Science.gov

Sample records for adenocarcinoma hela cells

  1. Resistance of cervical adenocarcinoma cells (HeLa) to venom from the scorpion Centruroides limpidus limpidus

    PubMed Central

    2013-01-01

    Background The venom of Centruroides limpidus limpidus (Cll) is a mixture of pharmacologically active principles. The most important of these are toxic proteins that interact both selectively and specifically with different cellular targets such as ion channels. Recently, anticancer properties of the venom from other scorpion species have been described. Studies in vitro have shown that scorpion venom induces cell death, inhibits proliferation and triggers the apoptotic pathway in different cancer cell lines. Herein, after treating human cervical adenocarcinoma (HeLa) cells with Cll crude venom, their cytotoxic activity and apoptosis induction were assessed. Results Cll crude venom induced cell death in normal macrophages in a dose-dependent manner. However, through viability assays, HeLa cells showed high survival rates after exposure to Cll venom. Also, Cll venom did not induce apoptosis after performing ethidium bromide/acridine orange assays, nor was there any evidence of chromatin condensation or DNA fragmentation. Conclusions Crude Cll venom exposure was not detrimental to HeLa cell cultures. This may be partially attributable to the absence of specific HeLa cell membrane targets for molecules present in the venom of Centruroides limpidus limpidus. Although these results might discourage additional studies exploring the potential of Cll venom to treat human papilloma cervical cancer, further research is required to explore positive effects of crude Cll venom on other cancer cell lines. PMID:24004568

  2. Discovery of HeLa Cell Contamination in HES Cells

    PubMed Central

    Summerfield, Taryn L.

    2014-01-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. PMID:24520087

  3. Apoptosis induced by dioscin in Hela cells.

    PubMed

    Cai, Jing; Liu, Mingjie; Wang, Zhao; Ju, Yong

    2002-02-01

    Dioscin, a saponin extracted from the root of Polygonatum Zanlanscianense Pamp, markedly inhibited proliferation of Hela cells. The results indicated that Hela cells underwent apoptosis in dose- and time-dependent manners when treated with Dioscin. Caspase-3, -8 and -9 activities were also detected. The low enzymatic activity of caspase-8 and high activity of caspase-9 showed that the mitochondrial pathway was activated in apoptosis. The reduced expression of the survival protein Bcl-2 also confirmed this result. These studies may be significant in finding a new drug to treat human cervical cancer. PMID:11853164

  4. Methanolic extract of Pterocarpus santalinus induces apoptosis in HeLa cells.

    PubMed

    Kwon, H J; Hong, Y K; Kim, K H; Han, C H; Cho, S H; Choi, J S; Kim, Byung-Woo

    2006-04-21

    Ptercarpus santalinus (Fabaceae) has been used as a folk remedy in Korea, and it has been shown to exhibit antiinflammations, antiulcers and anticancer effects. In this study, therefore, we report the cytotoxic activity and the mechanism of cell death exhibited by the methanol extract of Ptercarpus santalinus (MEPS) against human cervical adenocarcinoma cell line, HeLa. Treatment of HeLa cells with various concentrations of MEPS resulted in growth inhibition and induction of apoptosis in a dose-dependent manner as determined by cell viability, chromatin condensation, DNA fragmentation and sub-G1 phase accumulation. In Western blot analysis, apoptosis in the HeLa cells was associated with the release of cytochrome C from mitochondria into the cytosol, activation of caspases-3, -8, -9 and proteolytic cleavage of PARP. These results suggest that MEPS exhibits antiproliferative effect on HeLa cells via apoptosis, and it may be a potential candidate in field of anticancer drug discovery. PMID:16326057

  5. Autophagy Facilitates Salmonella Replication in HeLa Cells

    PubMed Central

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  6. [Sixty years of HeLa cell cultures].

    PubMed

    Gilgenkrantz, Simone

    2014-01-01

    HeLa cells line was established in 1951 from cervical cancer cells taken from a young AfroAmerican patient, Henrietta Lacks, used without the permission of the family. Finally, in 2013, an agreement was established between the family and NIH: for any study, authorization is needed, first referred to a working group comprising scientists, ethicists and two members of the family. PMID:24908793

  7. Dynamic friction measurements on living HeLa cells

    NASA Astrophysics Data System (ADS)

    Goulet, Marc-Antoni; Colbert, Marie-Josée; Dalnoki-Veress, Kari

    2008-03-01

    The interaction of cells with various interfaces, and especially man-made surfaces, is an active field of research. In our experiment we use a micropipette to measure both the friction and normal force as a cell slides across a surface. A thin substrate, coated with Poly-L-Lysine is brought into contact with a HeLa cell. The adjustable substrate motion is used to study the response of the cell at various normal forces and speeds. Analysis of the micropipette provides dynamic measurements of both the friction and normal force. With our novel setup we are able to probe the attachment/detachment process of living cells.

  8. Multidrug-resistant hela cells overexpressing MRP1 exhibit sensitivity to cell killing by hyperthermia: Interactions with etoposide

    SciTech Connect

    Souslova, Tatiana; Averill-Bates, Diana A. . E-mail: averill.diana@uqam.ca

    2004-12-01

    Purpose: Multidrug resistance (MDR) remains one of the primary obstacles in cancer chemotherapy and often involves overexpression of drug efflux transporters such as P-glycoprotein and multidrug resistance protein 1 (MRP1). Regional hyperthermia is undergoing clinical investigation in combination with chemotherapy or radiotherapy. This study evaluates whether hyperthermia can reverse MDR mediated by MRP1 in human cervical adenocarcinoma (HeLa) cells. Methods and materials: Cytotoxicity of hyperthermia and/or etoposide was evaluated using sulforhodamine-B in HeLa cells overexpressing MRP1 and their drug-sensitive counterparts. Glutathione, glutathione peroxidase (GPx), and glutathione S-transferase (GST) were quantified by spectrophotometry. GST isoenzymes were quantified by immunodetection. Caspase activation was evaluated by fluorometry and chromatin condensation by fluorescence microscopy using Hoechst 33258. Necrosis was determined using propidium iodide. Results: The major finding is that HeLa and HeLaMRP cells are both sensitive to cytotoxicity of hyperthermia (41-45 deg C). Hyperthermia induced activation of caspase 3 and chromatin condensation. Although total levels of cell killing were similar, there was a switch from apoptotic to necrotic cell death in MDR cells. This could be explained by decreased glutathione and GPx in MDR cells. MDR cells also contained very low levels of GST and were resistant to etoposide-induced apoptosis. Hyperthermia caused a modest increase in etoposide-induced apoptosis in HeLa and HeLaMRP cells, which required appropriate heat-drug scheduling. Conclusions: Hyperthermia could be useful in eliminating MDR cells that overexpress MRP1.

  9. A human gallbladder adenocarcinoma cell line.

    PubMed

    Johzaki, H; Iwasaki, H; Nishida, T; Isayama, T; Kikuchi, M

    1989-12-01

    A cell strain (FU-GBC-1) was established from cancerous ascites of a 68-year-old male patient with well-differentiated adenocarcinoma of the gallbladder. By light and electron microscopy, the cultured cells showed the morphologic features of adenocarcinoma characterized by gland-like structures, intracellular microcystic spaces, and mucous production. Immunoperoxidase stains showed that FU-GBC-1 cells expressed several epithelial tumor antigens including CA 19-9, carcinoembryonic antigen (CEA), and epithelial membrane antigen (EMA). The cell strain has been in continuous culture up to passage 44 for 1 1/2 years, with the population doubling time of 120 hours. The cytogenetic analysis by a G-band technique showed a constant loss of chromosome Y in FU-GBC-1 cells. The modal chromosome number at passage 12 was 82 with a range of 77 to 85. Flow cytometry with an ethidium bromide technique additionally confirmed aneuploid DNA content (4C) in the cultured cells at passage 12 and 35. Inoculation of FU-GBC-1 cells into the dermis of BALB/c nude mice produced transplantable adenocarcinoma identical to the original tumor. Because no continuous cell lines of the well-differentiated type of gallbladder adenocarcinoma have been reported in the literature currently, the newly established cell strain we report may yield a useful system for studying the morphologic and biologic characteristics of gallbladder adenocarcinoma. PMID:2680052

  10. From HeLa cell division to infectious diarrhoea

    SciTech Connect

    Stephen, J.; Osborne, M.P.; Spencer, A.J.; Warley, A. )

    1990-09-01

    Hela S3 cells were grown in suspension both randomly and, synchronously using hydroxyurea which blocks cells at the G1/S interface. Cryosections were prepared, freeze-dried and analyzed by X-ray microanalysis. As cells moved into S and through M phases (Na) and (Cl) increased; both returned to normal levels upon re-entering G1 phase. The Na/K ratio was 1:1 in G1 phase. Infection of HeLa S3 cells in G1 phase with vaccinia virus resulted in no change in intracellular (Na). Infection of neonatal mice with murine rotavirus was localized to villus tip enterocytes and gave rise to diarrhoea which was maximal at 72h post-infection (p.i.). Diarrhoea was preceded by ischemia of villi (18-42h p.i.) and villus shortening (maximal at 42h p.i.), and was also coincident with a dramatic regrowth of villi. At 48h p.i. a proliferative zone of electron lucent cells was observed in villus base regions. Cryosections of infected gut, taken before, during, and after infection, together with corresponding age-matched controls, were freeze-dried and analysed by X-ray microanalysis. At 48h p.i. electron lucent villus base cells were shown to be more hydrated, and, to contain higher levels of both Na and Cl and lower levels of P, S, K and Mg than corresponding control cells. These studies increase confidence in the use of X-ray microanalysis in studying biological systems, provide some insight into the process of cell division, and constitute the basis of a new concept of diarrhoeal secretion.27 references.

  11. Stable tRNA precursors in HeLa cells.

    PubMed Central

    Harada, F; Matsubara, M; Kato, N

    1984-01-01

    Two tRNA precursors were isolated from 32P-labeled or unlabeled HeLa cells by two dimensional polyacrylamide gel electrophoresis, and were sequenced. These were the precursors of tRNAMet and tRNALeu, and both contained four extra nucleotides including 5'-triphosphates at their 5'-end and nine extra nucleotides including oligo U at their 3'-end. These RNAs are the first naturally occurring tRNA precursors from higher eukaryotes whose sequences have been determined. In these molecules, several modified nucleosides such as m2G, t6A and ac4C in mature tRNAs were undermodified. Two additional hydrogen bonds were formed in the clover leaf structures of these tRNA precursors. These extra hydrogen bonds may be responsible for the stabilities of these tRNA precursors. Images PMID:6514577

  12. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    PubMed

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016. PMID:25691005

  13. Real-time sonoporation through HeLa cells

    NASA Astrophysics Data System (ADS)

    Kotopoulis, Spiros; Delalande, Anthony; Pichon, Chantal; Postema, Michiel

    2012-09-01

    The purpose of this study was to investigate the physical mechanisms of sonoporation, to understand and ameliorate ultrasound-assisted drug and gene delivery. Sonoporation is the transient permeabilisation of a cell membrane with help of ultrasound and/or an ultrasound contrast agent, allowing for the trans-membrane delivery and cellular uptake of macromolecules between 10 kDa and 3 MDa. We studied the behaviour of ultrasound contrast agent microbubbles near cancer cells at low acoustic amplitudes. After administering an ultrasound contrast agent, HeLa cells were subjected to 6.6-MHz ultrasound with a mechanical index of 0.2 and observed with a highspeed camera. Microbubbles were seen to enter cells and rapidly dissolve. The quick dissolution after entering suggests that the microbubbles lose (part of) their shell whilst entering. We have demonstrated that lipid-shelled microbubbles can be forced to enter cells at a low mechanical index. Hence, if a therapeutic load is added to the bubble, ultrasound-guided delivery could be facilitated at diagnostic settings. However, these results may have implications for the safety regulations on the use of ultrasound contrast agents for diagnostic imaging.

  14. Iron metabolism and cell membranes. III. Iron-induced alterations in HeLa cells.

    PubMed Central

    Jauregui, H. O.; Bradford, W. D.; Arstila, A. U.; Kinney, T. D.; Trump, B. F.

    1975-01-01

    The morphologic characteristics of acute iron loading were studied in HeLa cells incubated in an iron-enriched Eagle's medium containing 500 mug/ml of iron. Chemical studies showed that ferritin synthesis was rapidly induced and the concentration of intracellular ferritin increased up to 72 hours. Closely coupled with an increase in HeLa cell ferritin was a marked decrease in the rate of cell multiplication. The significant ultrastructural findings of iron-induced HeLa cell injury are characterized by the appearance of both autophagic multivesicular and residual bodies over the first 72 hours of iron incubation. The prominence of multivesicular bodies was noted after only 4 hours' incubation, with iron and myelin figures first appearing after 6 hours. Thus, the partial arrest of cell multiplication was associated with an increase in cytoplasmic residual bodies containing iron and other debris. The distribution of intracellular ferritin within HeLa cells differs significantly from the distribution described previously in hepatic parenchymal cells. In HeLa cells, ferritin particles were confined to lysosomal vesicles and were not identified in cell sap, endoplasmic reticulum, or Golgi apparatus. Images Figure 8 Figure 1 Figure 9 Figure 10 Figure 11 Figure 12 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1155583

  15. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    PubMed

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH. PMID:25370167

  16. Tumoricidal effects of nanomaterials in HeLa cell line

    NASA Astrophysics Data System (ADS)

    Fakhar-E-Alam, M.; Kishwar, S.; Khan, Y.; Siddique, M.; Atif, M.; Nur, O.; Willander, M.

    2011-11-01

    The current study exhibits the cellular response of HeLa (cervical cancer) cells to metal oxides ultrafine nanomaterials e.g. manganese dioxide nanowires (MnO2 NRs), iron oxide nanoparticles (Fe2O3 NPs) and zinc oxide nanorods (ZnO NRs) as bare and as conjugated with photosensitizers. For cytotoxic evaluations, the cellular morphology, (MTT) assay, reactive oxygen species (ROS) production were used for cases with and without photo sensitizer as well illuminated with UV-visible laser exposed conditions. Three different photosensitizers were tested. These are 5-aminolevulinic acid (5-ALA), Photofrin® and protopor phyrin dimethyl ester (PPDME). Significant loss in cell viability was noted with 100-500 μg/ml in bare and conjugated forms of the metal oxides used. The effect was insignificant with lower concentrations (0.05-50 μg/ml). While notable anticancer effect of 5-ALA under 30 J/cm2 of diode laser irradiation was noted as compared to other photo sensitizer. By increasing the UV irradiation time of labeled cells, generation of ROS was observed, indicating the possibility of achieving efficient photodynamic therapy (PDT).

  17. Alteration in the radiosensitivity of HeLa cells by dichloromethane extract of guduchi (Tinospora cordifolia).

    PubMed

    Rao, Shaival K; Rao, Priya S

    2010-12-01

    Exposure of HeLa cells to TCE (dichloromethane extract of Tinospora cordifolia) for 4 hours before exposure to 2-Gy γ-radiation caused a significant decrease in the cell viability (approximately 50%). The surviving fraction (SF) was reduced to 0.52 after 4 hours of TCE treatment; thereafter, clonogenecity of HeLa cells declined negligibly with treatment duration up to 6 hours posttreatment. Exposure of HeLa cells to different doses of γ-radiation resulted in a dose-dependent decline in the viability of HeLa cells, whereas treatment of HeLa cells with various doses of TCE further decreased the cell viability depending not only on the irradiation dose but also on the concentration of TCE. Treatment of HeLa cells with various doses of TCE caused a significant decline in cell viability after exposure to 1 to 4 Gy γ-radiation. The increase in TCE concentration before irradiation caused a concentration-dependent reduction in the SF, and a lowest SF was observed for 4 μg/mL TCE for all exposure doses. HeLa cells treated with TCE showed an increase in lactate dehydrogenase and decrease in glutathioneS-transferase activity at all postirradiation times. Lipid peroxidation increased up to 4 hours postirradiation and declined gradually up to 12 hours postirradiation. PMID:21106617

  18. Location and Regeneration of Enterovirus Receptors of HeLa Cells1

    PubMed Central

    Zajac, Ihor; Crowell, Richard L.

    1965-01-01

    Zajac, Ihor (Hahnemann Medical College, Philadelphia, Pa.), and Richard L. Crowell. Location and regeneration of enterovirus receptors of HeLa cells. J. Bacteriol. 89:1097–1100. 1965.—Treatment of live HeLa cells with chymotrypsin or trypsin completely inactivated the viral receptors for coxsackievirus B3 and poliovirus T1, respectively. Enzyme-treated cells regained their enterovirus receptor activity after incubation in culture medium. The existence of intracellular receptors for virus could not be demonstrated when live HeLa cells were treated with enzyme prior to disruption and fractionation. These results suggested that receptors for enteroviruses are limited to the cell surface. PMID:14279119

  19. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    SciTech Connect

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  20. Use of HeLa cell guanine nucleotides by Chlamydia psittaci.

    PubMed Central

    Ceballos, M M; Hatch, T P

    1979-01-01

    Exogenous guanine was found to be incorporated into the nucleic acids of Chlamydia psittaci when the parasite was grown in HeLa cells containing hypoxanthine guanine phosphoribosyltransferase (EC 2.4.2.8) activity but not when the parasite was grown in transferase-deficient HeLa cells. No evidence for a chlamydia-specific transferase activity was found in either transferase-containing or transferase-deficient infected HeLa cells. It is concluded that C. psittaci is incapable of metabolizing guanine, but that the parasite can use host-generated guanine nucleotides as precursors for nucleic acid synthesis. Images PMID:478649

  1. Anticancer Activity of Certain Herbs and Spices on the Cervical Epithelial Carcinoma (HeLa) Cell Line

    PubMed Central

    Berrington, Danielle; Lall, Namrita

    2012-01-01

    Acetone extracts of selected plant species were evaluated for their in vitro cytotoxicity against a noncancerous African green monkey kidney (Vero) cell line and an adenocarcinoma cervical cancer (HeLa) cell line. The plants studied were Origanum vulgare L. (Oregano), Rosmarinus officinalis L. (Upright and ground cove rosemary), Lavandula spica L. (Lavender), Laurus nobilis L. (Bay leaf), Thymus vulgaris L. (Thyme), Lavandula x intermedia L. (Margaret Roberts Lavender), Petroselinum crispum Mill. (Curly leaved parsley), Foeniculum vulgare Mill. (Fennel), and Capsicum annuum L. (Paprika). Antioxidant activity was determined using a quantitative DPPH (1,1-diphenyl-2-picryl hydrazyl) assay. The rosemary species exhibited effective radical scavenging capacity with 50% inhibitory concentration (IC50) of 3.48 ± 0.218 μg/mL and 10.84 ± 0.125 μg/mL and vitamin C equivalents of 0.351 g and 1.09 g for McConnell's Blue and Tuscan Blue, respectively. Cytotoxicity was measured using XTT (Sodium 3′-[1-(phenyl amino-carbonyl)-3,4-tetrazolium]-bis-[4-methoxy-6-nitro] benzene sulfonic acid hydrate) colorimetric assay. Only L. nobilis and O. vulgare exhibited pronounced effects on the HeLa cell line. Dose-dependent studies revealed IC50 of 34.46 ± 0.48 μg/mL and 126.3 ± 1.00 μg/mL on the HeLa cells and on the Vero cells 124.1 μg/mL ± 18.26 and 163.8 μg/mL ± 2.95 for L. nobilis and O. vulgare, respectively. Light (eosin and haematoxylin staining) and confocal microscopy (Hoechst 33342, acridine orange, and propidium iodide staining) were used to evaluate the cytotoxic mechanism of action for L. nobilis and O. vulgare. PMID:22649474

  2. Anticancer Activity of Certain Herbs and Spices on the Cervical Epithelial Carcinoma (HeLa) Cell Line.

    PubMed

    Berrington, Danielle; Lall, Namrita

    2012-01-01

    Acetone extracts of selected plant species were evaluated for their in vitro cytotoxicity against a noncancerous African green monkey kidney (Vero) cell line and an adenocarcinoma cervical cancer (HeLa) cell line. The plants studied were Origanum vulgare L. (Oregano), Rosmarinus officinalis L. (Upright and ground cove rosemary), Lavandula spica L. (Lavender), Laurus nobilis L. (Bay leaf), Thymus vulgaris L. (Thyme), Lavandula x intermedia L. (Margaret Roberts Lavender), Petroselinum crispum Mill. (Curly leaved parsley), Foeniculum vulgare Mill. (Fennel), and Capsicum annuum L. (Paprika). Antioxidant activity was determined using a quantitative DPPH (1,1-diphenyl-2-picryl hydrazyl) assay. The rosemary species exhibited effective radical scavenging capacity with 50% inhibitory concentration (IC(50)) of 3.48 ± 0.218 μg/mL and 10.84 ± 0.125 μg/mL and vitamin C equivalents of 0.351 g and 1.09 g for McConnell's Blue and Tuscan Blue, respectively. Cytotoxicity was measured using XTT (Sodium 3'-[1-(phenyl amino-carbonyl)-3,4-tetrazolium]-bis-[4-methoxy-6-nitro] benzene sulfonic acid hydrate) colorimetric assay. Only L. nobilis and O. vulgare exhibited pronounced effects on the HeLa cell line. Dose-dependent studies revealed IC(50) of 34.46 ± 0.48 μg/mL and 126.3 ± 1.00 μg/mL on the HeLa cells and on the Vero cells 124.1 μg/mL ± 18.26 and 163.8 μg/mL ± 2.95 for L. nobilis and O. vulgare, respectively. Light (eosin and haematoxylin staining) and confocal microscopy (Hoechst 33342, acridine orange, and propidium iodide staining) were used to evaluate the cytotoxic mechanism of action for L. nobilis and O. vulgare. PMID:22649474

  3. Photodynamic damage study of HeLa cell line using ALA

    NASA Astrophysics Data System (ADS)

    AlSalhi, M. S.; Atif, M.; AlObiadi, A. A.; Aldwayyan, A. S.

    2011-04-01

    The present study evaluates the photodynamic damage with 5-aminolevulinic acid (5-ALA) using HeLa as experimental model. HeLa cell line was irradiated with red light (He-Ne laser, λ = 632.8 CW nm). The influence of different incubation times and concentrations of 5-ALA, different irradiation doses and various combinations of photosensitizer and light doses on the cellular viability of HeLa cells were studied. The optimal uptake of photosensitizer ALA in HeLa cells was investigated by means of PpIX fluorescence intensity by exciting the HeLa cell suspension at 450 nm and a detection wavelength set at 690 nm. Cells viability was determined by means of trypan blue solution. The spectrometric measurements showed that the maximal cellular uptake of 5-ALA occurred after 4 h in vitro incubation. We found that the combination with 5-ALA and laser irradiation leads to time/concentration-dependent increase of cells death and also energy doses-dependent enlarge the cells death. The fluorescence intensity after PDD of carcinoma cells reduce when compared with the control group. The fluorescence emission spectral profiles after PDD of carcinoma cells showed a dip around 425-525 nm when compared with the control group. This may be due to the damage of mitochondria component of cells. The percentage of HeLa cells after PDD shows that the percentage of cells survival rate as function of laser dose (power). Hence it is clear that at 200 μg/ml ALA and 20 mW laser irradiation, more than 70% of HeLa cells were dead after 15 min.

  4. Adjuvant antiproliferative and cytotoxic effect of aloin in irradiated HeLaS3 cells

    NASA Astrophysics Data System (ADS)

    Nićiforović, A.; Adžić, M.; Zarić, B.; Radojčić, M. B.

    2007-09-01

    Naturally occurring phytoanthracycline, aloin, was used to radiosensitize HeLaS3 human cervix carcinoma cells. The results indicated that the cytotoxic adjuvant effect of aloin was synergistic with gammaionizing radiation at all drug concentrations and comparable to the cytotoxicity of 5-10 Gy ionizing radiation alone. Radiosensitization of HeLaS3 cells was achieved by 60 μM aloin, which reduced the IC50 dose of ionizing radiation from 3.4 to 2 Gy. Ionizing radiation and aloin alone or in combination are shown to cause perturbation of the HeLaS3 cell-cycle and increase the percentage of cells in the DNA synthesis (S) phase of the cell cycle. While either of the agents applied alone causes programmed cell death by apoptosis, the simultaneous cell damage by both agents through the altered redox balance compromised cell capacity to conduct this program and led to synergic cytotoxic cell death by necrosis.

  5. A human gallbladder adenocarcinoma cell line.

    PubMed

    Morgan, R T; Woods, L K; Moore, G E; McGavran, L; Quinn, L A; Semple, T U

    1981-06-01

    A continuous cell line, COLO 346, was established from a liver metastasis in a patient with adenocarcinoma of the gallbladder. COLO 346 grew as an adherent monolayer of pleomorphic epithelioid cells. COLO 346 cells produced esterone, but no estradiol, progesterone, or cortisol. No adrenocorticotropic hormones, beta-subunit of human chorionic gonadotropin, carcinoembryonic antigen, or alpha-fetoprotein production by the cells was detected. Cell doubling time was 36 h. Seven allelic isozymes were assayed. COLO 346 had a chromosome mode of 74 at 21 months postestablishment with 6 marker chromosomes present in 100% of the cells analyzed. COLO 346 has been in continuous culture for over 2 yr and is available to other investigators for their studies. PMID:7262900

  6. Adeno-associated virus sensitizes HeLa cell tumors to gamma rays.

    PubMed Central

    Walz, C; Schlehofer, J R; Flentje, M; Rudat, V; zur Hausen, H

    1992-01-01

    Infection with the helper virus-dependent human parvovirus adeno-associated virus (AAV) is known to interfere with cellular transformation in vitro and oncogenesis in vivo. Here we report on sensitization to gamma irradiation by AAV infection of cells in culture and of tumors established from HeLa cells grafted into immunodeficient (nude) mice: infection of HeLa cells with AAV type 2 enhanced cell killing and reduced plating efficiency after irradiation compared with uninfected cells. Similarly, HeLa cell tumors in nude mice displayed a reduced growth rate and were more sensitive to gamma irradiation when the animals were infected with AAV type 2 prior to or after tumor cell inoculation. Since no pathogenicity is known for AAV, the ability of this virus to render radiotherapy of human tumor cells more efficient may up open novel approaches in cancer treatment. Images PMID:1323717

  7. The effect of uranyl acetate on human lymphoblastoid cells (RPMI 6410) and HeLa cells.

    PubMed Central

    Ghadially, F. N.; Yang-Steppuhn, S. E.; Lalonde, J. M.

    1982-01-01

    RPMI 6410 cells and HeLa cells were exposed to uranyl acetate. In RPMI 6410 cell cultures this produced single-membrane-bound presumably lysosomal bodies (called "uraniosomes") containing electron-dense crystals in the cultured cells and crystalline deposits in extracellular locations. Neither uraniosomes nor extracellular uranium deposits were found in HeLa cell cultures. All uraniosomes and extracellular uranium deposits analysed by electron-probed X-ray analysis were found to contain uranium, potassium and phosphorus. Traces of sulphur were detected in some but not all uraniosomes and extracellular uranium deposits. Traces of calcium were found in all extracellular uranium deposits and in some uraniosomes also. Images Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7093141

  8. Intrinsic cell permeability of the GAGA zinc finger protein into HeLa cells.

    PubMed

    Negi, Shigeru; Terada, Yuka; Suzuyama, Misato; Matsumoto, Haruka; Honbo, Akino; Amagase, Yoko; Mizukawa, Yumiko; Kiriyama, Akiko; Iga, Katsumi; Urushidaini, Tetsuro; Sugiura, Yukio

    2015-09-01

    We examined the intrinsic cell permeability of a GAGA zinc finger obtained from the Drosophila melanogaster transcription factor and analyzed its mechanism of cellular uptake using confocal microscopy and flow cytometry. HeLa cells were treated with the Cy5-labeld GAGA peptides (containing a fluorescent chromophore) to detect fluorescence signals from the fluorescent labeling peptides by confocal microscopy. The results clearly indicated that GAGA peptides possess intrinsic cell permeability for HeLa cells. Based on the results of the flow cytometry analysis and the theoretical net positive charge of the GAGA peptides, the efficiency of cellular uptake of the GAGA peptides was predicted to depend on the net positive charge of the GAGA peptide as well as the cationic component ratio of Arg residues to Lys residues. PMID:26187668

  9. HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells

    SciTech Connect

    Liu, Junye; Zhang, Jing; Wang, Xiaowu; Li, Yan; Chen, Yongbin; Li, Kangchu; Zhang, Jian; Yao, Libo; Guo, Guozhen

    2010-07-15

    Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.

  10. Dual Anti-Metastatic and Anti-Proliferative Activity Assessment of Two Probiotics on HeLa and HT-29 Cell Lines

    PubMed Central

    Nouri, Zahra; Karami, Fatemeh; Neyazi, Nadia; Modarressi, Mohammad Hossein; Karimi, Roya; Khorramizadeh, Mohammad Reza; Taheri, Behrooz; Motevaseli, Elahe

    2016-01-01

    Objective Lactobacilli are a group of probiotics with beneficial effects on prevention of cancer. However, there is scant data in relation with the impacts of probiotics in late-stage cancer progration, especially metastasis. The present original work was aimed to evaluate the anti-metastatic and anti-proliferative activity of lactobacillus rhamnosus supernatant (LRS) and lactobacillus crispatus supernatant (LCS) on the human cervical and colon adenocarcinoma cell lines (HeLa and HT-29, respectively). Materials and Methods In this experimental study, the anti-proliferative activities of LRS and LCS were determined through MTT assay. MRC-5 was used as a normal cell line. Expression analysis of CASP3, MMP2, MMP9, TIMP1 and TIMP2 genes was performed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), following the cell synchronization. Results Supernatants of these two lactobacilli had cytotoxic effect on HeLa, however LRS treatment was only effective on HT-29 cell line. In addition, LRS had no side-effect on normal cells. It was shown that CASP3 gene expression has been reduced after treatment with supernatants of two studied lactobacilli. According to our study, LRS and LCS are efficacious in the prevention of metastasis potency in HeLa cells with decreased expression of MMP2, MMP9 and increased expression of their inhibitors. In the case of HT-29 cells, only LRS showed this effect. Conclusion Herein, we have demonstrated two probiotics which have anti-metastatic effects on malignant cells and they can be administrated to postpone late-stage of cancer disease. LRS and LCS are effective on HeLa cell lines while only the effect of LRS is significant on HT-29, through cytotoxic and anti-metastatic mechanisms. Further assessments are required to evaluate our results on the other cancer cell lines, in advance to use these probiotics in other extensive trial studies. PMID:27551673

  11. Targeting cancer cell metabolism in pancreatic adenocarcinoma

    PubMed Central

    Cohen, Romain; Neuzillet, Cindy; Tijeras-Raballand, Annemilaï; Faivre, Sandrine; de Gramont, Armand; Raymond, Eric

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer death by 2030. Current therapeutic options are limited, warranting an urgent need to explore innovative treatment strategies. Due to specific microenvironment constraints including an extensive desmoplastic stroma reaction, PDAC faces major metabolic challenges, principally hypoxia and nutrient deprivation. Their connection with oncogenic alterations such as KRAS mutations has brought metabolic reprogramming to the forefront of PDAC therapeutic research. The Warburg effect, glutamine addiction, and autophagy stand as the most important adaptive metabolic mechanisms of cancer cells themselves, however metabolic reprogramming is also an important feature of the tumor microenvironment, having a major impact on epigenetic reprogramming and tumor cell interactions with its complex stroma. We present a comprehensive overview of the main metabolic adaptations contributing to PDAC development and progression. A review of current and future therapies targeting this range of metabolic pathways is provided. PMID:26164081

  12. Effect of anthralin on cell viability in human prostate adenocarcinoma.

    PubMed

    Raevskaya, A A; Gorbunova, S L; Savvateeva, M V; Severin, S E; Kirpichnikov, M P

    2012-07-01

    The study revealed the key role of serine protease hepsin activity in transition of in situ prostate adenocarcinoma into the metastasizing form. Inhibition of hepsin activity suppresses the invasive growth of the tumor. Hepsin is an convenient target for pharmacological agents, so the study of its inhibitory mechanisms is a promising avenue in drug development. Assay of proteolytic activity in various tumor cell lines in vitro showed that this activity in prostate adenocarcinoma cells significantly surpasses proteolytic activity in other examined tumor cell lines. Selective cytotoxic action of anthralin, an inhibitor of hepsin activity, on human adenocarcinoma cells was demonstrated in comparison with other tumor cell lines. PMID:22866312

  13. Effect of Electrode Shape on Impedance of Single HeLa Cell: A COMSOL Simulation.

    PubMed

    Wang, Min-Haw; Chang, Wen-Hao

    2015-01-01

    In disease prophylaxis, single cell inspection provides more detailed data compared to conventional examinations. At the individual cell level, the electrical properties of the cell are helpful for understanding the effects of cellular behavior. The electric field distribution affects the results of single cell impedance measurements whereas the electrode geometry affects the electric field distributions. Therefore, this study obtained numerical solutions by using the COMSOL multiphysics package to perform FEM simulations of the effects of electrode geometry on microfluidic devices. An equivalent circuit model incorporating the PBS solution, a pair of electrodes, and a cell is used to obtain the impedance of a single HeLa cell. Simulations indicated that the circle and parallel electrodes provide higher electric field strength compared to cross and standard electrodes at the same operating voltage. Additionally, increasing the operating voltage reduces the impedance magnitude of a single HeLa cell in all electrode shapes. Decreasing impedance magnitude of the single HeLa cell increases measurement sensitivity, but higher operational voltage will damage single HeLa cell. PMID:25961043

  14. Single-walled carbon nanotube interactions with HeLa cells

    PubMed Central

    Yehia, Hadi N; Draper, Rockford K; Mikoryak, Carole; Walker, Erin Kate; Bajaj, Pooja; Musselman, Inga H; Daigrepont, Meredith C; Dieckmann, Gregg R; Pantano, Paul

    2007-01-01

    This work concerns exposing cultured human epithelial-like HeLa cells to single-walled carbon nanotubes (SWNTs) dispersed in cell culture media supplemented with serum. First, the as-received CoMoCAT SWNT-containing powder was characterized using scanning electron microscopy and thermal gravimetric analyses. Characterizations of the purified dispersions, termed DM-SWNTs, involved atomic force microscopy, inductively coupled plasma – mass spectrometry, and absorption and Raman spectroscopies. Confocal microRaman spectroscopy was used to demonstrate that DM-SWNTs were taken up by HeLa cells in a time- and temperature-dependent fashion. Transmission electron microscopy revealed SWNT-like material in intracellular vacuoles. The morphologies and growth rates of HeLa cells exposed to DM-SWNTs were statistically similar to control cells over the course of 4 d. Finally, flow cytometry was used to show that the fluorescence from MitoSOX™ Red, a selective indicator of superoxide in mitochondria, was statistically similar in both control cells and cells incubated in DM-SWNTs. The combined results indicate that under our sample preparation protocols and assay conditions, CoMoCAT DM-SWNT dispersions are not inherently cytotoxic to HeLa cells. We conclude with recommendations for improving the accuracy and comparability of carbon nanotube (CNT) cytotoxicity reports. PMID:17956629

  15. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells

    PubMed Central

    Jafarian, A.; Ghannadi, A.; Mohebi, B.

    2014-01-01

    Previous studies have indicated that some species of Cuscuta possess anticancer activity on various cell lines. Due to the lack of detailed researches on the cytotoxic effects of Cuscuta chinensis and Cuscuta epithymum, the aim of the present study was to evaluate cytotoxic effects of chloroform and hydroalcoholic extracts of these plants on the human breast carcinoma cell line (MDA-MB-468), human colorectal adenocarcinoma cell line (HT29) and human uterine cervical carcinoma (Hela). Using maceration method, different extracts of aerial parts of C. chinensis and C. epithymum were prepared. Extraction was performed using chloroform and ethanol/water (70/30). Total phenolic contents of the extracts were determined according to the Folin-Ciocalteu method. Using MTT assay, the cytotoxic activity of the extracts against HT29, Hela and MDA-MB-468 tumor cells was evaluated. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. The poly-phenolic content of the hydroalcoholic and chloroform extracts of C. chinensis and C. epithymum were 56.08 ± 4.11, 21.49 ± 2.00, 10.64 ± 0.86 and 4.81 ± 0.38, respectively. Our findings showed that the chloroform extracts of C. chinensis and C. epithyum significantly reduced the viability of Hela, HT-29 and MDA-MB-468 cells. Also, hydroalcoholic extracts of C. chinensis significantly decreased the viability of HT29, Hela and MDA-MB-468 cells. However, in the case of hydroalcoholic extracts of C. epithymum only significant decrease in the viability of MDA-MB-468 cells was observed (IC50 = 340 μg/ml). From these findings it can be concluded that C. chinensis and C. epithymum are good candidates for further study to find new possible cytotoxic agents. PMID:25657780

  16. Clear cell adenocarcinoma arising from adenomyosis.

    PubMed

    Hirabayashi, Kenichi; Yasuda, Masanori; Kajiwara, Hiroshi; Nakamura, Naoya; Sato, Shigeru; Nishijima, Yoshihiro; Mikami, Mikio; Osamura, Robert Yoshiyuki

    2009-05-01

    A 73-year-old postmenopausal Japanese woman presented with a complaint of slight fever and weight loss. An elevated level of CA125 in the blood favored a diagnosis of malignant uterine body tumor, but was not confirmed by endometrial cytology and biopsy. Resection of the uterus revealed a solid whitish tumor in the myometrium that was diagnosed as clear cell adenocarcinoma (CCA) arising from adenomyosis. There were transitions between endometrial epithelium of adenomyosis, noninvasive CCA, and invasive CCA. Immunohistochemical expression of hepatocyte nuclear factor-1beta supported the diagnosis of CCA. Only one other English language document pertaining to CCA arising from adenomyosis exists. Malignant tumor arising from adenomyosis should be considered as a differential diagnosis when the serum level of tumor markers such as CA125 is high and when the tumor is intramyometrial. PMID:19620944

  17. Proteomic Investigation into Betulinic Acid-Induced Apoptosis of Human Cervical Cancer HeLa Cells

    PubMed Central

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway. PMID:25148076

  18. In vitro cytotoxicity of BTEX metabolites in HeLa cells.

    PubMed

    Shen, Y

    1998-04-01

    Fuel leakage from underground storage tanks is a major source of groundwater contamination. Although the toxicity of regulated compounds such as benzene, toluene, ethylbenzene, and xylene (BTEX) are well recognized, the cytotoxicity of their metabolites has not been studied extensively. In this study, Hela cells, propagated at 37 degrees C in an atmosphere of 5% CO2-95% air, served as a target for evaluation of cytotoxicity of BTEX metabolites 3-methylcatechol, 4-methylcatechol, 4-hydroxybenzoic acid, and 4-hydroxy-3-methoxybenzoic acid. The cells were exposed to different concentrations of the metabolites, which subsequently showed inhibition of cell growth and produced dose-related decreases in cell viability and cell protein content. The BTEX metabolites affected the levels of the polyamines spermidine, spermine, and putrescine, which are known to be important in cell proliferation. The cytotoxic effects for these BTEX metabolites to Hela cells were 3-methylcatechol > 4-methylcatechol > 4-hydroxy-3-methoxybenzoic acid > 4-hydroxybenzoic acid. PMID:9504968

  19. Invasion of HeLa 229 cells by virulent Bordetella pertussis.

    PubMed Central

    Ewanowich, C A; Melton, A R; Weiss, A A; Sherburne, R K; Peppler, M S

    1989-01-01

    Phase-dependent invasive behavior of Bordetella pertussis was demonstrated by recovery of viable organisms from gentamicin-treated HeLa cell monolayers and by transmission electron microscopy. Several mutants of B. pertussis with Tn5 or Tn5 lac inserted into various vir-regulated genes were evaluated for differences in their invasive abilities. Mutants lacking filamentous hemagglutinin, pertussis toxin, and two as yet uncharacterized vir-regulated products had levels of invasion significantly lower than that of the parent strain BP338. In contrast, invasion by mutants lacking adenylate cyclase toxin was significantly increased compared with that of wild-type B. pertussis. This increase in invasion was eliminated when concentrations of intracellular cyclic 3'-5' AMP were stimulated by treating HeLa cells with cholera toxin or forskolin. Entry of B. pertussis occurred through a microfilament-dependent phagocytic process, as evidenced by the marked reduction in uptake following treatment of HeLa cells with cytochalasin D. Invasion was inhibited with polyclonal anti-B. pertussis and anti-filamentous hemagglutinin antisera. In addition, a monoclonal antibody against lipooligosaccharide A reduced uptake by 65.5%. The preservation of HeLa cell integrity and the limited replication of intracellular bacteria suggest that invasion may represent a means by which B. pertussis evades an active host immune response. Images PMID:2547718

  20. Effect of Enzymes on the Interaction of Enteroviruses with Living HeLa Cells1

    PubMed Central

    Zajac, Ihor; Crowell, Richard L.

    1965-01-01

    Zajac, Ihor (Hahnemann Medical College, Philadelphia, Pa.), and Richard L. Crowell. Effect of enzymes on the interaction of enteroviruses with living HeLa cells. J. Bacteriol. 89:574–582. 1965.—Eight crude enzyme preparations and two crystalline enzymes were tested for ability to inactivate coxsackie group B and poliovirus receptors on living HeLa cells. Receptor-destroying enzyme, erepsin, lysozyme, collagenase, proteinase, and cobra venom did not alter attachment of coxsackie B3 or poliovirus T1 to cells, whereas elastase prevented attachment of both viruses tested. Treatment of live cells with pancreatin or chymotrypsin rendered cells unable to attach group B coxsackie viruses, whereas cells treated with trypsin failed to attach poliovirus T1. In addition, chymotrypsin was found to release coxsackie B3 and poliovirus T1 from cell surfaces, whereas trypsin was unable to dissociate virus-cell union. These results indicate that cellular receptors for polioviruses differ from those for group B coxsackie-viruses. The finding that 1% solutions of enzymes will inactivate differentially the enteroviral receptors of HeLa cells, without altering cell viability, provides a useful approach for study of enterovirus receptors of live host cells. PMID:14273631

  1. Thymidine 5'-O-monophosphorothioate induces HeLa cell migration by activation of the P2Y6 receptor.

    PubMed

    Gendaszewska-Darmach, Edyta; Szustak, Marcin

    2016-06-01

    ATP, ADP, UTP, and UDP acting as ligands of specific P2Y receptors activate intracellular signaling cascades to regulate a variety of cellular processes, including proliferation, migration, differentiation, and cell death. Contrary to a widely held opinion, we show here that nucleoside 5'-O-monophosphorothioate analogs, containing a sulfur atom in a place of one nonbridging oxygen atom in a phosphate group, act as ligands for selected P2Y subtypes. We pay particular attention to the unique activity of thymidine 5'-O-monophosphorothioate (TMPS) which acts as a specific partial agonist of the P2Y6 receptor (P2Y6R). We also collected evidence for the involvement of the P2Y6 receptor in human epithelial adenocarcinoma cell line (HeLa) cell migration induced by thymidine 5'-O-monophosphorothioate analog. The stimulatory effect of TMPS was abolished by siRNA-mediated P2Y6 knockdown and diisothiocyanate derivative MRS 2578, a selective antagonist of the P2Y6R. Our results indicate for the first time that increased stability of thymidine 5'-O-monophosphorothioate as well as its affinity toward the P2Y6R may be responsible for some long-term effects mediated by this receptor. PMID:26746211

  2. Glycans coated silver nanoparticles induces autophagy and necrosis in HeLa cells

    NASA Astrophysics Data System (ADS)

    Panzarini, Elisa; Mariano, Stefania; Dini, Luciana

    2015-06-01

    This study reports the induction of autophagy by two concentrations (2×103 or 2×104 NPs/cell) of 30 nm sized β-D-Glucose- and β-D-Glucose/Sucrose-coated silver NanoParticles (AgNPs-G and AgNPs-GS respectively) in HeLa cells treated for 6, 12, 24 and 48 hrs. Cell viability was assessed by Neutral Red (NR) test and morphological evaluation. In addition ROS generation (NBT test) and induction of apoptosis/necrosis (Annexin V/Propidium Iodide-Annexin V/PI staining) and autophagy (Monodansylcadaverine-MDC staining) were evaluated. Cytotoxicity, ROS generation and morphology changes depend on NPs type and amount, and incubation time. As a general result, AgNPs-G are more toxic than AgNPs-GS. Moreover, the lowest AgNPs-GS concentration is ineffective on cell viability and ROS generation. Only 10% and 25% of viable HeLa cells were found at the end of incubation time in the presence of higher amount of AgNPs - G and AgNPs-GS respectively and in parallel ROS generation is induced. To elucidate the type of cell death, Annexin V/PI and MDC staining was performed. Interestingly, irrespective of coating type and NPs amount the percentage of apoptotic cells (Annexin V+/PI-) is similar to viable HeLa cells. At contrary, we observed a NPs amount dependent autophagy and necrosis induction. In fact, the lower amount of NPs induces autophagy (MDC+/PI- cells) whereas the higher one induces necrosis (Annexin V+/PI+ cells). Our findings suggest that AgNPs-induced cytotoxicity depends on AgNPs amount and type and provide preliminary evidence of induction of autophagy in HeLa cells cultured in the presence of AgNPs.

  3. Oxygen Depletion Speeds and Simplifies Diffusion in HeLa Cells

    PubMed Central

    Edwald, Elin; Stone, Matthew B.; Gray, Erin M.; Wu, Jing; Veatch, Sarah L.

    2014-01-01

    Many cell types undergo a hypoxic response in the presence of low oxygen, which can lead to transcriptional, metabolic, and structural changes within the cell. Many biophysical studies to probe the localization and dynamics of single fluorescently labeled molecules in live cells either require or benefit from low-oxygen conditions. In this study, we examine how low-oxygen conditions alter the mobility of a series of plasma membrane proteins with a range of anchoring motifs in HeLa cells at 37°C. Under high-oxygen conditions, diffusion of all proteins is heterogeneous and confined. When oxygen is reduced with an enzymatic oxygen-scavenging system for ≥15 min, diffusion rates increase by >2-fold, motion becomes unconfined on the timescales and distance scales investigated, and distributions of diffusion coefficients are remarkably consistent with those expected from Brownian motion. More subtle changes in protein mobility are observed in several other laboratory cell lines examined under both high- and low-oxygen conditions. Morphological changes and actin remodeling are observed in HeLa cells placed in a low-oxygen environment for 30 min, but changes are less apparent in the other cell types investigated. This suggests that changes in actin structure are responsible for increased diffusion in hypoxic HeLa cells, although superresolution localization measurements in chemically fixed cells indicate that membrane proteins do not colocalize with F-actin under either experimental condition. These studies emphasize the importance of controls in single-molecule imaging measurements, and indicate that acute response to low oxygen in HeLa cells leads to dramatic changes in plasma membrane structure. It is possible that these changes are either a cause or consequence of phenotypic changes in solid tumor cells associated with increased drug resistance and malignancy. PMID:25418168

  4. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    SciTech Connect

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu; Wu, Jincai; Fang, Jianguo

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells. ► Curcumin

  5. Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1

    PubMed Central

    YANG, LIANG; LIU, REN; MA, HONG-BIN; YING, MING-ZHEN; WANG, YA-JIE

    2015-01-01

    The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 (GSTP1) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G2/M phase arrest in the GSTP1-expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1-expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G2/M phase arrest. PMID:26622693

  6. Effect of extracts of trichosanthes root tubers on HepA-H cells and HeLa cells

    PubMed Central

    Dou, Chang-Ming; Li, Ji-Cheng

    2004-01-01

    AIM: To investigate the cytotoxic activity of extracts of trichosanthes root tubers (EOT) on HepA-H cells and HeLa cells compared with trichosanthin (TCS), and to explore the possible mechanism of growth inhibitory effect of EOT on HeLa cells. METHODS: Tumor cells were cultured in vitro, and then microculture tetrzoalium assay (MTT) was used to investigate drugs’ cytotoxic activity. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe ultrastructural changes of cells, and electrophoresis was performed to detect changes of biochemical characteristics of intercellular DNA. RESULTS: TCS and EOT had no obvious effects on HepA-H cells (P > 0.05), but had remarkable effects on HeLa cells in a time and dose dependent manner (r > 0.864, P < 0.05 or P < 0.01). The inhibitory rate of EOT was much higher than that of TCS (P < 0.01). Median inhibitory rates (IC50) of TCS and EOT on HeLa cells were 610.9 mg/L and 115.6 mg/L for 36 h, and 130.7 mg/L and 33.4 mg/L for 48 h respectively. Marked morphologic changes were observed including microvillus disappearance or reduction, cell membrane bledding, cell shrinkage, condensation of chromosomes and apoptotic bodies with complete membranes. Meanwhile, apoptosis of HeLa cells was confirmed by DNA ladder formation on gel electrophoresis. CONCLUSION: TCS and EOT have no obvious effects on HepA-H cells, but have significant inhibitory effects on HeLa cells, indicating that EOT is superior to TCS in anti-tumor activity. PMID:15237441

  7. Investigation of the interactions between silver nanoparticles and Hela cells by scanning electrochemical microscopy.

    PubMed

    Chen, Zhong; Xie, Shubao; Shen, Li; Du, Yu; He, Shali; Li, Qing; Liang, Zhongwei; Meng, Xin; Li, Bo; Xu, Xiaodong; Ma, Hongwei; Huang, Yanyi; Shao, Yuanhua

    2008-09-01

    The interactions between Hela cells and silver nanoparticles (AgNPs) have been studied by scanning electrochemical microscopy (SECM) with both IrCl(6)(2-/3-) and Fe(CN)(6)(3-/4-) as the dual mediators. IrCl(6)(2-), which can be produced in situ and react with AgNPs, is used as the mediator between the AgNPs on the cells and the SECM tip. Another redox couple, Fe(CN)(6)(3-/4-), which has a similar hydrophilicity to IrCl(6)(2-/3-), but cannot react with AgNPs, is also employed for the contrast experiments. The cell array is cultured successfully onto a Petri dish by microcontact printing (muCP) technique, which can provide a basic platform for studying of single cells. The approach curve and line scan are the two methods of SECM employed here to study the Hela cells. The former can provide the information about the interaction between Hela cells and AgNPs whereas the later gives the cell imaging. The permeability of cell membranes and morphology are two main factors which have effects on the feedback mode signals when K(3)Fe(CN)(6) is used as the mediator. The permeability of the cell membranes can be ignored after interaction with high concentration of AgNP solution and the height of the Hela cells is slightly decreased in this process. The kinetic rate constants (k(0)) between IrCl(6)(2-) and Ag on the Hela cell can be evaluated using K(3)IrCl(6) as the mediator, and they are increased with the higher concentrations of the AgNP solutions. The k(0) is changed about 10 times from 0.43 +/- 0.04 x 10(-4) to 1.25 +/- 0.07 x 10(-4) and to 3.93 +/- 1.9 x 10(-4) cm s(-1) corresponding to 0, 1 and 5 mM of AgNO(3) solution. The experimental results demonstrate that the AgNPs can be adsorbed on the cell surface and detected by SECM. Thus, the amount of AgNPs adsorbed on cell membranes and the permeability or morphology changes can be investigated simultaneously using this approach. The dual mediator system and cell array fabricated by muCP technique can provide better

  8. Selective killing effect of oxytetracycline, propafenone and metamizole on A549 or Hela cells

    PubMed Central

    Feng, Guihua

    2013-01-01

    Objective To determine the selective killing effect of oxytetracycline, propafenone and metamizole on A549 or Hela cells. Methods Proliferation assay, lactate dehydrogenase (LDH) assay, apoptosis detecting, flow cytometry and western blot were performed. Results It was found that treatment with propafenone at the concentration of 0.014 g/L or higher for 48 h could induce apoptosis in Hela cells greatly, while it was not observed in oxytetracycline and metamizole at the concentration of 0.20 g/L for 48 h. Oxytetracycline, propafenone and metamizole all displayed evident inhibitory effects on the proliferation of A549 cells. The results of LDH assay demonstrated that the drugs at the test range of concentration did not cause necrosis in the cells. Propafenone could elevate the protein level of P53 effectively (P<0.01). Conclusions Oxytetracycline, propafenone and metamizol (dipyrone) all displayed evident inhibitory effects on the proliferation of A549 cells. Propafenone also displayed evident inhibitory effects on the proliferation of Hela cells. PMID:24385693

  9. Putative mechanisms of antitumor activity of cyano-substituted heteroaryles in HeLa cells.

    PubMed

    Ester, Katja; Supek, Fran; Majsec, Kristina; Marjanović, Marko; Lembo, David; Donalisio, Manuela; Šmuc, Tomislav; Jarak, Ivana; Karminski-Zamola, Grace; Kralj, Marijeta

    2012-04-01

    Six recently synthesized cyano-substituted heteroaryles, which do not bind to DNA but are highly cytotoxic against the human tumor cell line HeLa, were analyzed for their antitumor mechanisms of action (MOA). They did not interfere with the expression of human papillomavirus oncogenes integrated in the HeLa cell genome, but they did induce strong G1 arrest and result in the activation of caspase-3 and apoptosis. A computational analysis was performed that compared the antiproliferative activities of our compounds in 13 different tumor cell lines with those of compounds listed in the National Cancer Institute database. The results indicate that interference with cytoskeletal function and inhibition of mitosis are the likely antitumor MOA. Furthermore, a second in silico investigation revealed that the tumor cells that are sensitive to the cyano-substituted compounds show differences in their expression of locomotion genes compared with that of insensitive cell lines, thus corroborating the involvement of the cytoskeleton. This MOA was also confirmed experimentally: the cyano-substituted heteroaryles disrupted the actin and the tubulin networks in HeLa cells and inhibited cellular migration. However, further analysis indicated that multiple MOA may exist that depend on the position of the cyano-group; while cyano-substituted naphthiophene reduced the expression of cytoskeletal proteins, cyano-substituted thieno-thiophene-carboxanilide inhibited the formation of cellular reactive oxygen species. PMID:21046426

  10. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells.

    PubMed

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu; Wu, Jincai; Fang, Jianguo

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. PMID:22634334

  11. Phospholipid synthesis in HeLa cells exposed to immunoglobulin G and complement

    PubMed Central

    Güttler, Flemming

    1972-01-01

    1. HeLa cells were cultured in the presence of heterologous immunoglobulin G and guinea-pig serum together with [32P]phosphate. 2. Incorporation of [32P]phosphate was significantly stimulated by anti-HeLa immunoglobulin G and complement-sufficient serum compared with immunoglobulin G from unimmunized rabbits and complement. Within 2.5h heat-inactivated guinea-pig serum and anti-HeLa immunoglobulin G stimulated [32P]phosphate incorporation to the same extent as heat-inactivated complement and immunoglobulin G from unimmunized rabbits. 3. Compared with cells exposed to immunoglobulin G from unimmunized rabbits together with complement, anti-HeLa immunoglobulin G with complement increased the phospholipid content of HeLa cells twofold within 5h of incubation. 4. Exposure of HeLa cells to anti-HeLa immunoglobulin G and complement for 5–22h resulted in a twofold increase in the net accumulation of [32P]phosphate in sphingomyelin and phosphatidylcholine and a 50% increase in the net accumulation of [32P]phosphate in phosphatidylethanolamine, compared with cultures exposed to immunoglobulin G from unimmunized rabbits and complement. 5. A transient accumulation of 32P-labelled lysophosphoglycerides in HeLa cells exposed to antibody and complement was detected, confirming previous findings (Güttler & Clausen, 1969b). 6. The stimulation of [32P]phosphate turnover occurred in cells filling up their cytoplasma with vacuoles. This supports the suggestion that the accumulation of phospholipid in these cells may be concerned with the synthesis and function of cytomembranes. PMID:4674125

  12. Coxsackievirus B5 induced apoptosis of HeLa cells: Effects on p53 and SUMO

    SciTech Connect

    Gomes, Rogerio; Guerra-Sa, Renata; Arruda, Eurico

    2010-01-20

    Coxsackievirus B5 (CVB5), a human enterovirus of the family Picornaviridae, is a frequent cause of acute and chronic human diseases. The pathogenesis of enteroviral infections is not completely understood, and the fate of the CVB5-infected cell has a pivotal role in this process. We have investigated the CVB5-induced apoptosis of HeLa cells and found that it happens by the intrinsic pathway by a mechanism dependent on the ubiquitin-proteasome system, associated with nuclear aggregation of p53. Striking redistribution of both SUMO and UBC9 was noted at 4 h post-infection, simultaneously with a reduction in the levels of the ubiquitin-ligase HDM2. Taken together, these results suggest that CVB5 infection of HeLa cells elicit the intrinsic pathway of apoptosis by MDM2 degradation and p53 activation, destabilizing protein sumoylation, by a mechanism that is dependent on a functional ubiquitin-proteasome system.

  13. Alterations in gene promoter methylation and transcript expression induced by cisplatin in comparison to 5-Azacytidine in HeLa and SiHa cervical cancer cell lines.

    PubMed

    Sood, Swati; Srinivasan, Radhika

    2015-06-01

    Despite recent advances in treatment, cervical cancer still remains one of the leading causes of cancer related mortality among women worldwide including India. Chemoradiation treatment is the standard-of-care which involves administration of cisplatin, a radiosensitizer along with radiation. The epigenetic changes induced by cisplatin are not known and so we designed this in vitro experimental study. We evaluated the changes induced by cisplatin administration in gene promoter methylation and the transcript levels of set of 7 genes and compared it to the changes induced by 5-Azacytidine, a known demethylating agent in two cervical cancer cell lines: HeLa (adenocarcinoma derived) and SiHa (squamous cell carcinoma derived) cell lines. Overall, there was a pronounced cytotoxic and growth inhibitory effect of both the drugs alone and in combination for both the cell lines which was dose and time dependent. Cisplatin as well as 5-Azacytidine treatment affected gene promoter methylation status resulting in demethylation and re-expression of the genes under investigation which was more pronounced in case of SiHa cells as compared to HeLa cells. Further, both the drugs acted in synergism as evident from their combination treatment. Therefore, at the cellular level, cisplatin and 5-Azacytidine can induce epigenetic changes in gene promoter methylation with altered expression which can have implications for treatment of cervical cancer. PMID:25772483

  14. Purification of the putative coxsackievirus B receptor from HeLa cells.

    PubMed

    Carson, S D; Chapman, N N; Tracy, S M

    1997-04-17

    We have identified a protein expressed by human and murine cells susceptible to coxsackievirus B3 (CVB3) infection and purified it from HeLa cells. This protein of approximately 45,000 Mr is expressed by HeLa cells and mouse fetal heart fibroblasts (susceptible to infection), and not by C3H murine fibroblasts or the human RD cell line (resistant). The protein was isolated from Triton X-100- deoxycholate lysates of HeLa cells by chromatography on concanavalin A-Sepharose, Affi-gel Blue, Phenyl Sepharose, and PBE94. The CVB3-binding fraction from PBE94 was blotted from SDS-polyacrylamide gel onto PVDF membrane for amino acid sequencing. Approximately 2 pmoles of CVB3-binding protein provided assignments for 26 consecutive residues: LSITTPEEMIEKAKGETAYLPXKFTL. This sequence corresponds neither to decay accelerating factor nor to nucleolin, both of which have previously been identified as CVB3-binding proteins, but does match two entries in GenBank. These data show that we have purified a novel CVB3-binding protein, the characteristics of which suggest the CVB group receptor has been purified. Identification of 26 amino acid residues in the protein and corresponding GenBank enteries will accelerate study of CVB tropism and the diseases caused by these viruses. PMID:9144533

  15. Surface glycosaminoglycans mediate adherence between HeLa cells and Lactobacillus salivarius Lv72

    PubMed Central

    2013-01-01

    Background The adhesion of lactobacilli to the vaginal surface is of paramount importance to develop their probiotic functions. For this reason, the role of HeLa cell surface proteoglycans in the attachment of Lactobacillus salivarius Lv72, a mutualistic strain of vaginal origin, was investigated. Results Incubation of cultures with a variety of glycosaminoglycans (chondroitin sulfate A and C, heparin and heparan sulfate) resulted in marked binding interference. However, no single glycosaminoglycan was able to completely abolish cell binding, the sum of all having an additive effect that suggests cooperation between them and recognition of specific adhesins on the bacterial surface. In contrast, chondroitin sulfate B enhanced cell to cell attachment, showing the relevance of the stereochemistry of the uronic acid and the sulfation pattern on binding. Elimination of the HeLa surface glycosaminoglycans with lyases also resulted in severe adherence impairment. Advantage was taken of the Lactobacillus-glycosaminoglycans interaction to identify an adhesin from the bacterial surface. This protein, identify as a soluble binding protein of an ABC transporter system (OppA) by MALDI-TOF/(MS), was overproduced in Escherichia coli, purified and shown to interfere with L. salivarius Lv72 adhesion to HeLa cells. Conclusions These data suggest that glycosaminoglycans play a fundamental role in attachment of mutualistic bacteria to the epithelium that lines the cavities where the normal microbiota thrives, OppA being a bacterial adhesin involved in the process. PMID:24044741

  16. Hemocyanin from Shrimp Litopenaeus vannamei Has Antiproliferative Effect against HeLa Cell In Vitro

    PubMed Central

    Chen, Chuandao; Liu, Shangjie; Huang, Runqing; Zhong, Mingqi; Wei, Chiju; Zhang, Yueling

    2016-01-01

    Hemocyanin (HMC) has been shown to participate in multiple roles of immune defence. In this study, we investigated the antiproliferative effect and underpinning mechanism of HMC from Litopenaeus vannamei in vitro. Sulforhodamine B (SRB) assay indicated that HMC could dramatically inhibit the growth of HeLa cells, but not 293T cells under the same conditions. Moreover, typical morphological features of apoptosis in HeLa cells including the formation of apoptotic body-like vesicles, chromatin condensation and margination were observed by using 4, 6-diamidino-2- phenylindole dihydrochloride (DAPI) staining and fluorescence analysis. An apoptotic DNA ladder from 180 to 300 bp was also detected. Furthermore, 10 variation proteins associated with apoptosis pathway, viz. G3PDH isoforms 1/2 (G3PDH1/2), aldosereductase, ectodemal dysplasia receptor associated death receptor domain isoform CRA_a (EDARADD), heat shock 60kD protein 1 variant 1 (HSP60), heat shock 70kDa protein 5 precursor (HSP70), heat shock protein 90kDa beta member 1 precursor (HSP90), 14-3-3 protein ζ/δ, Ran and ubiquitin activating enzyme E1(UBE1), were identified from HMC-treated HeLa cells by the proteomic and quantitative real-time RT-PCR strategies. Importantly, the reactive oxygen species (ROS), mitochondrial membrane potential (Δψm) and caspase-9/3 activities were changed significantly in HMC-treated HeLa cells. Together, the data suggests that L. vannamei HMC mediates antiproliferative properties through the apoptosis mechanism involving the mitochondria triggered pathway. PMID:27007573

  17. Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells

    NASA Astrophysics Data System (ADS)

    Dhas, T. Stalin; Kumar, V. Ganesh; Karthick, V.; Govindaraju, K.; Shankara Narayana, T.

    2014-12-01

    In this investigation, biological synthesis of gold nanoparticles (AuNPs) using Sargassum swartzii and its cytotoxicity against human cervical carcinoma (HeLa) cells is reported. The biological synthesis involved the reduction of chloroauric acid led to the formation of AuNPs within 5 min at 60 °C and the formation of AuNPs was confirmed using UV-vis spectrophotometer. The AuNPs were stable; spherical in shape with well-defined dimensions, and the average size of the particle is 35 nm. A zeta potential value of -27.6 mV revealed synthesized AuNPs were highly stable. The synthesized AuNPs exhibited a dose-dependent cytotoxicity against human cervical carcinoma (HeLa) cells. Furthermore, induction of apoptosis was measured by DAPI (4‧,6-Diamidino-2-phenylindole dihydrochloride) staining.

  18. Laser stimulation can activate autophagy in HeLa cells

    SciTech Connect

    Wang, Yisen; Hu, Minglie; Wang, Chingyue; Lan, Bei; Cao, Youjia; He, Hao

    2014-10-27

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca{sup 2+} dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  19. Laser stimulation can activate autophagy in HeLa cells

    NASA Astrophysics Data System (ADS)

    Wang, Yisen; Lan, Bei; He, Hao; Hu, Minglie; Cao, Youjia; Wang, Chingyue

    2014-10-01

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca2+ dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  20. Effects of depsidones from Hypogymnia physodes on HeLa cell viability and growth.

    PubMed

    Stojanović, I Z; Najman, S; Jovanović, O; Petrović, G; Najdanović, J; Vasiljević, P; Smelcerović, A

    2014-01-01

    The anti-proliferative activitiy of Hypogymnia physodes methanol extracts (ME) and its main constituents, physodalic acid (P1), physodic acid (P2), and 3-hydroxy physodic acid (P3), was tested on human cancer HeLa cell lines. Three lichen depsidones, P1, P2 and P3, were isolated from H. physodes ME using column chromatography and their structures were determined by UV, ESI TOF MS, 1H and 13C NMR. The content of P1, P2 and P3 in ME was determined using reversed-phase highperformance liquid chromatography with photodiode array detection. P1-3 represented even 70 % of the studied extract. The HeLa cells were incubated during 24 and 72 h in the presence of ME and depsidones P1, P2 and P3, at concentrations of 10-1000 μg/ml. Compounds P2 and P3 showed higher activity than compound P1. Half maximal inhibitory concentrations (IC50, μg/ml) of P1, P2, P3 and ME for 24-h incubation were 964, 171, 97 and 254 μg/ml, respectively, while for 72-h incubation they were 283, 66, 63 and 68 μg/ml. As far as we know, this is the first report on the effect of H. physodes ME and their depsidones on HeLa cells. PMID:24785112

  1. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    SciTech Connect

    Sun, Bin; Cai, Yingyue; Li, Yongshu; Li, Jingjing; Liu, Kaiyu; Li, Yi; Yang, Yongbo

    2013-05-25

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization.

  2. [Gastric signet ring cell adenocarcinoma: A distinct entity].

    PubMed

    Tabouret, Tessa; Dhooge, Marion; Rouquette, Alexandre; Brezault, Catherine; Beuvon, Frédéric; Chaussade, Stanislas; Coriat, Romain

    2014-04-01

    Gastric signet ring cell carcinoma (GSRC) is a distinct entity. Their incidence is increasing. The pathologist plays a central role in the identification of this entity. Diagnosis is based on an adenocarcinoma containing a majority of signet ring cells (above 50 %). The prognosis of GSRC is the same as gastric adenocarcinoma while GSRC appeared more aggressive. Signet ring cells present a low sensitivity to chemotherapy. This review aimed to discuss the histological, the prognostic and the therapeutic aspect of this entity. PMID:24440764

  3. Roscovitine-treated HeLa cells finalize autophagy later than apoptosis by downregulating Bcl‑2.

    PubMed

    Coker-Gurkan, Ajda; Arisan, Elif Damla; Obakan, Pinar; Ozfiliz, Pelin; Kose, Betsi; Bickici, Guven; Palavan-Unsal, Narcin

    2015-03-01

    The cell cycle is tightly regulated by the family of cyclin-dependent kinases (CDKs). CDKs act as regulatory factors on serine and threonine residues by phosphorylating their substrates and cyclins. CDK‑targeting drugs have previously demonstrated promising effects as cancer therapeutics both in vitro and in vivo. Roscovitine, a purine‑derivative and specific CDK inhibitor, has been demonstrated to arrest the cell cycle and induce apoptosis in a number of different cancer cell lines, including HeLa cervical cancer cells. In the present study, roscovitine was able to decrease both the cell viability and cell survival as well as induce apoptosis in a dose‑dependent manner in HeLa cells by modulating the mitochondrial membrane potential. The decrease of anti‑apoptotic B-cell lymphoma 2 (Bcl‑2) and Bcl-2 extra large protein expression was accompanied by the increase in pro‑apoptotic Bcl-2-associated X protein and P53-upregulated modulator of apoptosis expression. The marked decrease in Bcl‑2 following exposure to roscovitine (20 µM) for 48 h prompted us to determine the autophagic regulation. The outcome revealed that roscovitine triggered Beclin‑1 downregulation and microtubule-associated light chain 3 cleavage starting from 12 h of incubation. Another biomarker of autophagy, p62, a crucial protein for autophagic vacuole formation, was diminished following 48 h. In addition, monodansyl cadaverin staining of autophagosomes also confirmed the autophagic regulation by roscovitine treatment. The expression levels of different Bcl‑2 family members determined whether apoptosis or autophagy were induced following incubation with roscovitine for different time periods. Downregulation of pro‑apoptotic Bcl‑2 family members indicated induction of apoptosis, while the downregulation of anti‑apoptotic Bcl‑2 family members rapidly induced autophagosome formation in HeLa cells. PMID:25378060

  4. Monoolein-based cubosomes affect lipid profile in HeLa cells.

    PubMed

    Rosa, Antonella; Murgia, Sergio; Putzu, Danilo; Meli, Valeria; Falchi, Angela Maria

    2015-10-01

    Monoolein-based cubosomes are promising drug delivery nanocarriers for theranostic purposes. Nevertheless, a small amount of research has been undertaken to investigate the impact of these biocompatible nanoparticles on cell lipid profile. The purpose of the present investigation was to explore changes in lipid components occurring in human carcinoma HeLa cells when exposed to short-term treatments (2 and 4h) with monoolein-based cubosomes stabilized by Pluronic F108 (MO/PF108). A combination of TLC and reversed-phase HPLC with DAD and ELSD detection was performed to analyze cell total fatty acid profile and levels of phospholipids, free cholesterol, triacylglycerols, and cholesteryl esters. The treatments with MO/PF108 cubosomes, at non-cytotoxic concentration (83μg/mL of MO), affected HeLa fatty acid profile, and a significant increase in the level of oleic acid 18:1 n-9 was observed in treated cells after lipid component saponification. Nanoparticle uptake modulated HeLa cell lipid composition, inducing a remarkable incorporation of oleic acid in the phospholipid and triacylglycerol fractions, whereas no changes were observed in the cellular levels of free cholesterol and cholesteryl oleate. Moreover, cell-based fluorescent measurements of intracellular membranes and lipid droplet content were assessed on cubosome-treated cells with an alternative technique using Nile red staining. A significant increase in the amount of the intracellular membranes and mostly in the cytoplasmic lipid droplets was detected, confirming that monoolein-based cubosome treatment influences the synthesis of intracellular membranes and accumulation of lipid droplets. PMID:26341749

  5. Gallic acid induces mitotic catastrophe and inhibits centrosomal clustering in HeLa cells.

    PubMed

    Tan, Si; Guan, Xin; Grün, Christoph; Zhou, Zhiqin; Schepers, Ute; Nick, Peter

    2015-12-25

    Cancer cells divide rapidly, providing medical targets for anticancer agents. The polyphenolic gallic acid (GA) is known to be toxic for certain cancer cells. However, the cellular mode of action has not been elucidated. Therefore, the current study addressed a potential effect of GA on the mitosis of cancer cells. GA inhibited viability of HeLa cells in a dose-dependent and time-dependent manner. We could show, using fluorescence-activated cell sorting (FACS), that this inhibition was accompanied by elevated frequency of cells arrested at the G2/M transition. This cell-cycle arrest was accompanied by mitotic catastrophe, and formation of cells with multiple nuclei. These aberrations were preceded by impaired centrosomal clustering. We arrive at a model of action, where GA inhibits the progression of the cell cycle at the G2/M phase by impairing centrosomal clustering which will stimulate mitotic catastrophe. Thus, GA has potential as compound against cervical cancer. PMID:26368671

  6. Preferential killing of glucose-depleted HeLa cells by menadione and hyperthermia.

    PubMed

    Kim, J H; Kim, S H; Dutta, P; Pinto, J

    1992-01-01

    Energy deprivation of cancer cells increases sensitivity to killing by hyperthermia. Recent cell culture studies suggest that certain naphthoquinones, especially menadione (vitamin K3), have anti-tumour activity by interfering with the energy metabolism of cells, resulting in the inhibition of aerobic glycolysis. We therefore studied the cytotoxic effects of menadione in HeLa cells in combination with hyperthermia. The cell culture data show that the cytotoxicity is markedly increased in cells deprived of glucose in the medium at 37 degrees C after exposure to menadione. When cells were exposed to menadione (20-40 microM) and hyperthermia (41-42 degrees C), there was a dramatic potentiation of heat-induced cytotoxicity in cells deprived of glucose in the medium. These data suggest that glucose-deficient cancer cells could be selectively killed by the combined treatment of menadione and mild hyperthermia, both of which can be readily achievable in humans. PMID:1545160

  7. [ENTRY OF FACULTATIVE PATHOGEN SERRATIA GRIMESII INTO HELA CELLS. ELECTRON MICROSCOPIC ANALYSIS].

    PubMed

    Bozhokina, E S; Kever, L V; Komissarchik, Ya Yu; Khaitlina, S Yu; Efremova, T N

    2015-01-01

    Facultative pathogens Serratia grimesii are able to invade eukaryotic cells where they have been found in vacuoles and free in the cytoplasm (Efremova et al., 2001; Bozhokina et al., 2011). However, efficiency of this invasion is low, and the mechanisms of the invasion related to the initial steps of the process are not known. In the present study, we have increased the invasion efficiency by incubation of HeLa cells with N-acetylcysteine (NAC) preceding the infection. In the NAC-pretreated cells, two modes of S. grimesii to enter HeLa cells were observed. In the most cases, the penetration of S. grimesii into the cell was consistent with the "zipper mechanism", involving specific interaction of bacterial invasin with a host cell surface receptor. However, in some cases, bacteria were trapped by membrane ruffling probably produced by injected bacterial proteins that trigger the bacterial uptake process, as described in the "trigger mechanism". Further elucidation of bacterial and cellular factors involved in the bacteria-host cell interaction should clarify whether two different mechanisms or a predominant one operate during S. grimesii invasion. PMID:26863770

  8. Identification of CELF1 RNA targets by CLIP-seq in human HeLa cells.

    PubMed

    Le Tonquèze, Olivier; Gschloessl, Bernhard; Legagneux, Vincent; Paillard, Luc; Audic, Yann

    2016-06-01

    The specific interactions between RNA-binding proteins and their target RNAs are an essential level to control gene expression. By combining ultra-violet cross-linking and immunoprecipitation (CLIP) and massive SoliD sequencing we identified the RNAs bound by the RNA-binding protein CELF1, in human HeLa cells. The CELF1 binding sites deduced from the sequence data allow characterizing specific features of CELF1-RNA association. We present therefore the first map of CELF1 binding sites in human cells. PMID:27222809

  9. Effect of Poliovirus on Deoxyribonucleic Acid Synthesis in HeLa Cells

    PubMed Central

    Ackermann, W. W.; Cox, D. C.; Kurtz, H.; Powers, C. D.; Davies, S. J.

    1966-01-01

    Ackermann, W. W. (University of Michigan, Ann Arbor), D. C. Cox, H. Kurtz, C. D. Powers, and S. J. Davies. Effect of poliovirus on deoxyribonucleic acid synthesis in HeLa cells. J. Bacteriol. 91:1943–1952. 1966.—Both poliovirus and arginine stimulated deoxyribonucleic acid (DNA) synthesis in cultures of HeLa cells which were preconditioned by incubation in a medium deficient in arginine. However, the number of cells producing DNA was unaffected. DNA synthesis in such preconditioned cells was 10 to 20% of the maximal value obtained with a full complement of amino acids. Inhibition of DNA synthesis was produced in these cultures either by increasing the multiplicity of exposure above 40 plaque-forming units of virus per cell or by increasing the concentration of the deficient amino acid at the time of virus addition. Inhibition of DNA synthesis resulted from a reduction in the fraction of cells producing DNA. The concentration of arginine required for viral inhibition of DNA synthesis is greater than that for viral multiplication. PMID:4287076

  10. Investigation of role of aspartame on apoptosis process in HeLa cells -->.

    PubMed

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Mistry, Bhupendra; Chandrasekaran, Murugesan; Noorzai, Rafi; Kim, Doo Hwan

    2016-07-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. The study reports that consumption of aspartame containing product could lead to cancer. However, the effect of aspartame on apoptosis process in cancer is not yet understood clearly. HeLa cells were exposed to different concentrations (0.01-0.05 mg/ml) of aspartame for 48 h. Cytotoxicity of aspartame on cancer cells was determined by SRB assay. The result indicates no significant changes on cell viability. Aspartame suppresses apoptosis process in cancer cells by down-regulation of mRNA expression of tumor suppressor gene p53, and pro-apoptotic gene bax. It up-regulates anti-apoptotic gene bcl-2 mRNA expression. In addition, Ki 67 and PCNA mRNA, and protein expressions were determined. Taking all these together, we conclude that aspartame may be a potent substance to slow-down the apoptosis process in HeLa cells. Further works are ongoing to understand the biochemical and molecular mechanism of aspartame in cancer cells. PMID:27298583

  11. Evaluation of cytotoxicity of Moringa oleifera Lam. callus and leaf extracts on Hela cells

    PubMed Central

    Jafarain, Abbas; Asghari, Gholamreza; Ghassami, Erfaneh

    2014-01-01

    Background: There are considerable attempts worldwide on herbal and traditional compounds to validate their use as anti-cancer drugs. Plants from Moringaceae family including Moringa oleifera possess several activities such as antitumor effect on tumor cell lines. In this study we sought to determine if callus and leaf extracts of M. oleifera possess any cytotoxicity. Materials and Methods: Ethanol-water (70-30) extracts of callus and leaf of M. oleifera were prepared by maceration method. The amount of phenolic compounds of the extracts was determined by Folin Ciocalteu method. The cytotoxicity of the extracts against Hela tumor cells was carried out using MTT assay. Briefly, cells were seeded in microplates and different concentrations of the extract were added. Cells were incubated for 48 h and their viability was evaluated by addition of tetrazolium salt solution. After 3 h medium was aspirated, dimethyl sulfoxide was added and absorbance was determined at 540 nm with an ELISA plate reader. Cytotoxicity was considered when more than 50% reduction on cell survival was observed. Results: Callus and leaf extracts of M. oleifera significantly decreased the viability of Hela cells in a concentration-dependent manner. However, leaf extract of M. oleifera were more potent than that of callus extract. Conclusion: As the content of phenolic compounds of leaf extract was higher than that of callus extract, it can be concluded that phenolic compounds are involved in the cytotoxicity of M. oleifera. PMID:25337524

  12. Photodynamic Effect of Ni Nanotubes on an HeLa Cell Line.

    PubMed

    Hammad Aziz, Muhammad; Fakhar-E-Alam, M; Fatima, Mahvish; Shaheen, Fozia; Iqbal, Seemab; Atif, M; Talha, Muhammad; Mansoor Ali, Syed; Afzal, Muhammad; Majid, Abdul; Shelih Al Harbi, Thamir; Ismail, Muhammad; Wang, Zhiming M; AlSalhi, M S; Alahmed, Z A

    2016-01-01

    Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs) were tested in an in vitro cervical cancer model (HeLa cell line) to optimize the parameters of photodynamic therapy (PDT) for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM), an energy dispersive X-ray analysis (EDAX) and a vibrating sample magnetometer (VSM) analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA); this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA) and by detection of intracellular reactive oxygen species (ROS) production. Furthermore, 10-200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65-68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice. PMID:26990435

  13. Photodynamic Effect of Ni Nanotubes on an HeLa Cell Line

    PubMed Central

    Hammad Aziz, Muhammad; Fakhar-e-Alam, M.; Fatima, Mahvish; Shaheen, Fozia; Iqbal, Seemab; Atif, M.; Talha, Muhammad; Mansoor Ali, Syed; Afzal, Muhammad; Majid, Abdul; Shelih Al.Harbi, Thamir; Ismail, Muhammad; Wang, Zhiming M.; AlSalhi, M. S.; Alahmed, Z. A.

    2016-01-01

    Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs) were tested in an in vitro cervical cancer model (HeLa cell line) to optimize the parameters of photodynamic therapy (PDT) for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM), an energy dispersive X-ray analysis (EDAX) and a vibrating sample magnetometer (VSM) analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA); this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA) and by detection of intracellular reactive oxygen species (ROS) production. Furthermore, 10–200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65–68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice. PMID:26990435

  14. αTAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells

    PubMed Central

    Chien, J-Y; Tsen, S-D; Chien, C-C; Liu, H-W; Tung, C-Y; Lin, C-H

    2016-01-01

    α-Tubulin acetyltransferase 1 (αTAT1) controls reversible acetylation on Lys40 of α-tubulin and modulates multiple cellular functions. αTAT1 depletion induced morphological defects of touch receptor neurons in Caenorhabditis elegans and impaired cell adhesion and contact inhibition in mouse embryonic fibroblasts, however, no morphological or proliferation defects in human RPE-hTERT cells were found after αTAT1-specific siRNA treatment. Here, we compared the effect of three αTAT1-specific shRNAs on proliferation and morphology in two human cell lines, HeLa and A549. The more efficient two shRNAs induced mitotic catastrophe in both cell lines and the most efficient one also decreased F-actin and focal adhesions. Further analysis revealed that αTAT1 downregulation increased γ-H2AX, but not other DNA damage markers p-CHK1 and p-CHK2, along with marginal change in microtubule outgrowth speed and inter-kinetochore distance. Overexpression of αTAT1 could not precisely mimic the distribution and concentration of endogenous acetylated α-tubulin (Ac-Tu), although no overt phenotype change was observed, meanwhile, this could not completely prevent αTAT1 downregulation-induced deficiencies. We therefore conclude that efficient αTAT1 downregulation could impair actin architecture and induce mitotic catastrophe in HeLa and A549 cells through mechanisms partly independent of Ac-Tu. PMID:27551500

  15. Photoirradiation study of gold nanospheres and rods in Vero and Hela cell lines

    NASA Astrophysics Data System (ADS)

    Gananathan, Poorani; Aruna, Prakasarao; Ganesan, Singaravelu; Elanchezhiyan, Manickan

    2014-03-01

    Photoirradiation effect of gold nanospheres in conjucation with green light and rods in conjugation with red light corresponds to their absorption wavelength range found to be appreciable. In this present work concentration of nanomaterial and light dose were optimized. Gold nanospheres were synthesized by reduction technique using Sodium Borohydrate as reducing agent and Trisodium Citrate as capping agent. Au nanorods having 680-900nm absorption were synthesized using reduction techniques with CTAB and BDAC polymers. From UV-Vis absorption and Transmission Electron Microscopy the size of nanoparticles were confirmed. 30nm Gold nanospheres and green light source of 530nm wavelength with power 30mW were applied to Vero and Hela cell lines shows higher toxicity for Hela cells. Nanorods were applied and irradiated with 680nm wavelength light source with light intensity 45mW. Post irradiation effect for 24hrs, 48hrs confirms cell proliferation in normal rate in viable cells. The morphological changes in irradiated spot leads to apoptotoic cell death was confirmed with microscopic imaging. The LD50 value was also calculated.

  16. αTAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells.

    PubMed

    Chien, J-Y; Tsen, S-D; Chien, C-C; Liu, H-W; Tung, C-Y; Lin, C-H

    2016-01-01

    α-Tubulin acetyltransferase 1 (αTAT1) controls reversible acetylation on Lys40 of α-tubulin and modulates multiple cellular functions. αTAT1 depletion induced morphological defects of touch receptor neurons in Caenorhabditis elegans and impaired cell adhesion and contact inhibition in mouse embryonic fibroblasts, however, no morphological or proliferation defects in human RPE-hTERT cells were found after αTAT1-specific siRNA treatment. Here, we compared the effect of three αTAT1-specific shRNAs on proliferation and morphology in two human cell lines, HeLa and A549. The more efficient two shRNAs induced mitotic catastrophe in both cell lines and the most efficient one also decreased F-actin and focal adhesions. Further analysis revealed that αTAT1 downregulation increased γ-H2AX, but not other DNA damage markers p-CHK1 and p-CHK2, along with marginal change in microtubule outgrowth speed and inter-kinetochore distance. Overexpression of αTAT1 could not precisely mimic the distribution and concentration of endogenous acetylated α-tubulin (Ac-Tu), although no overt phenotype change was observed, meanwhile, this could not completely prevent αTAT1 downregulation-induced deficiencies. We therefore conclude that efficient αTAT1 downregulation could impair actin architecture and induce mitotic catastrophe in HeLa and A549 cells through mechanisms partly independent of Ac-Tu. PMID:27551500

  17. Metabolism of HeLa cells revealed through autofluorescence lifetime upon infection with enterohemorrhagic Escherichia coli

    NASA Astrophysics Data System (ADS)

    Buryakina, Tatyana Yu.; Su, Pin-Tzu; Syu, Wan-Jr; Allen Chang, C.; Fan, Hsiu-Fang; Kao, Fu-Jen

    2012-10-01

    Fluorescence lifetime imaging microscopy (FLIM) is a sensitive technique in monitoring functional and conformational states of nicotinamide adenine dinucleotide reduced (NADH) and flavin adenine dinucleotide (FAD),main compounds participating in oxidative phosphorylation in cells. In this study, we have applied FLIM to characterize the metabolic changes in HeLa cells upon bacterial infection and made comparison with the results from the cells treated with staurosporine (STS), a well-known apoptosis inducer. The evolving of NADH's average autofluorescence lifetime during the 3 h after infection with enterohemorragic Escherichia coli (EHEC) or STS treatment has been observed. The ratio of the short and the long lifetime components' relative contributions of NADH increases with time, a fact indicating cellular metabolic activity, such as a decrease of oxidative phosphorylation over the course of infection, while opposite dynamics is observed in FAD. Being associated with mitochondria, FAD lifetimes and redox ratio could indicate heterogeneous mitochondrial function, microenvironment with bacterial infection, and further pathway to cell death. The redox ratios for both EHEC-infected and STS-treated HeLa cells have been observed and these observations also indicate possible apoptosis induced by bacterial infection.

  18. In vitro cytotoxicity of berberine against HeLa and L1210 cancer cell lines.

    PubMed

    Kettmann, V; Kosfálová, D; Jantová, S; Cernáková, M; Drímal, J

    2004-07-01

    Previous studies on anti-cancer activity of protoberberine alkaloids against a variety of cancer cell lines were extended to human uterus HeLa nad murine leukemia L1210 cell lines. Cytotoxicity was measured using in vitro techniques and cell morphology changes were examined by light microscopy in both cytostatic and cytocidal concentration ranges. The IC50 was found to be less than 4 microg/ml, a limit put forward by NCI for classification of the compound as a potential anti-cancer drug. The microscopy examination indicated that at cytocidal concentrations the HeLa and L120 cells died apoptotically. The comparative analysis revealed that berberine belongs to the camptothecin family of drugs characterized by the ability to induce DNA topoisomerase poisoning and hence apoptotic cell death. Although the cytotoxic potency of berberine was found to be several orders of magnitude lower compared to camptothecin, its significance may increase in future in view of the lack of unwanted side effects characteristic for camptothecin compounds currently in clinical use for treatment of cancer. PMID:15296093

  19. Clear cell adenocarcinoma of the bladder with intravesical cervical invasion.

    PubMed

    Marchalik, Daniel; Krishnan, Jayashree; Verghese, Mohan; Venkatesan, Krishnan

    2015-01-01

    A 26-year-old woman with a complicated urological and gynecological history with uterine didelphys with bilaterally inserting intravesical cervical oses presented with cyclical haematuria. Work up revealed a mass in the ectopic cervical os and adjacent bladder wall. Subsequent resection confirmed a clear cell adenocarcinoma of urological origin with invasion into neighbouring os. PMID:26109625

  20. Toona Sinensis and Moschus Decoction Induced Cell Cycle Arrest in Human Cervical Carcinoma HeLa Cells

    PubMed Central

    Zhen, Hong; Zhang, Yifei; Fang, Zhijia; Huang, Zhiwei; Shi, Ping

    2014-01-01

    Toona sinensis and Moschus are two herb materials used in traditional Chinese medicine, most commonly for their various biological activities. In this study, we investigated the inhibitory effect of three decoctions from Toona sinensis, Moschus, and Toona sinensis and Moschus in combination on cell growth in several normal and cancer cell lines by cell viability assay. The results showed that the combined decoction exhibited the strongest anticancer effects, compared to two single decoctions. The observations indicated that the combined decoction did not induce cell apoptosis and autophagy in HeLa cells by fluorescence microscopy. Flow cytometry analysis revealed that the combined decoction arrested HeLa cell cycle progression in S-phase. After the decoction incubation, among 41 cell cycle related genes, eight were reduced, while five were increased in mRNA levels by real-time PCR assay. Western blotting showed that there were no apparent changes of protein levels of Cyclin E1, while P27 expression significantly declined and the levels of CDC7 and CDK7 obviously increased. The data suggest that the RB pathway is partially responsible for the decoction-induced S-phase cell cycle arrest in HeLa cells. Therefore, the combined decoction may have therapeutic potential as an anticancer formula for certain cancers. PMID:24511319

  1. Temporal proteomic profiling of Chlamydia trachomatis-infected HeLa-229 human cervical epithelial cells.

    PubMed

    Tan, Grace Min Yi; Lim, Hui Jing; Yeow, Tee Cian; Movahed, Elaheh; Looi, Chung Yeng; Gupta, Rishein; Arulanandam, Bernard P; Abu Bakar, Sazaly; Sabet, Negar Shafiei; Chang, Li-Yen; Wong, Won Fen

    2016-05-01

    Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography-tandem mass spectrometry (LC-MS(3) ) analysis. C. trachomatis (serovar D, MOI 1)-infected HeLa-229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis-infected HeLa-229 cells indicate complex host-pathogen interactions at early phase of chlamydial infection. PMID:27134121

  2. Exposure to TiO2 nanoparticles increases Staphylococcusaureusinfection of HeLa cells

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wei, Ming-Tzo; Walker, Stephen. G.; Wang, Hong Zhan; Gondon, Chris; Brink, Peter; Guterman, Shoshana; Zawacki, Emma; Applebaum, Eliana; Rafailovich, Miriam; Ou-Yang, H. Daniel; Mironava, Tatsiana

    TiO2 is one of the most common nanoparticles in industry from food additives to energy generation. Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles largely increased their risk of bacterial invasion. HeLa cells cultured with low dosage rutile and anatase TiO2 nanoparticles (0.1 mg/ml) for 24 hrs prior to exposure to bacteria had 350% and 250% respectively more bacteria infected per cell. The increase was attributed to increased LDH leakage, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40% fewer bacteria, further increasing the risk of infection. In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection.

  3. Structures of nuclear phosphoproteins characteristic of rapidly growing HeLa cells

    SciTech Connect

    Arezzo, F.; Choi, Y.C.

    1986-05-01

    To study characteristic events of phosphorylation in cell growth, phosphoproteins were labeled with (/sup 32/P)-phosphate at mid-logarithmic phase of HeLa cell proliferation. Among a number of nuclear phosphoproteins isolated, three characteristic classes of most highly labeled phosphoproteins were identified by DEAE-column chromatography (0.2-0.25 M NaCl gradient, pH 6.0), followed by 7.5% SDS polyacrylamide gel electrophoresis. Chemical characterization of their structures showed that they contained three different forms of post-translational modifications: Class I with phosphoserine, Class II with phosphoserine and oligonulceotides (5-10 nucleotides long), and Class III with phosphoserine, 5'-GMP and poly(ADP-ribose). Class I is represented by nucleolar C-23. Class II is represented by nucleolar 125 kDa and nucleoplasmic 50 kDa with GC rich sequences (G = 30%, C = 40%) and 5'-linking pCp. Class III is represented by nucleoplasmic poly(ADP-ribose) proteins (18 different species, MW ranges 30 kDa-200 kDa) with branched poly(ADP-ribose) longer than tRNA. When HeLa cells were labeled at non-mid-logarithmic phase, labeling of these classes were 4 fold less efficient, indicating their functional importance in cell proliferation.

  4. Hyperthermia Differently Affects Connexin43 Expression and Gap Junction Permeability in Skeletal Myoblasts and HeLa Cells

    PubMed Central

    Antanavičiūtė, Ieva; Mildažienė, Vida; Stankevičius, Edgaras; Herdegen, Thomas; Skeberdis, Vytenis Arvydas

    2014-01-01

    Stress kinases can be activated by hyperthermia and modify the expression level and properties of membranous and intercellular channels. We examined the role of c-Jun NH2-terminal kinase (JNK) in hyperthermia-induced changes of connexin43 (Cx43) expression and permeability of Cx43 gap junctions (GJs) in the rabbit skeletal myoblasts (SkMs) and Cx43-EGFP transfected HeLa cells. Hyperthermia (42°C for 6 h) enhanced the activity of JNK and its target, the transcription factor c-Jun, in both SkMs and HeLa cells. In SkMs, hyperthermia caused a 3.2-fold increase in the total Cx43 protein level and enhanced the efficacy of GJ intercellular communication (GJIC). In striking contrast, hyperthermia reduced the total amount of Cx43 protein, the number of Cx43 channels in GJ plaques, the density of hemichannels in the cell membranes, and the efficiency of GJIC in HeLa cells. Both in SkMs and HeLa cells, these changes could be prevented by XG-102, a JNK inhibitor. In HeLa cells, the changes in Cx43 expression and GJIC under hyperthermic conditions were accompanied by JNK-dependent disorganization of actin cytoskeleton stress fibers while in SkMs, the actin cytoskeleton remained intact. These findings provide an attractive model to identify the regulatory players within signalosomes, which determine the cell-dependent outcomes of hyperthermia. PMID:25143668

  5. Modification of some biological properties of HeLa cells containing adeno-associated virus DNA integrated into chromosome 17.

    PubMed Central

    Walz, C; Schlehofer, J R

    1992-01-01

    Parvoviruses are known to interfere with cellular transformation and carcinogenesis. Since infecting adeno-associated virus (AAV) frequently integrates its DNA into the cellular genome, we analyzed whether this integration influences the transformed phenotype of the human tumor cell line HeLa. Analysis of three independent HeLa cell clones with integrated AAV DNA (HA-3x, HA-16, and HA-28) revealed the following phenotypic changes of these cells: (i) reduced growth rate, (ii) increased serum requirement, (iii) reduced capacity for colony formation in soft agar, (iv) reduced cloning efficiency on plastic, (v) elevated sensitivity to genotoxic agents (N-methyl-N'-nitro-N-nitrosoguanidine, 7,12-dimethylbenz[a]anthracene, human tumor necrosis factor alpha, UV irradiation [256 nm], and heat [42 degrees C]), and (vi) reduced sensitivity to the cytolytic effect of parvovirus H-1. Reduced growth rate and enhanced sensitivity to gamma irradiation were also observed in vivo when tumors from AAV DNA-containing HeLa cells were transplanted into nude mice. This alteration of the biological properties of HeLa cells was independent of the number of AAV genomes integrated, the physical structure of integrated AAV DNA, and the transcription of AAV genes. Integration of AAV DNA was found to occur preferentially on the long arm of chromosome 17 in the three HeLa cell clones analyzed. These findings demonstrate that genomic integration of AAV DNA can alter the biological properties of human tumor cells. Images PMID:1313913

  6. Role of Endonuclease G in Exogenous DNA Stability in HeLa Cells.

    PubMed

    Misic, V; El-Mogy, M; Haj-Ahmad, Y

    2016-02-01

    Endonuclease G (EndoG) is a well-conserved mitochondrial-nuclear nuclease with dual lethal and vital roles in the cell. The aim of our study was to examine whether EndoG exerts its nuclease activity on exogenous DNA substrates such as plasmid DNA (pDNA), considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four-day time course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus, targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances, it may nonspecifically cleave intracellular DNA regardless of its origin. These findings make it unlikely that targeting of EndoG is a viable strategy for improving the duration and level of transgene expression from nonviral DNA vectors in gene therapy efforts. PMID:27260396

  7. Activation of poly(ADP-ribose) polymerase by sulfur mustard in HeLa cell cultures

    SciTech Connect

    Clark, O.E.; Smith, W.J.

    1993-05-13

    Poly(ADP-ribose) polymerase (PADPRP) E.C.2.4.2.30 has been proposed to play a key role in the NAD+ depletion following alkylation of DNA in sulfur mustard (HD) exposures. Papirmeister et al. (Fundam Appl Toxicol 5:Sl34, 1985) hypothesized that activation of PADPRP was central to the subsequent depletion of NAD+ and activation of proteolytic enzymes leading to vesication. NAD+ depletion following HD exposure has been previously documented and the results have been used to infer the effect of HD exposure on PADPRP. The present study was undertaken to demonstrate the direct effect of HD on PADPRP activity. HeLa cells culture were used as the model system. At 10 microns HD PADPRP activity was increased above the levels of controls in the first hour. The activity peaked at 4 hrs and by 6 hrs had returned to control levels. The 24-hour level of PADPRP activity was again elevated above the controls. The 100 microns HD exposures had maximal enzymatic response in HeLa cells within the first hour. The level had decreased 40% from the maximum by the second hour reaching a plateau at 30% of the maximum response after 4 hrs. Cells exposed to 100 microns HD showed enzyme levels at or below those seen with the 10 microns dose after 24 hours. The doses of HD used did not decrease viability as measured by trypan blue dye exclusion within 24 hr.

  8. Loss of Selenium-Binding Protein 1 Decreases Sensitivity to Clastogens and Intracellular Selenium Content in HeLa Cells.

    PubMed

    Zhao, Changhui; Zeng, Huawei; Wu, Ryan T Y; Cheng, Wen-Hsing

    2016-01-01

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesize that SBP1 sequesters cellular selenium and sensitizes cancer cells to DNA-damaging agents. To test this hypothesis, we knocked down SBP1 expression in HeLa cervical cancer cells by employing a short hairpin RNA (shRNA) approach. Reduced sensitivity to hydrogen peroxide, paraquat and camptothecin, reactive oxygen species content, and intracellular retention of selenium after selenomethionine treatment were observed in SBP1 shRNA HeLa cells. Results from Western analyses showed that treatment of HeLa cells with selenomethionine resulted in increased SBP1 protein expression in a dose-dependent manner. Knockdown of SBP1 rendered HeLa cells increased expression of glutathione peroxidase-1 but not glutathione peroxidase-4 protein levels and accelerated migration from a wound. Altogether, SBP1 retains supplemental selenium and sensitizes HeLa cancer cells to clastogens, suggesting a new cancer treatment strategy by sequestering selenium through SBP1. PMID:27404728

  9. Loss of Selenium-Binding Protein 1 Decreases Sensitivity to Clastogens and Intracellular Selenium Content in HeLa Cells

    PubMed Central

    Zhao, Changhui; Zeng, Huawei; Wu, Ryan T. Y.; Cheng, Wen-Hsing

    2016-01-01

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesize that SBP1 sequesters cellular selenium and sensitizes cancer cells to DNA-damaging agents. To test this hypothesis, we knocked down SBP1 expression in HeLa cervical cancer cells by employing a short hairpin RNA (shRNA) approach. Reduced sensitivity to hydrogen peroxide, paraquat and camptothecin, reactive oxygen species content, and intracellular retention of selenium after selenomethionine treatment were observed in SBP1 shRNA HeLa cells. Results from Western analyses showed that treatment of HeLa cells with selenomethionine resulted in increased SBP1 protein expression in a dose-dependent manner. Knockdown of SBP1 rendered HeLa cells increased expression of glutathione peroxidase-1 but not glutathione peroxidase-4 protein levels and accelerated migration from a wound. Altogether, SBP1 retains supplemental selenium and sensitizes HeLa cancer cells to clastogens, suggesting a new cancer treatment strategy by sequestering selenium through SBP1. PMID:27404728

  10. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    PubMed

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8. PMID:27497983

  11. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells

    NASA Astrophysics Data System (ADS)

    Yang, Linxiao; Shang, Li; Nienhaus, G. Ulrich

    2013-01-01

    We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ~700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded from the nucleus even after 24 h.We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ~700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded

  12. Induction of unscheduled DNA synthesis in HeLa cells by allylic compounds.

    PubMed

    Schiffmann, D; Eder, E; Neudecker, T; Henschler, D

    1983-10-01

    Thirteen allylic compounds, mostly with close structural relationship, were tested for their ability to induce unscheduled DNA synthesis (UDS) in HeLa cells and mutations in the Ames test; 11 induced UDS in dose dependence. Allyl isothiocyanate was negative in UDS (borderline in the Ames test) and acrolein (positive in the Ames test) proved toxic to HeLa cells, therefore UDS measurement was excluded. In general, positive qualitative and quantitative correlation between UDS, Ames test and alkylating properties (as measured in the 4-nitrobenzyl-pyridine test, NBP) were found. Among structural analogs and typical allylic compounds with various leaving groups, the amount of induced DNA repair at equimolar concentrations decreased in the same order as the mutagenic and alkylating activities in the other 2 test systems: 1,3-dichloropropene (cis) greater than 1,3-dichloropropene (trans) greater than 2,3-dichloro-1-propene; 1-chloro-2-butene greater than 3-chloro-1-butene greater than 3-chloro-2-methyl-1-propene greater than allyl chloride; allyl-methane-sulfonate greater than -iodide greater than -bromide greater than -chloride. PMID:6627227

  13. Passive permeability and effective pore size of HeLa cell nuclear membranes.

    PubMed

    Samudram, Arunkarthick; Mangalassery, Bijeesh M; Kowshik, Meenal; Patincharath, Nandakumar; Varier, Geetha K

    2016-09-01

    Nuclear pore complexes in the nuclear membrane act as the sole gateway of transport of molecules from the cytoplasm to the nucleus and vice versa. Studies on biomolecular transport through nuclear membranes provide vital data on the nuclear pore complexes. In this work, we use fluorescein isothiocyanate-labeled dextran molecules as a model system and study the passive nuclear import of biomolecules through nuclear pore complexes in digitonin-permeabilized HeLa cells. Experiments are carried out under transient conditions in the time lapse imaging scheme using an in-house constructed confocal laser scanning microscope. Transport rates of dextran molecules having molecular weights of 4-70 kDa corresponding to Stokes radius of 1.4-6 nm are determined. Analyzing the permeability of the nuclear membrane for different sizes the effective pore radius of HeLa cell nuclear membrane is determined to be 5.3 nm, much larger than the value reported earlier using proteins as probe molecules. The range of values reported for the nuclear pore radius suggest that they may not be rigid structures and it is quite probable that the effective pore size of nuclear pore complexes is critically dependent on the probe molecules and on the environmental factors. PMID:27338984

  14. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser

    PubMed Central

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo

    2015-01-01

    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior. PMID:26469886

  15. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo

    2015-10-01

    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior.

  16. Monoclonal antibody that inhibits infection of HeLa and rhabdomyosarcoma cells by selected enteroviruses through receptor blockade

    SciTech Connect

    Crowell, R.L.; Field, A.K.; Schleif, W.A.; Long, W.L.; Colonno, R.J.; Mapoles, J.E.; Emini, E. A.

    1986-02-01

    BALB/c mice were immunized with HeLa cells, and their spleen cells were fused with myeloma cells to produce hybridomas. Initial screening of culture fluids from 800 fusion products in a cell protection assay against coxsackievirus B3 (CB3) and the CB3-RD virus variant yielded five presumptive monoclonal antibodies with three specificities: (i) protection against CB3 on HeLa, (ii) protection against CB3-RD on rhabdomyosarcoma (RD) cells, and (iii) protection against both viruses on the respective cells. Only one of the monoclonal antibodies (with dual specificity) survived two subclonings and was studied in detail. The antibody was determined to have an immunoglobulin G2a isotype and protected cells by blockade of cellular receptors, since attachment of (/sup 35/S)methionine-labeled CB3 was inhibited by greater than 90%. The monoclonal antibody protected HeLa cells against infection by CB1, CB3, CB5, echovirus 6, and coxsackievirus A21 and RD cells against CB1-RD, CB3-RD, and CB5-Rd virus variants. The monoclonal antibody did not protect either cell type against 16 other immunotypes of picornaviruses. The monoclonal antibody produced only positive fluorescence on those cells which were protected against infection, and /sup 125/I-labeled antibody confirmed the specific binding to HeLa and RD cells. The results suggest that this monoclonal antibody possesses some of the receptor specificity of the group B coxsackieviruses.

  17. HeLa Based Cell Free Expression Systems for Expression of Plasmodium Rhoptry Proteins.

    PubMed

    Yadavalli, Raghavendra; Sam-Yellowe, Tobili

    2015-01-01

    Malaria causes significant global morbidity and mortality. No routine vaccine is currently available. One of the major reasons for lack of a vaccine is the challenge of identifying suitable vaccine candidates. Malarial proteins expressed using prokaryotic and eukaryotic cell based expression systems are poorly glycosylated, generally insoluble and undergo improper folding leading to reduced immunogenicity. The wheat germ, rabbit reticulocyte lysate and Escherichia coli lysate cell free expression systems are currently used for expression of malarial proteins. However, the length of expression time and improper glycosylation of proteins still remains a challenge. We demonstrate expression of Plasmodium proteins in vitro using HeLa based cell free expression systems, termed "in vitro human cell free expression systems". The 2 HeLa based cell free expression systems transcribe mRNA in 75 min and 3 µl of transcribed mRNA is sufficient to translate proteins in 90 min. The 1-step expression system is a transcription and translation coupled expression system; the transcription and co-translation occurs in 3 hr. The process can also be extended for 6 hr by providing additional energy. In the 2-step expression system, mRNA is first transcribed and then added to the translation mix for protein expression. We describe how to express malaria proteins; a hydrophobic PF3D7_0114100 Maurer's Cleft - 2 transmembrane (PfMC-2TM) protein, a hydrophilic PF3D7_0925900 protein and an armadillo repeats containing protein PF3D7_1361800, using the HeLa based cell free expression system. The proteins are expressed in micro volumes employing 2-step and 1-step expression strategies. An affinity purification method to purify 25 µl of proteins expressed using the in vitro human cell free expression system is also described. Protein yield is determined by Bradford's assay and the expressed and purified proteins can be confirmed by western blotting analysis. Expressed recombinant proteins can be

  18. ES936 stimulates DNA synthesis in HeLa cells independently on NAD(P)H:quinone oxidoreductase 1 inhibition, through a mechanism involving p38 MAPK.

    PubMed

    González-Aragón, David; Alcaín, Francisco J; Ariza, Julia; Jódar, Laura; Barbarroja, Nuria; López-Pedrera, Chary; Villalba, José M

    2010-07-30

    The indolequinone ES936 (5-methoxy-1,2-dimethyl-3-[(4-nitrophenol)methyl]-indole-4,7-dione) is a potent mechanism-based inhibitor of NAD(P)H:quinone oxidoreductase 1 (NQO1). Here, we report that ES936 significantly stimulated thymidine incorporation in sparse cultures of human adenocarcinoma HeLa cells, but was without effect in dense cultures. Stimulation of DNA synthesis was not related with a DNA repair response because an increase in thymidine incorporation was not observed in cells treated with 2,5 bis-[1-aziridyl]-1,4 benzoquinone, a well-established antitumor quinone that causes DNA damage. Conversely, it was related with an increase of cell growth. NQO1 inhibition was not involved in ES936 stimulation of DNA synthesis, because the same response was observed in cells where NQO1 expression had been knocked down by small interfering RNA. Stimulation of DNA synthesis was reverted by treatment with ambroxol, a SOD mimetic, and by pyruvate, an efficient peroxide scavenger, supporting the involvement of alterations in cellular redox state. Pharmacological inhibition of p38 with either SB203580 or PD169316 completely abolished ES936-stimulated DNA synthesis, indicating the requirement of p38 activity. This is the first report that demonstrates the existence of an ES936-sensitive system which is separate from NQO1, modulating the redox state and cell growth in HeLa cells through a p38-dependent mechanism. Our results show that the effect ES936 exerts on DNA synthesis may be either positive or negative depending on the cellular context and growth conditions. PMID:20433816

  19. Rapid increase of inositol 1,4,5-trisphosphate in the HeLa cells after hypergravity exposure

    NASA Technical Reports Server (NTRS)

    Kumei, Yasuhiro; Whitson, Peggy A.; Cintron, Nitza M.; Sato, Atsushige

    1990-01-01

    The IP3 level in HeLa cells has been elevated through the application in hypergravity in a time-dependent manner. The data obtained for the hydrolytic products of PIP2, IP3, and DG are noted to modulate c-myc gene expression. It is also established that the cAMP accumulation by the IBMX in hypergravity-exposed cells was suppressed relative to the control. In light of IP3 increase and cAMP decrease results, a single GTP-binding protein may play a role in the hypergravity signal transduction of HeLa cells by stimulating PLC while inhibiting adenylate cyclase.

  20. Genistein promotes cell death of ethanol-stressed HeLa cells through the continuation of apoptosis or secondary necrosis

    PubMed Central

    2013-01-01

    Background Apoptosis is a major target and treatment effect of multiple chemotherapeutical agents in cancer. A soybean isoflavone, genistein, is a well-studied chemopreventive agent and has been reported to potentiate the anticancer effect of some chemotherapeutics. However, its mechanistic basis of chemo-enhancement effect remains to be fully elucidated. Methods Apoptotic features of low concentration stressed cancer cells were studied by microscopic method, western blot, immunostaining and annexin V/PI assay. Genistein’s effects on unstressed cells and recovering cells were investigated using MTT cell viability assay and LDH cytotoxicity assay. Quantitative real-time PCR was employed to analyze the possible gene targets involved in the recovery and genistein’s effect. Results Low-concentration ethanol stressed cancer cells showed apoptotic features and could recover after stress removal. In stressed cells, genistein at sub-toxic dosage promoted the cell death. Quantitative real-time PCR revealed the up-regulation of anti-apoptotic genes MDM2 and XIAP during the recovery process in HeLa cells, and genistein treatment suppressed their expression. The application of genistein, MDM2 inhibitor and XIAP inhibitor to the recovering HeLa cells caused persistent caspase activity and enhanced cell death. Flow cytometry study indicated that genistein treatment could lead to persistent phosphatidylserine (PS) externalization and necrotic events in the recovering HeLa cells. Caspase activity inhibition shifted the major effect of genistein to necrosis. Conclusions These results suggested two possible mechanisms through which genistein promoted cell death in stressed cancer cells. Genistein could maintain the existing apoptotic signal to enhance apoptotic cell death. It could also disrupt the recovering process in caspase-independent manner, which lead to necrotic events. These effects may be related to the enhanced antitumor effect of chemotherapeutic drugs when they were

  1. Vitamin D inhibition of lung adenocarcinoma cell proliferation in vitro.

    PubMed

    Li, Rong; Lou, Yuqing; Zhang, Weiyan; Dong, Qianggang; Han, Baohui

    2014-11-01

    Vitamin D has the capability to inhibit tumor cell proliferation and promote tumor cell apoptosis but whether this mechanism exists in lung adenocarcinoma cells remains to be studied. Our objective is to explore whether vitamin D has the capability to inhibit lung adenocarcinoma cell proliferation and synergize with cisplatin. Our method was to explore the effect of different concentrations of 1,25(OH)2D3 with or without cisplatin on lung adenocarcinoma cells by detecting cell proliferation rates at different time points. 1,25(OH)2D3 was capsulated with nanomaterial before acting on lung adenocarcinoma cells, and cell proliferation rates at different time points were detected with the CCK-8 method. When vitamin D was applied at a concentration of 1 × 10(-7) and 1 × 10(-6) mol/L on A549, PC9, SPC-A1, and H1650 cells for 72 h, no inhibition occurred on cell proliferation. Between the concentrations of 1 × 10(-5) and 0.5 × 10(-5) mol/L, inhibition on cell proliferation increased with drug action time. Between the concentration of 2.5 × 10(-5) and 0.03 × 10(-5) mol/L, inhibition on cell proliferation increased with increasing drug concentration. Analysis using bivariate correlations showed that the correlation coefficient of the proliferation inhibition rate and drug content was 0.580 (p < 0.0001). The correlation coefficient of proliferation inhibition rate and the drug action time was 0.379 (p = 0.01). The combined use of vitamin D and dichlorodiammine-platinum(II) (DDP) significantly increased the inhibition rate on A549 cell proliferation, which peaked after culturing for 96 h (Table 4). Further analysis using bivariate correlations showed that the correlation coefficient between proliferation inhibition rate and DDP concentration was 0.319 (p < 0.0001). The correlation coefficient of the proliferation inhibition rate and vitamin D concentration was 0.269 (p < 0.0001). The correlation coefficient of proliferation inhibition and drug action time was 0.221(p

  2. Anticancer effects of brominated indole alkaloid Eudistomin H from marine ascidian Eudistoma viride against cervical cancer cells (HeLa).

    PubMed

    Rajesh, Rajaian Pushpabai; Annappan, Murugan

    2015-01-01

    Marine invertebrates called ascidians are prolific producers of bioactive substances. The ascidian Eudistoma viride, distributed along the Southeast coast of India, was investigated for its in vitro cytotoxic activity against human cervical carcinoma (HeLa) cells by the MTT assay. The crude methanolic extract of E. viride, with an IC50 of 53 μg/ml, was dose-dependently cytotoxic. It was more potent at 100 μg/ml than cyclohexamide (1 μg/ml), reducing cell viability to 9.2%. Among nine fractions separated by chromatography, ECF-8 exhibited prominent cytoxic activity at 10 μg/ml. The HPLC fraction EHF-21 of ECF-8 was remarkably dose- and time-dependently cytotoxic, with 39.8% viable cells at 1 μg/ml compared to 51% in cyclohexamide-treated cells at the same concentration; the IC50 was 0.49 μg/ml. Hoechst staining of HeLa cells treated with EHF-21 at 0.5 μg/ml revealed apoptotic events such an cell shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies. Cell size and granularity study showed changes in light scatter, indicating the characteristic feature of cells dying by apoptosis. The cell-cycle analysis of HeLa cells treated with fraction EHF-21 at 1 μg/ml showed the marked arrest of cells in G0/G1, S and G2/M phases and an increase in the sub G0/G1 population indicated an increase in the apoptotic cell population. The statistical analysis of the sub-G1 region showed a dose-dependent induction of apoptosis. DNA fragmentation was also observed in HeLa cells treated with EHF-21. The active EHF-21 fraction, a brominated indole alkaloid Eudistomin H, led to apoptotic death of HeLa cells. PMID:25550562

  3. Silencing Aurora-A with siRNA inhibits cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Zhong, Ning; Shi, Shunbin; Wang, Hongzhen; Wu, Guangzhou; Wang, Yunliang; Ma, Qiang; Wang, Hongwei; Liu, Yuanhua; Wang, Jinzhi

    2016-09-01

    Aurora kinase A (AURKA) is an oncogenic serine/threonine kinase, it plays important roles in tumorigenesis and chemoresistance. In this study, we investigated the expression of AURKA in lung adenocarcinoma tissues, the role of small interference RNA targeting AURKA on growth, cell cycle, and apoptosis of lung adenocarcinoma cell lines in vitro. The AURKA is highly expressed in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines. Lentivirus-mediated short hairpin RNA (shRNA) was used to knock down AURKA expression in human lung adenocarcinoma cell lines H1299 and A549. The results indicated that depletion of AURKA could inhibit cell growth, cause cell cycle arrest and apoptosis. The potential mechanisms of AURKA inhibition induced cell cycle arrest and apoptosis are associated with downregulated RAF-1, CCND2, CCND3, CDK4, PAK4, EGFR and upregulated WEE1 expression. Furthermore, AURKA knockdown cooperated with vincristine (VCR) to repress A549 cell proliferation. Therefore, AURKA plays important roles in the proliferation of human lung adenocarcinoma cells, which suggests that AURKA could be a promising tool for lung adenocarcinoma therapy. PMID:27571708

  4. Analysis of lysosomal membrane proteins exposed to melanin in HeLa cells

    PubMed Central

    2016-01-01

    Objectives There have been developed to use targeting ability for antimicrobial, anticancerous, gene therapy and cosmetics through analysis of various membrane proteins isolated from cell organelles. Methods It was examined about the lysosomal membrane protein extracted from lysosome isolated from HeLa cell treated by 100 ppm melanin for 24 hours in order to find associated with targeting ability to melanin using by 2-dimensional electrophoresis. Results The result showed 14 up-regulated (1.5-fold) and 13 down-regulated (2.0-fold) spots in relation to melanin exposure. Conclusions It has been found that lysosomal membrane proteins are associated with melanin to decolorize and quantity through cellular activation of lysosome. PMID:27158002

  5. Differential recruitment of PKC isoforms in HeLa cells during redox stress

    PubMed Central

    Rimessi, Alessandro; Rizzuto, Rosario; Pinton, Paolo

    2007-01-01

    The protein kinase C (PKC) family is a major transducer of several intracellular pathways. In confirmation of this important role, PKCs exhibit high molecular heterogeneity, because they occur in at least 10 different isoforms differing in biochemical properties and sensitivity to activators. In this report we focused on the ability of different redox agents to induce modification of intracellular distribution of specific PKC isoforms in HeLa cells. To this end we utilized a panel of green fluorescent protein (GFP) chimeras and a high-speed digital imaging system. We observed a remarkable complexity of PKC signalling patterns occurring during redox stress with marked differences among PKC isoforms also belonging to the same subgroup. Moreover our results suggest that modifications of the intracellular redox state can modulate the responsiveness of specific PKC isoforms and, in turn, change the sensitivity of the different isoforms to cell stimulation. PMID:18229448

  6. Stimulation of incorporation of nucleic acid precursors into HeLa cells caused by provaline

    PubMed Central

    Watts, J. W.

    1969-01-01

    1. The effect of proflavine and other acridines on the incorporation of precursors into the nucleic acids of HeLa cells was examined. 2. Relatively low concentrations (50μm) of proflavine completely inhibited incorporation of precursors into DNA, but allowed a small extent of incorporation into RNA. 3. Acridine-resistant incorporation into RNA was unaffected by actinomycin D at 2μg./ml. and persisted even at high concentrations (500μm) of many acridines. 4. A few combinations of acridine and precursor, notably 250μm-proflavine and [14C]adenine, caused a stimulation of incorporation. 5. The proflavine-stimulated incorporation was into alkali-stable di- and tri-nucleotides. 6. It was concluded that the effect was due to the preferential inhibition of degradation of a fraction of RNA that normally turned over, thus allowing small radioactive oligonucleotides to accumulate in the cells. PMID:5357022

  7. Formaldehyde-induced paxillin-tyrosine phosphorylation and paxillin and P53 downexpression in Hela cells.

    PubMed

    Zhao, Yun; Wei, Chenxi; Wu, Yang; Ma, Ping; Ding, Shumao; Yuan, Junlin; Shen, Dingwen; Yang, Xu

    2016-02-01

    Formaldehyde (FA) is an environmental pollutant and an endogenous product believed to be involved in tumorigenesis. However, the underlying mechanism of observed FA effects has not been clearly defined. Paxillin is a focal adhesion protein that may play an important role in several signaling pathways. Many paxillin-interacting proteins are involved in the regulation of actin cytoskeleton organization, which is necessary for cell motility events associated with diverse biological responses, such as embryonic development, wound repair and tumor metastasis. P53 is important in multicellular organisms, where it regulates the cell cycle and thus functions as a tumor suppressor that is involved in preventing cancer. In this study, we investigated the effects of FA on paxillin-tyrosine phosphorylation and P53 expression in Hela cells by Western blot and immunofluorescence. Western blot analysis revealed that nonlethal concentrations of FA (0.5, 1.0 and 2.0 mM, with the exposure time for 0.5, 1.0 and 2.0 h, respectively) had downregulated paxillin and wild-type p53 genes expression while upregulated paxillin-tyrosine phosphorylation significantly. At the same time, phosphotyrosine at the focal adhesion sites detected by immunofluorescence assay obviously increased in Hela cells incubated with 2.0 mM FA for 2 h. The results suggested that paxillin and p53 genes expression may be involved in FA-related adverse effects and the mechanism may be involved in paxillin-tyrosine phosphorylation. PMID:26400731

  8. Binding of vitronectin to opa-expressing Neisseria gonorrhoeae mediates invasion of HeLa cells.

    PubMed Central

    Gómez-Duarte, O G; Dehio, M; Guzmán, C A; Chhatwal, G S; Dehio, C; Meyer, T F

    1997-01-01

    Neisseria gonorrhoeae induces local infections in the human genitourinary tract and can disseminate to other organs to cause severe disease. Blood-derived factors present in the genital mucosa have been suggested to facilitate the spread of N. gonorrhoeae in disseminated gonococcal infections. Using gentamicin invasion assays and confocal microscopy, we observed a strong stimulatory effect of fetal calf serum (FCS) on the gonococcal invasion of HeLa cells. FCS-mediated invasion was dependent on the expression of the epithelial cell invasion-associated Opa protein (plasmid-encoded Opa50 or its chromosomal homolog Opa30), while N. gonorrhoeae expressing noninvasive Opa proteins (Opa(51-60)) or no Opa protein (Opa-) was not invasive even in the presence of FCS. Incubation of N. gonorrhoeae MS11 with biotinylated FCS revealed a 78-kDa protein as the prominent protein binding to Opa50- or Opa30-expressing gonococci. This protein was recognized by antibodies against vitronectin (VN) in Western blots. Purified human or bovine VN efficiently bound to Opa50-expressing gonococci, while binding to noninvasive Opa- or Opa52-expressing gonococci was significantly lower. Binding of VN was inhibited by heparin in a concentration-dependent manner, indicating that the heparin binding sites present in VN or Opa50 may play an essential role in this interaction. Based on gentamicin invasion assays and confocal microscopy studies, VN binding was associated with an increased invasion of Opa50- and Opa30-expressing gonococci into HeLa cells. The ability of VN to mediate entry into epithelial cells may constitute an important event in the pathogenesis of local as well as disseminated gonococcal infections. PMID:9284164

  9. Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells.

    PubMed

    Wu, H; Zhang, J; Shi, H

    2016-01-01

    Effect of the tumor suppression gene p16 on the biological characteristics of HeLa cervical carcinoma cells was explored. The expression of p16 protein was increased in HeLa tumor sphere cells, and no significant difference in tumor spheres from the first to the fourth passages. Compared with those of parental HeLa cells, the proportion of CD44+/CD24- and ABCG2+ cells increased significantly in tumor spheres. However after the cells were silenced by the p16-sh289 vector, expression of P16 protein and the cell number of CD44+/CD24- and ABCG2+ decreased. Moreover, HeLa cells with p16 gene silencing showed decreased abilities of sphere formation and matrigel invasion. More HeLa cells with p16 gene silence were needed for tumor formation in nude mice. Tumor size and weight in mouse model established with p16 gene silenced HeLa cells were less than those with HeLa parental cell model. The present results indicate that silencing of the p16 gene inhibits expression of cancer stem cell markers and tumorigenic ability of HeLa cells. PMID:27172749

  10. Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse

    SciTech Connect

    Kaneko, Haruna; Yu, Dong; Miura, Masahiko

    2007-11-30

    Insulin-like growth factor I receptor (IGF-IR) is a transmembrane receptor tyrosine kinase whose activation strongly promotes cell growth and survival. We previously reported that IGF-IR activity confers intrinsic radioresistance in mouse embryo fibroblasts in vitro. However, it is still unclear whether tumor cells overexpressing IGF-IR exhibit radioresistance in vivo. For this purpose, we established HeLa cells that overexpress IGF-IR (HeLa-R), subcutaneously transplanted these cells into nude mice, and examined radioresponse in the resulting solid tumors. HeLa-R cells exhibited typical in vitro phenotypes generally observed in IGF-IR-overexpressing cells, as well as significant intrinsic radioresistance in vitro compared with parent cells. As expected, the transplanted HeLa-R tumors grew at a remarkably higher rate than parent tumors. Histological analysis revealed that HeLa-R tumors expressed more VEGF and had a higher density of tumor vessels. Unexpectedly, a marked growth delay was observed in HeLa-R tumors following 10 Gy of X-irradiation. Immunostaining of HeLa-R tumors for the hypoxia marker pimonidazole revealed a significantly lower level of hypoxic cells. Moreover, clamp hypoxia significantly increased radioresistance in HeLa-R tumors. Tumor microenvironments in vivo generated by the IGF-IR expression thus could be a major factor in determining the tumor radioresponse in vivo.

  11. Differential gene expression in tumorigenic and nontumorigenic HeLa x normal human fibroblast hybrid cells.

    PubMed

    Tsujimoto, H; Nishizuka, S; Redpath, J L; Stanbridge, E J

    1999-12-01

    Fusion of tumorigenic HeLa cells with human skin fibroblasts results in chromosomally stable hybrids that are nontumorigenic and no longer express the HeLa tumor-associated marker intestinal alkaline phosphatase (IAP). Previous studies of spontaneous tumorigenic segregants from the nontumorigenic hybrids implicated the loss of one copy of human fibroblast chromosome 11 in the concomitant reexpression of tumorigenicity. In an attempt to identify genes involved in the control of tumorigenic expression, we performed differential display screening of nontumorigenic hybrid cells and tumorigenic segregants. Subsequent northern blot analyses reproducibly showed 17 differentially expressed genes, eight of which were expressed differentially in the nontumorigenic hybrids and nine of which were expressed differentially in the tumorigenic hybrids. The former were genes for 80K-L protein (a substrate of protein kinase C), AXL/UFO (a receptor tyrosine kinase), insulin-like growth factor binding protein 3, apolipoprotein AI regulatory protein, collagen type I alpha-2 chain, transforming growth factor-beta-induced gene product 3 (BIGH3), pregnancy-specific beta-1-glycoprotein, and fibroblast activation protein alpha. The latter nine genes were genes for serum/glucocorticoid-regulated kinase (SGK; a serine/threonine protein kinase), PTPCAAX1 (a tyrosine phosphatase), CXCR-4 (a G-protein-coupled membrane receptor), L-kynurenine hydrolase, beta-1, 4-galactosyltransferase, keratin 8, keratin 17, and H19 and a novel gene. The differential expression of these genes provided several interesting candidates for regulation of tumorigenic expression, including those involved in signal transduction and the extracellular matrix, cytoskeletal proteins, cell-surface enzyme, and the H19 gene. PMID:10569806

  12. Total Alkaloids of Sophora alopecuroides Inhibit Growth and Induce Apoptosis in Human Cervical Tumor HeLa Cells In vitro

    PubMed Central

    Li, Jian-Guang; Yang, Xiao-Yi; Huang, Wei

    2016-01-01

    Background: Uygur females of Xinjiang have the higher incidence of cervical tumor in the country. Alkaloids are the major active ingredients in Sophora alopecuroides, and its antitumor effect was recognized by the medical profession. Xinjiang is the main site of S. alopecuroides production in China so these plants are abundant in the region. Studies on the antitumor properties of total alkaloids of S. alopecuroides (TASA) can take full use of the traditional folk medicine in antitumor unique utility. Objectives: To explore the effects of TASA on proliferation and apoptosis of human cervical tumor HeLa cells in vitro. Materials and Methods: TASA was extracted, purified, and each monomer component was analyzed by high-performance liquid chromatography. The effect of TASA at different concentrations on the survival of HeLa cells was determined after 24 h using the Cell Counting Kit-8. In addition, cells were photographed using an inverted microscope to document morphological changes. The effect of TASA on apoptotic rate of HeLa cells was assessed by flow cytometry. Results: Monomers of TASA were found to be sophoridine, matrine, and sophocarpine. On treatment with 8.75 mg/ml of TASA, more than 50% of HeLa cells died, and cell death rate increased further with longer incubation. The apoptotic rates of HeLa cells in the experimental groups were 16.0% and 33.3% at concentrations of 6.25 mg/ml and 12.50 mg/ml, respectively. Conclusion: TASA can induce apoptosis in cervical tumor HeLa cells, and it has obvious inhibitory effects on cell growth. SUMMARY Total alkaloids of Sophora alopecuroides (TASA) exhibits anti-human cervical tumor propertiesMonomer component of TASA was analyzed by high-performance liquid chromatography, and its main effect component are sophoridine, matrine, and sophocarpineTASA inhibits growth and induces apoptosis in HeLa cells. Abbreviations used: TASA: Total alkaloids of S. alopecuroides, CCK-8: Cell Counting Kit-8, FBS: Fetal bovine serum, PBS

  13. Differential susceptibility of human trophoblastic (BeWo) and uterine cervical (HeLa) cells to Neospora caninum infection.

    PubMed

    Carvalho, Julianne V; Alves, Celene M O S; Cardoso, Mariana R D; Mota, Caroline M; Barbosa, Bellisa F; Ferro, Eloísa A V; Silva, Neide M; Mineo, Tiago W P; Mineo, José R; Silva, Deise A O

    2010-12-01

    Neospora caninum is an apicomplexan parasite, closely related to Toxoplasma gondii, and causes abortion and congenital neosporosis in cattle worldwide. Trophoblast cells act in mechanisms of innate immune defense at the fetal-maternal interface and no data are available about the interaction of Neospora with human trophoblasts. Thus, this study aimed to verify the susceptibility of human trophoblastic (BeWo) compared with uterine cervical (HeLa) cell lines to N. caninum. BeWo and HeLa cells were infected with different parasite:cell ratios of N. caninum tachyzoites and analyzed at different times after infection for cell viability using thiazolyl blue tetrazole and lactate dehydrogenase assays. Both cell lines were also evaluated for cytokine production and parasite infection/replication assays when pre-treated or not with Neospora lysate antigen (NLA) or human recombinant IFN-γ. Cell viability was increased up to 48 h of infection in both types of cells, suggesting that infection could inhibit early cell death and/or induce cell proliferation. Neospora infection induced up-regulation of the macrophage migration inhibitory factor (MIF), mainly in HeLa cells, which was enhanced by cell pre-treatment by NLA or IFN-γ. Conversely, parasite infection induced down-regulation of the transforming growth factor (TGF-β), mostly in BeWo cells, which was decreased with NLA or IFN-γ pre-treatment. HeLa cells were more susceptible to Neospora infection than BeWo cells and IFN-γ pre-treatment resulted in reduced infection indices in both cell lines. Control of parasite growth was mediated by IFN-γ through an indoleamine-2,3-dioxygenase-dependent mechanism in HeLa cells alone. Based on these results, we concluded that BeWo and HeLa cells are readily infected by N. caninum, although presenting differences in susceptibility to infection, cytokine production and cell viability. Thus, these host cells can be considered in comparative approaches to understand strategies used by N

  14. THE LOCALIZATION BY ELECTRON MICROSCOPY OF HELA CELL SURFACE ENZYMES SPLITTING ADENOSINE TRIPHOSPHATE.

    PubMed

    EPSTEIN, M A; HOLT, S J

    1963-11-01

    Cultures of normally proliferating Hela cells have been examined in thin sections by electron microscopy following glutaraldehyde fixation, staining in Wachstein and Meisel's adenosine triphosphate containing medium, postosmication, and embedding in an epoxy resin. The cells were stained in suspension in order to ensure uniform accessibility to reagents. Discrete localization of the enzyme reaction product (lead phosphate) was found at the plasma membranes of about half the cells, but nowhere else. It appeared in the form of an intensely electron-opaque deposit lying close against the outer surface of the cells and varying in amount from a chain of small particles to a dense band about 30 mmicro in width. This opaque reaction product was present over microvilli when absent elsewhere on a cell, was heaviest where microvilli and processes were profuse, and was minimal or lacking where cell surfaces were smooth. These observations are discussed in relation to both the idea that surface enzyme activity varies with the physiological phase of individual cells in a population, and the problem of how such enzyme activity becomes manifest at a given site on a morphologically changing membrane system. PMID:14086759

  15. Lessons from HeLa Cells: The Ethics and Policy of Biospecimens.

    PubMed

    Beskow, Laura M

    2016-08-31

    Human biospecimens have played a crucial role in scientific and medical advances. Although the ethical and policy issues associated with biospecimen research have long been the subject of scholarly debate, the story of Henrietta Lacks, her family, and the creation of HeLa cells captured the attention of a much broader audience. The story has been a catalyst for policy change, including major regulatory changes proposed in the United States surrounding informed consent. These proposals are premised in part on public opinion data, necessitating a closer look at what such data tell us. The development of biospecimen policy should be informed by many considerations-one of which is public input, robustly gathered, on acceptable approaches that optimize shared interests, including access for all to the benefits of research. There is a need for consent approaches that are guided by realistic aspirations and a balanced view of autonomy within an expanded ethical framework. PMID:26979405

  16. Visualizing the molecular sociology at the HeLa cell nuclear periphery.

    PubMed

    Mahamid, Julia; Pfeffer, Stefan; Schaffer, Miroslava; Villa, Elizabeth; Danev, Radostin; Cuellar, Luis Kuhn; Förster, Friedrich; Hyman, Anthony A; Plitzko, Jürgen M; Baumeister, Wolfgang

    2016-02-26

    The molecular organization of eukaryotic nuclear volumes remains largely unexplored. Here we combined recent developments in cryo-electron tomography (cryo-ET) to produce three-dimensional snapshots of the HeLa cell nuclear periphery. Subtomogram averaging and classification of ribosomes revealed the native structure and organization of the cytoplasmic translation machinery. Analysis of a large dynamic structure-the nuclear pore complex-revealed variations detectable at the level of individual complexes. Cryo-ET was used to visualize previously elusive structures, such as nucleosome chains and the filaments of the nuclear lamina, in situ. Elucidation of the lamina structure provides insight into its contribution to metazoan nuclear stiffness. PMID:26917770

  17. Methylation of nucleolar RNA in HeLa cells studied by autoradiography

    SciTech Connect

    Cervera, J.; Martinez, A.; Renau-Piqueras, J.

    1984-01-01

    Methylation of nucleolar RNA was studied by autoradiography in HeLa cells using L-(methyl-/sup 3/H)methionine and S-adenosyl-L-(methyl-/sup 3/H)methionine as radioactive precursors. Pulse-labeling experiments show that nucleolar RNA methylation occurs on the newly synthesized RNA at the nucleolar fibrillar RNP component and mostly on the fibrillar ring of fibrillar centers, where pre-rRNA is being synthesized. Pulse-chase experiments show a shift of silver grains from the nucleolar fibrillar RNP component to the nucleolar granular component first and then to the cytoplasm. Labeling of nucleolar RNA via specific methylation permits the study of intranucleolar processing of pre-rRNA and confirms the sequence of labeling of the two nucleolar RNP components observed with radioactive uridine.

  18. Intracellular viscoelasticity of HeLa cells during cell division studied by video particle-tracking microrheology

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Quan; Kuo, Chia-Yu; Wei, Ming-Tzo; Wu, Kelly; Su, Pin-Tzu; Huang, Chien-Shiou; Chiou, Arthur

    2014-01-01

    Cell division plays an important role in regulating cell proliferation and differentiation. It is managed by a complex sequence of cytoskeleton alteration that induces dividing cells to change their morphology to facilitate their division. The change in cytoskeleton structure is expected to affect the intracellular viscoelasticity, which may also contribute to cellular dynamic deformation during cell division. However, the intracellular viscoelasticity during cell division is not yet well understood. In this study, we injected 100-nm (diameter) carboxylated polystyrene beads into the cytoplasm of HeLa cells and applied video particle tracking microrheology to measure their intracellular viscoelasticity at different phases during cell division. The Brownian motion of the intracellular nanoprobes was analyzed to compute the viscoelasticity of HeLa cells in terms of the elastic modulus and viscous modulus as a function of frequency. Our experimental results indicate that during the course of cell division, both intracellular elasticity and viscosity increase in the transition from the metaphase to the anaphase, plausibly due to the remodeling of cytoskeleton and redistributions of molecular motors, but remain approximately the same from the anaphase to the telophase.

  19. Mathematical modeling of the heat-shock response in HeLa cells.

    PubMed

    Scheff, Jeremy D; Stallings, Jonathan D; Reifman, Jaques; Rakesh, Vineet

    2015-07-21

    The heat-shock response is a key factor in diverse stress scenarios, ranging from hyperthermia to protein folding diseases. However, the complex dynamics of this physiological response have eluded mathematical modeling efforts. Although several computational models have attempted to characterize the heat-shock response, they were unable to model its dynamics across diverse experimental datasets. To address this limitation, we mined the literature to obtain a compendium of in vitro hyperthermia experiments investigating the heat-shock response in HeLa cells. We identified mechanisms previously discussed in the experimental literature, such as temperature-dependent transcription, translation, and heat-shock factor (HSF) oligomerization, as well as the role of heat-shock protein mRNA, and constructed an expanded mathematical model to explain the temperature-varying DNA-binding dynamics, the presence of free HSF during homeostasis and the initial phase of the heat-shock response, and heat-shock protein dynamics in the long-term heat-shock response. In addition, our model was able to consistently predict the extent of damage produced by different combinations of exposure temperatures and durations, which were validated against known cellular-response patterns. Our model was also in agreement with experiments showing that the number of HSF molecules in a HeLa cell is roughly 100 times greater than the number of stress-activated heat-shock element sites, further confirming the model's ability to reproduce experimental results not used in model calibration. Finally, a sensitivity analysis revealed that altering the homeostatic concentration of HSF can lead to large changes in the stress response without significantly impacting the homeostatic levels of other model components, making it an attractive target for intervention. Overall, this model represents a step forward in the quantitative understanding of the dynamics of the heat-shock response. PMID:26200855

  20. Extracellular Caspase-8 Dependent Apoptosis on HeLa Cancer Cells and MRC-5 Normal Cells by ICD-85 (Venom Derived Peptides)

    PubMed Central

    Zare-Mirakabadi, Abbas; Sarzaeem, Ali

    2012-01-01

    Background Our previous studies revealed an inhibitory effect of ICD-85 (venom derived peptides) on MDA-MB231 and HL-60 cell lines, through induction of apoptosis. The purpose of this study was to investigate apoptosis-induced mechanism on HeLa and MRC-5 cells by ICD-85 through activation of caspase-8. Methods Cell viability, cytosolic enzyme Lactate Dehydrogenase (LDH) and cell morphology were assessed under unexposed and ICD-85 exposed conditions.Caspase-8 activity was assayed by caspase-8 colorimetric assay Kit. Results The results show that Inhibitory Concentration 50% (IC50) value of ICD-85 for HeLa cells at 24 h was estimated and found to be 25.32±2.15 µg/mL. Furthermore, treatment of HeLa cells with ICD-85 at concentrations of 1.6×10 and 2.6×10 µg/mL did not significantly increase LDH release. Morphological changes in HeLa cells on treatment with ICD-85 compared with untreated HeLa cells consistent with an apoptotic mechanism of cell death, such as cell shrinkage which finally results in the generation of apoptotic bodies. However, when MRC-5 cells were exposed to ICD-85, no significant changes in cell morphology and LDH were observed at concentrations below 2.6×10µg/ml. Also, the apoptosis-induction mechanism by ICD-85 on HeLa cells was found through activation of caspase-8 and the activity of caspase-8 in HeLa cells was 1.5 folds more than its activity on MRC-5 cells. Conclusion Therefore, the apoptosis-induced mechanisms by ICD-85 are through activation of caspase-8 and concerning the least cytotoxic effect on MRC-5 cells, ICD-85 may be used as anticancer compound to inhibit growth of cancer cells. PMID:25352970

  1. Sodium Kinetics of Na,K-ATPase α Isoforms in Intact Transfected HeLa Cells

    PubMed Central

    Zahler, Raphael; Zhang, Zhong-Ting; Manor, Mira; Boron, Walter F.

    1997-01-01

    By participating in the regulation of ion and voltage gradients, the Na-K pump (i.e., Na,K-ATPase) influences many aspects of cellular physiology. Of the four α isoforms of the pump, α1 is ubiquitous, α2 is predominant in skeletal muscle, and α3 is found in neurons and the cardiac conduction system. To determine whether the isoforms have different intracellular Na+ affinities, we used the Na+-sensitive dye sodium-binding benzofuran isophthalate (SBFI) to measure pump-mediated Na+ efflux as a function of [Na+]i in human HeLa cells stably transfected with rat Na-K pump isoforms. We Na+-loaded the cells, and then monitored the time course of the decrease in [Na+]i after removing external Na+. All transfected rat α subunits were highly ouabain resistant: the α1 isoform is naturally resistant, whereas the α2 and α3 isoforms had been mutagenized to render them resistant. Thus, the Na+ efflux mediated by endogenous and transfected pumps could be separated by studying the cells at low (1 μM) and high (4 mM) ouabain concentrations. We found that the apparent Km for Na+ efflux attributable to the native human α1 isoform was 12 mM, which was similar to the Km of rat α1. The α2 and α3 isoforms had apparent Km's of 22 and 33 mM, respectively. The cells expressing α3 had a high resting [Na+]i. The maximal activity of native α1 in the α3-transfected cells was only ∼56% of native α1 activity in untransfected HeLa cells, suggesting that transfection with α3 led to a compensatory decrease in endogenous α1 pumps. We conclude that the apparent Km(Na+) for rat Na-K pump isoforms increases in the sequence α1 < α2 < α3. The α3 isoform may be suited for handling large Na+ loads in electrically active cells. PMID:9236212

  2. Epithelial-Mesenchymal Transition Protein Expression in Basal Cell Adenomas and Basal Cell Adenocarcinomas.

    PubMed

    Tesdahl, Brennan A; Wilson, Thomas C; Hoffman, Henry T; Robinson, Robert A

    2016-06-01

    Basal cell adenomas and basal cell adenocarcinomas show marked histomorphologic similarity and are separated microscopically primarily by the invasive characteristics of the adenocarcinomas. We wished to explore potential differences in the expression of epithelial-mesenchymal transition associated proteins in these two tumor types. A tissue microarray was constructed utilizing 29 basal cell adenomas and 16 basal cell adenocarcinomas. Immunohistochemical expression of E-cadherin, beta-catenin, Twist 1 and vimentin were investigated. Both tumors expressed all proteins in a relatively similar manner. Nuclear beta-catenin was essentially limited to the abluminal cell populations in both tumor types. E-cadherin was limited largely to luminal locations but was more prevalent in the adenocarcinomas as compared to the adenomas. Primarily abluminal expression for vimentin was seen, sometimes present in an apical dot-like pattern. Distinct populations of cellular expression of these four markers of epithelial mesenchymal transition were present but were similar in locations in both tumors with no patterns discerned to separate basal cell adenoma from basal cell adenocarcinoma. Given these findings, the mechanisms by which basal cell adenocarcinoma is able to invade while its counterpart, basal cell adenoma can not, may be more complex than in other tumor types. PMID:26442856

  3. DNA synthesis in generation 1 in x-irradiated HeLa cells

    SciTech Connect

    Hawkins, R.B.; Tolmach, L.J.; Griffiths, T.D.

    1981-01-01

    Measurements of DNA replication in a line of HeLa S3 cells during the generation (Generation 1) following that in which the cells are irradiated with 500 rad of 220-kV x rays (Generation 0) were carried out according to a number of different experimental protocols. These involved preirradiation labeling of the cells with low levels of (/sup 14/C) thymidine in Generation-1 to provide a measure of the template DNA, synchronization by mitotic collection in Generation 0, resynchronization by either mitotic recollection or temporary drug-induced blockages in Generation 1, and either labeled-thymidine incorporation or density-label transfer during Generation 1. The results show that those cells that progress through S phase of Generation 1 and divide at the next mitosis replicate a full complement of DNA. However, apparent deficits of as much as 45% are measured if resynchronization in Generation 1 is effected by drug tretment following manipulations of the culture in the presence of particular media and drugs during Generation 0. These are attributed to combined radiation- and drug-induced disturbances in cell progression.

  4. Anticancer Activity of a Hexapeptide from Skate (Raja porosa) Cartilage Protein Hydrolysate in HeLa Cells.

    PubMed

    Pan, Xin; Zhao, Yu-Qin; Hu, Fa-Yuan; Chi, Chang-Feng; Wang, Bin

    2016-01-01

    In this study, the hexapeptide Phe-Ile-Met-Gly-Pro-Tyr (FIMGPY), which has a molecular weight of 726.9 Da, was separated from skate (Raja porosa) cartilage protein hydrolysate using ultrafiltration and chromatographic methods, and its anticancer activity was evaluated in HeLa cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay indicated that FIMGPY exhibited high, dose-dependent anti-proliferation activities in HeLa cells with an IC50 of 4.81 mg/mL. Acridine orange/ethidium bromide (AO/EB) fluorescence staining and flow cytometry methods confirmed that FIMGPY could inhibit HeLa cell proliferation by inducing apoptosis. Western blot assay revealed that the Bax/Bcl-2 ratio and relative intensity of caspase-3 in HeLa cells treated with 7-mg/mL FIMGPY were 2.63 and 1.83, respectively, significantly higher than those of the blank control (p < 0.01). Thus, FIMGPY could induce apoptosis by upregulating the Bax/Bcl-2 ratio and caspase-3 activation. Using a DNA ladder method further confirmed that the anti-proliferation activity of FIMGPY was attributable to its role in inducing apoptosis. These results suggest that FIMGPY from skate cartilage protein hydrolysate may have applications as functional foods and nutraceuticals for the treatment and prevention of cancer. PMID:27537897

  5. Anticancer Activity of a Hexapeptide from Skate (Raja porosa) Cartilage Protein Hydrolysate in HeLa Cells

    PubMed Central

    Pan, Xin; Zhao, Yu-Qin; Hu, Fa-Yuan; Chi, Chang-Feng; Wang, Bin

    2016-01-01

    In this study, the hexapeptide Phe-Ile-Met-Gly-Pro-Tyr (FIMGPY), which has a molecular weight of 726.9 Da, was separated from skate (Raja porosa) cartilage protein hydrolysate using ultrafiltration and chromatographic methods, and its anticancer activity was evaluated in HeLa cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay indicated that FIMGPY exhibited high, dose-dependent anti-proliferation activities in HeLa cells with an IC50 of 4.81 mg/mL. Acridine orange/ethidium bromide (AO/EB) fluorescence staining and flow cytometry methods confirmed that FIMGPY could inhibit HeLa cell proliferation by inducing apoptosis. Western blot assay revealed that the Bax/Bcl-2 ratio and relative intensity of caspase-3 in HeLa cells treated with 7-mg/mL FIMGPY were 2.63 and 1.83, respectively, significantly higher than those of the blank control (p < 0.01). Thus, FIMGPY could induce apoptosis by upregulating the Bax/Bcl-2 ratio and caspase-3 activation. Using a DNA ladder method further confirmed that the anti-proliferation activity of FIMGPY was attributable to its role in inducing apoptosis. These results suggest that FIMGPY from skate cartilage protein hydrolysate may have applications as functional foods and nutraceuticals for the treatment and prevention of cancer. PMID:27537897

  6. Binucleated HeLa cells are formed by cytokinesis failure in starvation and keep the potential of proliferation.

    PubMed

    Nishimura, Kazunori; Watanabe, Sumiko; Hayashida, Ryo; Sugishima, Setsuo; Iwasaka, Tsuyoshi; Kaku, Tsunehisa

    2016-08-01

    Many cytological studies have reported that the numbers of binucleated cells were elevated in various tumors. However, binucleated cells are observed in not only malignant tumors but also normal tissues. Thus, the clinical significance of binucleated cells is controversial. Here we attempted to elucidate the characteristics of binucleated HeLa cells using time-lapse microscopy. To examine the frequency, viability, proliferation, and formation mechanism of binucleated cells, we grew HeLa cells on chamber slides and tissue culture dishes in DMEM supplemented with (10, 3, 1 and 0.5 % media) and without fetal bovine serum (0 % medium). The proliferation was evaluated by the medium improvement examination (cultured for 2 more days in 10% medium after culturing in 0% medium; starvation). In the 0 % medium, 150 binucleated cells were formed by cytokinesis failure. There were significantly more binucleated cells in the 0 % medium than in the 10, 3, 1 and 0.5 % media. About twice the number of binucleated cells underwent mitosis in the improvement examinations than in the serum-free examination. We found here that starvation induced the binucleation of HeLa cells and that some binucleated cells can reproduce. These findings might be helpful for understanding binucleated cells in tumors. PMID:25894790

  7. Label-Free and Continuous-Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids

    PubMed Central

    Zhao, Wujun; Zhu, Taotao; Cheng, Rui; Liu, Yufei; He, Jian; Qiu, Hong; Wang, Lianchun; Nagy, Tamas; Querec, Troy D.; Unger, Elizabeth R.

    2016-01-01

    In this study, a label-free, low-cost, and fast ferrohydrodynamic cell separation scheme is demonstrated using HeLa cells (an epithelial cell line) and red blood cells. The separation is based on cell size difference, and conducted in a custom-made biocompatible ferrofluid that retains the viability of cells during and after the assay for downstream analysis. The scheme offers moderate-throughput (≈106 cells h−1 for a single channel device) and extremely high recovery rate (>99%) without the use of any label. It is envisioned that this separation scheme will have clinical applications in settings where rapid cell enrichment and removal of contaminating blood will improve efficiency of screening and diagnosis such as cervical cancer screening based on mixed populations in exfoliated samples. PMID:27478429

  8. The PNPLA-family phospholipases involved in glycerophospholipid homeostasis of HeLa cells.

    PubMed

    Hermansson, Martin; Hänninen, Satu; Hokynar, Kati; Somerharju, Pentti

    2016-09-01

    Mammalian cells maintain the glycerophospholipid (GPL) compositions of their membranes nearly constant. To achieve this, GPL synthesis and degradation must be coordinated. There is strong evidence that A-type phospholipases (PLAs) are key players in homeostatic degradation of GPLs, but the identities of the PLAs involved have not been established. However, some members of the Patatin-like phospholipase domain-containing proteins (PNPLAs) have been implicated. Accordingly, we knocked down all the PNPLAs significantly expressed in human HeLa cells using RNA interference and then determined whether the turnover of the major glycerophospholipids is affected by using mass spectrometry and metabolic labeling with stable isotope-labeled precursors. Knockdown of PNPLA9, PNPLA6 or PNPLA4 significantly (30-50%) reduced the turnover of phosphatidylcholine, -ethanolamine and -serine. In a notable contrast, turnover of phosphatidylinositol was not significantly affected by the knockdown of any PNPLA. Depletion of PNPLA9 and PNPLA4 also inhibited G0/G1 to S cell cycle progression, which could thus be regulated by GPL turnover. These results strongly suggest that PNPLA9, -6 and -4 play a key role in GPL turnover and homeostasis in human cells. A hypothetical model suggesting how these enzymes could recognize the relative concentration of the different GPLs is proposed. PMID:27317427

  9. Partitioning of the Golgi apparatus during mitosis in living HeLa cells.

    PubMed

    Shima, D T; Haldar, K; Pepperkok, R; Watson, R; Warren, G

    1997-06-16

    The Golgi apparatus of HeLa cells was fluorescently tagged with a green fluorescent protein (GFP), localized by attachment to the NH2-terminal retention signal of N-acetylglucosaminyltransferase I (NAGT I). The location was confirmed by immunogold and immunofluorescence microscopy using a variety of Golgi markers. The behavior of the fluorescent Golgi marker was observed in fixed and living mitotic cells using confocal microscopy. By metaphase, cells contained a constant number of Golgi fragments dispersed throughout the cytoplasm. Conventional and cryoimmunoelectron microscopy showed that the NAGT I-GFP chimera (NAGFP)-positive fragments were tubulo-vesicular mitotic Golgi clusters. Mitotic conversion of Golgi stacks into mitotic clusters had surprisingly little effect on the polarity of Golgi membrane markers at the level of fluorescence microscopy. In living cells, there was little self-directed movement of the clusters in the period from metaphase to early telophase. In late telophase, the Golgi ribbon began to be reformed by a dynamic process of congregation and tubulation of the newly inherited Golgi fragments. The accuracy of partitioning the NAGFP-tagged Golgi was found to exceed that expected for a stochastic partitioning process. The results provide direct evidence for mitotic clusters as the unit of partitioning and suggest that precise regulation of the number, position, and compartmentation of mitotic membranes is a critical feature for the ordered inheritance of the Golgi apparatus. PMID:9182657

  10. Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa Cells.

    PubMed

    Duan, Dongzhu; Zhang, Junmin; Yao, Juan; Liu, Yaping; Fang, Jianguo

    2016-05-01

    Parthenolide (PTL), a major active sesquiterpene lactone from the herbal plant Tanacetum parthenium, has been applied in traditional Chinese medicine for centuries. Although PTL demonstrates potent anticancer efficacy in numerous types of malignant cells, the cellular targets of PTL have not been well defined. We reported here that PTL interacts with both cytosolic thioredoxin reductase (TrxR1) and mitochondrial thioredoxin reductase (TrxR2), two ubiquitous selenocysteine-containing antioxidant enzymes, to elicit reactive oxygen species-mediated apoptosis in HeLa cells. PTL selectively targets the selenocysteine residue in TrxR1 to inhibit the enzyme function, and further shifts the enzyme to an NADPH oxidase to generate superoxide anions, leading to reactive oxygen species accumulation and oxidized thioredoxin. Under the conditions of inhibition of TrxRs in cells, PTL does not cause significant alteration of cellular thiol homeostasis, supporting selective target of TrxRs by PTL. Importantly, overexpression of functional TrxR1 or Trx1 confers protection, whereas knockdown of the enzymes sensitizes cells to PTL treatment. Targeting TrxRs by PTL thus discloses an unprecedented mechanism underlying the biological activity of PTL, and provides deep insights to understand the action of PTL in treatment of cancer. PMID:27002142

  11. Girdin expression in cervical carcinoma and its role in the malignant properties of HeLa cells

    PubMed Central

    JIANG, PING; REN, YA-LI; LI, JIA-LIANG; LUO, JUN

    2016-01-01

    Cervical cancer is a major cause of mortality in females worldwide, with the majority of cases reported in developing countries. The molecular mechanisms of this disease are unclear. However, increasing evidence indicates that the expression or overexpression of Girdin is associated with a poor prognosis in a variety of cancer types. Therefore, the aim of the current study was to evaluate the potential association between Girdin expression, and malignant properties of cervical cancer lesions and HeLa cells. Girdin protein expression was examined in 87 samples of cervical squamous cell lesions, including intraepithelial neoplasia (grades I and III) and invasive carcinoma, using immunohistochemical (IHC) staining. A short-hairpin RNA (shRNA) approach was employed to specifically suppress the expression of Girdin mRNA in HeLa cells in vitro, allowing the role of Girdin in a number of malignant properties to be evaluated. Girdin protein was observed in the cytoplasm of 79/87 (90.8%) cervical cancer lesion specimens. However, no positive Girdin signals were identified in healthy cervical squamous epithelium samples. Furthermore, a significant correlation between Girdin expression and lesion grade was identified (Spearman's correlation coefficient, 0.566; P<0.001). When Girdin was suppressed by Girdin shRNA, the rate of HeLa cell growth was significantly reduced in vitro (P<0.05). Additional analysis determined that Girdin was associated with serum-deprived induced HeLa apoptosis. Thus, patients with high-grade cervical cancer tumors exhibited a strong expression for Girdin, and Girdin appears to key in HeLa cell proliferation and serum-deprived induced apoptosis, supporting the hypothesis that Girdin may be important in the process of cervical carcinogenesis. PMID:27073494

  12. Identification and characterization of a DNA primase activity present in herpes simplex virus type 1-infected HeLa cells

    SciTech Connect

    Holmes, A.M.; Wietstock, S.M.; Ruyechan, W.T. )

    1988-03-01

    A novel DNA primase activity has been identified in HeLa cells infected with herpes simplex virus type 1 (HSV-1). Such an activity has not been detected in mock-infected cells. The primase activity coeluted with a portion of HSV-1 DNA polymerase from single-stranded DNA agarose columns loaded with high-salt extracts derived from infected cells. This DNA primase activity could be distinguished from host HeLa cell DNA primase by several criteria. First, the pH optimum of the HSV primase was relatively broad and peaked at 8.2 to 8.7 pH units. Second, freshly isolated HSV DNA primase was less salt sensitive than the HeLa primase. Third, antibodies raised against individual peptides of the calf thymus DNA polymerase:primase complex cross-reacted with the HeLa primase but did not react with the HSV DNA primase. Fourth, freshly prepared HSV DNA primase appeared to be associated with the HSV polymerase, but after storage at 4{degree}C for several weeks, the DNA primase separated from the viral DNA polymerase. This free DNA primase had an apparent molecular size of approximately 40 kilodaltons, whereas free HeLa DNA primase had an apparent molecular size of approximately 110 kilodaltons. On the basis of these data, the authors believe that the novel DNA primase activity in HSV-infected cells may be virus coded and that this enzyme represents a new and important function involved in the replication of HSV DNA.

  13. A transcriptionally active form of TFIIIC is modified in poliovirus-infected HeLa cells.

    PubMed Central

    Clark, M E; Dasgupta, A

    1990-01-01

    In HeLa cells, RNA polymerase III (pol III)-mediated transcription is severely inhibited by poliovirus infection. This inhibition is due primarily to the reduction in transcriptional activity of the pol III transcription factor TFIIIC in poliovirus-infected cells. However, the specific binding of TFIIIC to the VAI gene B-box sequence, as assayed by DNase I footprinting, is not altered by poliovirus infection. We have used gel retardation analysis to analyze TFIIIC-DNA complexes formed in nuclear extracts prepared from mock- and poliovirus-infected cells. In mock-infected cell extracts, two closely migrating TFIIIC-containing complexes, complexes I and II, were detected in the gel retardation assay. The slower migrating complex, complex I, was absent in poliovirus-infected cell extracts, and an increase occurred in the intensity of the faster-migrating complex (complex II). Also, in poliovirus-infected cell extracts, a new, rapidly migrating complex, complex III, was formed. Complex III may have been the result of limited proteolysis of complex I or II. These changes in TFIIIC-containing complexes in poliovirus-infected cell extracts correlated kinetically with the decrease in TFIIIC transcriptional activity. Complexes I, II, and III were chromatographically separated; only complex I was transcriptionally active and specifically restored pol III transcription when added to poliovirus-infected cell extracts. Acid phosphatase treatment partially converted complex I to complex II but did not affect the binding of complex II or III. Dephosphorylation and limited proteolysis of TFIIIC are discussed as possible mechanisms for the inhibition of pol III-mediated transcription by poliovirus. Images PMID:2204807

  14. LIV-1 suppression inhibits HeLa cell invasion by targeting ERK1/2-Snail/Slug pathway

    SciTech Connect

    Zhao Le; Chen Wei; Taylor, Kathryn M.; Cai Bin; Li Xu

    2007-11-09

    It was reported that expression of the estrogen-regulated zinc transporter LIV-1 was particularly high in human cervical cancer cell line HeLa. This result prompted us to study the role that LIV-1 played in human cervical cancer. The results of real-time PCR showed that LIV-1 mRNA was significantly higher in cervical cancer in situ than in normal tissues. RNAi mediated suppression of LIV-1 in HeLa cells significantly inhibited cell proliferation, colony formation, migration, and invasive ability, but had no effect on cell apoptosis. Furthermore, LIV-1 suppression is accompanied by down-regulation of p44/42 MAPK, phospho-p44/42 MAPK, Snail and Slug expression levels. Hence, our data provide the first evidence that LIV-1 mRNA is overexpressed in cervical cancer in situ and is involved in invasion of cervical cancer cells through targeting MAPK-mediated Snail and Slug expression.

  15. Human cytosolic thymidine kinase: purification and physical characterization of the enzyme from HeLa cells

    SciTech Connect

    Sherley, J.L.; Kelly, T.J.

    1988-01-05

    The mammalian cytosolic thymidine kinase is one of a number of enzymes involved in DNA replication whose activities increase dramatically during S phase of the cell cycle. As a first step in defining the mechanisms that control the S phase induction of thymidine kinase activity, the authors have purified the human enzyme from HeLa cells and raised a specific immune serum against the purified protein. The enzyme was isolated from cells arrested in S phase by treatment with methotrexate and purified to near homogeneity by ion-exchange and affinity chromatography. Stabilization of the purified enzyme was achieved by the addition of digitonin. An electrophoretic R/sub m/ of 0.2 in nondenaturing gels characterizes the purified enzyme activity as cytosolic thymidine kinase. The enzyme has a Stoke's radius of 40 A determined by gel filtration and a sedimentation coefficient of 5.5 S determined by glycerol gradient sedimentation. Based on these hydrodynamic values, a native molecular weight of 96,000 was calculated for the purified enzyme. When electrophoresed in denaturing sodium dodecyl sulfate-polyacrylamide gels under reducing conditions, the most purified enzyme fraction was found to contain one predominant polypeptide of M/sub r/ = 24,000. Several lines of evidence indicate that this polypeptide is responsible for thymidine kinase enzymatic activity.

  16. Isolation and characterization of HeLa cell lines blocked at different steps in the poliovirus life cycle.

    PubMed Central

    Kaplan, G; Levy, A; Racaniello, V R

    1989-01-01

    Cotransfection of poliovirus RNA and R1, a poliovirus subgenomic RNA containing a deletion of nearly all of the capsid region, resulted in surviving cells, in contrast to the complete cell death observed after transfection with viral RNA. Cells that survived the cotransfection grew into colonies, produced infectious poliovirus, and underwent cycles of cell lysis (crisis periods) where less than 1% of the cells survived, followed by periods of growth. Poliovirus evolved during the persistent infection as judged by changes in plaque size. After passage for 6 months, a stable line called SOFIA emerged that no longer produced infectious virus and did not contain viral proteins or viral RNA. Cells frozen in liquid N2 while still in crisis and recultured 4 months later (named SOFIA N2) were also stabilized. After infection with poliovirus, SOFIA N2 cells showed a delay in the development of cytopathic effect, viral production, and cellular death when compared with HeLa cells. In contrast, SOFIA cells did not develop cytopathic effect and produced 10,000 times less virus than SOFIA N2 or HeLa cells. Viral production was delayed in SOFIA and SOFIA N2 cells transfected with poliovirus RNA when compared with HeLa cells, suggesting the presence of an intracellular block to poliovirus replication. Analysis of the cellular receptor for poliovirus by virus binding, an enzyme-linked immunosorbent assay, and in situ rosette assays with an antireceptor monoclonal antibody showed that receptors were expressed in SOFIA N2 cells but not in SOFIA cells. Echovirus 6, an enterovirus which uses a different cellular receptor, formed small plaques on SOFIA cells. Vesicular stomatitis virus formed plaques of similar size on SOFIA and HeLa cells, suggesting that the intracellular block was specific for enteroviruses. Cotransfection of the subgenomic replicon R1 with poliovirion RNA therefore resulted in the selection of HeLa cell variants containing blocks to poliovirus replication at the

  17. Photodynamic therapy of HeLa cell cultures by using LED or laser sources.

    PubMed

    Etcheverry, María E; Pasquale, Miguel A; Garavaglia, Mario

    2016-07-01

    The photodynamic therapy (PDT) on HeLa cell cultures was performed utilizing a 637nm LED lamp with 1.06W power and m-tetrahydroxyphenyl chlorin (m-THPC) as photosensitizer and compared to a laser source emitting at 654nm with the same power. Intracellular placement of the photosensitizer and the effect of its concentration (CP), its absorption time (TA) and the illumination time (TI) were evaluated. It was observed that for CP>40μg/ml and TA>24h, m-THPC had toxicity on cells in culture, even in the absence of illumination. For the other tested concentrations, the cells remained viable if not subjected to illumination doses. No effect on cells was observed for CP<0.05μg/ml, TA=48h and TI=10min and they continued proliferating. For drug concentrations higher than 0.05μgml(-1), further deterioration is observed with increasing TA and TI. We evaluated the viability of the cells, before and after the treatment, and by supravital dyes, and phase contrast and fluorescence microscopies, evidence of different types of cell death was obtained. Tetrazolium dye assays after PDT during different times yielded similar results for the 637nm LED lamp with an illuminance three times greater than that of the 654nm laser source. Results demonstrate the feasibility of using a LED lamp as alternative to laser source. Here the main characteristic is not the light coherence but achieving a certain light fluence of the appropriate wavelength on cell cultures. We conclude that the efficacy was achieved satisfactorily and is essential for convenience, accessibility and safety. PMID:27152675

  18. Roscovitine up-regulates p53 protein and induces apoptosis in human HeLaS(3) cervix carcinoma cells.

    PubMed

    Wesierska-Gadek, Józefa; Wandl, Stefanie; Kramer, Matthias P; Pickem, Christian; Krystof, Vladimir; Hajek, Susanne B

    2008-12-01

    Exposure of human HeLaS(3) cervix carcinoma cells to high doses of conventional cytostatic drugs, e.g. cisplatin (CP) strongly inhibits their proliferation. However, most cytostatic agents are genotoxic and may generate a secondary malignancy. Therefore, therapeutic strategy using alternative, not cytotoxic drugs would be beneficial. Inhibition of cyclin-dependent kinases (CDKs) by pharmacological inhibitors became recently a promising therapeutic option. Roscovitine (ROSC), a selective CDK inhibitor, efficiently targets human malignant cells. ROSC induces cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. ROSC also activates p53 protein. Activation of p53 tumor suppressor protein is essential for induction of apoptosis in MCF-7 cells. Considering the fact that in HeLaS(3) cells wt p53 is inactivated by the action of HPV-encoded E6 oncoprotein, we addressed the question whether ROSC would be able to reactivate p53 protein in them. Their exposure to ROSC for 24 h induced cell cycle arrest at G(2)/M and reduced the number of viable cells. Unlike CP, ROSC in the used doses did not induce DNA damage and was not directly cytotoxic. Despite lack of detectable DNA lesions, ROSC activated wt p53 protein. The increase of p53 levels was attributable to the ROSC-mediated protein stabilization. Further analyses revealed that ROSC induced site-specific phosphorylation of p53 protein at Ser46. After longer exposure, ROSC induced apoptosis in HeLaS(3) cells. These results indicate that therapy of HeLaS(3) cells by ROSC could offer an advantage over that by CP due to its increased selectivity and markedly reduced risk of generation of a secondary cancer. PMID:18846503

  19. Radiation-induced association of beta-glucuronidase with purified nuclei from irradiated MOLT-4 and HeLa cells

    SciTech Connect

    McClain, D.E.; Kalinich, J.F.; Poplack, J.K.; Snyder, S.L.

    1989-02-01

    Beta-glucuronidase, a lysosomal marker enzyme, associates with purified nuclei from HeLa and MOLT-4 cell lines in a radiation dose-dependent manner, up to 300 cGy in MOLT-4 cells, and 1000 cGy in HeLa cells. In MOLT-4 cells (200-cGy exposure), there is a significant increase in beta-glucuronidase activity detected in the nuclear fraction 24 h postirradiation with a maximum association occurring at 72 h. In HeLa cells (1000-cGy exposure), a significant association is first detected 24 h postirradiation with a maximum association at 48 h. The association is not the result of nonspecific contamination occurring during nuclei purification since nuclei from irradiated cells show no greater levels of plasma membrane marker and mitochondrial marker than controls. The nature of the association remains unclear, but activity is not removed by detergents used in the nuclei isolation procedure, and incubation of the nuclei with EDTA reverses the association only modestly. Exposure of nuclei from irradiated cells to anisotonic buffers also results in only a small decrease in beta-glucuronidase activity associated with the nuclei. These observations suggest that lysosomal hydrolases become intimately associated with the nuclei of irradiated cells.

  20. Human immunodeficiency virus infection and syncytium formation in HeLa cells expressing glycophospholipid-anchored CD4.

    PubMed

    Kost, T A; Kessler, J A; Patel, I R; Gray, J G; Overton, L K; Carter, S G

    1991-06-01

    The CD4 molecule, a glycoprotein expressed primarily on the cell surface of specific T lymphocytes, is thought to function in T-cell antigen recognition and activation. In addition, CD4 serves as a receptor for human immunodeficiency virus type 1 (HIV-1) by a direct interaction with the HIV-1 surface glycoprotein (gp120). To further characterize the HIV-1-cell interaction, a HeLa cell line was established that expressed a chimeric molecule of CD4 and decay-accelerating factor (DAF). In the chimeric CD4-DAF molecule the transmembrane and cytoplasmic domains of CD4 were deleted and replaced with the carboxy-terminal 37 amino acids of DAF. This resulted in the anchoring of the extracellular domain of CD4 to the cell membrane via a glycophospholipid linkage. The glycophospholipid-anchored CD4 had a molecular size of approximately 56 to 62 kDa and was released following treatment of the cells with phosphatidylinositol-specific phospholipase C. HeLa cells expressing the CD4-DAF hybrid could be infected with HIV-1, as evidenced by reverse transcriptase activity, p24 core antigen content, and infectious virus production. In addition, transfection of the HeLa CD4-DAF cells with a plasmid that directs the synthesis of HIV-1 envelope glycoproteins or cocultivation with HeLa cells expressing the virus glycoproteins resulted in syncytium formation. These results indicate that the transmembrane and cytoplasmic domains of the CD4 molecule are dispensable for both HIV infection and syncytium formation. PMID:1709701

  1. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    SciTech Connect

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B.; Bag, Jnanankur

    2011-05-13

    Highlights: {yields} Depletion of cellular PABP level arrests mRNA translation in HeLa cells. {yields} PABP knock down leads to apoptotic cell death. {yields} PABP depletion does not affect transcription. {yields} PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  2. Heat Inactivation of Garlic (Allium sativum) Extract Abrogates Growth Inhibition of HeLa Cells.

    PubMed

    Chintapalli, Renuka; Murray, Matthew J J; Murray, James T

    2016-07-01

    The potential anticancer properties of garlic (Allium sativum) may depend on the method of preparation and its storage. Storage of garlic has not been thoroughly investigated to determine whether anticancer properties are retained. Garlic was prepared and processed to mimic normal options for storage and preparation for consumption. Cytotoxicity was determined by crystal violet assay and mechanisms of cytotoxicity were established by microscopy, SDS-PAGE, and Western immunoblotting. Significant (P < 0.0001) cytotoxicity was observed in all preparations, except with boiled (cooked) garlic. Depending on the method of storage, garlic extract induced either type I or type II programmed cell death, detectable by caspase 9 cleavage, or Poly (adenosine diphosphate-ribose) polymerase (PARP) cleavage and LC3-II accumulation, respectively. The conflicting literature on the anticancer properties of garlic may be explained by differences in processing and storage. This study has highlighted that the potency of the antiproliferative properties of cooked garlic, compared to the uncooked form, is diminished in HeLa cells. PMID:27176674

  3. Axin is expressed in mitochondria and suppresses mitochondrial ATP synthesis in HeLa cells.

    PubMed

    Shin, Jee-Hye; Kim, Hyun-Wook; Rhyu, Im Joo; Kee, Sun-Ho

    2016-01-01

    Many recent studies have revealed that axin is involved in numerous cellular functions beyond the negative regulation of β-catenin-dependent Wnt signaling. Previously, an association of ectopic axin with mitochondria was observed. In an effort to investigate the relationship between axin and mitochondria, we found that axin expression suppressed cellular ATP production, which was more apparent as axin expression levels increased. Also, mitochondrial expression of axin was observed using two axin-expressing HeLa cell models: doxycycline-inducible ectopic axin expression (HeLa-axin) and axin expression enhanced by long-term treatment with XAV939 (HeLa-XAV). In biochemical analysis, axin is associated with oxidative phosphorylation (OXPHOS) complex IV and is involved in defects in the assembly of complex IV-containing supercomplexes. Functionally, axin expression reduced the activity of OXPHOS complex IV and the oxygen consumption rate (OCR), suggesting axin-mediated mitochondrial dysfunction. Subsequent studies using various inhibitors of Wnt signaling showed that the reduction in cellular ATP levels was weaker in cases of ICAT protein expression and treatment with iCRT3 or NSC668036 compared with XAV939 treatment, suggesting that XAV939 treatment affects ATP synthesis in addition to suppressing Wnt signaling activity. Axin-mediated regulation of mitochondrial function may be an additional mechanism to Wnt signaling for regulation of cell growth. PMID:26704260

  4. Biological and clinical relevance of stem cells in pancreatic adenocarcinoma

    PubMed Central

    Rasheed, Zeshaan A; Matsui, William

    2013-01-01

    Cancer stem cells (CSC) have been identified in a growing number of human malignancies. CSC are functionally defined by their ability to self-renew and recapitulate tumors in the ectopic setting, and a growing number of studies have shown that they display other functional characteristics, such as invasion and drug resistance. These unique functional properties implicate a role for CSC in clinical consequences, such as initial tumor formation, relapse following treatment, metastasis, and resistance, suggesting they are a major factor in directing clinical outcomes. Pancreatic adenocarcinoma is a highly-aggressive disease with a propensity for early metastasis and drug resistance. Tumorigenic pancreatic cancer cells have been identified using the cell surface antigens CD44, CD24, and CD133, as well as the high expression of aldehyde dehydrogenase (ALDH). In vitro and in vivo studies have shown that ALDH- and CD133-expressing pancreatic CSC have a greater propensity for metastasis, and ALDH-expressing CSC have been shown to be resistant to conventional chemotherapy. In clinical samples from patients with resected pancreatic adenocarcinoma, the presence of ALDH-expressing CSC was associated with worse overall survival. The development of CSC-targeting therapies might be important in changing the clinical outcomes of patients with this disease, and others and we have begun to identify novel compounds that block CSC function. This review will discuss the biological and clinical relevance of CSC in pancreatic cancer, and will discuss novel therapeutic strategies to target them. PMID:22320910

  5. HeLa cell response proteome alterations induced by mammalian reovirus T3D infection

    PubMed Central

    2013-01-01

    Background Cells are exposed to multiple stressors that induce significant alterations in signaling pathways and in the cellular state. As obligate parasites, all viruses require host cell material and machinery for replication. Virus infection is a major stressor leading to numerous induced modifications. Previous gene array studies have measured infected cellular transcriptomes. More recently, mass spectrometry-based quantitative and comparative assays have been used to complement such studies by examining virus-induced alterations in the cellular proteome. Methods We used SILAC (stable isotope labeling with amino acids in cell culture), a non-biased quantitative proteomic labeling technique, combined with 2-D HPLC/mass spectrometry and reciprocal labeling to identify and measure relative quantitative differences in HeLa cell proteins in purified cytosolic and nuclear fractions after reovirus serotype 3 Dearing infection. Protein regulation was determined by z-score analysis of each protein’s label distribution. Results A total of 2856 cellular proteins were identified in cytosolic fractions by 2 or more peptides at >99% confidence and 884 proteins were identified in nuclear fractions. Gene ontology analyses indicated up-regulated host proteins were associated with defense responses, immune responses, macromolecular binding, regulation of immune effector processes, and responses to virus, whereas down-regulated proteins were involved in cell death, macromolecular catabolic processes, and tissue development. Conclusions These analyses identified numerous host proteins significantly affected by reovirus T3D infection. These proteins map to numerous inflammatory and innate immune pathways, and provide the starting point for more detailed kinetic studies and delineation of virus-modulated host signaling pathways. PMID:23799967

  6. Trefoil factor 3 as a novel biomarker to distinguish between adenocarcinoma and squamous cell carcinoma.

    PubMed

    Wang, Xiao-Nan; Wang, Shu-Jing; Pandey, Vijay; Chen, Ping; Li, Qing; Wu, Zheng-Sheng; Wu, Qiang; Lobie, Peter E

    2015-05-01

    In carcinoma, such as of the lung, the histological subtype is important to select an appropriate therapeutic strategy for patients. However, carcinomas with poor differentiation cannot always be distinguished on the basis of morphology alone nor on clinical findings. Hence, delineation of poorly differentiated adenocarcinoma and squamous cell carcinoma, the 2 most common epithelial-origin carcinomas, is pivotal for selection of optimum therapy. Herein, we explored the potential utility of trefoil factor 3 (TFF3) as a biomarker for primary lung adenocarcinoma and extrapulmonary adenocarcinomas derived from different organs. We observed that 90.9% of lung adenocarcinomas were TFF3-positive, whereas no expression of TFF3 was observed in squamous cell carcinomas. The subtype of lung carcinoma was confirmed by four established biomarkers, cytokeratin 7 and thyroid transcription factor 1 for adenocarcinoma and P63 and cytokeratin 5/6 for squamous cell carcinoma. Furthermore, expression of TFF3 mRNA was observed by quantitative PCR in all of 11 human lung adenocarcinoma cell lines and highly correlated with markers of the adenocarcinomatous lineage. In contrast, little or no expression of TFF3 was observed in 4 lung squamous cell carcinoma cell lines. By use of forced expression, or siRNA-mediated depletion of TFF3, we determined that TFF3 appeared to maintain rather than promote glandular differentiation of lung carcinoma cells. In addition, TFF3 expression was also determined in adenocarcinomas from colorectum, stomach, cervix, esophagus, and larynx. Among all these extrapulmonary carcinomas, 93.7% of adenocarcinomas exhibited TFF3 positivity, whereas only 2.9% of squamous cell carcinomas were TFF3-positive. Totally, 92.9% of both pulmonary and extrapulmonary adenocarcinomas exhibited TFF3 positivity, whereas only 1.5% of squamous cell carcinomas were TFF3-positive. In conclusion, TFF3 is preferentially expressed in adenocarcinoma and may function as an additional

  7. Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells.

    PubMed

    Jamsheena, Vellekkatt; Shilpa, Ganesan; Saranya, Jayaram; Harry, Nissy Ann; Lankalapalli, Ravi Shankar; Priya, Sulochana

    2016-03-01

    Bis(indolyl)methane appended biaryls were designed, synthesized and evaluated in human cervical cancer cell lines (HeLa) for their anticancer activities and compared against normal rat cardiac myoblasts (H9C2) cells. Compounds 1-12 were synthesized, with variations in one of the phenyl unit, in a single step by condensation of biaryl-2-carbaldehydes with indole in the presence of para-toluenesulfonic acid. Compound 1 exhibited a GI50 value of 11.00 ± 0.707 μM and the derivatives, compounds 4 and 11 showed a GI50 value of 8.33 ± 0.416 μM and 9.13 ± 0.177 μM respectively in HeLa cells and was found to be non-toxic to H9C2 cells up to 20 μM. Furthermore, compounds 1, 4 and 11 induced caspase dependent cellular apoptosis in a concentration-dependent manner, reduced mitochondrial membrane potential, inhibited the cell migration and downregulated the production of MMP-2 and MMP-9 in HeLa cells. PMID:26807764

  8. Direct observation of potassium ions in HeLa cell with ion-selective nano-pipette probe

    NASA Astrophysics Data System (ADS)

    Takami, Tomohide; Iwata, Futoshi; Yamazaki, Koji; Wan Son, Jong; Lee, Joo-Kyung; Ho Park, Bae; Kawai, Tomoji

    2012-02-01

    The local concentration of potassium ion in a single HeLa cell was observed with an ion-selective nano-pipette probe. Ion selectivity was achieved by using a polyvinyl chloride film with selected ionophores placed within the nano-pipette. Both alternating and constant bias voltages were applied to the counter electrode for the observation of local ion concentrations with a response time of less than 0.1 s. These measurements were enabled by a low-current detection system prepared specifically for this study. The difference in local potassium concentrations between inside a living HeLa cell and the surrounding solution was approximately 100 mM, while no difference in potassium ion concentration was observed between the interior of dead cells and the surrounding solution.

  9. Acetylcholinesterase inhibition, antioxidant activity and toxicity of Peumus boldus water extracts on HeLa and Caco-2 cell lines.

    PubMed

    Falé, P L; Amaral, F; Amorim Madeira, P J; Sousa Silva, M; Florêncio, M H; Frazão, F N; Serralheiro, M L M

    2012-08-01

    This work aimed to study the inhibition on acetylcholinesterase activity (AChE), the antioxidant activity and the toxicity towards Caco-2 and HeLa cells of aqueous extracts of Peumus Boldus. An IC(50) value of 0.93 mg/mL, for AChE inhibition, and EC(50) of 18.7 μg/mL, for the antioxidant activity, was determined. This activity can be attributed to glycosylated flavonoid derivatives detected, which were the main compounds, although boldine and other aporphine derivatives were also present. No changes in the chemical composition or the biochemical activities were found after gastrointestinal digestion. Toxicity of P. boldus decoction gave an IC(50) value 0.66 mg/mL for HeLa cells, which caused significant changes in the cell proteome profile. PMID:22617353

  10. Sodium-dependent GABA-induced currents in GAT1-transfected HeLa cells.

    PubMed Central

    Risso, S; DeFelice, L J; Blakely, R D

    1996-01-01

    1. HeLa cells were infected with recombinant vaccinia virus containing the T7 RNA polymerase gene and transfected with the cDNA for a rat GABA transporter, GAT1, cloned downstream of a T7 RNA polymerase promoter. Six to sixteen hours after transfection, whole-cell recording with a voltage ramp in the range -90 to 50 mV revealed GABA-induced currents (approximately -100 pA at -60 mV in 100 microM GABA, 16 h after transfection at room temperature). No GABA-induced currents were observed in parental HeLa cells or in mock-transfected cells. 2. GABA-induced currents were suppressed by extracellular perfusion with GABA-free solutions or addition of GAT1 inhibitors SKF89976-A or SKF100330-A. At fixed voltage the GABA dependence of the inward current fitted the Michaelis-Menten equation with a Hill coefficient, n, near unity and an equilibrium constant, K(m), near 3 microM. The Na+ dependence of the inward currents fitted the Michaelis-Menten equation with n approximately equal to 2 and K(m) approximately equal to 10 mM. The constants n and K(m) for GABA and Na+ were independent of voltage in the range -90 to -30 mV. 3. GABA-induced currents reverse direction in the range 5-10 mV. The implication of this result is that GAT1 can mediate electrogenic (electrophoretic) influx or efflux of GABA depending on the membrane voltage. The presence of an outward current in our experiments is consistent with radioactive-labelled flux data from resealed vesicle studies. However, it is inconsistent with frog oocyte expression experiments using the sample clone. In oocytes, GAT1 generates no outward current in a similar voltage range. Smaller intracellular volume or higher turnover rates in the mammalian expression system may explain the outward currents. 4. External GABA induces inward current, and internal GABA induces outward current. However, in cells initially devoid of internal GABA, external GABA can also facilitate an outward current. This GAT1-mediated outward current occurs

  11. Persistent Infection of Cells in Culture by Measles Virus II. Effect of Measles Antibody on Persistently Infected HeLa Sublines and Recovery of a HeLa Clonal Line Persistently Infected with Incomplete Virus

    PubMed Central

    Rustigian, Robert

    1966-01-01

    Rustigian, Robert (Tufts University School of Medicine, Boston, Mass.). Persistent infection of cells in culture by measles virus. II. Effect of measles antibody on persistently infected HeLa clonal line persistently infected with incomplete virus. J. Bacteriol. 92:1805–1811. 1966.—The effect of viral antibody on persistent infection of HeLa cells by the Edmonston strain of measles virus was investigated by culturing cells from three persistently infected clones in medium supplemented with human immune globulin. The three infected HeLa clones were isolated from a persistently infected parent line. Two sublines which were grown in the presence of measles antibody developed a nonyielder state, wherein there is no detectable virus infectious for normal HeLa cultures. There is, however, continued synthesis of intracellular viral antigen and formation of viral intracytoplasmic inclusion bodies. The development of a nonyielder state was associated with a marked decrease in the degree of hemadsorption in cultures of both sublines. Further studies of the viral properties of non-yielder HeLa cell populations were made with a clone obtained from one of these sublines by plating under antibody. Persistent infection in this line was characterized by synthesis of incomplete virus even when the cells were cultured thereafter in anti-body-free medium. This was evidenced by (i) failure to recover infectious virus from the clonal population despite continued formation of intracellular viral antigen and viral intracytoplasmic inclusion bodies in a majority of the cells, (ii) the presence of only a few cells with surface viral antigen(s) including hemagglutinin, and (iii) the relatively weak antibody response to viral envelope antigen(s) after injection of cells into guinea pigs. PMID:5334769

  12. Organellar proteome analyses of ricin toxin-treated HeLa cells.

    PubMed

    Liao, Peng; Li, Yunhu; Li, Hongyang; Liu, Wensen

    2016-07-01

    Apoptosis triggered by ricin toxin (RT) has previously been associated with certain cellular organellar compartments, but the diversity in the composition of the organellar proteins remains unclear. Here, we applied a shotgun proteomics strategy to examine the differential expression of proteins in the mitochondria, nuclei, and cytoplasm of HeLa cells treated and not treated with RT. Data were combined with a global bioinformatics analysis and experimental confirmations. A total of 3107 proteins were identified. Bioinformatics predictors (Proteome Analyst, WoLF PSORT, TargetP, MitoPred, Nucleo, MultiLoc, and k-nearest neighbor) and a Bayesian model that integrated these predictors were used to predict the locations of 1349 distinct organellar proteins. Our data indicate that the Bayesian model was more efficient than the individual implementation of these predictors. Additionally, a Biomolecular Interaction Network (BIN) analysis was used to identify 149 BIN subnetworks. Our experimental confirmations indicate that certain apoptosis-related proteins (e.g. cytochrome c, enolase, lamin B, Bax, and Drp1) were found to be translocated and had variable expression levels. These results provide new insights for the systematic understanding of RT-induced apoptosis responses. PMID:25227225

  13. Purification and characterization of a ubiquitin carrier protein kinase from HeLa cells.

    PubMed Central

    Kong, S K; Chock, P B

    1994-01-01

    Protein ubiquitination plays an important role in ATP-dependent protein turnover, and it also may regulate other cellular events. Covalent attachment of ubiquitin to other proteins is catalyzed by three different enzymes, E1, E2, and E3. We have previously shown that protein ubiquitination can be regulated by phosphorylation. In the present study, we show that 20-kDa E2, an E2 molecular mass isoform, is phosphorylated by a protein kinase from the cytosolic fraction of HeLa cells. This protein kinase was purified by a procedure involving ammonium sulfate precipitation and three column chromatographies (phenyl-Sepharose, Superose gel filtration, and DEAE-Sephacel). Gel-filtration chromatography indicated that the molecular mass of this protein kinase was about 300 kDa. However, SDS/PAGE showed that the purified protein kinase consists of three subunits with molecular masses of 120, 105, and 70 kDa, respectively. The stoichiometry of the phosphorylated 20-kDa E2 isozyme was found to be 0.45 mol of phosphate per mol of protein. The phosphorylation of 20-kDa E2 occurred only at the serine residue. The activity of this protein kinase required the presence of Mg2+; however, the enzyme was inhibited by a high concentration of Mg2+. Images PMID:7972110

  14. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells

    NASA Astrophysics Data System (ADS)

    Hao, Xian; Wu, Jiazhen; Shan, Yuping; Cai, Mingjun; Shang, Xin; Jiang, Junguang; Wang, Hongda

    2012-04-01

    Efficient intracellular delivery of gold nanoparticles (AuNPs) and unraveling the mechanism underlying the intracellular delivery are essential for advancing the applications of AuNPs toward in vivo imaging and therapeutic interventions. We employed fluorescence microscopy to investigate the internalization mechanism of small-size AuNPs by living Hela cells. Herein, we found that the caveolae-mediated endocytosis was the dominant pathway for the intracellular delivery of small-size AuNPs. The intracellular delivery was suppressed when we depleted the cholesterol with methyl-β-cyclodextrin (MβCD) in contrast, the sucrose that disrupts the formation of clathrin-mediated endocytosis did not block the endocytosis of AuNPs. Meanwhile, we examined the intracellular localization of AuNPs in endocytic vesicles by fluorescent colocalization. This work would provide a potential technique to study the intracellular delivery of small-size nanoparticles for biomedical applications. Dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday.

  15. Antibodies against recombinant shiga toxin subunit B neutralize shiga toxin toxicity in HeLa cells.

    PubMed

    Gupta, Pallavi; Singh, Manglesh Kumar; Singh, Padma; Tiwari, Mugdha; Dhaked, Ram Kumar

    2010-06-01

    Shigella dysenteriae type 1 and Escherichia coli O157:H7 produce Shiga toxin 1 (Stx) and Shiga toxin1 (Stx1), respectively and these two toxins are almost identical. E. coli O157:H7 is the major cause of diarrhea-associated hemolytic uremic syndrome. Stx and Stx1 are AB5 type of toxin with a molecular weight of 70 kDa, comprising an enzymaticaly-active A subunit (32 kDa) and five receptor-binding B subunits (7.7 kDa). In this study DNA fragment (289 bp, Gene Bank Accn No. EF685161) coding for B chain of Stx was amplified from S. dysenteriae type1 and cloned. Shiga toxin-binding subunit was expressed and purified in native conditions by affinity and gel permeation chromatography with the yield of 5.1 mg/L in shake flask culture. For the purpose of immunization, the polypeptide was polymerized with glutaraldehyde. Hyper immune serum produced in mice reacted with the purified polypeptide and intact Shiga toxin. The anti-StxB antiserum effectively neutralized the cytotoxicity of Shiga toxin towards HeLa cells. PMID:20044923

  16. Clear Cell Adenocarcinoma of the Urethra: Review of the Literature

    PubMed Central

    Venyo, Anthony Kodzo-Grey

    2015-01-01

    Background. Clear cell adenocarcinoma of the urethra (CCAU) is extremely rare and a number of clinicians may be unfamiliar with its diagnosis and biological behaviour. Aims. To review the literature on CCAU. Methods. Various internet databases were used. Results/Literature Review. (i) CCAU occurs in adults and in women in the great majority of cases. (ii) It has a particular association with urethral diverticulum, which has been present in 56% of the patients; is indistinguishable from clear cell adenocarcinoma of the female genital tract but is not associated with endometriosis; and probably does not arise by malignant transformation of nephrogenic adenoma. (iii) It is usually, readily distinguished from nephrogenic adenoma because of greater cytological a-typicality and mitotic activity and does not stain for prostate-specific antigen or prostatic acid phosphatase. (iv) It has been treated by anterior exenteration in women and cystoprostatectomy in men and at times by radiotherapy; chemotherapy has rarely been given. (v) CCAU is aggressive with low 5-year survival rates. (vi) There is no consensus opinion of treatment options that would improve the prognosis. Conclusions. Few cases of CCAU have been reported. Urologists, gynaecologists, pathologists, and oncologists should report cases of CCAU they encounter and enter them into a multicentric trial to determine the best treatment options that would improve the prognosis. PMID:25685552

  17. Quantification of Functionalised Gold Nanoparticle-Targeted Knockdown of Gene Expression in HeLa Cells

    PubMed Central

    Jiwaji, Meesbah; Sandison, Mairi E.; Reboud, Julien; Stevenson, Ross; Daly, Rónán; Barkess, Gráinne; Faulds, Karen; Kolch, Walter; Graham, Duncan; Girolami, Mark A.; Cooper, Jonathan M.; Pitt, Andrew R.

    2014-01-01

    Introduction Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. Methods In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. Findings We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. Conclusions The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein. PMID:24926959

  18. In Vitro Synthesis of Proteins by Membrane-Bound Polyribosomes from Vesicular Stomatitis Virus-Infected HeLa Cells

    PubMed Central

    Grubman, Marvin J.; Ehrenfeld, Ellie; Summers, Donald F.

    1974-01-01

    Membrane-bound polysomes from vesicular stomatitis virus (VSV)-infected HeLa cells synthesize predominantly three proteins in an in vitro protein synthesizing system. These three proteins have different molecular weights than the viral structural proteins, i.e., 115,000, 88,000, and 72,000. Addition of preincubated L or HeLa cell S10 or HeLa cell crude initiation factors stimulates amino acid incorporation and, furthermore, alters the pattern of proteins synthesized. Stimulated membrane-bound polysomes synthesize predominantly viral protein G and lesser amounts of N, NS, and M. In vitro synthesized proteins G and N are very similar to virion proteins G and N based on analysis of tryptic methionine-labeled peptides. Most methionine-labeled tryptic peptides of virion G protein contain no carbohydrate moieties, since about 90% of sugar-labeled peptides co-chromatograph with only about 10% of methionine-labeled peptides. Sucrose gradient analysis of the labeled RNA present in VSV-infected membrane-bound polysomes reveals a relative enrichment in a class of viral RNA sedimenting slightly faster than the total population of the 13 to 15S mRNA, as compared to a VSV-infected crude cytoplasmic extract. A number of proteins, other than the viral structural proteins, are synthesized in the cytoplasm of five lines of VSV-infected cells. One of these proteins has the same molecular weight as the major in vitro synthesized protein, P88. In vitro synthesized protein P88 does not appear to be a precursor of viral structural proteins G, N, or M based on pulse-chase experiments and tryptic peptide mapping. Nonstimulated membrane-bound polysomes from uninfected HeLa cells synthesize the same size distribution of proteins as nonstimulated VSV-infected membrane-bound polysomes. Images PMID:4368799

  19. Synthesis and cytotoxic evaluation of some new 4(3H)-quinazolinones on HeLa cell line.

    PubMed

    Khodarahmi, G A; Shamshiri, M; Hassanzadeh, F

    2012-04-01

    Quinazolinone backbone is present in a large number of bioactive substances. Since remarkable cytotoxic activity is associated with some 4(3H)-quinazolinones, in this study some 4(3H)-quinazolinone were synthesized and screened against HeLa cells. The synthesis was performed via reaction of anthranilic acid with dicarboxylic anhydrides to produce carboxylic acids derivatives. The products were heated in acetic anhydride to produce benzoxazinones. Finally, 4(3H)-quinazolinones were synthesized by reaction between benzoxazinones and primary amines. The assessment of the structure of the synthesized compounds was based on spectral data (FT-IR, Mass and (1)HNMR). Subsequently, cytotoxic activity of compounds 3, 6, 9 and 13 (individually and in combination with doxorubicin) was evaluated on HeLa cell line using MTT assay. The results indicated that the tested compounds did not show significant cytotoxicity alone and in combination with doxorubicin (1 and 20 μM). PMID:23181089

  20. Synthesis and cytotoxic evaluation of some new 4(3H)-quinazolinones on HeLa cell line

    PubMed Central

    Khodarahmi, G.A.; Shamshiri, M.; Hassanzadeh, F.

    2012-01-01

    Quinazolinone backbone is present in a large number of bioactive substances. Since remarkable cytotoxic activity is associated with some 4(3H)-quinazolinones, in this study some 4(3H)-quinazolinone were synthesized and screened against HeLa cells. The synthesis was performed via reaction of anthranilic acid with dicarboxylic anhydrides to produce carboxylic acids derivatives. The products were heated in acetic anhydride to produce benzoxazinones. Finally, 4(3H)-quinazolinones were synthesized by reaction between benzoxazinones and primary amines. The assessment of the structure of the synthesized compounds was based on spectral data (FT-IR, Mass and 1HNMR). Subsequently, cytotoxic activity of compounds 3, 6, 9 and 13 (individually and in combination with doxorubicin) was evaluated on HeLa cell line using MTT assay. The results indicated that the tested compounds did not show significant cytotoxicity alone and in combination with doxorubicin (1 and 20 μM). PMID:23181089

  1. Early Human Prostate Adenocarcinomas Harbor Androgen-Independent Cancer Cells

    PubMed Central

    Fiñones, Rita R.; Yeargin, Jo; Lee, Melissa; Kaur, Aman Preet; Cheng, Clari; Sun, Paulina; Wu, Christopher; Nguyen, Catherine; Wang-Rodriguez, Jessica; Meyer, April N.; Baird, Stephen M.; Donoghue, Daniel J.; Haas, Martin

    2013-01-01

    Although blockade of androgen receptor (AR) signaling represents the main treatment for advanced prostate cancer (PrCa), many patients progress to a lethal phenotype of “Castration-Resistant” prostate cancer (CR-PrCa). With the hypothesis that early PrCa may harbor a population of androgen-unresponsive cancer cells as precursors to CR-recurrent disease, we undertook the propagation of androgen-independent cells from PrCa-prostatectomy samples of early, localized (Stage-I) cases. A collection of 120 surgical specimens from prostatectomy cases was established, among which 54 were adenocarcinomas. Hormone-free cell culture conditions were developed allowing routine propagation of cells expressing prostate basal cell markers and stem/progenitor cell markers, and which proliferated as spheres/spheroids in suspension cultures. Colonies of androgen-independent epithelial cells grew out from 30/43 (70%) of the adenocarcinoma cases studied in detail. Fluorescence microscopy and flow cytometry showed that CR-PrCa cells were positive for CD44, CD133, CK5/14, c-kit, integrin α2β1, SSEA4, E-Cadherin and Aldehyde Dehydrogenase (ALDH). All 30 CR-PrCa cell cultures were also TERT-positive, but negative for TMPRSS2-ERG. Additionally, a subset of 22 of these CR-PrCa cell cultures was examined by orthotopic xenografting in intact and castrated SCID mice, generating histologically typical locally-invasive human PrCa or undifferentiated cancers, respectively, in 6–8 weeks. Cultured PrCa cells and orthotopically-induced in vivo cancers lacked PSA expression. We report here the propagation of Cancer Initiating Cells (CIC) directly from Stage I human PrCa tissue without selection or genetic manipulation. The propagation of stem/progenitor-like CR-PrCa cells derived from early human prostate carcinomas suggests the existence of a subpopulation of cells resistant to androgen-deprivation therapy and which may drive the subsequent emergence of disseminated CR-PrCa. PMID:24086346

  2. Characterisation of Ca(2+)-dependent inwardly rectifying K+ currents in HeLa cells.

    PubMed

    Díaz, M; Sepúlveda, F V

    1995-06-01

    The whole-cell configuration of the patch-clamp technique was used to examine K+ currents in HeLa cells. Under quasi-physiological ionic gradients, using an intracellular solution containing 10(-7) mol/l free Ca2+, mainly outward currents were observed. Large inwardly rectifying currents were elicited in symmetrical 145 mmol/l KCl. Replacement of all extracellular K+ by isomolar Na+, greatly decreased inward currents and shifted the reversal potential as expected for K+ selectivity. The inwardly rectifying K+ currents exhibited little or no apparent voltage dependence within the range of from -120 mV to 120 mV. A square-root relationship between chord conductance and [K+] at negative potentials could be established. The inwardly rectifying nature of the currents was unaltered after removal of intracellular Mg2+ and chelation with ATP and ethylenediaminetetraacetic acid (EDTA). Permeability ratios for other monovalent cations relative to K+ were: K+ (1.0) > Rb+ (0.86) > Cs+ (0.12) > Li (0.08) > Na+ (0.03). Slope conductance ratios measured at -100 mV were: Rb+ (1.66) > K+ (1.0) > Na+ (0.09) > Li (0.08) > Cs+ (0.06). K+ conductance was highly sensitive to intracellular free Ca2+ concentration. The relationship between conductance at 0 mV and Ca2+ concentration was well described by a Hill expression with a dissociation constant, KD, of 70 nmol/l and a Hill coefficient, n, of 1.81. Extracellular Ba2+ blocked the currents in a concentration- and voltage-dependent manner. The dependence of the KD for the blockade was analysed using a Woodhull-type treatment, locating the ion interaction site at 19% of the distance across the electrical field of the membrane and a KD (0 mV) of 7 mmol/l. Tetraethylammonium and 4-aminopyridine were without effect whilst quinine and quinidine blocked the currents with concentrations for half-maximum effects equal to 7 mumol/l and 3.5 mumol/l, respectively. The unfractionated venom of the scorpion Leiurus quinquestriatus (LQV) blocked the K

  3. Ctotoxic and apoptogenic effects of Perovskia abrotanoides flower extract on MCF-7 and HeLa cell lines

    PubMed Central

    Geryani, Mohamad Ali; Mahdian, Davood; Mousavi, Seyed Hadi; Hosseini, Azar

    2016-01-01

    Objective: Perovskia abrotanoides Karel, belongs to the family Lamiaceae and grows wild alongside the mountainous roads inarid and cold climate of Northern Iran. The anti-tumor activity of P. abrotanoides root extract has been shown previously. This study was designed to examine in vitro anti-proliferative and pro-apoptotic effects of flower extract of P. abrotanoides on MCF-7 and Hela cell lines. Materials and Methods: Cells were cultured in DMEM medium with 10% fetal bovine serum, 100 units/ml penicillin and 100 µg/ml streptomycin and incubated with different concentrations of plant extracts. Cell viability was quantified by MTT assay. Apoptotic cells were determined using propidium iodide (PI) staining of DNA fragmentation by flow cytometry (sub-G1 peak). Results: P. abrotanoides extract inhibited the growth of malignant cells in a time and dose-dependent manner and 1000 µg/ml of extract following 48h of incubation was the most cytotoxic dose against Hela cell in comparison with other doses; however, in MCF-7 cells,1000 and 500 µg/ml PA induced toxicity at all time points but with different features.. Analysis of flowcytometry histogram of treated cells compared with control cells indicated that the cytotoxic effect is partly due toapoptosis induction. Conclusion: Hydro-alcoholic extract of P. abrotanoides flowers inhibits the growth of MCF-7 and HeLa cell lines, partly via inducing apoptosis. Their inhibitory effect was increased in a time and dose-dependent manner, especially in MCF7 cells. However, further studies are needed to reveal the mechanisms of P. abrotanoides extract-induced cell death. PMID:27516981

  4. Deoxyribonucleotide pool imbalance stimulates deletions in HeLa cell mitochondrial DNA.

    PubMed

    Song, Shiwei; Wheeler, Linda J; Mathews, Christopher K

    2003-11-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder associated with multiple mutations in mitochondrial DNA, both deletions and point mutations, and mutations in the nuclear gene for thymidine phosphorylase. Spinazzola et al. (Spinazzola, A., Marti, R., Nishino, I., Andreu, A., Naini, A., Tadesse, S., Pela, I., Zammarchi, E., Donati, M., Oliver, J., and Hirano, M. (2001) J. Biol. Chem. 277, 4128-4133) showed that MNGIE patients have elevated circulating thymidine levels and they hypothesized that this generates imbalanced mitochondrial deoxyribonucleoside triphosphate (dNTP) pools, which in turn are responsible for mitochondrial (mt) DNA mutagenesis. We tested this hypothesis by culturing HeLa cells in medium supplemented with 50 microM thymidine. After 8-month growth, mtDNA in the thymidine-treated culture, but not the control, showed multiple deletions, as detected both by Southern blotting and by long extension polymerase chain reaction. After 4-h growth in thymidine-supplemented medium, we found the mitochondrial dTTP and dGTP pools to expand significantly, the dCTP pool to drop significantly, and the dATP pool to drop slightly. In whole-cell extracts, dTTP and dGTP pools also expanded, but somewhat less than in mitochondria. The dCTP pool shrank by about 50%, and the dATP pool was essentially unchanged. These results are discussed in terms of the recent report by Nishigaki et al. (Nishigaki, Y., Marti, R., Copeland, W. C., and Hirano, M. (2003) J. Clin. Invest. 111, 1913-1921) that most mitochondrial point mutations in MNGIE patients involve T --> C transitions in sequences containing two As to the 5' side of a T residue. Our finding of dTTP and dGTP elevations and dATP depletion in mitochondrial dNTP pools are consistent with a mutagenic mechanism involving T-G mispairing followed by a next-nucleotide effect involving T insertion opposite A. PMID:13679382

  5. Antibodies against recombinant catalytic domain of lethal toxin of Clostridium sordellii neutralize lethal toxin toxicity in HeLa cells.

    PubMed

    Arya, Preetika; Ponmariappan, S; Singh, Lokendra; Prasad, G B K S

    2013-02-01

    Lethal toxin of Clostridium sordellii (MLD 150 ng/kg) is one of the most potent Clostridial toxins and is responsible for most of the diseases including sudden death syndrome in cattle, sheep and toxic shock syndrome, necrotizing faciitis, neonatal omphalitis and gangrene in humans. Lethal toxin (TcsL) is a single chain protein of about 270 kDa. In the present study, 1.6 kb DNA fragment encoding for the catalytic domain of TcsL was PCR amplified, cloned in pQE30 UA vector and expressed in E. coli SG 13009. The expression of recombinant lethal toxin protein (rTcsL) was optimized and it was purified under native conditions using a single step Ni-NTA affinity chromatography. The purified recombinant protein was used for the production of polyclonal antibodies in mice and rabbit. The raised antibodies reacted specifically with the purified rTcsL and intact native lethal toxin on Western blot. The biological activity of the recombinant protein was tested in HeLa cells where it showed the cytotoxicity. Further, the polyclonal antibodies were used for in-vitro neutralization of purified rTcsL, acid precipitated C. sordellii and C. difficile native toxins in HeLa cells. Mice and rabbit anti-rTcsL sera effectively neutralized the cytotoxicity of rTcsL and C. sordellii native toxin but it did not neutralize the cytotoxicity of C. difficile toxin in HeLa cells. PMID:22894159

  6. Stem cells as the root of pancreatic ductal adenocarcinoma

    SciTech Connect

    Balic, Anamaria; Dorado, Jorge; Alonso-Gomez, Mercedes; Heeschen, Christopher

    2012-04-01

    Emerging evidence suggests that stem cells play a crucial role not only in the generation and maintenance of different tissues, but also in the development and progression of malignancies. For the many solid cancers, it has now been shown that they harbor a distinct subpopulation of cancer cells that bear stem cell features and therefore, these cells are termed cancer stem cells (CSC) or tumor-propagating cells. CSC are exclusively tumorigenic and essential drivers for tumor progression and metastasis. Moreover, it has been shown that pancreatic ductal adenocarcinoma does not only contain one homogeneous population of CSC rather than diverse subpopulations that may have evolved during tumor progression. One of these populations is called migrating CSC and can be characterized by CXCR4 co-expression. Only these cells are capable of evading the primary tumor and traveling to distant sites such as the liver as the preferred site of metastatic spread. Clinically even more important, however, is the observation that CSC are highly resistant to chemo- and radiotherapy resulting in their relative enrichment during treatment and rapid relapse of disease. Many laboratories are now working on the further in-depth characterization of these cells, which may eventually allow for the identification of their Achilles heal and lead to novel treatment modalities for fighting this deadly disease.

  7. Outcome of treatment of human HeLa cervical cancer cells with roscovitine strongly depends on the dosage and cell cycle status prior to the treatment.

    PubMed

    Wesierska-Gadek, Józefa; Borza, Andreea; Walzi, Eva; Krystof, Vladimir; Maurer, Margarita; Komina, Oxana; Wandl, Stefanie

    2009-04-01

    Exposure of asynchronously growing human HeLa cervical carcinoma cells to roscovitine (ROSC), a selective cyclin-dependent kinases (CDKs) inhibitor, arrests their progression at the transition between G(2)/M and/or induces apoptosis. The outcome depends on the ROSC concentration. At higher dose ROSC represses HPV-encoded E7 oncoprotein and initiates caspase-dependent apoptosis. Inhibition of the site-specific phosphorylation of survivin and Bad, occurring at high-dose ROSC treatment, precedes the onset of apoptosis and seems to be a prerequisite for cell death. Considering the fact that in HeLa cells the G(1)/S restriction checkpoint is abolished by E7, we addressed the question whether the inhibition of CDKs by pharmacological inhibitors in synchronized cells would be able to block the cell-cycle in G(1) phase. For this purpose, we attempted to synchronize cells by serum withdrawal or by blocking of the mitotic apparatus using nocodazole. Unlike human MCF-7 cells, HeLa cells do not undergo G(1) block after serum starvation, but respond with a slight increase of the ratio of G(1) population. Exposure of G(1)-enriched HeLa cells to ROSC after re-feeding does not block their cell-cycle progression at G(1)-phase, but increases the ratio of S- and G(2)-phase, thereby mimicking the effect on asynchronously growing cells. A quite different impact is observed after treatment of HeLa cells released from mitotic block. ROSC prevents their cell cycle progression and cells transiently accumulate in G(1)-phase. These results show that inhibition of CDKs by ROSC in cells lacking the G(1)/S restriction checkpoint has different outcomes depending on the cell-cycle status prior to the onset of treatment. PMID:19180585

  8. Napsin A is a specific marker for ovarian clear cell adenocarcinoma.

    PubMed

    Yamashita, Yoriko; Nagasaka, Tetsuro; Naiki-Ito, Aya; Sato, Shinya; Suzuki, Shugo; Toyokuni, Shinya; Ito, Masafumi; Takahashi, Satoru

    2015-01-01

    Ovarian clear cell adenocarcinoma has a relatively poor prognosis among the ovarian cancer subtypes because of its high chemoresistance. Differential diagnosis of clear cell adenocarcinoma from other ovarian surface epithelial tumors is important for its treatment. Napsin A is a known diagnostic marker for lung adenocarcinoma, and expression of napsin A is reported in a certain portion of thyroid and renal carcinomas. However, napsin A expression in ovarian surface epithelial tumors has not previously been examined. In this study, immunohistochemical analysis revealed that in 71 of 86 ovarian clear cell adenocarcinoma patients (83%) and all of the 13 patients with ovarian clear cell adenofibroma, positive napsin A staining was evident. No expression was observed in 30 serous adenocarcinomas, 11 serous adenomas or borderline tumors, 19 endometrioid adenocarcinomas, 22 mucinous adenomas or borderline tumors, 10 mucinous adenocarcinomas, or 3 yolk sac tumors of the ovary. Furthermore, expression of napsin A was not observed in the normal surface epithelium of the ovary, epithelia of the fallopian tubes, squamous epithelium, endocervical epithelium, or the endometrium of the uterus. Therefore, we propose that napsin A is another sensitive and specific marker for distinguishing ovarian clear cell tumors (especially adenocarcinomas) from other ovarian tumors. PMID:24721826

  9. Molecular crosstalk between apoptosis and autophagy induced by a novel 2-methoxyestradiol analogue in cervical adenocarcinoma cells

    PubMed Central

    2013-01-01

    Background 2-Methoxyestradiol has been shown to induce both autophagy and apoptosis in various carcinogenic cell lines. Although a promising anti-cancer agent, it has poor bioavailability and rapid in vivo metabolism which decreases its efficiency. In order to improve 2-methoxyestradiol’s anti-proliferative properties, a novel 2-methoxyestradiol analogue, 2-ethyl-3-O-sulphamoyl-estra-1,3,5 (10)16-tetraene (ESE-16), was previously in silico-designed in our laboratory. This study investigated ESE-16 for its anti-proliferative potential on a cervical adenocarcinoma cell (HeLa) cell line. Additionally, the possible intracellular crosstalk mechanisms between the two types of cell death were investigated. Methods and results HeLa cells exposed to 0.5 μM ESE-16 for 24 hours showed morphological evidence of both apoptotic and autophagic death pathways as assessed by polarization-optical transmitted light differential interference contrast microscopy, fluorescent microscopy and transmission electron microscopy. Flow cytometric cyclin B1 quantification revealed induction of programmed cell death after halting cell cycle progression in metaphase. Confocal microscopy demonstrated that ESE-16 caused microtubule fragmentation. Flow cytometric analysis of cell cycle progression and phosphatidylserine flip determination confirmed induction of apoptosis. Moreover, an increase in aggresome formation and microtubule-associated protein light chain, LC3, was demonstrated indicative of autophagy. Both caspase 8 and 3 were upregulated in a spectrophotometric analysis, indicating the involvement of the extrinsic pathway of apoptotic induction. Conclusions We conclude that the novel in silico-designed compound, ESE-16, exerts its anti-proliferative effect on the tumorigenic human epithelial cervical (HeLa) cells by sequentially targeting microtubule integrity, resulting in a metaphase block, causing induction of both autophagic and apoptotic cell death via a crosstalk mechanism that

  10. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  11. Unusual prolongation of radiation-induced G2 arrest in tumor xenografts derived from HeLa cells

    PubMed Central

    Kaida, Atsushi; Miura, Masahiko

    2015-01-01

    The effect of ionizing radiation on cell cycle kinetics in solid tumors remains largely unknown because of technical limitations and these tumors’ complicated structures. In this study, we analyzed intratumoral cell cycle kinetics after X-irradiation of tumor xenografts derived from HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci), a novel system to visualize cell cycle kinetics in vivo. Cell cycle kinetics after X-irradiation was examined by using tumor sections and in vivo real-time imaging system in tumor xenografts derived from HeLa cells expressing Fucci. We found that G2 arrest was remarkably prolonged, up to 5 days after 10-Gy irradiation, in contrast to monolayer cultures where G2 arrest returned within 24 h. Cells isolated from tumors 5 days after irradiation exhibited a higher surviving fraction than those isolated immediately or one day after irradiation. In this study, we clearly demonstrated unusual post-irradiation cell cycle kinetics in tumor xenografts derived from HeLa-Fucci cells. Our findings imply that prolonged G2 arrest occurring in tumor microenvironments following irradiation may function as a radioresistance mechanism. PMID:26195156

  12. Two new neolignans from Patrinia scabra with potent cytotoxic activity against HeLa and MNK-45 cells.

    PubMed

    Di, Lei; Yan, Guo-Qing; Wang, Ling-Yu; Ma, Wei; Wang, Kai-Jin; Li, Ning

    2013-10-01

    Two new neolignans, patrineolignan A (1) and patrineolignan B (2), together with seven known lignans, were isolated from the 90 % aqueous EtOH extract of the roots of Patrinia scabra. Their structures were elucidated on the basis of spectroscopic data (HRESIMS, IR, 1D and 2D NMR) and comparison with literature data. The two new neolignans were evaluated in vitro for cytotoxic properties against human cervical carcinoma HeLa cell line and gastric carcinoma MNK-45 cell line using the microculture tetrazolium assay, and both 1 and 2 exhibited strongly cytotoxic activity against the two tumor cell lines. PMID:23737105

  13. Cytotoxic evaluation of volatile oil from Descurainia sophia seeds on MCF-7 and HeLa cell lines

    PubMed Central

    Khodarahmi, E.; Asghari, G.H.; Hassanzadeh, F.; Mirian, M.; Khodarahmi, G.A.

    2015-01-01

    Descurainia sophia is a plant widely distributed and used as folk medicine throughout the world. Different extracts of aerial parts and seeds of this plant have been shown to inhibit the growth of different cancer cell lines in vitro. In this study, cytotoxic activity of D. sophia seed volatile oil was evaluated. D. sophia seed powder was mixed with distilled water and left at 25 °C for 17 h (E1), 23 h (E2) and 28 h (E3) to autolyse. Then, the volatile fractions of E1, E2, and E3 were collected after steam distillation for 3 h. Cytotoxic effects of the volatile oils alone or in combination with doxorubicin (mixture of E1 or E2 at 50 μg/ml or E1 at 100 μg/ml with doxorubicin at 0.1, 1, 10 μM) against MCF-7 cell line were determined using MTT assay. Cytotoxic effect of E1 volatile oil was also determined on HeLa cell line. The results indicated that 1-buten-4-isothiocyanate was the major isothiocyanate found in the volatile oils. The results of cytotoxic evaluations showed that volatile constituents were more toxic on MCF-7 cells with IC50< 100 μg/ml than HeLa cells with IC50> 100 μg/ml. No significant differences were observed between cytotoxic activities of E1, E2 and E3 on MCF-7 cell line. Concomitant use of E1 and E2 (50 μg/ml) with doxurubicin (1 μM) significantly reduced the viability of MCF-7 cells compared to the negative control, doxorubicin alone, or each volatile fraction. The same result was obtained on HeLa cells, when E1 (100 μg/ml) was concurrently used with doxorubicin (1 μM). PMID:26487894

  14. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  15. Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

    PubMed Central

    Jordan, Andreas

    2015-01-01

    Summary Nanomedicine is a rapidly growing field in nanotechnology, which has great potential in the development of new therapies for numerous diseases. For example iron oxide nanoparticles are in clinical use already in the thermotherapy of brain cancer. Although it has been shown, that tumor cells take up these particles in vitro, little is known about the internalization routes. Understanding of the underlying uptake mechanisms would be very useful for faster and precise development of nanoparticles for clinical applications. This study aims at the identification of key proteins, which are crucial for the active uptake of iron oxide nanoparticles by HeLa cells (human cervical cancer) as a model cell line. Cells were transfected with specific siRNAs against Caveolin-1, Dynamin 2, Flotillin-1, Clathrin, PIP5Kα and CDC42. Knockdown of Caveolin-1 reduces endocytosis of superparamagnetic iron oxide nanoparticles (SPIONs) and silica-coated iron oxide nanoparticles (SCIONs) between 23 and 41%, depending on the surface characteristics of the nanoparticles and the experimental design. Knockdown of CDC42 showed a 46% decrease of the internalization of PEGylated SPIONs within 24 h incubation time. Knockdown of Dynamin 2, Flotillin-1, Clathrin and PIP5Kα caused no or only minor effects. Hence endocytosis in HeLa cells of iron oxide nanoparticles, used in this study, is mainly mediated by Caveolin-1 and CDC42. It is shown here for the first time, which proteins of the endocytotic pathway mediate the endocytosis of silica-coated iron oxide nanoparticles in HeLa cells in vitro. In future studies more experiments should be carried out with different cell lines and other well-defined nanoparticle species to elucidate possible general principles. PMID:25671161

  16. MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells

    SciTech Connect

    Yao, Qing; Xu, Hui; Zhang, Qian-Qian; Zhou, Hui; Qu, Liang-Hu

    2009-10-23

    MicroRNAs are involved in cancer-related processes. The microRNA-21(miR-21) has been identified as the only miRNA over-expressed in a wide variety of cancers, including cervical cancer. However, the function of miR-21 is unknown in cervical carcinomas. In this study, we found that the inhibition of miR-21 in HeLa cervical cancer cells caused profound suppression of cell proliferation, and up-regulated the expression of the tumor suppressor gene PDCD4. We also provide direct evidence that PDCD4-3'UTR is a functional target of miR-21 and that the 18 bp putative target site can function as the sole regulatory element in HeLa cells. These results suggest that miR-21 may play an oncogenic role in the cellular processes of cervical cancer and may serve as a target for effective therapies.

  17. FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells

    PubMed Central

    Zheng, Yanhong; Tang, Yunlan; Bao, Zhirong; Wang, Hui; Ren, Feng; Guo, Mingxiong; Quan, Hong; Jiang, Changzhong

    2015-01-01

    Nanomaterials have an advantage in “personalized” therapy, which is the ultimate goal of tumor treatment. In order to investigate the potential ability of FePt nanoparticles (NPs) in the diagnosis and chemoradiotherapy treatment of malignant tumors, superparamagnetic, monodispersed FePt (~3 nm) alloy NPs were synthesized, using cysteamine as a capping agent. The NPs were characterized by means of X-ray diffraction; transmission electron microscopy, Physical Property Measurement System, and Fourier transform infrared spectroscopy. The cytotoxicity of FePt NPs on Vero cells was assessed using an MTT assay, and tumor cell proliferation inhibited by individual FePt NPs and FePt NPs combined with X-ray beams were also collected using MTT assays; HeLa human cancer cell lines were used as in vitro models. Further confirmation of the combined effect of FePt NPs and X-rays was verified using HeLa cells, after which, the cellular uptake of FePt NPs was captured by transmission electron microscopy. The results indicated that the growth of HeLa cells was significantly inhibited by FePt NPs in a concentration-dependent manner, and the growth was significantly more inhibited by FePt NPs combined with a series of X-ray beam doses; the individual NPs did not display any remarkable cytotoxicity on Vero cells at a concentration <250 μg/mL. Meanwhile, the FePt NPs showed negative/positive contrast enhancement for MRI/CT molecule imaging at the end of the study. Therefore, the combined results implied that FePt NPs might potentially serve as a promising nanoprobe for the integration of tumor diagnosis and chemoradiotherapy. PMID:26604740

  18. Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques

    NASA Astrophysics Data System (ADS)

    Khoshgard, Karim; Hashemi, Bijan; Arbabi, Azim; Javad Rasaee, Mohammad; Soleimani, Masoud

    2014-05-01

    Due to the high atomic number of gold nanoparticles (GNPs), they are known as new radiosensitizer agents for enhancing the efficiency of superficial radiotherapy techniques by increasing the dose absorbed in tumor cells wherein they can be accumulated selectively. The aim of this study was to compare the effect of various common low energy levels of orthovoltage x-rays and megavoltage γ-rays (Co-60) on enhancing the therapeutic efficiency of HeLa cancer cells in the presence of conjugated folate and non-conjugated (pegylated) GNPs. To achieve this, GNPs with an average diameter of 52 nm were synthesized and conjugated to folic acid molecules. Pegylated GNPs with an average diameter of 47 nm were also synthesized and used as non-conjugated folate GNPs. Cytotoxicity assay of the synthesized folate-conjugated and pegylated GNPs was performed using different levels of nanoparticle concentration incubated with HeLa cells for 24 h. The radiosensitizing effect of both the conjugated and pegylated GNPs on the cells at a concentration of 50 µM was compared using MTT as well as clonogenic assays after exposing them to 2 Gy ionizing radiation produced by an orthovoltage x-ray machine at four different kVps and γ-rays of a Co-60 unit. Significant differences were noted among various irradiated groups with and without the folate conjugation, with an average dose enhancement factor (DEF) of 1.64 ± 0.05 and 1.35 ± 0.05 for the folate-conjugated and pegylated GNPs, respectively. The maximum DEF was obtained with the 180 kVp x-ray beam for both of the GNPs. Folate-conjugated GNPs can significantly enhance the cell killing potential of orthovoltage x-ray energies (especially at 180 kVp) in folate receptor-expressing cancer cells, such as HeLa, in superficial radiotherapy techniques.

  19. FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells.

    PubMed

    Zheng, Yanhong; Tang, Yunlan; Bao, Zhirong; Wang, Hui; Ren, Feng; Guo, Mingxiong; Quan, Hong; Jiang, Changzhong

    2015-01-01

    Nanomaterials have an advantage in "personalized" therapy, which is the ultimate goal of tumor treatment. In order to investigate the potential ability of FePt nanoparticles (NPs) in the diagnosis and chemoradiotherapy treatment of malignant tumors, superparamagnetic, monodispersed FePt (~3 nm) alloy NPs were synthesized, using cysteamine as a capping agent. The NPs were characterized by means of X-ray diffraction; transmission electron microscopy, Physical Property Measurement System, and Fourier transform infrared spectroscopy. The cytotoxicity of FePt NPs on Vero cells was assessed using an MTT assay, and tumor cell proliferation inhibited by individual FePt NPs and FePt NPs combined with X-ray beams were also collected using MTT assays; HeLa human cancer cell lines were used as in vitro models. Further confirmation of the combined effect of FePt NPs and X-rays was verified using HeLa cells, after which, the cellular uptake of FePt NPs was captured by transmission electron microscopy. The results indicated that the growth of HeLa cells was significantly inhibited by FePt NPs in a concentration-dependent manner, and the growth was significantly more inhibited by FePt NPs combined with a series of X-ray beam doses; the individual NPs did not display any remarkable cytotoxicity on Vero cells at a concentration <250 μg/mL. Meanwhile, the FePt NPs showed negative/positive contrast enhancement for MRI/CT molecule imaging at the end of the study. Therefore, the combined results implied that FePt NPs might potentially serve as a promising nanoprobe for the integration of tumor diagnosis and chemoradiotherapy. PMID:26604740

  20. Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques.

    PubMed

    Khoshgard, Karim; Hashemi, Bijan; Arbabi, Azim; Rasaee, Mohammad Javad; Soleimani, Masoud

    2014-05-01

    Due to the high atomic number of gold nanoparticles (GNPs), they are known as new radiosensitizer agents for enhancing the efficiency of superficial radiotherapy techniques by increasing the dose absorbed in tumor cells wherein they can be accumulated selectively. The aim of this study was to compare the effect of various common low energy levels of orthovoltage x-rays and megavoltage γ-rays (Co-60) on enhancing the therapeutic efficiency of HeLa cancer cells in the presence of conjugated folate and non-conjugated (pegylated) GNPs. To achieve this, GNPs with an average diameter of 52 nm were synthesized and conjugated to folic acid molecules. Pegylated GNPs with an average diameter of 47 nm were also synthesized and used as non-conjugated folate GNPs. Cytotoxicity assay of the synthesized folate-conjugated and pegylated GNPs was performed using different levels of nanoparticle concentration incubated with HeLa cells for 24 h. The radiosensitizing effect of both the conjugated and pegylated GNPs on the cells at a concentration of 50 µM was compared using MTT as well as clonogenic assays after exposing them to 2 Gy ionizing radiation produced by an orthovoltage x-ray machine at four different kVps and γ-rays of a Co-60 unit. Significant differences were noted among various irradiated groups with and without the folate conjugation, with an average dose enhancement factor (DEF) of 1.64 ± 0.05 and 1.35 ± 0.05 for the folate-conjugated and pegylated GNPs, respectively. The maximum DEF was obtained with the 180 kVp x-ray beam for both of the GNPs. Folate-conjugated GNPs can significantly enhance the cell killing potential of orthovoltage x-ray energies (especially at 180 kVp) in folate receptor-expressing cancer cells, such as HeLa, in superficial radiotherapy techniques. PMID:24733041

  1. ELECTRON MICROSCOPE OBSERVATIONS ON THE SURFACE ADENOSINE TRIPHOSPHATASE-LIKE ENZYMES OF HELA CELLS INFECTED WITH HERPES VIRUS.

    PubMed

    EPSTEIN, M A; HOLT, S J

    1963-11-01

    HeLa cells infected with herpes simplex virus have been examined in thin sections by electron microscopy after cytochemical staining for the presence of surface enzymes splitting adenosine triphosphate. As with uninfected HeLa cultures (18), the opaque enzyme reaction product was localized at the plasma membranes of about half the cells, tending to be present where there were microvilli and absent on smooth surfaces. Where mature extracellular herpes particles were found in association with cell membranes showing the enzyme activity, they were invariably likewise stained, and conversely, those mature particles which lay close against cells without reaction product at the surface were themselves free of it. Particles found budding into cytoplasmic vacuoles were also always without opaque deposit since this was never seen at vacuolar membranes, even in cells having the activity at the surface. The enzyme reaction product thus provided a marker indicating the manner in which the particles escape from cells and mature by budding out through cellular membranes, carrying, in the process, a portion of the latter on to themselves to form the outer viral limiting membrane. In some instances, virus particles were observed with more opaque material covering them than was present at the cell membrane with which they were associated. This finding has been taken as evidence for a physiological waxing and waning of surface enzyme activity of adenosine triphosphatase type. The fine structure of the mature extracellular virus as prepared here, using glutaraldehyde fixation, is also recorded. The observations and interpretations are discussed in full. PMID:14086760

  2. A case of simultaneous esophageal squamous cell carcinoma and Barrett's adenocarcinoma.

    PubMed

    Yamazaki, Tomoo; Iwaya, Yugo; Iwaya, Mai; Watanabe, Takayuki; Seki, Ayako; Ochi, Yasuhide; Hara, Etsuo; Sekiguchi, Tomohiro; Hosaka, Noriko; Arakura, Norikazu; Tanaka, Eiji; Hasebe, Osamu

    2016-08-01

    A 77-year-old male with a long history of alcohol consumption and smoking was admitted for hoarseness and dysphagia. Computed tomography revealed thickening of the middle intrathoracic esophageal wall and multiple mediastinal lymph node swellings. Esophagogastroduodenoscopic examination disclosed an advanced-stage squamous cell carcinoma lesion in the middle intrathoracic esophagus with synchronous early stage Barrett's adenocarcinoma. The patient underwent endoscopic submucosal dissection for the adenocarcinoma followed by chemoradiation therapy for the squamous cell carcinoma. In spite of their common risk factors, the simultaneous manifestation of esophageal squamous cell carcinoma and Barrett's adenocarcinoma is extremely rare and requires further study. PMID:27220657

  3. Whole-genome sequencing of nine esophageal adenocarcinoma cell lines.

    PubMed

    Contino, Gianmarco; Eldridge, Matthew D; Secrier, Maria; Bower, Lawrence; Fels Elliott, Rachael; Weaver, Jamie; Lynch, Andy G; Edwards, Paul A W; Fitzgerald, Rebecca C

    2016-01-01

    Esophageal adenocarcinoma (EAC) is highly mutated and molecularly heterogeneous. The number of cell lines available for study is limited and their genome has been only partially characterized. The availability of an accurate annotation of their mutational landscape is crucial for accurate experimental design and correct interpretation of genotype-phenotype findings. We performed high coverage, paired end whole genome sequencing on eight EAC cell lines-ESO26, ESO51, FLO-1, JH-EsoAd1, OACM5.1 C, OACP4 C, OE33, SK-GT-4-all verified against original patient material, and one esophageal high grade dysplasia cell line, CP-D. We have made available the aligned sequence data and report single nucleotide variants (SNVs), small insertions and deletions (indels), and copy number alterations, identified by comparison with the human reference genome and known single nucleotide polymorphisms (SNPs). We compare these putative mutations to mutations found in primary tissue EAC samples, to inform the use of these cell lines as a model of EAC. PMID:27594985

  4. Whole-genome sequencing of nine esophageal adenocarcinoma cell lines

    PubMed Central

    Contino, Gianmarco; Eldridge, Matthew D.; Secrier, Maria; Bower, Lawrence; Fels Elliott, Rachael; Weaver, Jamie; Lynch, Andy G.; Edwards, Paul A.W.; Fitzgerald, Rebecca C.

    2016-01-01

    Esophageal adenocarcinoma (EAC) is highly mutated and molecularly heterogeneous. The number of cell lines available for study is limited and their genome has been only partially characterized. The availability of an accurate annotation of their mutational landscape is crucial for accurate experimental design and correct interpretation of genotype-phenotype findings. We performed high coverage, paired end whole genome sequencing on eight EAC cell lines—ESO26, ESO51, FLO-1, JH-EsoAd1, OACM5.1 C, OACP4 C, OE33, SK-GT-4—all verified against original patient material, and one esophageal high grade dysplasia cell line, CP-D. We have made available the aligned sequence data and report single nucleotide variants (SNVs), small insertions and deletions (indels), and copy number alterations, identified by comparison with the human reference genome and known single nucleotide polymorphisms (SNPs). We compare these putative mutations to mutations found in primary tissue EAC samples, to inform the use of these cell lines as a model of EAC.

  5. Co-encapsulation of chrysophsin-1 and epirubicin in PEGylated liposomes circumvents multidrug resistance in HeLa cells.

    PubMed

    Lo, Yu-Li; Tu, Wei-Chen

    2015-12-01

    Chrysophsin-1, an amphipathic alpha-helical antimicrobial peptide, is isolated from the gills of the red sea bream and possesses different structure and mechanism(s) in comparison with traditional multidrug resistance (MDR) modulators. For the purpose of reducing off-target normal cell toxicity, it is rational to incorporate chrysophsin-1 and epirubicin in a PEGylated liposomal formulation. In the present study, we report a multifunctional liposomes with epirubicin as an antineoplastic agent and an apoptosis inducer, as well as chrysophsin-1 as a MDR transporter inhibitor and an apoptosis modulator in human cervical cancer HeLa cells. Co-incubation of HeLa cells with PEGylated liposomal formulation of epirubicin and chrysophsin-1 resulted in a significant increase in the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or chrysophsin-1 were shown to considerably improve the intracellular H2O2 and O2(-) levels of HeLa cells. Furthermore, these treatments were found to extensively reduce mRNA expression levels of MDR1, MRP1, and MRP2. The addition of chrysophsin-1 in liposomes was demonstrated to substantially enhance the intracellular accumulation of epirubicin in HeLa cells. Moreover, the PEGylated liposomes of epirubicin and chrysophsin-1 were also found to significantly increase the mRNA expressions of p53, Bax, and Bcl-2. The ratio of Bax to Bcl-2 was noticeably amplified in the presence of these formulations. Apoptosis induction was also validated by chromatin condensation, a reduction in mitochondrial membrane potential, the increased sub-G1 phase of cell cycle, and more populations of apoptosis using annexin V/PI assay. These formulations were verified to increase the activity and mRNA expression levels of caspase-9 and caspases-3. Collectively, our findings provide the first evidence that cotreatment with free or liposomal chrysophsin-1 and epirubicin leads to cell death in human cervical cancer cells through the ROS

  6. Comprehensive High-Throughput RNA Sequencing Analysis Reveals Contamination of Multiple Nasopharyngeal Carcinoma Cell Lines with HeLa Cell Genomes

    PubMed Central

    Strong, Michael J.; Baddoo, Melody; Nanbo, Asuka; Xu, Miao; Puetter, Adriane

    2014-01-01

    ABSTRACT In an attempt to explore infectious agents associated with nasopharyngeal carcinomas (NPCs), we employed our high-throughput RNA sequencing (RNA-seq) analysis pipeline, RNA CoMPASS, to investigate the presence of ectopic organisms within a number of NPC cell lines commonly used by NPC and Epstein-Barr virus (EBV) researchers. Sequencing data sets from both CNE1 and HONE1 were found to contain reads for human papillomavirus 18 (HPV-18). Subsequent real-time reverse transcription-PCR (RT-PCR) analysis on a panel of NPC cell lines identified HPV-18 in CNE1 and HONE1 as well as three additional NPC cell lines (CNE2, AdAH, and NPC-KT). Further analysis of the chromosomal integration arrangement of HPV-18 in NPCs revealed patterns identical to those observed in HeLa cells. Clustering based on human single nucleotide variation (SNV) analysis of two separate HeLa cell lines and several NPC cell lines demonstrated two distinct clusters with CNE1, as well as HONE1 clustering with the two HeLa cell lines. In addition, duplex-PCR-based genotyping showed that CNE1, CNE2, and HONE1 do not have a HeLa cell-specific L1 retrotransposon insertion, suggesting that these three HPV-18+ NPC lines are likely products of a somatic hybridization with HeLa cells, which is also consistent with our RNA-seq-based gene level SNV analysis. Taking all of these findings together, we conclude that a widespread HeLa contamination may exist in many NPC cell lines, and authentication of these cell lines is recommended. Finally, we provide a proof of concept for the utility of an RNA-seq-based approach for cell authentication. IMPORTANCE Nasopharyngeal carcinoma (NPC) cell lines are important model systems for analyzing the complex life cycle and pathogenesis of Epstein-Barr virus (EBV). Using an RNA-seq-based approach, we found HeLa cell contamination in several NPC cell lines that are commonly used in the EBV and related fields. Our data support the notion that contamination resulted from

  7. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells

    PubMed Central

    Zhen, Hong; Huang, Ming; Zheng, Xi; Feng, Lixing; Jiang, Baohong; Yang, Min; Wu, Wanying; Liu, Xuan; Guo, Dean

    2016-01-01

    Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K

  8. Suppressive Effect of Constructed shRNAs against Apollon Induces Apoptosis and Growth Inhibition in the HeLa Cell Line

    PubMed Central

    Milani, Saeideh; Bandehpour, Mojgan; Sharifi, Zohreh; Kazemi, Bahram

    2016-01-01

    Background: Cervical cancer is the second most common female cancer worldwide. Inhibitors of apoptosis proteins (IAPs) block apoptosis; therefore, therapeutic strategies targeting IAPs have attracted the interest of researchers in recent years. Apollon, a member of IAPs, inhibits apoptosis and cell death. RNA interference is a pathway in which small interfering RNA (siRNA) or shRNA (short hairpin RNA) inactivates the expression of target genes. The purpose of this study was to determine the effect of constructed shRNAs on apoptosis and growth inhibition through the suppression of apollon mRNA in HeLa cell line. Methods: Three shRNAs with binding ability to three different target sites of the first region of apollon gene were designed and cloned in pRNAin-H1.2/Neo vector. shRNA plasmids were then transfected in HeLa cells using electroporation. Down-regulation effects of apollon and the viability of HeLa cells were analyzed by RT-PCR, lactate dehydrogenase assay, and MTT assay, respectively. Also, the induction and morphological markers of apoptosis were evaluated by caspase assay and immunocytochemistry method. Results: The expression of shRNA in HeLa cells caused a significant decrease in the level of apollon mRNA1. In addition, shRNA1 effectively increased the mRNA level of Smac (as the antagonist of apollon), reduced the viability of HeLa cells and exhibited immunocytochemical apoptotic markers in this cell line. Conclusion: Apollon gene silencing can induce apoptosis and growth impairment in HeLa cells. In this regard, apollon can be considered a candidate therapeutic target in HeLa cells as a positive human papillomavirus cancer cell line. PMID:26748613

  9. Inactivated Tianjin strain, a novel genotype of Sendai virus, induces apoptosis in HeLa, NCI-H446 and Hep3B cells

    PubMed Central

    CHEN, JUN; HAN, HAN; WANG, BIN; SHI, LIYING

    2016-01-01

    The Sendai virus strain Tianjin is a novel genotype of the Sendai virus. In previous studies, ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) demonstrated antitumor effects on human breast cancer cells. The aim of the present study was to investigate the in vitro antitumor effects of UV-Tianjin on the human cervical carcinoma HeLa, human small cell lung cancer NCI-H446 and human hepatocellular carcinoma Hep 3B cell lines, and the possible underlying mechanisms of these antitumor effects. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay revealed that UV-Tianjin treatment inhibited the proliferation of HeLa, NCI-H446 and Hep 3B cells in a dose- and time-dependent manner. Hoechst and Annexin V-fluorescein isothiocyanate/propidium iodide double staining indicated that UV-Tianjin induced dose-dependent apoptosis in all three cell lines with the most significant effect observed in the HeLa cell line. In the HeLa cell line, UV-Tianjin-induced apoptosis was further confirmed by the disruption of the mitochondria membrane potential and the activation of caspases, as demonstrated by fluorescent cationic dye and colorimetric assays, respectively. In addition, western blot analysis revealed that UV-Tianjin treatment resulted in significant upregulation of cytochrome c, apoptosis protease activating factor-1, Fas, Fas ligand and Fas-associated protein with death domain, and activated caspase-9, −8 and −3 in HeLa cells. Based on these results, it is hypothesized that UV-Tianjin exhibits anticancer activity in HeLa, NCI-H446 and Hep 3B cell lines via the induction of apoptosis. In conclusion, the results of the present study indicate that in the HeLa cell line, intrinsic and extrinsic apoptotic pathways may be involved in UV-Tianjin-induced apoptosis. PMID:27347098

  10. Regeneration of Cation-Transport Capacity in HeLa Cell Membranes After Specific Blockade by Ouabain

    PubMed Central

    Vaughan, Gerald L.; Cook, John S.

    1972-01-01

    The cardiac glycoside, ouabain, inhibits alkali-cation transport in HeLa cells. It binds to 0.75 × 106 sites per cell, and the half-time for its dissociation is 16 hr. After partial blockade by ouabain, the cell generates new ouabain-binding sites, with total restoration of transport in 10% of a cell cycle(∼3 hr). This recovery requires protein synthesis and appears to be a response to altered cell-electrolyte content, since growth of cells in media with low K+ concentration enhances the titer of the transport enzyme in a fashion similar to the effect of ouabain. Totally blocked cells do not recover. PMID:4506784

  11. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  12. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells.

    PubMed

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W; Basse, Per H; Wang, Hong; Wang, Xinhui; Proia, David A; Greenberger, Joel S; Socinski, Mark A; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  13. Caspase Activation and Specific Cleavage of Substrates after Coxsackievirus B3-Induced Cytopathic Effect in HeLa Cells

    PubMed Central

    Carthy, Christopher M.; Granville, David J.; Watson, Kathleen A.; Anderson, Daniel R.; Wilson, Janet E.; Yang, Decheng; Hunt, David W. C.; McManus, Bruce M.

    1998-01-01

    Coxsackievirus B3 (CVB3), an enterovirus in the family Picornaviridae, induces cytopathic changes in cell culture systems and directly injures multiple susceptible organs and tissues in vivo, including the myocardium, early after infection. Biochemical analysis of the cell death pathway in CVB3-infected HeLa cells demonstrated that the 32-kDa proform of caspase 3 is cleaved subsequent to the degenerative morphological changes seen in infected HeLa cells. Caspase activation assays confirm that the cleaved caspase 3 is proteolytically active. The caspase 3 substrates poly(ADP-ribose) polymerase, a DNA repair enzyme, and DNA fragmentation factor, a cytoplasmic inhibitor of an endonuclease responsible for DNA fragmentation, were degraded at 9 h following infection, yielding their characteristic cleavage fragments. Inhibition of caspase activation by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (ZVAD.fmk) did not inhibit the virus-induced cytopathic effect, while inhibition of caspase activation by ZVAD.fmk in control apoptotic cells induced by treatment with the porphyrin photosensitizer benzoporphyrin derivative monoacid ring A and visible light inhibited the apoptotic phenotype. Caspase activation and cleavage of substrates may not be responsible for the characteristic cytopathic effect produced by picornavirus infection yet may be related to late-stage alterations of cellular homeostatic processes and structural integrity. PMID:9696873

  14. Calcium efflux from the endoplasmic reticulum regulates cisplatin-induced apoptosis in human cervical cancer HeLa cells

    PubMed Central

    SHEN, LUYAN; WEN, NAIYAN; XIA, MEIHUI; ZHANG, YU; LIU, WEIMIN; XU, YE; SUN, LIANKUN

    2016-01-01

    The function of calcium efflux from the endoplasmic reticulum (ER) in cisplatin-induced apoptosis is not fully understood in cancer cells. The present study used western blot analysis, flow cytometry, immunofluorescence and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay to investigate calcium signaling in human cervical cancer cells exposed to cisplatin. In the present study, treatment with cisplatin increased free Ca2+ levels in the cytoplasm and mitochondria of human cervical cancer HeLa cells, which further triggers the mitochondria-mediated and ER stress-associated apoptosis pathways. Notably, blocking calcium signaling using the calcium chelating agent bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid acetoxymethyl ester inhibited cisplatin-induced apoptosis via downregulation of the calcium-dependent proteases, the calpains, and innate apoptosis proteins, such as caspsae-3, caspase-4 and C/EBP homologous protein (CHOP). In addition, use of the inositol triphosphate receptor inhibitor, 2-aminoethyl diphenylborinate, to inhibit calcium efflux from the ER resulted in similar effects. This data indicated that calcium efflux from the ER plays a significant role in cisplatin-induced apoptosis in human cervical cancer HeLa cells, which provides further mechanistic insights into the tumor cell-killing effect of cisplatin and potential therapeutic strategies to improve cisplatin chemotherapy. PMID:27073489

  15. Erythropoietin Receptor Antagonist Suppressed Ectopic Hemoglobin Synthesis in Xenografts of HeLa Cells to Promote Their Destruction.

    PubMed

    Yasuda, Yoshiko; Fujita, Mitsugu; Koike, Eiji; Obata, Koshiro; Shiota, Mitsuru; Kotani, Yasushi; Musha, Terunaga; Tsuji-Kawahara, Sachiyo; Satou, Takao; Masuda, Seiji; Okano, Junko; Yamasaki, Harufumi; Okumoto, Katsumi; Uesugi, Tadao; Nakao, Shinichi; Hoshiai, Hiroshi; Mandai, Masaki

    2015-01-01

    The aim of this study is to explore a cause-oriented therapy for patients with uterine cervical cancer that expresses erythropoietin (Epo) and its receptor (EpoR). Epo, by binding to EpoR, stimulates the proliferation and differentiation of erythroid progenitor cells into hemoglobin-containing red blood cells. In this study, we report that the HeLa cells in the xenografts expressed ε, γ, and α globins as well as myoglobin (Mb) to produce tetrameric α2ε2 and α2γ2 and monomeric Mb, most of which were significantly suppressed with an EpoR antagonist EMP9. Western blotting revealed that the EMP9 treatment inhibited the AKT-pAKT, MAPKs-pMAPKs, and STAT5-pSTAT5 signaling pathways. Moreover, the treatment induced apoptosis and suppression of the growth and inhibited the survival through disruption of the harmonized hemoprotein syntheses in the tumor cells concomitant with destruction of vascular nets in the xenografts. Furthermore, macrophages and natural killer (NK) cells with intense HIF-1α expression recruited significantly more in the degenerating foci of the xenografts. These findings were associated with the enhanced expressions of nNOS in the tumor cells and iNOS in macrophages and NK cells in the tumor sites. The treated tumor cells exhibited a substantial number of perforations on the cell surface, which indicates that the tumors were damaged by both the nNOS-induced nitric oxide (NO) production in the tumor cells as well as the iNOS-induced NO production in the innate immune cells. Taken together, these data suggest that HeLa cells constitutively acquire ε, γ and Mb synthetic capacity for their survival. Therefore, EMP9 treatment might be a cause-oriented and effective therapy for patients with squamous cell carcinoma of the uterine cervix. PMID:25874769

  16. SPONTANEOUS AND MNNG-INDUCED REVERSION OF AN EGFP CONSTRUCT IN HELA CELLS: AN ASSAY FOR OBSERVING MUTATIONS IN LIVING CELLS BY FLUORESCENT MICROSCOPY

    EPA Science Inventory

    A HeLa cell line stably expressing the Enhanced Green Fluorescence Protein (EGFP) gene, interrupted by the IVS2-654 intron, was studied without treatment and after treatment with a single standard dose of 15 ?M of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This assay was done ...

  17. Tyrosine phosphorylation of β-catenin affects its subcellular localization and transcriptional activity of β-catenin in Hela and Bcap-37 cells.

    PubMed

    Qian, He-Ya; Zhang, Ding-Guo; Wang, Hong-Wei; Pei, Dong-Sheng; Zheng, Jun-Nian

    2014-06-01

    In order to investigate the relationship between tyrosine phosphorylation of β-catenin and transcriptional activity of β-catenin in Hela and Bcap-37 cells, genistein (a tyrosine kinase inhibitor) was used to inhibit tyrosine phosphorylation in cells. Our results showed the total β-catenin protein levels were mainly equal in Hela, Bcap-37 and HK-2 cells, β-catenin was mainly present in nucleus in Hela and Bcap-37cells, while in HK-2 cell β-catenin was mainly located in cytoplasm. Genistein could inhibit tyrosine phosphorylation of β-catenin and downregulate nuclear β-catenin expression in Hela and Bcap-37 cells. In addition, genistein suppressed Ki-67 promoter activity and Ki-67 protein level, thus promoted cell apoptosis. Furthermore, β-catenin could increase the Ki-67 promoter activity in Hela and Bcap-37 cells. From these findings we conclude that tyrosine phosphorylation of β-catenin can regulate the cellular distribution of β-catenin and affect the transcriptional activity of β-catenin. PMID:24759800

  18. The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome.

    PubMed

    Diener, Christian; Muñoz-Gonzalez, Felipe; Encarnación, Sergio; Resendis-Antonio, Osbaldo

    2016-01-01

    During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory events on the transcriptional or post-transcriptional level whose identification contributes to the rational design of therapeutic targets. We present a mechanistic strategy capable of inferring enzymatic regulation from intracellular metabolome measurements that is independent of the actual mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic constants (k-cone) such that the alteration between two phenotypes is given by their corresponding kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few enzymatic activities change between those two cell lines and that this regulation does not depend on gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with oxidative stress, that affects the activity of the pentose phosphate pathway. PMID:27335086

  19. Analysis of mutations induced by replication of UV-damaged plasmid DNA in HeLa cell extracts

    SciTech Connect

    Carty, M.P.; El-Saleh, S.; Dixon, K.

    1995-12-31

    We have used an SV40-based shuttle vector, pZ189, to investigate the capacity of HeLa cell extracts to reproduce the in vivo process of mutation fixation. We showed previously that when UV-irradiated pZ189 is replicated in these extracts, bypass of UV photoproducts occurs, resulting in base substitution mutations in the supF gene of the vector. Here we report the DNA sequence characterization of a collection of 60 of these UV-induced mutants. Most of the mutations observed are single or tandem double base substitutions at dipyrimidine sites; of these, approximately 90% are G:C{r_arrow}A:T transitions. Mutations are observed predominantly at a few sites, in particular at positions 155 and 156 in the supF sequence. No dramatic differences in the mutation spectrum were observed when the orientation of the supF gene was reversed with respect to the SV40 origin of replication, suggesting that mutation fixation occurs similarly on both the leading and the lagging strands for DNA replication. Generally, the mutational hot spots observed when UV-irradiated pZ189 was passaged in human or monkey cells in culture. Thus, it appears that the replication and mutagenesis of UV-damaged templates in HeLa cell extracts accurately reflects these processes in the intact cell. 37 refs., 4 figs., 3 tabs.

  20. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells

    NASA Astrophysics Data System (ADS)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Szewczyk, Sebastian; Paterczyk, Bohdan; Wojciechowski, Tomasz; Sobczak, Kamil; Minikayev, Roman; Paszkowicz, Wojciech; Stępień, Piotr; Elbaum, Danek

    2013-06-01

    An effective, simple and practically useful method to incorporate fluorescent nanoparticles inside live biological cells was developed. The internalization time and concentration dependence of a frequently used liposomal transfection factor (Lipofectamine 2000) was studied. A user friendly, one-step technique to obtain water and organic solvent soluble Er3+ and Yb3+ doped NaYF4 nanoparticles coated with polyvinylpyrrolidone was obtained. Structural analysis of the nanoparticles confirmed the formation of nanocrystals of the desired sizes and spectral properties. The internalization of NaYF4 nanoparticles in HeLa cervical cancer cells was determined at different nanoparticle concentrations and for incubation periods from 3 to 24 h. The images revealed a redistribution of nanoparticles inside the cell, which increases with incubation time and concentration levels, and depends on the presence of the transfection factor. The study identifies, for the first time, factors responsible for an effective endocytosis of the up-converting nanoparticles to HeLa cells. Thus, the method could be applied to investigate a wide range of future ‘smart’ theranostic agents. Nanoparticles incorporated into the liposomes appear to be very promising fluorescent probes for imaging real-time cellular dynamics.

  1. The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome

    PubMed Central

    Diener, Christian; Muñoz-Gonzalez, Felipe; Encarnación, Sergio; Resendis-Antonio, Osbaldo

    2016-01-01

    During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory events on the transcriptional or post-transcriptional level whose identification contributes to the rational design of therapeutic targets. We present a mechanistic strategy capable of inferring enzymatic regulation from intracellular metabolome measurements that is independent of the actual mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic constants (k-cone) such that the alteration between two phenotypes is given by their corresponding kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few enzymatic activities change between those two cell lines and that this regulation does not depend on gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with oxidative stress, that affects the activity of the pentose phosphate pathway. PMID:27335086

  2. Mechanical trapping of the nucleus on micropillared surfaces inhibits the proliferation of vascular smooth muscle cells but not cervical cancer HeLa cells.

    PubMed

    Nagayama, Kazuaki; Hamaji, Yumi; Sato, Yuji; Matsumoto, Takeo

    2015-07-16

    The interaction between cells and the extracellular matrix on a topographically patterned surface can result in changes in cell shape and many cellular functions. In the present study, we demonstrated the mechanical deformation and trapping of the intracellular nucleus using polydimethylsiloxane (PDMS)-based microfabricated substrates with an array of micropillars. We investigated the differential effects of nuclear deformation on the proliferation of healthy vascular smooth muscle cells (SMCs) and cervical cancer HeLa cells. Both types of cell spread normally in the space between micropillars and completely invaded the extracellular microstructures, including parts of their cytoplasm and their nuclei. We found that the proliferation of SMCs but not HeLa cells was dramatically inhibited by cultivation on the micropillar substrates, even though remarkable deformation of nuclei was observed in both types of cells. Mechanical testing with an atomic force microscope and a detailed image analysis with confocal microscopy revealed that SMC nuclei had a thicker nuclear lamina and greater expression of lamin A/C than those of HeLa cells, which consequently increased the elastic modulus of the SMC nuclei and their nuclear mechanical resistance against extracellular microstructures. These results indicate that the inhibition of cell proliferation resulted from deformation of the mature lamin structures, which might be exposed to higher internal stress during nuclear deformation. This nuclear stress-induced inhibition of cell proliferation occurred rarely in cancer cells with deformable nuclei. PMID:26054426

  3. Cell-surface markers for colon adenoma and adenocarcinoma

    PubMed Central

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S.; Wojtkowiak, Jonathan W.; Stark, Valerie E.; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L.

    2016-01-01

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC. PMID:26894861

  4. Specific proteins synthesized during the viral lytic cycle in vaccinia virus-infected HeLa cells: analysis by high-resolution, two-dimensional gel electrophoresis

    SciTech Connect

    Carrasco, L.; Bravo, R.

    1986-05-01

    The proteins synthesized in vaccinia-infected HeLa cells have been analyzed at different times after infection by using two-dimensional gel electrophoresis. Vaccinia-infected cells present up to 198 polypeptides (138 acidic, isoelectric focusing; 60 basic, nonequilibrium pH gradient electrophoresis) not detected in control cells. Cells infected in the presence of cycloheximide show 81 additional polypeptides after cycloheximide removal, resulting in a total estimate of 279 proteins induced after vaccinia infection. The glycoproteins made at various time postinfection were also analyzed. At least 13 proteins labeled with (/sup 3/H)glucosamine were detected in vaccinia-infected HeLa cells.

  5. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells.

    PubMed

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-01-01

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1(nu)/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells. PMID:27250766

  6. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells

    PubMed Central

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-01-01

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1nu/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells. PMID:27250766

  7. Fibrillarin, a nucleolar protein, is required for normal nuclear morphology and cellular growth in HeLa cells

    SciTech Connect

    Amin, Mohammed Abdullahel; Matsunaga, Sachihiro; Ma, Nan; Takata, Hideaki; Yokoyama, Masami; Uchiyama, Susumu; Fukui, Kiichi . E-mail: kfukui@bio.eng.osaka-u.ac.jp

    2007-08-24

    Fibrillarin is a key small nucleolar protein in eukaryotes, which has an important role in pre-rRNA processing during ribosomal biogenesis. Though several functions of fibrillarin are known, its function during the cell cycle is still unknown. In this study, we confirmed the dynamic localization of fibrillarin during the cell cycle of HeLa cells and also performed functional studies by using a combination of immunofluorescence microscopy and RNAi technique. We observed that depletion of fibrillarin has almost no effect on the nucleolar structure. However, fibrillarin-depleted cells showed abnormal nuclear morphology. Moreover, fibrillarin depletion resulted in the reduction of the cellular growth and modest accumulation of cells with 4n DNA content. Our data suggest that fibrillarin would play a critical role in the maintenance of nuclear shape and cellular growth.

  8. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    SciTech Connect

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-08-30

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.

  9. TGM2 A Cell Surface Marker in Esophageal Adenocarcinomas

    PubMed Central

    Leicht, Deborah T.; Kausar, Tasneem; Wang, Zhuwen; Ferrer-Torres, Daysha; Wang, Thomas D.; Thomas, Dafydd G.; Lin, Jules; Chang, Andrew C.; Lin, Lin; Beer, David G.

    2014-01-01

    Introduction Esophageal adenocarcinomas (EAC) are aggressive cancers that are increasing in incidence and associated with a poor prognosis. The identification of highly expressed genes in EAC relative to metaplastic Barrett’s esophagus (BE) may provide new targets for novel early cancer detection strategies using endoscopically administered, fluorescently labeled peptides. Methods Gene expression analysis of BE and EACs were used to identify the cell surface marker transglutaminase 2 (TGM2) as overexpressed in cancer. The expression of two major isoforms of TGM2 was determined by qRT-polymerase chain reaction in an independent cohort of 128 EACs. Protein expression was confirmed by tissue microarrays and immunoblot analysis of EAC cell lines. TGM2 DNA copy number was assessed using single nucleotide polymorphism microarrays and confirmed by qPCR. TGM2 expression in neoadjuvantly treated EACs and following small interfering RNA-mediated knockdown in cisplatin-treated EAC cells was used to determine its possible role in chemoresistance. Results TGM2 is overexpressed in 15 EACs relative to 26 BE samples. Overexpression of both TGM2 isoforms was confirmed in 128 EACs and associated with higher tumor stage, poor differentiation, and increased inflammatory and desmoplastic response. Tissue microarrays and immunohistochemistry confirmed elevated TGM2 protein expression in EAC. Single nucleotide polymorphism and qPCR analysis revealed increased TGM2 gene copy number as one mechanism underlying elevated TGM2 expression. TGM2 was highly expressed in resistant EAC after patient treatment with neoadjuvant chemotherapy/radiation suggesting a role for TGM2 in chemoresistance. Conclusion TGM2 may be a useful cell surface biomarker for early detection of EAC. PMID:24828664

  10. A New Paradigm for MAPK: Structural Interactions of hERK1 with Mitochondria in HeLa Cells

    PubMed Central

    Galli, Soledad; Jahn, Olaf; Hitt, Reiner; Hesse, Doerte; Opitz, Lennart; Plessmann, Uwe; Urlaub, Henning; Poderoso, Juan Jose; Jares-Erijman, Elizabeth A.; Jovin, Thomas M.

    2009-01-01

    Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) are members of the MAPK family and participate in the transduction of stimuli in cellular responses. Their long-term actions are accomplished by promoting the expression of specific genes whereas faster responses are achieved by direct phosphorylation of downstream effectors located throughout the cell. In this study we determined that hERK1 translocates to the mitochondria of HeLa cells upon a proliferative stimulus. In the mitochondrial environment, hERK1 physically associates with (i) at least 5 mitochondrial proteins with functions related to transport (i.e. VDAC1), signalling, and metabolism; (ii) histones H2A and H4; and (iii) other cytosolic proteins. This work indicates for the first time the presence of diverse ERK-complexes in mitochondria and thus provides a new perspective for assessing the functions of ERK1 in the regulation of cellular signalling and trafficking in HeLa cells. PMID:19847302

  11. Effects of Hypoxia and Transferrin on Toxicity and DNA Binding of Ruthenium Antitumor Agents in Hela Cells

    PubMed Central

    Frasca, D.; Ciampa, J.; Emerson, J.; Umans, R. S.

    1996-01-01

    Nuclear DNA binding and inhibition of growth of HeLa cells in culture were determined after 24 h incubation with the ruthenium anticancer agents cis-[Cl2(NH3)4Ru]Cl (CCR) and (ImH)trans-[(Im)2Cl4Ru] (ICR) as a function of [Ru], Po2, and added transferrin. Consistent with the “activation-by-reduction” hypothesis, cytotoxicity and DNA binding for both complexes increased under reduced oxygen conditions. Consistent with the “transferrin- transport” hypothesis, inhibition of cell growth also increased with added transferrin for both complexes. Despite their differences in charge, reduction potentials and substitution rates, both complexes behaved remarkably similarly indicating a common mechanism of action for both. Under atmospheric Conditions (Po2 = 159 torr), CCR inhibited HeLa cell growth with IC50 = 3.5 μM, while that for ICR was 2.0 μM. The binding of both complexes to DNA (RuDNA/PDNA) correlated with toxicity and was approximately linear in the concentration of the ruthenium complex in the culture medium, [Ru]. For both complexes, IC50 values decrease and DNA binding increases with decreasing log(Po2). In general, DNA binding at all oxygen pressures for both complexes is in the range of one Ru per 1000-2000 DNA base pairs at [Ru] = IC50. PMID:18475755

  12. Inhibition of thioredoxin reductase by alantolactone prompts oxidative stress-mediated apoptosis of HeLa cells.

    PubMed

    Zhang, Junmin; Li, Ya; Duan, Dongzhu; Yao, Juan; Gao, Kun; Fang, Jianguo

    2016-02-15

    The mammalian thioredoxin reductase (TrxR) isoenzymes, TrxR1 in cytosol or nucleus, TrxR2 in mitochondria, and TrxR3 in testis, are essential seleno-flavoenzymes with a conserved penultimate selenocysteine (Sec) residue at the C-terminus, and have attracted increasing interests as potential targets for development of cancer chemotherapeutic agents. The sesquiterpene lactone alantolactone (ATL), an active component from the traditional folk medicine Inula helenium, has been documented possessing multiple pharmacological functions, especially the anticancer activity. However, the underlying mechanism has not been well defined. We reported that ATL inhibits both the recombinant TrxR and the enzyme in the cellular environment. The alpha-methylene-gamma-lactone moiety in ATL and the Sec residue in TrxR are critical for targeting TrxR by ATL. By employing our newly developed pull down assay, we demonstrated the remarkable elevation of the oxidized thioredoxin in HeLa cells after ATL treatment. In addition, ATL elicits accumulation of reactive oxygen species, and eventually induces apoptosis of HeLa cells. Importantly, overexpression of the functional TrxR attenuates the cytotoxicity of ATL, while knockdown of the enzyme sensitizes the cells to ATL treatment. Targeting TrxR thus discloses a novel molecular mechanism underlying the cellular action of ATL, and sheds light in considering the usage of ATL as a potential cancer chemotherapeutic agent. PMID:26686580

  13. Physico-chemical characteristics of ZnO nanoparticles-based discs and toxic effect on human cervical cancer HeLa cells

    NASA Astrophysics Data System (ADS)

    Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor Haida Mohd.; Sendi, Rabab

    2014-10-01

    In this study, we investigated physico-chemical properties of zinc oxide nanoparticles (ZnO NPs)-based discs and their toxicity on human cervical cancer HeLa cell lines. ZnO NPs (80 nm) were produced by the conventional ceramic processing method. FESEM analysis indicated dominant structure of nanorods with dimensions 100-500 nm in length, and 20-100 nm in diameter. The high content of ZnO nanorods in the discs probably played significant role in toxicity towards HeLa cells. Structural defects (oxygen vacancies and zinc/oxygen interstitials) were revealed by PL spectra peaks at 370-376 nm and 519-533 nm for the ZnO discs. The structural, optical and electrical properties of prepared sample have influenced the toxicological effects of ZnO discs towards HeLa cell lines via the generation of reactive oxygen species (ROS), internalization, membrane damage, and eventually cell death. The larger surface to volume area of the ZnO nanorods, combined with defects, stimulated enhanced toxicity via ROS generation hydrogen peroxide, hydroxyl radicals, and superoxide anion. The preliminary results confirmed the ZnO-disc toxicity on HeLa cells was significantly associated with the unique physicochemical properties of ZnO NPs and to our knowledge, this is the first cellular study for treatment of HeLa cells with ZnO discs made from 80 nm ZnO particles.

  14. Circulating Tumor Cells in the Adenocarcinoma of the Esophagus

    PubMed Central

    Gallerani, Giulia; Fabbri, Francesco

    2016-01-01

    Circulating tumor cells (CTCs) are elements of indisputable significance as they seem to be responsible for the onset of metastasis. Despite this, research into CTCs and their clinical application have been hindered by their rarity and heterogeneity at the molecular and cellular level, and also by a lack of technical standardization. Esophageal adenocarcinoma (EAC) is a highly aggressive cancer that is often diagnosed at an advanced stage. Its incidence has increased so much in recent years that new diagnostic, prognostic and predictive biomarkers are urgently needed. Preliminary findings suggest that CTCs could represent an effective, non-invasive, real-time assessable biomarker in all stages of EAC. This review provides an overview of EAC and CTC characteristics and reports the main research results obtained on CTCs in this setting. The need to carry out further basic and translational research in this area to confirm the clinical usefulness of CTCs and to provide oncologists with a tool to improve therapeutic strategies for EAC patients was herein highlighted. PMID:27527155

  15. Antioxidant action and cytotoxicity on HeLa and NIH-3T3 cells of new quercetin derivatives

    PubMed Central

    Veverka, Miroslav; Šturdík, Ernest; Jantová, Soňa

    2013-01-01

    Quercetin is a natural polyphenol with proven health beneficial activities. In this study 15 new quercetin derivatives were prepared with the aim to enhance their bioavailability. Modification of their physicochemical properties could herewith improve the action in cells. The prepared compounds were tested for their antioxidant and cytotoxic activity. The ability to scavenge free radicals as well as ferric reducing antioxidant power of the new derivatives was not better than that of unmodified quercetin. But for acetylated esters a better cytotoxic activity was found on human cervical cancer cells HeLa than for the initial molecule. The best effect revealed chloronaphtoquinone quercetin (IC50=13.2 µM). For this compound comparable cytotoxic action on non-cancer murine fibroblast cells was detected (IC50=16.5 µM). The obtained results indicate that appropriate lipophilization of the quercetin molecule could improve its cytotoxic action in cells, probably due to its enhanced bioavailability. PMID:24678260

  16. Purification and characterization of the glycoprotein hormone. cap alpha. -subunit-like material secreted by HeLa cells

    SciTech Connect

    Cox, G.S.; Rimerman, R.A.

    1988-08-23

    The protein secreted by HeLa cells that cross-reacts with antiserum developed against the ..cap alpha..-subunit of human chorionic gonadotropin (hCG) has been purified approximately 30,000-fold from concentrated culture medium by organic solvent fractionation followed by ion exchange, gel filtration, and lectin affinity chromatography. The final preparation had a specific activity (by RIA) of 6.8 x 10/sup 5/ ng of ..cap alpha../mg of protein and appeared homogeneous by electrophoresis on reducing/denaturing polyacrylamide gels (SDS-PAGE). Amino acid analysis indicated that HeLa-..cap alpha.. had a composition very similar to that of the urinary hCG ..cap alpha..-subunit. However, comparison of hCG-..cap alpha.. and HeLa-..cap alpha.. demonstrated that the tumor-associated subunit was not identical with its normal counterpart. The purified tumor protein had an apparent molecular weight greater than that of the urinary ..cap alpha..-subunit when analyzed by SDS-PAGE, and this difference was even greater when a partially purified preparation was examined by an immunoblot technique (Western). Isoelectric focusing of the HeLa and hCG subunits demonstrated that the tumor protein had a lower pI. Immunoprecipitation and electrophoresis of ..cap alpha..-subunit from HeLa cultures labeled with (/sup 3/H)fucose indicated that the tumor subunit was fucosylated, whereas analysis of hCG-..cap alpha.. hydrosylates by HPLC confirmed previous reports that the placental subunit does not contain fucose. The results indicate that, regardless of whether or not a single ..cap alpha..-subunit gene is being expressed in both normal and neoplastic tissues, posttranslational modifications lead to a highly altered subunit in the tumor. The differences observed may be useful in diagnosing neoplastic vs hyperplastic conditions and may lend insight into the mechanism of ectopic hormone production by tumors.

  17. Time-course proteomics dataset monitoring HeLa cells subjected to DTT induced endoplasmic reticulum stress.

    PubMed

    Cheng, Zhe; Rendleman, Justin; Vogel, Christine

    2016-09-01

    The data described here provide an analysis of the dynamic response of HeLa cell proteome to dithiothreitol (DTT) inducing stress of the endoplasmic reticulum (ER). During ER stress, accumulation of misfolded and unfolded proteins in the lumen of the ER initiates the Unfolded Protein Response (UPR), resulting in a large-scale redistribution of proteins. We used label-free mass spectrometry to monitor the proteomic changes of HeLa cells during a 30-h time course, monitoring eight time points (0, 0.5, 1, 2, 8, 16, 24, and 30 h). The data are associated with the research article "Differential dynamics of the mammalian mRNA and protein expression response to misfolding stress" [1], which discusses a core dataset of 1237 proteins. Here, we present the extended dataset of 2131 proteins. The raw mass spectrometry data and the analysis results have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PRIDE: PXD002039. PMID:27547793

  18. BAD, a Proapoptotic Protein, Escapes ERK/RSK Phosphorylation in Deguelin and siRNA-Treated HeLa Cells

    PubMed Central

    Hafeez, Samra; Urooj, Mahwish; Saleem, Shamiala; Gillani, Zeeshan; Shaheen, Sumaira; Qazi, Mahmood Husain; Naseer, Muhammad Imran; Iqbal, Zafar; Ansari, Shakeel Ahmed; Haque, Absarul; Asif, Muhammad; Mir, Manzoor Ahmad; Ali, Ashraf; Pushparaj, Peter Natesan; Jamal, Mohammad Sarwar; Rasool, Mahmood

    2016-01-01

    This study has been undertaken to explore the therapeutic effects of deguelin and specific siRNAs in HeLa cells. The data provided clearly show the silencing of ERK 1/2 with siRNAs and inhibition of ERK1/2 with deguelin treatment in HeLa cells. Additionally, we are providing information that deguelin binds directly to anti-apoptotic Bcl-2, Bcl-xl and Mcl-1 in the hydrophobic grooves, thereby releasing BAD and BAX from dimerization with these proteins. This results in increased apoptotic activity through the intrinsic pathway involved in rupture of mitochondrial membrane and release of cytochrome C. Evidence for inhibition of ERK1/2 by deguelin and escape of BAD phosphorylation at serine 112 through ERK/RSK pathway has been further fortified by obtaining similar results by silencing ERK 1/2 each with specific siRNAs. Increase in BAD after treatment with deguelin or siRNAs has been interpreted to mean that deguelin acts through several alternative pathways and therefore can be used as effective therapeutic agent. PMID:26745145

  19. Phenol-soluble modulin α induces G2/M phase transition delay in eukaryotic HeLa cells

    PubMed Central

    Deplanche, Martine; Filho, Rachid Aref El-Aouar; Alekseeva, Ludmila; Ladier, Emilie; Jardin, Julien; Henry, Gwénaële; Azevedo, Vasco; Miyoshi, Anderson; Beraud, Laetitia; Laurent, Frederic; Lina, Gerard; Vandenesch, François; Steghens, Jean-Paul; Le Loir, Yves; Otto, Michael; Götz, Friedrich; Berkova, Nadia

    2015-01-01

    Staphylococcus aureus is a gram-positive bacterium responsible for a wide range of infections. Host cell cycle alteration is a sophisticated mechanism used by pathogens to hijack the defense functions of host cells. We previously demonstrated that S. aureus MW2 (USA400) bacteria induced a G2/M phase transition delay in HeLa cells. We demonstrate here that this activity is triggered by culture supernatant compounds. Using size exclusion chromatography of the MW2 supernatant, followed by mass spectroscopy analysis of corresponding peaks, we identified phenol-soluble modulin α (PSMα) peptides as the likely candidates for this effect. Indeed, synthetic PSMα1 and PSMα3 caused a G2/M phase transition delay. The implication of PSMα in cell cycle alteration was confirmed by comparison of S. aureus Los Angeles County clone (LAC) wild-type with the isogenic mutant LAC∆psmα, which lacks the psmα operon encoding PSMα1–4. PSMα-induced G2/M transition delay correlated with a decrease in the defensin genes expression suggesting a diminution of antibacterial functions of epithelial cells. By testing the supernatant of S. aureus human clinical isolates, we found that the degree of G2/M phase transition delay correlated with PSMα1 production. We show that PSMs secreted by S. aureus alter the host cell cycle, revealing a newly identified mechanism for fostering an infection.—Deplanche, M., Filho. R. A. E.–A., Alekseeva, L., Ladier, E., Jardin, J., Henry, G., Azevedo, V., Miyoshi, A., Beraud, L., Laurent, F., Lina, G., Vandenesch, F., Steghens, J.-P., Le Loir, Y., Otto, M., Götz, F., Berkova, N. Phenol-soluble modulin α induces G2/M phase transition delay in eukaryotic HeLa cells. PMID:25648996

  20. HDAC6 promotes cell proliferation and confers resistance to gefitinib in lung adenocarcinoma.

    PubMed

    Wang, Zhihao; Tang, Fang; Hu, Pengchao; Wang, Ying; Gong, Jun; Sun, Shaoxing; Xie, Conghua

    2016-07-01

    Histone deacetylases (HDACs) are promising targets for cancer therapy, and first-generation HDAC inhibitors are currently in clinical trials for the treatment of cancer patients. HDAC6, which is a key regulator of many signaling pathways that are linked to cancer, has recently emerged as an attractive target for the treatment of cancer. In the present study, HDAC6 was found to be overexpressed in lung adenocarcinoma cell lines and was negatively correlated with the prognosis of patients with lung adenocarcinoma. Overexpression of HDAC6 promoted the proliferation of lung adenocarcinoma cells in a deacetylase activity-dependent manner. HDAC6 overexpression conferred resistance to gefitinib via the stabilization of epidermal growth factor receptor (EGFR). The inhibition of HDAC6 by CAY10603, a potent and selective inhibitor of HDAC6, inhibited the proliferation of lung adenocarcinoma cells and induced apoptosis. CAY10603 downregulated the levels of EGFR protein, which in turn inhibited activation of the EGFR signaling pathway. Moreover, CAY10603 synergized with gefitinib to induce apoptosis of the lung adenocarcinoma cell lines via the destabilization of EGFR. Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of lung adenocarcinoma. PMID:27221381

  1. MEASUREMENT of Protein 53 Diffusion Coefficient in Live HeLa Cells Using Raster Image Correlation Spectroscopy (RICS).

    PubMed

    Hong, Sungmin; Wang, Ying-Nai; Yamaguchi, Hirohito; Sreenivasappa, Harinibytaraya; Chou, Chao-Kai; Tsou, Pei-Hsiang; Hung, Mien-Chie; Kameoka, Jun

    2010-10-01

    We have applied Raster Image Correlation Spectroscopy (RICS) technique to characterize the dynamics of protein 53 (p53) in living cells before and after the treatment with DNA damaging agents. HeLa cells expressing Green Fluorescent Protein (GFP) tagged p53 were incubated with and without DNA damaging agents, cisplatin or eptoposide, which are widely used as chemotherapeutic drugs. Then, the diffusion coefficient of GFP-p53 was determined by RICS and it was significantly reduced after the drug treatment while that of the one without drug treatment was not. It is suggested that the drugs induced the interaction of p53 with either other proteins or DNA. Together, our results demonstrated that RICS is able to detect the protein dynamics which may be associated with protein-protein or protein-DNA interactions in living cells and it may be useful for the drug screening. PMID:21804949

  2. Measuring intracellular calcium dynamics of HeLa cells exposed to nitric oxide by microplate fluorescence reader

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Chen, Jiangxu; Yang, Hongqin; Zheng, Liqin; Wang, Yuhua; Li, Hui; Xie, Shusen

    2012-12-01

    Nitric oxide (NO) has been reported to have the ability to promote or inhibit the proliferation and metastasis of cancer cells. It appears to have an effect on inducing calcium transient, which participates in essential cellular signaling in the physiological and pathological processes. Our work was intended to study the effects of exogenous NO on intracellular calcium dynamics of HeLa cells with Fluo-3, a calcium fluorescent indicator by microplate fluorescence reader. The results showed that after NO donor was injected into the wells, intracellular Ca2+ fluorescence intensity increased significantly compared with that of control group. Furthermore, the calcium transient activated by NO was mainly due to the calcium release from intracellular calcium stores. These would be helpful to further recognize the role of NO involved in cancer cell proliferation and metastasis.

  3. Herpes Simplex Virus (HSV) Modulation of Staphylococcus aureus and Candida albicans Initiation of HeLa 299 Cell-Associated Biofilm.

    PubMed

    Plotkin, Balbina J; Sigar, Ira M; Tiwari, Vaibhav; Halkyard, Scott

    2016-05-01

    Although herpes simplex virus type-1 (HSV-1), and type-2 (HSV-2), Staphylococcus aureus and Candida albicans co-habit the oral and genital mucosa, their interaction is poorly understood. We determined the effect HSV has on bacterial and/or fungal adherence, the initial step in biofilm formation. HeLa229 cells were infected with HSV-1 (KOS) gL86 or HSV-2 (KOS) 333gJ (-) at a multiplicity of infection (MOI) of 50 and 10. S. aureus (ATCC 25923) and/or C. albicans (yeast forms or germ tube forms) were co-incubated for 30 min (37 °C; 5 % CO2; 5:1 organism: HeLa cell ratio; n = 16) with virus-infected HeLa cells or uninfected HeLa cell controls. Post-incubation, the monolayers were washed (3x; PBS), lysed (RIPA), and the lysate plated onto Fungisel and/or mannitol salts agar for standard colony count. The level of HeLa-associated S. aureus was significantly decreased (P < 0.05) for both HSV-1- and HSV-2-infected cells, as compared to virus-free HeLa cell controls (38 and 59 % of control, respectively). In contrast, HSV-1 and HSV-2 significantly (P < 0.05) enhanced HeLa cell association of C. albicans yeast forms and germ tube approximately two-fold, respectively. The effect of S. aureus on germ tube and yeast form adherence to HSV-1- and HSV-2-infected cells was specific for the Candida phenotype tested. Our study suggests that HSV, while antagonist towards S. aureus adherence enhances Candida adherence. Furthermore, the combination of the three pathogens results in S. aureus adherence that is either unaffected, or partially restored depending on both the herpes viral species and the fungal phenotype present. PMID:26758707

  4. 8-p-Hdroxybenzoyl Tovarol Induces Paraptosis Like Cell Death and Protective Autophagy in Human Cervical Cancer HeLa Cells.

    PubMed

    Zhang, Cui; Jiang, Yingnan; Zhang, Jin; Huang, Jian; Wang, Jinhui

    2015-01-01

    8-p-Hdroxybenzoyl tovarol (TAW) is a germacrane-type sesquiterpenoid that can be isolated from the roots of Ferula dissecta (Ledeb.) Ledeb. In this study, the growth inhibitory effects induced by TAW were screened on some types of tumor cells, and the mechanism was investigated on TAW-induced growth inhibition, including paraptosis and autophagy in human cervical cancer HeLa cells. TAW-induced paraptosis involved extensive cytoplasmic vacuolization in the absence of caspase activation. Additionally, TAW evoked cell paraptotic death mediated by endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Autophagy induced by TAW was found to antagonize paraptosis in HeLa cells. This effect was enhanced by rapamycin and suppressed by the autophagy inhibitor, 3-methyladenine (3MA). Loss of beclin 1 (an autophagic regulator) function led to promote ER stress. Taken together, these results suggest that TAW induces paraptosis like cell death and protective autophagy in HeLa cells, which would provide a new clue for exploiting TAW as a promising agent for the treatment of cervical cancer. PMID:26147427

  5. 8-p-Hdroxybenzoyl Tovarol Induces Paraptosis Like Cell Death and Protective Autophagy in Human Cervical Cancer HeLa Cells

    PubMed Central

    Zhang, Cui; Jiang, Yingnan; Zhang, Jin; Huang, Jian; Wang, Jinhui

    2015-01-01

    8-p-Hdroxybenzoyl tovarol (TAW) is a germacrane-type sesquiterpenoid that can be isolated from the roots of Ferula dissecta (Ledeb.) Ledeb. In this study, the growth inhibitory effects induced by TAW were screened on some types of tumor cells, and the mechanism was investigated on TAW-induced growth inhibition, including paraptosis and autophagy in human cervical cancer HeLa cells. TAW-induced paraptosis involved extensive cytoplasmic vacuolization in the absence of caspase activation. Additionally, TAW evoked cell paraptotic death mediated by endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Autophagy induced by TAW was found to antagonize paraptosis in HeLa cells. This effect was enhanced by rapamycin and suppressed by the autophagy inhibitor, 3-methyladenine (3MA). Loss of beclin 1 (an autophagic regulator) function led to promote ER stress. Taken together, these results suggest that TAW induces paraptosis like cell death and protective autophagy in HeLa cells, which would provide a new clue for exploiting TAW as a promising agent for the treatment of cervical cancer. PMID:26147427

  6. A novel cromakalim analogue induces cell cycle arrest and apoptosis in human cervical carcinoma HeLa cells through the caspase- and mitochondria-dependent pathway.

    PubMed

    Zhang, Xin; Zhao, Jing; Kang, Saeromi; Yi, Myeongjin; You, Song; Shin, Dong-Soo; Kim, Dong-Kyoo

    2011-12-01

    In the present study, a series of seven synthetic croma-kalim analogues were prepared and evaluated for cytotoxic effect on human cervical carcinoma HeLa cells using WST-8 assay. A preliminary screening of these cromakalim analogues showed that 1-[(3S,4R)-4-(2-ethoxy-4-methyl-1H-pyrrol-1-yl)-3-hydroxy- 2,2-dimethylchroman-6-yl-3-phenylurea (compound 6) had the highest cytotoxic effect (IC50 of 138 µM) and significantly inhibited HeLa cell proliferation after 36 h. In an effort to understand the cytotoxic mechanism of compound 6, we examined its effect on apoptosis and cell cycle distribution. Our results showed that compound 6 induced marked changes in apoptotic morphology and significantly increased early apoptosis of HeLa cells after 48 h by using Annexin V-FITC/PI dual staining assay. This apoptotic induction was associated with an increase in Bax expression, a decrease in Bcl-2 expression, release of cytochrome c and subsequent activation of caspase-9 and -3, which indicated that compound 6 induced apoptosis via caspase- and mitochondria-dependent pathway. By DNA content analysis and [3H]thymidine incorporation assay, compound 6 was found to induce an increase in the number of cells in G1 phase, accompanied by a decrease in the S phase to prevent DNA synthesis after 24 h of treatment. In addition, compound 6 caused significant DNA damage, as detected by the alkaline comet assay. Taken together, the data demonstrate that compound 6 induces apoptosis in HeLa cells through caspase- and mitochondria-dependent pathway and this apoptotic effect is associated with cell cycle arrest and DNA damage. These findings provide further understanding of the molecular mechanisms of compound 6 in cervical cancer. PMID:21833470

  7. Mesotheliomas show higher hyaluronan positivity around tumor cells than metastatic pulmonary adenocarcinomas.

    PubMed

    Törrönen, Kari; Soini, Ylermi; Pääkkö, Paavo; Parkkinen, Jyrki; Sironen, Reijo; Rilla, Kirsi

    2016-10-01

    Hyaluronan is a unique glycosaminoglycan of the extracellular matrix, abundant in normal connective tissues but highly increased in many pathological conditions like cancer. Mesothelioma, one of the most malignant cancer types, is associated with high content of hyaluronan, with elevated levels of hyaluronan in pleural effusions and serum of the patients. Metastatic lung adenocarcinomas are typically less aggressive and have a better prognosis as compared to mesotheliomas, a reason why it is highly important to find reliable tools to differentiate these cancer types. The main purpose of this study was to evaluate the amount of hyaluronan, hyaluronan producing synthases (HAS's) and hyaluronan receptor CD44, in mesothelioma and metastatic lung adenocarcinomas. Furthermore, we wanted to clarify the role of hyaluronan, CD44 and HAS's as putative markers for differentiating malignant mesothelioma from metastatic lung adenocarcinomas. The main finding of this study was that mesotheliomas are significantly more positive for hyaluronan staining than metastatic adenocarcinomas. Unexceptionally, a trend of CD44 positivity of stromal cells was higher in adenocarcinomas as compared to mesotheliomas. However, no statistically significant differences were found between the staining of any of the HAS isoenzymes either in tumor cells or stromal cells of different groups of cases. The results show that there are significant differences in hyaluronan content between metastatic lung adenocarcinomas and mesotheliomas. However, as previous studies have suggested, hyaluronan alone is not a sufficient independent marker for diagnostic differentiation of these cancer types, but could be utilized as a combination together with other specific markers. PMID:26912058

  8. Specific binding of a HeLa cell nuclear protein to RNA sequences in the human immunodeficiency virus transactivating region.

    PubMed Central

    Gaynor, R; Soultanakis, E; Kuwabara, M; Garcia, J; Sigman, D S

    1989-01-01

    The transactivator protein, tat, encoded by the human immunodeficiency virus is a key regulator of viral transcription. Activation by the tat protein requires sequences downstream of the transcription initiation site called the transactivating region (TAR). RNA derived from the TAR is capable of forming a stable stem-loop structure and the maintenance of both the stem structure and the loop sequences located between +19 and +44 is required for complete in vivo activation by tat. Gel retardation assays with RNA from both wild-type and mutant TAR constructs generated in vitro with SP6 polymerase indicated specific binding of HeLa nuclear proteins to the TAR. To characterize this RNA-protein interaction, a method of chemical "imprinting" has been developed using photoactivated uranyl acetate as the nucleolytic agent. This reagent nicks RNA under physiological conditions at all four nucleotides in a reaction that is independent of sequence and secondary structure. Specific interaction of cellular proteins with TAR RNA could be detected by enhanced cleavages or imprints surrounding the loop region. Mutations that either disrupted stem base-pairing or extensively changed the primary sequence resulted in alterations in the cleavage pattern of the TAR RNA. Structural features of the TAR RNA stem-loop essential for tat activation are also required for specific binding of the HeLa cell nuclear protein. Images PMID:2544877

  9. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    NASA Astrophysics Data System (ADS)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  10. Enhanced Cellular Uptake of Albumin-Based Lyophilisomes when Functionalized with Cell-Penetrating Peptide TAT in HeLa Cells

    PubMed Central

    van Bracht, Etienne; Versteegden, Luuk R. M.; Stolle, Sarah; Verdurmen, Wouter P. R.; Woestenenk, Rob; Raavé, René; Hafmans, Theo; Oosterwijk, Egbert; Brock, Roland; van Kuppevelt, Toin H.; Daamen, Willeke F.

    2014-01-01

    Lyophilisomes are a novel class of biodegradable proteinaceous nano/micrometer capsules with potential use as drug delivery carrier. Cell-penetrating peptides (CPPs) including the TAT peptide have been successfully implemented for intracellular delivery of a broad variety of cargos including various nanoparticulate pharmaceutical carriers. In the present study, lyophilisomes were modified using CPPs in order to achieve enhanced cellular uptake. Lyophilisomes were prepared by a freezing, annealing, and lyophilization method and a cystein-elongated TAT peptide was conjugated to the lyophilisomes using a heterobifunctional linker. Fluorescent-activated cell sorting (FACS) was utilized to acquire a lyophilisome population with a particle diameter smaller than 1000 nm. Cultured HeLa, OVCAR-3, Caco-2 and SKOV-3 cells were exposed to unmodified lyophilisomes and TAT-conjugated lyophilisomes and examined with FACS. HeLa cells were investigated in more detail using a trypan blue quenching assay, confocal microscopy, and transmission electron microscopy. TAT-conjugation strongly increased binding and cellular uptake of lyophilisomes in a time-dependent manner in vitro, as assessed by FACS. These results were confirmed by confocal microscopy. Transmission electron microscopy indicated rapid cellular uptake of TAT-conjugated lyophilisomes via phagocytosis and/or macropinocytosis. In conclusion, TAT-peptides conjugated to albumin-based lyophilisomes are able to enhance cellular uptake of lyophilisomes in HeLa cells. PMID:25369131

  11. Apoptosis of HeLa cells induced by a new targeting photosensitizer-based PDT via a mitochondrial pathway and ER stress

    PubMed Central

    Li, Donghong; Li, Lei; Li, Pengxi; Li, Yi; Chen, Xiangyun

    2015-01-01

    Photodynamic therapy (PDT) is emerging as a viable treatment for many cancers. To decrease the cutaneous photosensitivity induced by PDT, many attempts have been made to search for a targeting photosensitizer; however, few reports describe the molecular mechanism of PDT mediated by this type of targeting photosensitizer. The present study aimed to investigate the molecular mechanism of PDT induced by a new targeting photosensitizer (PS I), reported previously by us, on HeLa cells. Apoptosis is the primary mode of HeLa cell death in our system, and apoptosis occurs in a manner dependent on concentration, irradiation dose, and drug–light intervals. After endocytosis mediated by the folate receptor, PS I was primarily localized to the mitochondria and the endoplasmic reticulum (ER) of HeLa cells. PS I PDT resulted in rapid increases in intracellular reactive oxygen species (ROS) production and Ca2+ concentration, both of which reached a peak nearly simultaneously at 15 minutes, followed by the loss of mitochondrial membrane potential at 30 minutes, release of cytochrome c from mitochondria into the cytoplasm, downregulation of Bcl-2 expression, and upregulation of Bax expression. Meanwhile, activation of caspase-3, -9, and -12, as well as induction of C/EBP homologous protein (CHOP) and glucose-regulated protein (GRP78), in HeLa cells after PS I PDT was also detected. These results suggest that apoptosis of HeLa cells induced by PS I PDT is not only triggered by ROS but is also regulated by Ca2+ overload. Mitochondria and the ER serve as the subcellular targets of PS I PDT, the effective activation of which is responsible for PS I PDT-induced apoptosis in HeLa cells. PMID:25897245

  12. Intracellular localization analysis of npAu-PpIX in HeLa cells using specific dyes and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Roblero-Bartolón, Victoria Gabriela; Maldonado-Alvarado, Elizabeth; Galván-Mendoza, José Iván; Ramón-Gallegos, Eva

    2012-10-01

    Cervical carcinoma (CC) represents the second leading cause of cancer death in Mexican women. No conventional treatments are being developed such as photodynamic therapy (PDT), involving the simultaneous presence of a photosensitizer (Ps), light of a specific wavelength and tissue oxygen. On the other hand, it has seen that the use of gold nanoparticles coupled to protoporphyrin IX increases the effectiveness of PDT. The aim of this study was to determine the site of accumulation of the conjugate npAu-PpIX in cells of cervical cancer by the use of specific dyes and confocal microscopy. The results indicate that the gold nanoparticles coupled to protoporphyrin IX are accumulated in both the cytoplasm and nucleus of HeLa cells.

  13. Microinjection of ubiquitin: changes in protein degradation in HeLa cells subjected to heat-shock

    SciTech Connect

    Carlson, N.; Rogers, S.; Rechsteiner, M.

    1987-03-01

    Ubiquitin was radiolabeled by reaction with /sup 125/I-Bolton-Hunter reagent and introduced into HeLa cells using erythrocyte-mediated microinjection. The injected cells were then incubated at 45 degrees C for 5 min (reversible heat-shock) or for 30 min (lethal heat-shock). After either treatment, there were dramatic changes in the levels of ubiquitin conjugates. Under normal culture conditions, approximately 10% of the injected ubiquitin is linked to histones, 40% is found in conjugates with molecular weights greater than 25,000, and the rest is unconjugated. After heat-shock, the free ubiquitin pool and the level of histone-ubiquitin conjugates decreased rapidly, and high molecular weight conjugates predominated. Formation of large conjugates did not require protein synthesis; when analyzed by two-dimensional electrophoresis, the major conjugates did not co-migrate with heat-shock proteins before or after thermal stress. Concomitant with the loss of free ubiquitin, the degradation of endogenous proteins, injected hemoglobin, BSA, and ubiquitin was reduced in heat-shocked HeLa cells. After reversible heat-shock, the decrease in proteolysis was small, and both the rate of proteolysis and the size of the free ubiquitin pool returned to control levels upon incubation at 37 degrees C. In contrast, neither proteolysis nor free ubiquitin pools returned to control levels after lethal heat-shock. However, lethally heat-shocked cells degraded denatured hemoglobin more rapidly than native hemoglobin and ubiquitin-globin conjugates formed within them. Therefore, stabilization of proteins after heat-shock cannot be due to the loss of ubiquitin conjugation or inability to degrade proteins that form conjugates with ubiquitin.

  14. Inhibitory effect of 13 taxane diterpenoids from Chinese yew (Taxus chinensis var. mairei) on the proliferation of HeLa cervical cancer cells.

    PubMed

    Liu, Hai-Sheng; Gao, Yu-Huan; Liu, Li-Hong; Liu, Wei; Shi, Qing-Wen; Dong, Mei; Suzuki, Toshikazu; Kiyota, Hiromasa

    2016-10-01

    The inhibitory effect of 13 taxanes isolated from the Chinese yew (Taxus chinensis var. mairei) on the proliferation of human cervical cancer HeLa cells were examined using an MTT assay. Four compounds having a hydrophobic cinnamate side chain showed antiproliferative activity, which may be due to increased cell permeability. PMID:27296359

  15. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca2+ concentration in HeLa cells.

    PubMed

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki; Mikawa, Tsutomu; Hayashi, Nobuhiro; Shirakawa, Masahiro; Ito, Yutaka

    2013-09-01

    Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca(2+)-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca(2+) concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca(2+) concentration during experiments, human calbindin D9k (P47M+C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D (1)H-(15)N SOFAST-HMQC experiments of calbindin D9k (P47M+C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D9k (P47M+C80) is initially in the Mg(2+)-bound state, and then gradually converted to the Ca(2+)-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca(2+) into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of proteins involved in the intracellular signalling systems. Our method provides a very useful tool for in situ monitoring of the "healthiness" of the cells in various in-cell NMR studies. PMID:23933251

  16. Inotodiol inhabits proliferation and induces apoptosis through modulating expression of cyclinE, p27, bcl-2, and bax in human cervical cancer HeLa cells.

    PubMed

    Zhao, Li-Wei; Zhong, Xiu-Hong; Yang, Shu-Yan; Zhang, Yi-Zhong; Yang, Ning-Jiang

    2014-01-01

    Inonotus obliquus is a medicinal mushroom that has been used as an effective agent to treat various diseases such as diabetes, tuberculosis and cancer. Inotodiol, an included triterpenoid shows significant anti-tumor effect. However, the mechanisms have not been well documented. In this study, we aimed to explore the effect of inotodiol on proliferation and apoptosis in human cervical cancer HeLa cells and investigated the underlying molecular mechanisms. HeLa cells were treated with different concentrations of inotodiol. The MTT assay was used to evaluate cell proliferating ability, flow cytometry (FCM) was employed for cell cycle analysis and cell apoptosis, while expression of cyclinE, p27, bcl-2 and bax was detected by immunocytochemistry. Proliferation of HeLa cells was inhibited by inotodiolin a dose-dependent manner at 24h (r=0.9999, p<0.01). A sub-G1 peak (apoptotic cells) of HeLa cells was detected after treatment and the apoptosis rate with the concentration and longer incubation time (r=1.0, p<0.01), while the percentage of cells in S phase and G2/M phase decreased significantly. Immunocytochemistry assay showed that the expression of cyclin E and bcl-2 in the treated cells significantly decreased, while the expression of p27 and bax obviously increased, compared with the control group (p<0.05). The results of our research indicate that inotodiol isolated from Inonotus obliquus inhibited the proliferation of HeLa cells and induced apoptosis in vitro. The mechanisms may be related to promoting apoptosis through increasing the expression of bax and cutting bcl-2 and affecting the cell cycle by down-regulation the expression of cyclin E and up-regulation of p27. The results further indicate the potential value of inotodiol for treatment of human cervical cancer. PMID:24815470

  17. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    SciTech Connect

    Yokoyama, Mayo; Johkura, Kohei; Sato, Takehiko

    2014-08-08

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN

  18. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca{sup 2+} concentration in HeLa cells

    SciTech Connect

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki; Mikawa, Tsutomu; Hayashi, Nobuhiro; Shirakawa, Masahiro; Ito, Yutaka

    2013-09-06

    Highlights: •We performed time-resolved NMR observations of calbindin D{sub 9k} in HeLa cells. •Stress-induced increase of cytosolic Ca{sup 2+} concentration was observed by in-cell NMR. •Calbindin D{sub 9k} showed the state-transition from Mg{sup 2+}- to Ca{sup 2+}-bound state in cells. •We provide a useful tool for in situ monitoring of the healthiness of the cells. -- Abstract: Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca{sup 2+}-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca{sup 2+} concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca{sup 2+} concentration during experiments, human calbindin D{sub 9k} (P47M + C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D {sup 1}H–{sup 15}N SOFAST–HMQC experiments of calbindin D{sub 9k} (P47M + C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D{sub 9k} (P47M + C80) is initially in the Mg{sup 2+}-bound state, and then gradually converted to the Ca{sup 2+}-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca{sup 2+} into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of

  19. Depletion of mitochondrial DNA by down-regulation of deoxyguanosine kinase expression in non-proliferating HeLa cells

    SciTech Connect

    Franco, Maribel; Johansson, Magnus . E-mail: magnus.johansson@ki.se; Karlsson, Anna

    2007-07-15

    Purine deoxyribonucleotides required for mitochondrial DNA replication are either imported from the cytosol or derived from phosphorylation of deoxyadenosine or deoxyguanosine catalyzed by mitochondrial deoxyguanosine kinase (DGUOK). DGUOK deficiency has been linked to mitochondrial DNA depletion syndromes suggesting an important role for this enzyme in dNTP supply. We have generated HeLa cell lines with 20-30% decreased levels of DGUOK mRNA by the expression of small interfering RNAs directed towards the DGUOK mRNA. The cells with decreased expression of the enzyme showed similar levels of mtDNA as control cells when grown exponentially in culture. However, mtDNA levels rapidly decreased in the cells when cell cycle arrest was induced by serum starvation. DNA incorporation of 9-{beta}-D-arabino-furanosylguanine (araG) was lower in the cells with decreased deoxyguanosine kinase expression, but the total rate of araG phosphorylation was increased in the cells. The increase in araG phosphorylation was shown to be due to increased expression of deoxycytidine kinase. In summary, our findings show that DGUOK is required for mitochondrial DNA replication in resting cells and that small changes in expression of this enzyme may cause mitochondrial DNA depletion. Our data also suggest that alterations in the expression level of DGUOK may induce compensatory changes in the expression of other nucleoside kinases.

  20. Proteomic, cellular, and network analyses reveal new DUSP3 interactions with nucleolar proteins in HeLa cells.

    PubMed

    Panico, Karine; Forti, Fabio Luis

    2013-12-01

    DUSP3 (or Vaccinia virus phosphatase VH1-related; VHR) is a small dual-specificity phosphatase known to dephosphorylate c-Jun N-terminal kinases and extracellular signal-regulated kinases. In human cervical cancer cells, DUSP3 is overexpressed, localizes preferentially to the nucleus, and plays a key role in cellular proliferation and senescence triggering. Other DUSP3 functions are still unknown, as illustrated by recent and unpublished results from our group showing that this enzyme mediates DNA damage response or repair processes. In this study, we sought to identify new interactions between DUSP3 and proteins directly or indirectly involved in or correlated with its biological roles in HeLa cells exposed to gamma or UV radiation. By using GST-DUSP as bait, we pulled down interacting proteins and identified them by LC-MS/MS. Of the 46 proteins obtained, six hits were extensively validated by immune techniques; the proteins Nucleophosmin, HnRNP C1/C2, and Nucleolin were the most promising targets found to directly interact with DUSP3. We then analyzed the DUSP3 interactomes using physical protein-protein interaction networks using our hits as the seed list. The validated hits as well as unvalidated hits fluctuated on the DUSP3 interactomes of HeLa cells, independent of the time post radiation, which confirmed our proteomic and experimental data and clearly showed the proximity of DUSP3 to proteins involved in processes intimately related to DNA repair and senescence, such as Ku70 and Tert, via interactions with nucleolar proteins, which were identified in this study, that regulate DNA/RNA structure and functions. PMID:24245651

  1. Targeting Pro-Apoptotic TRAIL Receptors Sensitizes HeLa Cervical Cancer Cells to Irradiation-Induced Apoptosis

    SciTech Connect

    Maduro, John H.; Vries, Elisabeth de; Meersma, Gert-Jan; Hougardy, Brigitte; Zee, Ate G.J. van der; Jong, Steven de

    2008-10-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL (rhTRAIL) and the agonistic antibodies against DR4 and DR5 were added to irradiated HeLa cells. The effect was evaluated with apoptosis and cytotoxicity assays and at the protein level. Membrane receptor expression was measured with flow cytometry. Small-interfering RNA against p53, DR4, and DR5 was used to investigate their function on the combined effect. Results: rhTRAIL and the agonistic DR4 and DR5 antibodies strongly enhanced 10-Gy-induced apoptosis. This extra effect was 22%, 23%, and 29% for rhTRAIL, DR4, and DR5, respectively. Irradiation increased p53 expression and increased the membrane expression of DR5 and DR4. p53 suppression, as well as small-interfering RNA against DR5, resulted in a significant downregulation of DR5 membrane expression but did not affect apoptosis induced by irradiation and rhTRAIL. After small-interfering RNA against DR4, rhTRAIL-induced apoptosis and the additive effect of irradiation on rhTRAIL-induced apoptosis were abrogated, implicating an important role for DR4 in apoptosis induced through irradiation in combination with rhTRAIL. Conclusion: Irradiation-induced apoptosis is strongly enhanced by targeting the pro-apoptotic TRAIL receptors DR4 or DR5. Irradiation results in a p53-dependent increase in DR5 membrane expression. The sensitizing effect of rhTRAIL on irradiation in the HeLa cell line is, however especially mediated through the DR4 receptor.

  2. Gene expression profiling of cancer stem cell in human lung adenocarcinoma A549 cells

    PubMed Central

    Seo, Dong-Cheol; Sung, Ji-Min; Cho, Hee-Jung; Yi, Hee; Seo, Kun-Ho; Choi, In-Soo; Kim, Dong-Ku; Kim, Jin-Suk; El-Aty AM, Abd; Shin, Ho-Chul

    2007-01-01

    Background The studies on cancer-stem-cells (CSCs) have attracted so much attention in recent years as possible therapeutic implications. This study was carried out to investigate the gene expression profile of CSCs in human lung adenocarcinoma A549 cells. Results We isolated CSCs from A549 cell line of which side population (SP) phenotype revealed several stem cell properties. After staining the cell line with Hoechst 33342 dye, the SP and non-side population (non-SP) cells were sorted using flow cytometric analysis. The mRNA expression profiles were measured using an Affymetrix GeneChip® oligonucleotide array. Among the sixty one differentially expressed genes, the twelve genes inclusive three poor prognostic genes; Aldo-keto reductase family 1, member C1/C2 (AKR1C1/C2), Transmembrane 4 L six family member 1 nuclear receptor (TM4SF1), and Nuclear receptor subfamily 0, group B, member 1 (NR0B1) were significantly up-regulated in SP compared to non-SP cells. Conclusion This is the first report indicating the differences of gene expression pattern between SP and non-SP cells in A549 cells. We suggest that the up-regulations of the genes AKR1C1/C2, TM4SF1 and NR0B1 in SP of human adenocarcinoma A549 cells could be a target of poor prognosis in anti-cancer therapy. PMID:18034892

  3. Cytotoxic effects of four aescin types on human colon adenocarcinoma cell lines.

    PubMed

    Seweryn, Ewa; Gleńsk, Michal; Sroda-Pomianek, Kamila; Ceremuga, Ireneusz; Wlodarczyk, Maciej; Gamian, Andrzej

    2014-03-01

    Four types of aescin that are available on the pharmaceutical market, beta-aescin crystalline, beta-aescin amorphous, beta-aescin sodium and aescin polysulfate, have been analyzed for their cytotoxic effects on human colon adenocarcinoma (LoVo) and doxorubicin-resistant human colon adenocarcinoma cell lines (LoVo/Dx). Their cytotoxic activities were evaluated by sulforhodamine B (SRB) and methyl tetrazolium (MTT) assays. All four types of aescin exerted strong dose-dependent cytotoxicity to LoVo and, to a lesser degree, LoVo/Dx cell lines. The IC50 value for the LoVo/Dx cell line was higher, but still dose-dependent. Results from both assays demonstrated that p-aescin crystalline has the most cytotoxic activity toward human colon adenocarcinoma cell lines. PMID:24689224

  4. IP3 receptor antagonist, 2-APB, attenuates cisplatin induced Ca2+-influx in HeLa-S3 cells and prevents activation of calpain and induction of apoptosis

    PubMed Central

    Splettstoesser, F; Florea, A-M; Büsselberg, D

    2007-01-01

    Background and purpose: Cisplatin drives specific types of tumour cells to apoptosis. In this study we investigate the involvement of intracellular calcium ([Ca2+]i) in triggering apoptosis in two different cell lines. As cisplatin is used for the treatment of several forms of cancer we choose HeLa-S3 and U2-OS as two examples of tumour cell lines. Experimental approach: Cisplatin (1nM–10μM) was applied to HeLa-S3 and U2-OS cells and [Ca2+]i measured with fluo-4, using laser scanning microscopy. Inositol-1,4,5-trisphosphate (IP3) receptors were visualized with immunostaining. Membrane conductances were measured with patch-clamp techniques. Levels of calpain and caspases were assessed by western blots and apoptotic cells were stained with Hoechst 33342 and counted. Key results: Cisplatin increases [Ca2+]i concentration-dependently in HeLa-S3 but not in U2-OS cells. This elevation of [Ca2+]i depended on extracellular Ca2+ but was reduced by the IP3 receptor blocker, 2-APB. This effect was not due to a Ca2+ release triggered by Ca2+ entry. Immunostaining showed IP3-receptors (type1-3) at the cellular membrane of HeLa-S3 cells, but not in U2-OS cells. Electrophysiological experiments showed an increased membrane conductance with cisplatin only when Ca2+ was present extracellularly. Increase of [Ca2+]i was related to the activation of calpain but not caspase-8 and triggered apoptosis in HeLa-S3 but not in U2-OS cells. Conclusions and implications: Our observations on the activation of IP3-receptors, calcium entry and apoptotic rate by cisplatin in specific carcinogenic cells might open new possibilities in the treatment of some forms of cancer. PMID:17592515

  5. Loss of FADS2 Function Severely Impairs the Use of HeLa Cells as an In Vitro Model for Host Response Studies Involving Fatty Acid Effects

    PubMed Central

    Jaudszus, Anke; Degen, Christian; Barth, Stephan W.; Klempt, Martin; Schlörmann, Wiebke; Roth, Alexander; Rohrer, Carsten; Sauerwein, Helga; Sachse, Konrad; Jahreis, Gerhard

    2014-01-01

    Scope Established epithelial cell lines equipped with pattern recognition receptors such as the Toll-like receptor (TLR)-2 are common tools for immune response studies on invading pathogens, e.g. the obligate intracellular species of Chlamydia. Moreover, such models are widely used to elucidate fatty acid-mediated immune effects. In several transformed cell lines, however, unusual loss of metabolic functions was described. The cell lines A549 and HeLa are poorly characterized in this respect. Therefore, we comparatively assessed the metabolic capacity of A549 and HeLa prior to proposed application as in vitro model for fatty acid effects on chlamydial infection. Methodology/Principal Findings We incubated both cell lines either with substrates (C18∶2n−6 or C18∶3n−3) or products (C18∶3n−6, C18∶4n−3) of fatty acid desaturase-2 (FADS2), and analysed the fatty acid profiles after 24 h and 72 h by gas chromatography. Based on these data, we suspected that the complete discontinuation of normal biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) in HeLa was due to loss of FADS2 function. Consequently, prostaglandin E2 (PGE2) formation was less inducible by TLR2 stimulation in HeLa, likely as a result of not only insufficient supply of precursors but also weak cyclooxygenase-2 (COX-2) response. In accordance, Chlamydia infection rates were consistently lower in HeLa than in A549. Sequence analysis revealed no alteration within the FADS2 gene in HeLa. The FADS2 expression level, however, was significantly lower and, in contrast to A549, not regulated by C18∶2n−6. A549 exhibited regular fatty acid metabolism and enzyme functionality. Conclusions/Significance Our data show that HeLa cells considerably differ from A549 at several stages of fatty acid metabolism. The poor metabolic potential of HeLa, mainly concerning FADS2 upstream of COX-2 function, calls into question whether these cells represent a good model to unveil fatty acid or

  6. Inducible HSP70 Antagonizes IL-1β Cytocidal Effects through Inhibiting NF-kB Activation via Destabilizing TAK1 in HeLa Cells

    PubMed Central

    Cao, Xiang; Yue, Ling; Song, JiYun; Wu, Qiuyue; Li, Na; Luo, Lan; Lan, Lei; Yin, Zhimin

    2012-01-01

    Background Despite several reports describing the HSP70-mediated cytoprotection against IL-1, the precise mechanism for this phenomenon remains to be determined. Methods/Principal Findings Here we used HeLa cells, a human epithelial carcinoma cell line, to evaluate the role of inducible HSP70 in response of IL-1β stimulation. We found that inducible HSP70 antagonized the cytotoxicity of IL-1β and improved the survival of HeLa cells. Further investigation demonstrated that increased expression level of inducible HSP70 reduced the complex of TAK1 and HSP90, and promoted the degradation of TAK1 protein via proteasome pathway. By overexpression and RNAi knockdown, we showed that inducible HSP70 modulated the NF-kB but not MAPKs signalings through influencing the stability of TAK1 protein in HeLa cells. Moreover, overexpression of HSP70 attenuated the production of iNOS upon IL-1β stimulation, validating that inducible HSP70 serves as a cytopretective factor to antagonize the cytocidal effects of IL-1β in HeLa cells. Conclusions/Significance Our observations provide evidence for a novel signaling mechanism involving HSP70, TAK1, and NF-κB in the response of IL-1β cytocidal effects. This research also provides insight into mechanisms by which HSP70 exerts its cytoprotective action upon toxic stimuli in tumor cells. PMID:23185533

  7. Clear cell adenocarcinoma of the renal pelvis: an extremely rare neoplasm of the upper urinary tract.

    PubMed

    Liu, K-W; Lin, V C-H; Chang, I-W

    2013-12-01

    Clear cell adenocarcinoma (CCA) in the urinary tract is a rare neoplasm morphologically identical to the Müllerian counterpart. Clear cell adenocarcinoma is extremely rare in the upper urinary tract. We present a case with CCA of the renal pelvis. Microscopically, the tumor exhibited exophytic growth with predominantly tubulocystic structures, as well as solid and papillary patterns. The neoplastic cells were cuboidal with clear to pale eosinophilic cytoplasm and abundant intracellular and extracellular eosinophilic hyaline globules. By immunohistochemically, the tumor was labeled by cytokeratins and hepatocyte nuclear factor-1β. The patient was still alive without evidence of recurrence in the follow-up period of nineteen months after diagnosis. PMID:24375047

  8. Effect of inhibitors of poly(ADP-ribose) polymerase on the heat response of HeLa S3 cells.

    PubMed

    Burgman, P; Konings, A W

    1988-12-01

    The purpose of this study was to investigate a possible involvement of poly(ADP-ribosyl)ation reactions in hyperthermic cell killing and hyperthermic DNA strand-break induction and repair in HeLa S3 cells. The inhibitors of poly(ADP-ribose) polymerase, 3-aminobenzamide (3AB) and 4-aminobenzamide (4AB), were used as tools in this study. Both inhibitors could sensitize the cells for hyperthermic cell killing equally well, although 3AB is known to be a more effective enzyme inhibitor. The heat sensitization at the level of cell killing could be reversed when the compounds were still present during a 4-h postincubation at 37 degrees C. More heat-induced DNA strand breaks were formed in the presence of 3AB and 4AB. Repair of strand breaks was inhibited during the postincubation at 37 degrees C. Thus the effect of 3AB and 4AB on DNA strand-break repair was different from the cited effect on cell survival. It is concluded that the sensitizing effect of 3AB and 4AB on hyperthermic cell killing is not caused by inhibition of poly(ADP-ribose) polymerase and is also not related to repair of DNA strand breaks. PMID:3144718

  9. Red-luminescent europium (III) doped silica nanoshells: synthesis, characterization, and their interaction with HeLa cells

    PubMed Central

    Yang, Jian; Sandoval, Sergio; Alfaro, Jesus G.; Aschemeyer, Sharraya; Liberman, Alex; Martin, David T.; Makale, Milan; Kummel, Andrew C.; Trogler, William C.

    2011-01-01

    A simple method to fabricate Eu3+ doped silica nanoshells particles with 100 and 200 nm diameters is reported. Amino polystyrene beads were used as templates, and an 8 to 10 nm thick silica gel coating was formed by the sol-gel reaction. After removing the template by calcination, porous dehydrated silica gel nanoshells of uniform size were obtained. The Eu3+ doped silica nanoshells exhibited a red emission at 615 nm on UV excitation. The porous structure of the silica shell wall was characterized by transmission electron microscopy measurements, while particle size and zeta potentials of the particles suspended in aqueous solution were characterized by dynamic light scattering. Two-photon microscopy was used to image the nanoshells after assimilation by HeLa cancer cells. PMID:21721813

  10. Fluorescence studies on the role of tryptophan in heterogeneous nuclear ribonucleoprotein particles of HeLa cells.

    PubMed Central

    Schenkel, J; Appel, I; Schwarzwald, R; Bautz, E k; Wolfrum, J; Greulich, K O

    1989-01-01

    The 40 S heterogeneous nuclear ribonucleoprotein (hnRNP) particles from HeLa cells reveal tryptophan fluorescence with a bi-exponential decay, indicating that only a few of the 'core' proteins contain tryptophan residues. The presence of tryptophan residues distinguishes hnRNP particles from nucleosomes, with which they otherwise share a number of properties. This difference, however, is not essential for protein-RNA binding, as the fluorescence decay remains unchanged when hnRNP particles are dissociated into protein and RNA. However, the Stern-Volmer quenching constant is doubled upon salt dissociation, i.e. tryptophan residues become more accessible to solvent. Thus tryptophan quenching is a useful parameter for monitoring protein-protein interactions in hnRNP particles. PMID:2604698

  11. Red-luminescent europium (III) doped silica nanoshells: synthesis, characterization, and their interaction with HeLa cells

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Sandoval, Sergio; Alfaro, Jesus G.; Aschemeyer, Sharraya; Liberman, Alex; Martin, David T.; Makale, Milan; Kummel, Andrew C.; Trogler, William C.

    2011-06-01

    A simple method to fabricate Eu3+ doped silica nanoshells particles with 100 and 200 nm diameters is reported. Amino polystyrene beads were used as templates, and an 8 to 10 nm thick silica gel coating was formed by the sol-gel reaction. After removing the template by calcination, porous dehydrated silica gel nanoshells of uniform size were obtained. The Eu3+ doped silica nanoshells exhibited a red emission at 615 nm on UV excitation. The porous structure of the silica shell wall was characterized by transmission electron microscopy measurements, while particle size and zeta potentials of the particles suspended in aqueous solution were characterized by dynamic light scattering. Two-photon microscopy was used to image the nanoshells after assimilation by HeLa cancer cells.

  12. Labeling of HeLa cells using ZrO2:Yb3+-Er3+ nanoparticles with upconversion emission

    NASA Astrophysics Data System (ADS)

    Ceja-Fdez, Andrea; López-Luke, Tzarara; Oliva, Jorge; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana Lilia; Rojas, Ruben A. Rodriguez; Martínez-Pérez, Andrea; de la Rosa, Elder

    2015-04-01

    This work reports the synthesis, structural characterization, and optical properties of ZrO2:Yb3+-Er3+ (2-1 mol%) nanocrystals. The nanoparticles were coated with 3-aminopropyl triethoxysilane (APTES) and further modified with biomolecules, such as Biotin-Anti-rabbit (mouse IgG) and rabbit antibody-AntiKi-67, through a conjugation method. The conjugation was successfully confirmed by Fourier transform infrared, zeta potential, and dynamic light scattering. The internalization of the conjugated nanoparticles in human cervical cancer (HeLa) cells was followed by two-photon confocal microscopy. The ZrO2:Yb3+-Er3+ nanocrystals exhibited strong red emission under 970-nm excitation. Moreover, the luminescence change due to the addition of APTES molecules and biomolecules on the nanocrystals was also studied. These results demonstrate that ZrO2:Yb3+-Er3+ nanocrystals can be successfully functionalized with biomolecules to develop platforms for biolabeling and bioimaging.

  13. Interaction of C60 fullerene complexed to doxorubicin with model bilipid membranes and its uptake by HeLa cells.

    PubMed

    Prylutskyy, Yu; Bychko, A; Sokolova, V; Prylutska, S; Evstigneev, M; Rybalchenko, V; Epple, M; Scharff, P

    2016-02-01

    With an aim to elucidate the effects of C60 fullerene complexed with antibiotic doxorubicin (Dox) on model bilipid membranes (BLM), the investigation of the electrical properties of BLM under the action of Dox and C60 fullerene, and of their complex, C60+Dox,was performed. The complex as well as its components exert a clearly detectable influence on BLM, which is concentration-dependent and also depends on phospholipid composition. The mechanism of this effect originates either from intermolecular interaction of the drug with fatty-acid residues of phospholipids, or from membranotropic effects of the drug-induced lipid peroxidation, or from the sum of these two effects. By fluorescence microscopy the entering of C60 + Dox complex into HeLa cells was directly shown. PMID:26652389

  14. Nick translation of HeLa cell nuclei as a probe for locating DNase I-sensitive nucleosomes

    SciTech Connect

    Javaherian, K.; Fasman, G.D.

    1984-03-10

    The technique of nick translation of nuclei has been used in HeLa cells to label DNase I-sensitive regions. Micrococcal nuclease digestion of the nick translated nuclei was followed by a low ionic strength gel electrophoresis system which separates different types of mononucleosomes. The major label was observed in the vicinity of high mobility group protein containing mononucleosomes. However, further analysis revealed that the particle does not sediment in the position of mononucleosomes on a sucrose gradient. Two alternative explanations are discussed as the possible source of this particle. It is either a high mobility group protein containing nucleosome in some unfolded conformation or the labeled particle originates from discrete DNA fragments, wrapped around some nonhistone proteins, located in a highly DNase I-sensitive region, which is resistant to micrococcal nuclease digestion. 36 references, 7 figures.

  15. Properties of the deoxycholate-solubilized HeLa cell plasma membrane receptor for binding group B coxsackieviruses.

    PubMed Central

    Krah, D L; Crowell, R L

    1985-01-01

    Physical and chemical properties of deoxycholate-solubilized HeLa cell plasma membrane receptors for binding group B coxsackieviruses were determined. Receptors eluted from Sepharose 4B with an apparent molecular weight of 275,000 and sedimented with an S value of between 14.7 and 4.9 and a buoyant density of 1.06 to 1.10 g/cm3. Virus-binding activity was destroyed after treatment with proteases, glycosidases, and periodate but was unaffected by lipases or reducing or alkylating agents. Additionally, lectins, including concanavalin A, adsorbed receptors and inhibited virus attachment. The composite data suggested that glycoprotein is an integral part of the receptors for binding virus. PMID:2983096

  16. Synergistic interactions of saponins and monoterpenes in HeLa cells, Cos7 cells and in erythrocytes.

    PubMed

    Herrmann, Florian; Wink, Michael

    2011-10-15

    In phytomedicine complex extracts consisting of phenolics, monoterpenes or saponins are traditionally used. It is often impossible to attribute the biological activity of an extract to one or few compounds. As an explanation of the superior activity of extracts, a synergistic effect of combinations of active compounds has been suggested. Since lipophilic monoterpenes or saponins targeting the biomembrane usually accompany polar polyphenols in phytomedical preparations, we decided to investigate their effect as single substances and in combination to gain further insight into potential synergistic effects of herbal medicine. Combinations of the monoterpenes α-pinene, thymol and menthol with the monodesmosidic saponins digitonin, aescin, glycyrrhizic acid and Quillaja saponin demonstrated strong synergistic activity. The IC(50) of haemolysis was lowered by a factor of 10-100 from 316μg/ml to 2μg/ml for aescin, 157μg/ml to 11μg/ml for Quillaja saponins and 20μg/ml to 3μg/ml for digitonin when combined with thymol. A similar significant synergistic cytotoxicity occurred both in HeLa and Cos7 cells by combining the α-pinene, thymol and menthol with the saponins. The IC(50) of glycyrrhizic acid was lowered by a factor 100 from around 300μg/ml to around 1-10μg/ml and the IC(50) of aescin, digitonin and Quillaja saponins about the factor 10. Monoterpenes and monodesmosidic saponins have a common target, the biomembrane, which is present in all animal, fungal and bacterial cells. Disturbance of membrane fluidity and permeability is the mode of action. This activity is non-specific which makes it extremely difficult for bacteria and fungi to develop resistance. This explains the overall success of these molecules as defence chemicals in the plant kingdom. The synergistic effect of combinations of saponins with monoterpenes opens a complete new field of possible applications in medicine to overcome resistance in multidrug resistant microbial and human cell. PMID

  17. S-adenosyl-L-methionine counteracts mitotic disturbances and cytostatic effects induced by sodium arsenite in HeLa cells.

    PubMed

    Ramírez, Tzutzuy; Stopper, Helga; Fischer, Thomas; Hock, Robert; Herrera, Luis A

    2008-01-01

    Aneuploidy represents a serious problem for human health. Toxicological data have shown that aneuploidy can be caused by exposure to chemical agents known as mitotic spindle poisons, since they arrest cell cycle in mitosis through their interaction with tubulin. Among these agents is arsenic. In previous reports, we demonstrated that the aneugenic events induced by sodium arsenite can be abolished by the exogenous addition of S-adenosyl-l-methionine (SAM). Nevertheless, the mechanisms involved are still unknown. The aim of the present work was to study the influence of SAM on the mitotic disturbances caused by sodium arsenite. To achieve this goal, we analyzed microtubule (MT) polymerization by immunolocalization and live cell microscopy of mitotic cells. Our findings indicate that sodium arsenite alters the dynamics of MT polymerization, induces centrosome amplification and delays mitosis. Furthermore, SAM reduces the alterations on MT dynamics, as well as centrosome amplification, and therefore diminishes the formation of multipolar spindles in treated HeLa cells. In addition, SAM decreases the progression time through mitosis. Taking these data together, we consider that the mechanism by which SAM reduces the frequency of aneuploid cells must be related to the modulation of the dynamics and organization of MT, suggesting a role of SAM on chromosome segregation, which should be further investigated in primary cells. PMID:17888458

  18. Phenol-soluble modulin α induces G2/M phase transition delay in eukaryotic HeLa cells.

    PubMed

    Deplanche, Martine; Filho, Rachid Aref El-Aouar; Alekseeva, Ludmila; Ladier, Emilie; Jardin, Julien; Henry, Gwénaële; Azevedo, Vasco; Miyoshi, Anderson; Beraud, Laetitia; Laurent, Frederic; Lina, Gerard; Vandenesch, François; Steghens, Jean-Paul; Le Loir, Yves; Otto, Michael; Götz, Friedrich; Berkova, Nadia

    2015-05-01

    Staphylococcus aureus is a gram-positive bacterium responsible for a wide range of infections. Host cell cycle alteration is a sophisticated mechanism used by pathogens to hijack the defense functions of host cells. We previously demonstrated that S. aureus MW2 (USA400) bacteria induced a G2/M phase transition delay in HeLa cells. We demonstrate here that this activity is triggered by culture supernatant compounds. Using size exclusion chromatography of the MW2 supernatant, followed by mass spectroscopy analysis of corresponding peaks, we identified phenol-soluble modulin α (PSMα) peptides as the likely candidates for this effect. Indeed, synthetic PSMα1 and PSMα3 caused a G2/M phase transition delay. The implication of PSMα in cell cycle alteration was confirmed by comparison of S. aureus Los Angeles County clone (LAC) wild-type with the isogenic mutant LAC∆psmα, which lacks the psmα operon encoding PSMα1-4. PSMα-induced G2/M transition delay correlated with a decrease in the defensin genes expression suggesting a diminution of antibacterial functions of epithelial cells. By testing the supernatant of S. aureus human clinical isolates, we found that the degree of G2/M phase transition delay correlated with PSMα1 production. We show that PSMs secreted by S. aureus alter the host cell cycle, revealing a newly identified mechanism for fostering an infection. PMID:25648996

  19. miR-873 induces lung adenocarcinoma cell proliferation and migration by targeting SRCIN1

    PubMed Central

    Gao, Yushun; Xue, Qi; Wang, Dali; Du, Minjun; Zhang, Yanjiao; Gao, Shugeng

    2015-01-01

    microRNAs (miRNAs) are endogenously expressed, conserved and small noncoding RNA that regulate gene expression by the post-transcriptional level. In this study, we aim to examine the role of miR-873 in lung adenocarcinoma. We found that the expression of miR-873 was upregulated in four lung adenocarcinoma cell lines and tissues. In addition, the expression levels of SRCIN1 were inversely correlated with the expression levels of miR-873 in lung adenocarcinoma tissues. Furthermore, SRCIN1 was confirmed asthe direct target of miR-873 by luciferase reporter assay and Western blotting. Overexpression of miR-873 promoted the proliferation and migration of lung adenocarcinoma cells, while SRCIN1 upregulation inhibited their proliferation and migration. Restoration of SRCIN1 could significantly reverse the proliferation and migration promotion imposed by miR-873. In summary, this study reveals for the first time that miR-873 increase the lung adenocarcinoma cell proliferation and migration through directly inhibiting SRCIN1 expression. PMID:26807196

  20. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells.

    PubMed

    Ujhelyi, Zoltán; Kalantari, Azin; Vecsernyés, Miklós; Róka, Eszter; Fenyvesi, Ferenc; Póka, Róbert; Kozma, Bence; Bácskay, Ildikó

    2015-01-01

    The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations. PMID:26197311

  1. Novel localisation and possible function of LIN7 and IRSp53 in mitochondria of HeLa cells.

    PubMed

    Ferrari, Ilaria; Crespi, Arianna; Fornasari, Diego; Pietrini, Grazia

    2016-08-01

    By means of immunofluorescence and subcellular fractionation experiments, we here demonstrate mitochondrial distribution of LIN7 and IRSp53 in HeLa cells. These peripheral proteins displayed a tight association with mitochondria and coimmunoprecipitated from mitochondrial fractions. In line with a role for LIN7 in the regulation of IRSp53 activity on actin dynamics, the morphology of mitochondria was similarly altered by changing the expression levels of either each protein or both, whereas mitochondrial morphology was preserved in cells overexpressing IRSp53 deleted of its binding domains for LIN7 (IRSp53Δ5) or for actin polymerisation modulators (IRSp53ΔSH3). In particular, the overexpression of full length LIN7 and/or IRSp53 increased the percentage of cells with short mitochondria, while downregulation of the endogenous proteins by shRNAs increased the amount of cells with elongated and perinuclear clustered mitochondria. These mitochondria were only partially resistant to fragmentation induced by dissipation of the mitochondrial membrane potential (i.e. treatment with sodium azide), whereas mitochondria were fully protected by the fission defective mutant Drp1 K38A. Overexpression of LIN7 or IRSp53 did not prevent the formation of hyperfused mitochondria in cells coexpressing the Drp1 K38A mutant, thus suggesting that LIN7-IRSp53 complex requires functional Drp1 to regulate mitochondrial morphology. PMID:27320196

  2. Effect of inhibitors of poly(ADP-ribose)polymerase on the radiation response of HeLa S3 cells

    SciTech Connect

    Burgman, P.; Konings, A.W. )

    1989-08-01

    The purpose of this study was to investigate possible involvement of poly(ADP-ribosyl)ation reactions in X-ray-induced cell killing, repair of potentially lethal damage (PLD), and formation and repair of radiation-induced DNA damage. As tools we used the inhibitors of poly(ADP-ribose)polymerase, 3-aminobenzamide (3AB), and 4-aminobenzamide (4AB). Both drugs inhibited PLD repair equally well but did not increase radiation-induced cell killing when cells were plated immediately after irradiation. 3AB affected repair of radiation-induced DNA damage, while 4AB had no effect. When 3AB was combined with aphidicolin (APC), it was found that the amount of DNA damage increased during the postirradiation incubation period. This means that the presence of 3AB stimulates the formation of DNA damage after X-irradiation. It is concluded that 3AB and 4AB sensitize HeLaS3 cells for radiation-induced cell killing by inhibiting repair of PLD. Because of the different effects of both inhibitors on repair of PLD and repair of radiation-induced DNA damage (a process known to be affected by inhibition of poly(ADP-ribosyl)ation), it is concluded that the observed inhibition of PLD repair is not caused by inhibition of poly(ADP-ribose)polymerase, and that the inhibitors affect repair of PLD and repair of DNA damage through independent mechanisms.

  3. Effect of inhibitors of poly(ADP-ribose)polymerase on the radiation response of HeLa S3 cells.

    PubMed

    Burgman, P; Konings, A W

    1989-08-01

    The purpose of this study was to investigate possible involvement of poly(ADP-ribosyl)ation reactions in X-ray-induced cell killing, repair of potentially lethal damage (PLD), and formation and repair of radiation-induced DNA damage. As tools we used the inhibitors of poly(ADP-ribose)polymerase, 3-aminobenzamide (3AB), and 4-aminobenzamide (4AB). Both drugs inhibited PLD repair equally well but did not increase radiation-induced cell killing when cells were plated immediately after irradiation. 3AB affected repair of radiation-induced DNA damage, while 4AB had no effect. When 3AB was combined with aphidicolin (APC), it was found that the amount of DNA damage increased during the postirradiation incubation period. This means that the presence of 3AB stimulates the formation of DNA damage after X-irradiation. It is concluded that 3AB and 4AB sensitize HeLaS3 cells for radiation-induced cell killing by inhibiting repair of PLD. Because of the different effects of both inhibitors on repair of PLD and repair of radiation-induced DNA damage (a process known to be affected by inhibition of poly(ADP-ribosyl)ation), it is concluded that the observed inhibition of PLD repair is not caused by inhibition of poly(ADP-ribose)polymerase, and that the inhibitors affect repair of PLD and repair of DNA damage through independent mechanisms. PMID:2502817

  4. Effects of tatariside G isolated from Fagopyrum tataricum roots on apoptosis in human cervical cancer HeLa cells.

    PubMed

    Li, Yuan; Wang, Su-Juan; Xia, Wei; Rahman, Khalid; Zhang, Yan; Peng, Hao; Zhang, Hong; Qin, Lu-Ping

    2014-01-01

    Cervical cancer is the second most common female carcinoma. Current therapies are often unsatisfactory, especially for advanced stage patients. The aim of this study was to explore the effects of tatariside G (TG) on apoptosis in human cervical cancer HeLa cells and the possible mechanism of action involved. An MTT assay was employed to evaluate cell viability. Hoechst 33258 staining and flow cytometry (FCM) assays were used to detect cell apoptosis. The protein expression of phosphorylated JNK, P38, ERK and Akt and cleaved caspase-3 and caspase-9 was evaluated by western blot analysis. Additionally, the mRNA expression of caspase-3 and caspase-9 was measured by fluorescent quantitative reverse transcription-PCR (FQ-RT-PCR). TG notably inhibited cell viability, enhanced the percentage of apoptotic cells, facilitated the phosphorylation of p38 MAPK and JNK proteins and caspase-3 and caspase-9 cracking, downregulated the phosphorylation level of Akt, and increased the loss of MMP and the mRNA expression of caspase-3 and caspase-9. TG-induced apoptosis is associated with activation of the mitochondrial death pathway. TG may be an effective candidate for chemotherapy against cervical cancer. PMID:25076146

  5. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ

    PubMed Central

    Guix, Maria; Meyer, Anne K.; Koch, Britta; Schmidt, Oliver G.

    2016-01-01

    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems. PMID:26905939

  6. Cellular Cultivation: Growing HeLa Cells Using Standard High School Laboratory Equipment.

    ERIC Educational Resources Information Center

    Woloschak, Gayle; And Others

    1995-01-01

    Describes experiments to culture cells in a laboratory that provide students with hands-on experience in manipulating cells and a chance to observe cell growth characteristics first hand. Exposes students to sterile technique, cell culture, cell growth concepts, and eukaryotic cell structure. (JRH)

  7. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    PubMed Central

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis. PMID:26818472

  8. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.

  9. Polypeptide Fraction from Arca subcrenata Induces Apoptosis and G2/M Phase Arrest in HeLa Cells via ROS-Mediated MAPKs Pathways.

    PubMed

    Hu, Xianjing; Zhang, Zhang; Liu, Ting; Song, Liyan; Zhu, Jianhua; Guo, Zhongyi; Cai, Jinghua; Yu, Rongmin

    2015-01-01

    Arca subcrenata is documented in the literature of marine Traditional Chinese Medicine. Polypeptide fraction from A. subcrenata, coded as P2, was demonstrated to possess significant antitumor activity in our previous study. However, the underlying mechanism remains undefined. The present study was carried out to investigate the underlying antitumor mechanism of P2 in human cervical cancer HeLa cells by MTT, FCM, LSCM, and western blot assays. The results revealed that P2 significantly induced apoptosis of HeLa cells in a concentration- and time-dependent manner. High level of ROS was provoked by P2, which was in turn responsible for induction of apoptosis through activation of intrinsic mitochondrial pathway and JNK1/2, p38 MAPK pathways, as well as inhibition of ERK1/2 pathway, as evidenced by the abrogation of P2's effect on HeLa cells preincubated with the ROS scavenger NAC. P2 also was observed to display significant effect on G2/M phase arrest by downregulating the expression of cyclin B1/cdc2 complex and upregulating the expression of p21. These findings demonstrate that P2 induces apoptosis and G2/M phase arrest in HeLa cells through ROS-mediated MAPKs pathways, suggesting that P2 would be worth investigating as a promising agent within the scope of marine drugs for treatment of cervical cancer. PMID:26089952

  10. Polypeptide Fraction from Arca subcrenata Induces Apoptosis and G2/M Phase Arrest in HeLa Cells via ROS-Mediated MAPKs Pathways

    PubMed Central

    Hu, Xianjing; Zhang, Zhang; Liu, Ting; Song, Liyan; Zhu, Jianhua; Guo, Zhongyi; Cai, Jinghua; Yu, Rongmin

    2015-01-01

    Arca subcrenata is documented in the literature of marine Traditional Chinese Medicine. Polypeptide fraction from A. subcrenata, coded as P2, was demonstrated to possess significant antitumor activity in our previous study. However, the underlying mechanism remains undefined. The present study was carried out to investigate the underlying antitumor mechanism of P2 in human cervical cancer HeLa cells by MTT, FCM, LSCM, and western blot assays. The results revealed that P2 significantly induced apoptosis of HeLa cells in a concentration- and time-dependent manner. High level of ROS was provoked by P2, which was in turn responsible for induction of apoptosis through activation of intrinsic mitochondrial pathway and JNK1/2, p38 MAPK pathways, as well as inhibition of ERK1/2 pathway, as evidenced by the abrogation of P2's effect on HeLa cells preincubated with the ROS scavenger NAC. P2 also was observed to display significant effect on G2/M phase arrest by downregulating the expression of cyclin B1/cdc2 complex and upregulating the expression of p21. These findings demonstrate that P2 induces apoptosis and G2/M phase arrest in HeLa cells through ROS-mediated MAPKs pathways, suggesting that P2 would be worth investigating as a promising agent within the scope of marine drugs for treatment of cervical cancer. PMID:26089952

  11. Alphacoronavirus transmissible gastroenteritis virus nsp1 protein suppresses protein translation in mammalian cells and in cell-free HeLa cell extracts but not in rabbit reticulocyte lysate.

    PubMed

    Huang, Cheng; Lokugamage, Kumari G; Rozovics, Janet M; Narayanan, Krishna; Semler, Bert L; Makino, Shinji

    2011-01-01

    The nsp1 protein of transmissible gastroenteritis virus (TGEV), an alphacoronavirus, efficiently suppressed protein synthesis in mammalian cells. Unlike the nsp1 protein of severe acute respiratory syndrome coronavirus, a betacoronavirus, the TGEV nsp1 protein was unable to bind 40S ribosomal subunits or promote host mRNA degradation. TGEV nsp1 also suppressed protein translation in cell-free HeLa cell extract; however, it did not affect translation in rabbit reticulocyte lysate (RRL). Our data suggested that HeLa cell extracts and cultured host cells, but not RRL, contain a host factor(s) that is essential for TGEV nsp1-induced translational suppression. PMID:21047955

  12. A systems biology analysis of the changes in gene expression via silencing of HPV-18 E1 expression in HeLa cells

    PubMed Central

    Castillo, Andres; Wang, Lu; Koriyama, Chihaya; Eizuru, Yoshito; Jordan, King; Akiba, Suminori

    2014-01-01

    Previous studies have reported the detection of a truncated E1 mRNA generated from HPV-18 in HeLa cells. Although it is unclear whether a truncated E1 protein could function as a replicative helicase for viral replication, it would still retain binding sites for potential interactions with different host cell proteins. Furthermore, in this study, we found evidence in support of expression of full-length HPV-18 E1 mRNA in HeLa cells. To determine whether interactions between E1 and cellular proteins play an important role in cellular processes other than viral replication, genome-wide expression profiles of HPV-18 positive HeLa cells were compared before and after the siRNA knockdown of E1 expression. Differential expression and gene set enrichment analysis uncovered four functionally related sets of genes implicated in host defence mechanisms against viral infection. These included the toll-like receptor, interferon and apoptosis pathways, along with the antiviral interferon-stimulated gene set. In addition, we found that the transcriptional coactivator E1A-binding protein p300 (EP300) was downregulated, which is interesting given that EP300 is thought to be required for the transcription of HPV-18 genes in HeLa cells. The observed changes in gene expression produced via the silencing of HPV-18 E1 expression in HeLa cells indicate that in addition to its well-known role in viral replication, the E1 protein may also play an important role in mitigating the host's ability to defend against viral infection. PMID:25297386

  13. Sex Differences in Estrogen Receptor Subcellular Location and Activity in Lung Adenocarcinoma Cells

    PubMed Central

    Ivanova, Margarita M.; Mazhawidza, Williard; Dougherty, Susan M.; Klinge, Carolyn M.

    2010-01-01

    The role of estrogens in the increased risk of lung adenocarcinoma in women remains uncertain. We reported that lung adenocarcinoma cell lines from female, but not male, patients with non–small cell lung cancer respond proliferatively and transcriptionally to estradiol (E2), despite equal protein expression of estrogen receptors (ER) α and β. To test the hypothesis that nuclear localization of ERα corresponds to genomic E2 activity in lung adenocarcinoma cells from females, cell fractionation, immunoblot, and confocal immunohistochemical microscopy were performed. We report for the first time that E2 increases phospho-serine-118-ERα (P-ser118-ERα) and cyclin D1 (CCND1) nuclear colocalization in H1793, but not A549 lung adenocarcinoma cells, derived from a female and male patient, respectively. ERβ was primarily in the cytoplasm and mitochondria, independent of E2 treatment, and showed no difference between H1793 and A549 cells. E2 induced higher transcription of endogenous ERα-regulated CCND1 in H1793 than in A549 cells. Likewise, higher rapid, non-genomic E2-induced extracellular signal–regulated kinase 1/2 activation was detected in H1793 compared with A549 cells, linking extracellular signal–regulated kinase activation to increased P-ser118-ERα. Furthermore, E2 increased cyclin D1 and P-ser118-ERα nuclear localization in H1793, but not A549 cells. Together, our results indicate that nuclear localization of P-ser118-ERα provides one explanation for sex-dependent differences in E2-genomic responses in lung adenocarcinoma cell lines. PMID:19556604

  14. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    SciTech Connect

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  15. Analysis of energy metabolism of HeLa cancer cells in vitro and in vivo using fluorescence lifetime microscopy

    NASA Astrophysics Data System (ADS)

    Lukina, Maria; Shirmanova, Marina; Dudenkova, Varvara; Druzhkova, Irina; Shumilova, Anastasia; Zagaynova, Elena

    2016-04-01

    The aim of the present work was to study energy metabolism in human cervical carcinoma (HeLa) cells in vitro and in vivo using two-photon FLIM. Cellular metabolism was examined by monitoring of the fluorescence lifetimes of free and protein-bound forms of NAD(P)H and FAD and their relative contributions. Two-photon fluorescence and second harmonic generation microscopy as well as standard histopathology with hematoxylin and eosin were used to characterize tissue structure. Cellular metabolism was analyzed in cancer cells co-cultured with human fibroblasts and in tumor xenografts transplanted to nude mice. In the HeLa-huFB co-culture we observed a metabolic shift from OXPHOS toward glycolysis in cancer cells, and from glycolysis to OXPHOS in fibroblasts, starting from Day 2 of co-culturing. In the tumor tissue we detected metabolic heterogeneity with more glycolytic metabolism of cancer cells in the stroma-rich zones. The results of the study are of a great importance for understanding metabolic behavior of tumors and for development of anticancer drugs targeted to metabolic pathways.

  16. Effect of recombinant Newcastle disease virus transfection on lung adenocarcinoma A549 cells in vivo

    PubMed Central

    YAN, YULAN; JIA, LIJUAN; ZHANG, JIN; LIU, YANG; BU, XUEFENG

    2014-01-01

    Newcastle disease virus (NDV) has been reported to selectively duplicate in and then destroy tumor cells, whilst sparing normal cells. However, the effect of NDV on lung cancer has yet to be elucidated. In the present study, recombinant NDV (rl-RVG) was applied to lung adenocarcinoma A549 cell tumor-bearing mice to explore its effect on the proliferation of the cells and the immune response of the mice. Following rl-RVG transfection, RVG and NDV gene expression, decreased tumor growth, subcutaneous tumor necrosis, tumor apoptosis and an increased number of cluster of differentiation (CD)3−/CD49+ natural killer cells were more evident in the rl-RVG group. The present study demonstrated that rl-RVG transfection effectively restrained lung adenocarcinoma A549 cell growth in vivo, which may have been accomplish by inducing tumor cell apoptosis and regulating the cell immune response. PMID:25364430

  17. 1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione Induces G1 Cell Cycle Arrest and Autophagy in HeLa Cervical Cancer Cells

    PubMed Central

    Tsai, Jie-Heng; Hsu, Li-Sung; Huang, Hsiu-Chen; Lin, Chih-Li; Pan, Min-Hsiung; Hong, Hui-Mei; Chen, Wei-Jen

    2016-01-01

    The natural agent, 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB), has been reported to have growth inhibitory effects on several human cancer cells. However, the role of HMDB in cervical cancer remains unclear. Herein, we found that HMDB dose- and time-dependently inhibited growth of HeLa cervical cancer cells, accompanied with G1 cell cycle arrest. HMDB decreased protein expression of cyclins D1/D3/E and cyclin-dependent kinases (CDKs) 2/4/6 and reciprocally increased mRNA and protein levels of CDK inhibitors (p15, p16, p21, and p27), thereby leading to the accumulation of hypophosphorylated retinoblastoma (Rb) protein. HMDB also triggered the accumulation of acidic vesicles and formation of microtubule-associated protein-light chain 3 (LC3), followed by increased expression of LC3 and Beclin-1 and decreased expression of p62, suggesting that HMDB triggered autophagy in HeLa cells. Meanwhile, suppression of the expression of survivin and Bcl-2 implied that HMDB-induced autophagy is tightly linked to apoptosis. Exploring the action mechanism, HMDB induced autophagy via the modulation of AMP-activated protein kinase (AMPK) and mTOR signaling pathway rather than the class III phosphatidylinositol 3-kinase pathway. These results suggest that HMDB inhibits HeLa cell growth by eliciting a G1 arrest through modulation of G1 cell cycle regulators and by concomitantly inducing autophagy through the mediation of AMPK-mTOR and Akt-mTOR pathways, and may be a promising antitumor agent against cervical cancer. PMID:27527160

  18. 1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione Induces G1 Cell Cycle Arrest and Autophagy in HeLa Cervical Cancer Cells.

    PubMed

    Tsai, Jie-Heng; Hsu, Li-Sung; Huang, Hsiu-Chen; Lin, Chih-Li; Pan, Min-Hsiung; Hong, Hui-Mei; Chen, Wei-Jen

    2016-01-01

    The natural agent, 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB), has been reported to have growth inhibitory effects on several human cancer cells. However, the role of HMDB in cervical cancer remains unclear. Herein, we found that HMDB dose- and time-dependently inhibited growth of HeLa cervical cancer cells, accompanied with G1 cell cycle arrest. HMDB decreased protein expression of cyclins D1/D3/E and cyclin-dependent kinases (CDKs) 2/4/6 and reciprocally increased mRNA and protein levels of CDK inhibitors (p15, p16, p21, and p27), thereby leading to the accumulation of hypophosphorylated retinoblastoma (Rb) protein. HMDB also triggered the accumulation of acidic vesicles and formation of microtubule-associated protein-light chain 3 (LC3), followed by increased expression of LC3 and Beclin-1 and decreased expression of p62, suggesting that HMDB triggered autophagy in HeLa cells. Meanwhile, suppression of the expression of survivin and Bcl-2 implied that HMDB-induced autophagy is tightly linked to apoptosis. Exploring the action mechanism, HMDB induced autophagy via the modulation of AMP-activated protein kinase (AMPK) and mTOR signaling pathway rather than the class III phosphatidylinositol 3-kinase pathway. These results suggest that HMDB inhibits HeLa cell growth by eliciting a G1 arrest through modulation of G1 cell cycle regulators and by concomitantly inducing autophagy through the mediation of AMPK-mTOR and Akt-mTOR pathways, and may be a promising antitumor agent against cervical cancer. PMID:27527160

  19. Suppression in vivo of human papillomavirus type 18 E6-E7 gene expression in nontumorigenic HeLa X fibroblast hybrid cells.

    PubMed Central

    Bosch, F X; Schwarz, E; Boukamp, P; Fusenig, N E; Bartsch, D; zur Hausen, H

    1990-01-01

    The E6 and E7 genes of the cancer-associated human papillomavirus (HPV) types 16 (HPV16) and 18 (HPV18) can induce cell immortalization in vitro in normal human keratinocytes. This, however, is not associated with tumorigenicity in vivo. On the other hand, tumorigenicity of HPV18-positive HeLa cervical carcinoma cells can be suppressed by fusion of HeLa cells with normal human keratinocytes or fibroblasts. We have addressed the question of whether suppression of tumorigenicity in HeLa x fibroblast hybrid cells might be due to a reduced ability of these cells to express the HPV18 E6-E7 genes in vivo. Nontumorigenic hybrid cells and tumorigenic hybrid segregants were transplanted as organotypical cultures or injected subcutaneously into immunocompromised mice and were analyzed for HPV18 E6-E7 gene expression by RNA-RNA in situ hybridization. The tumorigenic hybrid cells showed a continuous and invasive growth that was associated with high levels of HPV18 E6-E7 mRNAs at all time points examined. In contrast, the nontumorigenic hybrid cells stopped cell proliferation approximately 3 days after transplantation. At this time they expressed the E6-E7 genes at low levels, whereas at day 2 high expression levels were observed. However, the mRNA levels of the cytoskeletal genes beta-actin and vimentin remained high for at least 14 days, demonstrating that inhibition of growth and of HPV18 E6-E7 gene expression was not due to cell death. These results suggest that growth inhibition of the nontumorigenic HeLa x fibroblast hybrid cells in vivo might be caused by suppression of HPV18 E6-E7 gene expression and are compatible with the idea of an intracellular surveillance mechanism for HPV gene expression existing in nontumorigenic cells. Images PMID:2168962

  20. Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma-Like by Reprogramming.

    PubMed

    Borges, Gisely T; Vêncio, Eneida F; Quek, Sue-Ing; Chen, Adeline; Salvanha, Diego M; Vêncio, Ricardo Z N; Nguyen, Holly M; Vessella, Robert L; Cavanaugh, Christopher; Ware, Carol B; Troisch, Pamela; Liu, Alvin Y

    2016-09-01

    The lineage relationship between prostate adenocarcinoma and small cell carcinoma was studied by using the LuCaP family of xenografts established from primary neoplasm to metastasis. Expression of four stem cell transcription factor (TF) genes, LIN28A, NANOG, POU5F1, SOX2, were analyzed in the LuCaP lines. These genes, when force expressed in differentiated cells, can reprogram the recipients into stem-like induced pluripotent stem (iPS) cells. Most LuCaP lines expressed POU5F1, while LuCaP 145.1, representative of small cell carcinoma, expressed all four. Through transcriptome database query, many small cell carcinoma genes were also found in stem cells. To test the hypothesis that prostate cancer progression from "differentiated" adenocarcinoma to "undifferentiated" small cell carcinoma could involve re-expression of stem cell genes, the four TF genes were transduced via lentiviral vectors into five adenocarcinoma LuCaP lines-70CR, 73CR, 86.2, 92, 105CR-as done in iPS cell reprogramming. The resultant cells from these five transductions displayed a morphology of small size and dark appearing unlike the parentals. Transcriptome analysis of LuCaP 70CR* ("*" to denote transfected progeny) revealed a unique gene expression close to that of LuCaP 145.1. In a prostate principal components analysis space based on cell-type transcriptomes, the different LuCaP transcriptome datapoints were aligned to suggest a possible ordered sequence of expression changes from the differentiated luminal-like adenocarcinoma cell types to the less differentiated, more stem-like small cell carcinoma types, and LuCaP 70CR*. Prostate cancer progression can thus be molecularly characterized by loss of differentiation with re-expression of stem cell genes. J. Cell. Physiol. 231: 2040-2047, 2016. © 2016 Wiley Periodicals, Inc. PMID:26773436

  1. Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells.

    PubMed

    Casanova, Alain; Low, Shyan H; Emmenlauer, Mario; Conde-Alvarez, Raquel; Salcedo, Suzana P; Gorvel, Jean-Pierre; Dehio, Christoph

    2016-01-01

    Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular

  2. Gender difference in the activity but not expression of estrogen receptors α and β in human lung adenocarcinoma cells

    PubMed Central

    Dougherty, Susan M; Mazhawidza, Williard; Bohn, Aimee R; Robinson, Krista A; Mattingly, Kathleen A; Blankenship, Kristy A; Huff, Mary O; McGregor, William G; Klinge, Carolyn M

    2006-01-01

    The higher frequency of lung adenocarcinoma in women smokers than in men smokers suggests a role for gender-dependent factors in the etiology of lung cancer. We evaluated estrogen receptor (ER) α and β expression and activity in human lung adenocarcinoma cell lines and normal lung fibroblasts. Full-length ERα and ERβ proteins were expressed in all cell lines with higher ERβ than ERα. Although estradiol (E2) binding was similar, E2 stimulated proliferation only in cells from females, and this response was inhibited by anti-estrogens 4-hydroxytamoxifen (4-OHT) and ICI 182,780. In contrast, E2 did not stimulate replication of lung adenocarcinoma cells from males and 4-OHT or ICI did not block cell proliferation. Similarly, transcription of an estrogen response element-driven reporter gene was stimulated by E2 in lung adenocarcinoma cells from females, but not males. Progesterone receptor (PR) expression was increased by E2 in two out of five adenocarcinoma cell lines from females, but none from males. E2 decreased E-cadherin protein expression in some of the cell lines from females, as it did in MCF-7 breast cancer cells, but not in the cell lines from males. Thus, ERα and ERβ expression does not correlate with the effect of ER ligands on cellular activities in lung adenocarcinoma cells. On the other hand, coactivator DRIP205 expression was higher in lung adenocarcinoma cells from females versus males and higher in adenocarcinoma cells than in normal human bronchial epithelial cells. DRIP205 and other ER coregulators may contribute to differences in estrogen responsiveness between lung adenocarcinoma cells in females and males. PMID:16601283

  3. Synthesis of herpes simplex virus, vaccinia virus, and adenovirus DNA in isolated HeLa cell nuclei. I. Effect of viral-specific antisera and phosphonoacetic acid.

    PubMed Central

    Bolden, A; Aucker, J; Weissbach, A

    1975-01-01

    Purified nuclei, isolated from appropriately infected HeLa cells, are shown to synthesize large amounts of either herpes simplex virus (HSV) or vaccinia virus DNA in vitro. The rate of synthesis of DNA by nuclei from infected cells is up to 30 times higher than the synthesis of host DNA in vitro by nuclei isolated from uninfected HeLa cells. Thus HSV nuclei obtained from HSV-infected cells make DNA in vitro at a rate comparable to that seen in the intact, infected cell. Molecular hybridization studies showed that 80% of the DNA sequences synthesized in vitro by nuclei from herpesvirus-infected cells are herpesvirus specific. Vaccinia virus nuclei from vaccinia virus-infected cells, also produce comparable percentages of vaccinia virus-specific DNA sequences. Adenovirus nuclei from adenovirus 2-infected HeLa cells, which also synthesize viral DNA in vitro, have been included in this study. Synthesis of DNA by HSV or vaccinia virus nuclei is markedly inhibited by the corresponding viral-specific antisera. These antisera inhibit in a similar fashion the purified herpesvirus-induced or vaccinia virus-induced DNA polymerase isolated from infected cells. Phosphonoacetic acid, reported to be a specific inhibitor of herpesvirus formation and the herpesvirus-induced DNA polymerase, is equally effective as an inhibitor of HSV DNA synthesis in isolated nuclei in vitro. However, we also find phosphonoacetic acid to be an effective inhibitor of vaccinia virus nuclear DNA synthesis and the purified vaccinia virus-induced DNA polymerase. In addition, this compound shows significant inhibition of DNA synthesis in isolated nuclei obtained from adenovirus-infected or uninfected cells and is a potent inhibitor of HeLa cell DNA polymerase alpha. PMID:172658

  4. Silencing cytokeratin 18 gene inhibits intracellular replication of Trypanosoma cruzi in HeLa cells but not binding and invasion of trypanosomes

    PubMed Central

    Claser, Carla; Curcio, Marli; de Mello, Samanta M; Silveira, Eduardo V; Monteiro, Hugo P; Rodrigues, Mauricio M

    2008-01-01

    Background As an obligatory intracellular parasite, Trypanosoma cruzi, the etiological agent of Chagas' disease, must invade and multiply within mammalian cells. Cytokeratin 18 (CK18) is among the host molecules that have been suggested as a mediator of important events during T. cruzi-host cell interaction. Based on that possibility, we addressed whether RNA interference (RNAi)-mediated down regulation of the CK18 gene could interfere with the parasite life cycle in vitro. HeLa cells transiently transfected with CK18-RNAi had negligible levels of CK18 transcripts, and significantly reduced levels of CK18 protein expression as determined by immunoblotting or immunofluorescence. Results CK18 negative or positive HeLa cells were invaded equally as well by trypomastigotes of different T. cruzi strains. Also, in CK18 negative or positive cells, parasites recruited host cells lysosomes and escaped from the parasitophorous vacuole equally as well. After that, the growth of amastigotes of the Y or CL-Brener strains, was drastically arrested in CK18 RNAi-treated cells. After 48 hours, the number of amastigotes was several times lower in CK18 RNAi-treated cells when compared to control cells. Simultaneous staining of parasites and CK18 showed that in HeLa cells infected with the Y strain both co-localize. Although the amastigote surface protein-2 contains the domain VTVXNVFLYNR previously described to bind to CK18, in several attempts, we failed to detect binding of a recombinant protein to CK-18. Conclusion The study demonstrates that silencing CK18 by transient RNAi, inhibits intracellular multiplication of the Y and CL strain of T. cruzi in HeLa cells, but not trypanosome binding and invasion. PMID:19087356

  5. Unravelling the potential of a new uracil phosphoribosyltransferase (UPRT) from Arabidopsis thaliana in sensitizing HeLa cells towards 5-fluorouracil.

    PubMed

    Narayanan, Sharmila; Sanpui, Pallab; Sahoo, Lingaraj; Ghosh, Siddhartha Sankar

    2016-10-01

    In silico studies with uracil phosphoribosyltransferase from Arabidopsis thaliana (AtUPRT) revealed its lower binding energies for uracil and 5-fluorouracil (5-FU) as compared to those of bacterial UPRT indicating the prospective of AtUPRT in gene therapy implications. Hence, AtUPRT was cloned and stably expressed in cervical cancer cells (HeLa) to investigate the effect of prodrug 5-FU on these transfected cancer cells. The treatment of AtUPRT-expressing HeLa (HeLa-UPP) cells with 5-FU for 72h resulted in significant decrease in cell viability. Moreover, 5-FU was observed to induce apoptosis and perturb mitochondrial membrane potential in HeLa-UPP cells. While cell cycle analysis revealed significant S-phase arrest as a result of 5-FU treatment in HeLa-UPP cells, quantitative gene expression analysis demonstrated simultaneous upregulation of important cell cycle related genes, cyclin D1 and p21. The survival fractions of non-transfected, vector-transfected and AtUPRT-transfected HeLa cells, following 5-FU treatment, were calculated to be 0.425, 0.366 and 0.227, respectively. PMID:27180296

  6. A comparison of the growth of selected mycobacteria in HeLa, monkey kidney, and human amnion cells in tissue culture.

    PubMed

    SHEPARD, C C

    1958-02-01

    HeLa, monkey kidney, and human amnion cells in tissue cultures were compared as sites for the multiplication of strains of tubercle bacilli or original and reduced pathogenicity, and for several other species of mycobacteria capable of causing disease in humans. The arrangement of the pathogenic species inorder of their growth rates in HeLa cells was Mycobacterium fortuitum, Mycobacterium balnei, and the "yellow bacillus," followed closely by the tubercle bacillus. This order was also correct for these species in monkey kidney and human amnion cells, and is the same as that seen in bacteriological media. The arrangement of the strains of tubercle bacilli in order of their growth rates in all three types of cells was: H37Rv, then R1Rv, and lastly H37Ra, which multiplied about as slowly as BCG. An INH-resistant strain grew about as rapidly as H37Rv. Growth of the pathogenic species occurred at about the same rates in HeLa and monkey kidney cells, but was distinctly slower in human amnion cells, which are less active metabolically. Irradiation of the cells in doses up to 5000 r did not affect the subsequent growth of mycobacteria in them. Preliminary experiments with human leprosy bacilli indicate that they can be introduced into these cells in high numbers and that the bacilli then persist for the life of the cells. PMID:13491759

  7. Hypoxia Strongly Affects Mitochondrial Ribosomal Proteins and Translocases, as Shown by Quantitative Proteomics of HeLa Cells.

    PubMed

    Bousquet, Paula A; Sandvik, Joe Alexander; Arntzen, Magnus Ø; Jeppesen Edin, Nina F; Christoffersen, Stine; Krengel, Ute; Pettersen, Erik O; Thiede, Bernd

    2015-01-01

    Hypoxia is an important and common characteristic of many human tumors. It is a challenge clinically due to the correlation with poor prognosis and resistance to radiation and chemotherapy. Understanding the biochemical response to hypoxia would facilitate the development of novel therapeutics for cancer treatment. Here, we investigate alterations in gene expression in response to hypoxia by quantitative proteome analysis using stable isotope labeling with amino acids in cell culture (SILAC) in conjunction with LCMS/MS. Human HeLa cells were kept either in a hypoxic environment or under normoxic conditions. 125 proteins were found to be regulated, with maximum alteration of 18-fold. In particular, three clusters of differentially regulated proteins were identified, showing significant upregulation of glycolysis and downregulation of mitochondrial ribosomal proteins and translocases. This interaction is likely orchestrated by HIF-1. We also investigated the effect of hypoxia on the cell cycle, which shows accumulation in G1 and a prolonged S phase under these conditions. Implications. This work not only improves our understanding of the response to hypoxia, but also reveals proteins important for malignant progression, which may be targeted in future therapies. PMID:26421188

  8. Analysis of Relevant Parameters for Autophagic Flux Using HeLa Cells Expressing EGFP-LC3.

    PubMed

    Muñoz-Braceras, Sandra; Escalante, Ricardo

    2016-01-01

    Macroautophagy (called just autophagy hereafter) is an intracellular degradation machinery essential for cell survival under stress conditions and for the maintenance of cellular homeostasis. The hallmark of autophagy is the formation of double membrane vesicles that engulf cytoplasmic material. These vesicles, called autophagosomes, mature by fusion with endosomes and lysosomes that allows the degradation of the cargo. Autophagy is a dynamic process regulated at multiple steps. Assessment of autophagy is not trivial because the number autophagosomes might not necessarily reflect the real level of autophagic degradation, the so-called autophagic flux. Here, we describe an optimized protocol for the analysis of relevant parameters of autophagic flux using HeLa cells stably expressing EGFP-LC3. These cells are a convenient tool to determine the influence of the downregulation or overexpression of specific proteins in the autophagic flux as well as the analysis of autophagy-modulating compounds. Western blot analysis of relevant parameters, such as the levels of EGFP-LC3, free EGFP generated by autophagic degradation and endogenous LC3·I-II are analyzed in the presence and absence of the autophagic inhibitor chloroquine. PMID:27613046

  9. The neem limonoids azadirachtin and nimbolide induce cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells.

    PubMed

    Priyadarsini, R Vidya; Murugan, R Senthil; Sripriya, P; Karunagaran, D; Nagini, S

    2010-06-01

    Limonoids from the neem tree (Azadirachta indica) have attracted considerable research attention in recent years owing to their potent antioxidant and anti-proliferative effects. The present study was designed to investigate the cellular and molecular mechanisms by which azadirachtin and nimbolide exert cytotoxic effects in the human cervical cancer (HeLa) cell line. Both azadirachtin and nimbolide significantly suppressed the viability of HeLa cells in a dose-dependent manner by inducing cell cycle arrest at G0/G1 phase accompanied by p53-dependent p21 accumulation and down-regulation of the cell cycle regulatory proteins cyclin B, cyclin D1 and PCNA. Characteristic changes in nuclear morphology, presence of a subdiploid peak and annexin-V staining pointed to apoptosis as the mode of cell death. Increased generation of reactive oxygen species with decline in the mitochondrial transmembrane potential and release of cytochrome c confirmed that the neem limonoids transduced the apoptotic signal via the mitochondrial pathway. Altered expression of the Bcl-2 family of proteins, inhibition of NF-kappaB activation and over-expression of caspases and survivin provide compelling evidence that azadirachtin and nimbolide induce a shift of balance toward a pro-apoptotic phenotype. Antioxidants such as azadirachtin and nimbolide that can simultaneously arrest the cell cycle and target multiple molecules involved in mitochondrial apoptosis offer immense potential as anti-cancer therapeutic drugs. PMID:20429769

  10. Development of Microelectrode Arrays Using Electroless Plating for CMOS-Based Direct Counting of Bacterial and HeLa Cells.

    PubMed

    Niitsu, Kiichi; Ota, Shoko; Gamo, Kohei; Kondo, Hiroki; Hori, Masaru; Nakazato, Kazuo

    2015-10-01

    The development of two new types of high-density, electroless plated microelectrode arrays for CMOS-based high-sensitivity direct bacteria and HeLa cell counting are presented. For emerging high-sensitivity direct pathogen counting, two technical challenges must be addressed. One is the formation of a bacteria-sized microelectrode, and the other is the development of a high-sensitivity and high-speed amperometry circuit. The requirement for microelectrode formation is that the gold microelectrodes are required to be as small as the target cell. By improving a self-aligned electroless plating technique, the dimensions of the microelectrodes on a CMOS sensor chip in this work were successfully reduced to 1.2 μm × 2.05 μm. This is 1/20th of the smallest size reported in the literature. Since a bacteria-sized microelectrode has a severe limitation on the current flow, the amperometry circuit has to have a high sensitivity and high speed with low noise. In this work, a current buffer was inserted to mitigate the potential fluctuation. Three test chips were fabricated using a 0.6- μm CMOS process: two with 1.2 μm × 2.05 μm (1024 × 1024 and 4 × 4) sensor arrays and one with 6- μm square (16 × 16) sensor arrays; and the microelectrodes were formed on them using electroless plating. The uniformity among the 1024 × 1024 electrodes arranged with a pitch of 3.6 μm × 4.45 μm was optically verified. For improving sensitivity, the trenches on each microelectrode were developed and verified optically and electrochemically for the first time. Higher sensitivity can be achieved by introducing a trench structure than by using a conventional microelectrode formed by contact photolithography. Cyclic voltammetry (CV) measurements obtained using the 1.2 μm × 2.05 μm 4 × 4 and 6- μm square 16 × 16 sensor array with electroless-plated microelectrodes successfully demonstrated direct counting of the bacteria-sized microbeads and HeLa cells. PMID:26561481

  11. Characterization and cellular localization of nucleophosmin/B23 in HeLa cells treated with selected cytotoxic agents (studies of B23-translocation mechanism).

    PubMed

    Chan, P K

    1992-11-01

    Previous studies indicated that nucleophosmin/B23, an abundant nucleolar phosphoprotein, accumulated in the nucleoplasm (B23-translocation) of cells after exposure to selected cytotoxic drugs. Attempts were made to understand the B23-translocation mechanism. This paper reports that: (1) B23-translocation is a reversible process. Upon removal of camptothecin, which induced B23-translocation in HeLa cells, nucleophosmin/B23 relocalized into nucleoli within 2 h. Relocation occurs in the presence of cycloheximide which inhibits new protein synthesis. There is no reduction or degradation of nucleophosmin/B23 detected during drug treatments. Nucleophosmin/B23 has a half-life of 18-20 h. Taken together, these results indicate that B23-translocation is a reversible process. Drug treatment causes redistribution of nucleophosmin/B23 in nucleoplasm. (2) Inhibition of RNA synthesis does not cause the B23-translocation. Over 80% of RNA synthesis was inhibited in HeLa cells by treatment with actinomycin D, camptothecin, and methotrexate. While actinomycin D and camptothecin cause B23-translocation in all cells, 40% of methotrexate-treated cells remain untranslocated. (3) There is no significant change of phosphorylation in nucleophosmin/B23 during drug treatment. An identical oligomeric cross-linkage pattern was obtained in drug-treated cells. (4) HeLa cells treated with B23-translocation effective drugs have small and round nucleoli while control cells have large and irregular-shaped nucleoli. PMID:1426041

  12. Accurate identification of UDP-glucuronosyltransferase 1A1 (UGT1A1) inhibitors using UGT1A1-overexpressing HeLa cells.

    PubMed

    Sun, Hua; Zhou, Xiaotong; Wu, Baojian

    2015-01-01

    1. UDP-glucuronosyltransferase 1A1 (UGT1A1) plays an irreplaceable role in detoxification of bilirubin and many drugs (e.g., SN-38). Here we aimed to explore the potential of UGT1A1-overexpressing HeLa cells (or HeLa1A1 cells) as a tool to accurately identify UGT1A1 inhibitors. 2. Determination of glucuronidation rates (β-estradiol and SN-38 as the substrates) was performed using HeLa1A1 cells and uridine diphosphoglucuronic acid (UDPGA)-supplemented cDNA expressed UGT1A1 enzyme (or microsomes). The inhibitory effects (IC50 values) of 20 structurally diverse compounds on the UGT1A1 activity were determined using HeLa1A1 cells and microsomal incubations. 3. In HeLa1A1 cells, the IC50 values for inhibition of β-estradiol glucuronidation by the tested compounds ranged from 0.33 to 94.6 µM. In the microsomal incubations, the IC50 values ranged from 0.47 to 155 µM. It was found that the IC50 values of all test compounds derived from the cells were well consistent with those from the microsomes (deviated by less than two-fold). Further, the IC50 values from the cells were strongly correlated with those from microsomes (r = 0.944, p < 0.001). Likewise, the IC50 values (0.37-77.3 µM) for inhibition of SN-38 glucuronidation in the cells were close to those (0.42-122 µM) for glucuronidation inhibition in microsomes. A strong correlation was also observed between the two sets of IC50 values (r = 0.978, p < 0.001). 4. In conclusion, UGT1A1-overexpressing HeLa cells were an appropriate tool to accurately depict the inhibition profiles of chemicals against UGT1A1. PMID:26068529

  13. Surgical removal of a mammary adenocarcinoma and a granulosa cell tumor in an African pygmy hedgehog

    PubMed Central

    Wellehan, James F.X.; Southorn, Erin; Smith, Dale A.; Taylor, Michael

    2003-01-01

    A 3-year-old, female African pygmy hedgehog (Atelerix albiventris) was referred with a history of hematuria. Hyperglycemia and glucosuria were found at presentation. Mammary adenocarcinoma and a granulosa cell tumor were found and removed surgically. Glucosuria and hematuria resolved, and the hedgehog has done well for 10 mo postoperatively. PMID:12677695

  14. Surgical removal of a mammary adenocarcinoma and a granulosa cell tumor in an African pygmy hedgehog.

    PubMed

    Wellehan, James F X; Southorn, Erin; Smith, Dale A; Taylor, W Michael

    2003-03-01

    A 3-year-old, female African pygmy hedgehog (Atelerix albiventris) was referred with a history of hematuria. Hyperglycemia and glucosuria were found at presentation. Mammary adenocarcinoma and a granulosa cell tumor were found and removed surgically. Glucosuria and hematuria resolved, and the hedgehog has done well for 10 mo postoperatively. PMID:12677695

  15. Mitotic HeLa cells contain a CENP-E-associated minus end-directed microtubule motor.

    PubMed Central

    Thrower, D A; Jordan, M A; Schaar, B T; Yen, T J; Wilson, L

    1995-01-01

    A minus end-directed microtubule motor activity from extracts of HeLa cells blocked at prometaphase/metaphase of mitosis with vinblastine has been partially purified and characterized. The motor activity was eliminated by immunodepletion of Centromere binding protein E (CENP-E). The CENP-E-associated motor activity, which was not detectable in interphase cells, moved microtubules at mean rates of 0.46 micron/s at 37 degrees C and 0.24 micron/s at 25 degrees C. The motor activity co-purified with CENP-E through several purification procedures. Motor activity was clearly not due to dynein or to kinesin. The microtubule gliding rates of the CENP-E-associated motor were different from those of dynein and kinesin. In addition, the pattern of nucleotide substrate utilization by the CENP-E-associated motor and the sensitivity to inhibitors were different from those of dynein and kinesin. The CENP-E-associated motor had an apparent native molecular weight of 874,000 Da and estimated dimensions of 2 nm x 80 nm. This is the first demonstration of motor activity associated with CENP-E, strongly supporting the hypothesis that CENP-E may act as a minus end-directed microtubule motor during mitosis. Images PMID:7889940

  16. Endoplasmic reticulum stress-induced apoptotic pathway and mitochondrial dysregulation in HeLa cells treated with dichloromethane extract of Dillenia suffruticosa

    PubMed Central

    Wan Nor Hafiza, Wan Abd Ghani; Yazan, Latifah Saiful; Tor, Yin Sim; Foo, Jhi Biau; Armania, Nurdin; Rahman, Heshu Sulaiman

    2016-01-01

    Ethyl acetate and dichloromethane extract of Dillenia suffruticosa (EADS and DCMDS, respectively) can be a potential anticancer agent. The effects of EADS and DCMDS on the growth of HeLa cervical cancer cells and the expression of apoptotic-related proteins had been investigated in vitro. Cytotoxicity of the extracts toward the cells was determined by 5-diphenyltetrazolium bromide assay, the effects on cell cycle progression and the mode of cell death were analyzed by flow cytometry technique, while the effects on apoptotic-related genes and proteins were evaluated by quantitative real-time polymerase chain reaction, and Western blot and enzyme-linked immunosorbent assay, respectively. Treatment with DCMDS inhibited (P < 0.05) proliferation and induced apoptosis in HeLa cells. The expression of cyclin B1 was downregulated that led to G2/M arrest in the cells after treatment with DCMDA. In summary, DCMDS induced apoptosis in HeLa cells via endoplasmic reticulum stress-induced apoptotic pathway and dysregulation of mitochondria. The data suggest the potential application of DCMDS in the treatment of cervical cancer. PMID:27041866

  17. Endoplasmic reticulum stress-induced apoptotic pathway and mitochondrial dysregulation in HeLa cells treated with dichloromethane extract of Dillenia suffruticosa.

    PubMed

    Wan Nor Hafiza, Wan Abd Ghani; Yazan, Latifah Saiful; Tor, Yin Sim; Foo, Jhi Biau; Armania, Nurdin; Rahman, Heshu Sulaiman

    2016-01-01

    Ethyl acetate and dichloromethane extract of Dillenia suffruticosa (EADS and DCMDS, respectively) can be a potential anticancer agent. The effects of EADS and DCMDS on the growth of HeLa cervical cancer cells and the expression of apoptotic-related proteins had been investigated in vitro. Cytotoxicity of the extracts toward the cells was determined by 5-diphenyltetrazolium bromide assay, the effects on cell cycle progression and the mode of cell death were analyzed by flow cytometry technique, while the effects on apoptotic-related genes and proteins were evaluated by quantitative real-time polymerase chain reaction, and Western blot and enzyme-linked immunosorbent assay, respectively. Treatment with DCMDS inhibited (P < 0.05) proliferation and induced apoptosis in HeLa cells. The expression of cyclin B1 was downregulated that led to G2/M arrest in the cells after treatment with DCMDA. In summary, DCMDS induced apoptosis in HeLa cells via endoplasmic reticulum stress-induced apoptotic pathway and dysregulation of mitochondria. The data suggest the potential application of DCMDS in the treatment of cervical cancer. PMID:27041866

  18. Dock10, a Cdc42 and Rac1 GEF, induces loss of elongation, filopodia, and ruffles in cervical cancer epithelial HeLa cells

    PubMed Central

    Ruiz-Lafuente, Natalia; Alcaraz-García, María-José; García-Serna, Azahara-María; Sebastián-Ruiz, Silvia; Moya-Quiles, María-Rosa; García-Alonso, Ana-María; Parrado, Antonio

    2015-01-01

    Dock10 is one of the three members of the Dock-D family of Dock proteins, a class of guanine nucleotide exchange factors (GEFs) for Rho GTPases. Its homologs Dock9 and Dock11 are Cdc42 GEFs. Dock10 is required for maintenance of rounded morphology and amoeboid-type movement. Full-length isoforms of Dock10 have been recently cloned. Here, we address GTPase specificity and GEF activity of Dock10. In order of decreasing intensity, Dock10 interacted with nucleotide-free Rac1, Cdc42, and Rac3, and more weakly with Rac2, RhoF, and RhoG. Inducible expression of Dock10 in HeLa epithelial cells promoted GEF activity on Cdc42 and Rac1, and a morphologic change in two-dimensional culture consisting in loss of cell elongation, increase of filopodia, and ruffles. Area in contact with the substrate of cells that spread with non-elongated morphology was larger in cells expressing Dock10. Inducible expression of constitutively active mutants of Cdc42 and Rac1 in HeLa cells also induced loss of elongation. However, Cdc42 induced filopodia and contraction, and Rac1 induced membrane ruffles and flattening. When co-expressed with Dock10, Cdc42 potentiated filopodia, and Rac1 potentiated ruffles. These results suggest that Dock10 functions as a dual GEF for Cdc42 and Rac1, affecting cell morphology, spreading and actin cytoskeleton protrusions of adherent HeLa cells. PMID:25862245

  19. Clear Cell Adenocarcinoma Arising from Adenofibroma in a Patient with Endometriosis of the Ovary.

    PubMed

    Cho, Inju; Lim, Sung-Chul

    2016-03-01

    Ovarian clear cell adenocarcinomas (CCACs) are frequently associated with endometriosis and, less often with clear cell adenofibromas (CCAFs). We encountered a case of ovarian CCAC arising from benign and borderline adenofibromas of the clear cell and endometrioid types with endometriosis in a 53-year-old woman. Regions of the adenofibromas showed transformation to CCAC and regions of the endometriosis showed atypical endometriotic cysts. This case demonstrates that CCAC can arise from CCAF or endometriosis. PMID:26498012

  20. HN protein of Newcastle disease virus sensitizes HeLa cells to TNF-α-induced apoptosis by downregulating NF-κB expression.

    PubMed

    Rajmani, R S; Gupta, Shishir Kumar; Singh, Prafull Kumar; Gandham, Ravi Kumar; Sahoo, A P; Chaturvedi, Uttara; Tiwari, Ashok K

    2016-09-01

    Hemagglutinin neuraminidase (HN) is a membrane protein of Newcastle disease virus (NDV) with the ability to induce apoptosis in many transformed cell lines. TNF-α is a multi-factorial protein that regulates cell survival, differentiation and apoptosis. In a previous study, we reported that HN protein induces apoptosis by downregulating NF-κB expression. Further, we speculated that downregulation of NF-κB expression might sensitize HeLa cells to TNF-α-mediated apoptosis. Therefore, the present study was undertaken to investigate if HN protein could sensitize HeLa cells to TNF-α and to examine the apoptotic potential of the HN protein and TNF-α in combination. The results revealed that the pro-apoptotic effects were more pronounced with the combination of HN and TNF-α than with HN or TNF-α alone, which indicates that the HN protein indeed sensitized the HeLa cells to TNF-α-induced cell death. The results of the study provide a mechanistic insight into the apoptotic action of HN protein along with TNF-α, which could be valuable in treating tumor types that are naturally resistant to TNF-α. PMID:27294845

  1. Dioscin Induces Apoptosis in Human Cervical Carcinoma HeLa and SiHa Cells through ROS-Mediated DNA Damage and the Mitochondrial Signaling Pathway.

    PubMed

    Zhao, Xinwei; Tao, Xufeng; Xu, Lina; Yin, Lianhong; Qi, Yan; Xu, Youwei; Han, Xu; Peng, Jinyong

    2016-01-01

    Dioscin, a natural product, has activity against glioblastoma multiforme, lung cancer and colon cancer. In this study, the effects of dioscin against human cervical carcinoma HeLa and SiHa cells were further confirmed, and the possible mechanism(s) were investigated. A transmission electron microscopy (TEM) assay and DAPI staining were used to detect the cellular morphology. Flow cytometry was used to assay cell apoptosis, ROS and Ca(2+) levels. Single cell gel electrophoresis and immunofluorescence assays were used to test DNA damage and cytochrome C release. The results showed that dioscin significantly inhibited cell proliferation and caused DNA damage in HeLa and SiHa cells. The mechanistic investigation showed that dioscin caused the release of cytochrome C from mitochondria into the cytosol. In addition, dioscin significantly up-regulated the protein levels of Bak, Bax, Bid, p53, caspase-3, caspase-9, and down-regulated the protein levels of Bcl-2 and Bcl-xl. Our work thus demonstrated that dioscin notably induces apoptosis in HeLa and SiHa cells through adjusting ROS-mediated DNA damage and the mitochondrial signaling pathway. PMID:27271587

  2. Antiproliferative activity of methanolic extracts from two green algae, Enteromorpha intestinalis and Rizoclonium riparium on HeLa cells

    PubMed Central

    2013-01-01

    Background Natural compounds can be alternative sources for finding new lead anti-cancer molecules. Marine algae have been a traditional source for bioactive compounds. Enteromorpha intestinalis and Rhizoclonium riparium are two well distributed saline/brackish water algae from Sundarbans. There’s no previous report of these two for their anti-proliferative activities. Methods Cytotoxicity of the algal methanolic extracts (AMEs) on HeLa cells were assayed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) reduction assay. Morphological examinations were done by Haematoxylin, Hoechst 33258 and Acridine orange staining. DNA fragmentation was checked. Gene expressions of Cysteine aspartate protease (Caspase) 3, Tumor protein (TP) 53, Bcl-2 associated protein X (Bax) were studied by Reverse transcription- polymerase chain reaction (RT-PCR) keeping Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as internal control. Protein expressions were studied for Caspase 3, phospho-p53, Bax, Microtubule associated proteins-1/ light chain B (MAP1/LC3B) by western blot. Results The AMEs were found to be cytotoxic with Inhibitory concentration 50 (IC50) values 309.048 ± 3.083 μg/ml and 506.081 ± 3.714 μg/ml for E. intestinalis and R. riparium extracts respectively. Treated cells became round with blebbings with condensed nuclei. Acidic lysosomal vacuoles formation occurred in treated cells. Expression of apoptotic genes in both mRNA and protein level was lowered. Expression of LC3B-II suggested occurrence of autophagy in treated cells. Conclusions These two algae can be potent candidates for isolating new lead anticancer molecules. So they need further characterization at both molecular and structural levels. PMID:24355313

  3. Heat induced protein denaturation in the particulate fraction of HeLa S3 cells: effect of thermotolerance.

    PubMed

    Burgman, P W; Konings, A W

    1992-10-01

    In this study we investigated the effect of heat on the proteins of the particulate fraction (PF) of HeLa S3 cells using electron spin resonance (ESR) and thermal gel analysis (TGA). ESR detects overall conformational changes in proteins, while TGA detects denaturation (aggregation due to formation of disulfide bonds) in specific proteins. For ESR measurements the -SH groups of the proteins were labelled with a maleimido bound spin label (4-maleimido-tempo). The sample was heated inside the ESR spectrometer at a rate of 1 degree C/min. ESR spectra were made every 2-3 degrees C between 20 degrees C and 70 degrees C. In the PF of untreated cells conformational changes in proteins were observed in three temperature stretches: between 38 and 44 degrees C (transition A, TA); between 47 and 53 degrees C (transition B, TB); and above 58 degrees C (transition C, TC). With TGA, using the same heating rate, we identified three proteins (55, 70, and 90 kD) which denatured during TB. No protein denaturation was observed during TA, while during TC denaturation of all remaining proteins in the PF occurred. When the ESR and TGA measurements were done with the PF of (heat-induced) thermotolerant cells, TA was unchanged while TB and TC started at higher temperatures. The temperature shift for the onset of these transitions correlated with the degree of thermotolerance that was induced in the cells. These results suggest that protection against heat-induced denaturation of proteins in the PF is involved in heat induced thermotolerance. PMID:1325981

  4. Neu proto-oncogene amplification and expression in ovarian adenocarcinoma cell lines.

    PubMed Central

    King, B. L.; Carter, D.; Foellmer, H. G.; Kacinski, B. M.

    1992-01-01

    In this communication, the authors summarize their characterization of eight ovarian adenocarcinoma-derived cell lines for level of neu gene amplification, expression of neu transcripts and protein, and intraperitoneal tumorigenicity in nude mice. Two of the eight cell lines in our study (SKOV3 and YAOVBIX1) exhibited five- to ninefold neu DNA sequence amplification, accompanied by up to 200-fold overexpression of transcripts and protein (p185). Both of these cell lines expressed a major approximately 7.5 kb neu-complementary transcript not previously reported in other neu-positive tumor cell lines. One pair of cell lines (YAOVBIX1 and YAOVBIX3), isolated from a single ovarian carcinoma patient's ascites sample differed dramatically in regard to level of neu gene amplification and expression. Immunohistochemical staining of the primary ovarian tumor from which these two lines were derived demonstrated populations of both neu-positive and neu-negative malignant epithelial cells. Seven of the eight ovarian carcinoma lines produced intra-abdominal tumors after intraperitoneal injection into nude mice, irrespective of level of neu gene expression. This study demonstrates tumor cell heterogeneity with regard to neu gene amplification and expression in an ovarian adenocarcinoma, reveals the overexpression of novel neu-complementary transcripts in two independently isolated ovarian adenocarcinoma cell lines, and suggests that neu gene expression is not required for intraperitoneal tumorigenicity of ovarian carcinoma xenografts in a nude mouse model system. Images Figure 4 Figure 1 Figure 2 Figure 3 PMID:1346236

  5. Newly identified biomarkers for detecting circulating tumor cells in lung adenocarcinoma.

    PubMed

    Man, Yingchun; Cao, Jingyan; Jin, Shi; Xu, Gang; Pan, Bo; Shang, Lihua; Che, Dehai; Yu, Qin; Yu, Yan

    2014-01-01

    Circulating tumor cells (CTCs) have been implicated in cancer prognosis and follow up. Detection of CTCs was considered significant in cancer evaluation. However, due to the heterogeneity and rareness of CTCs, detecting them with a single maker is usually challenged with low specificity and sensitivity. Previous studies concerning CTCs detection in lung cancer mainly focused on non-small cell lung carcinoma. Currently, there is no report yet describing the CTC detection with multiple markers in lung adenocarcinoma. In this study, by employing quantitative real-time PCR, we identified four candidate genes (mRNA) that were significantly elevated in peripheral blood mononuclear cells and biopsy tissue samples from patients with lung adenocarcinoma: cytokeratin 7 (CK7), Ca(2+)-activated chloride channel-2 (CLCA2), hyaluronan-mediated motility receptor (HMMR), and human telomerase catalytic subunit (hTERT). Then, the four markers were used for CTC detection; namely, positive detection was defined if at least one of the four markers was elevated. The positive CTC detection rate was 74.0% in patients with lung adenocarcinoma while 2.2% for healthy controls, 6.3% for benign lung disease, and 48.0% for non-adenocarcinoma non-small cell lung carcinoma. Furthermore, in a three-year follow-up study, patients with an increase in the detection markers of CTCs (CK7, CLCA2, HMMR or hTERT) on day 90 after first detection had shorter survival time compared to those with a decrease. These results demonstrate that the combination of the four markers with specificity and sensitivity is of great value in lung adenocarcinoma prognosis and follow up. PMID:25175030

  6. [Construction of ADAMTS13-pEGFP-N1 vector and its expression in HeLa cells].

    PubMed

    Ling, Jing; Ma, Zhen-Ni; Su, Jian; Ruan, Chang-Geng

    2013-02-01

    This study was aimed to construct a pEGFP-N1 vector of von Willebrand factor cleaving protease (ADAMTS13, a disintegrin and metalloprotease with a thrombospondin type 1 motifs 13) so as to pave the way for further studying its synthesis and secretion. Human full-length cDNA sequence of ADAMTS13 was acquired by polymerase chain reaction (PCR) with Phusion(®) High-Fidelity (NEB), then the PCR product was double digested with EcoRI and XhoI. After digestion, the ADAMTS13 cDNA sequence was purified and recombined with the pEGFP-N1 vector. The DNA sequence analysis showed that ADAMTS13 was ligated to the pEGFP-N1 vector correctly. After transient expression in HeLa cells, the expression of EGFP could be detected by fluorescent microscopy, and the expression of ADAMTS13 protein could be detected by SDS-PAGE and Western blot. It is concluded that the ADAMTS13-pEGFP-N1 vector is successfully constructed, and it can be widely used in further research on the mechanism of the synthesis and secretion of ADAMTS13. PMID:23484705

  7. A novel chemosensor with visible light excitability for sensing Zn2+ in physiological medium and in HeLa cells.

    PubMed

    Datta, Barun Kumar; Thiyagarajan, Durairaj; Samanta, Soham; Ramesh, Aiyagari; Das, Gopal

    2014-07-21

    In the present study a novel imine-hydrazone based fluorescent chemosensor () for efficient and selective sensing of Zn(2+) over other biologically important metal ions under physiological conditions is reported. An enhancement in fluorescence emission intensity of the developed probe with a red shift of ∼25 nm was observed for Zn(2+), whereas other metal ions failed to reveal any significant change in the emission spectra. Interestingly, the receptor functioned under completely physiological conditions (99.7% HEPES buffer) and has visible light excitability. Sensing of Zn(2+) was investigated in detail by absorption spectroscopy, emission spectroscopy, DFT calculation, (1)H-NMR titration experiment and ESI-MS experiment. The association constant between and Zn(2+) was found to be 5.58 × 10(5) M(-1). The receptor could detect as low as 69 ppb Zn(2+). Sensing of Zn(2+) is proposed through switch-on of intramolecular charge transfer (ICT) and chelation enhanced fluorescence (CHEF) processes after the introduction of Zn(2+) into the free ligand. The developed receptor was non-toxic and rendered intracellular sensing of Zn(2+) in HeLa cells through fluorescence imaging studies. PMID:24879606

  8. Uracil DNa-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs.

    PubMed

    Krokan, H; Wittwer, C U

    1981-06-11

    Uracil-DNA glycosylase was partially purified from HeLa cells. Various substrates containing [3H]dUMP residues were prepared by nick-translation of calf thymus DNA. The standard substrate was double-stranded DNA with [3H]dUMP located internally in the chain. Compared to the release of uracil from this substrate, a 3-fold increase in the rate was seen with single-stranded DNA, and a 20-fold reduction in the rate was observed when the [3H]dUMP-residue was located at the 3'end. The rate of [3H]uracil release decreased progressively when one, two or three of the dNMP residues were replaced by the corresponding rNMP; in the extreme case when the substrate contained [3H]dUMP in addition to rCMP, rGMP, and rAMP, the rate of [3H]uracil release was less than 3% of that of the control. The enzyme was inhibited to the same extent by uracil and the uracil analogs 6-aminouracil and 5-azauracil, but very weakly, or not at all, by 5 other analogs. Our results suggest strongly that uracil-DNA glycosylase has a high degree of selectivity for uracil in dUMP residues located internally in DNA chains and that the recognition of the correct substrate also depends on the residues flanking dUMP being deoxyribonucleotides. PMID:7279657

  9. Nucleotide sequences of cDNAs for human papillomavirus type 18 transcripts in HeLa cells

    SciTech Connect

    Inagaki, Yutaka; Tsunokawa, Youko; Takebe, Naoko; Terada, Masaaki; Sugimura, Takashi ); Nawa, Hiroyuki; Nakanishi, Shigetada )

    1988-05-01

    HeLa cells expressed 3.4- and 1.6-kilobase (kb) transcripts of the integrated human papillomavirus (HPV) type 18 genome. Two types of cDNA clones representing each size of HPV type 18 transcript were isolated. Sequence analysis of these two types of cDNA clones revealed that the 3.4-kb transcript contained E6, E7, the 5{prime} portion of E1, and human sequence and that the 1.6-kb transcript contained spliced and frameshifted E6 (E6{sup *}), E7, and human sequence. There was a common human sequence containing a poly(A) addition signal in the 3{prime} end portions of both transcripts, indicating that they were transcribed from the HPV genome at the same integration site with different splicing. Furthermore, the 1.6-kb transcript contained both of the two viral TATA boxes upstream of E6, strongly indicating that a cellular promoter was used for its transcription.

  10. Hsp105 family proteins suppress staurosporine-induced apoptosis by inhibiting the translocation of Bax to mitochondria in HeLa cells

    SciTech Connect

    Yamagishi, Nobuyuki; Ishihara, Keiichi; Saito, Youhei; Hatayama, Takumi . E-mail: hatayama@mb.kyoto-phu.ac.jp

    2006-10-15

    Hsp105 (Hsp105{alpha} and Hsp105{beta}), major heat shock proteins in mammalian cells, belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105{alpha} has completely different effects on stress-induced apoptosis depending on cell type. However, the molecular mechanisms by which Hsp105{alpha} regulates stress-induced apoptosis are not fully understood. Here, we established HeLa cells that overexpress either Hsp105{alpha} or Hsp105{beta} by removing doxycycline and examined how Hsp105 modifies staurosporine (STS)-induced apoptosis in HeLa cells. Apoptotic features such as the externalization of phosphatidylserine on the plasma membrane and nuclear morphological changes were induced by the treatment with STS, and the STS-induced apoptosis was suppressed by overexpression of Hsp105{alpha} or Hsp105{beta}. In addition, we found that overexpression of Hsp105{alpha} or Hsp105{beta} suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria. Furthermore, the translocation of Bax to mitochondria, which results in the release of cytochrome c from the mitochondria, was also suppressed by the overexpression of Hsp105{alpha} or Hsp105{beta}. Thus, it is suggested that Hsp105 suppresses the stress-induced apoptosis at its initial step, the translocation of Bax to mitochondria in HeLa cells.

  11. Comparison of the killing effects between nitrogen-doped and pure TiO2 on HeLa cells with visible light irradiation

    PubMed Central

    2013-01-01

    The killing effect of nitrogen-doped titanium dioxide (N-TiO2) nanoparticles on human cervical carcinoma (HeLa) cells by visible light photodynamic therapy (PDT) was higher than that of TiO2 nanoparticles. To study the mechanism of the killing effect, the reactive oxygen species produced by the visible-light-activated N-TiO2 and pure-TiO2 were evaluated and compared. The changes of the cellular parameters, such as the mitochondrial membrane potential (MMP), intracellular Ca2+, and nitrogen monoxide (NO) concentrations after PDT were measured and compared for N-TiO2- and TiO2-treated HeLa cells. The N-TiO2 resulted in more loss of MMP and higher increase of Ca2+ and NO in HeLa cells than pure TiO2. The cell morphology changes with time were also examined by a confocal microscope. The cells incubated with N-TiO2 exhibited serious distortion and membrane breakage at 60 min after the PDT. PMID:23433090

  12. Transformation to Small Cell Lung Cancer of Pulmonary Adenocarcinoma: Clinicopathologic Analysis of Six Cases

    PubMed Central

    Ahn, Soomin; Hwang, Soo Hyun; Han, Joungho; Choi, Yoon-La; Lee, Se-Hoon; Ahn, Jin Seok; Park, Keunchil; Ahn, Myung-Ju; Park, Woong-Yang

    2016-01-01

    Background: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are considered the first line treatment for a subset of EGFR-mutated non-small cell lung cancer (NSCLC) patients. Although transformation to small cell lung cancer (SCLC) is one of the known mechanisms of resistance to EGFR TKIs, it is not certain whether transformation to SCLC is exclusively found as a mechanism of TKI resistance in EGFR-mutant tumors. Methods: We identified six patients with primary lung adenocarcinoma that showed transformation to SCLC on second biopsy (n = 401) during a 6-year period. Clinicopathologic information was analyzed and EGFR mutation results were compared between initial and second biopsy samples. Results: Six patients showed transformation from adenocarcinoma to SCLC, of which four were pure SCLCs and two were combined adenocarcinoma and SCLCs. Clinically, four cases were EGFR-mutant tumors from non-smoking females who underwent TKI treatment, and the EGFR mutation was retained in the transformed SCLC tumors. The remaining two adenocarcinomas were EGFR wild-type, and one of these patients received EGFR TKI treatment. Conclusions: NSCLC can acquire a neuroendocrine phenotype with or without EGFR TKI treatment. PMID:27160687

  13. Retinoic acid-mediated repression of human papillomavirus 18 transcription and different ligand regulation of the retinoic acid receptor beta gene in non-tumorigenic and tumorigenic HeLa hybrid cells.

    PubMed Central

    Bartsch, D; Boye, B; Baust, C; zur Hausen, H; Schwarz, E

    1992-01-01

    Human papillomavirus type 18 (HPV18) belongs to the group of genital papillomaviruses involved in the development of cervical carcinomas. Since retinoic acid (RA) is a key regulator of epithelial cell differentiation and a growth inhibitor in vitro of HPV18-positive HeLa cervical carcinoma cells, we have used HeLa and HeLa hybrid cells in order to analyse the effects of RA on expression of the HPV18 E6 and E7 oncogenes and of the cellular RA receptor genes RAR-beta and -gamma. We show here that RA down-regulates HPV18 mRNA levels apparently due to transcriptional repression. Transient cotransfection assays indicated that RARs negatively regulate the HPV18 upstream regulatory region and that the central enhancer can confer RA-dependent repression on a heterologous promoter. RA treatment resulted in induction of RAR-beta mRNA levels in non-tumorigenic HeLa hybrid cells, but not in tumorigenic hybrid segregants nor in HeLa cells. No alterations of the RAR-beta gene or of the HeLa RAR-beta promoter could be revealed by Southern and DNA sequence analysis, respectively. As determined by transient transfection assays, however, the RAR-beta control region was activated by RA more strongly in non-tumorigenic hybrid cells than in HeLa cells, thus indicating differences in trans-acting regulatory factors. Our data suggest that the RARs are potential negative regulators of HPV18 E6 and E7 gene expression, and that dysregulation of the RAR-beta gene either causatively contributes to or is an indicator of tumorigenicity in HeLa and HeLa hybrid cells. Images PMID:1318198

  14. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    PubMed Central

    Figueroa, Vania A.; Retamal, Mauricio A.; Cea, Luis A.; Salas, José D.; Vargas, Aníbal A.; Verdugo, Christian A.; Jara, Oscar; Martínez, Agustín D.; Sáez, Juan C.

    2014-01-01

    Gap junction channels (GJCs) and hemichannels (HCs) are composed of protein subunits termed connexins (Cxs) and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive non-syndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the adenosine triphosphate release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects. PMID:25237294

  15. Effects of activated aflatoxin B/sub 1/ and caffeine on DNA replicon initiation in HeLa cells

    SciTech Connect

    Cramer, P.; Painter, R.B.

    1981-01-01

    Afatoxin B/sub 1/ (AFB/sub 1/) is activated by a rat microsomal extract (S-9) to form a product that inhibits DNA synthesis in HeLa cells. At 10/sup -7/ M, AFB/sub 1/ inhibited initiation of replicons, as shown in alkaline sucrose gradient profiles 30 min after incubation with the drug. Ninety minutes later, the profile of treated cells was similar to that of control, but 4 h later there was another effect on replicon initiation. At 10/sup -6/ M, the inhibition of initiation was greater than at 10/sup -7/ M and increased progressively. Four hours after removal of the drug, the gradient profile showed low amounts of radioactivity in all size classes of DNA. When cells were incubated in medium containing caffeine (2 mM) even as late as 60 min after incubation with AFB/sub 1/, the inhibition of replicon initiation was prevented. If caffeine was later removed from the medium, replicon initiation was then inhibited. At 10/sup -7/ M or 10/sup -6/ M, AFB/sub 1/ had little immediate effect on chain elongation, but at 10/sup -5/ M, the gradient profiles showed an accumulation of low molecular weight DNA molecules, with no radioactivity in the region of high molecular weight DNA, owing to a block to chain elongation; this was not affected by caffeine. These results suggest that AFB/sub 1/ induces damage that changes the fonformation of chromatin so that initiation of new replicons cannot occur; in the presence of caffeine this change does not occur and DNA replication is not inhibited.

  16. Comparative proteomics analysis of global cellular stress responses to hydroxyurea-induced DNA damage in HeLa cells.

    PubMed

    You, Chao; Yang, Yanhua; Zhang, Lei; Chen, Huiqing; Chen, Yan; Chen, Keping; Zhou, Yajing

    2016-08-01

    Both environmental agents and spontaneous cellular events cause serious DNA damage, threatening the integrity of the genome. In response to replication stress or genotoxic agents triggered DNA damage, degradation of p12 subunit of DNA polymerase delta (Pol δ) results in an inter-conversion between heterotetramer (Pol δ4) and heterotrimer (Pol δ3) forms and plays a significant role in DNA damage response in eukaryotic cells. In this work, we used mass spectrometry-based proteomic approach to identify those cellular stress response protein changes corresponding to the degradation of p12 in DNA-damaged HeLa cells by the treatment with hydroxyurea (HU). A total of 736 ± 13 proteins in non-treated control group and 741 ± 19 protein spots in HU-treated cells were detected, of which 34 proteins (17 up-regulated and 17 down-regulated) exhibited significantly altered protein expression levels. Their physiological roles are mainly associated with cellular components, molecular functions, and biological processes by gene ontology analysis, among which 21 proteins were mapped to KEGG pathways. They are involved in 5 primary pathways with the subsets involving 16 secondary pathways by further KEGG analysis. More interestingly, the up-regulation of translationally controlled tumor protein was further identified to be associated with p12 degradation by Western blot analysis. Our works may enlarge and broaden our view for deeply understanding how global cellular stress responds to DNA damage, which could contribute to the etiology of human cancer or other diseases that can result from loss of genomic stability. PMID:25519465

  17. Role of different vehicles in carotenoids delivery and their influence on cell viability, cell cycle progression, and induction of apoptosis in HeLa cells.

    PubMed

    Sowmya, Poorigali Raghavendra-Rao; Arathi, Bangalore Prabhashankar; Vijay, Kariyappa; Baskaran, Vallikannan; Lakshminarayana, Rangaswamy

    2015-08-01

    The objective of the present study was to determine the role of different vehicles in carotenoids delivery and their influence on cell viability, cell cycle progression and induction of apoptosis in HeLa cells. Cells (5 × 10(3)) were treated with different concentrations (25-100 µM) of β-carotene (BC) or lutein (L) or astaxanthin (AST) dissolved in 0.5% of tetrahydrofuran (THF), dimethylsulfoxide (DMSO), and fetal bovine serum (FBS), respectively. The effect of delivery vehicle on carotenoids uptake, cytotoxicity, oxidative status, cell cycle distribution, and apoptosis was examined after 48 h of incubation. The results shown that, cell viability reduced significantly in a dose- and time-dependent manner irrespective of carotenoid delivered in vehicles. Cellular uptake of BC delivered in THF was higher by 49.1, 29.7% and L delivered through THF was higher by 41.7 and 37.5% than DMSO and FBS, respectively. While, AST delivered through DMSO was higher by 36.1 and 43.7% than the THF and FBS, respectively. In case of cells treated either with BC or L delivered through THF and AST in DMSO decreased the glutathione and increased the malondialdehyde levels. The net increase in the G 2/M phase percentage of cell cycle progression was observed in carotenoid-treated cells. The % induction of apoptosis by BC or L delivered with THF and AST in DMSO was higher than other treated groups. In conclusion, choice of suitable vehicle for specific carotenoids delivery is essential that in turn may influence on cell proliferation and cell-based assays. PMID:25998494

  18. Identification of HPV integration and gene mutation in HeLa cell line by integrated analysis of RNA-Seq and MS/MS data.

    PubMed

    Sun, Han; Chen, Chen; Lian, Baofeng; Zhang, Menghuan; Wang, Xiaojing; Zhang, Bing; Li, Yixue; Yang, Pengyuan; Xie, Lu

    2015-04-01

    HeLa cell line, which was derived from cervical carcinoma, provides an idea platform to study both the integration of human papillomavirus and the massive mutations occurring on the cancer cell genome. Proteogenomics is a field with the intersection of proteomics and genomics to perform gene annotation and identify gene mutation. In this work, we first identified the SNV/INDEL, structural variation (SV), and virus infection/integration events from RNA-Seq data of HeLa cell line; then, by applying proteogenomics strategy, we were able to detect some of the genomic events with the tandem mass spectrometry (MS/MS) data from the same sample. Furthermore, some of the mutated peptides were experimentally validated using multiple reaction monitoring technology. The integrated analysis of the RNA-Seq and MS/MS data not only renders the discovery of HeLa cell genome variations more credible but also illustrates a practical workflow for protein-coding mutation discovery in cancer-related studies. PMID:25698088

  19. The Cytotoxicity Mechanism of 6-Shogaol-Treated HeLa Human Cervical Cancer Cells Revealed by Label-Free Shotgun Proteomics and Bioinformatics Analysis

    PubMed Central

    Liu, Qun; Peng, Yong-Bo; Qi, Lian-Wen; Cheng, Xiao-Lan; Xu, Xiao-Jun; Liu, Le-Le; Liu, E-Hu; Li, Ping

    2012-01-01

    Cervical cancer is one of the most common cancers among women in the world. 6-Shogaol is a natural compound isolated from the rhizome of ginger (Zingiber officinale). In this paper, we demonstrated that 6-shogaol induced apoptosis and G2/M phase arrest in human cervical cancer HeLa cells. Endoplasmic reticulum stress and mitochondrial pathway were involved in 6-shogaol-mediated apoptosis. Proteomic analysis based on label-free strategy by liquid chromatography chip quadrupole time-of-flight mass spectrometry was subsequently proposed to identify, in a non-target-biased manner, the molecular changes in cellular proteins in response to 6-shogaol treatment. A total of 287 proteins were differentially expressed in response to 24 h treatment with 15 μM 6-shogaol in HeLa cells. Significantly changed proteins were subjected to functional pathway analysis by multiple analyzing software. Ingenuity pathway analysis (IPA) suggested that 14-3-3 signaling is a predominant canonical pathway involved in networks which may be significantly associated with the process of apoptosis and G2/M cell cycle arrest induced by 6-shogaol. In conclusion, this work developed an unbiased protein analysis strategy by shotgun proteomics and bioinformatics analysis. Data observed provide a comprehensive analysis of the 6-shogaol-treated HeLa cell proteome and reveal protein alterations that are associated with its anticancer mechanism. PMID:23243437

  20. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells.

    PubMed

    Kumar, Devbrat; Basu, Soumya; Parija, Lucy; Rout, Deeptimayee; Manna, Sanjeet; Dandapat, Jagneshwar; Debata, Priya Ranjan

    2016-07-01

    Cervical cancer and precancerous lesions of the cervix continue to be a global health issue, and the medication for the treatment for chronic HPV infection so far has not been effective. Potential anticancer and anti HPV activities of two known phytochemicals, Curcumin and Ellagic acid were evaluated in HeLa cervical cancer cells. Curcumin is a natural compound found in the root of Curcuma longa plant and Ellagic acid a polyphenol found in fruits of strawberries, raspberries and walnuts. The combination of Curcumin and Ellagic acid at various concentrations showed better anticancer properties than either of the drug when used alone as evidenced by MTT assay. Besides this, Curcumin and Ellagic acid also restore p53, induce ROS formation and DNA damage. Mechanistic study further indicated that Curcumin and Ellagic acid show anti-HPV activity as evidenced by decrease in the HPV E6 oncoprotein on HeLa cells. PMID:27261574

  1. Novel mixed ligand di-n-butyltin(IV) complexes derived from acylpyrazolones and fluorinated benzoic acids: synthesis, characterization, cytotoxicity and the induction of apoptosis in Hela cancer cells.

    PubMed

    Zhao, Bin; Shang, Xianmei; Xu, Ling; Zhang, Wendian; Xiang, Guangya

    2014-04-01

    Twenty one novel mixed ligand di-n-butyltin(IV) complexes [(n)Bu2SnAL] (A = substituted 4-acyl-5-pyrazolone, and L = fluorinated benzoic acid) were prepared by condensation of di-n-butyltin(IV) oxide with HL and HA in 1:1:1 molar ratio in refluxing methanol. All of the complexes were characterized by elemental analyses, IR, NMR ((1)H, (13)C, (119)Sn) and in four cases by X-ray diffraction. Cytotoxicity of the compounds was studied against two human cancer cell lines (KB and Hela) by means of the MTT assay compared to cisplatin, featuring IC₅₀ values in the low micromolar range. Hela cancer cell apoptosis-induced by 2 was examined by flow cytometry analysis, and preliminary results showed that 2 at concentrations of more than 1.0 μM can induce apoptosis. PMID:24583378

  2. Oleanolic Acid A-lactams Inhibit the Growth of HeLa, KB, MCF-7 and Hep-G2 Cancer Cell Lines at Micromolar Concentrations.

    PubMed

    Bednarczyk-Cwynar, Barbara; Ruszkowski, Piotr; Bobkiewicz-Kozlowska, Teresa; Zaprutko, Lucjusz

    2016-01-01

    Oleanolic acid ketones, oximes, lactams and nitriles were obtained. Complete spectral characterizations (IR, (1)H NMR, (13)C NMR, DEPT and MS) of the synthesized compounds are presented. The derivatives had oxo, hydroxyimino, lactam or nitrile functions at the C-3 position, an esterified or unmodified carboxyl group at the C- 17 location and, in some cases, an additional oxo function at the C-11 position. The new compounds were tested for cytotoxic activity on the HeLa, KB, MCF-7 and Hep-G2 cancer cell lines with the application of MTT [3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] test. Among the tested compounds, some oximes and all lactams proved to be the most active cytotoxic agents. These triterpenes significantly inhibited the growth of the HeLa, KB, MCF-7 and Hep-G2 cancer cell lines at micromolar concentrations. PMID:26343139

  3. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines

    PubMed Central

    Yi, Jin-Ling; Shi, Song; Shen, Yan-Li; Wang, Ling; Chen, Hai-Yan; Zhu, Jun; Ding, Yan

    2015-01-01

    Drug combination therapies are common practice in the treatment of cancer. In this study, we evaluated the anticancer effects of myricetin (MYR), methyl eugenol (MEG) and cisplatin (CP) both separately as well as in combination against cervical cancer (HeLa) cells. To demonstrate whether MYR and MEG enhance the anticancer activity of CP against cervical cancer cells, we treated HeLa cells with MYR and MEG alone or in combination with cisplatin and evaluated cell growth and apoptosis using MTT (3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazolium bromide) assay, LDH release assay, flow cytometry and fluorescence microscopy. The results revealed that, as compared to single drug treatment, the combination of MYR or MEG with CP resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Cell apoptosis induction, Caspase-3 activity, cell cycle arrest and mitochondrial membrane potential loss were systematically studied to reveal the mechanisms of synergy between MYR, MEG and CP. Combination of MYR or MEG with CP resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33258 and AO-ETBR staining. The combination treatment also increased the number of cells in G0/G1 phase dramatically as compared to single drug treatment. Mitochondrial membrane potential loss (ΛΨm) as well as Caspase-3 activity was much higher in combination treatment as compared to single drug treatment. Findings of this investigation suggest that MYR and MEG combined with cisplatin is a potential clinical chemotherapeutic approach in human cervical cancer. PMID:25972998

  4. Distinctive Patterns of CTNNB1 (β-Catenin) Alterations in Salivary Gland Basal Cell Adenoma and Basal Cell Adenocarcinoma.

    PubMed

    Jo, Vickie Y; Sholl, Lynette M; Krane, Jeffrey F

    2016-08-01

    Salivary gland basaloid neoplasms are diagnostically challenging. Limited publications report that some basal cell adenomas harbor CTNNB1 mutations, and nuclear β-catenin expression is prevalent. We evaluated β-catenin expression in basal cell adenomas and adenocarcinomas in comparison with salivary tumors in the differential diagnosis and performed targeted genetic analysis on a subset of cases. β-catenin immunohistochemistry was performed on formalin-fixed, paraffin-embedded whole sections from 73 tumors. Nuclear staining was scored semiquantitatively by extent and intensity. DNA was extracted from 6 formalin-fixed, paraffin-embedded samples (5 basal cell adenomas, 1 basal cell adenocarcinoma) for next-generation sequencing. Nuclear β-catenin staining was present in 18/22 (82%) basal cell adenomas; most were diffuse and strong and predominant in the basal component. Two of 3 basal cell adenocarcinomas were positive (1 moderate focal; 1 moderate multifocal). All adenoid cystic carcinomas (0/20) and pleomorphic adenomas (0/20) were negative; 2/8 epithelial-myoepithelial carcinomas showed focal nuclear staining. Most β-catenin-negative tumors showed diffuse membranous staining in the absence of nuclear staining. Four of 5 basal cell adenomas had exon 3 CTNNB1 mutations, all c.104T>C (p.I35T). Basal cell adenocarcinoma showed a more complex genomic profile, with activating mutations in PIK3CA, biallelic inactivation of NFKBIA, focal CYLD deletion, and without CTNNB1 mutation despite focal β-catenin expression. Nuclear β-catenin expression has moderate sensitivity (82%) for basal cell adenoma but high specificity (96%) in comparison with its morphologic mimics. CTNNB1 mutation was confirmed in most basal cell adenomas tested, and findings in basal cell adenocarcinoma suggest possible tumorigenic mechanisms, including alterations in PI3K and NF-κB pathways and transcriptional regulation. PMID:27259009

  5. Intratumoral neutrophil granulocytes contribute to epithelial-mesenchymal transition in lung adenocarcinoma cells.

    PubMed

    Hu, Pingping; Shen, Meixiao; Zhang, Ping; Zheng, Chunlong; Pang, Zhaofei; Zhu, Linhai; Du, Jiajun

    2015-09-01

    We previously demonstrated that haemoptysis as a prognostic factor in lung adenocarcinoma and haemoptysis was associated with severe vascular invasion and high circulating white blood cell count. Epithelial-mesenchymal transition (EMT) plays an important role in tumor invasion. We hypothesized there was some relationship between tumor-associated inflammatory cells, tumor invasion, EMT, and haemoptysis. Immunohistochemistry (IHC) was used to detect CD66b and E-cadherin expression in tumor tissue. By co-culture tumor cells with polymorphonuclear neutrophils (PMNs), the expressions of EMT markers were assessed by western blotting. TGF-β1 concentrations in the supernatant and the migration activities of tumor cells were performed by ELISA and migration assays. Intratumoral CD66b(+) PMN expression was negatively associated with E-cadherin expression. Haemoptysis was significantly associated with neutrophil infiltration (OR = 4.25, 95 % CI 1.246-14.502). Neutrophils promoted EMT of tumor cells in vitro and enhanced the migration activity of tumor cells. In addition, TGF-β1 was up-regulated and Smad4 translocated into nucleus, indicating that TGF-β/Smad signaling pathway was initiated during the process. We indicated that lung adenocarcinoma with haemoptysis was associated with more PMN infiltration and PMNs promoted EMT, partly via TGF-β/Smad signal pathway. This may provide mechanistic reasons for why haemoptysis was associated with poor outcome in lung adenocarcinoma. PMID:25944163

  6. Visualizing the effect of tumor microenvironments on radiation-induced cell kinetics in multicellular spheroids consisting of HeLa cells

    SciTech Connect

    Kaida, Atsushi; Miura, Masahiko

    2013-10-04

    Highlights: •We visualized radiation-induced cell kinetics in spheroids. •HeLa-Fucci cells were used for detection of cell-cycle changes. •Radiation-induced G2 arrest was prolonged in the spheroid. •The inner and outer cell fractions behaved differently. -- Abstract: In this study, we visualized the effect of tumor microenvironments on radiation-induced tumor cell kinetics. For this purpose, we utilized a multicellular spheroid model, with a diameter of ∼500 μm, consisting of HeLa cells expressing the fluorescent ubiquitination-based cell-cycle indicator (Fucci). In live spheroids, a confocal laser scanning microscope allowed us to clearly monitor cell kinetics at depths of up to 60 μm. Surprisingly, a remarkable prolongation of G2 arrest was observed in the outer region of the spheroid relative to monolayer-cultured cells. Scale, an aqueous reagent that renders tissues optically transparent, allowed visualization deeper inside spheroids. About 16 h after irradiation, a red fluorescent cell fraction, presumably a quiescent G0 cell fraction, became distinct from the outer fraction consisting of proliferating cells, most of which exhibited green fluorescence indicative of G2 arrest. Thereafter, the red cell fraction began to emit green fluorescence and remained in prolonged G2 arrest. Thus, for the first time, we visualized the prolongation of radiation-induced G2 arrest in spheroids and the differences in cell kinetics between the outer and inner fractions.

  7. Transporter Molecules influence the Gene Expression in HeLa Cells

    PubMed Central

    Waldeck, Waldemar; Pipkorn, Ruediger; Korn, Bernhard; Mueller, Gabriele; Schick, Matthias; Tóth, Katalin; Wiessler, Manfred; Didinger, Bernd; Braun, Klaus

    2009-01-01

    Progresses in biology and pharmacology led to highly specific bioactive substances, but their poor bioavailability at the site of action is a result of their physico-chemical properties. Various design approaches for transport carrier molecules facilitating the cellular entry of bioactive substances could help to reach their molecular target in cells and tissues. The transfer efficacy and the subsequent pharmacological effects of the cargo molecules are well investigated, but the investigations of effects of the carrier molecules themselves on the target cells or tissues remain necessary. A special attention should be paid to the differential gene expression, particularly in the interpretation of the data achieved by highly specific active pharmaceutical products. After application of transmembrane transport peptides, particularly the pAnt and also the HIV-1 Tat, cells respond with a conspicuous altered gene expression of at least three genes. The PKN1 gene was induced and two genes (ZCD1 and BSG) were slightly repressed. The genes and the chromosomes are described, the moderate differential gene expression graphed, and the ontology is listed. PMID:19214198

  8. Detection, purification and characterization of a protein that binds the (6-4) photoproduct-containing DNA in HeLa cells.

    PubMed

    Fujiwara, Y; Masutani, C; Hanaoka, F; Iwai, S

    1997-01-01

    HeLa cell proteins that bind DNA containing the pyrimidine(6-4)pyrimidone photoproduct were detected by the electrophoretic mobility shift assay using synthetic oligonucleotide duplexes as probes. The major species was purified to near homogeneity, and the amino acid sequences of the proteolytic peptides revealed that it was the human damage-specific DNA-binding protein, which was reported previously. The substrate specificity of this protein was determined using damaged or modified DNA duplexes. PMID:9586107

  9. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    NASA Technical Reports Server (NTRS)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  10. Metabolism and effects of progesterone in the human endometrial adenocarcinoma cell line HEC-1.

    PubMed

    Satyaswaroop, P G; Frost, A; Gurpide, E

    1980-01-01

    Human endometrial adenocarcinoma cells (HEC-1 line) were incubated with 14C-progesterone. Four major labeled metabolites, 3 beta-hydroxy 5 alpha-pregnan-20-one, 5 alpha-pregnane-3 beta, 20 alpha-diol, 20 alpha-hydroxy-4-pregnen-3-one and 5 alpha-pregnane-3, 20-dione were separated by thin layer chromatography, further purified by high pressure liquid chromatography, and finally identified by addition of carriers and crystallization to constant specific activity. Among these metabolites, 5 alpha-pregnane-3 beta, 20 alpha-diol seems characteristic of this cell line since its formation from labeled progesterone was not detected in normal endometrium or in 2 specimens of endometrial adenocarcinoma. The growth of HEC cells was unaffected by either progesterone or medroxyprogesterone acetate, a slowly metabolized progestin, at about 10(-6) M levels but was inhibited by about 10(-5) M concentrations of these compounds. PMID:7376209

  11. Intracellular Uptake and Trafficking of Difluoroboron Dibenzoylmethane-Poly(lactic acid) Nanoparticles in HeLa Cells

    PubMed Central

    Contreras, Janette; Xie, Jiansong; Chen, Yin Jie; Pei, Hua; Zhang, Guoqing; Fraser, Cassandra L.; Hamm-Alvarez, Sarah F.

    2010-01-01

    In this study, nanoparticles based on difluoroboron dibenzoylmethane-poly(lactic acid) (BF2dbmPLA) are prepared. Polylactic acid or polylactide is a commonly used degradable polymer, while the boron dye possesses a large extinction coefficient, high emission quantum yield, 2-photon absorption, and sensitivity to the surrounding environment. BF2dbmPLA exhibits molecular weight-dependent emission properties, and can be formulated as stable nanoparticles, suggesting that its unique optical properties may be useful in multiple contexts for probing intracellular environments. Here we show that BF2dbmPLA nanoparticles are internalized into cultured HeLa cells by endocytosis, and that within the cellular milieu they retain their fluorescence properties. BF2dbmPLA nanoparticles are photostable, resisting laser-induced photobleaching under conditions that destroy the fluorescence of a common photostable probe, LysoTracker™ blue. Their endocytosis is also lipid raft-dependent, as evidenced by their significant co-localization with cholera toxin B subunit in membrane compartments after uptake, and their sensitivity of uptake to methyl-β-cyclodextrin. Additionally, BF2dbmPLA nanoparticle endocytosis utilizes microtubules and actin filaments. Internalized BF2dbmPLA nanoparticles do not accumulate in acidic late endosomes and lysosomes, but within a perinuclear non-lysosomal compartment. These findings demonstrate the feasibility of using novel BF2dbmPLA nanoparticles exhibiting diverse emission properties for in situ, live cell imaging, and suggest that their endogenous uptake occurs through a lipid-raft dependent endocytosis mechanism. PMID:20420413

  12. Development of kinetochores during early mitosis in HeLa cells and the stability of a trilaminar kinetochore structure

    SciTech Connect

    Schroeter, D.; Paweletz, N.; Finze, E.M.; Kiesewetter, U.L.

    1993-12-31

    The ultrastructure of the kinetochore varies during the course of mitosis. This variation is considered to be a progressive maturation process that may correlate with kinetochore function. We examined the development of kinetochore structures on condensing prophase chromosomes in HeLa cells. Usually, one accepts the three laminar structure of the kinetochore of a condensed metaphase chromosome to reflect the general state and to be a prerequisite for microtubule attachment. The study of developing kinetochores in mitotic cells revealed unquestionable exceptions from this dogma. At the onset of chromatin condensation, indicating the beginning of prophase, the nuclear envelope and the nucleoli are still intact. First indications for kinetochore formation, documented as clouds of a fibrous material or as the {open_quotes}kinetochore ball structure{close_quotes} can be identified along or close to distinct heterochromatic, condensed chromatin elements. These fibrils extend from or interdigitate with the folding chromatin. Enhanced density of the ball structure represents a condensation process. Concomitantly a segregation of a plate structure is detected, occuring at a distal zone but obviously not at the end of the fibrils. This differentiation into kinetochore plate and corona more or less coincides with two other important prophase processes: the first tangential contacts to single microtubules and the mitotic breakdown of the nuclear envelope. But evidence will be discussed that these early prophase features not necessarily depend on each other and that the formation of a characteristic, trilaminar kinetochore structure does not guarantee its function. Conversely, structurally incomplete kinetochores can establish microtubular contacts for the attachment of chromosomes into the spindle.

  13. PVM/MA-shelled selol nanocapsules promote cell cycle arrest in A549 lung adenocarcinoma cells

    PubMed Central

    2014-01-01

    Background Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol’s hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). Results Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. Conclusions This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells. PMID:25149827

  14. Prevalence of Escherichia coli strains with localized, diffuse, and aggregative adherence to HeLa cells in infants with diarrhea and matched controls.

    PubMed Central

    Gomes, T A; Blake, P A; Trabulsi, L R

    1989-01-01

    To determine the possible role of Escherichia coli strains with three different patterns of adherence to HeLa cells in causing diarrhea in infants in São Paulo, Brazil, we studied stool specimens from 100 infants up to 1 year of age with acute diarrheal illnesses and 100 age-matched control infants without recent diarrhea. E. coli with localized adherence to HeLa cells was much more common in patients (23%) than in controls (2%) (P less than 0.0001) and was detected more frequently than rotavirus (19%) was in patients, even though the study was conducted during the coldest months of the year. Most (80%) of the E. coli colonies with localized adherence were of traditional enteropathogenic E. coli serotypes. Little difference was found between patients and controls in the rate of isolation of E. coli with diffuse adherence (31 and 32%, respectively) or aggregative adherence (10 and 8%, respectively). A genetic probe used to detect a plasmid-mediated adhesin which confers expression of localized adherence proved to be 100% sensitive and 99.9% specific in detecting E. coli with localized adherence to HeLa cells. Although E. coli strains with localized adherence have now been shown to be enteric pathogens in several parts of the world, the role of strains showing diffuse adherence and aggregative adherence is still uncertain. PMID:2563383

  15. Adenocarcinoma cells isolated from patients in the presence of cerium and transferrin in vitro

    PubMed Central

    Zende-Del, A; Gholami, MR; Abdollahpour, F; Ahmadvand, H

    2015-01-01

    Aim: Cerium as a trace element in the periodic table is a member of the lanthanide group. Cerium ionic radius and its binding properties are similar to ferric ions, which may be bound to transferrin. So it can be considered as a competitive element to iron and can interfere with iron absorption. The aim of this study was to investigate the inhibitory effect of Cerium in presence of transferrin on gastric adenocarcinoma cells in vitro. Methods: The adenocarcinoma cells were obtained from patients after a pathological confirmation, then they were cultured in DMEM environment and cytotoxic effect of different concentrations of cerium were measured (0.1, 1, 10 and 100 µM) in the presence and absence of transferrin, on periods 24 and 48 hours by MTT and LDH cytotoxic assay. Results: The results of MTT and LDH measurements showed that Cerium itself has a cytotoxic effect on cancer cells isolated from the patient as well as it increases significantly in the presence of transferrin carrying a mortality rate of cancer cells (P <.05). Conclusion: Cerium is competitive element in the mechanism of iron absorption and can interfere and inhibit the growth of adenocarcinoma cancer cells; also, the use of Cerium and transferrin simultaneously may cause a greater inhibitory effect. PMID:26664465

  16. Adhesion to and invasion of HeLa cells by pathogenic Escherichia coli carrying the afa-3 gene cluster are mediated by the AfaE and AfaD proteins, respectively.

    PubMed Central

    Jouve, M; Garcia, M I; Courcoux, P; Labigne, A; Gounon, P; Le Bouguénec, C

    1997-01-01

    The afa-3 gene cluster, expressed by uropathogenic and diarrhea-associated Escherichia coli strains, determines the formation of an afimbrial adhesive sheath composed of the AfaD and AfaE-III adhesins. The adherence to HeLa cells by recombinant HB101 strains producing both or only one of these two adhesins was investigated. Ultrastructural analyses of the interaction and gentamicin protection assays showed adherence to HeLa cells by HB101 producing both the AfaD and AfaE-III proteins and internalization of a subpopulation of the bacteria into the cells. The interactions of HeLa cells either with HB101 mutants producing AfaD or AfaE-III or with polystyrene beads coated with purified His6-tagged AfaD or His6-tagged AfaE-III proteins were studied. These experiments demonstrated that AfaE-III allows binding to HeLa cells and that AfaD mediates the internalization of the adherent bacteria. Ultrastructural analyses of the interaction of His6-AfaD-gold complexes with HeLa cells confirmed that AfaD is able to bind to the HeLa cell surface and indicated that it penetrates the cells via clathrin vesicles. These data demonstrate that the afa gene cluster is unique among bacteria, as alone it encodes both adhesion to and invasion of epithelial cells. PMID:9317011

  17. Gastric mucous neck cell and intestinal goblet cell phenotypes in gastric adenocarcinoma.

    PubMed Central

    Hughes, N R; Bhathal, P S

    1997-01-01

    AIM: To investigate the phenotype of cells comprising diffuse and intestinal-type gastric cancers using monoclonal antibodies to two antigens. One antigen (designated D10) is characteristic of gastric mucous neck cells, cardiac glands, pyloric glands, and Brunner's glands. The second antigen (designated 17NM) is specific to the mucous vacuole of intestinal goblet cells. METHODS: Thirty two gastrectomy specimens with adenocarcinoma were studied. Serial paraffin sections were stained immunohistochemically for D10 and 17NM and histochemically for acid and neutral mucins. The cancers were classified histologically as of either diffuse or intestinal type according to Lauren. RESULTS: Of 15 diffuse-type gastric carcinomas, 11 showed the majority of cancer cells staining for D10 while four were typical signet ring cell cancers staining predominantly for 17NM; five tumours displayed both phenotypes with the two phenotypes segregated in different areas of the tumours. In contrast, of 16 intestinal-type cancers, six expressed 17NM, three D10, five neither antigen, and two expressed both antigens. One indeterminate-type cancer expressed both antigens. The staining of individual cells for D10 and 17NM was mutually exclusive in both diffuse and intestinal types. In contrast to the diffuse cancers, intestinal-type cancers typically expressed either antigen only in occasional small groups of cells and individual cells. CONCLUSIONS: In disease, the gastric stem cell can assume the capacity of the duodenal stem cell for divergent differentiation into either intestinal goblet cells (for example, as in intestinal metaplasia) or Brunner's gland cells (for example, as in pyloric gland/Brunner's gland metaplasia). With neoplastic transformation, this potential for divergent differentiation is maintained and gives rise to diffuse-type cancers that display either the D10 phenotype, the 17NM phenotype, or the clonal expression of both phenotypes. In the more cell cohesive (intestinal

  18. miR-99a regulates ROS-mediated invasion and migration of lung adenocarcinoma cells by targeting NOX4.

    PubMed

    Sun, Mei; Hong, Shunming; Li, Wenhan; Wang, Pengfei; You, Jinqiang; Zhang, Xuebin; Tang, Fan; Wang, Ping; Zhang, Chunzhi

    2016-05-01

    miR-99a is frequently downregulated in various types of human malignancies including lung adenocarcinoma. Recent studies have reported that miR-99a regulates cell growth and cell cycle progression by targeting mTOR, AKT1 and FGFR3. However, the underlying mechanisms involved in the modulation of invasion and migration by miR-99a remain elusive. In this study, we analyzed the relationship between the expression of miR-99a and clinical stage or metastasis in 90 matched lung adenocarcinoma and adjacent non-tumor lung tissues. Downregulation of miR-99a was significantly associated with advanced stage and tumor metastasis in lung adenocarcinoma patients, and it was found to be a poor prognostic factor in lung adenocarcinoma. Furthermore, functional experiments found that overexpression of miR-99a inhibited the proliferation, migration and invasion of lung adenocarcinoma A549 and Calu3 cells in vitro. We then identified NOX4 as a target gene of miR-99a and NOX4 mediated the inhibition of invasion and migration of lung adenocarcinoma cells by miR-99a. By targeting NOX4-mediated ROS production, miR-99a regulated the invasion and migration of lung adenocarcinoma cells. Moreover, overexpression of miR-99a significantly inhibited tumor growth in vivo. Immunohistochemical staining analysis of the mouse tumor tissues revealed that NOX4 levels were downregulated in the miR-99a treatment group, confirming the in vitro data of NOX4 as a direct target gene of miR-99a. Taken together, these data indicate for the first time that miR-99a directly regulates the invasion and migration in lung adenocarcinoma by targeting NOX4 and that overexpression of miR-99a may become a therapeutic strategy for lung adenocarcinoma. PMID:26986073

  19. Drug sensitivity profiling and molecular characteristics of cells from pleural effusions of patients with lung adenocarcinoma

    PubMed Central

    Hillerdal, Carl-Olof; Celep, Aytekin; Yousef-Fadhel, Eviane; Skribek, Henriette; Hjerpe, Anders; Székely, László; Dobra, Katalin

    2015-01-01

    We propose to assess the therapeutic value of biomarker-guided individualized chemotherapy in patients with metastasizing lung adenocarcinoma. In this study, we used primary cells from pleural effusions from sixteen patients diagnosed with adenocarcinomas originating in the lung and from four patients with no malignant diagnosis. The ex vivo drug sensitivity of primary cells was assessed for 32 chemotherapeutical drugs. Linear regression analyses were performed to examine possible correlations between the drug sensitivity, overall survival and expression of ERCC1 and RRM1. The ex vivo drug sensitivity profiles of the patients revealed considerable heterogeneity in drug response. Vinblastine, vinorelbine, paclitaxel and actinomycin D showed high efficiency against 50% of the tested primary cells. Significant correlation was detected between the ex vivo sensitivity to platinum based drugs and gemcitabine and the level of ERCC1 and RRM1. No significant correlation was however seen between overall survival and drug sensitivity. The heterogeneity of the drug response suggests that optimal care of the adenocarcinoma patients should include the determination of drug sensitivity of the primary cells and would benefit to use personalized therapy. PMID:26000095

  20. Clear cell adenocarcinoma arising from adenomyotic cyst: A case report and literature review.

    PubMed

    Baba, Akira; Yamazoe, Shinji; Dogru, Murat; Ogawa, Mariko; Takamatsu, Kiyoshi; Miyauchi, Jun

    2016-02-01

    Ovaries are the primary sites of cancerous disease that is derived from endometriosis. Uterine cancer originating from endometriosis is very rare. The most frequent histological subtype of cancer derived from endometriosis is endometrioid adenocarcinoma, a subtype of clear cell carcinoma which is exceedingly rare. We report a case of a 40-year-old Japanese woman with a six year history of uterine leiomyoma. The patient was clinically and radiologically suspected to have degenerative uterine myoma with a possible malignant association and underwent a transabdominal total hysterectomy. Histopathological examination of the specimens revealed clear cell adenocarcinoma arising from the adenomyotic cyst. A literature review of clear cell adenocarcinomas arising from uterine adenomyotic cysts (cystic adenomyosis), emphasizes the clinically and radiologically important features of this very rare entity. Clear cell carcinoma association should be suspected in patients who are under follow-up for uterine myomas and present with cystic uterine changes with solid component on magnetic resonance imaging or computed tomography scans. PMID:26530432

  1. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome.

    PubMed

    Mallampalli, Monica P; Huyer, Gregory; Bendale, Pravin; Gelb, Michael H; Michaelis, Susan

    2005-10-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a devastating premature aging disease resulting from a mutation in the LMNA gene, which encodes nuclear lamins A and C. Lamin A is synthesized as a precursor (prelamin A) with a C-terminal CaaX motif that undergoes farnesylation, endoproteolytic cleavage, and carboxylmethylation. Prelamin A is subsequently internally cleaved by the zinc metalloprotease Ste24 (Zmpste24) protease, which removes the 15 C-terminal amino acids, including the CaaX modifications, to yield mature lamin A. HGPS results from a dominant mutant form of prelamin A (progerin) that has an internal deletion of 50 aa near the C terminus that includes the Zmpste24 cleavage site and blocks removal of the CaaX-modified C terminus. Fibroblasts from HGPS patients have aberrant nuclei with irregular shapes, which we hypothesize result from the abnormal persistence of the farnesyl and/or carboxylmethyl CaaX modifications on progerin. If this hypothesis is correct, inhibition of CaaX modification by mutation or pharmacological treatment should alleviate the nuclear morphology defect. Consistent with our hypothesis, we find that expression in HeLa cells of GFP-progerin or an uncleavable form of prelamin A with a Zmpste24 cleavage site mutation induces the formation of abnormal nuclei similar to those in HGPS fibroblasts. Strikingly, inhibition of farnesylation pharmacologically with the farnesyl transferase inhibitor rac-R115777 or mutationally by alteration of the CaaX motif dramatically reverses the abnormal nuclear morphology. These results suggest that farnesyl transferase inhibitors represent a possible therapeutic option for individuals with HGPS and/or other laminopathies due to Zmpste24 processing defects. PMID:16186497

  2. Ethanolic Neem (Azadirachta indica) Leaf Extract Prevents Growth of MCF-7 and HeLa Cells and Potentiates the Therapeutic Index of Cisplatin

    PubMed Central

    Sharma, Chhavi; Vas, Andrea J.; Goala, Payal; Gheewala, Taher M.; Rizvi, Tahir A.

    2014-01-01

    The present study was designed to gain insight into the antiproliferative activity of ethanolic neem leaves extract (ENLE) alone or in combination with cisplatin by cell viability assay on human breast (MCF-7) and cervical (HeLa) cancer cells. Nuclear morphological examination and cell cycle analysis were performed to determine the mode of cell death. Further, to identify its molecular targets, the expression of genes involved in apoptosis, cell cycle progression, and drug metabolism was analyzed by RT-PCR. Treatment of MCF-7, HeLa, and normal cells with ENLE differentially suppressed the growth of cancer cells in a dose- and time-dependent manner through apoptosis. Additionally, lower dose combinations of ENLE with cisplatin resulted in synergistic growth inhibition of these cells compared to the individual drugs (combination index <1). ENLE significantly modulated the expression of bax, cyclin D1, and cytochrome P450 monooxygenases (CYP 1A1 and CYP 1A2) in a time-dependent manner in these cells. Conclusively, these results emphasize the chemopreventive ability of neem alone or in combination with chemotherapeutic treatment to reduce the cytotoxic effects on normal cells, while potentiating their efficacy at lower doses. Thus, neem may be a prospective therapeutic agent to combat gynecological cancers. PMID:24624140

  3. Transportation of Berberine into HepG2, HeLa and SY5Y Cells: A Correlation to Its Anti-Cancer Effect

    PubMed Central

    Pang, Yu-Nong; Liang, Yin-Wen; Feng, Tian-Shi; Zhao, Shuang; Wu, Hao; Chai, Yu-Shuang; Lei, Fan; Ding, Yi; Xing, Dong-Ming; Du, Li-Jun

    2014-01-01

    The anti-cancer activities of berberine (BBR) have been reported extensively in various cancer cell lines. However, the minimal inhibitory concentrations of BBR varied greatly among different cell lines and very few studies have been devoted to elucidate this aspect. In this study, we employed three cancer cell lines, HepG2, HeLa and SY5Y, to compare the transportation and distribution of BBR. HPLC results demonstrated that BBR was capable of penetrating all the cell lines whereas the cumulative concentrations were significantly different. HepG2 cells accumulated higher level of BBR for longer duration than the other two cell lines. Molecular docking studies revealed the BBR binding site on P-glycoprotein 1 (P-gp). In addition, we elucidated that BBR regulated P-gp at both mRNA and protein levels. BBR induced the transcription and translation of P-gp in HeLa and SY5Y cells, whereas BBR inhibited P-gp expression in HepG2 cells. Further study showed that BBR regulates P-gp expression depending on different mechanisms (or affected by different factors) in different cell lines. To summarize, our study has revealed several mechanistic aspects of BBR regulation on P-gp in different cancer cell lines and might shed some useful insights into the use of BBR in the anti-cancer drug development. PMID:25402492

  4. Cell Cycle-Regulated Protein Abundance Changes in Synchronously Proliferating HeLa Cells Include Regulation of Pre-mRNA Splicing Proteins

    PubMed Central

    Lane, Karen R.; Yu, Yanbao; Lackey, Patrick E.; Chen, Xian; Marzluff, William F.; Cook, Jeanette Gowen

    2013-01-01

    Cell proliferation involves dramatic changes in DNA metabolism and cell division, and control of DNA replication, mitosis, and cytokinesis have received the greatest attention in the cell cycle field. To catalogue a wider range of cell cycle-regulated processes, we employed quantitative proteomics of synchronized HeLa cells. We quantified changes in protein abundance as cells actively progress from G1 to S phase and from S to G2 phase. We also describe a cohort of proteins whose abundance changes in response to pharmacological inhibition of the proteasome. Our analysis reveals not only the expected changes in proteins required for DNA replication and mitosis but also cell cycle-associated changes in proteins required for biological processes not known to be cell-cycle regulated. For example, many pre-mRNA alternative splicing proteins are down-regulated in S phase. Comparison of this dataset to several other proteomic datasets sheds light on global mechanisms of cell cycle phase transitions and underscores the importance of both phosphorylation and ubiquitination in cell cycle changes. PMID:23520512

  5. Requirement of T-lymphokine-activated killer cell-originated protein kinase for TRAIL resistance of human HeLa cervical cancer cells

    SciTech Connect

    Kwon, Hyeok-Ran; Lee, Ki Won; Dong, Zigang; Lee, Kyung Bok; Oh, Sang-Muk

    2010-01-01

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) appears to be highly expressed in various cancer cells and to play an important role in maintaining proliferation of cancer cells. However, the underlying mechanism by which TOPK regulates growth of cancer cells remains elusive. Here we report that upregulated endogenous TOPK augments resistance of cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Stable knocking down of TOPK markedly increased TRAIL-mediated apoptosis of human HeLa cervical cancer cells, as compared with control cells. Caspase 8 or caspase 3 activities in response to TRAIL were greatly incremented in TOPK-depleted cells. Ablation of TOPK negatively regulated TRAIL-mediated NF-{kappa}B activity. Furthermore, expression of NF-{kappa}B-dependent genes, FLICE-inhibitory protein (FLIP), inhibitor of apoptosis protein 1 (c-IAP1), or X-linked inhibitor of apoptosis protein (XIAP) was reduced in TOPK-depleted cells. Collectively, these findings demonstrated that TOPK contributed to TRAIL resistance of cancer cells via NF-{kappa}B activity, suggesting that TOPK might be a potential molecular target for successful cancer therapy using TRAIL.

  6. Activin a signaling regulates cell invasion and proliferation in esophageal adenocarcinoma

    PubMed Central

    Le Bras, Gregoire F.; Koumangoye, Rainelli B.; Romero-Morales, Alejandra I.; Quast, Laura L.; Zaika, Alexander I.; El-Rifai, Wael; Andl, Thomas; Andl, Claudia D.

    2015-01-01

    TGFβ signaling has been implicated in the metaplasia from squamous epithelia to Barrett's esophagus and, ultimately, esophageal adenocarcinoma. The role of the family member Activin A in Barrett's tumorigenesis is less well established. As tumorigenesis is influenced by factors in the tumor microenvironment, such as fibroblasts and the extracellular matrix, we aimed to determine if epithelial cell-derived Activin affects initiation and progression differently than Activin signaling stimulation from a mimicked stromal source. Using Barrett's esophagus cells, CPB, and the esophageal adenocarcinoma cell lines OE33 and FLO-1, we showed that Activin reduces colony formation only in CPB cells. Epithelial cell overexpression of Activin increased cell migration and invasion in Boyden chamber assays in CPB and FLO-1 cells, which exhibited mesenchymal features such as the expression of the CD44 standard form, vimentin, and MT1-MMP. When grown in organotypic reconstructs, OE33 cells expressed E-cadherin and Keratin 8. As mesenchymal characteristics have been associated with the acquisition of stem cell-like features, we analyzed the expression and localization of SOX9, showing nuclear localization of SOX9 in esophageal CPB and FLO-1 cells. In conclusion, we show a role for autocrine Activin signaling in the regulation of colony formation, cell migration and invasion in Barrett's tumorigenesis. PMID:26447543

  7. Activin a signaling regulates cell invasion and proliferation in esophageal adenocarcinoma.

    PubMed

    Taylor, Chase; Loomans, Holli A; Le Bras, Gregoire F; Koumangoye, Rainelli B; Romero-Morales, Alejandra I; Quast, Laura L; Zaika, Alexander I; El-Rifai, Wael; Andl, Thomas; Andl, Claudia D

    2015-10-27

    TGFβ signaling has been implicated in the metaplasia from squamous epithelia to Barrett's esophagus and, ultimately, esophageal adenocarcinoma. The role of the family member Activin A in Barrett's tumorigenesis is less well established. As tumorigenesis is influenced by factors in the tumor microenvironment, such as fibroblasts and the extracellular matrix, we aimed to determine if epithelial cell-derived Activin affects initiation and progression differently than Activin signaling stimulation from a mimicked stromal source. Using Barrett's esophagus cells, CPB, and the esophageal adenocarcinoma cell lines OE33 and FLO-1, we showed that Activin reduces colony formation only in CPB cells. Epithelial cell overexpression of Activin increased cell migration and invasion in Boyden chamber assays in CPB and FLO-1 cells, which exhibited mesenchymal features such as the expression of the CD44 standard form, vimentin, and MT1-MMP. When grown in organotypic reconstructs, OE33 cells expressed E-cadherin and Keratin 8. As mesenchymal characteristics have been associated with the acquisition of stem cell-like features, we analyzed the expression and localization of SOX9, showing nuclear localization of SOX9 in esophageal CPB and FLO-1 cells.In conclusion, we show a role for autocrine Activin signaling in the regulation of colony formation, cell migration and invasion in Barrett's tumorigenesis. PMID:26447543

  8. 4-Amino-2-arylamino-5-indoloyl/cinnamoythiazoles, analogs of topsentin-class of marine alkaloids, induce apoptosis in HeLa cells.

    PubMed

    Juneja, Manisha; Vanam, Uma; Paranthaman, Sripriya; Bharathan, Asha; Keerthi, Venugopal S; Reena, Justus K; Rajaram, Rama; Rajasekharan, Kallikat N; Karunagaran, Devarajan

    2013-05-01

    Marine organisms provide several biologically active compounds that include alkaloids with high cytotoxic activity but only a few of them have so far reached clinical stage, due partly to their limited supply and complex structural features. In an attempt to develop novel anticancer compounds, we have now synthesized diaminoindoloylthiazoles (4a-c; DIT1-3) and diaminocinnamoylthiazoles (5a,b; DCT1-2) as analogs based on a topsentin scaffold and investigated the cytotoxic and apoptotic activities of these compounds in HeLa cells. The results suggest that diaminoindoloylthiazoles (DIT1-3) inhibit cell growth and among these, DIT3 is the most cytotoxic against HeLa cells (IC50 1 μM). The diaminocinnamoylthiazoles DCT1 and DCT2, which can be viewed as curcumin-diaminothiazole hybrids, also inhibited cell growth but at relatively higher concentrations with IC50 values of 60 and 30 μM, respectively. These compounds induced apoptosis through the intrinsic pathway by reducing the mitochondrial membrane potential and activating caspases, 9 and 3, but not caspase 8. Among the marine alkaloid analogs tested in this study, DIT1-3 are very effective in inducing apoptosis of HeLa cells followed by DCT2 and DCT1. The treated cells were arrested in G2/M phase followed by accumulation of the cells in the Sub G0 phase. The curcumin-diaminothiazole hybrid DCT1 had the maximum effect in downregulating TNF-induced NF-κB activation among the compounds tested in this study. Thus, we demonstrate that diaminoindoloylthiazoles and diaminocinnamoylthiazoles induce apoptosis, regulate cell cycle and NF-κB signaling and thus show promising anticancer effects that warrant further investigation. PMID:23524113

  9. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  10. Multiple cells-of-origin of mutant K-Ras-induced mouse lung adenocarcinoma.

    PubMed

    Sutherland, Kate D; Song, Ji-Ying; Kwon, Min Chul; Proost, Natalie; Zevenhoven, John; Berns, Anton

    2014-04-01

    Much controversy surrounds the cell-of-origin of mutant K-Ras (K-RasG12D)-induced lung adenocarcinoma. To shed light on this issue, we have used technology that enables us to conditionally target K-RasG12D expression in Surfactant Protein C (SPC)(+) alveolar type 2 cells and in Clara cell antigen 10 (CC10)(+) Clara cells by use of cell-type-restricted recombinant Adeno-Cre viruses. Experiments were performed both in the presence and absence of the tumor suppressor gene p53, enabling us to assess what effect the cell-of-origin and the introduced genetic lesions have on the phenotypic characteristics of the resulting adenocarcinomas. We conclude that both SPC-expressing alveolar type 2 cells and CC10-expressing Clara cells have the ability to initiate malignant transformation following the introduction of these genetic alterations. The lungs of K-Ras(lox-Stop-lox-G12D/+) and K-Ras(lox-Stop-lox-G12D/+);tumor suppressor gene Trp53(F/F) mice infected with Adeno5-SPC-Cre and Adeno5-CC10-Cre viruses displayed differences in their tumor spectrum, indicating distinct cellular routes of tumor initiation. Moreover, using a multicolor Cre reporter line, we demonstrate that the resulting tumors arise from a clonal expansion of switched cells. Taken together, these results indicate that there are multiple cellular paths to K-RasG12D-induced adenocarcinoma and that the initiating cell influences the histopathological phenotype of the tumors that arise. PMID:24586047

  11. Mixed squamous cell and glandular papilloma of the lung resembling early adenocarcinoma: A case report

    PubMed Central

    Abe, Jiro; Ito, Shigemi; Takahashi, Satomi; Sato, Ikuro; Tanaka, Ryota; Sato, Taku; Okazaki, Toshimasa

    2016-01-01

    Introduction An extremely rare case of mixed squamous cell and glandular papilloma of the lung is reported. The correlation between the radiological and the pathological features as well as the clinical pitfall in making a diagnosis is discussed. Presentation of case An asymptomatic 68-year-old female with a cigarette smoking habit presented with a small nodule in her peripheral lung. A wedge resection was performed though it failed on-site diagnosis which was instead obtained following pathological scrutiny. The postsurgical course was excellent with no recurrence of disease. Discussion A small ground glass nodule gradually enlarged and transformed to a partially solid nodule a year and a half later. This transformation falsely made us suspect an early adenocarcinoma development. Eventually, the extremely rare subtype of pulmonary papilloma, with biphasic glandular and squamous cells, had been demonstrated to obstruct the peripheral bronchiole; and the adjoining alveoli had filled with a large volume of mucus. These pathological features seemed to have constituted the inner solid portion and the marginal ground glass portion respectively in the CT images, mimicking invasive lepidic adenocarcinoma. Conclusion Both pre- and intra-operative diagnoses are difficult mainly because of the rareness of the disease, however, mixed squamous cell and glandular papilloma may be considered in case the presence of primary adenocarcinoma is not validated. PMID:27141302

  12. Antidiabetic drug metformin inhibits esophageal adenocarcinoma cell proliferation in vitro and in vivo.

    PubMed

    Fujihara, Shintaro; Kato, Kiyohito; Morishita, Asahiro; Iwama, Hisakazu; Nishioka, Tomoko; Chiyo, Taiga; Nishiyama, Noriko; Miyoshi, Hisaaki; Kobayashi, Mitsuyoshi; Kobara, Hideki; Mori, Hirohito; Okano, Keiichi; Suzuki, Yasuyuki; Masaki, Tsutomu

    2015-05-01

    Esophageal carcinoma is the eighth most common cancer worldwide and the sixth leading cause of cancer-related deaths, with one of the worst prognoses of any form of cancer. Treatment with the anti-diabetic drug metformin has been associated with reduced cancer incidence in patients with type 2 diabetes. This study therefore evaluated the effects of metformin on the proliferation, in vitro and in vivo, of human esophageal adenocarcinoma cells, as well as the microRNAs associated with the antitumor effects of metformin. Metformin inhibited the proliferation of the esophageal adenocarcinoma cell lines OE19, OE33, SK-GT4 and OACM 5.1C, blocking the G0 to G1 transition in the cell cycle. This was accompanied by strong reductions in G1 cyclins, especially cyclin D1, cyclin-dependent kinase (Cdk)4, and Cdk6, and decreases in retinoblastoma protein phosphorylation. In addition, metformin reduced the phosphorylation of epidermal growth factor receptor and insulin-like growth factor and insulin-like growth factor-1 receptor, as well as angiogenesis-related proteins, such as vascular endothelial growth factor, tissue inhibitor of metalloproteinases (TIMP)-1, and TIMP-2. Metformin also markedly altered microRNA expression. Treatment with metformin of athymic nude mice bearing xenograft tumors reduced tumor proliferation. These findings suggest that metformin may have clinical use in the treatment of esophageal adenocarcinoma. PMID:25709052

  13. Enhancement of Thermal Damage to Adenocarcinoma Cells by Iron Nanoparticles Modified with MUC1 Aptamer.

    PubMed

    Guo, Fangqin; Hu, Yan; Yu, Lianyuan; Deng, Xiaoyuan; Meng, Jie; Wang, Chen; Yang, Xian-Da

    2016-03-01

    Hyperthermia cancer treatment is an adjunctive therapy that aims at killing the tumor cells with excessive heat that is usually generated by metal contrasts exposed to alternating magnetic field. The efficacy of hyperthermia is often limited by the heat damage to normal tissue due to indiscriminate distribution of the metal contrasts within the body. Tumor-targeting metal contrasts may reduce the toxicity of hyperthermia and improve the efficacy of thermotherapy against cancer. MUC1 is a glycoprotein over expressed in most adenocarcinomas, and represents an attractive therapeutic target. In this study, a MUC1 aptamer is conjugated with iron nanoparticles to construct adenocarcinoma-targeting metal contrasts. DNA hybridization studies confirmed that the aptamers were conjugated to the iron nanoparticles. Importantly, more aptamer-modified nanoparticles attached to the MUC1-positive cancer cells compared with the unmodified nanoparticles. Moreover, aptamer-modified nanoparticles significantly enhanced the targeted hyperthermia damage to MUC1-positive cancer cells in vitro (p < 0.05). The results suggest that MUC1 aptamer-modified metal particles may have potential in development of targeted hyperthermia therapy against adenocarcinomas. PMID:27455625

  14. Quantum dots (QDs) restrain human cervical carcinoma HeLa cell proliferation through inhibition of the ROCK-c-Myc signaling.

    PubMed

    Chen, Liqun; Qu, Guangbo; Zhang, Changwen; Zhang, Shuping; He, Jiuyang; Sang, Nan; Liu, Sijin

    2013-03-01

    Cancers often cause significant morbidity and even death to patients. To date, conventional therapies, such as chemotherapy, radiation and surgery, are often limited; meanwhile, novel anticancer therapeutics are urgently needed to improve clinical treatments. Rapid application of nanotechnology and nanomaterials represents a promising vista for the development of anti-cancer therapeutics. However, how to integrate the novel properties of nanotechnology and nanomaterials into cancer treatment warrants close investigation. In the current study, we report a novel finding about the inhibitory effect of CdSe quantum dots (QDs) on Rho-associated kinase (ROCK) activity in cervical carcinoma HeLa cells associated with the attenuation of the ROCK-c-Myc signaling. We mechanistically demonstrated that QD-conducted ROCK inhibition greatly diminished c-Myc protein stability due to reduced phosphorylation, and also suppressed its activity in transcribing target genes (e.g. HSPC111). Thus, the treatment of QDs greatly restrained HeLa cell growth by inducing cell cycle arrest at G1 phase due to the reduced ability of c-Myc in driving cell proliferation. Additionally, since HSPC111, one of the c-Myc targets, is involved in regulating cell growth through ribosomal biogenesis and assembly, the downregulation of HSPC111 could also contribute to diminished proliferation in HeLa cells upon QD treatment. These results together suggested that inhibition of ROCK activity or ROCK-mediated c-Myc signaling in tumor cells upon QD treatment might represent a promising strategy to restrain tumor progression for human cervical carcinoma. PMID:23370637

  15. Multiple fractions of gamma rays induced resistance to cis-dichloro-diammineplatinum (II) and methotrexate in human HeLa cells

    SciTech Connect

    Osmak, M.; Perovic, S. )

    1989-06-01

    Previous irradiation could induce changes in the cell-sensitivity to additional cytotoxic agents. In this study we examined whether the sensitivity to additional cytotoxic agents was affected in cells irradiated with multiple fractions of gamma rays if these agents were given at the time when the lesions induced in DNA by radiation have already been repaired. Human cervix carcinoma HeLa cells were irradiated daily with 0.5 Gy of gamma rays five times a week for 6 weeks. When the fractionation regimen was completed, that is when the cells had accumulated the total dose of 15 Gy of gamma rays, the sensitivity of these cells to gamma rays, UV light, cis-dichlorodiammineplatinum (II) (cis-DDP), methotrexate (MTX), and hydroxyurea (HU) was examined and compared to control cells. Results revealed that preirradiated cells did not change sensitivity to gamma rays and UV light, but that they increased the resistance to cis-DDP, and MTX (especially for higher concentrations of MTX), and increased sensitivity to HU (for lower concentrations of HU). The increased resistance to cis-DDP was also measurable up to 30 days after the last dose of gamma rays. The results indicate that preirradiation of HeLa cells with multiple fractions of gamma rays could change their sensitivity to additional cytotoxic agents, and that this is a relatively long-lasting effect. Our results suggest that caution is needed in medical application of radiation combined with chemical treatment.

  16. A Lactose-Binding Lectin from the Marine Sponge Cinachyrella Apion (Cal) Induces Cell Death in Human Cervical Adenocarcinoma Cells

    PubMed Central

    Rabelo, Luciana; Monteiro, Norberto; Serquiz, Raphael; Santos, Paula; Oliveira, Ruth; Oliveira, Adeliana; Rocha, Hugo; Morais, Ana Heloneida; Uchoa, Adriana; Santos, Elizeu

    2012-01-01

    Cancer represents a set of more than 100 diseases, including malignant tumors from different locations. Strategies inducing differentiation have had limited success in the treatment of established cancers. Marine sponges are a biological reservoir of bioactive molecules, especially lectins. Several animal and plant lectins were purified with antitumor activity, mitogenic, anti-inflammatory and antiviral, but there are few reports in the literature describing the mechanism of action of lectins purified from marine sponges to induce apoptosis in human tumor cells. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL) was evaluated with respect to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death in tumor cells. The antiproliferative activity of CaL was tested against HeLa, PC3 and 3T3 cell lines, with highest growth inhibition for HeLa, reducing cell growth at a dose dependent manner (0.5–10 µg/mL). Hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC50 (10 µg/mL) for both trials and twice the IC50 for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. Results showed that lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase and acting as both dependent and/or independent of caspases pathway. These results indicate the potential of CaL in studies of medicine for treating cancer. PMID:22690140

  17. Cytotoxicity of different extracts of arial parts of Ziziphus spina-christi on Hela and MDA-MB-468 tumor cells

    PubMed Central

    Jafarian, Abbas; Zolfaghari, Behzad; Shirani, Kobra

    2014-01-01

    Background: It has been shown that plants from the family Rhamnaceae possess anticancer activity. In this study, we sought to determine if Ziziphus spina-christi, a species from this family, has cytotoxic effect on cancer cell lines. Materials and Methods: Using maceration method, different extracts of leaves of Z. spina-christi were prepared. Hexane, chloroform, chloroform-methanol (9:1), methanol-water (7:1) methanol, butanol and water were used for extraction, after preliminary phytochemical analyses were done. The cytotoxic activity of the extracts against Hela and MDA-MB-468 tumor cells was evaluated by MTT assay. Briefly, cells were seeded in microplates and different concentrations of extracts were added. After incubation of cells for 72 h, their viability was evaluated by addition of tetrazolium salt solution. After 3 h medium was aspirated, dimethyl sulfoxide was added and absorbance was determined at 540 nm with an ELISA plate reader. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. Results: Hexane, chloroform, chloroform-methanol, butanol, methanol-water and aqueous extracts of Z. spina-christi significantly and concentration-dependently reduced viability of Hela and MAD-MB-468 cells. In the both cell lines, chloroform-methanol extract of Z. spina-christi was more potent than the other extracts. Results: From the finding of this study it can be concluded that Z. spina-christi is a good candidate for further study for new cytotoxic agents. PMID:24627846

  18. [Linitis plastica type of primary signet cell adenocarcinoma of the bladder].

    PubMed

    el Sandid, Marwan; Peraldi, Renaud; Pernin, François

    2002-04-01

    Primary adenocarcinoma represent 0.5 to 2% of all bladder tumours and are classified according to whether or not they are derived from the urachus, although, histologically, this classification now appears to be obsolete. The authors report a very rare case of linitis plastica type of primary signet cell adenocarcinoma of the bladder in a 53-year-old patient. This carcinoma, with very unusual histological features, needs to be distinguished. Due to the delayed diagnosis, it has a poor prognosis despite the most aggressive treatment modalities, as reported in the literature. The elevated CA 19-9 observed in the present case may be a useful marker for follow-up. PMID:12108351

  19. MiR-374a suppresses lung adenocarcinoma cell proliferation and invasion by targeting TGFA gene expression.

    PubMed

    Wu, Haijian; Liu, Yan; Shu, Xiao Ou; Cai, Qiuyin

    2016-06-01

    Aberrant expression of miR-374a has been reported in several types of human cancers, including lung cancer. However, the functional significance and molecular mechanisms underlying the role of miR-374a in lung cancer remain largely unknown. We found that the expression of miR-374a was significantly downregulated in lung adenocarcinoma tissues compared to adjacent normal lung tissues in samples included in The Cancer Genome Atlas. Functional studies revealed that overexpression of miR-374a led to inhibition of lung adenocarcinoma cell proliferation, migration and invasion and that miR-374a negatively regulated transforming growth factor-alpha (TGFA) gene expression by directly targeting the 3'-UTR of TGFA mRNA. Treating lung adenocarcinoma cells with TGF-α neutralizing antibody resulted in suppression of cell proliferation and invasion, which mimicked the action of miR-374a. Additionally, TGFA gene expression was significantly higher in tumor tissues compared to adjacent normal tissue and high TGFA gene expression strongly correlated with poor survival in patients with lung adenocarcinoma. Taken together, our studies suggest that miR-374a suppresses lung adenocarcinoma cell proliferation and invasion via targeting TGFA gene expression. Our findings may provide novel treatment strategies for lung adenocarcinoma patients. PMID:27207663

  20. Structurally related ganoderic acids induce apoptosis in human cervical cancer HeLa cells: Involvement of oxidative stress and antioxidant protective system.

    PubMed

    Liu, Ru-Ming; Li, Ying-Bo; Liang, Xiang-Feng; Liu, Hui-Zhou; Xiao, Jian-Hui; Zhong, Jian-Jiang

    2015-10-01

    Ganoderic acids (GAs) produced by Ganoderma lucidum possess anticancer activities with the generation of reactive oxygen species (ROS). However, the role of oxidative stress in apoptotic process induced by GAs is still undefined. In this study, the effects of four structurally related GAs, i.e. GA-T, GA-Mk, and two deacetylated derivatives of GA-T (GA-T1 and GA-T2) on the antioxidant defense system and induced apoptosis in cervical cancer cells HeLa were investigated in vitro. Our results indicated that the tested GAs (5-40 μM) induced apoptotic cell death through mitochondrial membrane potential decrease and activation of caspase-9 and caspase-3. Furthermore, GAs increased the generation of intracellular ROS and attenuated antioxidant defense system by decreasing glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The above effects were remarkably blocked by the exogenous antioxidants, i.e. N-acetylcysteine, catalase and diphenyleneiodonium chloride. The potency of the four GAs toward induced apoptosis, generation of ROS and suppression of antioxidant defense system was in the order of: GA-T > GA-Mk ≈ GA-T1 > GA-T2 in HeLa cells. These findings suggest that GAs induced mitochondria-dependent cell apoptosis in HeLa cells are mediated via enhancing oxidative stress and depressing antioxidant defense. Additionally, the acetylation of hydroxyl groups in GAs may contribute to their pro-oxidant activities and cytotoxicity, which is helpful to the development of novel chemotherapy agents. PMID:26282491

  1. Verification and unmasking of widely used human esophageal adenocarcinoma cell lines.

    PubMed

    Boonstra, Jurjen J; van Marion, Ronald; Beer, David G; Lin, Lin; Chaves, Paula; Ribeiro, Catarina; Pereira, A Dias; Roque, Lúcia; Darnton, S Jane; Altorki, Nasser K; Schrump, David S; Klimstra, David S; Tang, Laura H; Eshleman, James R; Alvarez, Hector; Shimada, Yutaka; van Dekken, Herman; Tilanus, Hugo W; Dinjens, Winand N M

    2010-02-24

    For decades, hundreds of different human tumor type-specific cell lines have been used in experimental cancer research as models for their respective tumors. The veracity of experimental results for a specific tumor type relies on the correct derivation of the cell line. In a worldwide effort, we verified the authenticity of all available esophageal adenocarcinoma (EAC) cell lines. We proved that the frequently used cell lines SEG-1 and BIC-1 and the SK-GT-5 cell line are in fact cell lines from other tumor types. Experimental results based on these contaminated cell lines have led to ongoing clinical trials recruiting EAC patients, to more than 100 scientific publications, and to at least three National Institutes of Health cancer research grants and 11 US patents, which emphasizes the importance of our findings. Widespread use of contaminated cell lines threatens the development of treatment strategies for EAC. PMID:20075370

  2. Luotonin-A based quinazolinones cause apoptosis and senescence via HDAC inhibition and activation of tumor suppressor proteins in HeLa cells.

    PubMed

    Venkatesh, Ramineni; Ramaiah, M Janaki; Gaikwad, Hanmant K; Janardhan, Sridhara; Bantu, Rajashaker; Nagarapu, Lingaiah; Sastry, G Narahari; Ganesh, A Raksha; Bhadra, Manikapal

    2015-04-13

    A series of novel quinazolinone hybrids were synthesized by employing click chemistry and evaluated for anti-proliferative activities against MCF-7, HeLa and K562 cell lines. Among these cell lines, HeLa cells were found to respond effectively to these quinazolinone hybrids with IC50 values ranging from 5.94 to 16.45 μM. Some of the hybrids (4q, 4r, 4e, 4k, 4t, 4w) with promising anti-cancer activity were further investigated for their effects on the cell cycle distribution. FACS analysis revealed the G1 cell cycle arrest nature of these hybrids. Further to assess the senescence inducing ability of these compounds, a senescence associated β-gal assay was performed. The senescence inducing nature of these compounds was supported by the effect of hybrid (4q) on p16 promoter activity, the marker for senescence. Moreover, cells treated with most effective compound (4q) show up-regulation of p53, p21 and down-regulation of HDAC-1, HDAC-2, HDAC-5 and EZH2 mRNA levels. Docking results suggest that, the triazole nitrogen showed Zn(+2) mediated interactions with the histidine residue of HDACs. PMID:25757092

  3. The epimer of kaurenoic acid from Croton antisyphiliticus is cytotoxic toward B-16 and HeLa tumor cells through apoptosis induction.

    PubMed

    Fernandes, V C; Pereira, S I V; Coppede, J; Martins, J S; Rizo, W F; Beleboni, R O; Marins, M; Pereira, P S; Pereira, A M S; Fachin, A L

    2013-01-01

    Cancer has become the leading cause of death in developing countries due to increased life expectancy of the population and changes in lifestyle. Studies on active principles of plant have motivated researchers to develop new antitumor agents that are specific and effective for treatment of neoplasms. Kaurane diterpenes are considered important compounds in the development of new and highly effective anticancer chemotherapeutic agents due to their cytotoxic properties in the induction of apoptosis. We evaluated the cytotoxic and apoptotic activity of the epimer of kaurenoic acid (EKA) isolated from the medicinal plant Croton antisyphiliticus (Euphorbiaceae) toward tumor cell lines HeLa and B-16 and normal fibroblasts 3T3. Based on analyses with the MTT test, EKA showed cytotoxic activity, with half maximal inhibitory concentration values of 59.41, 68.18 and 60.30 µg/mL for the B-16, HeLa and 3T3 cell lines, respectively. The assay for necrotic or apoptotic cells by differential staining showed induction of apoptosis in all three cell lines. We conclude that EKA is not selective between tumor and normal cell lines; the mechanism of action of EKA is induction of apoptosis, which is part of the innate mechanism of cell defense against neoplasia. PMID:23613246

  4. Comparative proteomic analyses demonstrate enhanced interferon and STAT-1 activation in reovirus T3D-infected HeLa cells

    PubMed Central

    Ezzati, Peyman; Komher, Krysten; Severini, Giulia; Coombs, Kevin M.

    2015-01-01

    As obligate intracellular parasites, viruses are exclusively and intimately dependent upon their host cells for replication. During replication viruses induce profound changes within cells, including: induction of signaling pathways, morphological changes, and cell death. Many such cellular perturbations have been analyzed at the transcriptomic level by gene arrays and recent efforts have begun to analyze cellular proteomic responses. We recently described comparative stable isotopic (SILAC) analyses of reovirus, strain type 3 Dearing (T3D)-infected HeLa cells. For the present study we employed the complementary labeling strategy of iTRAQ (isobaric tags for relative and absolute quantitation) to examine HeLa cell changes induced by T3D, another reovirus strain, type 1 Lang, and UV-inactivated T3D (UV-T3D). Triplicate replicates of cytosolic and nuclear fractions identified a total of 2375 proteins, of which 50, 57, and 46 were significantly up-regulated, and 37, 26, and 44 were significantly down-regulated by T1L, T3D, and UV-T3D, respectively. Several pathways, most notably the Interferon signaling pathway and the EIF2 and ILK signaling pathways, were induced by virus infection. Western blots confirmed that cells were more strongly activated by live T3D as demonstrated by elevated levels of key proteins like STAT-1, ISG-15, IFIT-1, IFIT-3, and Mx1. This study expands our understanding of reovirus-induced host responses. PMID:25905045

  5. Trophoblast glycoprotein promotes pancreatic ductal adenocarcinoma cell metastasis through Wnt/planar cell polarity signaling.

    PubMed

    He, Ping; Jiang, Shuheng; Ma, Mingze; Wang, Yang; Li, Rongkun; Fang, Fang; Tian, Guangang; Zhang, Zhigang

    2015-07-01

    Trophoblast glycoprotein (TPBG), a 72 kDa glycoprotein was identified using a monoclonal antibody, which specifically binds human trophoblast. The expression of TPBG in normal tissues is limited; however, it is upregulated in numerous types of cancer. When TPBG is expressed at a high level, this usually indicates a poor clinical outcome. In the present study, it was demonstrated that TPBG was more commonly observed in human pancreatic ductal adenocarcinoma (PDAC) compared with normal pancreatic tissue. Immunohistochemical analysis of PDAC tissue microarrays indicated that the expression of TPBG in PDAC tissues was closely correlated with the tumor-node-metastasis stage of the tumor. Silencing of TPBG in PDAC cell lines resulted in a decreased ability of cancer cell migration and invasion. Further investigation demonstrated that the Wnt/planar cell polarity signaling pathway was suppressed, as the expression of Wnt5a and the activation of c-Jun N-terminal kinase was inhibited following TPBG knockdown. In conclusion, the present study provided evidence that TPBG is involved in PDAC metastasis, and that TPBG and its associated signaling pathways may be a suitable target for PDAC therapy. PMID:25738465

  6. Mixed Large Cell Neuroendocrine Carcinoma and Adenocarcinoma with Spindle Cell and Clear Cell Features in the Extrahepatic Bile Duct

    PubMed Central

    Agarwal, Rishi; Nguyen, Jeremy; Weidenhaft, Mandy Crause; Shores, Nathan; Kimbrell, Hillary Z.

    2014-01-01

    Mixed adenoneuroendocrine carcinomas, spindle cell carcinomas, and clear cell carcinomas are all rare tumors in the biliary tract. We present the first case, to our knowledge, of an extrahepatic bile duct carcinoma composed of all three types. A 65-year-old man with prior cholecystectomy presented with painless jaundice, vomiting, and weight loss. CA19-9 and alpha-fetoprotein (AFP) were elevated. Cholangioscopy revealed a friable mass extending from the middle of the common bile duct to the common hepatic duct. A bile duct excision was performed. Gross examination revealed a 3.6 cm intraluminal polypoid tumor. Microscopically, the tumor had foci of conventional adenocarcinoma (CK7-positive and CA19-9-postive) surrounded by malignant-appearing spindle cells that were positive for cytokeratins and vimentin. Additionally, there were separate areas of large cell neuroendocrine carcinoma (LCNEC). Foci of clear cell carcinoma merged into both the LCNEC and the adenocarcinoma. Tumor invaded through the bile duct wall with extensive perineural and vascular invasion. Circumferential margins were positive. The patient's poor performance status precluded adjuvant therapy and he died with recurrent and metastatic disease 5 months after surgery. This is consistent with the reported poor survival rates of biliary mixed adenoneuroendocrine carcinomas. PMID:24804133

  7. Overexpression of TDP-43 causes partially p53-dependent G2/M arrest and p53-independent cell death in HeLa cells.

    PubMed

    Lee, Kikyo; Suzuki, Hiroaki; Aiso, Sadakazu; Matsuoka, Masaaki

    2012-01-11

    It has been hypothesized that the dysregulation of transactive response DNA-binding protein-43 (TDP-43) in neurons is closely linked to the pathogenesis of amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitinated inclusions. However, it remains undefined whether the dysregulation of TDP-43 in non-neuronal cells, such as glial cells, contributes to the pathogenesis of these neurodegenerative diseases. Primarily using HeLa cells, we show that a low-grade overexpression of TDP-43, 2- to 5-fold greater than endogenous expression, which is thought to mimic the gain of function of TDP-43, induced cell cycle arrest at the G2/M phase and cell death in cultured non-neuronal cells. Since the activation of p53 may induce G2/M arrest and/or cell death in many abnormal situations, we examined the mechanism underlying G2/M arrest from the standpoint of p53 regulation. It was determined that the TDP-43-induced G2/M arrest was attenuated, while TDP-43-induced death was not attenuated, in cells in which the p53 function was compromised. These data collectively indicate that TDP-43 causes G2/M arrest in a partially p53-dependent manner and it causes cell death in a p53-independent manner in cycling cells. Because it is likely that the impaired proliferation in glial cells causes a decrease in the neuron-supporting ability, these findings further suggests that the gain of function of TDP-43 may cause neurotoxicity by inducing cell cycle arrest and death in glial cells. PMID:22133803

  8. Low-Dose Cadmium Upregulates VEGF Expression in Lung Adenocarcinoma Cells

    PubMed Central

    Liu, Fuhong; Wang, Bei; Li, Liqun; Dong, Fengyun; Chen, Xiaocui; Li, Yan; Dong, Xiuzhen; Wada, Youichiro; Kapron, Carolyn M.; Liu, Ju

    2015-01-01

    Cadmium (Cd) is a heavy metal and environmental toxin. Exposure to Cd has been associated with a variety of human cancers. In this study, we performed in vitro assays to examine the effects of cadmium chloride (CdCl2) on A549 cells, a human lung adenocarcinoma cell line. Cd does not affect proliferation, migration, or apoptosis of A549 cells at concentrations of 0.1–10 μM. At 0.5 and 1 μM, Cd increases the expression of vascular endothelial growth factor (VEGF) (p < 0.05, p < 0.01, respectively), but not basic fibroblast growth factor (b-FGF) in A549 cells. The conditioned media were collected from the A549 cells treated with 1 μM Cd and were co-cultured with human umbilical vein endothelial cells (HUVECs). Upon treatment with the conditioned media, the proliferation and migration of HUVECs significantly increased (p < 0.01, p < 0.05, respectively), while apoptosis remained unchanged. In addition, 1 μM Cd increases the level of hypoxia inducible factor 1-α (HIF1-α), which is a positive regulator of VEGF expression. Although low-dose Cd does not directly affect the growth of lung adenocarcinoma cells, it might facilitate the development of tumors through its pro-angiogenic effects. PMID:26343694

  9. Morphological evidence of neutrophil-tumor cell phagocytosis (cannibalism) in human gastric adenocarcinomas.

    PubMed

    Caruso, R A; Muda, A O; Bersiga, A; Rigoli, L; Inferrera, C

    2002-01-01

    The phenomenon of neutrophil-tumor cell emperipolesis or phagocytosis has been documented by light microscopy in various human carcinomas, but little is known about the cellular pathological processes and the morphological changes involved. In an attempt to clarify the nature of this phenomenon, the authors' ultrastructural studies on the relationships among neutrophils and tumor cells in human gastric carcinomas are reviewed and analyzed. At the electron microscopy level, apoptotic neutrophils were found within vacuoles of adenocarcinoma cells in 2 cases. They showed either early apoptotic morphology with perinuclear chromatin aggregation but cytoplasm integrity or late apoptotic morphology with uniform, collapsed nucleus and tightly packed cytoplasmic granules. A light microscopy review of 200 cases of resected gastric carcinomas identified 22 cases (11%) that were characterized by neutrophil-tumor cell phagocytosis (cannibalism). TUNEL staining confirmed the presence of apoptotic neutrophils within the cytoplasm of the tumor cells. This study provides light and electron microscopic evidence of apoptotic neutrophils phagocytosed by gastric adenocarcinoma cells. The morphological features of neutrophil-tumor cell phagocytosis (cannibalism) would suggest a particular mechanism of tumor-immune escape in human gastric carcinoma. PMID:12396242

  10. Using HeLa cell stress response to introduce first year students to the scientific method, laboratory techniques, primary literature, and scientific writing.

    PubMed

    Resendes, Karen K

    2015-01-01

    Incorporating scientific literacy into inquiry driven research is one of the most effective mechanisms for developing an undergraduate student's strength in writing. Additionally, discovery-based laboratories help develop students who approach science as critical thinkers. Thus, a three-week laboratory module for an introductory cell and molecular biology course that couples inquiry-based experimental design with extensive scientific writing was designed at Westminster College to expose first year students to these concepts early in their undergraduate career. In the module students used scientific literature to design and then implement an experiment on the effect of cellular stress on protein expression in HeLa cells. In parallel the students developed a research paper in the style of the undergraduate journal BIOS to report their results. HeLa cells were used to integrate the research experience with the Westminster College "Next Chapter" first year program, in which the students explored the historical relevance of HeLa cells from a sociological perspective through reading The Immortal Life of Henrietta Lacks by Rebecca Skloot. In this report I detail the design, delivery, student learning outcomes, and assessment of this module, and while this exercise was designed for an introductory course at a small primarily undergraduate institution, suggestions for modifications at larger universities or for upper division courses are included. Finally, based on student outcomes suggestions are provided for improving the module to enhance the link between teaching students skills in experimental design and execution with developing student skills in information literacy and writing. PMID:25726932

  11. Global quantitative proteomics reveal up-regulation of endoplasmic reticulum stress response proteins upon depletion of eIF5A in HeLa cells

    PubMed Central

    Mandal, Ajeet; Mandal, Swati; Park, Myung Hee

    2016-01-01

    The eukaryotic translation factor, eIF5A, is a translation factor essential for protein synthesis, cell growth and animal development. By use of a adenoviral eIF5A shRNA, we have achieved an effective depletion of eIF5A in HeLa cells and undertook in vivo comprehensive proteomic analyses to examine the effects of eIF5A depletion on the total proteome and to identify cellular pathways influenced by eIF5A. The proteome of HeLa cells transduced with eIF5A shRNA was compared with that of scramble shRNA-transduced counterpart by the iTRAQ method. We identified 972 proteins consistently detected in three iTRAQ experiments and 104 proteins with significantly altered levels (protein ratio ≥1.5 or ≤0.66, p-value ≤0.05) at 72 h and/or 96 h of Ad-eIF5A-shRNA transduction. The altered expression levels of key pathway proteins were validated by western blotting. Integration of functional ontology with expression data of the 104 proteins revealed specific biological processes that are prominently up- or down-regulated. Heatmap analysis and Cytoscape visualization of biological networks identified protein folding as the major cellular process affected by depletion of eIF5A. Our unbiased, quantitative, proteomic data demonstrate that the depletion of eIF5A leads to endoplasmic reticulum stress, an unfolded protein response and up-regulation of chaperone expression in HeLa cells. PMID:27180817

  12. Global quantitative proteomics reveal up-regulation of endoplasmic reticulum stress response proteins upon depletion of eIF5A in HeLa cells.

    PubMed

    Mandal, Ajeet; Mandal, Swati; Park, Myung Hee

    2016-01-01

    The eukaryotic translation factor, eIF5A, is a translation factor essential for protein synthesis, cell growth and animal development. By use of a adenoviral eIF5A shRNA, we have achieved an effective depletion of eIF5A in HeLa cells and undertook in vivo comprehensive proteomic analyses to examine the effects of eIF5A depletion on the total proteome and to identify cellular pathways influenced by eIF5A. The proteome of HeLa cells transduced with eIF5A shRNA was compared with that of scramble shRNA-transduced counterpart by the iTRAQ method. We identified 972 proteins consistently detected in three iTRAQ experiments and 104 proteins with significantly altered levels (protein ratio ≥1.5 or ≤0.66, p-value ≤0.05) at 72 h and/or 96 h of Ad-eIF5A-shRNA transduction. The altered expression levels of key pathway proteins were validated by western blotting. Integration of functional ontology with expression data of the 104 proteins revealed specific biological processes that are prominently up- or down-regulated. Heatmap analysis and Cytoscape visualization of biological networks identified protein folding as the major cellular process affected by depletion of eIF5A. Our unbiased, quantitative, proteomic data demonstrate that the depletion of eIF5A leads to endoplasmic reticulum stress, an unfolded protein response and up-regulation of chaperone expression in HeLa cells. PMID:27180817

  13. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood

    PubMed Central

    Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Glazyrin, Yury E; Krat, Alexey V; Zubkova, Olga; Spivak, Ekaterina; Wehbe, Mohammed; Gargaun, Ana; Muharemagic, Darija; Komarova, Mariia; Grigorieva, Valentina; Savchenko, Andrey; Modestov, Andrey A; Berezovski, Maxim V; Zamay, Anna S

    2015-01-01

    Circulating tumor cells (CTCs) are rare cells and valuable clinical markers of prognosis of metastasis formation and prediction of patient survival. Most CTC analyses are based on the antibody-based detection of a few epithelial markers; therefore miss an important portion of mesenchymal cancer cells circulating in blood. In this work, we selected and identified DNA aptamers as specific affinity probes that bind to lung adenocarcinoma cells derived from postoperative tissues. The unique feature of our selection strategy is that aptamers are produced for lung cancer cell biomarkers in their native state and conformation without previous knowledge of the biomarkers. The aptamers did not bind to normal lung cells and lymphocytes, and had very low affinity to A549 lung adenocarcinoma culture. We applied these aptamers to detect CTCs, apoptotic bodies, and microemboli in clinical samples of peripheral blood of lung cancer and metastatic lung cancer patients. We identified aptamer-associated protein biomarkers for lung cancer such as vimentin, annexin A2, annexin A5, histone 2B, neutrophil defensin, and clusterin. Tumor-specific aptamers can be produced for individual patients and synthesized many times during anticancer therapy, thereby opening up the possibility of personalized diagnostics. PMID:26061649

  14. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood.

    PubMed

    Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Glazyrin, Yury E; Krat, Alexey V; Zubkova, Olga; Spivak, Ekaterina; Wehbe, Mohammed; Gargaun, Ana; Muharemagic, Darija; Komarova, Mariia; Grigorieva, Valentina; Savchenko, Andrey; Modestov, Andrey A; Berezovski, Maxim V; Zamay, Anna S

    2015-09-01

    Circulating tumor cells (CTCs) are rare cells and valuable clinical markers of prognosis of metastasis formation and prediction of patient survival. Most CTC analyses are based on the antibody-based detection of a few epithelial markers; therefore miss an important portion of mesenchymal cancer cells circulating in blood. In this work, we selected and identified DNA aptamers as specific affinity probes that bind to lung adenocarcinoma cells derived from postoperative tissues. The unique feature of our selection strategy is that aptamers are produced for lung cancer cell biomarkers in their native state and conformation without previous knowledge of the biomarkers. The aptamers did not bind to normal lung cells and lymphocytes, and had very low affinity to A549 lung adenocarcinoma culture. We applied these aptamers to detect CTCs, apoptotic bodies, and microemboli in clinical samples of peripheral blood of lung cancer and metastatic lung cancer patients. We identified aptamer-associated protein biomarkers for lung cancer such as vimentin, annexin A2, annexin A5, histone 2B, neutrophil defensin, and clusterin. Tumor-specific aptamers can be produced for individual patients and synthesized many times during anticancer therapy, thereby opening up the possibility of personalized diagnostics. PMID:26061649

  15. Histogenesis of hollow cell ball structure of ovarian and endometrial adenocarcinoma cells in vivo and in vitro.

    PubMed

    Ishiwata, I; Kiguchi, K; Ishiwata, C; Soma, M; Nakaguchi, T; Ono, I; Tachibana, T; Hashimoto, H; Ishikawa, H; Nozawa, S

    1997-09-01

    Hollow cell ball structure is often found in the ascites of adenocarcinoma patients. How to form a hollow cell ball structure was studied in vivo and in vitro, using the human cell lines derived from ovarian and endometrial adenocarcinomas. The hollow cell ball structure was formed by horizontal rotation culture of 1 x 10(7) single-suspended cells for 24 hours or by transplanting 1 x 10(6) single-suspended cells into the peritoneal cavity of nude mouse for 24 hours. At one month after transplantation hemi-cyst and hollow cell ball structure were formed in the outermost layer of the grafted tumor on the intraperitoneal serous membrane in the nude mouse. And also great number of floating hollow cell ball structure in the ascites were observed. These results suggest that mechanisms of formation of hollow cell ball structure found in the ascites; one by cell aggregate of single cells, sometimes inner cells of cell aggregate fall into necrosis or secretes mucus inside and make a hollow cell ball structure and another by the removed as the hollow cell ball structure grown from hemi-cyst on the surface of intraperitoneal grafted tumor. PMID:9436041

  16. Bax is not involved in the resveratrol-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-wei; Wang, Zhi-ping; Chen, Tong-sheng

    2010-02-01

    Resveratrol (RV) is a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts. Previous studies indicate that RV has an ability to inhibit various stages of carcinogenesis and eliminate preneoplastic cells in vitro and in vivo. However, little is known about the molecular mechanism of RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cell. In this report, we analyzed whether Bax translocation from cytoplasm to mitochondria during RV-induced apoptosis in single living cell using onfocal microscopey. Cells were transfected with GFP-Bax plasmid. Cell counting kit (CCK-8) assay was used to assess the inhibition of RV on the cells viability. Apoptotic activity of RV was detected by Hoechst 33258 and propidium iodide (PI) staining. Our results showed that RV induced a dose-dependent apoptosis in which Bax did not translocate to mitochondrias.

  17. Induction of apoptotic effects of antiproliferative protein from the seeds of Borreria hispida on lung cancer (A549) and cervical cancer (HeLa) cell lines.

    PubMed

    Rupachandra, S; Sarada, D V L

    2014-01-01

    A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3) on an analytical C-18 column produced a single peak, detected at 220 nm. F3 showed an apparent molecular weight of 35 KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3) exhibited significant cytotoxic activity against lung (A549) and cervical (HeLa) cancer cells in a dose-dependent manner at concentrations ranging from 10 µg to 1000 µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000 µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549) and cervical (HeLa) cancer cells. PMID:24605320

  18. Induction of Apoptotic Effects of Antiproliferative Protein from the Seeds of Borreria hispida on Lung Cancer (A549) and Cervical Cancer (HeLa) Cell Lines

    PubMed Central

    Rupachandra, S.; Sarada, D. V. L.

    2014-01-01

    A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3) on an analytical C-18 column produced a single peak, detected at 220 nm. F3 showed an apparent molecular weight of 35 KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3) exhibited significant cytotoxic activity against lung (A549) and cervical (HeLa) cancer cells in a dose-dependent manner at concentrations ranging from 10 µg to 1000 µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000 µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549) and cervical (HeLa) cancer cells. PMID:24605320

  19. Structural and physicochemical aspects of silica encapsulated ZnO quantum dots with high quantum yield and their natural uptake in HeLa cells.

    PubMed

    Depan, D; Misra, R D K

    2014-09-01

    Photoluminescent semiconductor quantum dots (QDs) are of significant interest for bioimaging and fluorescence labeling. In this regard, we describe here the design of high sensitivity and high specificity non-toxic ZnO QDs (∼5 nm) with long-term stability of up to 12 months. The embedding of ZnO QDs on silica nanospheres led to significant increase in photoluminescence intensity rendering them highly bright QD-based probes. The QDs were characterized in vitro with respect to cancer cells (HeLa) and evaluated in terms of viability, fluorescence and cytoskeletal organization. The immobilization of ZnO QDs on silica nanospheres promoted the internalization and enhanced fluorescence emission of HeLa cells. The fluorescence emission from QDs was stable for 3 days, indicating excellent stability toward photobleaching. Cytoskeletal reorganization was observed after internalization of QDs such that the ZnO QDS on silica nanospheres resulted in broadening of the actin cytoskeleton. The study underscores that ZnO QDs immobilized on Si nanospheres are promising for tracking cancer cells in cell therapy. PMID:24115677

  20. A Novel Photosensitizer 3¹,13¹-phenylhydrazine -Mppa (BPHM) and Its in Vitro Photodynamic Therapy against HeLa Cells.

    PubMed

    Li, Wenting; Tan, Guanghui; Cheng, Jianjun; Zhao, Lishuang; Wang, Zhiqiang; Jin, Yingxue

    2016-01-01

    Photodynamic therapy (PDT) has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa) has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-3¹,13¹ bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM) was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa), and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT) against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT) assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm²). Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role. PMID:27136527

  1. Quantitative Proteomics Analysis Reveals Novel Insights into Mechanisms of Action of Long Noncoding RNA Hox Transcript Antisense Intergenic RNA (HOTAIR) in HeLa Cells*

    PubMed Central

    Zheng, Peng; Xiong, Qian; Wu, Ying; Chen, Ying; Chen, Zhuo; Fleming, Joy; Gao, Ding; Bi, Lijun; Ge, Feng

    2015-01-01

    Long noncoding RNAs (lncRNAs), which have emerged in recent years as a new and crucial layer of gene regulators, regulate various biological processes such as carcinogenesis and metastasis. HOTAIR (Hox transcript antisense intergenic RNA), a lncRNA overexpressed in most human cancers, has been shown to be an oncogenic lncRNA. Here, we explored the role of HOTAIR in HeLa cells and searched for proteins regulated by HOTAIR. To understand the mechanism of action of HOTAIR from a systems perspective, we employed a quantitative proteomic strategy to systematically identify potential targets of HOTAIR. The expression of 170 proteins was significantly dys-regulated after inhibition of HOTAIR, implying that they could be potential targets of HOTAIR. Analysis of this data at the systems level revealed major changes in proteins involved in diverse cellular components, including the cytoskeleton and the respiratory chain. Further functional studies on vimentin (VIM), a key protein involved in the cytoskeleton, revealed that HOTAIR exerts its effects on migration and invasion of HeLa cells, at least in part, through the regulation of VIM expression. Inhibition of HOTAIR leads to mitochondrial dysfunction and ultrastructural alterations, suggesting a novel role of HOTAIR in maintaining mitochondrial function in cancer cells. Our results provide novel insights into the mechanisms underlying the function of HOTAIR in cancer cells. We expect that the methods used in this study will become an integral part of functional studies of lncRNAs. PMID:25762744

  2. Effect of TRAF6 on the biological behavior of human lung adenocarcinoma cell.

    PubMed

    Zhong, Lou; Cao, Fei; You, Qingsheng

    2013-02-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a unique adaptor protein of the tumor necrosis factor receptor-associated factor family that mediates both tumor necrosis factor receptor and interleukin-1 receptor/Toll-like receptor signaling. A recent study showed that TRAF6 played an important role in tumorigenesis and invasion through activation of nuclear factor kappa B (NF-κB). However, the biological role of TRAF6 remains unknown in lung cancer up to now. To address the expression of TRAF6 in lung cancer cells, four lung cancer cell lines (A549, HCC827, NCI-H292, and 95-D) and human bronchial epithelial cells were used to detect the expression of TRAF6 protein by western blotting. Results indicated that TRAF6 displayed an upregulation in human lung cancer cell lines. To investigate the effects of TRAF6 on the biological behavior of human lung adenocarcinoma cell, we generated human lung adenocarcinoma A549 cell line in which TRAF6 was depleted. The results showed that downregulation of TRAF6 could decrease cell viability, suppress cell proliferation and invasion, and promote cell apoptosis. At the same time, we explored the effects of TRAF6 on the expression of the following proteins: phosphor-NF-κB (p-p65), cyclin D1, caspase-3, and matrix metalloproteinase 9 (MMP9). Downregulation of TRAF6 could decrease the expression of p-p65, cyclin D1, and MMP9 and increase the expression of caspase-3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, and invasion of A549 cell line, as well as the inhibition of A549 cell apoptosis by the activation of NF-κB. To make a long story short, the overexpression of TRAF6 might be related to the tumorigenesis and invasion of lung cancer. PMID:23055197

  3. Investigation of siRNA Nanoparticle Formation Using Mono-Cationic Detergents and Its Use in Gene Silencing in Human HeLa Cells

    PubMed Central

    Yamada, Yuma; Suzuki, Ryosuke; Harashima, Hideyoshi

    2013-01-01

    The focus of recent research has been on the development of siRNA vectors to achieve an innovative gene therapy. Most of the conventional vectors are siRNA nanoparticles complexed with cationic polymers and liposomes, making it difficult to release siRNA. In this study, we report on the use of MCD, a quaternary ammonium salt detergent containing a long aliphatic chain (L-chain) as an siRNA complexation agent using human HeLa cells (a model cancer cell). We prepared siRNA nanoparticles using various MCDs, and measured the diameters and zeta-potentials of the particles. The use of an MCD with a long L-chain resulted in the formation of a positively charged nanoparticle. In contrast, a negatively charged nanoparticle was formed when a MCD with a short L-chain was used. We next evaluated the gene silencing efficiency of the nanoparticles using HeLa cells expressing the luciferase protein. The results showed that the siRNA/MCD nanoparticles showed a higher gene silencing efficiency than Lipofectamine 2000. We also found that the efficiency of gene silencing is a function of the length of the alkyl chain in MCD and zeta-potential of the siRNA/MCD nanoparticles. Such information provides another viewpoint for designing siRNA vectors. PMID:24202451

  4. Green synthesis of Se/Ru alloy nanoparticles using gallic acid and evaluation of theiranti-invasive effects in HeLa cells.

    PubMed

    Zhou, Yanhui; Xu, Meng; Liu, Yanan; Bai, Yan; Deng, Yuqian; Liu, Jie; Chen, Lanmei

    2016-08-01

    Methods for the synthesis of nanoparticles (NPs) for biomedical applications ideally involve the use of nontoxic reducing and capping agents, and more importantly, enable control over the shape and size of the particles. As such, we used gallic acid (GA) as both a reducing and a capping agent in a simple and "green" synthesis of stable Se/Rualloy NPs (GA-Se/RuNPs). The diameter and morphology of the Se/Ru alloy NPs were regulated by GA concentration, and the presence of Ru was found to be a key factor in regulating and controlling the size of GA-Se/RuNPs. Moreover, GA-Se/RuNPs suppressed HeLa cell proliferation through the induction of apoptosis at concentrations that were nontoxic in normal cells. Furthermore, GA-Se/RuNPs effectively inhibited migration and invasion in HeLa cells via the inhibition of MMP-2 and MMP-9 proteins. Our findings confirm that bimetallic (Se/Ru) NPs prepared via GA-mediated synthesis exhibit enhanced anticancer effects. PMID:27085043

  5. The cytotoxic effects of titanium oxide and zinc oxide nanoparticles oh Human Cervical Adenocarcinoma cell membranes

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana; Applebaum, Ariella; Applebaum, Eliana; Guterman, Shoshana; Applebaum, Kayla; Grossman, Daniel; Gordon, Chris; Brink, Peter; Wang, H. Z.; Rafailovich, Miriam

    2013-03-01

    The importance of titanium dioxide (TiO2) and zinc oxide (ZnO), inorganic metal oxides nanoparticles (NPs) stems from their ubiquitous applications in personal care products, solar cells and food whitening agents. Hence, these NPs come in direct contact with the skin, digestive tracts and are absorbed into human tissues. Currently, TiO2 and ZnO are considered safe commercial ingredients by the material safety data sheets with no reported evidence of carcinogenicity or ecotoxicity, and do not classify either NP as a toxic substance. This study examined the direct effects of TiO2 and ZnO on HeLa cells, a human cervical adenocarcinonma cell line, and their membrane mechanics. The whole cell patch-clamp technique was used in addition to immunohistochemistry staining, TEM and atomic force microscopy (AFM). Additionally, we examined the effects of dexamethasone (DXM), a glucocorticoid steroid known to have an effect on cell membrane mechanics. Overall, TiO2 and ZnO seemed to have an adverse effect on cell membrane mechanics by effecting cell proliferation, altering cellular structure, decreasing cell-cell adhesion, activating existing ion channels, increasing membrane permeability, and possibly disrupting cell signaling.

  6. A Case of von Hippel–Lindau Disease with Colorectal Adenocarcinoma, Renal Cell Carcinoma and Hemangioblastomas

    PubMed Central

    Heo, Su Jin; Lee, Choong-kun; Hahn, Kyu Yeon; Kim, Gyuri; Hur, Hyuk; Choi, Sung Hoon; Han, Kyung Seok; Cho, Arthur; Jung, Minkyu

    2016-01-01

    von Hippel–Lindau (VHL) disease is an autosomal dominant inherited tumor syndrome associated with mutations of the VHL tumor suppressor gene located on chromosome 3p25. The loss of functional VHL protein contributes to tumorigenesis. This condition is characterized by development of benign and malignant tumors in the central nervous system (CNS) and the internal organs, including kidney, adrenal gland, and pancreas. We herein describe the case of a 74-year-old man carrying the VHL gene mutation who was affected by simultaneous colorectal adenocarcinoma, renal clear cell carcinoma, and hemangioblastomas of CNS. PMID:25715769

  7. Chromosomal and Genetic Analysis of a Human Lung Adenocarcinoma Cell Line OM

    PubMed Central

    Li, Yong-Wu; Bai, Lin; Dai, Lyu-Xia; He, Xu; Zhou, Xian-Ping

    2016-01-01

    Background: Lung cancer has become the leading cause of death in many regions. Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes. The aim of this study was to investigate the chromosome and gene alterations in the human lung adenocarcinoma cell line OM. Methods: We used Giemsa banding and multiplex fluorescence in situ hybridization focusing on the human lung adenocarcinoma cell line OM to analyze its chromosome alterations. In addition, the gains and losses in the specific chromosome regions were identified by comparative genomic hybridization (CGH) and the amplifications of cancer-related genes were also detected by polymerase chain reaction (PCR). Results: We identified a large number of chromosomal numerical alterations on all chromosomes except chromosome X and 19. Chromosome 10 is the most frequently involved in translocations with six different interchromosomal translocations. CGH revealed the gains on chromosome regions of 3q25.3-28, 5p13, 12q22-23.24, and the losses on 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33 and 17p13.1-13.3. And PCR showed the amplification of genes: Membrane metalloendopeptidase (MME), sucrase-isomaltase (SI), butyrylcholinesterase (BCHE), and kininogen (KNG). Conclusions: The lung adenocarcinoma cell line OM exhibited multiple complex karyotypes, and chromosome 10 was frequently involved in chromosomal translocation, which may play key roles in tumorigenesis. We speculated that the oncogenes may be located at 3q25.3-28, 5p13, 12q22-23.24, while tumor suppressor genes may exist in 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33, and 17p13.1-13.3. Moreover, at least four genes (MME, SI, BCHE, and KNG) may be involved in the human lung adenocarcinoma cell line OM. PMID:26879013

  8. Radiological Findings of Malignant Tumors of External Auditory Canal: A Cross-Sectional Study Between Squamous Cell Carcinoma and Adenocarcinoma.

    PubMed

    Xia, Shuang; Yan, Shuo; Zhang, Mengjie; Cheng, Yan; Noel, Jacinth; Chong, Vincent; Shen, Wen

    2015-09-01

    The primary malignant tumors of external auditory canal (EAC) are rare. The purpose of this study is to compare the imaging features of growth and recurrence pattern between 2 most common carcinomas namely squamous cell carcinoma (SCC) and adenocarcinoma of the EAC.This is a retrospective study involving 41 patients with primary EAC carcinomas of which 22 are SCC and 19 are adenocarcinoma. They were all scanned with high resolution computer tomography (HRCT) and magnetic resonance imaging. Follow-up clinical and imaging studies have also been collected and compared with a median follow-up time of 43 months (range 5-192 months). Necrosis was presented as hypodensity on computed tomography images, hyper-intense on T2WI and heterogeneous enhancement.Eighteen patients were diagnosed to be in T1 and T2 stage, it was found that SCC involved both the cartilaginous part and the bony part of the EAC (11/12), whereas adenocarcinoma involved only the cartilaginous part (6/6) (P < 0.01). Twenty-three patients were diagnosed to be in T3 and T4 stage showed bony involvement and adjacent tissue involvement for both SCC and adenocarcinoma. Parapharyngeal space involvement is much more common in recurrent SCC (P = 0.02). Lymph node metastasis was seen in 6 out of 22 patients with SCC, while 5 out of 19 patients of adenocarcinoma had lung metastasis, even at early stage (1/6; 1/5). Necrosis is more likely to occur in the patients with SCC (9/10) than that of adenocarcinoma (3/13) (P = 0.02).SCC and adenocarcinoma is seen to have different growth pattern at early stage but share similar patterns in the advanced stage. Lymph node metastasis is commonly seen in patients with SCC while adenocarcinoma shows lung metastasis even at early stage. PMID:26334907

  9. The acquired radioresistance in HeLa cells under conditions mimicking hypoxia was attenuated by a decreased expression of HIF subunit genes induced by RNA interference

    SciTech Connect

    Doi, Nobutaka; Ogawa, Ryohei; Cui, Zheng-Guo; Morii, Akihiro; Watanabe, Akihiko; Kanayama, Shinji; Yoneda, Yuko; Kondo, Takashi

    2015-05-01

    The cancer cells residing in the hypoxic layer are resistant to radiation and these are ones responsible for cancer recurrence after radiation therapy. One of the reasons why hypoxic cancer cells acquire radioresistance may be attributable to changes in the gene expression profile by the activation of hypoxia inducible factors (HIFs). However, the details underlying this process remain unknown. In this study, we investigated the effects of knockdown of HIF subunit genes to elucidate how HIF subunit genes may be involved in the radioresistance acquired by HeLa cells following exposure to a hypoxia mimic. Interestingly, HIF-1α and HIF-2α seemed mutually complementary for each other when either of them was suppressed. We thus suppressed the expression of both genes simultaneously. To do this, we developed a short hairpin RNA (shRNA) targeting a high homology region between HIF-1α and HIF-2α. It was shown that the expression of the shRNA effectively suppressed the acquisition of radioresistance following the hypoxia mimic. Moreover, it was confirmed that suppression of both subunits resulted in the downregulation of stem cell markers and the suppression of spheroid formation during the hypoxia mimicking-conditions. This shRNA-mediated knockdown method targeting a common region shared by a family of genes may offer a new candidate cancer treatment. - Highlights: • Incubation with CoCl{sub 2} confers radioresistance to HeLa cells. • Both HIF-1α and HIF-2α are involved in the acquisition of radioresistance. • An shRNA to a homology region of HIF-1α and HIF-2α suppressed the radioresistance. • The shRNA decreased cells with stem cell markers and a stem cell phenotype.

  10. Programmed cell death 4 (Pdcd4) expression in colorectal adenocarcinoma: Association with clinical stage

    PubMed Central

    LIM, SUNG-CHUL; HONG, RAN

    2011-01-01

    The aim of this study was to examine the role of Programmed cell death 4 (Pdcd4) in colorectal adenocarcinoma (CRA). Pdcd4 expression was observed in both the nucleus and cytoplasm in colorectal adenocarcinoma, whereas Pdcd4 was expressed in the nucleus in normal colonic epithelial cells. Loss or weak expression of Pdcd4 was identified in 44 cases (40.7%) of cancer cells. Pdcd4 expression was associated with an increase in the nodal and clinical stage (p=0.022 and p=0.016, respectively). Nuclear staining was identified in 66 cases (61.15%), with no correlation with clinicopathological factors. Conversely, cytoplasmic staining for Pdcd4 was observed in 45 cases (41.7%), and increased according to nodal and clinical stage (p=0.011 and p=0.009, respectively), indicating that aberrant Pdcd4 expression leads to tumor progression. However, Pdcd4 expression was not correlated to disease-free survival time. This study demonstrated that during the tumorigenesis of CRA, loss of nuclear Pdcd4 expression occurs, and during tumor progression, aberrant cytoplasmic expression is present, suggesting a higher clinical stage. Although loss of Pdcd4 was not significantly correlated with survival time, as the prognosis of colorectal cancer varies depending on clinical stage including invasion depth, nodal status and metastatic status, cytoplasmic Pdcd4 expression may be a favorable prognostic marker in CRA. PMID:23049623

  11. [Identification of the protein partners of the human nucleolar protein SURF6 in HeLa cells by GST pull-down assay].

    PubMed

    Kordiukova, M Iu; Polzikov, M A; Shishova, K V; Zatsepina, O V

    2014-01-01

    The eukaryotic proteins comprising the SURF6 protein family are evolutionary conservative and housekeeping proteins however, functional roles of human SURF6 have not been studied so far. To shed light to this question in the present work we applied GST pull-down assay and used two proteins fused with GST, namely human GST-SURF6 and the conservative C-terminal domain of mouse Surf6 that has 85% homology with the C-terminus of the human SURF6 conservative domain (GST-Surf6-dom), to identify SURF6-interacting proteins in human HeLa cells. The results obtained showed that GST-SURF6 interacts with several key nucleolar RNA processing factors (B23/nucleophosmin, nucleolin, EBP2), and also with the specific cofactor of RNA polymerase I, protein UBE These results are the first experimental evidences in favor of participation of the human SURF6 protein in ribosome biogenesis, including transcription of rDNA and processing of rRNAs. The same results were obtained, when GST-Surf6-dom was used to pull-down proteins in HeLa cells. In addition, the panel of the GST-Surf6-dom protein partners, which were identified by mass-spectrometry, points to putative interactions of human SURF6 with a number of nuclear and nucleolar, proteins of other functional groups, i.e. to the protein plurifunctionality. PMID:25898752

  12. Biocompatible ZnS:Mn(2+) quantum dots/SiO2 nanocomposites as fluorescent probe for imaging HeLa cell.

    PubMed

    Cao, Jian; Niu, Haifeng; Han, Donglai; Yang, Shuo; Liu, Qianyu; Wang, Tingting; Yang, Jinghai

    2015-09-01

    ZnS:Mn(2+) quantum dots (QDs) were successfully embedded in SiO2 spheres by a reverse microemulsion method. The results showed that the monodispersed core/shell nanocomposites were uniform in size, with the majority of the SiO2 nanoparticles containing one QD in the center of the sphere. The shell thickness of SiO2 increased from 7 to 18 nm as the hydrolysis time of TEOS increased from 20 to 40 h. The quantum yield (QY) of the yellow-orange emission (coming from the Mn(2+) ions (4)T1-(6)A1 transition) for the ZnS:Mn(2+)(3 %) QDs and ZnS:Mn(2+)(3 %) QDs@SiO2 (when t = 40 h) nanocomposites was measured to be 34.5 and 22.4 %, respectively. All samples showed no significant cytotoxicity against the HeLa cells even at a high concentration of 500 μg/ml after incubation for 24 h. The red fluorescence can be observed in the cytoplasm of the HeLa cell, further proving its biolabeling applications. PMID:26395361

  13. Identification of differentially expressed genes between lung adenocarcinoma and lung squamous cell carcinoma by gene expression profiling.

    PubMed

    Lu, Chaojing; Chen, Hezhong; Shan, Zhengxiang; Yang, Lixin

    2016-08-01

    The present study aimed to identify the differentially expressed genes (DEGs) between lung adenocarcinoma and normal lung tissues, and between lung squamous cell carcinoma and normal lung tissues, with the purpose of identifying potential biomarkers for the treatment of lung cancer. The gene expression profile (GSE6044) was downloaded from the Gene Expression Omnibus database, which included data from 10 lung adenocarcinoma samples, 10 lung squamous cell carcinoma samples, and five matched normal lung tissue samples. After data processing, DEGs were identified using the Student's t‑test adjusted via the Benjamini‑Hochberg method. Subsequently, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery, and a global network was constructed. A total of 95 upregulated and 241 downregulated DEGs were detected in lung adenocarcinoma samples, and 204 upregulated and 285 downregulated DEGs were detected in lung squamous cell carcinoma samples, as compared with the normal lung tissue samples. The DEGs in the lung squamous cell carcinoma group were enriched in the following three pathways: Hsa04110, Cell cycle; hsa03030, DNA replication; and hsa03430, mismatch repair. However, the DEGs in the lung adenocarcinoma group were not significantly enriched in any specific pathway. Subsequently, a global network of lung cancer was constructed, which consisted of 341 genes and 1,569 edges, of which the top five genes were HSP90AA1, BCL2, CDK2, KIT and HDAC2. The expression trends of the above genes were different in lung adenocarcinoma and lung squamous cell carcinoma when compared with normal tissues. Therefore, these genes were suggested to be crucial genes for differentiating lung adenocarcinoma and lung squamous cell carcinoma. PMID:27356570

  14. Identification of differentially expressed genes between lung adenocarcinoma and lung squamous cell carcinoma by gene expression profiling

    PubMed Central

    Lu, Chaojing; Chen, Hezhong; Shan, Zhengxiang; Yang, Lixin

    2016-01-01

    The present study aimed to identify the differentially expressed genes (DEGs) between lung adenocarcinoma and normal lung tissues, and between lung squamous cell carcinoma and normal lung tissues, with the purpose of identifying potential biomarkers for the treatment of lung cancer. The gene expression profile (GSE6044) was downloaded from the Gene Expression Omnibus database, which included data from 10 lung adenocarcinoma samples, 10 lung squamous cell carcinoma samples, and five matched normal lung tissue samples. After data processing, DEGs were identified using the Student's t-test adjusted via the Benjamini-Hochberg method. Subsequently, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery, and a global network was constructed. A total of 95 upregulated and 241 downregulated DEGs were detected in lung adenocarcinoma samples, and 204 upregulated and 285 downregulated DEGs were detected in lung squamous cell carcinoma samples, as compared with the normal lung tissue samples. The DEGs in the lung squamous cell carcinoma group were enriched in the following three pathways: Hsa04110, Cell cycle; hsa03030, DNA replication; and hsa03430, mismatch repair. However, the DEGs in the lung adenocarcinoma group were not significantly enriched in any specific pathway. Subsequently, a global network of lung cancer was constructed, which consisted of 341 genes and 1,569 edges, of which the top five genes were HSP90AA1, BCL2, CDK2, KIT and HDAC2. The expression trends of the above genes were different in lung adenocarcinoma and lung squamous cell carcinoma when compared with normal tissues. Therefore, these genes were suggested to be crucial genes for differentiating lung adenocarcinoma and lung squamous cell carcinoma. PMID:27356570

  15. DNA Damage in CD133-Positive Cells in Barrett's Esophagus and Esophageal Adenocarcinoma

    PubMed Central

    Thanan, Raynoo; Ma, Ning; Hiraku, Yusuke; Iijima, Katsunori; Koike, Tomoyuki; Shimosegawa, Tooru

    2016-01-01

    Barrett's esophagus (BE) caused by gastroesophageal reflux is a major risk factor of Barrett's esophageal adenocarcinoma (BEA), an inflammation-related cancer. Chronic inflammation and following tissue damage may activate progenitor cells under reactive oxygen/nitrogen species-rich environment. We previously reported the formation of oxidative/nitrative stress-mediated mutagenic DNA lesions, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-nitroguanine, in columnar epithelial cells of BE tissues and cancer cells of BEA tissues. We investigated the mechanisms of BEA development in relation to oxidative/nitrative DNA damage and stem cell hypothesis. We examined 8-nitroguanine and 8-oxodG formation and the expression of stem cell marker (CD133) in biopsy specimens of patients with BE and BEA by immunohistochemical analysis in comparison with those of normal subjects. CD133 was detected at apical surface of columnar epithelial cells of BE and BEA tissues, and the cytoplasm and cell membrane of cancer cells in BEA tissues. DNA lesions and CD133 were colocalized in columnar epithelial cells and cancer cells. Their relative staining intensities in these tissues were significantly higher than those in normal subjects. Our results suggest that BE columnar epithelial cells with CD133 expression in apical surface undergo inflammation-mediated DNA damage, and mutated cells acquire the property of cancer stem cells with cytoplasmic CD133 expression. PMID:27069317

  16. Action of caffeine on x-irradiated HeLa cells. IV. Progression delays and enhanced cell killing at high caffeine concentrations

    SciTech Connect

    Tolmach, L.J.; Busse, P.M.

    1980-05-01

    The response of x-irradiated and unirradiated HeLa S3 cells to treatment with caffeine at concentrations between 1 and 10 nM has been examined with respect to both delay in progression through the cell generation cycle and enhancement of the expression of potentially lethal x-ray damage. Progression is delayed in a concentration-dependent fashion: the generation time is doubled at about 4 mM. The duration of G/sub 1/ is lengthened, and the rate of DNA synthesis is reduced, although the kinetics are different in the two phases; the rate of DNA synthesis is usually unaffected at 1 or 2 mM, while there is no concentration threshold for the slowing of progression through G/sub 1/. Progression through G/sub 2/ appears to be unaffected by concentrations up to at least 10 mM. Killing of irradiated cells in G/sub 2/ is somewhat greater after treatment with the higher caffeine concentrations than reported previously for 1 mM. Moreover, an additional mode of killing is observed in irradiated G/sub 1/ cells which had been found previously to be only slightly affected by 1 mM caffeine; they suffer extensive killing at concentrations above 5 mM. The time-survival curves for irradiated, caffeine-treated G/sub 1/ and G/sub 2/ cells have characteristically different shapes. The dose-survival curves for cells treated with the higher caffeine concentrations display steeper terminal slopes and narrower shoulders.

  17. Poly-lactic-glycolic-acid surface nanotopographies selectively decrease breast adenocarcinoma cell functions

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Webster, Thomas J.

    2012-04-01

    The ability of poly(lactic-co-glycolic acid) (PLGA, 50:50 PLG/PGA, wt%) nanotopographies to decrease lung epithelial carcinoma cell functions (including adhesion, proliferation, apoptosis and vascular endothelial growth factor (VEGF) secretion) has been previously reported. Specifically, results demonstrated decreased lung epithelial carcinoma cell VEGF synthesis on 23 nm surface-featured PLGA compared to traditional nanosmooth PLGA. However, clearly, different cell lines could have different behaviors on similar biomaterials. Thus, to investigate the universality of nanopatterned PLGA substrates to inhibit numerous cancer cell functions, here, breast epithelial adenocarcinoma cell (MCF-7) adhesion, proliferation, apoptosis and VEGF secretion were determined on different PLGA nanometer surface topographies. To isolate surface nanotopographical effects from all other surface properties, PLGA surfaces with various nanotopographies but similar chemistry and hydrophobicity were fabricated here. Atomic force microscopy (AFM) verified the varied nanotopographies on the PLGA surfaces prepared in this study. Importantly, results demonstrated for the first time significantly decreased breast adenocarcinoma cell functions (including decreased proliferation rate, increased apoptosis and decreased VEGF synthesis) on 23 nm featured PLGA surfaces compared to all other PLGA surface topographies fabricated (specifically, nanosmooth, 300 and 400 nm surface-featured PLGA surfaces). In contrast, healthy breast epithelial cells proliferated more (24%) on the 23 nm featured PLGA surfaces compared to all other PLGA samples. In summary, these results provided further insights into understanding the role PLGA surface nanotopographies can have on cancer cell functions and, more importantly, open the possibility of using polymer nanotopographies for a wide range of anticancer regenerative medicine applications (without resorting to the use of chemotherapeutics).

  18. A human natural antibody to adenocarcinoma that inhibits tumour cell migration.

    PubMed Central

    Koda, K.; Nakajima, N.; Saito, N.; Yasutomi, J.; McKnight, M. E.; Glassy, M. C.

    1998-01-01

    We characterized a natural human antibody to adenocarcinomas and investigated the biological role of this Ab/Ag complex in cancer expansion. Human monoclonal antibodies (HuMAbs) were generated with hybridoma fusion methods using regional nodal lymphocytes of colon carcinoma patients. Among 1036 HuMAbs, only one, termed SK1, an IgM, was adenocarcinoma specific in the immunohistochemical study. The antigen recognized by SK1 (Ag-SK1) was a glycoprotein with a molecular weight of 42-46 kDa. The expression of Ag-SK1 on carcinoma cells varied according to the cell growth periods but was independent of cell cycle state as elucidated by two-colour fluorescence-activated cell sorter (FACS) analysis. A dot-blot analysis showed that the concentration of Ag-SK1 per total protein differed considerably among eight colon carcinoma cells examined and that the difference was closely correlated with the invasion capacity of the cells as assessed by a microchemotaxis assay. Furthermore, up to 87% of cell migration was inhibited by SK1 in a dose-dependent manner. These data suggested that Ag-SK1 is metabolized and expressed on highly invasive carcinoma cells. In addition, it appears that, although rare, some patients do mount an anti-cancer antigen response in their draining lymph nodes. A HuMAb such as SK1 may be a good candidate for the treatment of cancer invasion and metastasis. Images Figure 1 Figure 3 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9823972

  19. Inhibition of the MRP1-mediated transport of the menadione-glutathione conjugate (thiodione) in HeLa cells as studied by SECM.

    PubMed

    Koley, Dipankar; Bard, Allen J

    2012-07-17

    Oxidative stress induced in live HeLa cells by menadione (2-methyl-1,4-napthaquinone) was studied in real time by scanning electrochemical microscopy (SECM). The hydrophobic molecule menadione diffuses through a living cell membrane where it is toxic to the cell. However, in the cell it is conjugated with glutathione to form thiodione. Thiodione is then recognized and transported across the cell membrane via the ATP-driven MRP1 pump. In the extracellular environment, thiodione was detected by the SECM tip at levels of 140, 70, and 35 µM upon exposure of the cells to menadione concentrations of 500, 250, and 125 µM, respectively. With the aid of finite element modeling, the kinetics of thiodione transport was determined to be 1.6 10(-7) m/s, about 10 times faster than menadione uptake. Selective inhibition of these MRP1 pumps inside live HeLa cells by MK571 produced a lower thiodione concentration of 50 µM in presence of 500 µM menadione and 50 µM MK571. A similar reduced (50% drop) thiodione efflux was observed in the presence of monoclonal antibody QCRL-4, a selective blocking agent of the MRP1 pumps. The reduced thiodione flux confirmed that thiodione was transported by MRP1, and that glutathione is an essential substrate for MRP1-mediated transport. This finding demonstrates the usefulness of SECM in quantitative studies of MRP1 inhibitors and suggests that monoclonal antibodies can be a useful tool in inhibiting the transport of these MDR pumps, and thereby aiding in overcoming multidrug resistance. PMID:22679290

  20. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa)

    SciTech Connect

    Jeyaraj, M.; Arun, R.; Sathishkumar, G.; MubarakAli, D.; Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Ganapathi, A.

    2014-04-01

    Highlights: • Gold nanoparticles (AuNPs) have been synthesized using Podophyllum hexandrum L. • AuNPs induces the oxidative stress to cell death in human cervical carcinoma cells. • It activates the caspase-cascade to cellular death. • It is actively blocks G2/M phase of cell cycle. - Abstract: Current prospect of nanobiotechnology involves in the greener synthesis of nanostructured materials particularly noble metal nanoparticles for various biomedical applications. In this study, biologically (Podophyllum hexandrum L.) synthesized crystalline gold nanoparticles (AuNPs) with the size range between 5 and 35 nm were screened for its anticancereous potential against human cervical carcinoma cells (HeLa). Stoichiometric proportion of the reaction mixture and conditions were optimized to attain stable nanoparticles with narrow size range. Different high throughput techniques like transmission electron microscope (TEM), X-ray diffraction (XRD) and UV–vis spectroscopy were adopted for the physio-chemical characterization of AuNPs. Additionally, Fourier transform infrared spectroscopy (FTIR) study revealed that the water soluble fractions present in the plant extract solely influences the reduction of AuNPs. Sublimely, synthesized AuNPs exhibits an effective in vitro anticancer activity against HeLa cells via induction of cell cycle arrest and DNA damage. Furthermore, it was evidenced that AuNPs treated cells are undergone apoptosis through the activation of caspase cascade which subsequently leads to mitochondrial dysfunction. Thereby, this study proves that biogenic colloidal AuNPs can be developed as a promising drug candidature for human cervical cancer therapy.

  1. Trypanosoma cruzi Infection Down-Modulates the Immunoproteasome Biosynthesis and the MHC Class I Cell Surface Expression in HeLa Cells

    PubMed Central

    Camargo, Ricardo; Faria, Liliam O.; Kloss, Alexander; Favali, Cecília B. F.; Kuckelkorn, Ulrike; Kloetzel, Peter-Michael; de Sá, Cezar Martins; Lima, Beatriz D.

    2014-01-01

    Generally, Trypanosoma cruzi infection in human is persistent and tends to chronicity, suggesting that the parasite evade the immune surveillance by down regulating the intracellular antigen processing routes. Within the MHC class I pathway, the majority of antigenic peptides are generated by the proteasome. However, upon IFN-γ stimulation, the catalytic constitutive subunits of the proteasome are replaced by the subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 to form the immunoproteasome. In this scenario, we analyzed whether the expression and activity of the constitutive and the immunoproteasome as well as the expression of other components of the MHC class I pathway are altered during the infection of HeLa cells with T. cruzi. By RT-PCR and two-dimensional gel electrophoresis analysis, we showed that the expression and composition of the constitutive proteasome is not affected by the parasite. In contrast, the biosynthesis of the β1i, β2i, β5i immunosubunits, PA28β, TAP1 and the MHC class I molecule as well as the proteasomal proteolytic activities were down-regulated in infected-IFN-γ-treated cell cultures. Taken together, our results provide evidence that the protozoan T. cruzi specifically modulates its infection through an unknown posttranscriptional mechanism that inhibits the expression of the MHC class I pathway components. PMID:24752321

  2. Data for comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells.

    PubMed

    Núñez de Villavicencio-Díaz, Teresa; Ramos Gómez, Yassel; Oliva Argüelles, Brizaida; Fernández Masso, Julio R; Rodríguez-Ulloa, Arielis; Cruz García, Yiliam; Guirola-Cruz, Osmany; Perez-Riverol, Yasset; Javier González, Luis; Tiscornia, Inés; Victoria, Sabina; Bollati-Fogolín, Mariela; Besada Pérez, Vladimir; Guerra Vallespi, Maribel

    2015-09-01

    CIGB-552 is a second generation antitumor peptide that displays potent cytotoxicity in lung and colon cancer cells. The nuclear subproteome of HT-29 colon adenocarcinoma cells treated with CIGB-552 peptide was identified and analyzed [1]. This data article provides supporting evidence for the above analysis. PMID:26306321

  3. Cranberry proanthocyanidins modulate reactive oxygen species in Barrett’s and esophageal adenocarcinoma cell lines

    PubMed Central

    Weh, Katherine M.; Aiyer, Harini S.; Howell, Amy B.; Kresty, Laura A.

    2016-01-01

    BACKGROUND We recently reported that a cranberry proanthocyanidin rich extract (C-PAC) induces autophagic cell death in apoptotic resistant esophageal adenocarcinoma (EAC) cells and necrosis in autophagy resistant cells. EAC is characterized by high morbidity and mortality rates supporting development of improved preventive interventions. OBJECTIVE The current investigation sought to investigate the role of reactive oxygen species (ROS) in the context of C-PAC induced cell death. METHODS A panel of human esophageal cell lines of EAC or BE (Barrett’s esophagus) origin were treated with C-PAC and assessed for ROS modulation using CellROX® Green reagent and the Amplex Red assay to specifically measure hydrogen peroxide levels. RESULTS C-PAC significantly increased ROS levels in EAC cells, but significantly reduced ROS levels in CP-C BE cells. Increased hydrogen peroxide levels were also detected in C-PAC treated EAC cells and supernatant; however, hydrogen peroxide levels were significantly increased in medium alone, without cells, suggesting that C-PAC interferes or directly acts on the substrate. Hydrogen peroxide levels did not change in C-PAC treated CP-C BE cells. CONCLUSION These experiments provide additional mechanistic insight regarding C-PAC induced cancer cell death through modulation of ROS. Additional research is warranted to identify specific ROS species associated with C-PAC exposure.

  4. Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22

    PubMed Central

    Hsiao, Jye-Chian; Chu, Li-Wei; Lo, Yung-Tsun; Lee, Sue-Ping; Chen, Tzu-Jung; Huang, Cheng-Yen

    2015-01-01

    ABSTRACT Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex

  5. Inhibition of autophagic flux by ROS promotes apoptosis during DTT-induced ER/oxidative stress in HeLa cells.

    PubMed

    Xiang, Xi-Yan; Yang, Xiao-Chun; Su, Jin; Kang, Jing-Song; Wu, Yao; Xue, Ya-Nan; Dong, Yu-Tong; Sun, Lian-Kun

    2016-06-01

    As targets for cancer therapy, endoplasmic reticulum (ER) stress and autophagy are closely linked. However, the signaling pathways responsible for induction of autophagy in response to ER stress and its cellular consequences appear to vary with cell type and stimulus. In the present study, we showed that dithiothreitol (DTT) induced ER stress in HeLa cells in a time- and dose-dependent fashion. With increased ER stress, reactive oxygen species (ROS) production increased and autophagy flux, assessed by intracellular accumulation of LC3B-II and p62, was inhibited. N-acetyl-L-cysteine (NAC), a classic antioxidant, exacerbated cell death induced by 3.2 mM of DTT, but attenuated that induced by 6.4 mM DTT. Low cytotoxic doses of DTT transiently activated c-JNU N-terminal kinase (JNK) and p38, whereas high dose of DTT persistently activated JNK and p38 and simultaneously reduced extracellular signal-regulated kinase (ERK) activity. Combined treatment with DTT and U0126, an inhibitor of ERK upstream activators mitogen-activated protein kinase (MAPK) kinase 1 and 2 (MEK1/2), blocked autophagy flux in HeLa cells. This effect was similar to that caused by a combination of DTT and chloroquine (CQ). These data suggested that insufficient autophagy was accompanied by increased ROS production during DTT-induced ER stress. ROS appeared to regulate MAPK signaling, switching from a pro-survival to a pro-apoptotic signal as ER stress increased. ERK inhibition by ROS during severe ER stress blocked autophagic flux. Impaired autophagic flux, in turn, aggravated ER stress, ultimately leading to cell death. Taken together, our data provide the first reported evidence that ROS may control cell fate through regulating the MAPK pathways and autophagic flux during DTT-induced ER/oxidative stress. PMID:27035858

  6. Latex of Euphorbia antiquorum-induced S-phase arrest via active ATM kinase and MAPK pathways in human cervical cancer HeLa cells.

    PubMed

    Hsieh, Wen-Tsong; Lin, Hui-Yi; Chen, Jou-Hsuan; Lin, Wen-Chung; Kuo, Yueh-Hsiung; Wood, W Gibson; Lu, Hsu-Feng; Chung, Jing-Gung

    2015-09-01

    Latex of Euphorbia antiquorum (EA) has demonstrated great chemotherapeutic potential for cancer. However, the mechanisms of anti-proliferation of EA on cancer cell remain to be further investigated. The purpose of this study was to explore the influence of EA in human cervical cancer cells. Here, the cell cycle distribution by flow cytometry was examined and the protein expression by the western blotting methods was analyzed. From the cytometric results it was shown that EA-induced S-phase arrest in a concentration manner both in human cervical cancer HeLa and CaSki cells. According the western blot results it was illustrated that EA could downregulate early cyclin E1-Cdk2; and cyclin A-Cdc2 provides a significant additional quantity of S-phase promotion, that in turn promoted the expression of p21(waf1/cip1) and p27(kip1) which were the inhibitors in the complex of cyclin A and Cdc2 that led to cell cycle arrest. Moreover, EA promoted the activation of ataxia telangiectasia mutated (ATM) and check-point kinase-2 (Chk2); however, it negatively regulated the expression of Topoisomerases I and II, Cdc25A, and Cdc25C signaling. Caffeine, an ATM/ATR inhibitor significantly reversed EA downregulation in the levels of Cdc25A. Furthermore, JNK inhibitor SP600125 and p38 MAPK inhibitor SB203580 both could reverse the EA upregulation of the protein of Chk2 level, significantly. This study, therefore, revealed that EA could downregulate topoisomerase, and activate ATM kinase, which then induce parallel Chk 1/2 and MAPK signaling pathways to promote the degradation of Cdc25A to induced S-phase arrest in human cervical cancer HeLa cells. PMID:24706497

  7. Layered Double Hydroxide as a Vehicle to Increase Toxicity of Gallate Ions against Adenocarcinoma Cells.

    PubMed

    Arratia-Quijada, Jenny; Rivas-Fuentes, Selma; Saavedra, Karina J Parra; Lamas, Adriana M Macías; Carbajal Arízaga, Gregorio Guadalupe

    2016-01-01

    The antineoplasic activity of gallic acid has been reported. This compound induces apoptosis and inhibits the growth of several neoplasic cells. However, this molecule is easily oxidized and degraded in the body. The aim of this work was to intercalate gallate ions into layered double hydroxide (LDH) nanoparticles under controlled conditions to reduce oxidation of gallate and to evaluate its toxicity against the A549 adenocarcinoma cell line. An isopropanol medium under nitrogen atmosphere was adequate to intercalate gallate ions with a lesser oxidation degree as detected by electron spin resonance spectroscopy. Concentrations of the hybrid LDH-gallate nanoparticles between 0.39 and 25 µg/mL reduced the cell viability to 67%, while the value reached with the pure gallic acid and LDH was 90% and 78%, respectively, thus proving that the combination of gallate ions with the inorganic nanoparticles increases the toxicity potential within this dose range. PMID:27438820

  8. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    SciTech Connect

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo . E-mail: miyazawa@biochem.tohoku.ac.jp

    2006-09-15

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with {delta}-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol.

  9. [Endometrial adenocarcinoma and clear cell carcinoma in a young woman with polycystic ovarian syndrome: a case report].

    PubMed

    Niu, Jing; Liu, Nan; Liu, Guo-Bing

    2016-05-20

    A 26-year-old unmarried woman with irregular menstruation for 4 years was admitted for an intrauterine space-occupying mass. Pathological examination before surgery showed moderately to poorly differentiated endometrial adenocarcinoma. The patient underwent laparoscopically assisted epifascial panhysterectomy with bilateral salpingo-oophorectomy. Pathological examination of the surgical specimens reported moderately to poorly differentiated endometrial adenocarcinoma and stage II clear cell carcinoma. The patient then received chemotherapy and remained alive without evidence of recurrence. Young women with polycystic ovarian syndrome are at high risk of developing endometrial carcinoma, but concurrent clear cell carcinoma is rare. Careful evaluation before and after treatment are essential to improve the patients prognosis. PMID:27222196

  10. Ocimum gratissimum Aqueous Extract Induces Apoptotic Signalling in Lung Adenocarcinoma Cell A549

    PubMed Central

    Chen, Han-Min; Lee, Mu-Jang; Kuo, Cheng-Yi; Tsai, Pei-Lin; Liu, Jer-Yuh; Kao, Shao-Hsuan

    2011-01-01

    Ocimum gratissimum (OG) is widely used as a traditional herb for its antibacterial activity in Taiwan. Recently, antitumor effect of OG on breast cancer cell is also reported; however, the effects of OG on human pulmonary adenocarcinoma cell A549 remain unclear. Therefore, we aimed to investigate whether aqueous OG extract (OGE) affects viability of A549 cells and the signals induced by OGE in A549 cells. Cell viability assays revealed that OGE significantly and dose-dependently decreased the viability of A549 cell but not that of BEAS-2B cell. Morphological examination and DAPI staining indicated that OGE induced cell shrinkage and DNA condensation for A549 cells. Further investigation showed that OGE enhanced activation of caspase-3, caspase-9 and caspase-8 and increased protein level of Apaf-1 and Bak, but diminished the level of Bcl-2. Additionally, OGE inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) yet enhanced the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAP kinase (p38). In conclusion, our findings indicate that OGE suppressed the cell viability of A549 cells, which may result from the activation of apoptotic signaling and the inhibition of anti-apoptotic signaling, suggesting that OGE might be beneficial to lung carcinoma treatment. PMID:20953389

  11. Osteopontin (OPN/SPP1) isoforms collectively enhance tumor cell invasion and dissemination in esophageal adenocarcinoma

    PubMed Central

    Lin, Jules; Myers, Amy L.; Wang, Zhuwen; Nancarrow, Derek J.; Ferrer-Torres, Daysha; Handlogten, Amy; Leverenz, Kimmy; Bao, Julia; Thomas, Dafydd G.; Wang, Thomas D.; Orringer, Mark B.; Reddy, Rishindra M.; Chang, Andrew C.; Beer, David G.; Lin, Lin

    2015-01-01

    Esophageal adenocarcinoma (EAC) is often diagnosed at an advanced stage, thus understanding the molecular basis for EAC invasion and metastasis is critical. Here we report that SPP1/OPN was highly overexpressed in primary EACs and intracellularly localized to tumor cells. We further demonstrate that all known OPN isoforms (OPNa, b, c, 4 and 5) were frequently co-overexpressed in primary EACs. Distinct pro-invasion and dissemination phenotypes of isoform-specific OPNb and OPNc stable transfectants were observed. Expression of OPNb significantly enhanced cell migration and adhesion to laminin. In contrast, OPNc cells showed significantly decreased cell migration yet increased cell detachment. Enhanced invasion, both in vitro and in vivo, was observed for OPNb- but not OPNc-expressing cells. Inhibition of RGD integrins, one family of OPN receptors, attenuated OPNb cell migration, abrogated OPNb cell adhesion and significantly reduced OPNb cell clonogenic survival but did not affect OPNc phenotypes, indicating that OPNb but not OPNc acts through integrin-dependent signaling. Differential expression of vimentin, E-cadherin and β-catenin in OPN stable cells may account for the variation in cell adhesion and detachment between these isoforms. We conclude that while all OPN isoforms are frequently co-overexpressed in primary EACs, isoforms OPNb and OPNc enhance invasion and dissemination through collective yet distinct mechanisms. PMID:26068949

  12. Intratumoral distribution of EGFR-amplified and EGFR-mutated cells in pulmonary adenocarcinoma.

    PubMed

    Soma, Shingo; Tsuta, Koji; Takano, Toshimi; Hatanaka, Yutaka; Yoshida, Akihiko; Suzuki, Kenji; Asamura, Hisao; Tsuda, Hitoshi

    2014-03-01

    Alterations in the epidermal growth factor receptor (EGFR) gene are associated with carcinogenesis in non-small cell lung cancer. However, the intratumoral distribution of these abnormalities has not been elucidated. This study included patients with surgically resected lung adenocarcinoma. The predominant histological growth pattern was determined. Chromogenic in situ hybridization (CISH) and EGFR-mutation specific-antibodies were used for analysis of changes in gene copy number and EGFR mutations, respectively. EGFR mutation detected immunohistochemistry (IHC) and amplification were identified in 31 (53%) and 30 (52%) cases, respectively. The predominant growth patterns in the 58 tumors evaluated were papillary (28, 48%), lepidic (8, 14%), acinar (15, 26%), and solid (7, 12%). EGFR mutations were the least common in cases with a solid predominant pattern. The incidence of EGFR amplification did not differ among predominant patterns. Analyzing each histological subtype, no differences were noted between the prevalence of EGFR-IHC positive and CISH-positive rates. In the analysis of EGFR amplification, CISH-positive status was more prevalent in IHC-positive cases than in IHC-negative cases. All 19 cases that were both IHC and CISH positive were analyzed. In 17 cases (90%), the IHC-positive area was equal to or larger than the CISH-positive area. Among the histological subtypes of lung adenocarcinoma, the solid predominant subtype was distinguishable by its infrequent EGFR mutations. EGFR gene mutations preceded changes in oncogenic drive, more so than did EGFR gene number alterations during the developmental process of lung adenocarcinoma. PMID:24355440

  13. (-)-β-hydrastine suppresses the proliferation and invasion of human lung adenocarcinoma cells by inhibiting PAK4 kinase activity.

    PubMed

    Guo, Bingyu; Li, Xiaodong; Song, Shuai; Chen, Meng; Cheng, Maosheng; Zhao, Dongmei; Li, Feng

    2016-04-01

    (-)-β-hydrastine is one of the main active components of the medicinal plant, Hydrastis canadensis, which is used in many dietary supplements intended to enhance the immune system. However, whether (-)-β-hydrastine affects the tumor signaling pathway remains unexplored. In the present study, we found that (-)-β-hydrastine inhibited the kinase activity of p21-activated kinase 4 (PAK4), which is involved in the regulation of cytoskeletal reorganization, cell proliferation, gene transcription, oncogenic transformation and cell invasion. In the present study, (-)-β-hydrastine suppressed lung adenocarcinoma cell proliferation by inhibiting expression of cyclin D1/D3 and CDK2/4/6, leading to cell cycle arrest at the G1 phase, in a PAK4 kinase-dependent manner. Moreover, inhibition of PAK4 kinase activity by (-)-β-hydrastine also promoted the early apoptosis of lung adenocarcinoma cells through the mitochondrial apoptosis pathway. In addition, (-)-β-hydrastine significantly suppressed the migration and invasion of human lung adenocarcinoma cells in conjunction with concomitant blockage of the PAK4/LIMK1/cofilin, PAK4/SCG10 and PAK4/MMP2 pathways. All of these data indicate that (-)-β-hydrastine, as a novel PAK4 inhibitor, suppresses the proliferation and invasion of lung adenocarcinoma cells. Taken together, these results provide novel insight into the development of a PAK4 kinase inhibitor and a potential therapeutic strategy for lung cancer. PMID:26821251

  14. The limited difference between keratin patterns of squamous cell carcinomas and adenocarcinomas is explicable by both cell lineage and state of differentiation of tumour cells.

    PubMed Central

    van Dorst, E B; van Muijen, G N; Litvinov, S V; Fleuren, G J

    1998-01-01

    AIM: To study the differentiation of epithelial tissues within their histological context, and to identify hypothetically, on the basis of keratin pattern, the putative tissue origin of a (metastatic) carcinoma. METHODS: Using well characterised monoclonal antibodies against individual keratins 7, 8, 18, and 19, which are predominantly found in columnar epithelia, and keratins 4, 10, 13, and 14, predominantly expressed in (non)-keratinising squamous epithelia, the keratin patterns for a series of 45 squamous cell carcinomas and 44 adenocarcinomas originating from various epithelial tissues were characterised. RESULTS: The predominant keratins in all adenocarcinomas proved to be 8, 18, and 19. In addition, these keratins were also abundantly present in squamous cell carcinomas of the lung, cervix, and rectum and, to a lesser extent, of the larynx, oesophagus, and tongue, but not in those of the vulva and skin. Keratins 4, 10, 13, and 14 were present in almost all squamous cell carcinomas, but also focally in some of the adenocarcinomas studied. CONCLUSIONS: There is a limited differential expression of distinctive keratin filaments between squamous cell carcinomas and adenocarcinomas. Apparently, squamous cell carcinomas that originate from columnar epithelium by squamous metaplasia gain the keratins of squamous cells but retain the keratins of columnar epithelial cells. However, the simultaneous expression of two of three squamous keratins (4, 10, and 13) identifies a squamous cell carcinoma, and thus might be useful in solving differential diagnostic problems. Images PMID:9930073

  15. TIMP-1 Inhibits Apoptosis in Lung Adenocarcinoma Cells via Interaction with Bcl-2

    PubMed Central

    Kutiyanawalla, Ammar; Gayatri, Sitaram; Lee, Byung Rho; Jiwani, Shahanawaz; Rojiani, Amyn M.; Rojiani, Mumtaz V.

    2015-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) are multifaceted molecules that exhibit properties beyond their classical proteinase inhibitory function. Although TIMP-1 is a known inhibitor of apoptosis in mammalian cells, the mechanisms by which it exerts its effects are not well-established. Our earlier studies using H2009 lung adenocarcinoma cells, implanted in the CNS, showed that TIMP-1 overexpressing H2009 cells (HB-1), resulted in more aggressive tumor kinetics and increased vasculature. The present study was undertaken to elucidate the role of TIMP-1 in the context of apoptosis, using the same lung cancer cell lines. Overexpressing TIMP-1 in a lung adenocarcinoma cell line H2009 resulted in an approximately 3-fold increased expression of Bcl-2, with a marked reduction in apoptosis upon staurosporine treatment. This was an MMP-independent function as a clone expressing TIMP-1 mutant T2G, lacking MMP inhibition activity, inhibited apoptosis as strongly as TIMP1 overexpressing clones, as determined by inhibition of PARP cleavage. Immunoprecipitation of Bcl-2 from cell lysates also co-immunoprecipitated TIMP-1, indicative of an interaction between these two proteins. This interaction was specific for TIMP-1 as TIMP-2 was not present in the Bcl-2 pull-down. Additionally, we show a co-dependency of TIMP-1 and Bcl-2 RNA and protein levels, such that abrogating Bcl-2 causes a downregulation of TIMP-1 but not TIMP-2. Finally, we demonstrate that TIMP-1 dependent inhibition of apoptosis occurs through p90RSK, with phosphorylation of the pro-apoptotic protein BAD at serine 112, ultimately reducing Bax levels and increasing mitochondrial permeability. Together, these studies define TIMP-1 as an important cancer biomarker and demonstrate the potential TIMP-1 as a crucial therapeutic target. PMID:26366732

  16. Application of a FRET probe for Caspase-3 activation in living HeLa cells by sequentially treated cisplatin and TRAIL

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zhang, Zhihong; Yi, Qiushi; Zeng, Shaoqun; Luo, Qingming

    2006-02-01

    Caspase-3 is a kind of cysteine proteases that plays an important role in cell apoptosis. We have constructed a FRET (fluorescence resonance energy transfer) probe fused with ECFP (enhanced cyan fluorescence protein) and DsRed (Discosoma red fluorescent protein) with a linker containing a caspase-3 cleavage sequence (CCS, DEVD).It could be observed much change in fluorescence emission ratio when the probe was cleaved by caspase-3. Therefore, application of this probe we can real-time detected the activation of caspase-3. It was already confirmed that caspase-3 was activated in HeLa cells treated by cisplatin or TRAIL (Tumor necrosis factor (TNF)-related apoptosis-inducing ligand). In the present study, we detected the activation of caspase-3 during cisplatin or TRAIL induced apoptosis in living HeLa cells, and also observed the activation of caspase-3 caused by both cisplatin and TRAIL combined treatment. Our results demonstrated a synergistic effect between cisplatin and TRAIL. Cisplatin is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Therefore, TRAIL is a very valuably prospective utility as its potential tumor-specific cancer therapeutic. Most of anticancer drugs can induce apoptosis which mediated by the activation of caspase pathway. We can select the best synergistic effect group by our FRET probe. This finding would be useful in the design of treatment modalities for patients.

  17. Shallot and licorice constituent isoliquiritigenin arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and initiation of the mitochondrial system in human cervical carcinoma HeLa cells.

    PubMed

    Hsu, Ya-Ling; Chia, Chun-Chieh; Chen, Ping-Jye; Huang, Su-Er; Huang, Soon-Cen; Kuo, Po-Lin

    2009-07-01

    This study is the first to investigate the anticancer effect of isoliquiritigenin (ISL) in human cervical carcinoma HeLa cells. The results reveal that ISL inhibits HeLa cells by blocking cell cycle progression in the G2/M phase and inducing apoptosis. Blockade of cell cycle is associated with increased activation of ataxia telangiectasia-mutated (ATM). Activation of ATM by ISL phosphorylated p53 at Serine15, resulting in increased stability of p53 by decreasing p53 and murine double minute-2 (MDM2) interaction. In addition, ISL-mediated G2/M phase arrest was also associated with decreases in the amounts of cyclin B, cyclin A, cdc2, and cdc25C, and increases in the phosphorylation of Chk2, cdc25C, and cdc2. The specific ATM inhibitor caffeine significantly decreased ISL-mediated G2/M arrest by inhibiting the phosphorylation of p53 (Serine15) and Chk2. ISL induced apoptotic cell death is associated with changes in the expression of Bax and Bak, decreasing levels of Bcl-2 and Bcl-X(L), and subsequently triggering mitochondrial apoptotic pathway. In addition, pretreatment of cells with caspase-9 inhibitor blocked ISL-induced apoptosis, indicating that caspase-9 activation is involved in ISL-mediated HeLa cell apoptosis. These findings suggest that ISL may be a promising chemopreventive agent against human uterine cervical cancer. PMID:19536869

  18. Effects of acetaldehyde on brush border enzyme activities in human colon adenocarcinoma cell line Caco-2.

    PubMed

    Koivisto, T; Salaspuro, M

    1997-12-01

    The treatment of Caco-2 cells, a human colon adenocarcinoma cell line that closely resembles normal human small intestinal epithelial cells, with acetaldehyde resulted in significantly decreased activities of brush border enzymes sucrase, maltase, lactase, and gamma-glutamyltransferase; alkaline phosphatase activity was not affected. In the case of sucrase and maltase, the activities were also decreased by a combination of acetaldehyde and ethanol, although ethanol alone markedly increased them. The possibility that intraintestinal acetaldehyde, formed by intestinal microbes, might play a role in some small intestinal enzyme deficiencies observed earlier in alcoholics should therefore be considered. The mechanism by which acetaldehyde alters these enzyme activities remains unclear. The observation that acetaldehyde also disturbed cell polarization, an initial step in the process of differentiation in Caco-2 cells, indicates that acetaldehyde might decrease these enzyme activities by interfering with cell differentiation. Because ethanol and acetaldehyde metabolizing enzymes have not been previously studied from Caco-2 cells, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities were also measured from these cells, and their ALDH isoenzyme pattern was characterized. Like many cancerous cell lines, Caco-2 cells were found to express no ADH. They, however, possessed ALDH activity that was comparable with normal colonic mucosal activity and also expressed the same ALDH classes (ALDHs 1 to 3) than normal human colonic mucosa. PMID:9438518

  19. Catalytic and molecular properties of highly purified phosvitin/casein kinase type II from human epithelial cells in culture (HeLa) and relation to ecto protein kinase.

    PubMed

    Pyerin, W; Burow, E; Michaely, K; Kübler, D; Kinzel, V

    1987-03-01

    Phosvitin/casein type II kinase was purified from HeLa cell extracts to homogeneity and characterized. The kinase prefers phosvitin over casein (Vmax phosvitin greater than Vmax casein; apparent Km 0.5 microM phosvitin and 3.3 microM casein) and utilizes as cosubstrate ATP (apparent Km 3-4 microM), GTP (apparent Km 4-5 microM) and other purine nucleoside triphosphates, including dATP and dGTP but not pyrimidine nucleoside triphosphates. Enzyme reaction is optimal at pH 6-8 and at 10-25 mM Mg2+.Mg2+ cannot be replaced by, but is antagonized by other divalent metal ions. The kinase is stimulated by polycations (spermine) and monovalent cations (Na+,K+), and is inhibited by fluoride, 2,3-diphosphoglycerate, and low levels of heparin (50% inhibition at 0.1 microgram/ml). The HeLa enzyme is composed of three subunits with Mr of approximately 43,000 (alpha), 38,000 (alpha'), and 28,000 (beta) forming alpha alpha'beta 2 and alpha'2 beta 2 structures with obvious sequence homology of alpha with alpha' but not with beta. Photoaffinity labeling with [alpha-32P]- and [gamma-32P]8-azido-ATP revealed high affinity binding sites on subunits alpha and alpha' but not on subunit beta. The kinase autophosphorylates subunit beta and, much weaker, subunits alpha and alpha'. Ecto protein kinase, detectable only by its enzyme activity but not yet as a protein (J. Biol. Chem. 257, 322-329), was characterized in cell-bound form and in released form, and the released form both with and without prior separation from phosvitin which was employed to induce the kinase release from intact HeLa cells (Proc. Natl. Acad. Sci. U.S.A. 80, 4021-4025). Ratios of phosvitin/casein phosphorylation (greater than 2) and of ATP/GTP utilization (1.5-2.1), inhibition by heparin (50% inhibition at 0.1 microgram/ml), and amino-acid side chains phosphorylated in phosvitin and casein (serine, threonine) are comparable for cell-bound and released form. These properties resemble those of type II kinase as does Mr

  20. A systematic High-Content Screening microscopy approach reveals key roles for Rab33b, OATL1 and Myo6 in nanoparticle trafficking in HeLa cells

    PubMed Central

    Panarella, Angela; Bexiga, Mariana G.; Galea, George; O’ Neill, Elaine D.; Salvati, Anna; Dawson, Kenneth A.; Simpson, Jeremy C.

    2016-01-01

    Synthetic nanoparticles are promising tools for imaging and drug delivery; however the molecular details of cellular internalization and trafficking await full characterization. Current knowledge suggests that following endocytosis most nanoparticles pass from endosomes to lysosomes. In order to design effective drug delivery strategies that can use the endocytic pathway, or by-pass lysosomal accumulation, a comprehensive understanding of nanoparticle uptake and trafficking mechanisms is therefore fundamental. Here we describe and apply an RNA interference-based high-content screening microscopy strategy to assess the intracellular trafficking of fluorescently-labeled polystyrene nanoparticles in HeLa cells. We screened a total of 408 genes involved in cytoskeleton and membrane function, revealing roles for myosin VI, Rab33b and OATL1 in this process. This work provides the first systematic large-scale quantitative assessment of the proteins responsible for nanoparticle trafficking in cells, paving the way for subsequent genome-wide studies. PMID:27374232

  1. Identification of crucial microRNAs and genes in hypoxia-induced human lung adenocarcinoma cells

    PubMed Central

    Geng, Ying; Deng, Lili; Su, Dongju; Xiao, Jinling; Ge, Dongjie; Bao, Yongxia; Jing, Hui

    2016-01-01

    Background Variations of microRNA (miRNA) expression profile in hypoxic lung cancer cells have not been studied so far. Therefore, using miRNA microarray technology, this study aimed to study the miRNA expression profile and investigate the potential crucial miRNAs and their target genes in hypoxia-induced human lung adenocarcinoma cells. Materials and methods Based on miRNA microarray, miRNA expression profiling of hypoxia-induced lung adenocarcinoma A549 cells was obtained. After identification of differentially expressed miRNAs (DE-miRNAs) in hypoxic cells, target genes of DE-miRNAs were predicted, and functional enrichment analysis of targets was conducted. Furthermore, the expression levels of DE-miRNAs and their target genes were validated by real-time quantitative polymerase chain reaction. In addition, using miRNA mimics, the effect of overexpressed DE-miRNAs on A549 cell behaviors (cell proliferation, cell cycle, and apoptosis) was evaluated. Results In total, 14 DE-miRNAs (nine upregulated miRNAs and five downregulated miRNAs) were identified in hypoxic cells, compared with normoxic cells. Target genes of both upregulated and downregulated miRNAs were enriched in the functions such as chromatin modification, and pathways such as Wnt signaling pathway and transforming growth factor (TGF)-β signaling pathway. The expression levels of several miRNAs and their target genes were confirmed, including hsa-miR-301b/FOXF2, hsa-miR-148b-3p/WNT10B, hsa-miR-769-5p/(SMAD2, ARID1A), and hsa-miR-622. Among them, hsa-miR-301b was verified to regulate FOXF2, and hsa-miR-769-5p was verified to modulate ARID1A. In addition, the overexpression of hsa-miR-301b and hsa-miR-769-5p significantly affected the cell cycle of A549 cells, but not cell proliferation and apoptosis. Conclusion miRNA expression profile was changed in hypoxia-induced lung cancer cells. Those validated miRNAs and genes may play crucial roles in the response of lung cancer cells to hypoxia. PMID:27524914

  2. Hinokitiol Induces DNA Damage and Autophagy followed by Cell Cycle Arrest and Senescence in Gefitinib-Resistant Lung Adenocarcinoma Cells

    PubMed Central

    Li, Lan-Hui; Wu, Ping; Lee, Jen-Yi; Li, Pei-Rong; Hsieh, Wan-Yu; Ho, Chao-Chi; Ho, Chen-Lung; Chen, Wan-Jiun; Wang, Chien-Chun; Yen, Muh-Yong; Yang, Shun-Min; Chen, Huei-Wen

    2014-01-01

    Despite good initial responses, drug resistance and disease recurrence remain major issues for lung adenocarcinoma patients with epidermal growth factor receptor (EGFR) mutations taking EGFR-tyrosine kinase inhibitors (TKI). To discover new strategies to overcome this issue, we investigated 40 essential oils from plants indigenous to Taiwan as alternative treatments for a wide range of illnesses. Here, we found that hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana, exhibited potent anticancer effects. In this study, we demonstrated that hinokitiol inhibited the proliferation and colony formation ability of lung adenocarcinoma cells as well as the EGFR-TKI-resistant lines PC9-IR and H1975. Transcriptomic analysis and pathway prediction algorithms indicated that the main implicated pathways included DNA damage, autophagy, and cell cycle. Further investigations confirmed that in lung cancer cells, hinokitiol inhibited cell proliferation by inducing the p53-independent DNA damage response, autophagy (not apoptosis), S-phase cell cycle arrest, and senescence. Furthermore, hinokitiol inhibited the growth of xenograft tumors in association with DNA damage and autophagy but exhibited fewer effects on lung stromal fibroblasts. In summary, we demonstrated novel mechanisms by which hinokitiol, an essential oil extract, acted as a promising anticancer agent to overcome EGFR-TKI resistance in lung cancer cells via inducing DNA damage, autophagy, cell cycle arrest, and senescence in vitro and in vivo. PMID:25105411

  3. Purification of two DNA-dependent adenosinetriphosphatases having DNA helicase activity from HeLa cells and comparison of the properties of the two enzymes.

    PubMed

    Seki, M; Yanagisawa, J; Kohda, T; Sonoyama, T; Ui, M; Enomoto, T

    1994-03-01

    DNA-dependent ATPase activities in crude extracts prepared from HeLa cells were separated into five peaks designated Q1 to Q5 by FPLC Mono Q column chromatography. In our previous study, we observed that crude extracts prepared from xeroderma pigmentosum complementation group C (XP-C) cells contained no DNA-dependent ATPase activity at the peak position of Q1 and exhibited a broader peak with higher activity than normal Q2 at the peak position of Q2 [Yanagisawa, J., Seki, M., Ui, M., & Enomoto, T. (1992) J. Biol. Chem. 267, 3585-3588]. We have purified two DNA-dependent ATPases Q1 and Q2 from HeLa cells and characterized their properties in order to obtain a means to discriminate ATPase Q1 from Q2 in XP-C cells. The apparent molecular masses of Q1 and Q2 on SDS-polyacrylamide gel electrophoresis were 73 and 100 kDa, respectively. The two enzymes required a divalent cation for activity. DNA-dependent ATPase Q1 hydrolyzed ATP and dATP and Q2 hydrolyzed ATP preferentially among the nucleotides tested. Both enzymes preferred single-stranded DNA as a cofactor. The DNA-dependent ATPase activity of Q2 was inhibited by 90% in the presence of 200 mM NaCl, whereas that of Q1 was not affected by NaCl at concentrations up to 200 mM. Both enzymes had DNA helicase activity, that of Q1 being more resistant to NaCl than that of Q2. The DNA helicase activity of Q2 was about 150-fold higher than that of Q1, when compared with units of ATPase activity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8056767

  4. Characterization of chrysin glucuronidation in UGT1A1-overexpressing HeLa cells: elucidating the transporters responsible for efflux of glucuronide.

    PubMed

    Quan, Enxi; Wang, Huailing; Dong, Dong; Zhang, Xingwang; Wu, Baojian

    2015-04-01

    Active transport of glucuronide out of cells is a critical process in elimination of drugs via the glucuronidation pathway. Here, HeLa cells were stably transfected with UGT1A1 and the contributions of BCRP and MRP family transporters to the cellular efflux of chrysin glucuronide (CG) were determined. The cDNA of UGT1A1 was introduced into HeLa cells using the lentiviral transfection method. The modified cells were functional in generation of the glucuronide from chrysin. Ko143 at 10-20 μM (a dual inhibitor of BCRP and UGT1A1) caused a marked decrease (51.3%-59.7%, P < 0.01) in the excretion rate and efflux clearance of CG. Likewise, MK-571 at 5-20 μM (an inhibitor of MRPs but an activator of UGT1A1) resulted in a significant reduction in the excretion rate (18.2%-64.0%, P < 0.01) and efflux clearance (37.0%-90.2%, P < 0.001). By contrast, dipyridamole and leukotriene C4 showed no inhibitory effects on CG excretion. The chemical inhibition indicated that excretion of CG was contributed by the MRP family transporters, whereas the role of BCRP was unclear. Furthermore, short hairpin RNA-mediated silencing of a target transporter led to a marked reduction in the excretion rate of CG (38.6% for BCRP, 39.3% for MRP1, 36.4% for MRP3, and 28.7% for MRP4; P < 0.01). Transporter silencing also led to substantial decreases in the efflux clearance (44.7% for BCRP, 60.4% for MRP1, 36.7% for MRP3, and 28.7% for MRP4; P < 0.01). The gene silencing results suggested that BCRP, MRP1, MRP3, and MRP4 were significant contributors to excretion of CG. PMID:25595598

  5. Denbinobin induces apoptosis in human lung adenocarcinoma cells via Akt inactivation, Bad activation, and mitochondrial dysfunction.

    PubMed

    Kuo, Chen-Tzu; Hsu, Ming-Jen; Chen, Bing-Chang; Chen, Chien-Chih; Teng, Che-Ming; Pan, Shiow-Lin; Lin, Chien-Huang

    2008-02-28

    Increasing evidence demonstrated that denbinobin, isolated from Ephemerantha lonchophylla, exert cytotoxic effects in cancer cells. The purpose of this study was to investigate whether denbinobin induces apoptosis and the apoptotic mechanism of denbinobin in human lung adenocarcinoma cells (A549). Denbinobin (1-20microM) caused cell death in a concentration-dependent manner. Flow cytometric analysis and annexin V labeling demonstrated that denbinobin increased the percentage of apoptotic cells. A549 cells treated with denbinobin showed typical characteristics of apoptosis including morphological changes and DNA fragmentation. Denbinobin induced caspase 3 activation, and N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a broad-spectrum caspase inhibitor, prevented denbinobin-induced cell death. Denbinobin induced the loss of the mitochondrial membrane potential and the release of mitochondrial apoptotic proteins including cytochrome c, second mitochondria derived activator of caspase (Smac), and apoptosis-inducing factor (AIF). In addition, denbinobin-induced Bad activation was accompanied by the dissociation of Bad with 14-3-3 and the association of Bad with Bcl-xL. Furthermore, denbinobin induced Akt inactivation in a time-dependent manner. Transfection of A549 cells with both wild-type and constitutively active Akt significantly suppressed denbinobin-induced Bad activation and cell apoptosis. These results suggest that Akt inactivation, followed by Bad activation, mitochondrial dysfunction, caspase 3 activation, and AIF release, contributes to denbinobin-induced cell apoptosis. PMID:18262737

  6. The aqueous extract of Ficus religiosa induces cell cycle arrest in human cervical cancer cell lines SiHa (HPV-16 Positive) and apoptosis in HeLa (HPV-18 positive).

    PubMed

    Choudhari, Amit S; Suryavanshi, Snehal A; Kaul-Ghanekar, Ruchika

    2013-01-01

    Natural products are being extensively explored for their potential to prevent as well as treat cancer due to their ability to target multiple molecular pathways. Ficus religiosa has been shown to exert diverse biological activities including apoptosis in breast cancer cell lines. In the present study, we report the anti-neoplastic potential of aqueous extract of F. religiosa (FRaq) bark in human cervical cancer cell lines, SiHa and HeLa. FRaq altered the growth kinetics of SiHa (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner. It blocked the cell cycle progression at G1/S phase in SiHa that was characterized by an increase in the expression of p53, p21 and pRb proteins with a simultaneous decrease in the expression of phospho Rb (ppRb) protein. On the other hand, in HeLa, FRaq induced apoptosis through an increase in intracellular Ca(2+) leading to loss of mitochondrial membrane potential, release of cytochrome-c and increase in the expression of caspase-3. Moreover, FRaq reduced the migration as well as invasion capability of both the cervical cancer cell lines accompanied with downregulation of MMP-2 and Her-2 expression. Interestingly, FRaq reduced the expression of viral oncoproteins E6 and E7 in both the cervical cancer cell lines. All these data suggest that F. religiosa could be explored for its chemopreventive potential in cervical cancer. PMID:23922932

  7. The Aqueous Extract of Ficus religiosa Induces Cell Cycle Arrest in Human Cervical Cancer Cell Lines SiHa (HPV-16 Positive) and Apoptosis in HeLa (HPV-18 Positive)

    PubMed Central

    Choudhari, Amit S.; Suryavanshi, Snehal A.; Kaul-Ghanekar, Ruchika

    2013-01-01

    Natural products are being extensively explored for their potential to prevent as well as treat cancer due to their ability to target multiple molecular pathways. Ficus religiosa has been shown to exert diverse biological activities including apoptosis in breast cancer cell lines. In the present study, we report the anti-neoplastic potential of aqueous extract of F. religiosa (FRaq) bark in human cervical cancer cell lines, SiHa and HeLa. FRaq altered the growth kinetics of SiHa (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner. It blocked the cell cycle progression at G1/S phase in SiHa that was characterized by an increase in the expression of p53, p21 and pRb proteins with a simultaneous decrease in the expression of phospho Rb (ppRb) protein. On the other hand, in HeLa, FRaq induced apoptosis through an increase in intracellular Ca2+ leading to loss of mitochondrial membrane potential, release of cytochrome-c and increase in the expression of caspase-3. Moreover, FRaq reduced the migration as well as invasion capability of both the cervical cancer cell lines accompanied with downregulation of MMP-2 and Her-2 expression. Interestingly, FRaq reduced the expression of viral oncoproteins E6 and E7 in both the cervical cancer cell lines. All these data suggest that F. religiosa could be explored for its chemopreventive potential in cervical cancer. PMID:23922932

  8. In vitro cytotoxicity screening of wild plant extracts from Saudi Arabia on human breast adenocarcinoma cells.

    PubMed

    Ali, M A; Abul Farah, M; Al-Hemaid, F M; Abou-Tarboush, F M

    2014-01-01

    This study investigated the in vitro anticancer activities of a total of 14 wild angiosperms collected in Saudi Arabia. The cytotoxic activity of each extract was assessed against human breast adenocarcinoma (MCF-7) cell lines by using the MTT assay. Among the plants screened, the potential cytotoxic activity exhibited by the extract of Lavandula dentata (Lamiaceae) was identified, and we analyzed its anticancer potential by testing antiproliferative and apoptotic activity. Our results clearly show that ethanolic extract of L. dentata exhibits promising cytotoxic activity with an IC50 value of 39 μg/mL. Analysis of cell morphological changes, DNA fragmentation and apoptosis (using an Annexin V assay) also confirmed the apoptotic effect of L. dentata extract, and thus, our data call for further investigations to determine the active chemical constituent(s) and their mechanisms of inducing apoptosis. PMID:24938609

  9. SMAC mimetic Debio 1143 synergizes with taxanes, topoisomerase inhibitors and bromodomain inhibitors to impede growth of lung adenocarcinoma cells

    PubMed Central

    Held, Matthew A.; Mamillapalli, Ramanaiah; Iyidogan, Pinar; Theodosakis, Nicholas; Platt, James T.; Levy, Frederic; Vuagniaux, Gregoire; Wang, Shaomeng; Bosenberg, Marcus W.; Stern, David F.

    2015-01-01

    Targeting anti-apoptotic proteins can sensitize tumor cells to conventional chemotherapies or other targeted agents. Antagonizing the Inhibitor of Apoptosis Proteins (IAPs) with mimetics of the pro-apoptotic protein SMAC is one such approach. We used sensitization compound screening to uncover possible agents with the potential to further sensitize lung adenocarcinoma cells to the SMAC mimetic Debio 1143. Several compounds in combination with Debio 1143, including taxanes, topoisomerase inhibitors, and bromodomain inhibitors, super-additively inhibited growth and clonogenicity of lung adenocarcinoma cells. Co-treatment with Debio 1143 and the bromodomain inhibitor JQ1 suppresses the expression of c-IAP1, c-IAP2, and XIAP. Non-canonical NF-κB signaling is also activated following Debio 1143 treatment, and Debio 1143 induces the formation of the ripoptosome in Debio 1143-sensitive cell lines. Sensitivity to Debio 1143 and JQ1 co-treatment was associated with baseline caspase-8 expression. In vivo treatment of lung adenocarcinoma xenografts with Debio 1143 in combination with JQ1 or docetaxel reduced tumor volume more than either single agent alone. As Debio 1143-containing combinations effectively inhibited both in vitro and in vivo growth of lung adenocarcinoma cells, these data provide a rationale for Debio 1143 combinations currently being evaluated in ongoing clinical trials and suggest potential utility of other combinations identified here. PMID:26485762

  10. Adenocarcinoma of the rete testis with prominent papillary structure and clear neoplastic cells: morphologic and immunohistochemical findings and differential diagnosis.

    PubMed

    Huang, Pei-Wen; Chang, Kuo-Ming

    2015-01-01

    Adenocarcinoma of the rete testis is rare, and its etiology is unknown. The definite diagnosis merely depends on the exclusion of other tumors and histological features. We first describe a 38-year-old man with a carcinoma arising in the rete testis. The tumor was characterized by clear neoplastic cells and branching papillary growth. Focal stromal invasion and transition of normal rete epithelium to neoplastic cells were seen. The neoplastic cells were positive for epithelial membrane antigen, Ber-Ep4, vimentin, renal cell carcinoma marker, and CD10, while negative for Wilms' tumor 1, thyroid transcription factor-1, estrogen receptor, prostate specific antigen, placental alkaline phosphate, CD117, and alpha-1-fetoprotein. According to the above features, we diagnosed this tumor as adenocarcinoma of the rete testis. To our best knowledge, this is the first reported case of adenocarcinoma of the rete testis with prominently papillary structure and clear neoplastic cells. The rarity of adenocarcinoma of the rete testis and the unique features in our case cause diagnostic pitfalls. A complete clinicopathological study and thorough differential diagnosis are crucial for the correct result. PMID:25885143

  11. Identification of a Novel Subpopulation of Tumor-Initiating Cells from Gemcitabine-Resistant Pancreatic Ductal Adenocarcinoma Patients

    PubMed Central

    Shimizu, Kazuya; Chiba, Sachie; Hori, Yuichi

    2013-01-01

    Pancreatic ductal adenocarcinoma is highly resistant to systemic chemotherapy. Although there are many reports using pancreatic cancer cells derived from patients who did not receive chemotherapy, characteristics of pancreatic cancer cells from chemotherapy-resistant patients remain unclear. In this study, we set out to establish a cancer cell line in disseminated cancer cells derived from gemcitabine-resistant pancreatic ductal adenocarcinoma patients. By use of in vitro co-culture system with stromal cells, we established a novel pancreatic tumor-initiating cell line. The cell line required its direct interaction with stromal cells for its in vitro clonogenic growth and passaging. Their direct interaction induced basal lamina-like extracellular matrix formation that maintained colony formation. The cell line expressed CD133 protein, which expression level changed autonomously and by culture conditions. These results demonstrated that there were novel pancreatic tumor-initiating cells that required direct interactions with stromal cells for their in vitro cultivation in gemcitabine-resistant pancreatic ductal adenocarcinoma. This cell line would help to develop novel therapies that enhance effects of gemcitabine or novel anti-cancer drugs. PMID:24278411

  12. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    PubMed

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level. PMID:24021157

  13. Anacardic acid induces mitochondrial-mediated apoptosis in the A549 human lung adenocarcinoma cells.

    PubMed

    Seong, Yeong-Ae; Shin, Pyung-Gyun; Kim, Gun-Do

    2013-03-01

    Anacardic acid (AA) is a constituent of the cashew nut shell and is known as an inhibitor of nuclear factor-κB (NF-κB). We investigated the cytotoxicity of AA on cancer cells and more experiments to reveal the cell death mechanism focused on A549 lung adenocarcinoma cells for our interest in lung cancer. To examine the molecular mechanism of cell death in AA treated A549 cells, we performed experiments such as transmission electron microscopy (TEM), western blot analysis, fluorescence-activated cell sorting (FACS), genomic DNA extraction and staining with 4',6-diamidino-2-phenylindole (DAPI). For the first time we revealed that AA induces caspase-independent apoptosis with no inhibition of cytotoxicity by pan-caspase inhibitor, Z-VAD-fmk, in A549 cells. Our results showed the possibility of mitochondrial-mediated apoptosis through the activation of apoptosis-inducing factor (AIF) and an intrinsic pathway executioner such as cytochrome c. This study will be helpful in revealing the cell death mechanisms and in developing potential drugs for lung cancer using AA. PMID:23314312

  14. Hedgehog pathway maintains cell survival under stress conditions, and drives drug resistance in lung adenocarcinoma.

    PubMed

    Lin, Erh-Hsuan; Kao, Yu-Rung; Lin, Chih-An; Kuo, Ting-Yu; Yang, Sheng-Ping; Hsu, Chiung-Fang; Chou, Teh-Ying; Ho, Chao-Chi; Wu, Cheng-Wen

    2016-04-26

    Hedgehog (HH) pathway plays an important role in embryonic development, but is largely inactive in adult except for tissue repair. Aberrant activation of HH pathway has been found in a variety of cancer types. In non-small cell lung cancer, however, the role and importance of HH pathway remain controversial. In the current study, we found that HH pathway was maintained in low activity in lung adenocarcinoma (LAC) cells under normal culture condition, but was highly induced in response to stress conditions. Activation of HH pathway promoted cell survival, growth, and invasion partially through HGF and MET signaling. Hedgehog-Interacting Protein (HHIP), a cell-surface negative regulator of HH pathway, was epigenetically silenced in LAC. Overexpression of HHIP blocked the activation of HH and HGF/MET pathways, and made cells significantly more susceptible to stress conditions. In LAC cells with acquired resistance to Epidermal Growth Factor Receptor Tyrosin Kinase Inhibitor (EGFR-TKI), we found that a part of tumor cells were much more sensitive to HH or HGF/MET inhibitors, suggesting an oncogenic addiction shift from EGFR to HH and HGF/MET pathways. In conclusion, this study showed that HH pathway is a survival signaling that drives LAC cell growth under stress conditions, and HHIP is a key regulator to block the induction of HH pathway. Targeting the HH pathway through inhibitors or HHIP thus holds promise to address EGFR-TKI resistance in LAC in clinic. PMID:27015549

  15. Involvement of aldolase A in X-ray resistance of human HeLa and UV{sup r}-1 cells

    SciTech Connect

    Lu, Jun; Suzuki, Toshikazu Satoh, Mamoru; Chen, Shiping; Tomonaga, Takeshi; Nomura, Fumio; Suzuki, Nobuo

    2008-05-09

    To find novel proteins involved in radio-resistance of human cells, we searched for nuclear proteins, whose expression levels alter after X-ray irradiation in HeLa cells, using agarose fluorescent two-dimensional differential gel electrophoresis following mass spectrometry. We identified 6 proteins, whose levels were increased in nuclei 24 h after irradiation at 5 Gy, including aldolase A. Nuclear aldolase A levels increased twofold after the irradiation, however, total aldolase A levels did not change. When the expression of aldolase A was suppressed by its specific siRNA, sensitization of the suppressed cells to X-ray-induced cell death was observed. In addition, UV{sup r}-1 cells with higher aldolase A expression exhibited lower sensitivity to X-ray-induced cell death than the parental RSa cells with lower aldolase A expression. These results suggest that aldolase A may play a role in the radio-response of human cells, probably in nuclei, in addition to its glycolytic role in the cytosol.

  16. Preferential metabolism of N-nitrosodiethylamine by two cell lines derived from human pulmonary adenocarcinomas

    SciTech Connect

    Falzon, M.; McMahon, J.B.; Gazdar, A.F.; Schuller, H.M.

    1986-01-01

    Diethylnitrosamine (DEN), in common with other nitrosamines, is a carcinogenic agent which produces tumors in a wide variety of tissues in experimental animals. The pulmonary Clara cell is a major target of N-nitrosamine-induced carcinogenesis in hamsters and rats. DEN is believed to require metabolic activation to elicit its carcinogenic effects. The metabolism of (/sup 14/C)DEN was studied in two cell lines derived from human lung adenocarcinomas and two cell lines derived from human small cell lung cancers by monitoring /sup 14/CO/sub 2/ production and covalent binding of radiolabel from (/sup 14/C)DEN to the cell protein and DNA fractions. (/sup 14/C)DEN was metabolized by adenocarcinoma-derived NCI-H322 (with Clara cell features) and NCI-H358 (with features of alveolar type II cells) but not by NCI-H69 and NCI-H128 (derived from small cell carcinoma). Metabolism was markedly inhibited by heat denaturation of the cell protein. (/sup 14/C)DEN metabolism by NCI-H322 was greatly decreased when the incubation was carried out under anaerobic conditions and in the presence of a carbon monoxide enriched atmosphere. These results suggested the involvement of the cytochrome P-450-dependent monooxygenase enzyme system. Metabolism by NCI-H358 was also decreased in the absence of oxygen or presence of carbon monoxide although the effects were relatively small compared with the results with NCI-H322. On the other hand, aspirin or indomethacin, which are inhibitors of the fatty acid cyclooxygenase component of prostaglandin endoperoxide synthetase, preferentially inhibited (/sup 14/C)DEN metabolism by NIC-H358. There were little or no effects of these inhibitors on the metabolism of DEN in NCI-H322. The data suggest that DEN metabolism in different lung cell types may be carried out by different enzyme systems which in turn may contribute to the selective effect of DEN in the lung.

  17. Oncolytic Activity of Avian Influenza Virus in Human Pancreatic Ductal Adenocarcinoma Cell Lines

    PubMed Central

    Pizzuto, Matteo S.; Silic-Benussi, Micol; Pavone, Silvia; Ciminale, Vincenzo; Capua, Ilaria

    2014-01-01

    ABSTRACT Pancreatic ductal adenocarcinoma (PDA) is the most lethal form of human cancer, with dismal survival rates due to late-stage diagnoses and a lack of efficacious therapies. Building on the observation that avian influenza A viruses (IAVs) have a tropism for the pancreas in vivo, the present study was aimed at testing the efficacy of IAVs as oncolytic agents for killing human PDA cell lines. Receptor characterization confirmed that human PDA cell lines express the alpha-2,3- and the alpha-2,6-linked glycan receptor for avian and human IAVs, respectively. PDA cell lines were sensitive to infection by human and avian IAV isolates, which is consistent with this finding. Growth kinetic experiments showed preferential virus replication in PDA cells over that in a nontransformed pancreatic ductal cell line. Finally, at early time points posttreatment, infection with IAVs caused higher levels of apoptosis in PDA cells than gemcitabine and cisplatin, which are the cornerstone of current therapies for PDA. In the BxPC-3 PDA cell line, apoptosis resulted from the engagement of the intrinsic mitochondrial pathway. Importantly, IAVs did not induce apoptosis in nontransformed pancreatic ductal HPDE6 cells. Using a model based on the growth of a PDA cell line as a xenograft in SCID mice, we also show that a slightly pathogenic avian IAV significantly inhibited tumor growth following intratumoral injection. Taken together, these results are the first to suggest that IAVs may hold promise as future agents of oncolytic virotherapy against pancreatic ductal adenocarcinomas. IMPORTANCE Despite intensive studies aimed at designing new therapeutic approaches, PDA still retains the most dismal prognosis among human cancers. In the present study, we provide the first evidence indicating that avian IAVs of low pathogenicity display a tropism for human PDA cells, resulting in viral RNA replication and a potent induction of apoptosis in vitro and antitumor effects in vivo. These

  18. Identification of Distinct Tumor Subpopulations in Lung Adenocarcinoma via Single-Cell RNA-seq

    PubMed Central

    Min, Jae-Woong; Kim, Woo Jin; Han, Jeong A.; Jung, Yu-Jin; Kim, Kyu-Tae; Park, Woong-Yang; Lee, Hae-Ock; Choi, Sun Shim

    2015-01-01

    Single-cell sequencing, which is used to detect clinically important tumor subpopulations, is necessary for understanding tumor heterogeneity. Here, we analyzed transcriptomic data obtained from 34 single cells from human lung adenocarcinoma (LADC) patient-derived xenografts (PDXs). To focus on the intrinsic transcriptomic signatures of these tumors, we filtered out genes that displayed extensive expression changes following xenografting and cell culture. Then, we performed clustering analysis using co-regulated gene modules rather than individual genes to minimize read drop-out errors associated with single-cell sequencing. This combined approach revealed two distinct intra-tumoral subgroups that were primarily distinguished by the gene module G64. The G64 module was predominantly composed of cell-cycle genes. E2F1 was found to be the transcription factor that most likely mediates the expression of the G64 module in single LADC cells. Interestingly, the G64 module also indicated inter-tumoral heterogeneity based on its association with patient survival and other clinical variables such as smoking status and tumor stage. Taken together, these results demonstrate the feasibility of single-cell RNA sequencing and the strength of our analytical pipeline for the identification of tumor subpopulations. PMID:26305796

  19. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells.

    PubMed

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer. PMID:27610172

  20. Evaluation of interacellular tamoxifen-induced fluorescence in tamoxifen-resistant human breast adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Bachmann, Nathalie; Barberi-Heyob, Muriel; Gramain, Marie-Pierre; Bour, Corinne; Marchal, Sophie; Parache, Robert M.; Guillemin, Francois H.; Merlin, Jean-Louis

    1997-12-01

    A tamoxifen resistant cell line (MCF7TAM) was established from tamoxifen sensitive MCF-7 human adenocarcinoma cells expressing estrogen receptors. The resistant cell line was found to express estrogen receptors to similar level as the parent cell line but the receptors were found to be altered, having lost their ability to bind estradiol or tamoxifen. The fluorescence of eosin-tamoxifen ionic association was used to investigate intracellular location of tamoxifen in both sensitive and resistant cell lines. Fluorescence emission spectra of eosin, tamoxifen and eosin-tamoxifen complex ((lambda) exc equals 480 nm) were analyzed and showed that maximal fluorescence intensity of the complex ((lambda) em equals 540 nm) was four times higher than that of eosin alone while tamoxifen alone did not emit any fluorescence in this spectral range. In MCF-7 cells, tamoxifen was found to be diffusively located in the cytoplasm and nuclear fluorescence intensity was significantly lower. No difference was observed in fluorescence intensity or location in tamoxifen resistant cells, although it has been previously correlated with clinical responsiveness. Improvement of this fluorescence microscopy methodology appears necessary to provide accurate results taking into account the complexity of tamoxifen resistance molecular pathways.

  1. Identification of Distinct Tumor Subpopulations in Lung Adenocarcinoma via Single-Cell RNA-seq.

    PubMed

    Min, Jae-Woong; Kim, Woo Jin; Han, Jeong A; Jung, Yu-Jin; Kim, Kyu-Tae; Park, Woong-Yang; Lee, Hae-Ock; Choi, Sun Shim

    2015-01-01

    Single-cell sequencing, which is used to detect clinically important tumor subpopulations, is necessary for understanding tumor heterogeneity. Here, we analyzed transcriptomic data obtained from 34 single cells from human lung adenocarcinoma (LADC) patient-derived xenografts (PDXs). To focus on the intrinsic transcriptomic signatures of these tumors, we filtered out genes that displayed extensive expression changes following xenografting and cell culture. Then, we performed clustering analysis using co-regulated gene modules rather than individual genes to minimize read drop-out errors associated with single-cell sequencing. This combined approach revealed two distinct intra-tumoral subgroups that were primarily distinguished by the gene module G64. The G64 module was predominantly composed of cell-cycle genes. E2F1 was found to be the transcription factor that most likely mediates the expression of the G64 module in single LADC cells. Interestingly, the G64 module also indicated inter-tumoral heterogeneity based on its association with patient survival and other clinical variables such as smoking status and tumor stage. Taken together, these results demonstrate the feasibility of single-cell RNA sequencing and the strength of our analytical pipeline for the identification of tumor subpopulations. PMID:26305796

  2. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells

    PubMed Central

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer. PMID:27610172

  3. Dual Regulation of Cell Death and Cell Survival upon Induction of Cellular Stress by Isopimara-7,15-Dien-19-Oic Acid in Cervical Cancer, HeLa Cells In vitro

    PubMed Central

    Abu, Nadiah; Yeap, Swee K.; Pauzi, Ahmad Z. Mat; Akhtar, M. Nadeem; Zamberi, Nur R.; Ismail, Jamil; Zareen, Seema; Alitheen, Noorjahan B.

    2016-01-01

    The Fritillaria imperialis is an ornamental flower that can be found in various parts of the world including Iraq, Afghanistan, Pakistan, and the Himalayas. The use of this plant as traditional remedy is widely known. This study aims to unveil the anti-cancer potentials of Isopimara-7,15-Dien-19-Oic Acid, extracted from the bulbs of F. imperialis in cervical cancer cell line, HeLa cells. Flow cytometry analysis of cell death, gene expression analysis via cDNA microarray and protein array were performed. Based on the results, Isopimara-7,15-Dien-19-Oic acid simultaneously induced cell death and promoted cell survival. The execution of apoptosis was apparent based on the flow cytometry results and regulation of both pro and anti-apoptotic genes. Additionally, the regulation of anti-oxidant genes were up-regulated especially thioredoxin, glutathione and superoxide dismutase- related genes. Moreover, the treatment also induced the activation of pro-survival heat shock proteins. Collectively, Isopimara-7,15-Dien-19-Oic Acid managed to induce cellular stress in HeLa cells and activate several anti- and pro survival pathways. PMID:27065873

  4. Differential Matrix Metalloproteinase Levels in Adenocarcinoma and Squamous Cell Carcinoma of the Lung

    PubMed Central

    Shah, Sonam A; Spinale, Francis G; Ikonomidis, John S; Stroud, Robert E; Chang, Eileen I; Reed, Carolyn E

    2010-01-01

    Objective The matrix metalloproteinases (MMPs) have been implicated in the aggressive course of non-small cell lung cancer (NSCLC). However, there are a large number of MMP subtypes with diverse proteolytic substrates and different induction pathways. This study tested the hypothesis that a differential MMP profile would exist between NSCLC and normal lung and that MMP patterns would differ between NSCLC histologic type. Methods NSCLC samples and remote normal samples were obtained from patients with stage I or II NSCLC with either squamous cell (n=22) or adenocarcinoma (n=19) histology. Absolute concentrations for each of the MMP subclasses; collagenases (MMP-1, 8, -13), gelatinases (MMP-2,-9), lysins (MMP-2, -7) and elastase (MMP-12) were determined by a calibrated and validated multiplex suspension array. Results Overall, MMP levels were significantly increased in NSCLC compared to normal. For example, MMP-1 and MMP-7 increased by approximately 10 fold in NSCLC (p<0.05). Moreover, a different MMP portfolio was observed between NSCLC histologic types. For example MMP-1,-8,-9 and -12 increased by over 4-fold in squamous cell versus adenocarcinoma (p<0.05). In those patients who recurred within 3 years of resection, 3-fold higher levels of MMP-8 and -9 were observed (p<0.05). Conclusion Increased levels of a number of MMP types occur with NSCLC, but the MMP profile was distinctly different between histologic types and in those patients with recurrence. These different MMP profiles may be important in the mechanistic basis for the natural history of different NSCLC types, as well as identifying potential prognostic and therapeutic targets. PMID:20304142

  5. Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G2/M transition by preventing cdc2 protein kinase dephosphorylation and activation.

    PubMed Central

    Comayras, C; Tasca, C; Pérès, S Y; Ducommun, B; Oswald, E; De Rycke, J

    1997-01-01

    Cytolethal distending toxins (CDT) constitute an emerging heterogeneous family of bacterial toxins whose common biological property is to inhibit the proliferation of cells in culture by blocking their cycle at G2/M phase. In this study, we investigated the molecular mechanisms underlying the block caused by CDT from Escherichia coli on synchronized HeLa cell cultures. To this end, we studied specifically the behavior of the two subunits of the complex that determines entry into mitosis, i.e., cyclin B1, the regulatory unit, and cdc2 protein kinase, the catalytic unit. We thus demonstrate that CDT causes cell accumulation in G2 and not in M, that it does not slow the progression of cells through S phase, and that it does not affect the normal increase of cyclin B1 from late S to G2. On the other hand, we show that CDT inhibits the kinase activity of cdc2 by preventing its dephosphorylation, an event which, in normal cells, triggers mitosis. This inhibitory activity was demonstrated for the three partially related CDTs so far described for E. coli. Moreover, we provide evidence that cells exposed to CDT during G2 and M phases are blocked only at the subsequent G2 phase. This observation means that the toxin triggers a mechanism of cell arrest that is initiated in S phase and therefore possibly related to the DNA damage checkpoint system. PMID:9393800

  6. Salt-Inducible Kinase 1 (SIK1) Is Induced by Gastrin and Inhibits Migration of Gastric Adenocarcinoma Cells

    PubMed Central

    Selvik, Linn-Karina M.; Rao, Shalini; Steigedal, Tonje S.; Haltbakk, Ildri; Misund, Kristine; Bruland, Torunn; Prestvik, Wenche S.; Lægreid, Astrid; Thommesen, Liv

    2014-01-01

    Salt-inducible kinase 1 (SIK1/Snf1lk) belongs to the AMP-activated protein kinase (AMPK) family of kinases, all of which play major roles in regulating metabolism and cell growth. Recent studies have shown that reduced levels of SIK1 are associated with poor outcome in cancers, and that this involves an invasive cellular phenotype with increased metastatic potential. However, the molecular mechanism(s) regulated by SIK1 in cancer cells is not well explored. The peptide hormone gastrin regulates cellular processes involved in oncogenesis, including proliferation, apoptosis, migration and invasion. The aim of this study was to examine the role of SIK1 in gastrin responsive adenocarcinoma cell lines AR42J, AGS-GR and MKN45. We show that gastrin, known to signal through the Gq/G11-coupled CCK2 receptor, induces SIK1 expression in adenocarcinoma cells, and that transcriptional activation of SIK1 is negatively regulated by the Inducible cAMP early repressor (ICER). We demonstrate that gastrin-mediated signalling induces phosphorylation of Liver Kinase 1B (LKB1) Ser-428 and SIK1 Thr-1