, there is a highly correlated age-independent relationship (r = 0.78) between the distance in micron from one adjacent Type 2/3 epithelial nucleus to another, and the number of thymocytes between them. In rodent glands that had undergone some degree of involution due to hypoxia simulating an altitude of 17 000 feet or following the injection of phenylhydrazine, Type 2/3 epithelial cells were often found to be bi- or multinucleated. Electrophysiological studies of 10 mouse thymus lobes using 0.2 micron tipped electrodes showed that there were highly significant differences (P less than 0.0001) between the intracellular membrane potentials of the subcapsular zone, the cortex and the medulla. When dyes were injected intracellularly (through 0.5 micron tipped electrodes) into individual epithelial cells, methylene blue remained within the cytoplasm, but procion yellow passed in 30 minutes into the nuclei of all the epithelial cells of the cortex but not those of the subcapsular zone, nor the medulla. This indicates that the cortex must be a functional syncytium and it differs in this respect from the rest of the gland. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:3319999

  1. Protrusive Activity Guides Changes in Cell-Cell Tension during Epithelial Cell Scattering

    PubMed Central

    Maruthamuthu, Venkat; Gardel, Margaret L.

    2014-01-01

    Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering. PMID:25099795

  2. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed

  3. Short-Chain Fatty Acids Regulate Secretion of IL-8 from Human Intestinal Epithelial Cell Lines in vitro.

    PubMed

    Asarat, M; Vasiljevic, T; Apostolopoulos, V; Donkor, O

    2015-01-01

    Short-chain fatty acids (SCFAs) including acetate, propionate and butyrate play an important role in the physiological functions of epithelial cells and colonocytes, such as immune response regulation. Human intestinal epithelial cells (IECs) contribute in intestinal immune response via different ways, such as production of different immune factors including Interleukin (IL) IL-8, which act as chemoattractant for neutrophils, and subsequently enhance inflammation. Therefore, we aimed to evaluate the effects of SCFAs on IECs viability and production of IL-8 in vitro. SCFAs were co-cultured with either normal intestinal epithelial (T4056) or adenocarcinoma derived (HT-29) cell lines for 24-96 h in the presence of E.coli lipopolysaccharides (LPS). Cell viability, proliferation, production of IL-8 and expression of IL-8 mRNA were determined in the cell cultures. The result showed that 20 mM of SCFAs was non-cytotoxic to T4056 and enhanced their growth, whereas the growth of HT-29 was inhibited. The SCFAs down regulated LPS-stimulated IL-8 secretion with different response patterns, but no obvious effects on the release of IL-8 from non LPS- stimulated cells. In conclusion, SCFAs showed regulatory effect on release of LPS-stimulated IL-8 as well as the expression of mRNA of IL-8; these might explain the anti-inflammatory and anti-carcinogenic mechanism of SCFAs. PMID:26436853

  4. [Epithelial cell in intestinal homeostasis and inflammatory bowel diseases].

    PubMed

    Zouiten-Mekki, Lilia; Serghini, Meriem; Fekih, Monia; Kallel, Lamia; Matri, Samira; Ben Mustapha, Nadia; Boubaker, Jalel; Filali, Azza

    2013-12-01

    Crohn's disease (CD) and ulcerative colitis (UC) are the principal inflammatory bowel diseases (IBD) which physiopathology is currently poorly elucidated. During these diseases, the participation of the epithelial cell in the installation and the perpetuation of the intestinal inflammation is now clearly implicated. In fact, the intestinal epithelium located at the interface between the internal environment and the intestinal luminal, is key to the homeostatic regulation of the intestinal barrier. This barrier can schematically be regarded as being three barriers in one: a physical, chemical and immune barrier. The barrier function of epithelial cell can be altered by various mechanisms as occurs in IBD. The goal of this article is to review the literature on the role of the epithelial cell in intestinal homeostasis and its implication in the IBD. PMID:24356146

  5. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay

    PubMed Central

    Park, Jung Wook; Lee, John K.; Phillips, John W.; Huang, Patrick; Cheng, Donghui; Huang, Jiaoti; Witte, Owen N.

    2016-01-01

    The cell of origin for prostate cancer remains a subject of debate. Genetically engineered mouse models have demonstrated that both basal and luminal cells can serve as cells of origin for prostate cancer. Using a human prostate regeneration and transformation assay, our group previously demonstrated that basal cells can serve as efficient targets for transformation. Recently, a subpopulation of multipotent human luminal cells defined by CD26 expression that retains progenitor activity in a defined organoid culture was identified. We transduced primary human prostate basal and luminal cells with lentiviruses expressing c-Myc and activated AKT1 (myristoylated AKT1 or myrAKT1) to mimic the MYC amplification and PTEN loss commonly detected in human prostate cancer. These cells were propagated in organoid culture before being transplanted into immunodeficient mice. We found that c-Myc/myrAKT1–transduced luminal xenografts exhibited histological features of well-differentiated acinar adenocarcinoma, with strong androgen receptor (AR) and prostate-specific antigen (PSA) expression. In contrast, c-Myc/myrAKT1–transduced basal xenografts were histologically more aggressive, with a loss of acinar structures and low/absent AR and PSA expression. Our findings imply that distinct subtypes of prostate cancer may arise from luminal and basal epithelial cell types subjected to the same oncogenic insults. This study provides a platform for the functional evaluation of oncogenes in basal and luminal epithelial populations of the human prostate. Tumors derived in this fashion with defined genetics can be used in the preclinical development of targeted therapeutics. PMID:27044116

  6. Metabolism and effects of progesterone in the human endometrial adenocarcinoma cell line HEC-1.

    PubMed

    Satyaswaroop, P G; Frost, A; Gurpide, E

    1980-01-01

    Human endometrial adenocarcinoma cells (HEC-1 line) were incubated with 14C-progesterone. Four major labeled metabolites, 3 beta-hydroxy 5 alpha-pregnan-20-one, 5 alpha-pregnane-3 beta, 20 alpha-diol, 20 alpha-hydroxy-4-pregnen-3-one and 5 alpha-pregnane-3, 20-dione were separated by thin layer chromatography, further purified by high pressure liquid chromatography, and finally identified by addition of carriers and crystallization to constant specific activity. Among these metabolites, 5 alpha-pregnane-3 beta, 20 alpha-diol seems characteristic of this cell line since its formation from labeled progesterone was not detected in normal endometrium or in 2 specimens of endometrial adenocarcinoma. The growth of HEC cells was unaffected by either progesterone or medroxyprogesterone acetate, a slowly metabolized progestin, at about 10(-6) M levels but was inhibited by about 10(-5) M concentrations of these compounds. PMID:7376209

  7. PVM/MA-shelled selol nanocapsules promote cell cycle arrest in A549 lung adenocarcinoma cells

    PubMed Central

    2014-01-01

    Background Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol’s hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). Results Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. Conclusions This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells. PMID:25149827

  8. Oxidized alginate hydrogels as niche environments for corneal epithelial cells

    PubMed Central

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-01-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2–0.8 µm) than unmodified gels (pore diameter: 0.05–0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy. © 2013 The Authors. Journal of Biomedical Materials Research Part A Published byWiley Periodicals, Inc. Part A: 102A: 3393–3400, 2014. PMID:24142706

  9. β-III tubulin modulates the behavior of Snail overexpressed during the epithelial-to-mesenchymal transition in colon cancer cells.

    PubMed

    Sobierajska, Katarzyna; Wieczorek, Katarzyna; Ciszewski, Wojciech M; Sacewicz-Hofman, Izabela; Wawro, Marta E; Wiktorska, Magdalena; Boncela, Joanna; Papiewska-Pajak, Izabela; Kwasniak, Pawel; Wyroba, Elzbieta; Cierniewski, Czeslaw S; Niewiarowska, Jolanta

    2016-09-01

    Class III β-tubulin (TUBB3) is a marker of drug resistance expressed in a variety of solid tumors. Originally, it was described as an important element of chemoresistance to taxanes. Recent studies have revealed that TUBB3 is also involved in an adaptive response to a microenvironmental stressor, e.g. low oxygen levels and poor nutrient supply in some solid tumors, independently of the microtubule targeting agent. Furthermore, it has been demonstrated that TUBB3 is a marker of biological aggressiveness associated with modulation of metastatic abilities in colon cancer. The epithelial-to-mesenchymal transition (EMT) is a basic cellular process by which epithelial cells lose their epithelial behavior and become invasive cells involved in cancer metastasis. Snail is a zinc-finger transcription factor which is able to induce EMT through the repression of E-cadherin expression. In the presented studies we focused on the analysis of the TUBB3 role in EMT-induced colon adenocarcinoma cell lines HT-29 and LS180. We observed a positive correlation between Snail presence and TUBB3 upregulation in tested adenocarcinoma cell lines. The cellular and behavioral analysis revealed for the first time that elevated TUBB3 level is functionally linked to increased cell migration and invasive capability of EMT induced cells. Additionally, the post-transcriptional modifications (phosphorylation, glycosylation) appear to regulate the cellular localization of TUBB3 and its phosphorylation, observed in cytoskeleton, is probably involved in cell motility modulation. PMID:27188792

  10. Adenocarcinoma cells isolated from patients in the presence of cerium and transferrin in vitro

    PubMed Central

    Zende-Del, A; Gholami, MR; Abdollahpour, F; Ahmadvand, H

    2015-01-01

    Aim: Cerium as a trace element in the periodic table is a member of the lanthanide group. Cerium ionic radius and its binding properties are similar to ferric ions, which may be bound to transferrin. So it can be considered as a competitive element to iron and can interfere with iron absorption. The aim of this study was to investigate the inhibitory effect of Cerium in presence of transferrin on gastric adenocarcinoma cells in vitro. Methods: The adenocarcinoma cells were obtained from patients after a pathological confirmation, then they were cultured in DMEM environment and cytotoxic effect of different concentrations of cerium were measured (0.1, 1, 10 and 100 µM) in the presence and absence of transferrin, on periods 24 and 48 hours by MTT and LDH cytotoxic assay. Results: The results of MTT and LDH measurements showed that Cerium itself has a cytotoxic effect on cancer cells isolated from the patient as well as it increases significantly in the presence of transferrin carrying a mortality rate of cancer cells (P <.05). Conclusion: Cerium is competitive element in the mechanism of iron absorption and can interfere and inhibit the growth of adenocarcinoma cancer cells; also, the use of Cerium and transferrin simultaneously may cause a greater inhibitory effect. PMID:26664465

  11. A6 in Treating Patients With Persistent or Recurrent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2015-02-27

    Fallopian Tube Carcinoma; Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Recurrent Ovarian Carcinoma; Undifferentiated Ovarian Carcinoma

  12. Expression of keratin and vimentin intermediate filaments in rabbit bladder epithelial cells at different stages of benzo(a)pyrene-induced neoplastic progression

    SciTech Connect

    Summerhayes, I.C.; Cheng, Y.S.E.; Sun, T.T.; Chen, L.B.

    1981-07-01

    Rabbit bladder epithelium, grown on collagen gels and exposed to the chemical carcinogen benzo(a)pyrene, produced nontumorigenic altered foci as well as tumorigenic epithelial cell lines during 120 to 180 d in culture. Immunofluorescence studies revealed extensive keratin filaments in both primary epithelial cells and benzo(a)pyrene-induced altered epithelial foci but showed no detectable vimentin filaments. The absence of vimentin expression in these cells was confirmed by two-dimensional gel electrophoresis. In contrast, immunofluorescence staining of the cloned benzo(a)pyrene-transformed rabbit bladder epithelial cell line, RBC-1, revealed a reduction in filamentous keratin concomitant with the expression of vimentin filaments. The epithelial nature of this cell line was established by the observation that cells injected into nude mice formed well-differentiated adenocarcinomas. Frozen sections of such tumors showed strong staining with antikeratins antibodies, but no detectable staining with antivimentin antibodies. These results demonstrated a differential expression of intermediate filament type in cells at different stages of neoplastic progression and in cells maintained in different growth environments. It is apparent that the expression of intermediate filaments throughout neoplastic progression is best studied by use of an in vivo model system in parallel with culture studies.

  13. Epithelial cell cultures from normal and cancerous human tissues.

    PubMed

    Owens, R B; Smith, H S; Nelson-Rees, W A; Springer, E L

    1976-04-01

    Thirty epithelial cell strains were isolated from human carcinomas and normal epithelial tissues by collagenase digestion and selective removal of fibroblasts with trypsin-Versene. Most strains were obtained from metastatic carcinomas or epithelia of the urinary and intestinal tracts. The success rate for growth of both neoplastic and normal tissues (excluding skin) was 38%. Six of these strains showed gross morphologic and chromosome changes typical of malignant cells. Nine resembled normal epithelium. The other 15 exhibited some degree of morphologic change from normal. PMID:176412

  14. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. PMID:27189858

  15. Anti-proliferative effect on a colon adenocarcinoma cell line exerted by a membrane disrupting antimicrobial peptide KL15

    PubMed Central

    Chen, Yu-Ching; Tsai, Tsung-Lin; Ye, Xin-Hong; Lin, Thy-Hou

    2015-01-01

    The antimicrobial and anticancer activities of an antimicrobial peptide (AMP) KL15 obtained through in silico modification on the sequences of 2 previously identified bacteriocins m2163 and m2386 from Lactobacillus casei ATCC 334 by us have been studied. While significant bactericidal effect on the pathogenic bacteria Listeria, Escherichia, Bacillus, Staphylococcus, Enterococcus is exerted by KL15, the AMP can also kill 2 human adenocarcinoma cells SW480 and Caco-2 with measured IC50 as 50 μg/ml or 26.3 μM. However, the IC50 determined for KL15 on killing the normal human mammary epithelial cell H184B5F5/M10 is 150 μg/ml. The conformation of KL15 dissolved in 50% 2,2,2-trifluroroethanol or in 2 large unilamellar vesicle systems determined by circular dichroism spectroscopy appears to be helical. Further, the cell membrane permeability of treated SW480 cells by KL15 appears to be significantly enhanced as studied by both flow cytometry and confocal microscopy. As observed under a scanning electron microscope, the morphology of treated SW480 cells is also significantly changed as treating time by 80 μg/ml KL15 is increased. KL15 appears to be able to pierce the cell membrane of treated SW480 cells so that numerous porous structures are generated and observable. Therefore, KL15 is likely to kill the treated SW480 cells through the necrotic pathway similar to some recently identified AMPs by others. PMID:26147829

  16. Anti-proliferative effect on a colon adenocarcinoma cell line exerted by a membrane disrupting antimicrobial peptide KL15.

    PubMed

    Chen, Yu-Ching; Tsai, Tsung-Lin; Ye, Xin-Hong; Lin, Thy-Hou

    2015-01-01

    The antimicrobial and anticancer activities of an antimicrobial peptide (AMP) KL15 obtained through in silico modification on the sequences of 2 previously identified bacteriocins m2163 and m2386 from Lactobacillus casei ATCC 334 by us have been studied. While significant bactericidal effect on the pathogenic bacteria Listeria, Escherichia, Bacillus, Staphylococcus, Enterococcus is exerted by KL15, the AMP can also kill 2 human adenocarcinoma cells SW480 and Caco-2 with measured IC50 as 50 μg/ml or 26.3 μM. However, the IC50 determined for KL15 on killing the normal human mammary epithelial cell H184B5F5/M10 is 150 μg/ml. The conformation of KL15 dissolved in 50% 2,2,2-trifluroroethanol or in 2 large unilamellar vesicle systems determined by circular dichroism spectroscopy appears to be helical. Further, the cell membrane permeability of treated SW480 cells by KL15 appears to be significantly enhanced as studied by both flow cytometry and confocal microscopy. As observed under a scanning electron microscope, the morphology of treated SW480 cells is also significantly changed as treating time by 80 μg/ml KL15 is increased. KL15 appears to be able to pierce the cell membrane of treated SW480 cells so that numerous porous structures are generated and observable. Therefore, KL15 is likely to kill the treated SW480 cells through the necrotic pathway similar to some recently identified AMPs by others. PMID:26147829

  17. Gastric mucous neck cell and intestinal goblet cell phenotypes in gastric adenocarcinoma.

    PubMed Central

    Hughes, N R; Bhathal, P S

    1997-01-01

    AIM: To investigate the phenotype of cells comprising diffuse and intestinal-type gastric cancers using monoclonal antibodies to two antigens. One antigen (designated D10) is characteristic of gastric mucous neck cells, cardiac glands, pyloric glands, and Brunner's glands. The second antigen (designated 17NM) is specific to the mucous vacuole of intestinal goblet cells. METHODS: Thirty two gastrectomy specimens with adenocarcinoma were studied. Serial paraffin sections were stained immunohistochemically for D10 and 17NM and histochemically for acid and neutral mucins. The cancers were classified histologically as of either diffuse or intestinal type according to Lauren. RESULTS: Of 15 diffuse-type gastric carcinomas, 11 showed the majority of cancer cells staining for D10 while four were typical signet ring cell cancers staining predominantly for 17NM; five tumours displayed both phenotypes with the two phenotypes segregated in different areas of the tumours. In contrast, of 16 intestinal-type cancers, six expressed 17NM, three D10, five neither antigen, and two expressed both antigens. One indeterminate-type cancer expressed both antigens. The staining of individual cells for D10 and 17NM was mutually exclusive in both diffuse and intestinal types. In contrast to the diffuse cancers, intestinal-type cancers typically expressed either antigen only in occasional small groups of cells and individual cells. CONCLUSIONS: In disease, the gastric stem cell can assume the capacity of the duodenal stem cell for divergent differentiation into either intestinal goblet cells (for example, as in intestinal metaplasia) or Brunner's gland cells (for example, as in pyloric gland/Brunner's gland metaplasia). With neoplastic transformation, this potential for divergent differentiation is maintained and gives rise to diffuse-type cancers that display either the D10 phenotype, the 17NM phenotype, or the clonal expression of both phenotypes. In the more cell cohesive (intestinal

  18. Expression of the FGFR2 mesenchymal splicing variant in epithelial cells drives epithelial-mesenchymal transition

    PubMed Central

    Ranieri, Danilo; Rosato, Benedetta; Nanni, Monica; Magenta, Alessandra

    2016-01-01

    The FGFRs are receptor tyrosine kinases expressed by tissue-specific alternative splicing in epithelial IIIb or mesenchymal IIIc isoforms. Deregulation of FGF/FGFR signaling unbalances the epithelial-stromal homeostasis and may lead to cancer development. In the epithelial-context, while FGFR2b/KGFR acts as tumor suppressor, FGFR2c appears to play an oncogenic role. Based on our recent observation that the switching of FGFR2b versus FGFR2c induces EMT, here we investigated the biological outcome of the ectopic expression of FGFR2c in normal human keratinocytes. Morphological analysis showed that, differently from FGFR2b overexpression, the forced expression and activation of FGFR2c drive the epithelial cells to acquire a mesenchymal-like shape and actin reorganization. Moreover, the appearance of invasiveness and anchorage-independent growth ability in FGFR2c transfected keratinocytes was consistent with the potential tumorigenic role proposed for this receptor variant. Biochemical and molecular approaches revealed that the observed phenotypic changes were accompanied by modulation of EMT biomarkers and indicated the involvement of EMT transcription factors and miRs. Finally, the analysis of the expression pattern of discriminating markers strongly suggested that activation of FGFR2c triggers a process corresponding to the initiation of the pathological type III EMT, but not to the more physiological type II EMT occurring during FGFR2b-mediated wound healing. PMID:26713601

  19. miR-99a regulates ROS-mediated invasion and migration of lung adenocarcinoma cells by targeting NOX4.

    PubMed

    Sun, Mei; Hong, Shunming; Li, Wenhan; Wang, Pengfei; You, Jinqiang; Zhang, Xuebin; Tang, Fan; Wang, Ping; Zhang, Chunzhi

    2016-05-01

    miR-99a is frequently downregulated in various types of human malignancies including lung adenocarcinoma. Recent studies have reported that miR-99a regulates cell growth and cell cycle progression by targeting mTOR, AKT1 and FGFR3. However, the underlying mechanisms involved in the modulation of invasion and migration by miR-99a remain elusive. In this study, we analyzed the relationship between the expression of miR-99a and clinical stage or metastasis in 90 matched lung adenocarcinoma and adjacent non-tumor lung tissues. Downregulation of miR-99a was significantly associated with advanced stage and tumor metastasis in lung adenocarcinoma patients, and it was found to be a poor prognostic factor in lung adenocarcinoma. Furthermore, functional experiments found that overexpression of miR-99a inhibited the proliferation, migration and invasion of lung adenocarcinoma A549 and Calu3 cells in vitro. We then identified NOX4 as a target gene of miR-99a and NOX4 mediated the inhibition of invasion and migration of lung adenocarcinoma cells by miR-99a. By targeting NOX4-mediated ROS production, miR-99a regulated the invasion and migration of lung adenocarcinoma cells. Moreover, overexpression of miR-99a significantly inhibited tumor growth in vivo. Immunohistochemical staining analysis of the mouse tumor tissues revealed that NOX4 levels were downregulated in the miR-99a treatment group, confirming the in vitro data of NOX4 as a direct target gene of miR-99a. Taken together, these data indicate for the first time that miR-99a directly regulates the invasion and migration in lung adenocarcinoma by targeting NOX4 and that overexpression of miR-99a may become a therapeutic strategy for lung adenocarcinoma. PMID:26986073

  20. Sp3 regulates fas expression in lung epithelial cells.

    PubMed Central

    Pang, H; Miranda, K; Fine, A

    1998-01-01

    By transducing an apoptotic signal in immune effector cells, Fas has been directly implicated in the control of immunological activity. Expression and functional results, however, have also suggested a role for Fas in regulating cell turnover in specific epithelial populations. To characterize factors responsible for Fas expression in epithelial cells, approximately 3 kb of the 5' flanking region of the mouse Fas gene was isolated. By rapid amplification of cDNA ends and primer extension, transcriptional start sites were identified within 50 bp upstream of the translation start site. Transient transfection of promoter-luciferase constructs in a mouse lung epithelial cell line, MLE-15, localized promoter activity to the first 77 bp of upstream sequence. By using a 60 bp DNA probe (-18 to -77) in electrophoretic mobility-shift assays, three shifted complexes were found. Incubation with excess cold Sp1 oligonucleotide or an anti-Sp3 antibody inhibited complex formation. Site-directed mutagenesis of the Sp1 site resulted in 60-70% loss of promoter activity. In Drosophila SL-2 cells, promoter activity was markedly increased by co-transfection of an Sp3 expression construct. These results show that the Sp3 protein is involved in regulating Fas gene expression in lung epithelial cells. PMID:9639581

  1. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells

    PubMed Central

    Chen, Yu-Ching; Statt, Sarah; Wu, Reen; Chang, Hao-Teng; Liao, Jiunn-Wang; Wang, Chien-Neng; Shyu, Woei-Cherng; Lee, Chen-Chen

    2016-01-01

    Epithelial–mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway. PMID:26739898

  2. Drug sensitivity profiling and molecular characteristics of cells from pleural effusions of patients with lung adenocarcinoma

    PubMed Central

    Hillerdal, Carl-Olof; Celep, Aytekin; Yousef-Fadhel, Eviane; Skribek, Henriette; Hjerpe, Anders; Székely, László; Dobra, Katalin

    2015-01-01

    We propose to assess the therapeutic value of biomarker-guided individualized chemotherapy in patients with metastasizing lung adenocarcinoma. In this study, we used primary cells from pleural effusions from sixteen patients diagnosed with adenocarcinomas originating in the lung and from four patients with no malignant diagnosis. The ex vivo drug sensitivity of primary cells was assessed for 32 chemotherapeutical drugs. Linear regression analyses were performed to examine possible correlations between the drug sensitivity, overall survival and expression of ERCC1 and RRM1. The ex vivo drug sensitivity profiles of the patients revealed considerable heterogeneity in drug response. Vinblastine, vinorelbine, paclitaxel and actinomycin D showed high efficiency against 50% of the tested primary cells. Significant correlation was detected between the ex vivo sensitivity to platinum based drugs and gemcitabine and the level of ERCC1 and RRM1. No significant correlation was however seen between overall survival and drug sensitivity. The heterogeneity of the drug response suggests that optimal care of the adenocarcinoma patients should include the determination of drug sensitivity of the primary cells and would benefit to use personalized therapy. PMID:26000095

  3. Clear cell adenocarcinoma arising from adenomyotic cyst: A case report and literature review.

    PubMed

    Baba, Akira; Yamazoe, Shinji; Dogru, Murat; Ogawa, Mariko; Takamatsu, Kiyoshi; Miyauchi, Jun

    2016-02-01

    Ovaries are the primary sites of cancerous disease that is derived from endometriosis. Uterine cancer originating from endometriosis is very rare. The most frequent histological subtype of cancer derived from endometriosis is endometrioid adenocarcinoma, a subtype of clear cell carcinoma which is exceedingly rare. We report a case of a 40-year-old Japanese woman with a six year history of uterine leiomyoma. The patient was clinically and radiologically suspected to have degenerative uterine myoma with a possible malignant association and underwent a transabdominal total hysterectomy. Histopathological examination of the specimens revealed clear cell adenocarcinoma arising from the adenomyotic cyst. A literature review of clear cell adenocarcinomas arising from uterine adenomyotic cysts (cystic adenomyosis), emphasizes the clinically and radiologically important features of this very rare entity. Clear cell carcinoma association should be suspected in patients who are under follow-up for uterine myomas and present with cystic uterine changes with solid component on magnetic resonance imaging or computed tomography scans. PMID:26530432

  4. Influences of enteral nutrition upon CEACAM6 expression by intestinal epithelial cells.

    PubMed

    Keenan, Jacqueline I; Hooper, Elizabeth M; Tyrer, Peter C; Day, Andrew S

    2014-11-01

    Exclusive enteral nutrition is established as an initial therapy to induce remission in active Crohn's disease (CD), especially in children, but the mechanisms of action of this therapy are yet to be fully defined. CEACAM6 protein is an adhesion molecule that is up-regulated in active CD and implicated in the attachment of adherent-invasive Escherichia coli (AIEC) to the gut epithelium. Using the Caco-2 human adenocarcinoma cell line, this study showed that the incubation of human cells with a polymeric formula (PF) resulted in a dose-dependent increase in the expression of CEACAM6, and that this effect was most noticeable on the cell surface. Further investigation revealed that PF doubled the release of CEACAM6 protein by Caco-2 cells exposed to PF, and that an increase in release of soluble CEACAM6 inversely correlated with the ability of AIEC to associate with the intestinal epithelial cells. Our findings suggest that the secretion of cell surface-associated proteins acting as releasable decoys may be an aspect of the gut's innate immune response to pathogenic bacteria that is strengthened by PF in the setting of CD. PMID:24326999

  5. Substrate stiffness modulates lung cancer cell migration but not epithelial to mesenchymal transition.

    PubMed

    Shukla, V C; Higuita-Castro, N; Nana-Sinkam, P; Ghadiali, S N

    2016-05-01

    Biomechanical properties of the tumor microenvironment, including matrix/substrate stiffness, play a significant role in tumor evolution and metastasis. Epithelial to Mesenchymal Transition (EMT) is a fundamental biological process that is associated with increased cancer cell migration and invasion. The goal of this study was to investigate (1) how substrate stiffness modulates the migration behaviors of lung adenocarcinoma cells (A549) and (2) if stiffness-induced changes in cell migration correlate with biochemical markers of EMT. Collagen-coated polydimethylsiloxane (PDMS) substrates and an Ibidi migration assay were used to investigate how substrate stiffness alters the migration patterns of A549 cells. RT-PCR, western blotting and immunofluorescence were used to investigate how substrate stiffness alters biochemical markers of EMT, that is, E-cadherin and N-cadherin, and the phosphorylation of focal adhesion proteins. Increases in substrate stiffness led to slower, more directional migration but did not alter the biochemical markers of EMT. Interestingly, growth factor (i.e., Transforming Growth Factor-β) stimulation resulted in similar levels of EMT regardless of substrate stiffness. We also observed decreased levels of phosphorylated focal adhesion kinase (FAK) and paxillin on stiffer substrates which correlated with slower cell migration. These results indicate that substrate stiffness modulates lung cancer cell migration via focal adhesion signaling as opposed to EMT signaling. PMID:26779779

  6. Airway epithelial cell response to human metapneumovirus infection

    SciTech Connect

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.

  7. Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells.

    PubMed

    Ballweg, Korbinian; Mutze, Kathrin; Königshoff, Melanie; Eickelberg, Oliver; Meiners, Silke

    2014-12-01

    Cigarette smoke is the main risk factor for chronic obstructive pulmonary disease (COPD). Exposure of cells to cigarette smoke induces an initial adaptive cellular stress response involving increased oxidative stress and induction of inflammatory signaling pathways. Exposure of mitochondria to cellular stress alters their fusion/fission dynamics. Whereas mild stress induces a prosurvival response termed stress-induced mitochondrial hyperfusion, severe stress results in mitochondrial fragmentation and mitophagy. In the present study, we analyzed the mitochondrial response to mild and nontoxic doses of cigarette smoke extract (CSE) in alveolar epithelial cells. We characterized mitochondrial morphology, expression of mitochondrial fusion and fission genes, markers of mitochondrial proteostasis, as well as mitochondrial functions such as membrane potential and oxygen consumption. Murine lung epithelial (MLE)12 and primary mouse alveolar epithelial cells revealed pronounced mitochondrial hyperfusion upon treatment with CSE, accompanied by increased expression of the mitochondrial fusion protein mitofusin 2 and increased metabolic activity. We did not observe any alterations in mitochondrial proteostasis, i.e., induction of the mitochondrial unfolded protein response or mitophagy. Therefore, our data indicate an adaptive prosurvival response of mitochondria of alveolar epithelial cells to nontoxic concentrations of CSE. A hyperfused mitochondrial network, however, renders the cell more vulnerable to additional stress, such as sustained cigarette smoke exposure. As such, cigarette smoke-induced mitochondrial hyperfusion, although part of a beneficial adaptive stress response in the first place, may contribute to the pathogenesis of COPD. PMID:25326581

  8. AIRWAY EPITHELIAL CELL RESPONSE TO HUMAN METAPNEUMOVIRUS INFECTION

    PubMed Central

    X, Bao; T, Liu; L, Spetch; D, Kolli; R.P, Garofalo; A, Casola

    2007-01-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-κB, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immuno-modulatory mediators. PMID:17655903

  9. Apicobasal polarity controls lymphocyte adhesion to hepatic epithelial cells.

    PubMed

    Reglero-Real, Natalia; Alvarez-Varela, Adrián; Cernuda-Morollón, Eva; Feito, Jorge; Marcos-Ramiro, Beatriz; Fernández-Martín, Laura; Gómez-Lechón, Maria José; Muntané, Jordi; Sandoval, Pilar; Majano, Pedro L; Correas, Isabel; Alonso, Miguel A; Millán, Jaime

    2014-09-25

    Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1) adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α). We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery. PMID:25242329

  10. Synthesis of CdTe quantum dot-conjugated CC49 and their application for in vitro imaging of gastric adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Peng; Sun, Peng; Zhang, Xu-Rui; Yang, Wu-Li; Si, Cheng-Shuai

    2013-06-01

    The purpose of this experiment was to investigate the visible imaging of gastric adenocarcinoma cells in vitro by targeting tumor-associated glycoprotein 72 (TAG-72) with near-infrared quantum dots (QDs). QDs with an emission wavelength of about 550 to 780 nm were conjugated to CC49 monoclonal antibodies against TAG-72, resulting in a probe named as CC49-QDs. A gastric adenocarcinoma cell line (MGC80-3) expressing high levels of TAG-72 was cultured for fluorescence imaging, and a gastric epithelial cell line (GES-1) was used for the negative control group. Transmission electron microscopy indicated that the average diameter of CC49-QDs was 0.2 nm higher compared with that of the primary QDs. Also, fluorescence spectrum analysis indicated that the CC49-QDs did not have different optical properties compared to the primary QDs. Immunohistochemical examination and in vitro fluorescence imaging of the tumors showed that the CC49-QDs probe could bind TAG-72 expressed on MGC80-3 cells.

  11. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.

    PubMed

    Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

    2014-11-01

    Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry. PMID:25239531

  12. Multiple cells-of-origin of mutant K-Ras-induced mouse lung adenocarcinoma.

    PubMed

    Sutherland, Kate D; Song, Ji-Ying; Kwon, Min Chul; Proost, Natalie; Zevenhoven, John; Berns, Anton

    2014-04-01

    Much controversy surrounds the cell-of-origin of mutant K-Ras (K-RasG12D)-induced lung adenocarcinoma. To shed light on this issue, we have used technology that enables us to conditionally target K-RasG12D expression in Surfactant Protein C (SPC)(+) alveolar type 2 cells and in Clara cell antigen 10 (CC10)(+) Clara cells by use of cell-type-restricted recombinant Adeno-Cre viruses. Experiments were performed both in the presence and absence of the tumor suppressor gene p53, enabling us to assess what effect the cell-of-origin and the introduced genetic lesions have on the phenotypic characteristics of the resulting adenocarcinomas. We conclude that both SPC-expressing alveolar type 2 cells and CC10-expressing Clara cells have the ability to initiate malignant transformation following the introduction of these genetic alterations. The lungs of K-Ras(lox-Stop-lox-G12D/+) and K-Ras(lox-Stop-lox-G12D/+);tumor suppressor gene Trp53(F/F) mice infected with Adeno5-SPC-Cre and Adeno5-CC10-Cre viruses displayed differences in their tumor spectrum, indicating distinct cellular routes of tumor initiation. Moreover, using a multicolor Cre reporter line, we demonstrate that the resulting tumors arise from a clonal expansion of switched cells. Taken together, these results indicate that there are multiple cellular paths to K-RasG12D-induced adenocarcinoma and that the initiating cell influences the histopathological phenotype of the tumors that arise. PMID:24586047

  13. Modulation of Candida albicans attachment to human epithelial cells by bacteria and carbohydrates.

    PubMed Central

    Centeno, A; Davis, C P; Cohen, M S; Warren, M M

    1983-01-01

    The effects of carbohydrates (mannose and dextrose). Escherichia coli 07KL. and Klebsiella pneumoniae on Candida albicans attachment to epithelial cells was studied. Dextrose had no effect on yeast attachment to epithelial cells. Conversely, mannose significantly decreased both yeast and piliated bacterial attachment (E. coli 07KL, heavily piliated K. pneumoniae) whereas having no effect on nonpiliated K. pneumoniae attachment to epithelial cells. The number of yeasts attaching to epithelial cells was enhanced by preincubation of epithelial cells with piliated strains of bacteria, whereas preincubation with nonpiliated strains of bacteria had no effect on yeast attachment. Scanning electron microscopy showed that piliated bacteria and yeasts were juxtaposed on the epithelial cell surface. These data suggest that certain piliated strains of bacteria can enhance C. albicans attachment to epithelial cells and that type 1 pili of bacteria can be a factor in the enhanced attachment of C. albicans to epithelial cells. Images PMID:6132878

  14. Mixed squamous cell and glandular papilloma of the lung resembling early adenocarcinoma: A case report

    PubMed Central

    Abe, Jiro; Ito, Shigemi; Takahashi, Satomi; Sato, Ikuro; Tanaka, Ryota; Sato, Taku; Okazaki, Toshimasa

    2016-01-01

    Introduction An extremely rare case of mixed squamous cell and glandular papilloma of the lung is reported. The correlation between the radiological and the pathological features as well as the clinical pitfall in making a diagnosis is discussed. Presentation of case An asymptomatic 68-year-old female with a cigarette smoking habit presented with a small nodule in her peripheral lung. A wedge resection was performed though it failed on-site diagnosis which was instead obtained following pathological scrutiny. The postsurgical course was excellent with no recurrence of disease. Discussion A small ground glass nodule gradually enlarged and transformed to a partially solid nodule a year and a half later. This transformation falsely made us suspect an early adenocarcinoma development. Eventually, the extremely rare subtype of pulmonary papilloma, with biphasic glandular and squamous cells, had been demonstrated to obstruct the peripheral bronchiole; and the adjoining alveoli had filled with a large volume of mucus. These pathological features seemed to have constituted the inner solid portion and the marginal ground glass portion respectively in the CT images, mimicking invasive lepidic adenocarcinoma. Conclusion Both pre- and intra-operative diagnoses are difficult mainly because of the rareness of the disease, however, mixed squamous cell and glandular papilloma may be considered in case the presence of primary adenocarcinoma is not validated. PMID:27141302

  15. Antidiabetic drug metformin inhibits esophageal adenocarcinoma cell proliferation in vitro and in vivo.

    PubMed

    Fujihara, Shintaro; Kato, Kiyohito; Morishita, Asahiro; Iwama, Hisakazu; Nishioka, Tomoko; Chiyo, Taiga; Nishiyama, Noriko; Miyoshi, Hisaaki; Kobayashi, Mitsuyoshi; Kobara, Hideki; Mori, Hirohito; Okano, Keiichi; Suzuki, Yasuyuki; Masaki, Tsutomu

    2015-05-01

    Esophageal carcinoma is the eighth most common cancer worldwide and the sixth leading cause of cancer-related deaths, with one of the worst prognoses of any form of cancer. Treatment with the anti-diabetic drug metformin has been associated with reduced cancer incidence in patients with type 2 diabetes. This study therefore evaluated the effects of metformin on the proliferation, in vitro and in vivo, of human esophageal adenocarcinoma cells, as well as the microRNAs associated with the antitumor effects of metformin. Metformin inhibited the proliferation of the esophageal adenocarcinoma cell lines OE19, OE33, SK-GT4 and OACM 5.1C, blocking the G0 to G1 transition in the cell cycle. This was accompanied by strong reductions in G1 cyclins, especially cyclin D1, cyclin-dependent kinase (Cdk)4, and Cdk6, and decreases in retinoblastoma protein phosphorylation. In addition, metformin reduced the phosphorylation of epidermal growth factor receptor and insulin-like growth factor and insulin-like growth factor-1 receptor, as well as angiogenesis-related proteins, such as vascular endothelial growth factor, tissue inhibitor of metalloproteinases (TIMP)-1, and TIMP-2. Metformin also markedly altered microRNA expression. Treatment with metformin of athymic nude mice bearing xenograft tumors reduced tumor proliferation. These findings suggest that metformin may have clinical use in the treatment of esophageal adenocarcinoma. PMID:25709052

  16. Enhancement of Thermal Damage to Adenocarcinoma Cells by Iron Nanoparticles Modified with MUC1 Aptamer.

    PubMed

    Guo, Fangqin; Hu, Yan; Yu, Lianyuan; Deng, Xiaoyuan; Meng, Jie; Wang, Chen; Yang, Xian-Da

    2016-03-01

    Hyperthermia cancer treatment is an adjunctive therapy that aims at killing the tumor cells with excessive heat that is usually generated by metal contrasts exposed to alternating magnetic field. The efficacy of hyperthermia is often limited by the heat damage to normal tissue due to indiscriminate distribution of the metal contrasts within the body. Tumor-targeting metal contrasts may reduce the toxicity of hyperthermia and improve the efficacy of thermotherapy against cancer. MUC1 is a glycoprotein over expressed in most adenocarcinomas, and represents an attractive therapeutic target. In this study, a MUC1 aptamer is conjugated with iron nanoparticles to construct adenocarcinoma-targeting metal contrasts. DNA hybridization studies confirmed that the aptamers were conjugated to the iron nanoparticles. Importantly, more aptamer-modified nanoparticles attached to the MUC1-positive cancer cells compared with the unmodified nanoparticles. Moreover, aptamer-modified nanoparticles significantly enhanced the targeted hyperthermia damage to MUC1-positive cancer cells in vitro (p < 0.05). The results suggest that MUC1 aptamer-modified metal particles may have potential in development of targeted hyperthermia therapy against adenocarcinomas. PMID:27455625

  17. Renal epithelial cells can release ATP by vesicular fusion

    PubMed Central

    Bjaelde, Randi G.; Arnadottir, Sigrid S.; Overgaard, Morten T.; Leipziger, Jens; Praetorius, Helle A.

    2013-01-01

    Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30), which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1) cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin) reduced both the spontaneous and hypotonically (80%)-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1) and vesicular transport (nocodazole). These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ~90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP) or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50%) or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8 and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells. PMID:24065923

  18. Lung epithelial cell death induced by oil-dispersant mixtures.

    PubMed

    Wang, He; Shi, Yongli; Major, Danielle; Yang, Zhanjun

    2012-08-01

    The dispersants used in oil spill disasters are claimed to be safe, but increased solubility of high-molecular-weight components in crude oil is of public health concern. The water-accommodated fractions (WAF) of crude oil mixed with dispersants may become airborne and cause lung epithelial damage when inhaled. This study was designed to examine the cell death and related death pathways of lung epithelial cells in response to WAF. Cultured A549 cells were treated for 2 or 24h with different concentrations of WAF. The WAF was prepared by mixing each of the dispersants (Corexit EC9527A, Corexit EC9500A and Corexit EC9580A) with crude oil for extraction with PBS. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay, lactate dehydrogenase assay, morphology and cleaved caspase 9 protein, and microtubule-associated protein 1 light chain 3 were all used to measure cell viability, necrosis, apoptosis and autophagy quantitation, respectively. Results showed that the WAF of oil-dispersant mixtures caused cell death in the lung epithelial cells, in a dose-dependent manner, with the major cellular pathways of necrosis and apoptosis involved. Autophagy also occurred in cells exposed to WAF mixtures at lower concentrations before any detectable cell death, indicating greater sensitivity to WAF exposure. The three types of cell behavior, namely necrosis, apoptosis and autophagy, may play different roles in oil spill-related respiratory disorders. PMID:22504303

  19. Cadmium Induces p53-Dependent Apoptosis in Human Prostate Epithelial Cells

    PubMed Central

    Aimola, Pierpaolo; Carmignani, Marco; Volpe, Anna Rita; Di Benedetto, Altomare; Claudio, Luigi; Waalkes, Michael P.; van Bokhoven, Adrie; Tokar, Erik J.; Claudio, Pier Paolo

    2012-01-01

    Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl2 and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl2 concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis. PMID:22448262

  20. Circulating Tumor Cells as a Biomarker of Response to Treatment in Patient-Derived Xenograft Mouse Models of Pancreatic Adenocarcinoma

    PubMed Central

    Torphy, Robert J.; Tignanelli, Christopher J.; Kamande, Joyce W.; Moffitt, Richard A.; Herrera Loeza, Silvia G.; Soper, Steven A.; Yeh, Jen Jen

    2014-01-01

    Circulating tumor cells (CTCs) are cells shed from solid tumors into circulation and have been shown to be prognostic in the setting of metastatic disease. These cells are obtained through a routine blood draw and may serve as an easily accessible marker for monitoring treatment effectiveness. Because of the rapid progression of pancreatic ductal adenocarcinoma (PDAC), early insight into treatment effectiveness may allow for necessary and timely changes in treatment regimens. The objective of this study was to evaluate CTC burden as a biomarker of response to treatment with a oral phosphatidylinositol-3-kinase inhibitor, BKM120, in patient-derived xenograft (PDX) mouse models of PDAC. PDX mice were randomized to receive vehicle or BKM120 treatment for 28 days and CTCs were enumerated from whole blood before and after treatment using a microfluidic chip that selected for EpCAM (epithelial cell adhesion molecule) positive cells. This microfluidic device allowed for the release of captured CTCs and enumeration of these cells via their electrical impedance signatures. Median CTC counts significantly decreased in the BKM120 group from pre- to post-treatment (26.61 to 2.21 CTCs/250 µL, p = 0.0207) while no significant change was observed in the vehicle group (23.26 to 11.89 CTCs/250 µL, p = 0.8081). This reduction in CTC burden in the treatment group correlated with tumor growth inhibition indicating CTC burden is a promising biomarker of response to treatment in preclinical models. Mutant enriched sequencing of isolated CTCs confirmed that they harbored KRAS G12V mutations, identical to the matched tumors. In the long-term, PDX mice are a useful preclinical model for furthering our understanding of CTCs. Clinically, mutational analysis of CTCs and serial monitoring of CTC burden may be used as a minimally invasive approach to predict and monitor treatment response to guide therapeutic regimens. PMID:24586805

  1. Metabolic cooperativity between epithelial cells and adipocytes of mice

    SciTech Connect

    Bartley, J.C.; Emerman, J.T.; Bissell, M.J.

    1981-01-01

    We have demonstrated that glycogen and lipid synthesis in adipocytes is modulated by the lactational state and that this modulation in mammary adipocytes requires the presence of the adjacent epithelial cells. Glycogen and lipid synthesis from (/sup 14/C)glucose was measured in mammary fat pads cleared of epithelium, in abdominal fat pads, and in adipocytes from both sources and from intact mammary gland of mature virgin, pregnant, and lactating mice. Accumulation of glycogen, the activity of glycogen synthase, and the lipogenic rate in abdominal and mammary adipocytes remained high during pregnancy but decreased to insignificant levels by early lactation. The depressant effects of lactation were observed solely in those mammary adipocytes isolated from intact glands. The presence of mammary epithelial cells was also required to effect the stimulated lipogenesis in mammary adipocytes during pregnancy. We conclude that the metabolic activity of adipocytes is modulated both during pregnancy and lactation to channel nutrients to the mammary epithelial cell. The fact that the changes occur in mammary adipocytes only when epithelial cells are present indicates that local as well as systemic factors are operating in these modulations.

  2. NITROTYROSINE ATTENUATES RSV-INDUCED INFLAMMATION IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Nitrotyrosine attenuates RSV-induced inflammation in airway epithelial cells. Joleen Soukup, Zuowei Li, Susanne Becker and Yuh-Chin Huang. NHEERL, ORD, USEPA, RTP, North Carolina, CEMALB, University of North Carolina, Chapel Hill, North Carolina

    Nitrotyrosine (NO2Tyr) is a...

  3. Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells

    PubMed Central

    Han, Yiping W.; Shi, Wenyuan; Huang, George T.-J.; Kinder Haake, Susan; Park, No-Hee; Kuramitsu, Howard; Genco, Robert J.

    2000-01-01

    Bacteria are causative agents of periodontal diseases. Interactions between oral bacteria and gingival epithelial cells are essential aspects of periodontal infections. Using an in vitro tissue culture model, a selected group of gram-negative anaerobic bacteria frequently associated with periodontal diseases, including Bacteroides forsythus, Campylobacter curvus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia, were examined for their ability to adhere to and invade primary cultures of human gingival epithelial cells (HGEC). The effects of these bacteria on the production of interleukin-8 (IL-8), a proinflammatory chemokine, were also measured. These studies provided an initial demonstration that F. nucleatum adhered to and invaded HGEC and that this was accompanied by high levels of IL-8 secretion from the epithelial cells. The attachment and invasion characteristics of F. nucleatum were also tested using KB cells, an oral epithelial cell line. The invasion was verified by transmission electron microscopy and with metabolic inhibitors. Invasion appeared to occur via a “zipping” mechanism and required the involvement of actins, microtubules, signal transduction, protein synthesis, and energy metabolism of the epithelial cell, as well as protein synthesis by F. nucleatum. A spontaneous mutant, lam, of F. nucleatum, isolated as defective in autoagglutination, was unable to attach to or invade HGEC or KB cells, further indicating the requirement of bacterial components in these processes. Sugar inhibition assays indicated that lectin-like interactions were involved in the attachment of F. nucleatum to KB cells. Investigation of these new virulence phenotypes should improve our understanding of the role of F. nucleatum in periodontal infections. PMID:10816455

  4. Culture and characterization of human junctional epithelial cells.

    PubMed

    Matsuyama, T; Izumi, Y; Sueda, T

    1997-03-01

    This study was undertaken to establish a culture of junctional epithelial cells derived from gingival tissue attached to the tooth surface and to characterize these cells immunocytochemically and ultrastructurally. Primary cultures of cells were obtained from the junctional tissue explanted on type I collagen-coated dishes and immersed in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum (FBS). Cells were subcultured with conditioned serum-free keratinocyte medium (keratinocyte-SFM + 5% FBS) on dishes coated with solubilized extract of the basement membrane. After 24 hours, the medium was changed to keratinocyte-SFM (0.09 mM Ca2+). The cell-doubling time was 40.5 hours. As a control, cells from gingival tissue were cultured by the same method. Cells from junctional tissue and gingival tissue were compared immunocytochemically using monoclonal antibodies to keratin, vimentin, and desmoplakins I and II and using Dolichos biflorus agglutinin (DBA). The keratin AE1 and AE3 was expressed by all of culture cells. The vimentin (specific for the intermediate filament of mesenchymal cells) was also expressed by all cells. The expression pattern of keratin 19 was observed not only by cells from junctional tissue but also by cells from gingival tissue. All keratin peptides were expressed in both cells. However, DBA reacted only with cells from the junctional tissue. Anti-desmoplakin I and II reacted with both cells, however, the staining patterns differed. DBA-positive cultured epithelial cells from the junctional tissue showed poor tonofilament bundles and were rich in cytoplasmic organelles. These findings suggest that junctional epithelial cells can be isolated from junctional tissue and cultured under improved conditions. PMID:9100198

  5. Regulation of Noxa-mediated apoptosis in Helicobacter pylori–infected gastric epithelial cells

    PubMed Central

    Rath, Suvasmita; Das, Lopamudra; Kokate, Shrikant Babanrao; Pratheek, B. M.; Chattopadhyay, Subhasis; Goswami, Chandan; Chattopadhyay, Ranajoy; Crowe, Sheila Eileen; Bhattacharyya, Asima

    2015-01-01

    Helicobacter pylori induces the antiapoptotic protein myeloid cell leukemia 1 (Mcl1) in human gastric epithelial cells (GECs). Apoptosis of oncogenic protein Mcl1-expressing cells is mainly regulated by Noxa-mediated degradation of Mcl1. We wanted to elucidate the status of Noxa in H. pylori–infected GECs. For this, various GECs such as AGS, MKN45, and KATO III were either infected with H. pylori or left uninfected. The effect of infection was examined by immunoblotting, immunoprecipitation, chromatin immunoprecipitation assay, in vitro binding assay, flow cytometry, and confocal microscopy. Infected GECs, surgical samples collected from patients with gastric adenocarcinoma as well as biopsy samples from patients infected with H. pylori showed significant up-regulation of both Mcl1 and Noxa compared with noninfected samples. Coexistence of Mcl1 and Noxa was indicative of an impaired Mcl-Noxa interaction. We proved that Noxa was phosphorylated at Ser13 residue by JNK in infected GECs, which caused cytoplasmic retention of Noxa. JNK inhibition enhanced Mcl1-Noxa interaction in the mitochondrial fraction of infected cells, whereas overexpression of nonphosphorylatable Noxa resulted in enhanced mitochondria-mediated apoptosis in the infected epithelium. Because phosphorylation-dephosphorylation can regulate the apoptotic function of Noxa, this could be a potential target molecule for future treatment approaches for H. pylori–induced gastric cancer.—Rath, S., Das, L., Kokate, S. B., Pratheek, B. M., Chattopadhyay, S., Goswami, C., Chattopadhyay, R., Crowe, S. E., Bhattacharyya, A. Regulation of Noxa-mediated apoptosis in Helicobacter pylori–infected gastric epithelial cells. PMID:25404713

  6. Lactobacillus equigenerosi Strain Le1 Invades Equine Epithelial Cells

    PubMed Central

    Botha, Marlie; Botes, Marelize; Loos, Ben; Smith, Carine

    2012-01-01

    Lactobacillus equigenerosi strain Le1, a natural inhabitant of the equine gastrointestinal tract, survived pH 3.0 and incubation in the presence of 1.5% (wt/vol) bile salts for at least 2 h. Strain Le1 showed 8% cell surface hydrophobicity, 60% auto-aggregation, and 47% coaggregation with Clostridium difficile C6. Only 1% of the cells adhered to viable buccal epithelial cells and invaded the cells within 20 min after contact. Preincubation of strain Le1 in a buffer containing pronase prevented adhesion to viable epithelial cells. Preincubation in a pepsin buffer delayed invasion from 20 min to 1 h. Strain Le1 did not adhere to nonviable epithelial cells. Administration of L. equigenerosi Le1 (1 × 109 CFU per 50 kg body weight) to healthy horses did not increase white blood cell numbers. Differential white blood cell counts and aspartate aminotransferase levels remained constant. Glucose, lactate, cholesterol, and urea levels remained constant during administration with L. equigenerosi Le1 but decreased during the week after administration. PMID:22504808

  7. Differentiation of cultured epithelial cells: Response to toxic agents

    SciTech Connect

    Rice, R.H.; LaMontagne, A.D.; Petito, C.T.; Rong, Xianhui )

    1989-03-01

    Cell culture systems are instrumental in elucidating regulation of normal function and mechanisms of its perturbation by toxic substances. To this end, three applications of epithelial cells cultured with 3T3 feeder layer support are described. First, treatment of the premalignant human epidermal keratinocyte line SCC-12F2 with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate suppressed cell growth and differentiation. This agent produced a biphasic growth response greatly inhibiting cell growth at 1 to 10 nM, but much less above 100 nM. Expression of the differentiated functions involucrin and transglutaminase was found to be inhibited markedly at concentrations above 10 nM. Second, 3-methylcholanthrene toxicity was surveyed in a variety of rat epithelial cell types. The two most sensitive to growth inhibition were epidermal and mammary epithelial cells, while those from bladder, prostate, thyroid, and endometrium were insensitive to growth inhibition. Finally, expression of estrogen receptors in rat endometrial cells was shown to be stimulated by the cAmP-elevating agent forskolin. Maximal stimulation of 3- to 6-fold occurred in 6 hr, compatible with a requirement for protein synthesis. Pursuit of such results will aid in understanding differences in response among cell types and species, in elucidating mechanisms of action of known toxic substances and, ultimately, in predicting toxicity of less well understood agents.

  8. Collective Epithelial and Mesenchymal Cell Migration During Gastrulation

    PubMed Central

    Chuai, Manli; Hughes, David; Weijer, Cornelis J

    2012-01-01

    Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation. PMID:23204916

  9. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. PMID:25546438

  10. Radical-containing ultrafine particulate matter initiates epithelial-to-mesenchymal transitions in airway epithelial cells.

    PubMed

    Thevenot, Paul T; Saravia, Jordy; Jin, Nili; Giaimo, Joseph D; Chustz, Regina E; Mahne, Sarah; Kelley, Matthew A; Hebert, Valeria Y; Dellinger, Barry; Dugas, Tammy R; Demayo, Francesco J; Cormier, Stephania A

    2013-02-01

    Environmentally persistent free radicals (EPFRs) in combustion-generated particulate matter (PM) are capable of inducing pulmonary pathologies and contributing to the development of environmental asthma. In vivo exposure of infant rats to EPFRs demonstrates their ability to induce airway hyperresponsiveness to methacholine, a hallmark of asthma. However, the mechanisms by which combustion-derived EPFRs elicit in vivo responses remain elusive. In this study, we used a chemically defined EPFR consisting of approximately 0.2 μm amorphrous silica containing 3% cupric oxide with the organic pollutant 1,2-dichlorobenzene (DCB-230). DCB-230 possesses similar radical content to urban-collected EPFRs but offers several advantages, including lack of contaminants and chemical uniformity. DCB-230 was readily taken up by BEAS-2B and at high doses (200 μg/cm(2)) caused substantial necrosis. At low doses (20 μg/cm(2)), DCB-230 particles caused lysosomal membrane permeabilization, oxidative stress, and lipid peroxidation within 24 hours of exposure. During this period, BEAS-2B underwent epithelial-to-mesenchymal transition (EMT), including loss of epithelial cell morphology, decreased E-cadherin expression, and increased α-smooth muscle actin (α-SMA) and collagen I production. Similar results were observed in neonatal air-liquid interface culture (i.e., disruption of epithelial integrity and EMT). Acute exposure of infant mice to DCB-230 resulted in EMT, as confirmed by lineage tracing studies and evidenced by coexpression of epithelial E-cadherin and mesenchymal α-SMA proteins in airway cells and increased SNAI1 expression in the lungs. EMT in neonatal mouse lungs after EPFR exposure may provide an explanation for epidemiological evidence supporting PM exposure and increased risk of asthma. PMID:23087054

  11. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    NASA Astrophysics Data System (ADS)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  12. Epigenetic induction of epithelial to mesenchymal transition by LCN2 mediates metastasis and tumorigenesis, which is abrogated by NF-κB inhibitor BRM270 in a xenograft model of lung adenocarcinoma

    PubMed Central

    MONGRE, RAJ KUMAR; SODHI, SIMRINDER SINGH; SHARMA, NEELESH; GHOSH, MRINMOY; KIM, JEONG HYUN; KIM, NAMEUN; PARK, YANG HO; SHIN, YOUNG GYU; KIM, SUNG JIN; JIAO, ZHANG JIAO; HUYNH, DO LUONG; JEONG, DONG KEE

    2016-01-01

    Tumor initiating cancer stem-like cells (TICSCs) have recently become the object of intensive study. Human-Lipocalin-2 (hLCN2) acts as a biomarker for cancers. The aim of the present study was to explore new insights regarding the potential role of LCN2 in inducing epithelial to mesenchymal transition (EMT) by transfecting LCN2 into CD133+-A549-TICSCs and its cross-talk with the NF-κB signaling pathway in adenocarcinoma of the lung. Furthermore, EMT was confirmed by transcriptomic analysis, immunoblotting and immunocyto/histochemical analyses. Tumorigenesis and metastasis were confirmed by molecular therapeutics tracer 2DG infrared optical probe in BALB/cSIc-nude mice. It was observed that the CD133+-expressing-LCN2-A549 TICSCs population increased in adenocarcinoma of the lung compared to the normal lung tissue. The expressions of genes involved in stemness, adhesion, motility and drug efflux was higher in these cells than in their non-LCN2 expressing counterparts. The present study revealed that elevated expression of LCN2 significantly induced metastasis via EMT. Overexpression of LCN2 significantly increased stemness and tumor metastasis by modulating NF-κB cellular signaling. BRM270, a novel inhibitor of NF-κB plays a significant role in the EMT reversal. BRM270, a naturaceutical induces cell shrinkage, karyorrhexis and programmed cell death (PCD) which were observed by Hoechst 33342 staining while flow cytometry analysis showed significant (P<0.05) decrease in cell population from G0–G1 phases. Also, 2DG guided in vivo model revealed that BRRM270 significantly (P<0.0003) reduced tumor metastasis and increased percent survival in real-time with complete resection. An elaborate study on the novel concept with respect to linking of naturaceutics as selective and potential anticancer agent that eliminates the elevated LCN2 induced EMT and tumor dissemination through cooperation with the NF-κB signaling as the baseline data for the planning of new

  13. [Linitis plastica type of primary signet cell adenocarcinoma of the bladder].

    PubMed

    el Sandid, Marwan; Peraldi, Renaud; Pernin, François

    2002-04-01

    Primary adenocarcinoma represent 0.5 to 2% of all bladder tumours and are classified according to whether or not they are derived from the urachus, although, histologically, this classification now appears to be obsolete. The authors report a very rare case of linitis plastica type of primary signet cell adenocarcinoma of the bladder in a 53-year-old patient. This carcinoma, with very unusual histological features, needs to be distinguished. Due to the delayed diagnosis, it has a poor prognosis despite the most aggressive treatment modalities, as reported in the literature. The elevated CA 19-9 observed in the present case may be a useful marker for follow-up. PMID:12108351

  14. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    SciTech Connect

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang Zhang, Yi

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  15. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    PubMed

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells. PMID:27398446

  16. Differentiated kidney epithelial cells repair injured proximal tubule.

    PubMed

    Kusaba, Tetsuro; Lalli, Matthew; Kramann, Rafael; Kobayashi, Akio; Humphreys, Benjamin D

    2014-01-28

    Whether kidney proximal tubule harbors a scattered population of epithelial stem cells is a major unsolved question. Lineage-tracing studies, histologic characterization, and ex vivo functional analysis results conflict. To address this controversy, we analyzed the lineage and clonal behavior of fully differentiated proximal tubule epithelial cells after injury. A CreER(T2) cassette was knocked into the sodium-dependent inorganic phosphate transporter SLC34a1 locus, which is expressed only in differentiated proximal tubule. Tamoxifen-dependent recombination was absolutely specific to proximal tubule. Clonal analysis after injury and repair showed that the bulk of labeled cells proliferate after injury with increased clone size after severe compared with mild injury. Injury to labeled proximal tubule epithelia induced expression of CD24, CD133, vimentin, and kidney-injury molecule-1, markers of putative epithelial stem cells in the human kidney. Similar results were observed in cultured proximal tubules, in which labeled clones proliferated and expressed dedifferentiation and injury markers. When mice with completely labeled kidneys were subject to injury and repair there was no dilution of fate marker despite substantial proliferation, indicating that unlabeled progenitors do not contribute to kidney repair. During nephrogenesis and early kidney growth, single proximal tubule clones expanded, suggesting that differentiated cells also contribute to tubule elongation. These findings provide no evidence for an intratubular stem-cell population, but rather indicate that terminally differentiated epithelia reexpress apparent stem-cell markers during injury-induced dedifferentiation and repair. PMID:24127583

  17. Interleukin-22 Promotes Intestinal Stem Cell-Mediated Epithelial Regeneration

    PubMed Central

    Dudakov, Jarrod A.; Jenq, Robert R.; Velardi, Enrico; Young, Lauren F.; Smith, Odette M.; Lawrence, Gillian; Ivanov, Juliet A.; Fu, Ya-Yuan; Takashima, Shuichiro; Hua, Guoqiang; Martin, Maria L.; O'Rourke, Kevin P.; Lo, Yuan-Hung; Mokry, Michal; Romera-Hernandez, Monica; Cupedo, Tom; Dow, Lukas; Nieuwenhuis, Edward E.; Shroyer, Noah F.; Liu, Chen; Kolesnick, Richard

    2015-01-01

    Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch, and epidermal growth factor (EGF) signals supporting Lgr5+ crypt base columnar ISCs for normal epithelial maintenance1,2. However, little is known about the regulation of the ISC compartment after tissue damage. Utilizing ex vivo organoid cultures, we provide evidence that innate lymphoid cells (ILCs), potent producers of Interleukin-22 (IL-22) after intestinal injury3,4, increased the growth of murine small intestine (SI) organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both murine and human intestinal organoids, increasing proliferation, and promoting ISC expansion. IL-22 induced Stat3 phosphorylation in Lgr5+ ISCs, and Stat3 was critical for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after murine allogeneic bone marrow transplantation (BMT) enhanced recovery of ISCs, increased epithelial regeneration, and reduced intestinal pathology and mortality from graft vs. host disease (GVHD). Atoh1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independent of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support intestinal epithelium, activating ISCs to promote regeneration. PMID:26649819

  18. Notch Signaling in Meibomian Gland Epithelial Cell Differentiation

    PubMed Central

    Gidfar, Sanaz; Afsharkhamseh, Neda; Sanjari, Sara; Djalilian, Ali R.

    2016-01-01

    Purpose Notch1 was previously shown to play a critical role in murine meibomian gland function and maintenance. In this study, we have examined the expression and activation of Notch pathway in human meibomian gland epithelial cells in vitro. Methods An immortalized human meibomian gland epithelial cell (HMGEC) line was cultured under proliferative and differentiative conditions. Expression of Notch receptors and ligands were evaluated by quantitative PCR and Western blot. The effect of Notch inhibition and induction on oil production was also assessed. Results Human meibomian gland epithelial cell expressed Notch1, Notch2, Notch3, Jagged1, Jagged2, Delta-like 1, and Delta-like 3. The level of cleaved (activated) Notch1 strongly increased with differentiation. The expression of Notch3 was inversely correlated with proliferation. Induction and inhibition of Notch1 led to an increase and decrease in the amount of oil production, respectively. Conclusions Notch signaling appears to play an important role in human meibomian gland epithelial differentiation and oil production. This may provide a potential therapeutic pathway for treating meibomian gland dysfunction. PMID:26943148

  19. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration.

    PubMed

    Lindemans, Caroline A; Calafiore, Marco; Mertelsmann, Anna M; O'Connor, Margaret H; Dudakov, Jarrod A; Jenq, Robert R; Velardi, Enrico; Young, Lauren F; Smith, Odette M; Lawrence, Gillian; Ivanov, Juliet A; Fu, Ya-Yuan; Takashima, Shuichiro; Hua, Guoqiang; Martin, Maria L; O'Rourke, Kevin P; Lo, Yuan-Hung; Mokry, Michal; Romera-Hernandez, Monica; Cupedo, Tom; Dow, Lukas E; Nieuwenhuis, Edward E; Shroyer, Noah F; Liu, Chen; Kolesnick, Richard; van den Brink, Marcel R M; Hanash, Alan M

    2015-12-24

    Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration. PMID:26649819

  20. Structural and functional analysis of endosomal compartments in epithelial cells.

    PubMed

    Bay, Andres E Perez; Schreiner, Ryan; Rodriguez-Boulan, Enrique

    2015-01-01

    Epithelial cells display segregated early endosomal compartments, termed apical sorting endosomes and basolateral sorting endosomes, that converge into a common late endosomal-lysosomal degradative compartment and common recycling endosomes (CREs). Unlike recycling endosomes of nonpolarized cells, CREs have the ability to sort apical and basolateral plasma membrane proteins into distinct apical and basolateral recycling routes, utilizing mechanisms similar to those employed by the trans Golgi network in the biosynthetic pathway. The apical recycling route includes an additional compartment, the apical recycling endosomes, consisting of multiple vesicles bundled around the basal body. Recent evidence indicates that, in addition to their role in internalizing ligands and recycling their receptors back to the cell surface, endosomal compartments act as intermediate stations in the biosynthetic routes to the plasma membrane. Here we review methods employed by our laboratory to study the endosomal compartments of epithelial cells and their multiple trafficking roles. PMID:26360040

  1. Epithelial-Mesenchymal Transition and Cell Cooperativity in Metastasis

    PubMed Central

    Tsuji, Takanori; Ibaragi, Soichiro; Hu, Guo-fu

    2009-01-01

    The role of epithelial-mesenchymal transition (EMT) in metastasis remains to be controversial. EMT has been postulated as an absolute requirement for tumor invasion and metastasis. Three different models including incomplete EMT, mesenchymal-epithelial transition (MET), and collective migration have been proposed for the role of EMT in cancer invasion and metastasis. However, skepticism remains as to whether EMT truly occurs during caner progression, and if it does, whether it plays an indispensible role in metastasis. Our recent findings suggest that EMT cells are responsible for degrading the surrounding matrix to enable invasion and intravasation of both EMT and non-EMT cells. Only non-EMT cell that have entered the blood stream are able to reestablish colonies in the secondary sites. Here we discuss an alternative model for the role of EMT in cancer metastasis in which EMT and non-EMT cells cooperate to complete the entire process of spontaneous metastasis. PMID:19738043

  2. Culture and immortalization of pancreatic ductal epithelial cells.

    PubMed

    Lawson, Terence; Ouellette, Michel; Kolar, Carol; Hollingsworth, Michael

    2005-01-01

    Some populations of the epithelial cells from the duct and ductular network of the mammalian pancreas have been isolated and maintained in vitro for up to 3 mo. These cells express many of the surface factors that are unique to them in vivo. They also retain significant drug- and carcinogen-metabolizing capacity in vitro. In this chapter we review the progression of the methods for the isolation, culture and maintenance in vitro for these cells from the earliest when only duct/ductular fragments were obtainable to the current ones which provide epithelial cells. The critical steps in the isolation process are identified and strategies are provided to facilitate these steps. These include the selection of tissue digestive enzymes, the importance of extensive mincing before culture and the importance of roles of some co-factors used in the culture medium. PMID:15542901

  3. Inactivation of Rb in stromal fibroblasts promotes epithelial cell invasion.

    PubMed

    Pickard, Adam; Cichon, Ann-Christin; Barry, Anna; Kieran, Declan; Patel, Daksha; Hamilton, Peter; Salto-Tellez, Manuel; James, Jacqueline; McCance, Dennis J

    2012-07-18

    Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions. PMID:22643222

  4. Cytotoxic Action of Serratia marcescens Hemolysin on Human Epithelial Cells

    PubMed Central

    Hertle, Ralf; Hilger, Martina; Weingardt-Kocher, Sandra; Walev, Iwan

    1999-01-01

    Incubation of human epithelial cells with nanomolar concentrations of chromatographically purified Serratia marcescens hemolysin (ShlA) caused irreversible vacuolation and subsequent lysis of the cells. Vacuolation differed from vacuole formation by Helicobacter pylori VacA. Sublytic doses of ShlA led to a reversible depletion of intracellular ATP. Restoration to the initial ATP level was presumably due to the repair of the toxin damage and was inhibited by cycloheximide. Pores formed in epithelial cells and fibroblasts without disruption of the plasma membrane, and the pores appeared to be considerably smaller than those observed in artificial lipid membranes and in erythrocytes and did not allow the influx of propidium iodide or trypan blue. All cytotoxic effects induced by isolated recombinant ShlA were also obtained with exponentially growing S. marcescens cells. The previously suggested role of the hemolysin in the pathogenicity of S. marcescens is supported by these data. PMID:9916096

  5. MiR-374a suppresses lung adenocarcinoma cell proliferation and invasion by targeting TGFA gene expression.

    PubMed

    Wu, Haijian; Liu, Yan; Shu, Xiao Ou; Cai, Qiuyin

    2016-06-01

    Aberrant expression of miR-374a has been reported in several types of human cancers, including lung cancer. However, the functional significance and molecular mechanisms underlying the role of miR-374a in lung cancer remain largely unknown. We found that the expression of miR-374a was significantly downregulated in lung adenocarcinoma tissues compared to adjacent normal lung tissues in samples included in The Cancer Genome Atlas. Functional studies revealed that overexpression of miR-374a led to inhibition of lung adenocarcinoma cell proliferation, migration and invasion and that miR-374a negatively regulated transforming growth factor-alpha (TGFA) gene expression by directly targeting the 3'-UTR of TGFA mRNA. Treating lung adenocarcinoma cells with TGF-α neutralizing antibody resulted in suppression of cell proliferation and invasion, which mimicked the action of miR-374a. Additionally, TGFA gene expression was significantly higher in tumor tissues compared to adjacent normal tissue and high TGFA gene expression strongly correlated with poor survival in patients with lung adenocarcinoma. Taken together, our studies suggest that miR-374a suppresses lung adenocarcinoma cell proliferation and invasion via targeting TGFA gene expression. Our findings may provide novel treatment strategies for lung adenocarcinoma patients. PMID:27207663

  6. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  7. Verification and unmasking of widely used human esophageal adenocarcinoma cell lines.

    PubMed

    Boonstra, Jurjen J; van Marion, Ronald; Beer, David G; Lin, Lin; Chaves, Paula; Ribeiro, Catarina; Pereira, A Dias; Roque, Lúcia; Darnton, S Jane; Altorki, Nasser K; Schrump, David S; Klimstra, David S; Tang, Laura H; Eshleman, James R; Alvarez, Hector; Shimada, Yutaka; van Dekken, Herman; Tilanus, Hugo W; Dinjens, Winand N M

    2010-02-24

    For decades, hundreds of different human tumor type-specific cell lines have been used in experimental cancer research as models for their respective tumors. The veracity of experimental results for a specific tumor type relies on the correct derivation of the cell line. In a worldwide effort, we verified the authenticity of all available esophageal adenocarcinoma (EAC) cell lines. We proved that the frequently used cell lines SEG-1 and BIC-1 and the SK-GT-5 cell line are in fact cell lines from other tumor types. Experimental results based on these contaminated cell lines have led to ongoing clinical trials recruiting EAC patients, to more than 100 scientific publications, and to at least three National Institutes of Health cancer research grants and 11 US patents, which emphasizes the importance of our findings. Widespread use of contaminated cell lines threatens the development of treatment strategies for EAC. PMID:20075370

  8. Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury.

    PubMed

    Gomperts, Brigitte N; Belperio, John A; Rao, P Nagesh; Randell, Scott H; Fishbein, Michael C; Burdick, Marie D; Strieter, Robert M

    2006-02-01

    Recipient airway epithelial cells are found in human sex-mismatched lung transplants, implying that circulating progenitor epithelial cells contribute to the repair of the airway epithelium. Markers of circulating progenitor epithelial cells and mechanisms for their trafficking remain to be elucidated. We demonstrate that a population of progenitor epithelial cells exists in the bone marrow and the circulation of mice that is positive for the early epithelial marker cytokeratin 5 (CK5) and the chemokine receptor CXCR4. We used a mouse model of sex-mismatched tracheal transplantation and found that CK5+ circulating progenitor epithelial cells contribute to re-epithelialization of the airway and re-establishment of the pseudostratified epithelium. The presence of CXCL12 in tracheal transplants provided a mechanism for CXCR4+ circulating progenitor epithelial cell recruitment to the airway. Depletion of CXCL12 resulted in the epithelium defaulting to squamous metaplasia, which was derived solely from the resident tissue progenitor epithelial cells. Our findings demonstrate that CK5+CXCR4+ cells are markers of circulating progenitor epithelial cells in the bone marrow and circulation and that CXCR4/CXCL12-mediated recruitment of circulating progenitor epithelial cells is necessary for the re-establishment of a normal pseudostratified epithelium after airway injury. These findings support a novel paradigm for the development of squamous metaplasia of the airway epithelium and for developing therapeutic strategies for circulating progenitor epithelial cells in airway diseases. PMID:16424223

  9. Midbody remnant licenses primary cilia formation in epithelial cells.

    PubMed

    Ott, Carolyn M

    2016-08-01

    Tethered midbody remnants dancing across apical microvilli, encountering the centrosome, and beckoning forth a cilium-who would have guessed this is how polarized epithelial cells coordinate the end of mitosis and the beginning of ciliogenesis? New evidence from Bernabé-Rubio et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201601020) supports this emerging model. PMID:27482049

  10. Review: Corneal epithelial stem cells, their niche and wound healing

    PubMed Central

    2013-01-01

    Stem cells emerged as a concept during the second half of 19th century, first as a theoretical entity, but then became one of the most promising research fields in cell biology. This work describes the most important characteristics of adult stem cells, including the experimental criteria used to identify them, and discusses current knowledge that led to the proposal that stem cells existed in different parts of the eye, such as the retina, lens, conjunctiva, corneal stroma, Descemet’s membrane, and the subject of this review: the corneal epithelium. Evidence includes results that support the presence of corneal epithelial stem cells at the limbus, as well as the major obstacles to isolating them as pure cell populations. Part of this review describes the variation in the basement membrane composition between the limbus and the central cornea, to show the importance of the corneal stem cell niche, its structure, and the participation of extracellular matrix (ECM) components in regulating corneal stem cell compartment. Results obtained by various laboratories suggest that the extracellular matrix plays a central role in regulating stem cell commitment, corneal differentiation, and participation in corneal wound healing, in addition to other environmental signals such as cytokines and growth factors. The niche could define cell division patterns in corneal stem cell populations, establishing whether stem cells divide asymmetrically or symmetrically. Characterization and understanding of the factors that regulate corneal epithelial stem cells should open up new paths for developing new therapies and strategies for accelerating and improving corneal wound healing. PMID:23901244

  11. Trophoblast glycoprotein promotes pancreatic ductal adenocarcinoma cell metastasis through Wnt/planar cell polarity signaling.

    PubMed

    He, Ping; Jiang, Shuheng; Ma, Mingze; Wang, Yang; Li, Rongkun; Fang, Fang; Tian, Guangang; Zhang, Zhigang

    2015-07-01

    Trophoblast glycoprotein (TPBG), a 72 kDa glycoprotein was identified using a monoclonal antibody, which specifically binds human trophoblast. The expression of TPBG in normal tissues is limited; however, it is upregulated in numerous types of cancer. When TPBG is expressed at a high level, this usually indicates a poor clinical outcome. In the present study, it was demonstrated that TPBG was more commonly observed in human pancreatic ductal adenocarcinoma (PDAC) compared with normal pancreatic tissue. Immunohistochemical analysis of PDAC tissue microarrays indicated that the expression of TPBG in PDAC tissues was closely correlated with the tumor-node-metastasis stage of the tumor. Silencing of TPBG in PDAC cell lines resulted in a decreased ability of cancer cell migration and invasion. Further investigation demonstrated that the Wnt/planar cell polarity signaling pathway was suppressed, as the expression of Wnt5a and the activation of c-Jun N-terminal kinase was inhibited following TPBG knockdown. In conclusion, the present study provided evidence that TPBG is involved in PDAC metastasis, and that TPBG and its associated signaling pathways may be a suitable target for PDAC therapy. PMID:25738465

  12. Mixed Large Cell Neuroendocrine Carcinoma and Adenocarcinoma with Spindle Cell and Clear Cell Features in the Extrahepatic Bile Duct

    PubMed Central

    Agarwal, Rishi; Nguyen, Jeremy; Weidenhaft, Mandy Crause; Shores, Nathan; Kimbrell, Hillary Z.

    2014-01-01

    Mixed adenoneuroendocrine carcinomas, spindle cell carcinomas, and clear cell carcinomas are all rare tumors in the biliary tract. We present the first case, to our knowledge, of an extrahepatic bile duct carcinoma composed of all three types. A 65-year-old man with prior cholecystectomy presented with painless jaundice, vomiting, and weight loss. CA19-9 and alpha-fetoprotein (AFP) were elevated. Cholangioscopy revealed a friable mass extending from the middle of the common bile duct to the common hepatic duct. A bile duct excision was performed. Gross examination revealed a 3.6 cm intraluminal polypoid tumor. Microscopically, the tumor had foci of conventional adenocarcinoma (CK7-positive and CA19-9-postive) surrounded by malignant-appearing spindle cells that were positive for cytokeratins and vimentin. Additionally, there were separate areas of large cell neuroendocrine carcinoma (LCNEC). Foci of clear cell carcinoma merged into both the LCNEC and the adenocarcinoma. Tumor invaded through the bile duct wall with extensive perineural and vascular invasion. Circumferential margins were positive. The patient's poor performance status precluded adjuvant therapy and he died with recurrent and metastatic disease 5 months after surgery. This is consistent with the reported poor survival rates of biliary mixed adenoneuroendocrine carcinomas. PMID:24804133

  13. Vangl2 Regulates E-Cadherin in Epithelial Cells

    PubMed Central

    Nagaoka, Tadahiro; Inutsuka, Ayumu; Begum, Khadiza; hafiz, Khandakar musabbir bin; Kishi, Masashi

    2014-01-01

    E-cadherin belongs to the classic cadherin subfamily of calcium-dependent cell adhesion molecules and is crucial for the formation and function of epithelial adherens junctions. In this study, we demonstrate that Vangl2, a vertebrate regulator of planar cell polarity (PCP), controls E-cadherin in epithelial cells. E-cadherin co-immunoprecipitates with Vangl2 from embryonic kidney extracts, and this association is also observed in transfected fibroblasts. Vangl2 enhances the internalization of E-cadherin when overexpressed. Conversely, the quantitative ratio of E-cadherin exposed to the cell surface is increased in cultured renal epithelial cells derived from Vangl2Lpt/+ mutant mice. Interestingly, Vangl2 is also internalized through protein traffic involving Rab5- and Dynamin-dependent endocytosis. Taken together with recent reports regarding the transport of Frizzled3, MMP14 and nephrin, these results suggest that one of the molecular functions of Vangl2 is to enhance the internalization of specific plasma membrane proteins with broad selectivity. This function may be involved in the control of intercellular PCP signalling or in the PCP-related rearrangement of cell adhesions. PMID:25373475

  14. Low-Dose Cadmium Upregulates VEGF Expression in Lung Adenocarcinoma Cells

    PubMed Central

    Liu, Fuhong; Wang, Bei; Li, Liqun; Dong, Fengyun; Chen, Xiaocui; Li, Yan; Dong, Xiuzhen; Wada, Youichiro; Kapron, Carolyn M.; Liu, Ju

    2015-01-01

    Cadmium (Cd) is a heavy metal and environmental toxin. Exposure to Cd has been associated with a variety of human cancers. In this study, we performed in vitro assays to examine the effects of cadmium chloride (CdCl2) on A549 cells, a human lung adenocarcinoma cell line. Cd does not affect proliferation, migration, or apoptosis of A549 cells at concentrations of 0.1–10 μM. At 0.5 and 1 μM, Cd increases the expression of vascular endothelial growth factor (VEGF) (p < 0.05, p < 0.01, respectively), but not basic fibroblast growth factor (b-FGF) in A549 cells. The conditioned media were collected from the A549 cells treated with 1 μM Cd and were co-cultured with human umbilical vein endothelial cells (HUVECs). Upon treatment with the conditioned media, the proliferation and migration of HUVECs significantly increased (p < 0.01, p < 0.05, respectively), while apoptosis remained unchanged. In addition, 1 μM Cd increases the level of hypoxia inducible factor 1-α (HIF1-α), which is a positive regulator of VEGF expression. Although low-dose Cd does not directly affect the growth of lung adenocarcinoma cells, it might facilitate the development of tumors through its pro-angiogenic effects. PMID:26343694

  15. Morphological evidence of neutrophil-tumor cell phagocytosis (cannibalism) in human gastric adenocarcinomas.

    PubMed

    Caruso, R A; Muda, A O; Bersiga, A; Rigoli, L; Inferrera, C

    2002-01-01

    The phenomenon of neutrophil-tumor cell emperipolesis or phagocytosis has been documented by light microscopy in various human carcinomas, but little is known about the cellular pathological processes and the morphological changes involved. In an attempt to clarify the nature of this phenomenon, the authors' ultrastructural studies on the relationships among neutrophils and tumor cells in human gastric carcinomas are reviewed and analyzed. At the electron microscopy level, apoptotic neutrophils were found within vacuoles of adenocarcinoma cells in 2 cases. They showed either early apoptotic morphology with perinuclear chromatin aggregation but cytoplasm integrity or late apoptotic morphology with uniform, collapsed nucleus and tightly packed cytoplasmic granules. A light microscopy review of 200 cases of resected gastric carcinomas identified 22 cases (11%) that were characterized by neutrophil-tumor cell phagocytosis (cannibalism). TUNEL staining confirmed the presence of apoptotic neutrophils within the cytoplasm of the tumor cells. This study provides light and electron microscopic evidence of apoptotic neutrophils phagocytosed by gastric adenocarcinoma cells. The morphological features of neutrophil-tumor cell phagocytosis (cannibalism) would suggest a particular mechanism of tumor-immune escape in human gastric carcinoma. PMID:12396242

  16. Sef Regulates Epithelial-Mesenchymal Transition in Breast Cancer Cells.

    PubMed

    He, Qing; Gong, Yan; Gower, Lindsey; Yang, Xuehui; Friesel, Robert E

    2016-10-01

    Sef (similar expression to fgf), also know as IL17RD, is a transmembrane protein shown to inhibit fibroblast growth factor signaling in developmental and cancer contexts; however, its role as a tumor suppressor remains to be fully elucidated. Here, we show that Sef regulates epithelial-mesenchymal transition (EMT) in breast cancer cell lines. Sef expression was highest in the normal breast epithelial cell line MCF10A, intermediate expression in MCF-7 cells and lowest in MDA-MB-231 cells. Knockdown of Sef increased the expression of genes associated with EMT, and promoted cell migration, invasion, and a fibroblastic morphology of MCF-7 cells. Overexpression of Sef inhibited the expression of EMT marker genes and inhibited cell migration and invasion in MCF-7 cells. Induction of EMT in MCF10A cells by TGF-β and TNF-α resulted in downregulation of Sef expression concomitant with upregulation of EMT gene expression and loss of epithelial morphology. Overexpression of Sef in MCF10A cells partially blocked cytokine-induced EMT. Sef was shown to block β-catenin mediated luciferase reporter activity and to cause a decrease in the nuclear localization of active β-catenin. Furthermore, Sef was shown to co-immunoprecipitate with β-catenin. In a mouse orthotopic xenograft model, Sef overexpression in MDA-MB-231 cells slowed tumor growth and reduced expression of EMT marker genes. Together, these data indicate that Sef plays a role in the negative regulation of EMT in a β-catenin dependent manner and that reduced expression of Sef in breast tumor cells may be permissive for EMT and the acquisition of a more metastatic phenotype. J. Cell. Biochem. 117: 2346-2356, 2016. © 2016 Wiley Periodicals, Inc. PMID:26950413

  17. Alveolar epithelial type II cell: defender of the alveolus revisited

    PubMed Central

    Fehrenbach, Heinz

    2001-01-01

    In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2) cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, and host defence. AE2 cells proliferate, differentiate into AE1 cells, and remove apoptotic AE2 cells by phagocytosis, thus contributing to epithelial repair. AE2 cells may act as immunoregulatory cells. AE2 cells interact with resident and mobile cells, either directly by membrane contact or indirectly via cytokines/growth factors and their receptors, thus representing an integrative unit within the alveolus. Although most data support the concept, the controversy about the character of hyperplastic AE2 cells, reported to synthesise profibrotic factors, proscribes drawing a definite conclusion today. PMID:11686863

  18. Generation of Stratified Squamous Epithelial Progenitor Cells from Mouse Induced Pluripotent Stem Cells

    PubMed Central

    Yoshida, Satoru; Yasuda, Miyuki; Miyashita, Hideyuki; Ogawa, Yoko; Yoshida, Tetsu; Matsuzaki, Yumi; Tsubota, Kazuo; Okano, Hideyuki; Shimmura, Shigeto

    2011-01-01

    Background Application of induced pluripotent stem (iPS) cells in regenerative medicine will bypass ethical issues associated with use of embryonic stem cells. In addition, patient-specific IPS cells can be useful to elucidate the pathophysiology of genetic disorders, drug screening, and tailor-made medicine. However, in order to apply iPS cells to mitotic tissue, induction of tissue stem cells that give rise to progeny of the target organ is required. Methodology/Principal Findings We induced stratified epithelial cells from mouse iPS cells by co-culture with PA6 feeder cells (SDIA-method) with use of BMP4. Clusters of cells positive for the differentiation markers KRT1 or KRT12 were observed in KRT14-positive colonies. We successfully cloned KRT14 and p63 double-positive stratified epithelial progenitor cells from iPS-derived epithelial cells, which formed stratified epithelial sheets consisting of five- to six-polarized epithelial cells in vitro. When these clonal cells were cultured on denuded mouse corneas, a robust stratified epithelial layer was observed with physiological cell polarity including high levels of E-cadherin, p63 and K15 expression in the basal layer and ZO-1 in the superficial layer, recapitulating the apico-basal polarity of the epithelium in vivo. Conclusions/Significance These results suggest that KRT14 and p63 double-positive epithelial progenitor cells can be cloned from iPS cells in order to produce polarized multilayer epithelial cell sheets. PMID:22174914

  19. Cytokeratin changes in cell culture systems of epithelial cells isolated from oral mucosa: a short review.

    PubMed

    Gasparoni, Alberto; Squier, Christopher Alan; Fonzi, Luciano

    2005-01-01

    In the past three decades, many studies have analyzed ultrastructural and molecular markers of differentiation in squamous stratified epithelial tissues. In these tissues, epithelial cells migrating from the basal layer to the upper layers undergo drastic changes, which involve membrane-associated proteins, DNA synthesis, phenotypic aspects, lipid composition, and cytoskeletal components. Cytoskeletal components include a large and heterogeneous group, including intermediate filaments, components of the cornified envelope, and of the stratum corneum. When grown in mono- and multilayer cell cultures, epithelial cells isolated from the oral mucosa may reproduce many of the biochemical and morphological aspects of epithelial tissue in vivo. In the present paper, we examine phenotypic changes, development of suprabasal layer, and Involucrin expression occurring in differentiating oral epithelial cells, based on literature review and original data. PMID:16277157

  20. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics

    PubMed Central

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M.; Collins, Jane E.; Davies, Donna E.; Morgan, Hywel; Swindle, Emily J.

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  1. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics.

    PubMed

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M; Collins, Jane E; Davies, Donna E; Morgan, Hywel; Swindle, Emily J

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL-8 release is detectable within the first 2h and peaks at 4-6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  2. Retinoic acid promotes primary fetal alveolar epithelial type II cell proliferation and differentiation to alveolar epithelial type I cells.

    PubMed

    Gao, Rui-wei; Kong, Xiang-yong; Zhu, Xiao-xi; Zhu, Guo-qing; Ma, Jin-shuai; Liu, Xiu-xiang

    2015-05-01

    Retinoic acid (RA) plays an important role in lung development and maturation. Many stimuli can induce alveolar epithelial cell damage which will result in the injury of lung parenchyma. The aim of this study was to observe the effect of RA on the proliferation and differentiation of primary fetal alveolar epithelial type II cells (fAECIIs). Primary fAECIIs were isolated from fetal rats at 19 d of gestation and purified by a differential centrifugation and adhesion method. The cells were randomly divided into control (dimethyl sulfoxide, DMSO) and RA groups. Cell proliferation, viability, apoptosis, cycle, and expression of target protein were examined at 24, 48, and 72 h. We found that the proliferation and viability of cells in the RA-exposed group significantly increased compared with the DMSO control group. The proportion (%) of cells in the G2 and S phases in the RA group was significantly higher than that in control group cells. The proportion (%) of both early apoptotic cells and late apoptotic cells decreased significantly in cells exposed to RA compared with cells exposed to DMSO. RA significantly enhanced the expression of aquaporin 5 (AQP5). The expression level of pulmonary surfactant C (SPC) was elevated after cells were exposed to RA for 24 and 72 h but was inhibited when cells were exposed to RA for 48 h. These results suggest that RA promotes fAECII proliferation by improving cell viability, promoting S phase entry and inhibiting apoptosis and RA promotes fAECIIs differentiation to alveolar epithelial type I cells (AECIs). PMID:25515249

  3. Human airway xenograft models of epithelial cell regeneration.

    PubMed

    Puchelle, E; Peault, B

    2000-01-01

    Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID) and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa. PMID:11667974

  4. Epithelial Cell Proliferation Contributes to Airway Remodeling in Severe Asthma

    PubMed Central

    Cohen, Lance; E, Xueping; Tarsi, Jaime; Ramkumar, Thiruvamoor; Horiuchi, Todd K.; Cochran, Rebecca; DeMartino, Steve; Schechtman, Kenneth B.; Hussain, Iftikhar; Holtzman, Michael J.; Castro, Mario

    2007-01-01

    Rationale: Despite long-term therapy with corticosteroids, patients with severe asthma develop irreversible airway obstruction. Objectives: To evaluate if there are structural and functional differences in the airway epithelium in severe asthma associated with airway remodeling. Methods: In bronchial biopsies from 21 normal subjects, 11 subjects with chronic bronchitis, 9 subjects with mild asthma, and 31 subjects with severe asthma, we evaluated epithelial cell morphology: epithelial thickness, lamina reticularis (LR) thickness, and epithelial desquamation. Levels of retinoblastoma protein (Rb), Ki67, and Bcl-2 were measured, reflecting cellular proliferation and death. Terminal deoxynucleotidyl-mediated dUTP nick end labeling (TUNEL) was used to study cellular apoptosis. Measurements and Main Results: Airway epithelial and LR thickness was greater in subjects with severe asthma compared with those with mild asthma, normal subjects, and diseased control subjects (p = 0.009 and 0.033, respectively). There was no significant difference in epithelial desquamation between groups. Active, hypophosphorylated Rb expression was decreased (p = 0.002) and Ki67 was increased (p < 0.01) in the epithelium of subjects with severe asthma as compared with normal subjects, indicating increased cellular proliferation. Bcl-2 expression was decreased (p < 0.001), indicating decreased cell death suppression. There was a greater level of apoptotic activity in the airway biopsy in subjects with severe asthma as compared with the normal subjects using the TUNEL assay (p = 0.002), suggesting increased cell death. Conclusions: In subjects with severe asthma, as compared with subjects with mild asthma, normal subjects, and diseased control subjects, we found novel evidence of increased cellular proliferation in the airway contributing to a thickened epithelium and LR. These changes may contribute to the progressive decline in lung function and airway remodeling in patients with severe

  5. Acetyl-L-Carnitine Hydrochloride in Preventing Peripheral Neuropathy in Patients With Recurrent Ovarian Epithelial Cancer, Primary Peritoneal Cavity Cancer, or Fallopian Tube Cancer Undergoing Chemotherapy

    ClinicalTrials.gov

    2014-12-29

    Fatigue; Malignant Ovarian Mixed Epithelial Tumor; Neuropathy; Neurotoxicity Syndrome; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Pain; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma

  6. Elesclomol Sodium and Paclitaxel in Treating Patients With Recurrent or Persistent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2014-12-23

    Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Ovarian Carcinoma

  7. TLR8 Agonist VTX-2337 and Pegylated Liposomal Doxorubicin Hydrochloride or Paclitaxel in Treating Patients With Recurrent or Persistent Ovarian Epithelial, Fallopian Tube, or Peritoneal Cavity Cancer

    ClinicalTrials.gov

    2014-12-23

    Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Ovarian Carcinoma

  8. Transcriptional Regulation of Tlr11 Gene Expression in Epithelial Cells*

    PubMed Central

    Cai, Zhenyu; Shi, Zhongcheng; Sanchez, Amir; Zhang, Tingting; Liu, Mingyao; Yang, Jianghua; Wang, Fen; Zhang, Dekai

    2009-01-01

    As sensors of invading microorganisms, Toll-like receptors (TLRs) are expressed not only on macrophages and dendritic cells (DCs) but also on epithelial cells. In the TLR family, Tlr11 appears to have the unique feature in that it is expressed primarily on epithelial cells, although it is also expressed on DCs and macrophages. Here, we demonstrate that transcription of the Tlr11 gene is regulated through two cis-acting elements, one Ets-binding site and one interferon regulatory factor (IRF)-binding site. The Ets element interacts with the epithelium-specific transcription factors, ESE-1 and ESE-3, and the IRF motif interacts with IRF-8. Thus, Tlr11 expression on epithelial cells is regulated by the transcription factors that are presumably distinct from transcription factors that regulate the expression of TLRs in innate immune cells such as macrophages and DCs. Our results imply that the distinctive transcription regulatory machinery for TLRs on epithelium may represent a promising new avenue for the development of epithelia-specific therapeutic interventions. PMID:19801549

  9. Differentiation capacity of epithelial cells in the sponge Suberites domuncula.

    PubMed

    Schröder, Heinz C; Perović-Ottstadt, Sanja; Wiens, Matthias; Batel, Renato; Müller, Isabel M; Müller, Werner E G

    2004-05-01

    Sponges (phylum Porifera) represent the oldest metazoans. Their characteristic metazoan adhesion molecules and transcription factors enable them to establish a complex "Bauplan"; three major differentiated cell types (epithelial cells, skeletal cells/sclerocytes, and contractile cells) can be distinguished. Since no molecular markers are as yet available to distinguish these somatic cells or the corresponding embryonic cells from which they originate, we have selected the following three genes for their characterization: noggin (a signaling molecule in development), a caspase that encodes an apoptotic molecule, and silicatein. Silicatein is an enzyme that is involved in the synthesis of siliceous spicules and can hence be considered as a marker for scleroblasts. We have used the demosponge Suberites domuncula as a model system. During the hatching of the gemmules (asexual reproduction bodies) of S. domuncula, the expression of both noggin and caspase increases, whereas no transcripts for silicatein can be detected, irrespective of the presence of silicate or ferric iron (Fe3+) in the medium. In contrast, in adult specimens, silicate/Fe3+ cause an increased expression of these genes. In situ analysis has revealed that the first cells that express noggin, caspase, and silicatein lie in the epithelial layer of the pinacoderm. In a later phase, the noggin- and silicatein-positive cells migrate into the mesohyl, where they are found in association with spicules. Thus, the pinacoderm of sponges contains cells that have a differentiating capacity and from which somatic cells, such as skeletal cells/sclerocytes, derive. PMID:15024642

  10. Radiogenic transformation of human mammary epithelial cells in vitro

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  11. Nucleus Morphometry in Cultured Epithelial Cells Correlates with Phenotype.

    PubMed

    Khan, Ayyad Z; Utheim, Tor P; Jackson, Catherine J; Reppe, Sjur; Lyberg, Torstein; Eidet, Jon R

    2016-06-01

    Phenotype of cultured ocular epithelial transplants has been shown to affect clinical success rates following transplantation to the cornea. The purpose of this study was to evaluate the relationship between cell nucleus morphometry and phenotype in three types of cultured epithelial cells. This study provides knowledge for the development of a non-invasive method of determining the phenotype of cultured epithelium before transplantation. Cultured human conjunctival epithelial cells (HCjE), human epidermal keratinocytes (HEK), and human retinal pigment epithelial cells (HRPE) were analyzed by quantitative immunofluorescence. Assessments of nucleus morphometry and nucleus-to-cytoplasm ratio (N/C ratio) were performed using ImageJ. Spearman's correlation coefficient was employed for statistical analysis. Levels of the proliferation marker PCNA in HCjE, HEK, and HRPE correlated positively with nuclear area. Nuclear area correlated significantly with levels of the undifferentiated cell marker ABCG2 in HCjE. Bmi1 levels, but not p63α levels, correlated significantly with nuclear area in HEK. The N/C ratio did not correlate significantly with any of the immunomarkers in HCjE (ABCG2, CK7, and PCNA) and HRPE (PCNA). In HEK, however, the N/C ratio was negatively correlated with levels of the undifferentiated cell marker CK14 and positively correlated with Bmi1 expression. The size of the nuclear area correlated positively with proliferation markers in all three epithelia. Morphometric indicators of phenotype in cultured epithelia can be identified using ImageJ. Conversely, the N/C ratio did not show a uniform relationship with phenotype in HCjE, HEK, or HRPE. N/C ratio therefore, may not be a useful morphometric marker for in vitro assessment of phenotype in these three epithelia. PMID:27329312

  12. Zinc modulates cytokine-induced lung epithelial cell barrier permeability.

    PubMed

    Bao, Shenying; Knoell, Daren L

    2006-12-01

    Apoptosis plays a causative role in acute lung injury in part due to epithelial cell loss. We recently reported that zinc protects the lung epithelium during inflammatory stress whereas depletion of intracellular zinc enhances extrinsic apoptosis. In this investigation, we evaluated the relationship between zinc, caspase-3, and cell-to-cell contact via proteins that form the adherens junction complex. Cell adhesion proteins are directly responsible for formation of the mechanical barrier of the lung epithelium. We hypothesized that exposure to inflammatory cytokines, in conjunction with zinc deprivation, would induce caspase-3, leading to degradation of junction proteins, loss of cell-to-cell contact, and compromised barrier function. Primary human upper airway and type I/II alveolar epithelial cultures were obtained from multiple donors and exposed to inflammatory stimuli that provoke extrinsic apoptosis in addition to depletion of intracellular zinc. We observed that zinc deprivation combined with tumor necrosis factor-alpha, interferon-gamma, and Fas receptor ligation accelerates caspase-3 activation, proteolysis of E-cadherin and beta-catenin, and cellular apoptosis, leading to increased paracellular leak across monolayers of both upper airway and alveolar lung epithelial cultures. Zinc supplementation inhibited apoptosis and paracellular leak, whereas caspase inhibition was less effective. We conclude that zinc is a vital factor in the lung epithelium that protects against death receptor-mediated apoptosis and barrier dysfunction. Furthermore, our findings suggest that although caspase-3 inhibition reduces lung epithelial apoptosis it does not prevent mechanical dysfunction. These findings facilitate future studies aimed at developing therapeutic strategies to prevent acute lung injury. PMID:16844947

  13. Borrelia burgdorferi bind to epithelial cell proteoglycans.

    PubMed Central

    Isaacs, R D

    1994-01-01

    Borrelia burgdorferi adhere to mammalian cells in vitro but neither the ligand(s) nor the receptor(s) has (have) been clearly established. Using an in vitro attachment-inhibition assay, a B. burgdorferi attachment mechanism has been identified. Heparin, heparan sulfate, and dermatan sulfate reduced the attachment of virulent B. burgdorferi strain 297 to HeLa cells by approximately 60%. In addition, virulent, but not avirulent, B. burgdorferi strains B31, N40, and HB19 demonstrated heparin attachment-inhibition. Attachment to Chinese hamster ovary cells deficient in heparan sulfate proteoglycans was reduced by 68% compared to attachment to wild-type cells and was identical to attachment at maximum heparin inhibition to the wild-type cells. Pretreatment of HeLa cell monolayers with heparitinase, heparinase, and chondroitinase ABC, but not with chondroitinase AC, reduced borrelial attachment by approximately 50%. A moderately high affinity, low copy number, promiscuous B. burgdorferi glycosaminoglycan receptor was demonstrated by equilibrium binding studies. A 39-kD polypeptide, purified by heparin affinity chromatography from Triton X-100 extracts derived from virulent borrelia, was a candidate for this receptor. These studies indicate that one mode of B. burgdorferi attachment to eukaryotic cells is mediated by a borrelial glycosaminoglycan receptor attaching to surface-exposed proteoglycans on mammalian cells. Images PMID:8113413

  14. An Increased Abundance of Tumor-Infiltrating Regulatory T Cells Is Correlated with the Progression and Prognosis of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Tang, Yichen; Xu, Xuejun; Guo, Shixiang; Zhang, Chaobin; Tang, Yan; Tian, Yi; Ni, Bing; Lu, Binfeng; Wang, Huaizhi

    2014-01-01

    CD4+CD25+Foxp3+ regulatory T cells (Tregs) can inhibit cytotoxic responses. Though several studies have analyzed Treg frequency in the peripheral blood mononuclear cells (PBMCs) of pancreatic ductal adenocarcinoma (PDA) patients using flow cytometry (FCM), few studies have examined how intratumoral Tregs might contribute to immunosuppression in the tumor microenvironment. Thus, the potential role of intratumoral Tregs in PDA patients remains to be elucidated. In this study, we found that the percentages of Tregs, CD4+ T cells and CD8+ T cells were all increased significantly in tumor tissue compared to control pancreatic tissue, as assessed via FCM, whereas the percentages of these cell types in PBMCs did not differ between PDA patients and healthy volunteers. The percentages of CD8+ T cells in tumors were significantly lower than in PDA patient PBMCs. In addition, the relative numbers of CD4+CD25+Foxp3+ Tregs and CD8+ T cells were negatively correlated in the tissue of PDA patients, and the abundance of Tregs was significantly correlated with tumor differentiation. Additionally, Foxp3+ T cells were observed more frequently in juxtatumoral stroma (immediately adjacent to the tumor epithelial cells). Patients showing an increased prevalence of Foxp3+ T cells had a poorer prognosis, which was an independent factor for patient survival. These results suggest that Tregs may promote PDA progression by inhibiting the antitumor immunity of CD8+ T cells at local intratumoral sites. Moreover, a high proportion of Tregs in tumor tissues may reflect suppressed antitumor immunity. PMID:24637664

  15. Histogenesis of hollow cell ball structure of ovarian and endometrial adenocarcinoma cells in vivo and in vitro.

    PubMed

    Ishiwata, I; Kiguchi, K; Ishiwata, C; Soma, M; Nakaguchi, T; Ono, I; Tachibana, T; Hashimoto, H; Ishikawa, H; Nozawa, S

    1997-09-01

    Hollow cell ball structure is often found in the ascites of adenocarcinoma patients. How to form a hollow cell ball structure was studied in vivo and in vitro, using the human cell lines derived from ovarian and endometrial adenocarcinomas. The hollow cell ball structure was formed by horizontal rotation culture of 1 x 10(7) single-suspended cells for 24 hours or by transplanting 1 x 10(6) single-suspended cells into the peritoneal cavity of nude mouse for 24 hours. At one month after transplantation hemi-cyst and hollow cell ball structure were formed in the outermost layer of the grafted tumor on the intraperitoneal serous membrane in the nude mouse. And also great number of floating hollow cell ball structure in the ascites were observed. These results suggest that mechanisms of formation of hollow cell ball structure found in the ascites; one by cell aggregate of single cells, sometimes inner cells of cell aggregate fall into necrosis or secretes mucus inside and make a hollow cell ball structure and another by the removed as the hollow cell ball structure grown from hemi-cyst on the surface of intraperitoneal grafted tumor. PMID:9436041

  16. Bax is not involved in the resveratrol-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-wei; Wang, Zhi-ping; Chen, Tong-sheng

    2010-02-01

    Resveratrol (RV) is a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts. Previous studies indicate that RV has an ability to inhibit various stages of carcinogenesis and eliminate preneoplastic cells in vitro and in vivo. However, little is known about the molecular mechanism of RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cell. In this report, we analyzed whether Bax translocation from cytoplasm to mitochondria during RV-induced apoptosis in single living cell using onfocal microscopey. Cells were transfected with GFP-Bax plasmid. Cell counting kit (CCK-8) assay was used to assess the inhibition of RV on the cells viability. Apoptotic activity of RV was detected by Hoechst 33258 and propidium iodide (PI) staining. Our results showed that RV induced a dose-dependent apoptosis in which Bax did not translocate to mitochondrias.

  17. CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...

  18. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    PubMed Central

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  19. Efficacy of several candidate protein biomarkers in the differentiation of vaginal from buccal epithelial cells.

    PubMed

    Simons, Joanne L; Vintiner, Sue K

    2012-11-01

    Currently, there is no accurate method to differentiate vaginal epithelial cells from buccal epithelial cells in biological samples typically encountered in forensic casework. This study tested the expression of a selection of candidate proteins in buccal and vaginal epithelial cells. We investigated six candidate biomarkers, such as loricrin, vimentin, stratifin, cytokeratin 4, cytokeratin 13, small proline-rich protein 2, and involucrin, using Western blot analysis on whole protein extracts and immunohistochemistry (IHC) on intact cells in an attempt to identify cell-specific markers that would differentiate these cells by microscopy. Involucrin, loricrin, and stratifin showed differential expression during Western blot analysis and were carried through to IHC. Although proteins unique to vaginal epithelial cells and buccal epithelial cells were not identified from among the proteins tested, the increased expression levels of two proteins, loricrin and stratifin in vaginal cells, when compared to buccal cells, do provide encouraging results in the search for epithelial cell-specific markers. PMID:22612601

  20. XB130 promotes bronchioalveolar stem cell and Club cell proliferation in airway epithelial repair and regeneration

    PubMed Central

    Toba, Hiroaki; Wang, Yingchun; Bai, Xiaohui; Zamel, Ricardo; Cho, Hae-Ra; Liu, Hongmei; Lira, Alonso; Keshavjee, Shaf; Liu, Mingyao

    2015-01-01

    Proliferation of bronchioalveolar stem cells (BASCs) is essential for epithelial repair. XB130 is a novel adaptor protein involved in the regulation of epithelial cell survival, proliferation and migration through the PI3K/Akt pathway. To determine the role of XB130 in airway epithelial injury repair and regeneration, a naphthalene-induced airway epithelial injury model was used with XB130 knockout (KO) mice and their wild type (WT) littermates. In XB130 KO mice, at days 7 and 14, small airway epithelium repair was significantly delayed with fewer number of Club cells (previously called Clara cells). CCSP (Club cell secreted protein) mRNA expression was also significantly lower in KO mice at day 7. At day 5, there were significantly fewer proliferative epithelial cells in the KO group, and the number of BASCs significantly increased in WT mice but not in KO mice. At day 7, phosphorylation of Akt, GSK-3β, and the p85α subunit of PI3K was observed in airway epithelial cells in WT mice, but to a much lesser extent in KO mice. Microarray data also suggest that PI3K/Akt-related signals were regulated differently in KO and WT mice. An inhibitory mechanism for cell proliferation and cell cycle progression was suggested in KO mice. XB130 is involved in bronchioalveolar stem cell and Club cell proliferation, likely through the PI3K/Akt/GSK-3β pathway. PMID:26360608

  1. Live-cell Imaging and Quantitative Analysis of Embryonic Epithelial Cells in Xenopus laevis

    PubMed Central

    Joshi, Sagar D.; Davidson, Lance A.

    2010-01-01

    Embryonic epithelial cells serve as an ideal model to study morphogenesis where multi-cellular tissues undergo changes in their geometry, such as changes in cell surface area and cell height, and where cells undergo mitosis and migrate. Furthermore, epithelial cells can also regulate morphogenetic movements in adjacent tissues1. A traditional method to study epithelial cells and tissues involve chemical fixation and histological methods to determine cell morphology or localization of particular proteins of interest. These approaches continue to be useful and provide "snapshots" of cell shapes and tissue architecture, however, much remains to be understood about how cells acquire specific shapes, how various proteins move or localize to specific positions, and what paths cells follow toward their final differentiated fate. High resolution live imaging complements traditional methods and also allows more direct investigation into the dynamic cellular processes involved in the formation, maintenance, and morphogenesis of multicellular epithelial sheets. Here we demonstrate experimental methods from the isolation of animal cap tissues from Xenopus laevis embryos to confocal imaging of epithelial cells and simple measurement approaches that together can augment molecular and cellular studies of epithelial morphogenesis. PMID:20498627

  2. Interaction exists between matriptase inhibitors and intestinal epithelial cells.

    PubMed

    Pászti-Gere, Erzsebet; Barna, Réka Fanni; Ujhelyi, Gabriella; Steinmetzer, Torsten

    2016-10-01

    The type II trypsin-like transmembrane serine protease matriptase, is mainly expressed in epithelial cells and one of the key regulators in the formation and maintenance of epithelial barrier integrity. Therefore, we have studied the inhibition of matriptase in a non-transformed porcine intestinal IPEC-J2 cell monolayer cultured on polyester membrane inserts by the non-selective 4-(2-aminoethyl)-benzosulphonylfluoride (AEBSF) and four more selective 3-amidinophenylalanine-derived matriptase inhibitors. It was found that suppression of matriptase activity by MI-432 and MI-460 led to decreased transepithelial electrical resistance (TER) of the cell monolayer and to an enhanced transport of fluorescently labelled dextran, a marker for paracellular transport between apical and basolateral compartments. To this date this is the first report in which the inhibition of matriptase activity by synthetic inhibitors has been correlated to a reduced barrier integrity of a non-cancerous IPEC-J2 epithelial cell monolayer in order to describe interaction between matriptase activity and intestinal epithelium in vitro. PMID:26118419

  3. Blood group glycolipids as epithelial cell receptors for Candida albicans.

    PubMed Central

    Cameron, B J; Douglas, L J

    1996-01-01

    The role of glycosphingolipids as possible epithelial cell receptors for Candida albicans was examined by investigating the binding of biotinylated yeasts to lipids extracted from human buccal epithelial cells and separated on thin-layer chromatograms. Binding was visualized by the addition of 125I-streptavidin followed by autoradiography. Five C. albicans strains thought from earlier work to have a requirement for fucose-containing receptors all bound to the same three components in the lipid extract. A parallel chromatogram overlaid with biotinylated Ulex europaeus lectin, which is a fucose-binding lectin with a specificity for the H blood group antigen, showed that two of these glycosphingolipids carried this antigenic determinant. Preparations of crude and purified adhesin (a protein with a size of 15.7 kDa which lacked cysteine residues) from one of the strains also bound to these same two components. The third glycosphingolipid, which bound whole cells but neither preparation of adhesin, was recognized by Helix pomatia lectin, indicating that it contained N-acetylgalactosamine, possibly in the form of the A blood group antigen. Overlay assays with a sixth strain of C. albicans (GDH 2023) revealed a completely different binding pattern of four receptors, each of which contained N-acetylglucosamine. These results confirm earlier predictions about the receptor specificity of the strains made on the basis of adhesion inhibition studies and indicate that blood group antigens can act as epithelial cell receptors for C. albicans. PMID:8641797

  4. Photodynamic treatment of lens epithelial cells for cataract surgery

    NASA Astrophysics Data System (ADS)

    Lingua, Robert W.; Parel, Jean-Marie A.; Simon, Gabriel; Li, Kam

    1991-06-01

    Photodynamic therapy (PDT) eiiploying Dihematopor*iyrin ethers (DHE) (Photofrin II) at pharmacologic lvels, has been denonstrate3 to kill rabbit lens epithelial cells, in vivo. This in vitro study, reports on the minimal necessary parameters for rabbit lens epithelial cell death. Explants of rabbit lenses were incubated in various concentrations of DHE (1O,, 100, 500, 1000 ug/ml) for 1, 2, or 5 minutes. 30 to 120 Joules/an of collimated 514.5 nm Argon laser light re delivered to the locier concentrations of 10, 50, and 100 ug,'ml DHE treated cells. One hundre1 fifteen explants were treated, in all. Higher concentrations of DHE alone (500 and 1000 ug/ml) were sufficient to induce cellular swelling. Lower concentrations required light for cellular effect. Trypan blue staining revealed cell death at these minimal pa9ieters: DHE 50 ug/ml, incubation 1 minute, 514.5 r Argon light 1.0 Watt/an for 30 sec (30 Joules) . In future studies, these rameters will be tested in vivo, for their ability to eliminate lens epithelial proliferation after cataract surgery.

  5. Regulation of local immunity by airway epithelial cells.

    PubMed

    Mayer, Anja K; Dalpke, Alexander H

    2007-01-01

    Epithelial cells are the first line of defense against invading microbial pathogens. They are important contributors to innate mucosal immunity and generate various and sophisticated anti-microbial defense mechanisms, including the formation of a tight barrier and secretion of anti-microbial substances as well as inflammatory mediators. To provide these active defense mechanisms, epithelial cells functionally express various pattern-recognition receptors. Toll-like receptors have been shown to recognize conserved microbial patterns mediating inducible activation of innate immunity. Mucosal surfaces, however, are prone to contact with pathogenic as well as non-pathogenic microbes and, therefore, immune-recognition principles have to be strictly regulated to avoid uncontrolled permanent activation. This review will focus on mechanisms by which epithelial cells regulate mucosal immune responses, thus creating an organ-specific microenvironment. This includes local adaptations in microbial recognition, regulation of local immune homeostasis, and modulation of antigen-presenting cells and adaptive immune responses. These regulatory mechanisms serve the special needs of controlled microbial recognition in mucosal compartments. PMID:18060372

  6. Epigenetics in Intestinal Epithelial Cell Renewal.

    PubMed

    Roostaee, Alireza; Benoit, Yannick D; Boudjadi, Salah; Beaulieu, Jean-François

    2016-11-01

    A controlled balance between cell proliferation and differentiation is essential to maintain normal intestinal tissue renewal and physiology. Such regulation is powered by several intracellular pathways that are translated into the establishment of specific transcription programs, which influence intestinal cell fate along the crypt-villus axis. One important check-point in this process occurs in the transit amplifying zone of the intestinal crypts where different signaling pathways and transcription factors cooperate to manage cellular proliferation and differentiation, before secretory or absorptive cell lineage terminal differentiation. However, the importance of epigenetic modifications such as histone methylation and acetylation in the regulation of these processes is still incompletely understood. There have been recent advances in identifying the impact of histone modifications and chromatin remodelers on the proliferation and differentiation of normal intestinal crypt cells. In this review we discuss recent discoveries on the role of the cellular epigenome in intestinal cell fate, development, and tissue renewal. J. Cell. Physiol. 231: 2361-2367, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27061836

  7. Left-right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis.

    PubMed

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Maekawa, Emi; Isomura, Ayako; Shibata, Tatsuo; Kuranaga, Erina

    2015-01-01

    Morphogenetic epithelial movement occurs during embryogenesis and drives complex tissue formation. However, how epithelial cells coordinate their unidirectional movement while maintaining epithelial integrity is unclear. Here we propose a novel mechanism for collective epithelial cell movement based on Drosophila genitalia rotation, in which epithelial tissue rotates clockwise around the genitalia. We found that this cell movement occurs autonomously and requires myosin II. The moving cells exhibit repeated left-right-biased junction remodelling, while maintaining adhesion with their neighbours, in association with a polarized myosin II distribution. Reducing myosinID, known to cause counter-clockwise epithelial-tissue movement, reverses the myosin II distribution. Numerical simulations revealed that a left-right asymmetry in cell intercalation is sufficient to induce unidirectional cellular movement. The cellular movement direction is also associated with planar cell-shape chirality. These findings support a model in which left-right asymmetric cell intercalation within an epithelial sheet drives collective cellular movement in the same direction. PMID:26656655

  8. Left–right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis

    PubMed Central

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Maekawa, Emi; Isomura, Ayako; Shibata, Tatsuo; Kuranaga, Erina

    2015-01-01

    Morphogenetic epithelial movement occurs during embryogenesis and drives complex tissue formation. However, how epithelial cells coordinate their unidirectional movement while maintaining epithelial integrity is unclear. Here we propose a novel mechanism for collective epithelial cell movement based on Drosophila genitalia rotation, in which epithelial tissue rotates clockwise around the genitalia. We found that this cell movement occurs autonomously and requires myosin II. The moving cells exhibit repeated left–right-biased junction remodelling, while maintaining adhesion with their neighbours, in association with a polarized myosin II distribution. Reducing myosinID, known to cause counter-clockwise epithelial-tissue movement, reverses the myosin II distribution. Numerical simulations revealed that a left–right asymmetry in cell intercalation is sufficient to induce unidirectional cellular movement. The cellular movement direction is also associated with planar cell-shape chirality. These findings support a model in which left–right asymmetric cell intercalation within an epithelial sheet drives collective cellular movement in the same direction. PMID:26656655

  9. *Iron accumulation in bronchial epithelial cells is dependent on concurrent sodium transport

    EPA Science Inventory

    Airway epithelial cells prevent damaging effects of extracellular iron by taking up the metal and sequestering it within intracellular ferritin. Epithelial iron transport is associated with transcellular movement of other cations including changes in the expression or activity of...

  10. Novel human bronchial epithelial cell lines for cystic fibrosis research

    PubMed Central

    Fulcher, M. L.; Gabriel, S. E.; Olsen, J. C.; Tatreau, J. R.; Gentzsch, M.; Livanos, E.; Saavedra, M. T.; Salmon, P.; Randell, S. H.

    2009-01-01

    Immortalization of human bronchial epithelial (hBE) cells often entails loss of differentiation. Bmi-1 is a protooncogene that maintains stem cells, and its expression creates cell lines that recapitulate normal cell structure and function. We introduced Bmi-1 and the catalytic subunit of telomerase (hTERT) into three non-cystic fibrosis (CF) and three ΔF508 homozygous CF primary bronchial cell preparations. This treatment extended cell life span, although not as profoundly as viral oncogenes, and at passages 14 and 15, the new cell lines had a diploid karyotype. Ussing chamber analysis revealed variable transepithelial resistances, ranging from 200 to 1,200 Ω·cm2. In the non-CF cell lines, short-circuit currents were stimulated by forskolin and inhibited by CFTR(inh)-172 at levels mostly comparable to early passage primary cells. CF cell lines exhibited no forskolin-stimulated current and minimal CFTR(inh)-172 response. Amiloride-inhibitable and UTP-stimulated currents were present, but at lower and higher amplitudes than in primary cells, respectively. The cells exhibited a pseudostratified morphology, with prominent apical membrane polarization, few apoptotic bodies, numerous mucous secretory cells, and occasional ciliated cells. CF and non-CF cell lines produced similar levels of IL-8 at baseline and equally increased IL-8 secretion in response to IL-1β, TNF-α, and the Toll-like receptor 2 agonist Pam3Cys. Although they have lower growth potential and more fastidious growth requirements than viral oncogene transformed cells, Bmi-1/hTERT airway epithelial cell lines will be useful for several avenues of investigation and will help fill gaps currently hindering CF research and therapeutic development. PMID:18978040

  11. Epithelial Cell Polarity Determinant CRB3 in Cancer Development

    PubMed Central

    Li, Pingping; Mao, Xiaona; Ren, Yu; Liu, Peijun

    2015-01-01

    Cell polarity, which is defined as asymmetry in cell shape, organelle distribution and cell function, is essential in numerous biological processes, including cell growth, cell migration and invasion, molecular transport, and cell fate. Epithelial cell polarity is mainly regulated by three conserved polarity protein complexes, the Crumbs (CRB) complex, partitioning defective (PAR) complex and Scribble (SCRIB) complex. Research evidence has indicated that dysregulation of cell polarity proteins may play an important role in cancer development. Crumbs homolog 3 (CRB3), a member of the CRB complex, may act as a cancer suppressor in mouse kidney epithelium and mouse mammary epithelium. In this review, we focus on the current data available on the roles of CRB3 in cancer development. PMID:25552927

  12. Clonal analysis of limbal epithelial stem cell populations.

    PubMed

    Schlötzer-Schrehardt, Ursula

    2013-01-01

    While convincing data clearly suggest the presence of stem cells in the basal limbal epithelium in vivo, testing the proliferation, self-renewal, and differentiation capacity of stem cells relies on the development of methodologies that allow for their isolation and extensive propagation in vitro. Clonal analysis involving differentiation between short-lived transient cell clones and long-lived stem cell clones is an invaluable technique to identify stem cells in vitro, and allows cells to be expanded over multiple passages. This chapter describes a protocol for the isolation, expansion, and clonal analysis of limbal epithelial stem cells. The cultivation method described may be essential for long-term restoration of the damaged ocular surface in patients with limbal stem cell deficiency. PMID:23690004

  13. Measles virus breaks through epithelial cell barriers to achieve transmission

    PubMed Central

    Takeda, Makoto

    2008-01-01

    Measles is a highly contagious disease that causes immunosuppression in patients. Measles virus infection has been thought to begin in the respiratory epithelium and then spread to lymphoid tissue. In this issue of the JCI, Leonard et al. provide data to suggest an alternative model of measles virus pathogenesis (see the related article beginning on page 2448). In human primary epithelial cells and rhesus monkeys in vivo, the authors show that initial infection of respiratory epithelium is not necessary for the virus to enter the host but that viral entry into epithelial cells via interaction of the virus with a receptor located on the basolateral side of the epithelium is required for viral shedding into the airway and subsequent transmission. PMID:18568081

  14. Oral epithelial cell responses to multispecies microbial biofilms.

    PubMed

    Peyyala, R; Kirakodu, S S; Novak, K F; Ebersole, J L

    2013-03-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. Only the Sg/Actinomyces naeslundii (An)/Fn multispecies biofilms elicited IL-6 levels above those of control. IL-8 was a primary response to the Sg/An/Fn biofilms, albeit the level was not enhanced compared with a predicted composite level from the monospecies challenges. These results represent some of the first data documenting alterations in profiles of oral epithelial cell responses to multispecies biofilms. PMID:23300185

  15. LOXL2 in epithelial cell plasticity and tumor progression.

    PubMed

    Cano, Amparo; Santamaría, Patricia G; Moreno-Bueno, Gema

    2012-09-01

    Several members of the lysyl oxidase family have recently emerged as important regulators of tumor progression. Among them, LOXL2 has been shown to be involved in tumor progression and metastasis of several tumor types, including breast carcinomas. Secreted LOXL2 participates in the remodeling of the extracellular matrix of the tumor microenvironment, in a similar fashion to prototypical lysyl oxidase. In addition, new intracellular functions of LOXL2 have been described, such as its involvement in the regulation of the epithelial-to-mesenchymal transition, epithelial cell polarity and differentiation mediated by transcriptional repression mechanisms. Importantly, intracellular (perinuclear) expression of LOXL2 is associated with poor prognosis and distant metastasis of specific tumor types, such as larynx squamous cell carcinoma and basal breast carcinomas. These recent findings open new avenues for the therapeutic utility of LOXL2. PMID:23030485

  16. CXCL12 expression by healthy and malignant ovarian epithelial cells

    PubMed Central

    2011-01-01

    Background CXCL12 has been widely reported to play a biologically relevant role in tumor growth and spread. In epithelial ovarian cancer (EOC), CXCL12 enhances tumor angiogenesis and contributes to the immunosuppressive network. However, its prognostic significance remains unclear. We thus compared CXCL12 status in healthy and malignant ovaries, to assess its prognostic value. Methods Immunohistochemistry was used to analyze CXCL12 expression in the reproductive tracts, including the ovaries and fallopian tubes, of healthy women, in benign and borderline epithelial tumors, and in a series of 183 tumor specimens from patients with advanced primary EOC enrolled in a multicenter prospective clinical trial of paclitaxel/carboplatin/gemcitabine-based chemotherapy (GINECO study). Univariate COX model analysis was performed to assess the prognostic value of clinical and biological variables. Kaplan-Meier methods were used to generate progression-free and overall survival curves. Results Epithelial cells from the surface of the ovary and the fallopian tubes stained positive for CXCL12, whereas the follicles within the ovary did not. Epithelial cells in benign, borderline and malignant tumors also expressed CXCL12. In EOC specimens, CXCL12 immunoreactivity was observed mostly in epithelial tumor cells. The intensity of the signal obtained ranged from strong in 86 cases (47%) to absent in 18 cases (<10%). This uneven distribution of CXCL12 did not reflect the morphological heterogeneity of EOC. CXCL12 expression levels were not correlated with any of the clinical parameters currently used to determine EOC prognosis or with HER2 status. They also had no impact on progression-free or overall survival. Conclusion Our findings highlight the previously unappreciated constitutive expression of CXCL12 on healthy epithelia of the ovary surface and fallopian tubes, indicating that EOC may originate from either of these epithelia. We reveal that CXCL12 production by malignant

  17. Ivermectin Inhibits Growth of Chlamydia trachomatis in Epithelial Cells

    PubMed Central

    Pettengill, Matthew A.; Lam, Verissa W.; Ollawa, Ikechukwu; Marques-da-Silva, Camila; Ojcius, David M.

    2012-01-01

    Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia. PMID:23119027

  18. Ivermectin inhibits growth of Chlamydia trachomatis in epithelial cells.

    PubMed

    Pettengill, Matthew A; Lam, Verissa W; Ollawa, Ikechukwu; Marques-da-Silva, Camila; Ojcius, David M

    2012-01-01

    Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia. PMID:23119027

  19. Sensitivity of proliferating human breast epithelial cells to hypotonic treatment

    SciTech Connect

    Goldstone, S.E.; Stanyon, R.; Lan, S.

    1982-12-01

    An assay for colony-forming cells of breast epithelia derived from normal and malignant surgical specimens is described using an IMR 90 fibroblast feeder layer. Their radiosensitivity (DO: 120-172) is consistent with the proliferative origin of the colonies. Distilled water inhibits proliferation of a proportion of the colony-forming cells after a 1-minute exposure. Continued detection of colonies after 10 minutes of exposure indicates that it is an inefficient way of completely eradicating proliferating epithelial cells of normal and malignant origin.

  20. Molecular crosstalk between apoptosis and autophagy induced by a novel 2-methoxyestradiol analogue in cervical adenocarcinoma cells

    PubMed Central

    2013-01-01

    Background 2-Methoxyestradiol has been shown to induce both autophagy and apoptosis in various carcinogenic cell lines. Although a promising anti-cancer agent, it has poor bioavailability and rapid in vivo metabolism which decreases its efficiency. In order to improve 2-methoxyestradiol’s anti-proliferative properties, a novel 2-methoxyestradiol analogue, 2-ethyl-3-O-sulphamoyl-estra-1,3,5 (10)16-tetraene (ESE-16), was previously in silico-designed in our laboratory. This study investigated ESE-16 for its anti-proliferative potential on a cervical adenocarcinoma cell (HeLa) cell line. Additionally, the possible intracellular crosstalk mechanisms between the two types of cell death were investigated. Methods and results HeLa cells exposed to 0.5 μM ESE-16 for 24 hours showed morphological evidence of both apoptotic and autophagic death pathways as assessed by polarization-optical transmitted light differential interference contrast microscopy, fluorescent microscopy and transmission electron microscopy. Flow cytometric cyclin B1 quantification revealed induction of programmed cell death after halting cell cycle progression in metaphase. Confocal microscopy demonstrated that ESE-16 caused microtubule fragmentation. Flow cytometric analysis of cell cycle progression and phosphatidylserine flip determination confirmed induction of apoptosis. Moreover, an increase in aggresome formation and microtubule-associated protein light chain, LC3, was demonstrated indicative of autophagy. Both caspase 8 and 3 were upregulated in a spectrophotometric analysis, indicating the involvement of the extrinsic pathway of apoptotic induction. Conclusions We conclude that the novel in silico-designed compound, ESE-16, exerts its anti-proliferative effect on the tumorigenic human epithelial cervical (HeLa) cells by sequentially targeting microtubule integrity, resulting in a metaphase block, causing induction of both autophagic and apoptotic cell death via a crosstalk mechanism that

  1. Hyperoxia alters the mechanical properties of alveolar epithelial cells.

    PubMed

    Roan, Esra; Wilhelm, Kristina; Bada, Alex; Makena, Patrudu S; Gorantla, Vijay K; Sinclair, Scott E; Waters, Christopher M

    2012-06-15

    Patients with severe acute lung injury are frequently administered high concentrations of oxygen (>50%) during mechanical ventilation. Long-term exposure to high levels of oxygen can cause lung injury in the absence of mechanical ventilation, but the combination of the two accelerates and increases injury. Hyperoxia causes injury to cells through the generation of excessive reactive oxygen species. However, the precise mechanisms that lead to epithelial injury and the reasons for increased injury caused by mechanical ventilation are not well understood. We hypothesized that alveolar epithelial cells (AECs) may be more susceptible to injury caused by mechanical ventilation if hyperoxia alters the mechanical properties of the cells causing them to resist deformation. To test this hypothesis, we used atomic force microscopy in the indentation mode to measure the mechanical properties of cultured AECs. Exposure of AECs to hyperoxia for 24 to 48 h caused a significant increase in the elastic modulus (a measure of resistance to deformation) of both primary rat type II AECs and a cell line of mouse AECs (MLE-12). Hyperoxia also caused remodeling of both actin and microtubules. The increase in elastic modulus was blocked by treatment with cytochalasin D. Using finite element analysis, we showed that the increase in elastic modulus can lead to increased stress near the cell perimeter in the presence of stretch. We then demonstrated that cyclic stretch of hyperoxia-treated cells caused significant cell detachment. Our results suggest that exposure to hyperoxia causes structural remodeling of AECs that leads to decreased cell deformability. PMID:22467640

  2. Human alveolar epithelial type II cells in primary culture.

    PubMed

    Mao, Pu; Wu, Songling; Li, Jianchun; Fu, Wei; He, Weiqun; Liu, Xiaoqing; Slutsky, Arthur S; Zhang, Haibo; Li, Yimin

    2015-02-01

    Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells. PMID:25677546

  3. Human alveolar epithelial type II cells in primary culture

    PubMed Central

    Mao, Pu; Wu, Songling; Li, Jianchun; Fu, Wei; He, Weiqun; Liu, Xiaoqing; Slutsky, Arthur S; Zhang, Haibo; Li, Yimin

    2015-01-01

    Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells. PMID:25677546

  4. TCDD alters medial epithelial cell differentiation during palatogenesis

    SciTech Connect

    Abbott, B.D.; Birnbaum, L.S. )

    1989-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of (3H)TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation.

  5. A Molecular Switch for the Orientation of Epithelial Cell Polarization

    PubMed Central

    Bryant, David M.; Roignot, Julie; Datta, Anirban; Overeem, Arend W.; Kim, Minji; Yu, Wei; Peng, Xiao; Eastburn, Dennis J.; Ewald, Andrew J.; Werb, Zena; Mostov, Keith E.

    2014-01-01

    SUMMARY The formation of epithelial tissues containing lumens requires not only the apical-basolateral polarization of cells, but also the coordinated orientation of this polarity such that the apical surfaces of neighboring cells all point toward the central lumen. Defects in extracellular matrix (ECM) signaling lead to inverted polarity so that the apical surfaces face the surrounding ECM. We report a molecular switch mechanism controlling polarity orientation. ECM signals through a β1-integrin/FAK/p190RhoGAP complex to down-regulate a RhoA/ROCK/Ezrin pathway at the ECM interface. PKCβII phosphorylates the apical identity-promoting Podocalyxin/NHERF1/Ezrin complex, removing Podocalyxin from the ECM-abutting cell surface and initiating its transcytosis to an apical membrane initiation site for lumen formation. Inhibition of this switch mechanism results in the retention of Podocalyxin at the ECM interface and the development instead of collective front-rear polarization and motility. Thus, ECM-derived signals control the morphogenesis of epithelial tissues by controlling the collective orientation of epithelial polarization. PMID:25307480

  6. Adherence of Tritrichomonas foetus to bovine vaginal epithelial cells.

    PubMed Central

    Corbeil, L B; Hodgson, J L; Jones, D W; Corbeil, R R; Widders, P R; Stephens, L R

    1989-01-01

    Adherence of Tritrichomonas foetus to bovine vaginal epithelial cells (VECs) in vitro was investigated with fresh washed bovine VECs and log-phase cultures of T. foetus. Observation under phase-contrast microscopy showed that T. foetus usually adhered first by the posterior flagellum and later by the body. Significantly more keratinized squamous epithelial cells were detected with attached parasites than nonkeratinized round epithelial cells. The optimal pH range for attachment was 6.0 to 7.5, with peak attachment at pH 6.5 for squamous VECs. Surface-reactive bovine antiserum to T. foetus prevented adherence to bovine squamous VECs. Inhibition of adherence occurred at nonagglutinating, nonimmobilizing serum dilutions. Antiserum fractions enriched for immunoglobulin G1 inhibited adherence, but fractions enriched for immunoglobulin G2 did not. The inhibitory antiserum was specific for several medium- to high-molecular-weight membrane antigens as detected in Western blots (immunoblots). The ability of surface-reactive antibodies to prevent adherence and to agglutinate and immobilize T. foetus indicates that they may be protective. Images PMID:2471692

  7. A Case of von Hippel–Lindau Disease with Colorectal Adenocarcinoma, Renal Cell Carcinoma and Hemangioblastomas

    PubMed Central

    Heo, Su Jin; Lee, Choong-kun; Hahn, Kyu Yeon; Kim, Gyuri; Hur, Hyuk; Choi, Sung Hoon; Han, Kyung Seok; Cho, Arthur; Jung, Minkyu

    2016-01-01

    von Hippel–Lindau (VHL) disease is an autosomal dominant inherited tumor syndrome associated with mutations of the VHL tumor suppressor gene located on chromosome 3p25. The loss of functional VHL protein contributes to tumorigenesis. This condition is characterized by development of benign and malignant tumors in the central nervous system (CNS) and the internal organs, including kidney, adrenal gland, and pancreas. We herein describe the case of a 74-year-old man carrying the VHL gene mutation who was affected by simultaneous colorectal adenocarcinoma, renal clear cell carcinoma, and hemangioblastomas of CNS. PMID:25715769

  8. Chromosomal and Genetic Analysis of a Human Lung Adenocarcinoma Cell Line OM

    PubMed Central

    Li, Yong-Wu; Bai, Lin; Dai, Lyu-Xia; He, Xu; Zhou, Xian-Ping

    2016-01-01

    Background: Lung cancer has become the leading cause of death in many regions. Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes. The aim of this study was to investigate the chromosome and gene alterations in the human lung adenocarcinoma cell line OM. Methods: We used Giemsa banding and multiplex fluorescence in situ hybridization focusing on the human lung adenocarcinoma cell line OM to analyze its chromosome alterations. In addition, the gains and losses in the specific chromosome regions were identified by comparative genomic hybridization (CGH) and the amplifications of cancer-related genes were also detected by polymerase chain reaction (PCR). Results: We identified a large number of chromosomal numerical alterations on all chromosomes except chromosome X and 19. Chromosome 10 is the most frequently involved in translocations with six different interchromosomal translocations. CGH revealed the gains on chromosome regions of 3q25.3-28, 5p13, 12q22-23.24, and the losses on 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33 and 17p13.1-13.3. And PCR showed the amplification of genes: Membrane metalloendopeptidase (MME), sucrase-isomaltase (SI), butyrylcholinesterase (BCHE), and kininogen (KNG). Conclusions: The lung adenocarcinoma cell line OM exhibited multiple complex karyotypes, and chromosome 10 was frequently involved in chromosomal translocation, which may play key roles in tumorigenesis. We speculated that the oncogenes may be located at 3q25.3-28, 5p13, 12q22-23.24, while tumor suppressor genes may exist in 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33, and 17p13.1-13.3. Moreover, at least four genes (MME, SI, BCHE, and KNG) may be involved in the human lung adenocarcinoma cell line OM. PMID:26879013

  9. Elastic properties of epithelial cells probed by atomic force microscopy.

    PubMed

    Brückner, Bastian R; Janshoff, Andreas

    2015-11-01

    Cellular mechanics plays a crucial role in many biological processes such as cell migration, cell growth, embryogenesis, and oncogenesis. Epithelia respond to environmental cues comprising biochemical and physical stimuli through defined changes in cell elasticity. For instance, cells can differentiate between certain properties such as viscoelasticity or topography of substrates by adapting their own elasticity and shape. A living cell is a complex viscoelastic body that not only exhibits a shell architecture composed of a membrane attached to a cytoskeleton cortex but also generates contractile forces through its actomyosin network. Here we review cellular mechanics of single cells in the context of epithelial cell layers responding to chemical and physical stimuli. This article is part of a Special Issue entitled: Mechanobiology. PMID:26193077

  10. Differential Glutamate Metabolism in Proliferating and Quiescent Mammary Epithelial Cells.

    PubMed

    Coloff, Jonathan L; Murphy, J Patrick; Braun, Craig R; Harris, Isaac S; Shelton, Laura M; Kami, Kenjiro; Gygi, Steven P; Selfors, Laura M; Brugge, Joan S

    2016-05-10

    Mammary epithelial cells transition between periods of proliferation and quiescence during development, menstrual cycles, and pregnancy, and as a result of oncogenic transformation. Utilizing an organotypic 3D tissue culture model coupled with quantitative metabolomics and proteomics, we identified significant differences in glutamate utilization between proliferating and quiescent cells. Relative to quiescent cells, proliferating cells catabolized more glutamate via transaminases to couple non-essential amino acid (NEAA) synthesis to α-ketoglutarate generation and tricarboxylic acid (TCA) cycle anaplerosis. As cells transitioned to quiescence, glutamine consumption and transaminase expression were reduced, while glutamate dehydrogenase (GLUD) was induced, leading to decreased NEAA synthesis. Highly proliferative human tumors display high transaminase and low GLUD expression, suggesting that proliferating cancer cells couple glutamine consumption to NEAA synthesis to promote biosynthesis. These findings describe a competitive and partially redundant relationship between transaminases and GLUD, and they reveal how coupling of glutamate-derived carbon and nitrogen metabolism can be regulated to support cell proliferation. PMID:27133130

  11. 293 cells express both epithelial as well as mesenchymal cell adhesion molecules

    PubMed Central

    INADA, MASAKAZU; IZAWA, GENYA; KOBAYASHI, WAKAKO; OZAWA, MASAYUKI

    2016-01-01

    The 293 cell line, used extensively in various types of studies due to the ease with which these cells can be transfected, was thought to be derived by the transformation of primary cultures of human embryonic kidney cells with sheared adenovirus type 5 DNA. Although the 293 cells were assumed to originate from epithelial cells, the exact origin of these cells remains unknown. Previous attempts to characterize these cells combined immunostaining, immunoblot analysis and microarray analysis to demonstrate that 293 cells express neurofilament subunits, α-internexin, and several other proteins typically found in neurons. These findings raised the possibility that the 293 cell line may have originated from human neuronal lineage cells. Contrary to this suggestion, in this study, we found that the 293 cells expressed N-cadherin and vimentin, which are marker proteins expressed in mesenchymal cells. Furthermore, the 293 cells also expressed E-cadherin, cytokeratins 5/8 and desmoglein 2, which are epithelial cell markers. When the cells, primarily cultured from the kidneys of Clawn miniature swine and passaged 10–15 generations [termed porcine kidney epithelial (PKE) cells] were examined, they were found to be positive for the expression of both mesenchymal and epithelial markers. Thus, transformation by adenovirus was not necessary for the cells to express N-cadherin. Occludin and zonula occludens (ZO)-1, two components of tight junctions in epithelial and endothelial cells, were detected in the 293 and the PKE cells. Thus, the findings of the present study demonstrate that 293 cells retain several characteristics of epithelial cells. PMID:27121032

  12. Comparison of functional limbal epithelial stem cell isolation methods.

    PubMed

    López-Paniagua, Marina; Nieto-Miguel, Teresa; de la Mata, Ana; Dziasko, Marc; Galindo, Sara; Rey, Esther; Herreras, José M; Corrales, Rosa M; Daniels, Julie T; Calonge, Margarita

    2016-05-01

    The transplantation of limbal epithelial stem cells (LESCs) cultured in vitro is a great advance in the treatment of patients suffering from LESC deficiency. However, the optimal technique for LESC isolation from a healthy limbal niche has not yet been established. Our aim was to determine which isolation method renders the highest recovery of functional LESCs from the human limbus. To achieve this purpose, we compared limbal primary cultures (LPCs) obtained from explants and cell suspensions on plastic culture plates. Cell morphology was observed by phase contrast and transmission electron microscopy. LESC, corneal epithelial cell, fibroblast, endothelial cell, melanocyte, and dendritic cell markers were analyzed by real time by reverse transcription polymerase chain reaction and/or immunofluorescence. In addition, colony forming efficiency (CFE) and the presence of holoclones, meroclones, and paraclones were studied. We observed that LPC cells obtained from both methods had cuboidal morphology, desmosomes, and prominent intermediate filaments. The expression of LESC markers (K14, K15, ABCG2, p63α) was similar or higher in LPCs established through cell suspensions, except the expression of p63α mRNA, and there were no significant differences in the expression of corneal epithelial markers (K3, K12). Endothelial cell (PECAM), melanocyte (MART-1), and dendritic cell (CD11c) proteins were not detected, while fibroblast-protein (S100A4) was detected in all LPCs. The CFE was significantly higher in LPCs from cell suspensions. Cells from confluent LPCs produced by explants generated only paraclones (100%), while the percentage of paraclones from LPCs established through cell suspensions was 90% and the remaining 10% were meroclones. In conclusion, LPCs established from cell suspensions have a cell population richer in functional LESCs than LPCs obtained from explants. These results suggest that in a clinical situation in which it is possible to choose between either

  13. Radiological Findings of Malignant Tumors of External Auditory Canal: A Cross-Sectional Study Between Squamous Cell Carcinoma and Adenocarcinoma.

    PubMed

    Xia, Shuang; Yan, Shuo; Zhang, Mengjie; Cheng, Yan; Noel, Jacinth; Chong, Vincent; Shen, Wen

    2015-09-01

    The primary malignant tumors of external auditory canal (EAC) are rare. The purpose of this study is to compare the imaging features of growth and recurrence pattern between 2 most common carcinomas namely squamous cell carcinoma (SCC) and adenocarcinoma of the EAC.This is a retrospective study involving 41 patients with primary EAC carcinomas of which 22 are SCC and 19 are adenocarcinoma. They were all scanned with high resolution computer tomography (HRCT) and magnetic resonance imaging. Follow-up clinical and imaging studies have also been collected and compared with a median follow-up time of 43 months (range 5-192 months). Necrosis was presented as hypodensity on computed tomography images, hyper-intense on T2WI and heterogeneous enhancement.Eighteen patients were diagnosed to be in T1 and T2 stage, it was found that SCC involved both the cartilaginous part and the bony part of the EAC (11/12), whereas adenocarcinoma involved only the cartilaginous part (6/6) (P < 0.01). Twenty-three patients were diagnosed to be in T3 and T4 stage showed bony involvement and adjacent tissue involvement for both SCC and adenocarcinoma. Parapharyngeal space involvement is much more common in recurrent SCC (P = 0.02). Lymph node metastasis was seen in 6 out of 22 patients with SCC, while 5 out of 19 patients of adenocarcinoma had lung metastasis, even at early stage (1/6; 1/5). Necrosis is more likely to occur in the patients with SCC (9/10) than that of adenocarcinoma (3/13) (P = 0.02).SCC and adenocarcinoma is seen to have different growth pattern at early stage but share similar patterns in the advanced stage. Lymph node metastasis is commonly seen in patients with SCC while adenocarcinoma shows lung metastasis even at early stage. PMID:26334907

  14. Ethanol stimulation of HIV infection of oral epithelial cells.

    PubMed

    Zheng, Jun; Yang, Otto O; Xie, Yiming; Campbell, Richard; Chen, Irvin S Y; Pang, Shen

    2004-12-01

    Oral mucosal cells can be infected by exogenous HIV during receptive oral sex or breast-feeding. The risk of oral mucosal infection depends on the infection efficiency of the HIV strains present in the oral cavity, the viral titers, and the defense mechanisms in the oral cavity environment. It is expected that alcohol can weaken the host defense mechanism against HIV infection in the oral cavity. We modified an HIV strain, NL4-3, by inserting the enhanced green fluorescent protein gene and used this virus to infect oral epithelial cells obtained from patients. Various concentrations of ethanol (0%-4%) were added to the infected cells. HIV-infected cells were detected by fluorescent microscopy or fluorescence-activated cell sorting. We found that ethanol significantly increases HIV infection of primary oral epithelial cells (POEs). POEs pretreated with 4% ethanol for less than 10 minutes demonstrated 3- to 6-fold higher susceptibility to infection by the CXCR-4 HIV strain NL4-3. Our studies also demonstrated that HIV infects POEs through a gp120-independent mechanism. We tested an HIV CCR5 strain, JRCSF, and also found its infection efficiency to be stimulated by alcohol. Our results indicate that in cell culture conditions, the ranges of concentrations of alcohol that are commercially available are able to stimulate the infection efficiency of HIV in POEs. PMID:15602121

  15. Prion Infection of Epithelial Rov Cells Is a Polarized Event

    PubMed Central

    Paquet, Sophie; Sabuncu, Elifsu; Delaunay, Jean-Louis; Laude, Hubert; Vilette, Didier

    2004-01-01

    During prion infections, the cellular glycosylphosphatidylinositol-anchored glycoprotein PrP is converted into a conformational isoform. This abnormal conformer is thought to recruit and convert the normal cellular PrP into a likeness of itself and is proposed to be the infectious agent. We investigated the distribution of the PrP protein on the surface of Rov cells, an epithelial cell line highly permissive to prion multiplication, and we found that PrP is primarily expressed on the apical side. We further show that prion transmission to Rov cells is much more efficient if infectivity contacts the apical side, indicating that the apical and basolateral sides of Rov cells are not equally competent for prion infection and adding prions to the list of the conventional infectious agents (viruses and bacteria) that infect epithelial cells in a polarized manner. These data raise the possibility that apically expressed PrP may be involved in this polarized process of infection. This would add further support for a crucial role of PrP at the cell surface in prion infection of target cells. PMID:15194791

  16. Kindlin-1 and -2 Have Overlapping Functions in Epithelial Cells

    PubMed Central

    He, Yinghong; Esser, Philipp; Heinemann, Anja; Bruckner-Tuderman, Leena; Has, Cristina

    2011-01-01

    Kindlins are a novel family of intracellular adaptor proteins in integrin-containing focal adhesions. Kindlin-1 and -2 are expressed in the skin, but whether and how they cooperate in adult epithelial cells have remained elusive. We uncovered the overlapping roles of kindlin-1 and -2 in maintaining epithelial integrity and show that the phenotype of kindlin-1-deficient cells can be modulated by regulating kindlin-2 gene expression and vice versa. The experimental evidence is provided by use of human keratinocyte cell lines that express both kindlins, just kindlin-1 or kindlin-2, or none of them. Double deficiency of kindlin-1 and -2 had significant negative effects on focal adhesion formation and actin cytoskeleton organization, cell adhesion, survival, directional migration, and activation of β1 integrin, whereas deficiency of one kindlin only showed variable perturbation of these functions. Cell motility and formation of cell-cell contacts were particularly affected by lack of kindlin-2. These results predict that kindlin-1 and -2 can functionally compensate for each other, at least in part. The high physiologic and pathologic significance of the compensation was emphasized by the discovery of environmental regulation of kindlin-2 expression. UV-B irradiation induced loss of kindlin-2 in keratinocytes. This first example of environmental regulation of kindlin expression has implications for phenotype modulation in Kindler syndrome, a skin disorder caused by kindlin-1 deficiency. PMID:21356350

  17. YKL-40 in Serum Samples From Patients With Newly Diagnosed Stage III-IV Ovarian Epithelial, Primary Peritoneal Cavity, or Fallopian Tube Cancer Receiving Chemotherapy

    ClinicalTrials.gov

    2016-02-19

    Fallopian Tube Adenocarcinoma; Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Mucinous Adenocarcinoma; Fallopian Tube Serous Adenocarcinoma; Fallopian Tube Transitional Cell Carcinoma; Malignant Ovarian Brenner Tumor; Malignant Ovarian Clear Cell Tumor; Malignant Ovarian Endometrioid Tumor; Malignant Ovarian Mixed Epithelial Tumor; Malignant Ovarian Mucinous Tumor; Malignant Ovarian Neoplasm; Malignant Ovarian Serous Tumor; Malignant Ovarian Transitional Cell Tumor; Ovarian Adenocarcinoma; Primary Peritoneal Serous Adenocarcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  18. Identification of differentially expressed genes between lung adenocarcinoma and lung squamous cell carcinoma by gene expression profiling.

    PubMed

    Lu, Chaojing; Chen, Hezhong; Shan, Zhengxiang; Yang, Lixin

    2016-08-01

    The present study aimed to identify the differentially expressed genes (DEGs) between lung adenocarcinoma and normal lung tissues, and between lung squamous cell carcinoma and normal lung tissues, with the purpose of identifying potential biomarkers for the treatment of lung cancer. The gene expression profile (GSE6044) was downloaded from the Gene Expression Omnibus database, which included data from 10 lung adenocarcinoma samples, 10 lung squamous cell carcinoma samples, and five matched normal lung tissue samples. After data processing, DEGs were identified using the Student's t‑test adjusted via the Benjamini‑Hochberg method. Subsequently, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery, and a global network was constructed. A total of 95 upregulated and 241 downregulated DEGs were detected in lung adenocarcinoma samples, and 204 upregulated and 285 downregulated DEGs were detected in lung squamous cell carcinoma samples, as compared with the normal lung tissue samples. The DEGs in the lung squamous cell carcinoma group were enriched in the following three pathways: Hsa04110, Cell cycle; hsa03030, DNA replication; and hsa03430, mismatch repair. However, the DEGs in the lung adenocarcinoma group were not significantly enriched in any specific pathway. Subsequently, a global network of lung cancer was constructed, which consisted of 341 genes and 1,569 edges, of which the top five genes were HSP90AA1, BCL2, CDK2, KIT and HDAC2. The expression trends of the above genes were different in lung adenocarcinoma and lung squamous cell carcinoma when compared with normal tissues. Therefore, these genes were suggested to be crucial genes for differentiating lung adenocarcinoma and lung squamous cell carcinoma. PMID:27356570

  19. Identification of differentially expressed genes between lung adenocarcinoma and lung squamous cell carcinoma by gene expression profiling

    PubMed Central

    Lu, Chaojing; Chen, Hezhong; Shan, Zhengxiang; Yang, Lixin

    2016-01-01

    The present study aimed to identify the differentially expressed genes (DEGs) between lung adenocarcinoma and normal lung tissues, and between lung squamous cell carcinoma and normal lung tissues, with the purpose of identifying potential biomarkers for the treatment of lung cancer. The gene expression profile (GSE6044) was downloaded from the Gene Expression Omnibus database, which included data from 10 lung adenocarcinoma samples, 10 lung squamous cell carcinoma samples, and five matched normal lung tissue samples. After data processing, DEGs were identified using the Student's t-test adjusted via the Benjamini-Hochberg method. Subsequently, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery, and a global network was constructed. A total of 95 upregulated and 241 downregulated DEGs were detected in lung adenocarcinoma samples, and 204 upregulated and 285 downregulated DEGs were detected in lung squamous cell carcinoma samples, as compared with the normal lung tissue samples. The DEGs in the lung squamous cell carcinoma group were enriched in the following three pathways: Hsa04110, Cell cycle; hsa03030, DNA replication; and hsa03430, mismatch repair. However, the DEGs in the lung adenocarcinoma group were not significantly enriched in any specific pathway. Subsequently, a global network of lung cancer was constructed, which consisted of 341 genes and 1,569 edges, of which the top five genes were HSP90AA1, BCL2, CDK2, KIT and HDAC2. The expression trends of the above genes were different in lung adenocarcinoma and lung squamous cell carcinoma when compared with normal tissues. Therefore, these genes were suggested to be crucial genes for differentiating lung adenocarcinoma and lung squamous cell carcinoma. PMID:27356570

  20. The Crosstalk between Nrf2 and TGF-β1 in the Epithelial-Mesenchymal Transition of Pancreatic Duct Epithelial Cells

    PubMed Central

    Arfmann-Knübel, Sarah; Struck, Birte; Genrich, Geeske; Helm, Ole; Sipos, Bence; Sebens, Susanne; Schäfer, Heiner

    2015-01-01

    Nrf2 and TGF-β1 both affect tumorigenesis in a dual fashion, either by preventing carcinogen induced carcinogenesis and suppressing tumor growth, respectively, or by conferring cytoprotection and invasiveness to tumor cells during malignant transformation. Given the involvement of Nrf2 and TGF-β1 in the adaptation of epithelial cells to persistent inflammatory stress, e.g. of the pancreatic duct epithelium during chronic pancreatitis, a crosstalk between Nrf2 and TGF-β1 can be envisaged. By using premalignant human pancreatic duct cells (HPDE) and the pancreatic ductal adenocarcinoma cell line Colo357, we could show that Nrf2 and TGF-β1 independently but additively conferred an invasive phenotype to HPDE cells, whereas acting synergistically in Colo357 cells. This was accompanied by differential regulation of EMT markers like vimentin, Slug, L1CAM and E-cadherin. Nrf2 activation suppressed E-cadherin expression through an as yet unidentified ARE related site in the E-cadherin promoter, attenuated TGF-β1 induced Smad2/3-activity and enhanced JNK-signaling. In Colo357 cells, TGF-β1 itself was capable of inducing Nrf2 whereas in HPDE cells TGF-β1 per-se did not affect Nrf2 activity, but enhanced Nrf2 induction by tBHQ. In Colo357, but not in HPDE cells, the effects of TGF-β1 on invasion were sensitive to Nrf2 knock-down. In both cell lines, E-cadherin re-expression inhibited the proinvasive effect of Nrf2. Thus, the increased invasion of both cell lines relates to the Nrf2-dependent downregulation of E-cadherin expression. In line, immunohistochemistry analysis of human pancreatic intraepithelial neoplasias in pancreatic tissues from chronic pancreatitis patients revealed strong Nrf2 activity already in premalignant epithelial duct cells, accompanied by partial loss of E-cadherin expression. Our findings indicate that Nrf2 and TGF-β1 both contribute to malignant transformation through distinct EMT related mechanisms accounting for an invasive phenotype

  1. Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles

    PubMed Central

    Chiabotto, Giulia; Bruno, Stefania; Collino, Federica

    2016-01-01

    Mesenchymal-epithelial interactions play an important role in renal tubular morphogenesis and in maintaining the structure of the kidney. The aim of this study was to investigate whether extracellular vesicles (EVs) produced by human renal proximal tubular epithelial cells (RPTECs) may induce mesenchymal-epithelial transition of bone marrow-derived mesenchymal stromal cells (MSCs). To test this hypothesis, we characterized the phenotype and the RNA content of EVs and we evaluated the in vitro uptake and activity of EVs on MSCs. MicroRNA (miRNA) analysis suggested the possible implication of the miR-200 family carried by EVs in the epithelial commitment of MSCs. Bone marrow-derived MSCs were incubated with EVs, or RPTEC-derived total conditioned medium, or conditioned medium depleted of EVs. As a positive control, MSCs were co-cultured in a transwell system with RPTECs. Epithelial commitment of MSCs was assessed by real time PCR and by immunofluorescence analysis of cellular expression of specific mesenchymal and epithelial markers. After one week of incubation with EVs and total conditioned medium, we observed mesenchymal-epithelial transition in MSCs. Stimulation with conditioned medium depleted of EVs did not induce any change in mesenchymal and epithelial gene expression. Since EVs were found to contain the miR-200 family, we transfected MSCs using synthetic miR-200 mimics. After one week of transfection, mesenchymal-epithelial transition was induced in MSCs. In conclusion, miR-200 carrying EVs released from RPTECs induce the epithelial commitment of MSCs that may contribute to their regenerative potential. Based on experiments of MSC transfection with miR-200 mimics, we suggested that the miR-200 family may be involved in mesenchymal-epithelial transition of MSCs. PMID:27409796

  2. A human natural antibody to adenocarcinoma that inhibits tumour cell migration.

    PubMed Central

    Koda, K.; Nakajima, N.; Saito, N.; Yasutomi, J.; McKnight, M. E.; Glassy, M. C.

    1998-01-01

    We characterized a natural human antibody to adenocarcinomas and investigated the biological role of this Ab/Ag complex in cancer expansion. Human monoclonal antibodies (HuMAbs) were generated with hybridoma fusion methods using regional nodal lymphocytes of colon carcinoma patients. Among 1036 HuMAbs, only one, termed SK1, an IgM, was adenocarcinoma specific in the immunohistochemical study. The antigen recognized by SK1 (Ag-SK1) was a glycoprotein with a molecular weight of 42-46 kDa. The expression of Ag-SK1 on carcinoma cells varied according to the cell growth periods but was independent of cell cycle state as elucidated by two-colour fluorescence-activated cell sorter (FACS) analysis. A dot-blot analysis showed that the concentration of Ag-SK1 per total protein differed considerably among eight colon carcinoma cells examined and that the difference was closely correlated with the invasion capacity of the cells as assessed by a microchemotaxis assay. Furthermore, up to 87% of cell migration was inhibited by SK1 in a dose-dependent manner. These data suggested that Ag-SK1 is metabolized and expressed on highly invasive carcinoma cells. In addition, it appears that, although rare, some patients do mount an anti-cancer antigen response in their draining lymph nodes. A HuMAb such as SK1 may be a good candidate for the treatment of cancer invasion and metastasis. Images Figure 1 Figure 3 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9823972

  3. Intercellular Protein Transfer from Thymocytes to Thymic Epithelial Cells.

    PubMed

    Wang, Hong-Xia; Qiu, Yu-Rong; Zhong, Xiao-Ping

    2016-01-01

    Promiscuous expression of tissue restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs) is crucial for negative selection of self-reactive T cells to establish central tolerance. Intercellular transfer of self-peptide-MHC complexes from mTECs to thymic dendritic cells (DCs) allows DCs to acquire TRAs, which in turn contributes to negative selection and regulatory T cell generation. However, mTECs are unlikely to express all TRAs, such as immunoglobulins generated only in B cells after somatic recombination, hyper-mutation, or class-switches. We report here that both mTECs and cortical TECs can efficiently acquire not only cell surface but also intracellular proteins from thymocytes. This reveals a previously unappreciated intercellular sharing of molecules from thymocytes to TECs, which may broaden the TRA inventory in mTECs for establishing a full spectrum of central tolerance. PMID:27022746

  4. Intercellular Protein Transfer from Thymocytes to Thymic Epithelial Cells

    PubMed Central

    Wang, Hong-Xia; Qiu, Yu-Rong; Zhong, Xiao-Ping

    2016-01-01

    Promiscuous expression of tissue restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs) is crucial for negative selection of self-reactive T cells to establish central tolerance. Intercellular transfer of self-peptide-MHC complexes from mTECs to thymic dendritic cells (DCs) allows DCs to acquire TRAs, which in turn contributes to negative selection and regulatory T cell generation. However, mTECs are unlikely to express all TRAs, such as immunoglobulins generated only in B cells after somatic recombination, hyper-mutation, or class-switches. We report here that both mTECs and cortical TECs can efficiently acquire not only cell surface but also intracellular proteins from thymocytes. This reveals a previously unappreciated intercellular sharing of molecules from thymocytes to TECs, which may broaden the TRA inventory in mTECs for establishing a full spectrum of central tolerance. PMID:27022746

  5. Plasticity of Airway Epithelial Cell Transcriptome in Response to Flagellin

    PubMed Central

    Clark, Joan G.; Kim, Kyoung-Hee; Basom, Ryan S.; Gharib, Sina A.

    2015-01-01

    Airway epithelial cells (AEC) are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI) represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium. PMID:25668187

  6. Plasticity of airway epithelial cell transcriptome in response to flagellin.

    PubMed

    Clark, Joan G; Kim, Kyoung-Hee; Basom, Ryan S; Gharib, Sina A

    2015-01-01

    Airway epithelial cells (AEC) are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI) represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium. PMID:25668187

  7. Effects of Fatty Acids on Benzo[a]pyrene Uptake and Metabolism in Human Lung Adenocarcinoma A549 Cells

    PubMed Central

    Barhoumi, Rola; Mouneimne, Youssef; Chapkin, Robert S.; Burghardt, Robert C.

    2014-01-01

    Dietary supplementation with natural chemoprotective agents is receiving considerable attention because of health benefits and lack of toxicity. In recent in vivo and in vitro experimental studies, diets rich in n-3 polyunsaturated fatty acids have been shown to provide significant anti-tumor action. In this investigation, the effects of control fatty acids (oleic acid (OA), linoleic acid (LA)) and n-3 PUFA, e.g., docosahexaenoic acid (DHA) on the uptake and metabolism of the carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) was investigated in A549 cells, a human adenocarcinoma alveolar basal epithelial cell line. A549 cells activate BaP through the cytochrome P450 enzyme system to form reactive metabolites, a few of which covalently bind to DNA and proteins. Therefore, multiphoton microscopy spectral analysis combined with linear unmixing was used to identify the parent compound and BaP metabolites formed in cells, in the presence and absence of fatty acids. The relative abundance of select metabolites was associated with altered P450 activity as determined using ethoxyresorufin-O-deethylase activity in cells cultured in the presence of BSA-conjugated fatty acids. In addition, the parent compound within cellular membranes increases significantly in the presence of each of the fatty acids, with the greatest accumulation observed following DHA treatment. DHA treated cells exhibit significantly lower pyrene-like metabolites indicative of lower adducts including DNA adducts compared to control BSA, OA or LA treated cells. Further, DHA reduced the abundance of the proximate carcinogen BaP 7,8-dihydrodiol and the 3-hydroxybenzo[a]pyene metabolites compared to other treatments. The significant changes in BaP metabolites in DHA treated cells may be mediated by the effects on the physicochemical properties of the membrane known to affect enzyme activity related to phase I and phase II metabolism. In summary, DHA is a highly bioactive chemo

  8. Hertwig's epithelial root sheath cells do not transform into cementoblasts in rat molar cementogenesis.

    PubMed

    Yamamoto, Tsuneyuki; Takahashi, Shigeru

    2009-12-01

    It is generally accepted that cementoblasts originate in the process of differentiation of the mesenchymal cells of the dental follicle. Recently, a different hypothesis for the origin of cementoblasts has been proposed. Hertwig's epithelial root sheath cells undergo the epithelial-mesenchymal transformation to differentiate into cementoblasts. To elucidate whether the epithelial-mesenchymal transformation occurs in the epithelial sheath, developing rat molars were examined by keratin-vimentin and Runx2 (runt-related transcription factor 2)-keratin double immunostaining. In both acellular and cellular cementogenesis, epithelial sheath and epithelial cells derived from the epithelial sheath expressed keratin, but did not express vimentin or Runx2. Dental follicle cells and cementoblasts, however, expressed vimentin and Runx2, but did not express keratin. No cells showed coexisting keratin-vimentin or Runx2-keratin staining. These findings suggest that there is no intermediate phenotype transforming epithelial to mesenchymal cells, and that epithelial sheath cells do not generate mineralized tissue. This study concludes that the epithelial-mesenchymal transformation does not occur in Hertwig's epithelial root sheath in rat acellular or cellular cementogenesis and that the dental follicle is the origin of cementoblasts, as has been proposed in the original hypothesis. PMID:19716687

  9. TCDD exposure disrupts mammary epithelial cell differentiation and function

    PubMed Central

    Collins, Loretta L.; Lew, Betina J.; Lawrence, B. Paige

    2011-01-01

    Mammary gland growth and differentiation during pregnancy is a developmental process that is sensitive to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD is a widespread environmental contaminant and a potent ligand for the aryl hydrocarbon receptor (AhR). We demonstrate reduced β-casein protein induction in mouse mammary glands and in cultured SCp2 mammary epithelial cells following exposure to TCDD. SCp2 cells exposed to TCDD also show reduced cell clustering and less alveolar-like structure formation. SCp2 cells express transcriptionally active AhR, and exposure to TCDD induces expression of the AhR target gene CYP1B1. Exposure to TCDD during pregnancy reduced expression of the cell adhesion molecule E-cadherin in the mammary gland and decreased phosphorylation of STAT5, a known regulator of β-casein gene expression. These data provide morphological and molecular evidence that TCDD-mediated AhR activation disrupts structural and functional differentiation of the mammary gland, and present an in vitro model for studying the effects of TCDD on mammary epithelial cell function. PMID:19490989

  10. ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Using respiratory epithelial cells transfected with either superoxide dismutase (SOD) or catalase, the authors tested the hypothesis that the activation of the epidermal growth factor (EGF) receptor signal pathway after asbestos exposure involves an oxidative stress. Western blot...

  11. Epithelial cells from smokers modify dendritic cell responses in the context of influenza infection

    EPA Science Inventory

    Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza...

  12. ATP7B detoxifies silver in ciliated airway epithelial cells

    SciTech Connect

    Ibricevic, Aida; Brody, Steven L.; Youngs, Wiley J.; Cannon, Carolyn L.

    2010-03-15

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B{sup -/-} mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag{sup +}/Cu{sup +} transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

  13. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  14. Incremental responses to light recorded from pigment epithelial cells and horizontal cells of the cat retina

    PubMed Central

    Steinberg, Roy H.

    1971-01-01

    1. Rod-dependent incremental responses were recorded intracellularly in both pigment epithelial cells and horizontal cells of the cat retina. They were elicited by test flashes which were superimposed on background flashes after a delay. 2. In pigment epithelial cells smaller test responses were produced as background intensity was raised. The incremental sensitivity function was linear for about 1·4 log units, with a slope of 0·86, and the approach of saturation occurred at about 2·5 log td scotopic. 3. The amplitude of pigment epithelial test responses could be estimated from the dark-adapted amplitude—log intensity function obtained with single flashes. Test flashes produced the voltage increment predicted by the slope of this function just above the point on the curve equal to the background intensity. The pigment epithelial response to a test flash, therefore, is the response expected if the background were presented alone and made more intense by the amount of the test flash. 4. Rod-dependent incremental sensitivity functions of horizontal cells closely resembled the ones obtained from pigment epithelial cells. 5. It was concluded that the adaptive effects observed in pigment epithelial cells originated in individual rods. These effects arose from the compressive nature of the dark-adapted amplitude—intensity function. In horizontal cell responses these effects may be modified by the failure of the background response to maintain its initial voltage. PMID:5571955

  15. Data for comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells.

    PubMed

    Núñez de Villavicencio-Díaz, Teresa; Ramos Gómez, Yassel; Oliva Argüelles, Brizaida; Fernández Masso, Julio R; Rodríguez-Ulloa, Arielis; Cruz García, Yiliam; Guirola-Cruz, Osmany; Perez-Riverol, Yasset; Javier González, Luis; Tiscornia, Inés; Victoria, Sabina; Bollati-Fogolín, Mariela; Besada Pérez, Vladimir; Guerra Vallespi, Maribel

    2015-09-01

    CIGB-552 is a second generation antitumor peptide that displays potent cytotoxicity in lung and colon cancer cells. The nuclear subproteome of HT-29 colon adenocarcinoma cells treated with CIGB-552 peptide was identified and analyzed [1]. This data article provides supporting evidence for the above analysis. PMID:26306321

  16. Cranberry proanthocyanidins modulate reactive oxygen species in Barrett’s and esophageal adenocarcinoma cell lines

    PubMed Central

    Weh, Katherine M.; Aiyer, Harini S.; Howell, Amy B.; Kresty, Laura A.

    2016-01-01

    BACKGROUND We recently reported that a cranberry proanthocyanidin rich extract (C-PAC) induces autophagic cell death in apoptotic resistant esophageal adenocarcinoma (EAC) cells and necrosis in autophagy resistant cells. EAC is characterized by high morbidity and mortality rates supporting development of improved preventive interventions. OBJECTIVE The current investigation sought to investigate the role of reactive oxygen species (ROS) in the context of C-PAC induced cell death. METHODS A panel of human esophageal cell lines of EAC or BE (Barrett’s esophagus) origin were treated with C-PAC and assessed for ROS modulation using CellROX® Green reagent and the Amplex Red assay to specifically measure hydrogen peroxide levels. RESULTS C-PAC significantly increased ROS levels in EAC cells, but significantly reduced ROS levels in CP-C BE cells. Increased hydrogen peroxide levels were also detected in C-PAC treated EAC cells and supernatant; however, hydrogen peroxide levels were significantly increased in medium alone, without cells, suggesting that C-PAC interferes or directly acts on the substrate. Hydrogen peroxide levels did not change in C-PAC treated CP-C BE cells. CONCLUSION These experiments provide additional mechanistic insight regarding C-PAC induced cancer cell death through modulation of ROS. Additional research is warranted to identify specific ROS species associated with C-PAC exposure.

  17. Transforming growth factor-alpha promotes mammary tumorigenesis through selective survival and growth of secretory epithelial cells.

    PubMed Central

    Smith, G. H.; Sharp, R.; Kordon, E. C.; Jhappan, C.; Merlino, G.

    1995-01-01

    Transforming growth factor (TGF)-alpha stimulates the growth and development of mammary epithelial cells and is implicated in the pathogenesis of human breast cancer. In this report we evaluate the consequences of overexpressing TGF-alpha in the mammary gland of transgenic mice and examine associated cellular mechanisms. When operating on a FVB/N genetic background (line MT100), TGF-alpha induced the stochastic development of mammary adenomas and adenocarcinomas f secretory epithelial origin in 64% of multiparous females. In contrast, tumors were exceedingly rare in virgin MT100 females, MT100 males, and multiparous FVB/N females. In MT100 females multiple foci of hyperplastic secretory lesions preceded the development of frank tumors; these initial lesions appeared during the involution period after the first lactation. Serial transplantation of these hyperplasias indicated an absence of proliferative immortality. Nevertheless, they gave rise to tumors at a low frequency and after a prolonged latency in virgin hosts; in multiparous hosts, tumors developed earlier and at a high incidence. The TGF-alpha transgene was highly expressed in hyperplasias and tumors but not in virgin and nonlesion-bearing tissue, suggesting that TGF-alpha overexpression provides a selective growth advantage. TGF-alpha also induced at lactation a 6.4-fold increase in DNA synthesis in MT100 epithelial cells, many of which were binucleated. MT100 mammary tissue experienced an obvious delay in involution, resulting in the postlactational survival of a significant population of unregressed secretory epithelial cells. In contrast, another line of transgenic mice on a CD-1 genetic background (MT42), in which TGF-alpha overexpression induced liver but not mammary tumors, failed to demonstrate postlactational epithelial cell survival. These data show that TGF-alpha promotes mammary tumorigenesis in multiparous MT100 mice by stimulating secretory epithelial cell proliferation during lactation and

  18. Studies in human skin epithelial cell carcinogenesis

    SciTech Connect

    Lehman, T.A.

    1987-01-01

    Metabolism and DNA adduct formation of benzo(a)pyrene (BP) by human epidermal keratinocytes pretreated with inhibitors or inducer of cytochrame P450 was studied. To study DNA adduct analysis, cultures were pretreated as described above, and then treated with non-radiolabeled BP. DNA was prepared from these cultures, digested to the nucleotide level, and /sup 32/P-postlabeled for adduct analysis. Cultures pretreated with BHA, 7,8-BF or disulfiralm formed significantly fewer BPDE I-dB adducts than non-pretreated cultures, while cultures pretreated with MeBHA formed more BPDE-I-dG adducts. MeBHA increased BP activation and adduct formation inhuman keratinocyte in cultures by inducing a specific isoenzyme of cytochrome P450 which preferentially increases the oxidative metabolism of BP to 7,8 diol BP and 7,8 diol BP to BPDE I. To approximate an in vivo human system, metabolism of BPDE I by human skin xenografts treated with cell cycles modulators was studied. When treated with BPDE I, specific carcinogen-DNA adducts were formed. Separation and identification of these adducts by the /sup 32/P-postlabeling technique indicated that the 7R- and 7S-BPDE I-dG adducts were the major adducts.

  19. Microvesicles released from tumor cells disrupt epithelial cell morphology and contractility.

    PubMed

    Bordeleau, Francois; Chan, Bryan; Antonyak, Marc A; Lampi, Marsha C; Cerione, Richard A; Reinhart-King, Cynthia A

    2016-05-24

    During tumor progression, cancer cells interact and communicate with non-malignant cells within their local microenvironment. Microvesicles (MV) derived from human cancer cells play an important role in mediating this communication. Another critical aspect of cancer progression involves widespread ECM remodeling, which occur both at the primary and metastatic sites. ECM remodeling and reorganization within the tumor microenvironment is generally attributed to fibroblasts. Here, using MCF10a cells, a well-characterized breast epithelial cell line that exhibits a non-malignant epithelial phenotype, and MVs shed by aggressive MDA-MB-231 carcinoma cells, we show that non-malignant epithelial cells can participate in ECM reorganization of 3D collagen matrices following their treatment with cancer cell-derived MVs. In addition, MVs trigger several changes in epithelial cells under 3D culture conditions. Furthermore, we show that this ECM reorganization is associated with an increase in cellular traction force following MV treatment, higher acto-myosin contractility, and higher FAK activity. Overall, our findings suggest that MVs derived from tumor cells can contribute to ECM reorganization occurring within the tumor microenvironment by enhancing the contractility of non-malignant epithelial cells. PMID:26477404

  20. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells.

    PubMed

    Rimoldi, Monica; Chieppa, Marcello; Salucci, Valentina; Avogadri, Francesca; Sonzogni, Angelica; Sampietro, Gianluca M; Nespoli, Angelo; Viale, Giuseppe; Allavena, Paola; Rescigno, Maria

    2005-05-01

    The control of damaging inflammation by the mucosal immune system in response to commensal and harmful ingested bacteria is unknown. Here we show epithelial cells conditioned mucosal dendritic cells through the constitutive release of thymic stromal lymphopoietin and other mediators, resulting in the induction of 'noninflammatory' dendritic cells. Epithelial cell-conditioned dendritic cells released interleukins 10 and 6 but not interleukin 12, and they promoted the polarization of T cells toward a 'classical' noninflammatory T helper type 2 response, even after exposure to a T helper type 1-inducing pathogen. This control of immune responses seemed to be lost in patients with Crohn disease. Thus, the intimate interplay between intestinal epithelial cells and dendritic cells may help to maintain gut immune homeostasis. PMID:15821737

  1. Stereological Quantification of Cell-Cycle Kinetics and Mobilization of Epithelial Stem Cells during Wound Healing.

    PubMed

    Martínez-Martínez, Eduardo; Uribe-Querol, Eileen; Galván-Hernández, Claudio I; Gutiérrez-Ospina, Gabriel

    2016-01-01

    We describe a stereology method to obtain reliable estimates of the total number of proliferative and migratory epithelial cells after wounding. Using pulse and chase experiments with halogenated thymidine analogs such as iododeoxyuridine (IdU) and chlorodeoxyuridine (CldU), it is possible to track epithelial populations with heterogeneous proliferative characteristics through skin compartments. The stereological and tissue processing methods described here apply widely to address important questions of skin stem-cell biology. PMID:27431250

  2. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    SciTech Connect

    Sidjanin, D.; Grdina, D.; Woloschak, G.E.

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  3. Interleukin-23 Increases Intestinal Epithelial Cell Permeability In Vitro.

    PubMed

    Heinzerling, Nathan P; Donohoe, Deborah; Fredrich, Katherine; Gourlay, David M; Liedel, Jennifer L

    2016-06-01

    Background Breast milk has a heterogeneous composition that differs between mothers and changes throughout the first weeks after birth. The proinflammatory cytokine IL-23 has a highly variable expression in human breast milk. We hypothesize that IL-23 found in human breast milk is biologically active and promotes epithelial barrier dysfunction. Methods The immature rat small intestinal epithelial cell line, IEC-18, was grown on cell inserts or standard cell culture plates. Confluent cultures were exposed to human breast milk with high or low levels of IL-23 and barrier function was measured using a flux of fluorescein isothiocyanate-dextran (FD-70). In addition, protein and mRNA expression of occludin and ZO-1 were measured and immunofluorescence used to stain occludin and ZO-1. Results Exposure to breast milk with high levels of IL-23 caused an increase flux of FD-70 compared with both controls and breast milk with low levels of IL-23. The protein expression of ZO-1 but not occludin was decreased by exposure to high levels of IL-23. These results correlate with immunofluorescent staining of ZO-1 and occludin which show decreased staining of occludin in both the groups exposed to breast milk with high and low IL-23. Conversely, cells exposed to high IL-23 breast milk had little peripheral staining of ZO-1 compared with controls and low IL-23 breast milk. Conclusion IL-23 in human breast milk is biologically active and negatively affects the barrier function of intestinal epithelial cells through the degradation of tight junction proteins. PMID:26007691

  4. Oral microbial biofilm stimulation of epithelial cell responses.

    PubMed

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Novak, Karen F; Ebersole, Jeffrey L

    2012-04-01

    Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria. PMID:22266273

  5. IL-4 attenuates pulmonary epithelial cell-mediated suppression of T cell priming.

    PubMed

    Albrecht, Melanie; Arnhold, Markus; Lingner, Sandra; Mahapatra, Subhashree; Bruder, Dunja; Hansen, Gesine; Dittrich, Anna-Maria

    2012-01-01

    We have previously shown that Th2-polarized airway inflammation facilitates sensitization towards new, protein antigens. In this context, we could demonstrate that IL-4 needs to act on cells of the hematopoetic and the structural compartment in order to facilitate sensitization towards new antigens. We thus aimed to elucidate possible mechanisms of action of IL-4 on structural cells choosing to analyze pulmonary epithelial cells as an important part of the lung's structural system. We used a co-culture system of DC- or APC-dependent in vitro priming of T cells, co-cultivated on a layer of cells of a murine pulmonary epithelial cell line (LA-4) pretreated with or without IL-4. Effects on T cell priming were analyzed via CFSE-dilution and flow cytometric assessment of activation status. Pulmonary epithelial cells suppressed T cell proliferation in vitro but this effect was attenuated by pre-treatment of the epithelial cells with IL-4. Transwell experiments suggest that epithelial-mediated suppression of T cell activation is mostly cell-contact dependent and leads to attenuation in an early naive T cell phenotype. Secretion of soluble factors like TARC, TSLP, GM-CSF and CCL20 by epithelial cells did not change after IL-4 treatment. However, analysis of co-stimulatory expression on pulmonary epithelial cells revealed that pre-treatment of epithelial cells with IL-4 changed expression GITR-L, suggesting a possible mechanism for the effects observed. Our studies provide new insight into the role of IL-4 during the early phases of pulmonary sensitization: The inhibitory activity of pulmonary epithelial cells in homeostasis is reversed in the presence of IL-4, which is secreted in the context of Th2-dominated allergic airway inflammation. This mechanism might serve to explain facilitated sensitization in the clinical context of polysensitization where due to a pre-existing sensitization increased levels of IL-4 in the airways might facilitate T cell priming towards new

  6. Ultrastructural analysis of primary human urethral epithelial cell cultures infected with Neisseria gonorrhoeae.

    PubMed

    Harvey, H A; Ketterer, M R; Preston, A; Lubaroff, D; Williams, R; Apicella, M A

    1997-06-01

    In men with gonococcal urethritis, the urethral epithelial cell is a site of infection. To study the pathogenesis of gonorrhea in this cell type, we have developed a method to culture primary human urethral epithelial cells obtained at the time of urologic surgery. Fluorescent analysis demonstrated that 100% of the cells stained for keratin. Microscopic analyses indicated that these epithelial cells arrayed in a pattern similar to that seen in urethral epithelium. Using immunoelectron and confocal microscopy, we compared the infection process seen in primary cells with events occurring during natural infection of the same cell type in men with gonococcal urethritis. Immunoelectron microscopy studies of cells infected with Neisseria gonorrhoeae 1291 Opa+ P+ showed adherence of organisms to the epithelial cell membrane, pedestal formation with evidence of intimate association between the gonococcal and the epithelial cell membranes, and intracellular gonococci present in vacuoles. Confocal studies of primary urethral epithelial cells showed actin polymerization upon infection. Polyclonal antibodies to the asialoglycoprotein receptor (ASGP-R) demonstrated the presence of this receptor on infected cells in the primary urethral cell culture. In situ hybridization using a fluorescent-labeled probe specific to the ASGP-R mRNA demonstrated this message in uninfected and infected cells. These features were identical to those seen in urethral epithelial cells in exudates from males with gonorrhea. Infection of primary urethral cells in culture mimics events seen in natural infection and will allow detailed molecular analysis of gonococcal pathogenesis in a human epithelial cell which is commonly infected. PMID:9169783

  7. Layered Double Hydroxide as a Vehicle to Increase Toxicity of Gallate Ions against Adenocarcinoma Cells.

    PubMed

    Arratia-Quijada, Jenny; Rivas-Fuentes, Selma; Saavedra, Karina J Parra; Lamas, Adriana M Macías; Carbajal Arízaga, Gregorio Guadalupe

    2016-01-01

    The antineoplasic activity of gallic acid has been reported. This compound induces apoptosis and inhibits the growth of several neoplasic cells. However, this molecule is easily oxidized and degraded in the body. The aim of this work was to intercalate gallate ions into layered double hydroxide (LDH) nanoparticles under controlled conditions to reduce oxidation of gallate and to evaluate its toxicity against the A549 adenocarcinoma cell line. An isopropanol medium under nitrogen atmosphere was adequate to intercalate gallate ions with a lesser oxidation degree as detected by electron spin resonance spectroscopy. Concentrations of the hybrid LDH-gallate nanoparticles between 0.39 and 25 µg/mL reduced the cell viability to 67%, while the value reached with the pure gallic acid and LDH was 90% and 78%, respectively, thus proving that the combination of gallate ions with the inorganic nanoparticles increases the toxicity potential within this dose range. PMID:27438820

  8. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    SciTech Connect

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo . E-mail: miyazawa@biochem.tohoku.ac.jp

    2006-09-15

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with {delta}-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol.

  9. [Endometrial adenocarcinoma and clear cell carcinoma in a young woman with polycystic ovarian syndrome: a case report].

    PubMed

    Niu, Jing; Liu, Nan; Liu, Guo-Bing

    2016-05-20

    A 26-year-old unmarried woman with irregular menstruation for 4 years was admitted for an intrauterine space-occupying mass. Pathological examination before surgery showed moderately to poorly differentiated endometrial adenocarcinoma. The patient underwent laparoscopically assisted epifascial panhysterectomy with bilateral salpingo-oophorectomy. Pathological examination of the surgical specimens reported moderately to poorly differentiated endometrial adenocarcinoma and stage II clear cell carcinoma. The patient then received chemotherapy and remained alive without evidence of recurrence. Young women with polycystic ovarian syndrome are at high risk of developing endometrial carcinoma, but concurrent clear cell carcinoma is rare. Careful evaluation before and after treatment are essential to improve the patients prognosis. PMID:27222196

  10. ECT2 amplification and overexpression as a new prognostic biomarker for early-stage lung adenocarcinoma

    PubMed Central

    Murata, Yoshihiko; Minami, Yuko; Iwakawa, Reika; Yokota, Jun; Usui, Shingo; Tsuta, Koji; Shiraishi, Kouya; Sakashita, Shingo; Satomi, Kaishi; Iijima, Tatsuo; Noguchi, Masayuki

    2014-01-01

    Genetic abnormality in early-stage lung adenocarcinoma was examined to search for new prognostic biomarkers. Six in situ lung adenocarcinomas and nine small but invasive adenocarcinomas were examined by array-comparative genomic hybridization, and candidate genes of interest were screened. To examine gene abnormalities, 83 cases of various types of lung carcinoma were examined by quantitative real-time genomic PCR and immunohistochemistry. The results were then verified using another set of early-stage adenocarcinomas. Array-comparative genomic hybridization indicated frequent amplification at chromosome 3q26. Of the seven genes located in this region, we focused on the epithelial cell transforming sequence 2 (ECT2) oncogene, as ECT2 amplification was detected only in invasive adenocarcinoma, and not in in situ carcinoma. Quantitative PCR and immunohistochemistry analyses also detected overexpression of ECT2 in invasive adenocarcinoma, and this was correlated with both the Ki-67 labeling index and mitotic index. In addition, it was associated with disease-free survival and overall survival of patients with lung adenocarcinoma. These results were verified using another set of early-stage adenocarcinomas resected at another hospital. Abnormality of the ECT2 gene occurs at a relatively early stage of lung adenocarcinogenesis and would be applicable as a new biomarker for prognostication of patients with lung adenocarcinoma. PMID:24484057

  11. ECT2 amplification and overexpression as a new prognostic biomarker for early-stage lung adenocarcinoma.

    PubMed

    Murata, Yoshihiko; Minami, Yuko; Iwakawa, Reika; Yokota, Jun; Usui, Shingo; Tsuta, Koji; Shiraishi, Kouya; Sakashita, Shingo; Satomi, Kaishi; Iijima, Tatsuo; Noguchi, Masayuki

    2014-04-01

    Genetic abnormality in early-stage lung adenocarcinoma was examined to search for new prognostic biomarkers. Six in situ lung adenocarcinomas and nine small but invasive adenocarcinomas were examined by array-comparative genomic hybridization, and candidate genes of interest were screened. To examine gene abnormalities, 83 cases of various types of lung carcinoma were examined by quantitative real-time genomic PCR and immunohistochemistry. The results were then verified using another set of early-stage adenocarcinomas. Array-comparative genomic hybridization indicated frequent amplification at chromosome 3q26. Of the seven genes located in this region, we focused on the epithelial cell transforming sequence 2 (ECT2) oncogene, as ECT2 amplification was detected only in invasive adenocarcinoma, and not in in situ carcinoma. Quantitative PCR and immunohistochemistry analyses also detected overexpression of ECT2 in invasive adenocarcinoma, and this was correlated with both the Ki-67 labeling index and mitotic index. In addition, it was associated with disease-free survival and overall survival of patients with lung adenocarcinoma. These results were verified using another set of early-stage adenocarcinomas resected at another hospital. Abnormality of the ECT2 gene occurs at a relatively early stage of lung adenocarcinogenesis and would be applicable as a new biomarker for prognostication of patients with lung adenocarcinoma. PMID:24484057

  12. Isoprenaline induces epithelial-mesenchymal transition in gastric cancer cells.

    PubMed

    Lu, Yan-Jie; Geng, Zhi-Jun; Sun, Xiao-Yan; Li, Yu-Hong; Fu, Xiao-Bing; Zhao, Xiang-Yang; Wei, Bo

    2015-10-01

    The emerging role of stress-related signaling in regulating cancer development and progression has been recognized. However, whether stress serves as a mechanism to promote gastric cancer metastasis is not clear. Here, we show that the β2-AR agonist, isoprenaline, upregulates expression levels of CD44 and CD44v8-10 in gastric cancer cells. CD44, a cancer stem cell-related marker, is expressed at high levels in gastric cancer tissues, which strongly correlates with the occurrence of epithelial-mesenchymal transition (EMT)-associated phenotypes both in vivo and in vitro. Combined with experimental observations in two human gastric cancer cell lines, we found that β2-AR signaling can initiate EMT. It led to an increased expression of mesenchymal markers, such as α-SMA, vimentin, and snail at mRNA and protein levels, and conversely a decrease in epithelial markers, E-cadherin and β-catenin. Isoprenaline stimulation of β2-AR receptors activates the downstream target STAT3, which functions as a positive regulator and mediated the phenotypic switch toward a mesenchymal cell type in gastric cancer cells. Our data provide a mechanistic understanding of the complex signaling cascades involving stress-related hormones and their effects on EMT. In light of our observations, pharmacological interventions targeting β2-AR-STAT3 signaling can potentially be used to ameliorate stress-associated influences on gastric cancer development and progression. PMID:26253173

  13. Ocimum gratissimum Aqueous Extract Induces Apoptotic Signalling in Lung Adenocarcinoma Cell A549

    PubMed Central

    Chen, Han-Min; Lee, Mu-Jang; Kuo, Cheng-Yi; Tsai, Pei-Lin; Liu, Jer-Yuh; Kao, Shao-Hsuan

    2011-01-01

    Ocimum gratissimum (OG) is widely used as a traditional herb for its antibacterial activity in Taiwan. Recently, antitumor effect of OG on breast cancer cell is also reported; however, the effects of OG on human pulmonary adenocarcinoma cell A549 remain unclear. Therefore, we aimed to investigate whether aqueous OG extract (OGE) affects viability of A549 cells and the signals induced by OGE in A549 cells. Cell viability assays revealed that OGE significantly and dose-dependently decreased the viability of A549 cell but not that of BEAS-2B cell. Morphological examination and DAPI staining indicated that OGE induced cell shrinkage and DNA condensation for A549 cells. Further investigation showed that OGE enhanced activation of caspase-3, caspase-9 and caspase-8 and increased protein level of Apaf-1 and Bak, but diminished the level of Bcl-2. Additionally, OGE inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) yet enhanced the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAP kinase (p38). In conclusion, our findings indicate that OGE suppressed the cell viability of A549 cells, which may result from the activation of apoptotic signaling and the inhibition of anti-apoptotic signaling, suggesting that OGE might be beneficial to lung carcinoma treatment. PMID:20953389

  14. Osteopontin (OPN/SPP1) isoforms collectively enhance tumor cell invasion and dissemination in esophageal adenocarcinoma

    PubMed Central

    Lin, Jules; Myers, Amy L.; Wang, Zhuwen; Nancarrow, Derek J.; Ferrer-Torres, Daysha; Handlogten, Amy; Leverenz, Kimmy; Bao, Julia; Thomas, Dafydd G.; Wang, Thomas D.; Orringer, Mark B.; Reddy, Rishindra M.; Chang, Andrew C.; Beer, David G.; Lin, Lin

    2015-01-01

    Esophageal adenocarcinoma (EAC) is often diagnosed at an advanced stage, thus understanding the molecular basis for EAC invasion and metastasis is critical. Here we report that SPP1/OPN was highly overexpressed in primary EACs and intracellularly localized to tumor cells. We further demonstrate that all known OPN isoforms (OPNa, b, c, 4 and 5) were frequently co-overexpressed in primary EACs. Distinct pro-invasion and dissemination phenotypes of isoform-specific OPNb and OPNc stable transfectants were observed. Expression of OPNb significantly enhanced cell migration and adhesion to laminin. In contrast, OPNc cells showed significantly decreased cell migration yet increased cell detachment. Enhanced invasion, both in vitro and in vivo, was observed for OPNb- but not OPNc-expressing cells. Inhibition of RGD integrins, one family of OPN receptors, attenuated OPNb cell migration, abrogated OPNb cell adhesion and significantly reduced OPNb cell clonogenic survival but did not affect OPNc phenotypes, indicating that OPNb but not OPNc acts through integrin-dependent signaling. Differential expression of vimentin, E-cadherin and β-catenin in OPN stable cells may account for the variation in cell adhesion and detachment between these isoforms. We conclude that while all OPN isoforms are frequently co-overexpressed in primary EACs, isoforms OPNb and OPNc enhance invasion and dissemination through collective yet distinct mechanisms. PMID:26068949

  15. Intratumoral distribution of EGFR-amplified and EGFR-mutated cells in pulmonary adenocarcinoma.

    PubMed

    Soma, Shingo; Tsuta, Koji; Takano, Toshimi; Hatanaka, Yutaka; Yoshida, Akihiko; Suzuki, Kenji; Asamura, Hisao; Tsuda, Hitoshi

    2014-03-01

    Alterations in the epidermal growth factor receptor (EGFR) gene are associated with carcinogenesis in non-small cell lung cancer. However, the intratumoral distribution of these abnormalities has not been elucidated. This study included patients with surgically resected lung adenocarcinoma. The predominant histological growth pattern was determined. Chromogenic in situ hybridization (CISH) and EGFR-mutation specific-antibodies were used for analysis of changes in gene copy number and EGFR mutations, respectively. EGFR mutation detected immunohistochemistry (IHC) and amplification were identified in 31 (53%) and 30 (52%) cases, respectively. The predominant growth patterns in the 58 tumors evaluated were papillary (28, 48%), lepidic (8, 14%), acinar (15, 26%), and solid (7, 12%). EGFR mutations were the least common in cases with a solid predominant pattern. The incidence of EGFR amplification did not differ among predominant patterns. Analyzing each histological subtype, no differences were noted between the prevalence of EGFR-IHC positive and CISH-positive rates. In the analysis of EGFR amplification, CISH-positive status was more prevalent in IHC-positive cases than in IHC-negative cases. All 19 cases that were both IHC and CISH positive were analyzed. In 17 cases (90%), the IHC-positive area was equal to or larger than the CISH-positive area. Among the histological subtypes of lung adenocarcinoma, the solid predominant subtype was distinguishable by its infrequent EGFR mutations. EGFR gene mutations preceded changes in oncogenic drive, more so than did EGFR gene number alterations during the developmental process of lung adenocarcinoma. PMID:24355440

  16. (-)-β-hydrastine suppresses the proliferation and invasion of human lung adenocarcinoma cells by inhibiting PAK4 kinase activity.

    PubMed

    Guo, Bingyu; Li, Xiaodong; Song, Shuai; Chen, Meng; Cheng, Maosheng; Zhao, Dongmei; Li, Feng

    2016-04-01

    (-)-β-hydrastine is one of the main active components of the medicinal plant, Hydrastis canadensis, which is used in many dietary supplements intended to enhance the immune system. However, whether (-)-β-hydrastine affects the tumor signaling pathway remains unexplored. In the present study, we found that (-)-β-hydrastine inhibited the kinase activity of p21-activated kinase 4 (PAK4), which is involved in the regulation of cytoskeletal reorganization, cell proliferation, gene transcription, oncogenic transformation and cell invasion. In the present study, (-)-β-hydrastine suppressed lung adenocarcinoma cell proliferation by inhibiting expression of cyclin D1/D3 and CDK2/4/6, leading to cell cycle arrest at the G1 phase, in a PAK4 kinase-dependent manner. Moreover, inhibition of PAK4 kinase activity by (-)-β-hydrastine also promoted the early apoptosis of lung adenocarcinoma cells through the mitochondrial apoptosis pathway. In addition, (-)-β-hydrastine significantly suppressed the migration and invasion of human lung adenocarcinoma cells in conjunction with concomitant blockage of the PAK4/LIMK1/cofilin, PAK4/SCG10 and PAK4/MMP2 pathways. All of these data indicate that (-)-β-hydrastine, as a novel PAK4 inhibitor, suppresses the proliferation and invasion of lung adenocarcinoma cells. Taken together, these results provide novel insight into the development of a PAK4 kinase inhibitor and a potential therapeutic strategy for lung cancer. PMID:26821251

  17. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool.

    PubMed

    Mesa, Kailin R; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Y; Brown, Samara; Gonzalez, David G; Blagoev, Krastan B; Haberman, Ann M; Greco, Valentina

    2015-06-01

    Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  18. Niche induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool

    PubMed Central

    Mesa, Kailin R.; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Yang; Brown, Samara; Gonzalez, David; Blagoev, Krastan B.; Haberman, Ann M.; Greco, Valentina

    2015-01-01

    Summary Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression)1,2. Contrary to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration3. Here we show by intravital microscopy in live mice4–6 that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbors. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through TGFβ activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviors and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  19. Cell surface morphology in epithelial malignancy and its precursor lesions.

    PubMed

    Kenemans, P; Davina, J H; de Haan, R W; van der Zanden, P; Vooys, G P; Stolk, J G; Stadhouders, A M

    1981-01-01

    The cell surface organization of cancer cells is of potentially great significance, as it may not only allow (early) diagnosis, but as it may also harbour markers for refined prognosis (degree of oncogenetic and metastatic potential), and targets for selective cancer (chemo- and immuno) therapy. With these aspects in mind, the present review deals with SEM work done on (pre-) malignant cells, both in vivo and in vitro, and in animal models. Attention, however, is focused on human cancer cells. Cancer cells in vitro may lose many of their original malignant characteristics, and show adaptations to culture conditions. Many other factors have been shown to influence cell surface morphology, such as cell cycle, cell contacts, and preparations technique. Cancer cells differ in their surface morphology from normal cells, and have an extra ordinary amount of surface activity. Human malignant epithelial cells show abundant long. pleomorphic microvilli, especially those present in effusions. In squamous epithelium (bladder, cervix) microridge system present on normal superficial cells are progressively replaced by microvilli which increase in number and degree of pleomorphism during experimental and clinical oncogenesis. The question of whether or not the appearance of long. Pleomorphic microvilli reflects an irreversible alteration of the epithelium, and thus provides an early marker of irreversible neoplastic transformation is considered and assessed on the basis of our work with (pre-) malignant cells of the human uterine cervix. Although SEM has contributed significantly to the description of oncogenesis, up to now it has no early diagnostic, prognostic or therapeutic significance. PMID:7199203

  20. Activation of NF-κB and AP-1 Mediates Hyperproliferation by Inducing β-Catenin and c-Myc in Helicobacter pylori-Infected Gastric Epithelial Cells

    PubMed Central

    Byun, Eunyoung; Park, Bohye; Lim, Joo Weon

    2016-01-01

    Purpose In the gastric mucosa of Helicobacter pylori (H. pylori)-infected patients with gastritis or adenocarcinoma, proliferation of gastric epithelial cells is increased. Hyperproliferation is related to induction of oncogenes, such as β-catenin and c-myc. Even though transcription factors NF-κB and AP-1 are activated in H. pylori-infected cells, whether NF-κB or AP-1 regulates the expression of β-catenein or c-myc in H. pylori-infected cells has not been clarified. The present study was undertaken to investigate whether H. pylori-induced activation of NF-κB and AP-1 mediates the expression of oncogenes and hyperproliferation of gastric epithelial cells. Materials and Methods Gastric epithelial AGS cells were transiently transfected with mutant genes for IκBα (MAD3) and c-Jun (TAM67) or treated with a specific NF-κB inhibitor caffeic acid phenethyl ester (CAPE) or a selective AP-1 inhibitor SR-11302 to suppress activation of NF-κB or AP-1, respecively. As reference cells, the control vector