Science.gov

Sample records for adenocarcinoma hela human

  1. Crinane alkaloids of the amaryllidaceae with cytotoxic effects in human cervical adenocarcinoma (HeLa) cells.

    PubMed

    Nair, Jerald J; Rárová, Lucie; Strnad, Miroslav; Bastida, Jaume; Cheesman, Lee; van Staden, Johannes

    2014-04-01

    The family Amaryllidaceae has a long history of usage in the traditional medicinal practices of the indigenous peoples of South Africa, with three of its species known to be used for cancer treatment. Furthermore, the Amaryllidaceae is widely recognized for its unique alkaloid constituents, several of which exhibit potent and selective cytotoxic activities. In this study, several crinane alkaloids derived from local Amaryllidaceae species were examined for cytotoxic effects against the human cervical adenocarcinoma cell line, of which distichamine was the most potent (IC50 2.2 microM).

  2. Optical parameters measurement for diagnostic and photodynamic therapy of human cervical adenocarcinoma (HeLa) cell line

    NASA Astrophysics Data System (ADS)

    Rehman, A.; Firdous, S.; Nawaz, M.; Ahmad, M.

    2011-11-01

    The purpose of this study was to investigate the optical properties, absorption coefficient (μ a ) scattering coefficient (μ s ) and refractive indices, (n) of HeLa cell line in a suspension of 2% minimum essential medium (MEM) at two different (632.8 and 532.0 nm) wave lengths of laser light. Optical properties were determined with Kubelka Munk Model (KMM) and refractive index measurement was made through minimum angle of deviation method (MAD). We reported μ a = 8.643 ± 0.187 and 2.348 ± 0.249 cm-1 and μ s = 5.609 ± 0.287 and 88.166 ± 2.833 cm-1 at 632.8 and 532.0 nm, respectively. Refractive index was found to be 1.332 and 1.312 at 632.8 nm and 532.0 nm, respectively. The discussed results provide a route of information for clinical diagnosis, therapeutic application and dosimetry studies in HeLa and other cell lines.

  3. Characterization and localization of mitochondrial oligopeptidase (MOP) (EC 3.4.24.16) activity in the human cervical adenocarcinoma cell line HeLa.

    PubMed

    Krause, D R; Piva, T J; Brown, S B; Ellem, K A

    1997-09-01

    In this study we describe the partial purification and characterization of the HeLa cell oligopeptidase M or endopeptidase 3.4.24.16. The HeLa enzyme was isolated initially by its ability to hydrolyse a nonapeptide substrate (P9) which was cognate to the N-terminal cleavage site of preproTGF alpha. The enzyme was shown to be a metalloprotease as it was inhibited by Zn(2+)-chelating agents and DTT, and had an approximate molecular weight of 55-63 kD determined by gel filtration. Neurotensin, dynorphin A1-17 and GnRH1-9 were rapidly degraded by the enzyme while GnRH1-10 and somatostatin were not. Neurotensin was cleaved at the Pro10-Tyr11 bond, leading to the formation of neurotensin (1-10) and neurotensin (11-13). The K(m) for neurotensin cleavage was 7 microM and the Ki for the specific 24.16 dipeptide inhibitor (Pro-ile) was 140 microM which were similar to those observed from the human brain enzyme [Vincent et al. (1996): Brain Res 709:51-58]. Through the use of specific antibodies, the purified HeLa enzyme was shown to be oligopeptidase M. This enzyme and its closely related family member thimet oligopeptidase were shown to co-elute during the isolation procedure but were finally separated using a MonoQ column. Oligopeptidase M is located mainly in mitochondria though it was detected on the plasma membrane in an inactive form. The results obtained demonstrate the first recorded instance of this enzyme in human tissue cultured cells, and raise the issue of its function therein.

  4. Resistance of cervical adenocarcinoma cells (HeLa) to venom from the scorpion Centruroides limpidus limpidus

    PubMed Central

    2013-01-01

    Background The venom of Centruroides limpidus limpidus (Cll) is a mixture of pharmacologically active principles. The most important of these are toxic proteins that interact both selectively and specifically with different cellular targets such as ion channels. Recently, anticancer properties of the venom from other scorpion species have been described. Studies in vitro have shown that scorpion venom induces cell death, inhibits proliferation and triggers the apoptotic pathway in different cancer cell lines. Herein, after treating human cervical adenocarcinoma (HeLa) cells with Cll crude venom, their cytotoxic activity and apoptosis induction were assessed. Results Cll crude venom induced cell death in normal macrophages in a dose-dependent manner. However, through viability assays, HeLa cells showed high survival rates after exposure to Cll venom. Also, Cll venom did not induce apoptosis after performing ethidium bromide/acridine orange assays, nor was there any evidence of chromatin condensation or DNA fragmentation. Conclusions Crude Cll venom exposure was not detrimental to HeLa cell cultures. This may be partially attributable to the absence of specific HeLa cell membrane targets for molecules present in the venom of Centruroides limpidus limpidus. Although these results might discourage additional studies exploring the potential of Cll venom to treat human papilloma cervical cancer, further research is required to explore positive effects of crude Cll venom on other cancer cell lines. PMID:24004568

  5. In vitro study of 5-aminolevulinic acid-based photodynamic therapy for apoptosis in human cervical HeLa cell line

    NASA Astrophysics Data System (ADS)

    Atif, M.; Firdous, S.; Khurshid, A.; Noreen, L.; Zaidi, S. S. Z.; Ikram, M.

    2009-12-01

    5-aminolevulanic acid (ALA), belonging among the promising second generation of sensitizers, was evaluated as an inducer of photodamage on HeLa (human cervical adenocarcinoma) cell line. A diode laser (635 nm) was used as a source for initiation of the photodynamic effect. We studied the influence of different incubation times, various concentrations of sensitizer, different irradiation doses and various combinations of sensitizer and light doses on the photodamage of HeLa cells. Viability of cells was determined by means of neutral red assay. The quantitative cellular uptake of ALA sensitizer was done by spectrophotometric measurements. No prominent cytotoxic or phototoxic effects on HeLa were observed due to sensitizer or light doses when studied independently of each other. However phototoxicity evoked by laser irradiated sensitizer was detected in HeLa cell line.

  6. 2'-Nitroflavone induces cell cycle arrest and apoptosis in HeLa human cervical carcinoma cells.

    PubMed

    Cárdenas, Mariano G; Blank, Viviana C; Marder, Mariel; Roguin, Leonor P

    2008-09-08

    The mechanism of antitumor action of a synthetic nitroflavone derivative, 2'-nitroflavone, was evaluated in vitro in HeLa human cervix adenocarcinoma cells. We showed that the nitroflavone derivative slowed down the cell cycle at the S phase and increase the population of cells at the G2/M phase after 24h of incubation. The treatment with 2'-nitroflavone also induced an apoptotic response, characterized by an increase of the sub-G1 fraction of cells, by cells with chromatin condensation and membrane blebbing, by a typical ladder of DNA fragmentation and by detection of apoptotic cells stained with Annexin V. The observed apoptosis was regulated by caspase-8 and -9, both contributing to the activation of the effector caspase-3. In addition, inhibitors of caspase-8 or -9 partially protected HeLa cells from 2'-nitroflavone-induced cell death. We also found that 2'-nitroflavone did not affect the total amount of Bax and Bcl-2 proteins, although a translocation of Bax from cytosol to mitochondria was evident after 6h of exposure. Furthermore, 2'-nitroflavone decreased the expression of the anti-apoptotic Bcl-XL protein, induced the release of cytochrome C to cytosol and increased the levels of Fas and Fas-L. Our results indicated that both death receptor and mitochondria-dependent pathways are involved in the apoptotic cell death triggered by 2'-nitroflavone and suggest that this derivative could be a potentially useful agent for the treatment of certain malignancies.

  7. Amygdalin induces apoptosis in human cervical cancer cell line HeLa cells.

    PubMed

    Chen, Yu; Ma, Jinshu; Wang, Fang; Hu, Jie; Cui, Ai; Wei, Chengguo; Yang, Qing; Li, Fan

    2013-02-01

    Amygdalin, a naturally occurring substance, has been suggested to be efficacious as an anticancer substance. The effect of amygdalin on cervical cancer cells has never been studied. In this study, we found that the viability of human cervical cancer HeLa cell line was significantly inhibited by amygdalin. 4,6-Diamino-2-phenyl indole (DAPI) staining showed that amygdalin-treated HeLa cells developed typical apoptotic changes. The development of apoptosis in the amygdalin-treated HeLa cells were confirmed by double staining of amygdalin-treated HeLa cells with annexin V-FITC and propidium iodide (PI) along with increase in caspase-3 activity in these cells. Further studies indicated that antiapoptotic protein Bcl-2 was downregulated whereas proapoptotic Bax protein was upregulated in the amygdalin-treated HeLa cells implying involvement of the intrinsic pathway of apoptosis. In vivo, amygdalin administration inhibited the growth of HeLa cell xenografts through a mechanism of apoptosis. The results in the present study suggest that amygdalin may offer a new therapeutic option for patients with cervical cancer.

  8. Anticancer activity of Bombyx batryticatus ethanol extract against the human tumor cell line HeLa.

    PubMed

    Wu, W P; Cao, J; Wu, J Y; Chen, H; Wang, D

    2015-01-15

    Anticancer activity of Bombyx batryticatus ethanol extract (BBE) against HeLa cells was studied using cell viability, DNA fragmentation, real-time polymerase chain reaction, and Western blot analyses. The BBE inhibited the growth and induced apoptosis of HeLa cells. The MTT assay indicated that the BBE induced cytotoxicity in HeLa cells in a time- and concentration-dependent manner. When HeLa cells were treated for 48 h, the 50% inhibitory concentration (IC₅₀) value for the BBE was 1.564 mg/mL. The microscopy results showed that HeLa cells were severely distorted and showed slow growth; some cells became round in shape when treated with 5 mg/mL BBE for 24 h. The DNA ladder results revealed excessive DNA fragmentation in HeLa cells treated with 7 mg/mL BBE for 36 h. The proapoptotic activity of the BBE was attributed to its ability to modulate the expression of Bcl-2 and Bax genes. The mRNA and protein expression levels of Bax were remarkably higher whereas those of Bcl-2 were lower than those in the control cells; this led to an increased Bax/Bcl-2 ratio in cells treated with the BBE for 36 h. The results suggest that the BBE might play an important role in tumor growth suppression by inducing apoptosis in human cervical cancer cells via the regulation of the Bcl-2- and Bax-mediated apoptotic pathways.

  9. Human chorionic gonadotropin and CA 15-3 producing adenocarcinoma.

    PubMed

    Uçkaya, G; Ozet, A; Arpaci, A; Kömürcü, S

    1998-01-01

    50 years old man suffering from primary lung adenocarcinoma presented with high levels of both beta subunit human chorionic gonadotropin (beta HCG) and cancer antigen 15-3 (CA 15-3) in the absence of elevated carcinoembrionic antigen (CEA), alfa fetoprotein (AFP) and carbohydrate antigen 19-9 (CA 19-9). Although beta HCG or CA 15-3 high levels were reported in adenocarcinoma of lung, this is the first report of a patient with high levels of both markers.

  10. Baicalein induces apoptosis of human cervical cancer HeLa cells in vitro.

    PubMed

    Peng, Yong; Guo, Congshan; Yang, Yanhong; Li, Fenglin; Zhang, Yanxia; Jiang, Bin; Li, Qingwang

    2015-03-01

    A number of studies have shown that baicalein shows high antitumor activity in vitro and in vivo. In this study, the inhibitory effect of baicalein on human cervical cancer HeLa cells was studied in vitro. HeLa cells were treated with high (100 µg/ml) and low (50 µg/ml) doses of baicalein, and cell growth inhibition rates were examined by the MTT assay. The morphological changes of apoptotic cells were observed under the light and electron microscope, while the rate of cell apoptosis was examined by flow cytometry. The expression of apoptosis-related proteins was analyzed by western blot, and caspase-3 activation was examined by a caspase-3 activity assay and spectrophotometry. The results demonstrated that baicalein inhibits the proliferation of HeLa cells and induces apoptosis in a caspase-3-dependent pathway, through downregulation of the B-cell lymphoma 2 (Bcl-2) protein and upregulation of the Bcl-2-associated X protein (Bax), Fas, Fas ligand (FasL) and caspase-8. Thus, we conclude that baicalein induces apoptosis of HeLa cells via the mitochondrial and the death receptor pathways. Cell apoptosis in HeLa cells was most likely promoted by the activation of the proteolytic enzyme caspase-3 in both pathways.

  11. Effects of TGF-β1 on the Proliferation and Apoptosis of Human Cervical Cancer Hela Cells In Vitro.

    PubMed

    Tao, Ming-Zhu; Gao, Xia; Zhou, Tie-Jun; Guo, Qing-Xi; Zhang, Qiang; Yang, Cheng-Wan

    2015-12-01

    To investigate the effects of TGF-β1 on the proliferation and apoptosis of cervical cancer Hela cells in vitro. Human cervical cancer Hela cells were cultured in vitro and divided into the experimental and control groups. In the experimental groups, Hela cells were stimulated with different concentrations of TGF-β1 (0.01, 0.1, 1, and 10 ng/mL), while Hela cells cultured in serum-free medium without TGF-β1 were used as controls. The CCK8 method was adopted to detect the effect of TGF-β1 on Hela cell proliferation, and flow cytometry was used to determine cell apoptosis 72 h after TGF-β1 treatment. Compared with the control group, the CCK-8 tests showed that different concentrations of TGF-β1 had no obvious effect on Hela cell proliferation 24 h after treatment (P > 0.05). However, upon 48 or 72 h of treatment, TGF-β1 significantly inhibited the proliferation of Hela cells in a time- and dose-dependent manner (P < 0.05). The flow cytometry results indicated that TGF-β1 influenced the apoptosis of human cervical cancer Hela cells in a dose-dependent manner after 72 h of treatment (P < 0.05). TGF-β1 significantly inhibited the growth and induced the apoptosis of human cervical Hela cells in vitro.

  12. Ovine intestinal adenocarcinomas: histologic and phenotypic comparison with human colon cancer.

    PubMed

    Munday, John S; Brennan, Moira M; Jaber, Azhar M; Kiupel, Matti

    2006-04-01

    Approximately 7% of old, unthrifty sheep (Ovis aries) in New Zealand have intestinal adenocarcinomas. To investigate whether these sheep might be used as a model of human colonic neoplasia, the biologic behavior and histologic appearance of ovine intestinal adenocarcinomas were compared with those reported for human colonic adenocarcinomas. We collected 50 intestinal tracts with grossly visible intestinal neoplasia from slaughtered sheep. Neoplasms were assessed using World Health Organization guidelines for assessment of human colonic adenocarcinomas. All ovine adenocarcinomas developed in the small intestine. In contrast, only 4% of human intestinal tumors develop at this location, whereas the majority develop in the colon. A visible polyp is present within 89% of human colonic adenocarcinomas, whereas polyps were present in only 46% of the ovine neoplasms. Intestinal wall infiltration by the neoplastic cells and rates of lymph node (84% in sheep; 61% in humans) and distant (52% in sheep; 17% in humans) metastases were comparable between ovine and human adenocarcinomas. However, ovine adenocarcinomas developed more peritoneal and fewer hepatic metastases than human adenocarcinomas. Histologic grading of ovine tumors revealed cell differentiation similar to that reported within human colonic adenocarcinomas. In conclusion, ovine intestinal adenocarcinomas, like human colonic adenocarcinomas, typically arise spontaneously and consistently develop widespread metastases. In addition, tumors appear histologically similar between these species. Therefore, sheep may provide a model of advanced human colonic cancer, possibly allowing evaluation of novel therapeutics and surgical procedures.

  13. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    PubMed

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  14. Induction of apoptosis in human cervical carcinoma Hela cells with active components of Menispermum dauricum.

    PubMed

    Wang, J Y; Sun, S; Liu, L; Yang, W S

    2014-02-13

    Menispermum dauricum DC possesses a wide range of pharmacological effects. In this study, the mechanism of apoptosis induced by active components of M. dauricum was investigated in the human cervical carcinoma HeLa cell line. HeLa cells were treated with different M. dauricum concentrations over different time periods. The proliferation-inhibitory rate and cytotoxic effect of HeLa cells were measured by using the methyl thiazolyl tetrazolium (MTT) assay, and the apoptotic rate was detected by flow cytometry. Expressions of caspase-9, caspase-8, caspase-3, Bcl-2, and Fas proteins, in the apoptotic pathway, and the expression of nuclear factor-kappa B (NF-κB) were detected by SP immunocytochemistry. The MTT assay showed that active components of M. dauricum could significantly inhibit the growth of HeLa cells in a dose- and time-dependent manner (P<0.01). The Sub-Gl peak was found by flow cytometry, and the maximal apoptosis rate was 24.93%. Immunocytochemistry showed that after treatment with M. dauricum, the expressions of caspase-8, caspase-9, caspase-3, Fas protein, and NF-κB all increased, and the expression of the Bcl-2 protein decreased, with significant differences relative to the control group (P<0.01). Apoptosis in HeLa cells could be induced by active components of M. dauricum through the NF-κB signal transduction pathway and the caspase pathway, which was related to the downregulation of Bcl-2 expression and the upregulation of Fas expression.

  15. AMP-activated protein kinase supports the NGF-induced viability of human HeLa cells to glucose starvation.

    PubMed

    Ting, Luo; Bo, Wan; Li, Ruwei; Chen, Xinya; Wang, Yingli; Jun, Zhou; Yu, Long

    2010-07-01

    As an important cellular energy regulation kinase, AMP-activated protein kinase (AMPK) has been demonstrated as a key molecule in the development of tolerance to nutrient starvation. Activation of AMPK includes the phosphorylation of Thr172 of the alpha-subunit. Nerve growth factor (NGF) was originally isolated for its ability to stimulate both survival and differentiation in peripheral neurons, but many investigations have shown that the NGF also plays an important role in survival, growth and invasion of many human cancers. In this study, we used CCK-8 cell viability assay to find that NGF could facilitate the viability of HeLa cells following glucose deprivation while not in glucose-normal control groups. This effect of NGF-induced viability promotion to glucose starvation can be suppressed by Compound C, a specific inhibitor of AMPK. Meanwhile, western blot analysis showed that AMPKalpha1/alpha2 Thr172 phosphorylation level in HeLa cells was up-regulated after NGF treatment under glucose starvation, and Compound C was able to reduce the AMPKalpha1/alpha2 Thr172 phosphorylation level which was up-regulated by NGF in HeLa cells. Taken together, these results indicate that AMP-activated protein kinase supports the NGF-induced viability of human HeLa cells to glucose starvation.

  16. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    SciTech Connect

    Sun, Bin; Cai, Yingyue; Li, Yongshu; Li, Jingjing; Liu, Kaiyu; Li, Yi; Yang, Yongbo

    2013-05-25

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization.

  17. Cytotoxicity of selected magnetic fluids on human adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Hilger, Ingrid; Frühauf, Sylvia; Linß, Werner; Hiergeist, Robert; Andrä, Wilfried; Hergt, Rudolf; Kaiser, Werner A.

    2003-04-01

    Based on the knowledge that the magnetite particles seem to be well tolerated by the human body, the cytotoxic potential of coated particles was investigated, which had been selected for potential applications regarding the minimal-invasive elimination of breast tumors by magnetic thermoablation. Human adenocarcinoma cells (BT-20) were exposed (24, 48 and 72 h) to different magnetite particles with diverging total size (8, 10 and 220 nm) and coating (cationic and anionic). One sample contained only non-coated magnetite particles. The magnetite concentration ranged between 0.2 and 20 ng/cell. Cytotoxicity was estimated by measuring the succinate dehydrogenase activity. The morphologic features resulting from the interaction of magnetic fluids with BT-20 cells was determined by transmission electron microscopy. As opposed to the non-coated magnetic particles, cationic particles induced the strongest decrease in cell survival rates depending on time and concentration. Morphologically, the cationic particle samples exerted a strong binding to cellular membranes. Changes in the subcellular structure were found in relation to the coated magnetic particles. In conclusion, our results show that the coated prototype magnetic particles, particularly those with a cationic surfactant, are cytotoxic to BT-20 cells. The cytotoxicity is attributed to electrostatic bindings with cellular membranes, influences of chemical components or non-physiologic pH. Considering the in vivo applications, adverse systemic effects are conceivable and more biocompatible coatings for the selected magnetic particles should be elaborated.

  18. A COMPARISON OF THE GROWTH OF SELECTED MYCOBACTERIA IN HELA, MONKEY KIDNEY, AND HUMAN AMNION CELLS IN TISSUE CULTURE

    PubMed Central

    Shepard, Charles C.

    1958-01-01

    HeLa, monkey kidney, and human amnion cells in tissue cultures were compared as sites for the multiplication of strains of tubercle bacilli or original and reduced pathogenicity, and for several other species of mycobacteria capable of causing disease in humans. The arrangement of the pathogenic species inorder of their growth rates in HeLa cells was Mycobacterium fortuitum, Mycobacterium balnei, and the "yellow bacillus," followed closely by the tubercle bacillus. This order was also correct for these species in monkey kidney and human amnion cells, and is the same as that seen in bacteriological media. The arrangement of the strains of tubercle bacilli in order of their growth rates in all three types of cells was: H37Rv, then R1Rv, and lastly H37Ra, which multiplied about as slowly as BCG. An INH-resistant strain grew about as rapidly as H37Rv. Growth of the pathogenic species occurred at about the same rates in HeLa and monkey kidney cells, but was distinctly slower in human amnion cells, which are less active metabolically. Irradiation of the cells in doses up to 5000 r did not affect the subsequent growth of mycobacteria in them. Preliminary experiments with human leprosy bacilli indicate that they can be introduced into these cells in high numbers and that the bacilli then persist for the life of the cells. PMID:13491759

  19. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  20. Effect of gyromagnetic fields on human prostatic adenocarcinoma cells

    PubMed Central

    Lei, Hongen; Xu, Yongde; Guan, Ruili; Li, Meng; Hui, Yu; Gao, Zhezhu; Yang, Bicheng; Xin, Zhongcheng

    2015-01-01

    Purpose To investigate the biological effect of gyromagnetic fields (GMFs) on cell proliferation and apoptosis of human prostatic adenocarcinoma cells and explore the underlying mechanisms. Methods PC-3 cells were grouped into normal control (NC) and GMF treatment groups. Cell proliferation was analyzed with kit-8 and Ki67 immunofluorescence staining, while cell apoptosis was analyzed with flow cytometry double staining of Annexin V-PE/7-AAD. The Akt and p38 MAPK/Caspase signaling pathways were analyzed by western blotting and immunofluorescence staining, and cell polarization was analyzed with PARD3. Results Cell proliferation and activity of the Akt pathway were significantly decreased by the GMF, while cell apoptosis, activity of p38 MAPK, and PARD3-positive cell number were significantly increased in the GMF group compared to the NC group. Conclusion GMFs inhibit cell proliferation, induce apoptosis, and regulate tumor cell polarity conditions, potentially through down-regulating Akt, activating the p38 MAPK/Caspase pathway, and promoting PARD3 expression in PC-3 cells. PMID:26648740

  1. 5-Fluorouracil-radiation interactions in human colon adenocarcinoma cells

    SciTech Connect

    Buchholz, D.J.; Lepek, K.J.; Rich, T.A.

    1995-07-15

    The purpose of this investigation was to determine the effect of cellular proliferation and cell cycle stage on the ability of postirradiation 5-fluorouracil (5-FU) to radiosensitize cultured human colon adenocarcinoma Clone A cells. Cell survival curves were generated for irradiated: (a) log- and plateau-phase Clone A cells; and (b) Clone A cells separated by centrifugal elutriation into the various phases of the cell cycle; with and without postirradiation treatment with 100 {mu}g/ml 5-FU. Postirradiation treatment with 5-FU sensitized proliferating cells to a greater degree than it sensitized cells growing in plateau phase. The {beta} component of cell kill in log-phase cells was increased by a factor of 1.5 with a sensitizer enhancement ratio of 1.21 at the 0.01 survival level. Plateau-phase cells showed less radiosensitization (sensitizer enhancement ratio of 1.13 at the 0.01 survival level); however, there was a mild increase in both {alpha} and {beta} kill in plateau-phase cells. Elutriated G{sub 1} cells were the most radiosensitive, independent of treatment with 5-FU. The phase of the cell cycle had little effect on the ability of fluorouracil to radiosensitize Clone A cells. Proliferating cells are more susceptible to radiosensitization with 5-FU than plateau-phase cells are, but this effect appears to be independent of the phase of the cell cycle. 18 refs., 4 figs., 3 tabs.

  2. Alterations of Membrane Glycopeptides in Human Colonic Adenocarcinoma

    PubMed Central

    Kim, Young S.; Isaacs, Richard; Perdomo, Jose M.

    1974-01-01

    Membrane glycopeptides were examined in human colonic adenocarcinoma and normal colonic mucosa. The carbohydrates of membrane glycopeptides were found to be markedly reduced in tumor tissue and the relative proportions of the various sugars were altered. Although all of the sugars were lower in tumor tissue when compared to the adjacent normal mucosa, galactosamine, fucose, and sialic acid were more significantly reduced. Examination of the blood group activity and lectin-binding properties of membrane glycopeptides revealed that specific carbohydrate structures had changed in the tumor tissue. Most striking of these changes was the disappearance of glycoprotein-associated blood group A activity. Assay of the enzyme responsible for synthesis of the blood group A determinant showed that this glycosyltransferase activity was greatly diminished in tumor tissue. A galactosyltransferase and a fucosyltransferase were also significantly lower in the tumor tissue whereas the levels of another galactosyltransferase and a sialyltransferase were unaltered. Glycosidase activities in the normal and tumor tissues were similar. The results show that an alteration in glycoprotein biosynthesis occurred during tumorigenesis that resulted in a modified membrane glycoprotein composition and that these changes are probably a reflection of reduced levels of the enzymes responsible for glycoprotein synthesis. PMID:4140512

  3. Characterization of the human CUTA isoform2 present in the stably transfected HeLa cells.

    PubMed

    Yang, Jingchun; Yang, Huirong; Yan, Lichong; Yang, Liu; Yu, Long

    2009-01-01

    CUTA, Homo sapiens divalent cation tolerance homolog, has been implicated in anchoring of acetylcholinesterase in neuronal cell membranes. However, a protein highly homologous to CUTA in Rattus norvegicus is structurally similar to the signal transduction protein PII, and this similarity suggests an intriguing role of CUTA in signal transduction. Recent researches indicated that CUTA was one of the 35 key genes responsible for lactation in mammary gland development. However, the physiological role of CUTA is still unclear, so more information of this gene is needed. In this study, the expression profile of CUTA gene in human tissues was examined, and our research revealed that CUTA gene was constitutively expressed in all of the 18 tissues tested. As reported, CUTA gene has five variant transcripts encoding three isoforms with different N terminals. CUTA isoform2 is encoded by three of the five variant transcripts as the common part of the three isoforms. So CUTA isoform2 was chose as representative to characterize the CUTA protein. We constructed a HeLa cell line stably transfected with the encoding sequence of CUTA isoform2 for further study. The subcellular location and oligomeric structure of the CUTA isoform2 was analyzed in the stable cell lines. It was found that the CUTA isoform2 was mainly located in mitochondria as a new potential mitochondrial protein. Furthermore, CUTA isoform2 formed trimers in cell lysate with the possible occurrence of heteropolymers. These findings would be helpful to the further study on the specific function of CUTA protein.

  4. Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas

    PubMed Central

    Jin, Joy Q.; Woodard, Gavitt A.; Tolani, Bhairavi; Luh, Thomas M.; Giroux-Leprieur, Etienne; Mo, Minli; Chen, Zhao; Che, Juanjuan; Zhang, Zhenfa; Zhou, Yong; Wang, Lei; Hao, Xishan; Jablons, David; Wang, Changli; He, Biao

    2016-01-01

    Adenocarcinoma is the most common type of lung cancer. Epithelial-mesenchymal transition (EMT) is required for tumor invasion/metastasis and the components that control this process are potential therapeutic targets. This study we examined the role of Gli in lung adenocarcinoma and whether its activation regulates metastasis through EMT in lung adenocarcinoma. We found that tumors with high Gli expression had significantly lower E-Cadherin expression in two independent cohorts of patients with lung adenocarcinoma that we studied. In vitro up-regulation of SHh resulted in increased cell migration while small molecule inhibitors of Smo or Gli significantly reduced cell mobility both in a wound healing assay and in a 3D cell invasion assay. Inhibition of Gli in vivo decreased tumor growth and induced an increase in E-Cadherin expression. Our results indicate that Gli may be critical for lung adenocarcinoma metastasis and that a novel Gli inhibitor shows promise as a therapeutic agent by preventing cell migration and invasion in vitro and significantly reducing tumor growth and increasing E-Cadherin expression in vivo. PMID:27533453

  5. The role of the obestatin/GPR39 system in human gastric adenocarcinomas.

    PubMed

    Alén, Begoña O; Leal-López, Saúl; Alén, María Otero; Viaño, Patricia; García-Castro, Victoria; Mosteiro, Carlos S; Beiras, Andrés; Casanueva, Felipe F; Gallego, Rosalía; García-Caballero, Tomás; Camiña, Jesús P; Pazos, Yolanda

    2016-02-02

    Obestatin, a 23-amino acid peptide encoded by the ghrelin gene, and the GPR39 receptor were reported to be involved in the control of mitogenesis of gastric cancer cell lines; however, the relationship between the obestatin/GPR39 system and gastric cancer progression remains unknown. In the present study, we determined the expression levels of the obestatin/GPR39 system in human gastric adenocarcinomas and explored their potential functional roles. Twenty-eight patients with gastric adenocarcinomas were retrospectively studied, and clinical data were obtained. The role of obestatin/GPR39 in gastric cancer progression was studied in vitro using the human gastric adenocarcinoma AGS cell line. Obestatin exogenous administration in these GPR39-bearing cells deregulated the expression of several hallmarks of the epithelial-mesenchymal transition (EMT) and angiogenesis. Moreover, obestatin signaling promoted phenotypic changes via GPR39, increasingly impacting on the cell morphology, proliferation, migration and invasion of these cells. In healthy human stomachs, obestatin expression was observed in the neuroendocrine cells and GPR39 expression was localized mainly in the chief cells of the oxyntic glands. In human gastric adenocarcinomas, no obestatin expression was found; however, an aberrant pattern of GPR39 expression was discovered, correlating to the dedifferentiation of the tumor. Altogether, our data strongly suggest the involvement of the obestatin/GPR39 system in the pathogenesis and/or clinical outcome of human gastric adenocarcinomas and highlight the potential usefulness of GPR39 as a prognostic marker in gastric cancer.

  6. The role of the obestatin/GPR39 system in human gastric adenocarcinomas

    PubMed Central

    Alén, Begoña O.; Leal-López, Saúl; Alén, María Otero; Viaño, Patricia; García-Castro, Victoria; Mosteiro, Carlos S.; Beiras, Andrés; Casanueva, Felipe F.; Gallego, Rosalía; García-Caballero, Tomás; Camiña, Jesús P.; Pazos, Yolanda

    2016-01-01

    Obestatin, a 23-amino acid peptide encoded by the ghrelin gene, and the GPR39 receptor were reported to be involved in the control of mitogenesis of gastric cancer cell lines; however, the relationship between the obestatin/GPR39 system and gastric cancer progression remains unknown. In the present study, we determined the expression levels of the obestatin/GPR39 system in human gastric adenocarcinomas and explored their potential functional roles. Twenty-eight patients with gastric adenocarcinomas were retrospectively studied, and clinical data were obtained. The role of obestatin/GPR39 in gastric cancer progression was studied in vitro using the human gastric adenocarcinoma AGS cell line. Obestatin exogenous administration in these GPR39-bearing cells deregulated the expression of several hallmarks of the epithelial-mesenchymal transition (EMT) and angiogenesis. Moreover, obestatin signaling promoted phenotypic changes via GPR39, increasingly impacting on the cell morphology, proliferation, migration and invasion of these cells. In healthy human stomachs, obestatin expression was observed in the neuroendocrine cells and GPR39 expression was localized mainly in the chief cells of the oxyntic glands. In human gastric adenocarcinomas, no obestatin expression was found; however, an aberrant pattern of GPR39 expression was discovered, correlating to the dedifferentiation of the tumor. Altogether, our data strongly suggest the involvement of the obestatin/GPR39 system in the pathogenesis and/or clinical outcome of human gastric adenocarcinomas and highlight the potential usefulness of GPR39 as a prognostic marker in gastric cancer. PMID:26716511

  7. Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells.

    PubMed

    Jamsheena, Vellekkatt; Shilpa, Ganesan; Saranya, Jayaram; Harry, Nissy Ann; Lankalapalli, Ravi Shankar; Priya, Sulochana

    2016-03-05

    Bis(indolyl)methane appended biaryls were designed, synthesized and evaluated in human cervical cancer cell lines (HeLa) for their anticancer activities and compared against normal rat cardiac myoblasts (H9C2) cells. Compounds 1-12 were synthesized, with variations in one of the phenyl unit, in a single step by condensation of biaryl-2-carbaldehydes with indole in the presence of para-toluenesulfonic acid. Compound 1 exhibited a GI50 value of 11.00 ± 0.707 μM and the derivatives, compounds 4 and 11 showed a GI50 value of 8.33 ± 0.416 μM and 9.13 ± 0.177 μM respectively in HeLa cells and was found to be non-toxic to H9C2 cells up to 20 μM. Furthermore, compounds 1, 4 and 11 induced caspase dependent cellular apoptosis in a concentration-dependent manner, reduced mitochondrial membrane potential, inhibited the cell migration and downregulated the production of MMP-2 and MMP-9 in HeLa cells.

  8. The effect of uranyl acetate on human lymphoblastoid cells (RPMI 6410) and HeLa cells.

    PubMed Central

    Ghadially, F. N.; Yang-Steppuhn, S. E.; Lalonde, J. M.

    1982-01-01

    RPMI 6410 cells and HeLa cells were exposed to uranyl acetate. In RPMI 6410 cell cultures this produced single-membrane-bound presumably lysosomal bodies (called "uraniosomes") containing electron-dense crystals in the cultured cells and crystalline deposits in extracellular locations. Neither uraniosomes nor extracellular uranium deposits were found in HeLa cell cultures. All uraniosomes and extracellular uranium deposits analysed by electron-probed X-ray analysis were found to contain uranium, potassium and phosphorus. Traces of sulphur were detected in some but not all uraniosomes and extracellular uranium deposits. Traces of calcium were found in all extracellular uranium deposits and in some uraniosomes also. Images Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7093141

  9. Ethanol Metabolism by HeLa Cells Transduced with Human Alcohol Dehydrogenase Isoenzymes: Control of the Pathway by Acetaldehyde Concentration†

    PubMed Central

    Matsumoto, Michinaga; Cyganek, Izabela; Sanghani, Paresh C.; Cho, Won Kyoo; Liangpunsakul, Suthat; Crabb, David W.

    2010-01-01

    Background Human class I alcohol dehydrogenase 2 isoenzymes (encoded by the ADH1B locus) have large differences in kinetic properties; however, individuals inheriting the alleles for the different isoenzymes exhibit only small differences in alcohol elimination rates. This suggests that other cellular factors must regulate the activity of the isoenzymes. Methods The activity of the isoenzymes expressed from ADH1B*1, ADH1B*2, and ADH1B*3 cDNAs was examined in stably transduced HeLa cell lines, including lines which expressed human low Km aldehyde dehydrogenase (ALDH2). The ability of the cells to metabolize ethanol was compared with that of HeLa cells expressing rat class I ADH (HeLa-rat ADH cells), rat hepatoma (H4IIEC3) cells, and rat hepatocytes. Results The isoenzymes had similar protein half-lives in the HeLa cells. Rat hepatocytes, H4IIEC3 cells, and HeLa-rat ADH cells oxidized ethanol much faster than the cells expressing the ADH1B isoenzymes. This was not explained by high cellular NADH levels or endogenous inhibitors; but rather because the activity of the β1 and β2 ADHs were constrained by the accumulation of acetaldehyde, as shown by the increased rate of ethanol oxidation by cell lines expressing β2 ADH plus ALDH2. Conclusion The activity of the human β2 ADH isoenzyme is sensitive to inhibition by acetaldehyde, which likely limits its activity in vivo. This study emphasizes the importance of maintaining a low steady–state acetaldehyde concentration in hepatocytes during ethanol metabolism. PMID:21166830

  10. Isolation, cultivation and identification of human lung adenocarcinoma stem cells

    PubMed Central

    ZHANG, DE-GENG; JIANG, AI-GUI; LU, HUI-YU; ZHANG, LI-XIN; GAO, XIAO-YAN

    2015-01-01

    Recently, an increasing number of studies have demonstrated that lung cancer is a stem cell disease. However, ideal cell surface markers for isolating stem cells in lung cancer are yet to be identified. In the present study, a cell population with a cluster of differentiation (CD)133+ phenotype was successfully isolated from a single cell suspension of lung adenocarcinoma tissue using magnetic-activated cell sorting (MACS) and enriched in a serum-free culture. In comparison to CD133− cells, the CD133+ cells exhibited an enhanced capacity for self-renewal and differentiation, and a greater potential for in vivo tumor formation, in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. Tumors could be induced in NOD/SCID mice by the transplantation of 102 stem-like cells per mouse. The results of the present study demonstrated that CD133 may serve as a specific cell surface marker for lung adenocarcinoma stem cells, and that MACS combined with serum-free culture is an effective method for isolating and enriching lung cancer stem cells. PMID:25435932

  11. The different functions and clinical significances of caveolin-1 in human adenocarcinoma and squamous cell carcinoma

    PubMed Central

    Fu, Pin; Chen, Fuchun; Pan, Qi; Zhao, Xianda; Zhao, Chen; Cho, William Chi-Shing; Chen, Honglei

    2017-01-01

    Caveolin-1 (Cav-1), a major structural protein of caveolae, is an integral membrane protein which plays an important role in the progression of carcinoma. However, whether Cav-1 acts as a tumor promoter or a tumor suppressor still remains controversial. For example, the tumor-promoting function of Cav-1 has been found in renal cancer, prostate cancer, tongue squamous cell carcinoma (SCC), lung SCC and bladder SCC. In contrast, Cav-1 also plays an inhibitory role in esophagus adenocarcinoma, lung adenocarcinoma and cutaneous SCC. The role of Cav-1 is still controversial in thyroid cancer, hepatocellular carcinoma, gastric adenocarcinoma, colon adenocarcinoma, breast cancer, pancreas cancer, oral SCC, laryngeal SCC, head and neck SCC, esophageal SCC and cervical SCC. Besides, it has been reported that the loss of stromal Cav-1 might predict poor prognosis in breast cancer, gastric cancer, pancreas cancer, prostate cancer, oral SCC and esophageal SCC. However, the accumulation of stromal Cav-1 has been found to be promoted by the progression of tongue SCC. Taken together, Cav-1 seems playing a different role in different cancer subtypes even of the same organ, as well as acting differently in the same cancer subtype of different organs. Thus, we hereby explore the functions of Cav-1 in human adenocarcinoma and SCC from the perspective of clinical significances and pathogenesis. We envision that novel targets may come with the further investigation of Cav-1 in carcinogenesis. PMID:28243118

  12. Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Ikari, Akira; Watanabe, Ryo; Sato, Tomonari; Taga, Saeko; Shimobaba, Shun; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Endo, Satoshi; Matsunaga, Toshiyuki; Sugatani, Junko

    2014-09-01

    Claudin-2 is expressed in human lung adenocarcinoma tissue and cell lines, although it is absent in normal lung tissue. However, the role of claudin-2 in cell proliferation and the regulatory mechanism of intracellular distribution remain undefined. Proliferation of human adenocarcinoma A549 cells was decreased by claudin-2 knockdown together with a decrease in the percentage of S phase cells. This knockdown decreased the expression levels of ZONAB and cell cycle regulators. Claudin-2 was distributed in the nucleus in human adenocarcinoma tissues and proliferating A549 cells. The nuclear distribution of ZONAB and percentage of S phase cells were higher in cells exogenously expressing claudin-2 with a nuclear localization signal than in cells expressing claudin-2 with a nuclear export signal. Nuclear claudin-2 formed a complex with ZO-1, ZONAB, and cyclin D1. Nuclear distribution of S208A mutant, a dephosphorylated form of claudin-2, was higher than that of wild type. We suggest that nuclear distribution of claudin-2 is up-regulated by dephosphorylation and claudin-2 serves to retain ZONAB and cyclin D1 in the nucleus, resulting in the enhancement of cell proliferation in lung adenocarcinoma cells.

  13. Laminin 5 expression protects against anoikis at aerogenous spread and lepidic growth of human lung adenocarcinoma.

    PubMed

    Kodama, Keiji; Ishii, Gen'ichiro; Miyamoto, Shin'ichi; Goya, Masato; Zhang, Shi-Chuan; Sangai, Takafumi; Yoshikawa, Takeshi; Hasebe, Takahiro; Hitomi, Yoshiaki; Izumi, Keisuke; Ochiai, Atsushi

    2005-10-10

    Adenocarcinoma of the lung is characterized by frequent aerogenous spread (AE) and advancement along the alveolar wall (BAC growth). To elucidate the mechanism of AE metastasis and BAC growth in human lung adenocarcinoma, we established an in vivo orthotopic animal model and an in vitro culture. Investigation of expression levels of integrins, laminins and Type IV collagens, which are the major regulating molecules for cell attachment and anoikis was carried out and a clear correlation between the expression level of laminin 5 (LN5) and the BAC growth was observed using an orthotopic animal model. Introduction of LN5 cDNA to A549 cells increased anoikis resistance in an expression dependent manner. Cells with LN5 overexpression resisted with anoikis after treatment with PI3K-Akt and ERK inhibitors. The amount of phosphorylated focal adhesion kinase (FAK) was also higher in LN5 overexpressing cells. Major tyrosine residues of the EGF receptor at 1068, 1086 and 1173, except at 1148, remained phosphorylated only in the LN5 overexpressing cells even without EGF stimulation, that indicates the ligand independent activation of EGF receptor. BAC growth ratio and AE was confirmed to be significantly correlated with LN5 expression in surgically resected human lung adenocarcinomas by immunohistochemistry. Our results indicate that the activation of the EGF receptor by overexpressing LN5-integrin-FAK signaling pathway may play a crucial role in BAC growth and AE metastasis in human lung adenocarcinoma.

  14. Association between human papillomavirus and EGFR mutations in advanced lung adenocarcinoma

    PubMed Central

    Li, Ming; Deng, Fang; Qian, Li-Ting; Meng, Shui-Ping; Zhang, Yang; Shan, Wu-Lin; Zhang, Xiao-Lei; Wang, Bao-Long

    2016-01-01

    Previous studies have demonstrated an association between human papillomavirus (HPV) and mutations in the epidermal growth factor receptor (EGFR) gene in lung cancer patients; however, few studies have investigated this association in advanced lung adenocarcinoma patients undergoing gefitinib treatment. The present study investigated the association between HPV and EGFR mutations in advanced lung adenocarcinoma patients. A total of 95 advanced lung adenocarcinoma patients were enrolled in the study. The HPV infection status and presence of EGFR mutations in tumor tissue was evaluated. Patient clinical characteristics were also determined and compared with HPV infection and EGFR mutation status to analyze their impact on progression-free survival. HPV DNA was identified in 27/95 (28.4%) lung adenocarcinoma tumors and was most common in patients with lymph node metastasis (P=0.016). A total of 44/95 (46.3%) cases exhibited EGFR mutations, which were predominantly observed in female patients and non-smokers. The presence of HPV DNA was significantly associated with EGFR mutations (P=0.012) and multivariate analysis also revealed that HPV DNA was significantly associated with EGFR mutations (odds ratio=3.971) in advanced lung adenocarcinoma. Patients with both HPV infections and EGFR mutations exhibit a marked decrease in the risk of lung cancer progression when compared with those without HPV infection or EGFR mutations (adjusted HR=0.640; 95% confidence interval: 0.488–0.840; P=0.001). HPV infection was significantly associated with EGFR mutations in advanced lung adenocarcinoma patients. Furthermore, patients with HPV infections exhibited the longest progression-free survival times, which may be due to good response to tyrosine kinase inhibitor- or platinum-based-adjuvant therapy in these patients. Patients with EGFR mutations exhibited a better prognosis when compared with those exhibiting wild-type EGFR, regardless of HPV status. PMID:27602120

  15. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells

    PubMed Central

    Zhen, Hong; Huang, Ming; Zheng, Xi; Feng, Lixing; Jiang, Baohong; Yang, Min; Wu, Wanying; Liu, Xuan; Guo, Dean

    2016-01-01

    Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K

  16. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells.

    PubMed

    Yue, Qingxi; Zhen, Hong; Huang, Ming; Zheng, Xi; Feng, Lixing; Jiang, Baohong; Yang, Min; Wu, Wanying; Liu, Xuan; Guo, Dean

    2016-01-01

    Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K

  17. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells.

    PubMed

    Forte, Maurizio; Iachetta, Giuseppina; Tussellino, Margherita; Carotenuto, Rosa; Prisco, Marina; De Falco, Maria; Laforgia, Vincenza; Valiante, Salvatore

    2016-03-01

    The increase in the use of nanoparticles, as a promising tool for drug delivery or as a food additive, raises questions about their interaction with biological systems, especially in terms of evoked responses. In this work, we evaluated the kinetics of uptake of 44 nm (NP44) and 100 nm (NP100) unmodified polystyrene nanoparticles (PS-NPs) in gastric adenocarcinoma (AGS) cells, as well as the endocytic mechanism involved, and the effect on cell viability and gene expression of genes involved in cell cycle regulation and inflammation processes. We showed that NP44 accumulate rapidly and more efficiently in the cytoplasm of AGS compared to NP100; both PS-NPs showed an energy dependent mechanism of internalization and a clathrin-mediated endocytosis pathway. Dose response treatments revealed a non-linear curve. PS-NPs also affected cell viability, inflammatory gene expression and cell morphology. NP44 strongly induced an up-regulation of IL-6 and IL-8 genes, two of the most important cytokines involved in gastric pathologies. Our study suggests that parameters such as time, size and concentration of NPs must be taken carefully into consideration during the development of drug delivery systems based on NPs and for the management of nanoparticles associated risk factors.

  18. Quantitative changes in adenosine deaminase isoenzymes in human colorectal adenocarcinomas.

    PubMed

    ten Kate, J; Wijnen, J T; van der Goes, R G; Quadt, R; Griffioen, G; Bosman, F T; Khan, P M

    1984-10-01

    Several reports have suggested that a decrease or absence of adenosine deaminase complexing protein (ADCP) is consistently associated with cancer. However, in other studies, decreased as well as increased ADCP levels were found. In the present study, we investigated ADCP levels in 37 colorectal adenocarcinomas and correlated the results with clinicopathological characteristics in individual carcinomas. The levels of adenosine deaminase (EC 3.5.4.4) and soluble ADCP were determined in tissue samples by, respectively, a spectrophotometric assay and an ADCP specific radioimmunoassay. The values in the individual tumors were compared with their histological characteristics, such as degree of differentiation, nuclear grading, and the preoperative plasma carcinoembryonic antigen levels in the patients. It was found that ADCP was decreased in about a third of the tumors but unaltered or even increased in others. However, there was an overall 40% increase of the adenosine deaminase activity in the tumors compared to normal tissue. There seems to be no simple correlation between any of the clinicopathological parameters and the ADCP or adenosine deaminase levels. Methods detecting ADCP at single cell level might be helpful in exploring its potential use as a cancer-associated marker.

  19. Physico-chemical characteristics of ZnO nanoparticles-based discs and toxic effect on human cervical cancer HeLa cells

    NASA Astrophysics Data System (ADS)

    Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor Haida Mohd.; Sendi, Rabab

    2014-10-01

    In this study, we investigated physico-chemical properties of zinc oxide nanoparticles (ZnO NPs)-based discs and their toxicity on human cervical cancer HeLa cell lines. ZnO NPs (80 nm) were produced by the conventional ceramic processing method. FESEM analysis indicated dominant structure of nanorods with dimensions 100-500 nm in length, and 20-100 nm in diameter. The high content of ZnO nanorods in the discs probably played significant role in toxicity towards HeLa cells. Structural defects (oxygen vacancies and zinc/oxygen interstitials) were revealed by PL spectra peaks at 370-376 nm and 519-533 nm for the ZnO discs. The structural, optical and electrical properties of prepared sample have influenced the toxicological effects of ZnO discs towards HeLa cell lines via the generation of reactive oxygen species (ROS), internalization, membrane damage, and eventually cell death. The larger surface to volume area of the ZnO nanorods, combined with defects, stimulated enhanced toxicity via ROS generation hydrogen peroxide, hydroxyl radicals, and superoxide anion. The preliminary results confirmed the ZnO-disc toxicity on HeLa cells was significantly associated with the unique physicochemical properties of ZnO NPs and to our knowledge, this is the first cellular study for treatment of HeLa cells with ZnO discs made from 80 nm ZnO particles.

  20. Immunophenotype and human papillomavirus status of serous adenocarcinoma of the uterine cervix.

    PubMed

    Togami, Shinichi; Sasajima, Yuko; Kasamatsu, Takahiro; Oda-Otomo, Rie; Okada, Satoshi; Ishikawa, Mitsuya; Ikeda, Shun-ichi; Kato, Tomoyasu; Tsuda, Hitoshi

    2015-04-01

    Serous adenocarcinoma of the cervix (SACC) is a very rare tumor. Our study aimed to characterize the immune profile and human papillomavirus (HPV) status of SACC, in comparison with other serous adenocarcinomas arising in the female genital tract. The pathological specimens obtained from 81 patients with serous carcinoma of the uterine cervix (n = 12), 29 endometrium, 20 ovary and 20 patients with mucinous carcinoma of the uterine cervix were reviewed. We assessed the expression of WT-1, p53, p16, HER2, CEA, and CA125 by immunohistochemistry and HPV DNA by PCR in 12 SACC samples. Their immune profile was compared with that of uterine papillary serous carcinoma (UPSC), ovarian serous adenocarcinoma (OSA), and mucinous endocervical adenocarcinoma (MEA). WT-1 and HER2 were expressed in very few SACC samples (0 and 0%, respectively), but p16, CA125, CEA and p53 were present in 100, 92, 58 and 50%, respectively. The difference in WT-1 expression between SACC and UPSC, MEA is not significant, but SACC differ significantly from OSA (p < 0.01). HPV DNA (type 16 or 18) was detected in 4 of the 12 SACC. The immunophenotype of SACC was similar to UPSC, whereas the frequency of expression of WT-1 was significantly lower in SACC than OSA. It appeared that p53 expression was associated with worse clinical outcome in patients with SACC, and that HPV infection was related to its occurrence.

  1. Nucleotide sequences and further characterization of human papillomavirus DNA present in the CaSki, SiHa and HeLa cervical carcinoma cell lines.

    PubMed

    Meissner, J D

    1999-07-01

    The complete nucleotide sequences of the human papillomavirus type 16 (HPV-16) variants present in the CaSki and SiHa cervical carcinoma cell lines and the primary subgenomic HPV-18 variant present in the HeLa cervical carcinoma cell line were determined using overlapping bulk PCR products as templates. PCR-based methods were also used to characterize five previously unreported CaSki HPV-16 genomic disruptions and the 5' cellular-viral junction common to all HeLa HPV-18 subgenomic structures.

  2. Cryptolepine, isolated from Sida acuta, sensitizes human gastric adenocarcinoma cells to TRAIL-induced apoptosis.

    PubMed

    Ahmed, Firoj; Toume, Kazufumi; Ohtsuki, Takashi; Rahman, Mahmudur; Sadhu, Samir Kumar; Ishibashi, Masami

    2011-01-01

    Bioassay guided separation of Sida acuta whole plants led to the isolation of an alkaloid, cryptolepine (1), along with two kaempferol glycosides (2-3). Compound 1 showed strong activity in overcoming TRAIL-resistance in human gastric adenocarcinoma (AGS) cells at 1.25, 2.5 and 5 μm. Combined treatment of 1 and TRAIL sensitized AGS cells to TRAIL-induced apoptosis at the aforementioned concentrations.

  3. Nucleotide sequences of cDNAs for human papillomavirus type 18 transcripts in HeLa cells

    SciTech Connect

    Inagaki, Yutaka; Tsunokawa, Youko; Takebe, Naoko; Terada, Masaaki; Sugimura, Takashi ); Nawa, Hiroyuki; Nakanishi, Shigetada )

    1988-05-01

    HeLa cells expressed 3.4- and 1.6-kilobase (kb) transcripts of the integrated human papillomavirus (HPV) type 18 genome. Two types of cDNA clones representing each size of HPV type 18 transcript were isolated. Sequence analysis of these two types of cDNA clones revealed that the 3.4-kb transcript contained E6, E7, the 5{prime} portion of E1, and human sequence and that the 1.6-kb transcript contained spliced and frameshifted E6 (E6{sup *}), E7, and human sequence. There was a common human sequence containing a poly(A) addition signal in the 3{prime} end portions of both transcripts, indicating that they were transcribed from the HPV genome at the same integration site with different splicing. Furthermore, the 1.6-kb transcript contained both of the two viral TATA boxes upstream of E6, strongly indicating that a cellular promoter was used for its transcription.

  4. Assessment of cytotoxicity of Portulaca oleracea Linn. against human colon adenocarcinoma and vero cell line

    PubMed Central

    Mali, Prashant Y.

    2015-01-01

    Background: Portulaca oleracea Linn. (Portulacaceae) is commonly known as purslane in English. In traditional system it is used to cure diarrhea, dysentery, leprosy, ulcers, asthma, and piles, reduce small tumors and inflammations. Aim: To assess cytotoxic potential of chloroform extract of P. oleracea whole plant against human colon adenocarcinoma (HCT-15) and normal (Vero) cell line. Materials and Methods: Characterization of chloroform extract of P. oleracea by Fourier transform infrared (FTIR) spectroscopy was performed. Cytotoxicity (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was used for assessment of cytotoxic potential of chloroform extract of P. oleracea. The concentrations of 1000–0.05 μg/ml were used in the experiment. Doxorubicin was considered as standard reference drug. Results: FTIR spectrum showed the peak at 1019.52 and 1396.21 center. The 50% cell growth inhibition (IC50) of chloroform extract of P. oleracea and doxorubicin was 1132.02 μg/ml and 460.13 μg/ml against human colon adenocarcinoma and 767.60 μg/ml and 2392.71 μg/ml against Vero cell line, respectively. Conclusion: Chloroform extract of P. oleracea whole plant was less efficient or does not have cytotoxic activity against human colon adenocarcinoma cell line. It was not safe to normal Vero cell line. But, there is a need to isolate, identify, and confirm the phytoconstituents present in extract by sophisticated analytical techniques. PMID:27833374

  5. Subcellular localization of the human papillomavirus 16 E7 oncoprotein in CaSki cells and its detection in cervical adenocarcinoma and adenocarcinoma in situ.

    PubMed

    Dreier, Kerstin; Scheiden, René; Lener, Barbara; Ehehalt, Daniela; Pircher, Haymo; Müller-Holzner, Elisabeth; Rostek, Ursula; Kaiser, Andreas; Fiedler, Marc; Ressler, Sigrun; Lechner, Stefan; Widschwendter, Andreas; Even, Jos; Capesius, Catherine; Jansen-Dürr, Pidder; Zwerschke, Werner

    2011-01-05

    E7 is the major oncoprotein of high-risk human papillomaviruses (HPV) which causes cervical cancer. To date E7 oncoproteins have not been investigated in cervical adenocarcinoma. In this study we generated a rabbit monoclonal anti-HPV-16 E7 antibody, RabMab42-3, which recognizes a conformational epitope in the E7 carboxy-terminal zinc-finger resulting in a strong increase in the sensitivity for the detection of cell-associated HPV-16 E7 protein relative to conventional polyclonal anti-HPV-16 E7 antibodies. Using RabMab42-3, we show that the subcellular localization of endogenous HPV-16 E7 oncoprotein varies during the cell cycle in cervical cancer cells. Moreover, we demonstrate for the first time that the HPV-16 E7 oncoprotein is abundantly expressed in cervical adenocarcinoma in situ and adenocarcinoma, suggesting an important role of HPV-16 E7 for the development of these tumors. Our findings suggest that the HPV-16 E7 oncoprotein could be a useful marker for the detection of cervical adenocarcinoma and their precursors.

  6. Increased expression of S100A4, a metastasis-associated gene, in human colorectal adenocarcinomas.

    PubMed

    Takenaga, K; Nakanishi, H; Wada, K; Suzuki, M; Matsuzaki, O; Matsuura, A; Endo, H

    1997-12-01

    The S100A4 gene (also known as pEL98/mts1/p9Ka/18A2/42A/calvasculin /FSP1/CAPL) encoding an S100-related calcium-binding protein is implied to be involved in the invasion and metastasis of murine tumor cells. In the present study, the expression of S100A4 in human colorectal adenocarcinoma cell lines (SW837, LoVo, DLD-1, HT-29, SW480, SW620, WiDr, and Colo201) and surgically resected neoplastic tissues was examined to investigate whether S100A4 plays a role in the invasion and metastasis of human tumor cells. Northern blot analysis using total RNA isolated from the adenocarcinoma cell lines revealed that five of the eight cell lines expressed substantial amounts of S100A4 mRNA. Normal colon fibroblasts (CCD-18Co) expressed little of the RNA. Using surgically resected specimens, it seemed that the amount of S100A4 mRNA in adenomas was nearly equal to that in normal colonic mucosa, whereas adenocarcinomas expressed a significantly higher amount of the RNA than did the adjacent normal colonic mucosa. Immunohistochemical analysis using formalin-fixed paraffin-embedded surgical specimens and monoclonal anti-S100A4 antibody demonstrated that none of 12 adenoma specimens were immunopositive, whereas 8 of 18 (44%) focal carcinomas in carcinoma in adenoma specimens and 50 of 53 (94%) adenocarcinoma specimens were immunopositive. Interestingly, the incidence of immunopositive cells increased according to the depth of invasion, and nearly all of the carcinoma cells in 14 metastases in the liver were positive. These results suggest that S100A4 may be involved in the progression and the metastatic process of human colorectal neoplastic cells.

  7. Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad.

    PubMed

    Matsubara, Daisuke; Kanai, Yoshihiko; Ishikawa, Shumpei; Ohara, Shiori; Yoshimoto, Taichiro; Sakatani, Takashi; Oguni, Sachiko; Tamura, Tomoko; Kataoka, Hiroaki; Endo, Shunsuke; Murakami, Yoshinori; Aburatani, Hiroyuki; Fukayama, Masashi; Niki, Toshiro

    2012-12-01

    Rearranged during transfection (RET) fusions have been newly identified in approximately 1% of patients with primary lung tumors. However, patient-derived lung cancer cell lines harboring RET fusions have not yet been established or identified, and therefore, the effectiveness of an RET inhibitor on lung tumors with endogenous RET fusion has not yet been studied. In this study, we report identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line LC-2/ad. LC-2/ad showed distinctive sensitivity to the RET inhibitor, vandetanib, among 39 non-small lung cancer cell lines. The xenograft tumor of LC-2/ad showed cribriform acinar structures, a morphologic feature of primary RET fusion-positive lung adenocarcinomas. LC-2/ad cells could provide useful resources to analyze molecular functions of RET-fusion protein and its response to RET inhibitors.

  8. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells.

    PubMed

    Ujhelyi, Zoltán; Kalantari, Azin; Vecsernyés, Miklós; Róka, Eszter; Fenyvesi, Ferenc; Póka, Róbert; Kozma, Bence; Bácskay, Ildikó

    2015-07-21

    The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations.

  9. Inotodiol inhabits proliferation and induces apoptosis through modulating expression of cyclinE, p27, bcl-2, and bax in human cervical cancer HeLa cells.

    PubMed

    Zhao, Li-Wei; Zhong, Xiu-Hong; Yang, Shu-Yan; Zhang, Yi-Zhong; Yang, Ning-Jiang

    2014-01-01

    Inonotus obliquus is a medicinal mushroom that has been used as an effective agent to treat various diseases such as diabetes, tuberculosis and cancer. Inotodiol, an included triterpenoid shows significant anti-tumor effect. However, the mechanisms have not been well documented. In this study, we aimed to explore the effect of inotodiol on proliferation and apoptosis in human cervical cancer HeLa cells and investigated the underlying molecular mechanisms. HeLa cells were treated with different concentrations of inotodiol. The MTT assay was used to evaluate cell proliferating ability, flow cytometry (FCM) was employed for cell cycle analysis and cell apoptosis, while expression of cyclinE, p27, bcl-2 and bax was detected by immunocytochemistry. Proliferation of HeLa cells was inhibited by inotodiolin a dose-dependent manner at 24h (r=0.9999, p<0.01). A sub-G1 peak (apoptotic cells) of HeLa cells was detected after treatment and the apoptosis rate with the concentration and longer incubation time (r=1.0, p<0.01), while the percentage of cells in S phase and G2/M phase decreased significantly. Immunocytochemistry assay showed that the expression of cyclin E and bcl-2 in the treated cells significantly decreased, while the expression of p27 and bax obviously increased, compared with the control group (p<0.05). The results of our research indicate that inotodiol isolated from Inonotus obliquus inhibited the proliferation of HeLa cells and induced apoptosis in vitro. The mechanisms may be related to promoting apoptosis through increasing the expression of bax and cutting bcl-2 and affecting the cell cycle by down-regulation the expression of cyclin E and up-regulation of p27. The results further indicate the potential value of inotodiol for treatment of human cervical cancer.

  10. Human papillomavirus types 16 and 18 in adenocarcinoma of the uterine cervix

    SciTech Connect

    Leminen, A.; Paavonen, J.; Vesterinen, E.; Wahlstroem, T.R.; Rantala, I.; Lehtinen, M. )

    1991-05-01

    Many reports have shown a link between human papillomavirus (HPV) and cervical squamous neoplasia. However, the association of HPV with cervical adenocarcinoma has been studied less extensively. The authors evaluated the presence of HPV-DNA in 106 patients with adenocarcinoma of the uterine cervix by in situ hybridization, using {sup 35}S-labeled probes for HPV 16 DNA and HPV 18 DNA. The overall prevalence of HPV-DNA was 18% (19 of 106). HPV 16 was present in 2 (2%) cases, HPV 18 was observed in 15 (14%) cases, and both HPV 16 and HPV 18 were found in 2 (2%) cases. There was a correlation between HPV-DNA positivity and tumor stage (P less than 0.01) and tumor size (P less than 0.05), but there was no relationship between HPV-DNA positivity and tumor differentiation, proliferation (S-phase fraction), ploidy, lymph node metastases, or five-year survival rate. These results suggest that HPV 18 DNA is associated with cervical adenocarcinoma but the presence of HPV 18 has no influence on overall survival.

  11. YBX1 regulates tumor growth via CDC25a pathway in human lung adenocarcinoma

    PubMed Central

    Yu, Wendan; Li, Jinxiu; Tang, Zhipeng; Yu, Zhenlong; Zhao, Lei; Zhang, Yixiang; Wang, Ziyi; Wang, Peng; Li, Yechi; Li, Fengzhou; Sun, Zhe; Xuan, Yang; Tang, Ranran; Deng, Wu-guo; Guo, Wei; Gu, Chundong

    2016-01-01

    Y-box binding protein 1 (YBX1) is involved in the multi-tumor occurrence and development. However, the regulation of YBX1 in lung tumorigenesis and the underlying mechanisms, especially its relationship with CDC25a, was remains unclear. In this study, we analyzed the expression and clinical significance of YBX1 and CDC25a in lung adenocarcinoma and identified their roles in the regulation of lung cancer growth. The retrospective analysis of 116 patients with lung adenocarcinoma indicated that YBX1 was positively correlated with CDC25a expression. The Cox-regression analysis showed only high-ranking TNM stage and low CDC25a expression were an independent risk factor of prognosis in enrolled patients. High expression of YBX1 or CDC25a protein was also observed in lung adenocarcinoma cells compared with HLF cells. ChIP assay demonstrated the binding of endogenous YBX1 to the CDC25a promoter region. Overexpression of exogenous YBX1 up-regulated the expression of the CDC25a promoter-driven luciferase. By contrast, inhibition of YBX1 by siRNA markedly decreased the capability of YBX1 binding to CDC25a promoter in A549 and H322 cells. Inhibition of YBX1 expression also blocked cell cycle progression, suppressed cell proliferation and induced apoptosis via the CDC25a pathway in vitro. Moreover, inhibition of YBX1 by siRNA suppressed tumorigenesis in a xenograft mouse model and down-regulated the expression of YBX1, CDC25a, Ki67 and cleaved caspase 3 in the tumor tissues of mice. Collectively, these results demonstrate inhibition of YBX1 suppressed lung cancer growth partly via the CDC25a pathway and high expression of YBX1/CDC25a predicts poor prognosis in human lung adenocarcinoma. PMID:27384875

  12. Application of Gold Nanorods for Photothermal Therapy in Ex Vivo Human Oesophagogastric Adenocarcinoma.

    PubMed

    Singh, Mohan; Harris-Birtill, David C C; Zhou, Yu; Gallina, Maria E; Cass, Anthony E G; Hanna, George B; Elson, Daniel S

    2016-03-01

    Gold nanoparticles are chemically fabricated and tuned to strongly absorb near infrared (NIR) light, enabling deep optical penetration and therapy within human tissues, where sufficient heating induces tumour necrosis. In our studies we aim to establish the optimal gold nanorod (GNR) concentration and laser power for inducing hyperthermic effects in tissues and test this photothermal effect on ex vivo human oesophagogastric adenocarcinoma. The ideal GNR concentration and NIR laser power that would elicit sufficient hyperthermia for tumour necrosis was pre-determined on porcine oesophageal tissues. Human ex vivo oesophageal and gastric adenocarcinoma tissues were incubated with GNR solutions and a GNR-free control solution with corresponding healthy tissues for comparison, then irradiated with NIR light for 10 minutes. Temperature rise was found to vary linearly with both the concentration of GNRs and the laser power. Human ex vivo oesophageal and gastric tissues consistently demonstrated a significant temperature rise when incubated in an optimally concentrated GNR solution (3 x 10(10) GNRs/ml) prior to NIR irradiation delivered at an optimal power (2 W/cm2). A mean temperature rise of 27 degrees C was observed in tissues incubated with GNRs, whereas only a modest 2 degrees C rise in tissues not exposed to any GNRs. This study evaluates the photothermal effects of GNRs on oesophagogastric tissue examines their application in the minimally invasive therapeutics of oesophageal and gastric adenocarcinomas. This could potentially be an effective method of clinically inducing irreversible oesophagogastric tumour photodestruction, with minimal collateral damage expected in (healthy) tissues free from GNRs.

  13. In vitro and in vivo anti-cancer activity of formononetin on human cervical cancer cell line HeLa.

    PubMed

    Jin, Yue-mei; Xu, Tian-min; Zhao, Yan-hui; Wang, Yi-chao; Cui, Man-hua

    2014-03-01

    Worldwide, cervical cancer (CC) is the third most common malignancy in women, and it remains a leading cause of cancer-related death of women. Genomic studies indicate that phosphoinositide 3-kinase (PI3K)/AKT signaling is one of the most frequently deregulated pathways in several human cancers, including CC. This signaling pathway has an important role in cancer cell proliferation, survival, motility, and metabolism, and therefore could be an attractive therapeutic target. In a previous study, we used a sensitive and high-speed homogeneous assay for the detection of kinase activity and for screening of PI3K/AKT signaling inhibitors in a high-throughput screening (HTS) format and then obtain formononetin, as an O-methylated isoflavone existed in a number of plants and herbs like Astragalus membranaceus. We showed that formononetin inhibited the phosphorylation of AKT and induced the apoptosis of CC cell line HeLa in a dose-dependent manner. Furthermore, formononetin suppressed xenograft tumor growth in nude mice. Our results indicated that formononetin may be used as an anti-cancer drug for cervical cancer in the future.

  14. Effect of human mesenchymal stem cells on the growth of HepG2 and Hela cells.

    PubMed

    Long, Xiaohui; Matsumoto, Rena; Yang, Pengyuan; Uemura, Toshimasa

    2013-01-01

    Human mesenchymal stem cells (hMSCs) accumulate at carcinomas and have a great impact on cancer cell's behavior. Here we demonstrated that hMSCs could display both the promotional and inhibitive effects on growth of HepG2 and Hela cells by using the conditioned media, indirect co-culture, and cell-to-cell co-culture. Cell growth was increased following the addition of lower proportion of hMSCs while decreased by treatment of higher proportion of hMSCs. We also established a novel noninvasive label way by using internalizing quantum dots (i-QDs) for study of cell-cell contact in the co-culture, which was effective and sensitive for both tracking and distinguishing different cells population without the disturbance of cells. Furthermore, we investigated the role of hMSCs in regulation of cell growth and showed that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways were involved in hMSC-mediated cell inhibition and proliferation. Our findings suggested that hMSCs regulated cancer cell function by providing a suitable environment, and the discovery from the study would provide some clues for development of effective strategy for hMSC-based cancer therapies.

  15. Changes in the stability of a human H3 histone mRNA during the HeLa cell cycle.

    PubMed Central

    Morris, T D; Weber, L A; Hickey, E; Stein, G S; Stein, J L

    1991-01-01

    A major component of the regulation of histone protein synthesis during the cell cycle is the modulation of the half-life of histone mRNA. We have uncoupled transcriptional and posttranscriptional regulation by using a Drosophila hsp70-human H3 histone fusion gene that produces a marked human H3 histone mRNA upon heat induction. Transcription of this gene can be switched on and off by raising and lowering cell culture temperatures, respectively. HeLa cell lines containing stably integrated copies of the fusion gene were synchronized by double thymidine block. Distinct populations of H3 histone mRNA were produced by heat induction in early S-phase, late S-phase, or G2-phase cells, and the stability of the induced H3 histone mRNA was measured. The H3 histone mRNA induced during early S phase decayed with a half-life of 110 min, whereas the same transcript induced during late S phase had a half-life of 10 to 15 min. The H3 histone mRNA induced in non-S-phase cells is more stable than that induced in late S phase, with a half-life of 40 min. Thus, the stability of histone mRNA is actively regulated throughout the cell cycle. Our results are consistent with an autoregulatory model in which the stability of histone mRNA is determined by the level of free histone protein in the cytoplasm. Images PMID:1986245

  16. Chromosomal and Genetic Analysis of a Human Lung Adenocarcinoma Cell Line OM

    PubMed Central

    Li, Yong-Wu; Bai, Lin; Dai, Lyu-Xia; He, Xu; Zhou, Xian-Ping

    2016-01-01

    Background: Lung cancer has become the leading cause of death in many regions. Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes. The aim of this study was to investigate the chromosome and gene alterations in the human lung adenocarcinoma cell line OM. Methods: We used Giemsa banding and multiplex fluorescence in situ hybridization focusing on the human lung adenocarcinoma cell line OM to analyze its chromosome alterations. In addition, the gains and losses in the specific chromosome regions were identified by comparative genomic hybridization (CGH) and the amplifications of cancer-related genes were also detected by polymerase chain reaction (PCR). Results: We identified a large number of chromosomal numerical alterations on all chromosomes except chromosome X and 19. Chromosome 10 is the most frequently involved in translocations with six different interchromosomal translocations. CGH revealed the gains on chromosome regions of 3q25.3-28, 5p13, 12q22-23.24, and the losses on 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33 and 17p13.1-13.3. And PCR showed the amplification of genes: Membrane metalloendopeptidase (MME), sucrase-isomaltase (SI), butyrylcholinesterase (BCHE), and kininogen (KNG). Conclusions: The lung adenocarcinoma cell line OM exhibited multiple complex karyotypes, and chromosome 10 was frequently involved in chromosomal translocation, which may play key roles in tumorigenesis. We speculated that the oncogenes may be located at 3q25.3-28, 5p13, 12q22-23.24, while tumor suppressor genes may exist in 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33, and 17p13.1-13.3. Moreover, at least four genes (MME, SI, BCHE, and KNG) may be involved in the human lung adenocarcinoma cell line OM. PMID:26879013

  17. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    PubMed

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research.

  18. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    SciTech Connect

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo . E-mail: miyazawa@biochem.tohoku.ac.jp

    2006-09-15

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with {delta}-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol.

  19. Expected resolution and detectability of adenocarcinoma tumors within human breast in time-resolved images

    NASA Astrophysics Data System (ADS)

    Gandjbakhche, Amir H.; Nossal, Ralph J.; Dadmarz, Roya; Schwartzentruber, Douglas; Bonner, Robert F.

    1995-04-01

    The prospects for time-resolved optical mammography rests on the ability to detect adenocarcinoma within the breast with sufficient resolution and specificity to compete with X-ray mammography. We characterized the optical properties of an unusually large (6 cm diameter) fresh adenocarcinoma and normal breast tissue (determined by histology to be predominantly adipose tissue) obtained from a patient undergoing mastectomy. Large specimens (5 mm thick and 3 cm wide) allowed the determination of absorption and scattering coefficients and their spatial heterogeneity as probed with a 1 mm diameter laser beam at 633 nm and 800 nm utilizing total reflectance and transmittance measure with integrating spheres. The difference between scattering coefficients of the malignant tumor and those of normal (principally adipose) breast tissue at 633 nm was much greater than the heterogeneity within each sample. This scattering difference is the principal source of contrast, particularly in time-resolved images. However, the high scattering coefficient of normal breast tissue at 633 nm limits the practicality of time-resolved mammography of a human breast compressed to 5 cm. Although the scattering coefficient of the normal breast tissue decreases at 800 nm, the differences between the optical properties of normal and abnormal breast tissue also are reduced. We used these empirical results in theoretical expressions obtained from random walk theory to quantify the expected resolution, contrast, and the detected intensity of 3, 6, and 9 mm tumors within otherwise homogeneous human breasts as a function of the gating-time of time-resolved optical mammography.

  20. HeLa human cervical cancer cell migration is inhibited by treatment with dibutyryl-cAMP.

    PubMed

    Lee, Jae-Wook; Lee, Jiyoung; Moon, Eun-Yi

    2014-07-01

    Cyclic AMP (cAMP) activates both protein kinase A (PKA) and guanine-nucleotide exchange factor exchange protein directly activated by CAMP (EPAC)-mediated Ras-related Protein1 (RAP1) GTPase that regulates various cellular functions including cell migration. Herein, we investigated whether cAMP-mediated PKA and EPAC1/RAP1 pathways differentially control HeLa cervical cancer cell migration. Although HeLa cell migration was reduced by dibutyryl-cAMP, we observed an increase in cAMP/PKA, cAMP/EPAC1/RAP1-GTPase, and RAC1-GTPase. HeLa cell migration and RAC1-GTPase were increased by treatment with 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cAMP analogue to activate EPAC-specific signaling pathways. When HeLa cells were treated with H-89, a PKA inhibitor, cell migration was enhanced but RAC1-GTPase was inhibited. In addition, cell migration induced by dibutyryl-cAMP was reversed but the activity of Rac1-GTPase was inhibited by H-89 treatment. Taken together, these data demonstrate that cAMP/PKA and cAMP/EPAC1/RAP1-GTPase might inversely control cervical cancer cell migration, although both signaling pathways may up-regulate RAC1-GTPase. It also suggests that cAMP-mediated cancer cell migration was independent of RAC1-GTPase activation.

  1. 8-p-Hdroxybenzoyl Tovarol Induces Paraptosis Like Cell Death and Protective Autophagy in Human Cervical Cancer HeLa Cells.

    PubMed

    Zhang, Cui; Jiang, Yingnan; Zhang, Jin; Huang, Jian; Wang, Jinhui

    2015-07-02

    8-p-Hdroxybenzoyl tovarol (TAW) is a germacrane-type sesquiterpenoid that can be isolated from the roots of Ferula dissecta (Ledeb.) Ledeb. In this study, the growth inhibitory effects induced by TAW were screened on some types of tumor cells, and the mechanism was investigated on TAW-induced growth inhibition, including paraptosis and autophagy in human cervical cancer HeLa cells. TAW-induced paraptosis involved extensive cytoplasmic vacuolization in the absence of caspase activation. Additionally, TAW evoked cell paraptotic death mediated by endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Autophagy induced by TAW was found to antagonize paraptosis in HeLa cells. This effect was enhanced by rapamycin and suppressed by the autophagy inhibitor, 3-methyladenine (3MA). Loss of beclin 1 (an autophagic regulator) function led to promote ER stress. Taken together, these results suggest that TAW induces paraptosis like cell death and protective autophagy in HeLa cells, which would provide a new clue for exploiting TAW as a promising agent for the treatment of cervical cancer.

  2. Detection of Human Papillomavirus in Chronic Cervicitis, Cervical Adenocarcinoma, Intraepithelial Neoplasia and Squamus Cell Carcinoma

    PubMed Central

    Mirzaie-Kashani, Elahe; Bouzari, Majid; Talebi, Ardeshir; Arbabzadeh-Zavareh, Farahnaz

    2014-01-01

    Background: Cervical cancer is the second most common cancer in women worldwide. Recent studies show that human papillomavirus (HPV) DNA is present in all cervical carcinomas and in some cervicitis cases, with some geographical variation in viral subtypes. Therefore determination of the presence of HPV in the general population of each region can help reveal the role of these viruses in tumors. Objectives: This study aimed to estimate the frequency of infection with HPV in cervicitis, cervical adenocarcinoma, intraepithelial neoplasia and squamus cell carcinoma samples from the Isfahan Province, Iran. Patients and Methods: One hundred and twenty two formalin fixed paraffin embedded tissue samples of crevicitis cases and different cervix tumors including cervical intraepithelial neoplasia (CIN) (I, II, III), squamus cell carcinoma (SCC) and adenocarcinoma were collected from histopathological files of Al-Zahra Hospital in Isfahan. Data about histopathological changes were collected by reexamination of the hematoxylin and eosin stained sections. DNA was extracted and subjected to Nested PCR using consensus primers, MY09/MY11 and GP5+/GP6+, designed for amplification of a conserved region of the genome coding for L1 protein. Results: In total 74.5% of the tested samples were positive for HPV. Amongst the tested tumors 8 out of 20 (40%) of CIN (I, II, III), 5 out of 21 (23.8%) of adenocarcinoma cases and 78 out of 79 chronic cervicitis cases were positive for HPV. Conclusions: The rate of different carcinomas and also the rate of HPV infection in each case were lower than other reports from different countries. This could be correlated with the social behavior of women in the area, where they mostly have only one partner throughout their life, and also the rate of smoking behavior of women in the studied population. On the other hand the rate of HPV infection in chronic cervicitis cases was much higher than cases reported by previous studies. This necessitates more

  3. Bax is not involved in the resveratrol-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-wei; Wang, Zhi-ping; Chen, Tong-sheng

    2010-02-01

    Resveratrol (RV) is a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts. Previous studies indicate that RV has an ability to inhibit various stages of carcinogenesis and eliminate preneoplastic cells in vitro and in vivo. However, little is known about the molecular mechanism of RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cell. In this report, we analyzed whether Bax translocation from cytoplasm to mitochondria during RV-induced apoptosis in single living cell using onfocal microscopey. Cells were transfected with GFP-Bax plasmid. Cell counting kit (CCK-8) assay was used to assess the inhibition of RV on the cells viability. Apoptotic activity of RV was detected by Hoechst 33258 and propidium iodide (PI) staining. Our results showed that RV induced a dose-dependent apoptosis in which Bax did not translocate to mitochondrias.

  4. Ultrastructural Assessment of 2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide activity on human breast adenocarcinoma cells.

    PubMed

    de Almeida, Sinara Mônica Vitalino; da Silva, Lúcia Patrícia Bezerra Gomes; de Lima, Luiza Rayanna Amorim; Longato, Giovanna Barbarini; Padilha, Rafael José Ribeiro; Alves, Luiz Carlos; Brayner, Fábio André; Ruiz, Ana Lucia Tasca Gois; de Carvalho, João Ernesto; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra

    2016-11-01

    The aim of the present study was to investigate ultrastructural changes induced by (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (APHCA) treatment on human breast adenocarcinoma cancer cells MCF-7, besides the evaluation of phosphatidylserine externalization and DNA fragmentation in treated cells. Cell viability analysis demonstrated concentration and time-manner cytotoxicity. Treated MCF-7 cells did not expose phosphatidylserine residues to the external plasma membrane surface and DNA fragmentation was not visualized by electrophoresis. Light microscopy showed compromised cell density and presence of vacuolization after APHCA treatment with 60μM. Scanning and transmission electron microscopies revealed hallmarks of autophagy, namely the presence of membrane bebbling and autophagosomes, besides shrunken cells and cell debris in treated MCF-7 cells. However, more specific tests such as the quantification of mammalian autophagy proteins are necessary to determine the kind of death that is trigged by APHCA.

  5. Toona Sinensis and Moschus Decoction Induced Cell Cycle Arrest in Human Cervical Carcinoma HeLa Cells

    PubMed Central

    Zhen, Hong; Zhang, Yifei; Fang, Zhijia; Huang, Zhiwei; Shi, Ping

    2014-01-01

    Toona sinensis and Moschus are two herb materials used in traditional Chinese medicine, most commonly for their various biological activities. In this study, we investigated the inhibitory effect of three decoctions from Toona sinensis, Moschus, and Toona sinensis and Moschus in combination on cell growth in several normal and cancer cell lines by cell viability assay. The results showed that the combined decoction exhibited the strongest anticancer effects, compared to two single decoctions. The observations indicated that the combined decoction did not induce cell apoptosis and autophagy in HeLa cells by fluorescence microscopy. Flow cytometry analysis revealed that the combined decoction arrested HeLa cell cycle progression in S-phase. After the decoction incubation, among 41 cell cycle related genes, eight were reduced, while five were increased in mRNA levels by real-time PCR assay. Western blotting showed that there were no apparent changes of protein levels of Cyclin E1, while P27 expression significantly declined and the levels of CDC7 and CDK7 obviously increased. The data suggest that the RB pathway is partially responsible for the decoction-induced S-phase cell cycle arrest in HeLa cells. Therefore, the combined decoction may have therapeutic potential as an anticancer formula for certain cancers. PMID:24511319

  6. Oncolytic Activity of Avian Influenza Virus in Human Pancreatic Ductal Adenocarcinoma Cell Lines

    PubMed Central

    Pizzuto, Matteo S.; Silic-Benussi, Micol; Pavone, Silvia; Ciminale, Vincenzo; Capua, Ilaria

    2014-01-01

    ABSTRACT Pancreatic ductal adenocarcinoma (PDA) is the most lethal form of human cancer, with dismal survival rates due to late-stage diagnoses and a lack of efficacious therapies. Building on the observation that avian influenza A viruses (IAVs) have a tropism for the pancreas in vivo, the present study was aimed at testing the efficacy of IAVs as oncolytic agents for killing human PDA cell lines. Receptor characterization confirmed that human PDA cell lines express the alpha-2,3- and the alpha-2,6-linked glycan receptor for avian and human IAVs, respectively. PDA cell lines were sensitive to infection by human and avian IAV isolates, which is consistent with this finding. Growth kinetic experiments showed preferential virus replication in PDA cells over that in a nontransformed pancreatic ductal cell line. Finally, at early time points posttreatment, infection with IAVs caused higher levels of apoptosis in PDA cells than gemcitabine and cisplatin, which are the cornerstone of current therapies for PDA. In the BxPC-3 PDA cell line, apoptosis resulted from the engagement of the intrinsic mitochondrial pathway. Importantly, IAVs did not induce apoptosis in nontransformed pancreatic ductal HPDE6 cells. Using a model based on the growth of a PDA cell line as a xenograft in SCID mice, we also show that a slightly pathogenic avian IAV significantly inhibited tumor growth following intratumoral injection. Taken together, these results are the first to suggest that IAVs may hold promise as future agents of oncolytic virotherapy against pancreatic ductal adenocarcinomas. IMPORTANCE Despite intensive studies aimed at designing new therapeutic approaches, PDA still retains the most dismal prognosis among human cancers. In the present study, we provide the first evidence indicating that avian IAVs of low pathogenicity display a tropism for human PDA cells, resulting in viral RNA replication and a potent induction of apoptosis in vitro and antitumor effects in vivo. These

  7. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    PubMed Central

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L.; Ornitz, David M.

    2016-01-01

    ABSTRACT Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  8. The cytotoxic effects of titanium oxide and zinc oxide nanoparticles oh Human Cervical Adenocarcinoma cell membranes

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana; Applebaum, Ariella; Applebaum, Eliana; Guterman, Shoshana; Applebaum, Kayla; Grossman, Daniel; Gordon, Chris; Brink, Peter; Wang, H. Z.; Rafailovich, Miriam

    2013-03-01

    The importance of titanium dioxide (TiO2) and zinc oxide (ZnO), inorganic metal oxides nanoparticles (NPs) stems from their ubiquitous applications in personal care products, solar cells and food whitening agents. Hence, these NPs come in direct contact with the skin, digestive tracts and are absorbed into human tissues. Currently, TiO2 and ZnO are considered safe commercial ingredients by the material safety data sheets with no reported evidence of carcinogenicity or ecotoxicity, and do not classify either NP as a toxic substance. This study examined the direct effects of TiO2 and ZnO on HeLa cells, a human cervical adenocarcinonma cell line, and their membrane mechanics. The whole cell patch-clamp technique was used in addition to immunohistochemistry staining, TEM and atomic force microscopy (AFM). Additionally, we examined the effects of dexamethasone (DXM), a glucocorticoid steroid known to have an effect on cell membrane mechanics. Overall, TiO2 and ZnO seemed to have an adverse effect on cell membrane mechanics by effecting cell proliferation, altering cellular structure, decreasing cell-cell adhesion, activating existing ion channels, increasing membrane permeability, and possibly disrupting cell signaling.

  9. Recurrent gene amplifications in human type I endometrial adenocarcinoma detected by fluorescence in situ hybridization.

    PubMed

    Samuelson, Emma; Levan, Kristina; Adamovic, Tatjana; Levan, Göran; Horvath, György

    2008-02-01

    Determining what genes are actively involved in tumor development is important, because they may provide targets for directed therapy. Human tumors are greatly heterogeneous with respect to etiology and genetic background, which complicates the identification of common genetic aberrations. In contrast, genetic and environmental variation can be in part controlled in experimental animals, which facilitates identification of the important changes. In inbred BDII rats, which are genetically predisposed to endometrial adenocarcinomas (EAC), certain chromosome regions exhibit recurrent amplification in the tumors. Previous CGH analysis had shown that a subset of human EAC tumors exhibited increased copy numbers in the homologous chromosomal regions, located in human 2p21 approximately p25 and 7q21 approximately q31. Using fluorescence in situ hybridization analysis on imprints from 13 human EAC tumors, we determined the average copy numbers of each of 15 probes derived from cancer-related genes situated in these chromosome regions. Among the genes analyzed, those most often targeted by amplification were SDC1 and CYP1B1 in 2p21 approximately p25 and CDK6 and MET in 7q21 approximately q31, but all of the 15 genes tested were found to be amplified in at least two tumors.

  10. A human and a plant intron-containing tRNATyr gene are both transcribed in a HeLa cell extract but spliced along different pathways.

    PubMed Central

    van Tol, H; Stange, N; Gross, H J; Beier, H

    1987-01-01

    tRNA splicing enzymes had been identified in mammalian and plant cells long before homologous intron-containing tRNA genes were detected. The tRNATyr gene presented here is the first intron-containing, human tRNA gene for which transcription and pre-tRNA maturation has been studied in a homologous system. This gene is disrupted by a 20-bp long intron and encodes one of the two major human tRNAsTyr which have been purified and sequenced. A tRNATyr gene recently isolated from Nicotiana also contains an intron and codes for a functional, major cytoplasmic tRNATyr. Both tRNA genes are efficiently transcribed in a HeLa cell nuclear extract. Each of them produces two independent primary transcripts because of two initiation and termination sites, respectively. The maturation of the tRNATyr precursors proceeds along different pathways. The intervening sequence of the human pre-tRNATyr is excised first, followed by ligation of the tRNA halves and maturation of the flanks, as has been shown for all intron-containing tRNA genes transcribed in HeLa extract. The order of maturation steps is reversed for the plant pre-tRNATyr: processing of the flanking sequences precedes intron excision. This maturation pathway corresponds to that observed in vivo for tRNA biosynthesis in Xenopus oocytes and yeast. Images Fig. 1. Fig. 4. Fig. 5. Fig. 6. PMID:3502708

  11. Coexpression of receptor tyrosine kinase AXL and EGFR in human primary lung adenocarcinomas.

    PubMed

    Wu, Zhenzhou; Bai, Fan; Fan, Liyun; Pang, Wenshuai; Han, Ruiyu; Wang, Juan; Liu, Yueping; Yan, Xia; Duan, Huijun; Xing, Lingxiao

    2015-12-01

    AXL has been identified as a tyrosine kinase switch that causes resistance to inhibitors targeting epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer (NSCLC). However, the relationship between 2 receptor tyrosine kinases, AXL and EGFR, and the relevance of AXL expression with EGFR mutation status in treatment-naive human NSCLCs remain uncertain. In this study, we evaluated the coexpression pattern of AXL, EGFR, and pEGFR(1068) in 109 lung adenocarcinoma patients with or without an EGFR mutation. There were 68 (62.4%) patients with tumors harboring EGFR mutations such as 19 del and/or L858R; 2 patients were T790M positive. The expression of AXL, EGFR, and pEGFR(1068) was detected in 60 (55%), 68 (62.4%), and 57 (52.3%) of 109 patients, respectively. The positive rates of EGFR and pEGFR(1068) were associated with the L858R mutation alone or with the 19 del and L858R mutation status. Further analysis indicated that the percentage of AXL(+)/EGFR(+)/pEGFR(1068) coexpression in 68 EGFR-activating mutations patients was significantly higher than that in 39 EGFR wild-type patients (30.9% versus 10.3%, P=.015). Furthermore, in the subgroup of AXL(+) patients (35 mutation(+) and 23 wild-type patients), the coexpression rates of AXL(+)/pEGFR(1068+) and AXL(+)/EGFR(+)/pEGFR(1068+) in patients with EGFR mutations were significantly higher compared with those in wild-type patients (both P<.05). Our study emphasized that the AXL and EGFR receptor tyrosine kinases were coexpressed in a subgroup of treatment-naive lung adenocarcinomas with or without EGFR mutations. Anti-AXL therapeutics delivered up front in combination with an EGFR inhibitor might prevent or delay resistance in patients with AXL-positive, EGFR-mutant, or wild-type NSCLC.

  12. Establishment of a first-line second-line treatment model for human pulmonary adenocarcinoma

    PubMed Central

    Wang, Lining; Wang, Yu; Guan, Qi; Liu, Yong; He, Tianyi; Wang, Jiaru

    2016-01-01

    Lung cancer is one of the most prevalent types of cancer in the world. Surgery, chemotherapy and radiotherapy are used clinically as treatments for numerous cancers. Due to the appearance of drug resistance, the remission rate is limited to 40–50%. Docetaxel and pemetrexed are two drugs commonly used, and their effects in single-phase cell culture are well known. From the pharmacological point of view, it appears rational to hypothesize that sequential therapy effects can show better outcomes compared with traditional single-phase experiments. Considering this, the present study aimed to establish a first-line second-line adenocarcinoma treatment model, using the combination of cisplatin with docetaxel or pemetrexed in vitro in different sequential therapy timings. To test this, the human lung cancer A549 cell line was used. The inhibitory effect was determined by adding docetaxel following treatment with cisplatin and pemetrexed (Pem-Doc group) and comparing this with a group in which pemetrexed was added subsequent to treatment with cisplatin and docetaxel (Doc-Pem group). Additionally, the differences in the gene and protein expression levels of excision repair cross-completion gene 1 (ERCC1), a gene that promotes drug resistance to cisplatin, were compared between the two groups. The present results showed that the inhibitory effect of cell proliferation in the Pem-Doc group was increased compared with that of Doc-Pem group, while the gene expression and protein levels of ERCC1 in the Pem-Doc group were decreased compared with those of Doc-Pem group. The Pem-Doc treatment plan is more effective in inhibiting cell proliferation and in lowering the expression of the ERCC1 gene. Therefore, Pem-Doc may be a more effective adenocarcinoma treatment. PMID:28105156

  13. Effect of caffeic acid esters on carcinogen-induced mutagenicity and human colon adenocarcinoma cell growth.

    PubMed

    Rao, C V; Desai, D; Kaul, B; Amin, S; Reddy, B S

    1992-11-16

    Propolis, a honey bee hive product, is thought to exhibit a broad spectrum of activities including antibiotic, antiviral, anti-inflammatory and tumor growth inhibition; some of the observed biological activities may be due to caffeic acid (cinnamic acid) esters that are present in propolis. In the present study we synthesized three caffeic acid esters, namely methyl caffeate (MC), phenylethyl caffeate (PEC) and phenylethyl dimethylcaffeate (PEDMC) and tested them against the 3,2'-dimethyl-4-aminobiphenyl, (DMAB, a colon and mammary carcinogen)-induced mutagenicity in Salmonella typhimurium strains TA 98 and TA 100. Also, the effect of these agents on the growth of human colon adenocarcinoma, HT-29 cells and activities of ornithine decarboxylase (ODC) and protein tyrosine kinase (PTK) was studied. Mutagenicity was induced in Salmonella typhimurium strains TA 98 and TA 100 plus S9 activation using 5 and 10 micrograms DMAB and antimutagenic activities of 0-150 microM MC, 0-60 microM PEC and 0-80 microM PEDMC were determined. The results indicate that MC, PEC and PEDMC were not mutagenic in the Salmonella tester system. DMAB-induced mutagenicity was significantly inhibited with 150 microM MC, 40-60 microM PEC and 40-80 microM PEDMC in both tester systems. Treatment of HT-29 colon adenocarcinoma cells with > 150 microM MC, 30 microM PEC and 20 microM PEDMC significantly inhibited the cell growth and syntheses of RNA, DNA and protein. ODC and PTK activities were also inhibited in HT-29 cells treated with different concentrations of MC, PEC and PEDMC. These results demonstrate that caffeic acid esters which are present in Propolis possess chemopreventive properties when tested in short-term assay systems.

  14. Identification of Annexin A1 protein expression in human gastric adenocarcinoma using proteomics and tissue microarray

    PubMed Central

    Zhang, Zhi-Qiang; Li, Xiu-Juan; Liu, Gui-Tao; Xia, Yu; Zhang, Xiang-Yang; Wen, Hao

    2013-01-01

    AIM: To study the differential expression of Annexin A1 (ANXA1) protein in human gastric adenocarcinoma. This study was also designed to analyze the relationship between ANXA1 expression and the clinicopathological parameters of gastric carcinoma. METHODS: Purified gastric adenocarcinoma cells (GAC) and normal gastric epithelial cells (NGEC) were obtained from 15 patients with gastric cancer by laser capture microdissection. All of the peptide specimens were labeled as 18O/16O after trypsin digestion. Differential protein expressions were quantitatively identified between GAC and NGEC by nanoliter-reverse-phase liquid chromatography-mass/mass spectrometry (nano-RPLC-MS/MS). The expressions of ANXA1 in GAC and NGEC were verified by western blot analysis. The tissue microarray containing the expressed ANXA1 in 75 pairs of gastric carcinoma and paracarcinoma specimens was detected by immunohistochemistry (IHC). The relationship between ANXA1 expression and clinicopathological parametes of gastric carcinoma was analyzed. RESULTS: A total of 78 differential proteins were identified. Western blotting revealed that ANXA1 expression was significantly upregulated in GAC (2.17/1, P < 0.01). IHC results showed the correlations between ANXA1 protein expression and the clinicopathological parameters, including invasive depth (T stage), lymph node metastasis (N stage), distant metastasis (M stage) and tumour-lymph node metastasis stage (P < 0.01). However, the correlations between ANXA1 protein expression and the remaining clinicopathological parameters, including sex, age, histological differentiation and the size of tumour were not found (P > 0.05). CONCLUSION: The upregulated ANXA1 expression may be associated with carcinogenesis, progression, invasion and metastasis of GAC. This protein could be considered as a biomarker of clinical prognostic prediction and targeted therapy of GAC. PMID:24282368

  15. Povidone-iodine-induced cell death in cultured human epithelial HeLa cells and rat oral mucosal tissue.

    PubMed

    Sato, So; Miyake, Masao; Hazama, Akihiro; Omori, Koichi

    2014-07-01

    Although povidone-iodine (PVP-I) has been used as a gargle since 1956, its effectiveness and material safety have been remained controversial. The aim of this study was to investigate the toxicity of PVP-I to epithelial cells in a concentration range significantly lower than that used clinically. Study design was in vitro laboratory investigations and in vivo histological and immunologic analysis. We examined the effects of PVP-I at concentrations of 1 × 10(-2) to 1 × 10(3) μM and 1 × 10(-4) to 1 × 10 μM on HeLa cells as a model of epithelial cells and rat oral mucosa, respectively, after 1 or 2 days of exposure. Annexin V/FLUOS was used to distinguish live, apoptotic and necrotic cells. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method was also used to observe whether apoptotic epithelial cells exist in rat oral mucosa after 1 day of exposure of PVP-I. HeLa cells developed concentration-dependent cytotoxicity, and epithelium of rat oral mucosa was thinned in a concentration-dependent manner. HeLa cell apoptosis increased after 1 × 10(0) μM of PVP-I exposure for 2 days. In the TUNEL method, many apoptotic epithelial cells were observed in the rat oral mucosa after 1 day of exposure to diluted 1 × 10(-2) μM of PVP-I, but minimal apoptotic epithelial cells were observed using 1 × 10(-3) μM of PVP-I. Our findings suggest that exposure to PVP-I, of which concentrations are even lower than those used clinically, causes toxicity in epithelial cells. This knowledge would help us better understand the risk of the use of PVP-I against mucosa.

  16. Proteomic Analysis Revealed the Important Role of Vimentin in Human Cervical Carcinoma HeLa Cells Treated With Gambogic Acid*

    PubMed Central

    Yue, Qingxi; Feng, Lixing; Cao, Biyin; Liu, Miao; Zhang, Dongmei; Wu, Wanying; Jiang, Baohong; Yang, Min; Liu, Xuan; Guo, Dean

    2016-01-01

    Gambogic acid (GA) is an anticancer agent in phase IIb clinical trial in China. In HeLa cells, GA inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis, as showed by results of MTT assay and flow cytometric analysis. Possible target-related proteins of GA were searched using comparative proteomic analysis (2-DE) and nine proteins at early (3 h) stage together with nine proteins at late (24 h) stage were found. Vimentin was the only target-related protein found at both early and late stage. Results of both 2-DE analysis and Western blotting assay suggested cleavage of vimentin induced by GA. MS/MS analysis of cleaved vimentin peptides indicated possible cleavage sites of vimentin at or near ser51 and glu425. Results of targeted proteomic analysis showed that GA induced change in phosphorylation state of the vimentin head domain (aa51–64). Caspase inhibitors could not abrogate GA-induced cleavage of vimentin. Over-expression of vimentin ameliorated cytotoxicity of GA in HeLa cells. The GA-activated signal transduction, from p38 MAPK, heat shock protein 27 (HSP27), vimentin, dysfunction of cytoskeleton, to cell death, was predicted and then confirmed. Results of animal study showed that GA treatment inhibited tumor growth in HeLa tumor-bearing mice and cleavage of vimentin could be observed in tumor xenografts of GA-treated animals. Results of immunohistochemical staining also showed down-regulated vimentin level in tumor xenografts of GA-treated animals. Furthermore, compared with cytotoxicity of GA in HeLa cells, cytotoxicity of GA in MCF-7 cells with low level of vimentin was weaker whereas cytotoxicity of GA in MG-63 cells with high level of vimentin was stronger. These results indicated the important role of vimentin in the cytotoxicity of GA. The effects of GA on vimentin and other epithelial-to-mesenchymal transition (EMT) markers provided suggestion for better usage of GA in clinic. PMID:26499837

  17. Proteomic Analysis Revealed the Important Role of Vimentin in Human Cervical Carcinoma HeLa Cells Treated With Gambogic Acid.

    PubMed

    Yue, Qingxi; Feng, Lixing; Cao, Biyin; Liu, Miao; Zhang, Dongmei; Wu, Wanying; Jiang, Baohong; Yang, Min; Liu, Xuan; Guo, Dean

    2016-01-01

    Gambogic acid (GA) is an anticancer agent in phase IIb clinical trial in China. In HeLa cells, GA inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis, as showed by results of MTT assay and flow cytometric analysis. Possible target-related proteins of GA were searched using comparative proteomic analysis (2-DE) and nine proteins at early (3 h) stage together with nine proteins at late (24 h) stage were found. Vimentin was the only target-related protein found at both early and late stage. Results of both 2-DE analysis and Western blotting assay suggested cleavage of vimentin induced by GA. MS/MS analysis of cleaved vimentin peptides indicated possible cleavage sites of vimentin at or near ser51 and glu425. Results of targeted proteomic analysis showed that GA induced change in phosphorylation state of the vimentin head domain (aa51-64). Caspase inhibitors could not abrogate GA-induced cleavage of vimentin. Over-expression of vimentin ameliorated cytotoxicity of GA in HeLa cells. The GA-activated signal transduction, from p38 MAPK, heat shock protein 27 (HSP27), vimentin, dysfunction of cytoskeleton, to cell death, was predicted and then confirmed. Results of animal study showed that GA treatment inhibited tumor growth in HeLa tumor-bearing mice and cleavage of vimentin could be observed in tumor xenografts of GA-treated animals. Results of immunohistochemical staining also showed down-regulated vimentin level in tumor xenografts of GA-treated animals. Furthermore, compared with cytotoxicity of GA in HeLa cells, cytotoxicity of GA in MCF-7 cells with low level of vimentin was weaker whereas cytotoxicity of GA in MG-63 cells with high level of vimentin was stronger. These results indicated the important role of vimentin in the cytotoxicity of GA. The effects of GA on vimentin and other epithelial-to-mesenchymal transition (EMT) markers provided suggestion for better usage of GA in clinic.

  18. Quantum dots (QDs) restrain human cervical carcinoma HeLa cell proliferation through inhibition of the ROCK-c-Myc signaling.

    PubMed

    Chen, Liqun; Qu, Guangbo; Zhang, Changwen; Zhang, Shuping; He, Jiuyang; Sang, Nan; Liu, Sijin

    2013-03-01

    Cancers often cause significant morbidity and even death to patients. To date, conventional therapies, such as chemotherapy, radiation and surgery, are often limited; meanwhile, novel anticancer therapeutics are urgently needed to improve clinical treatments. Rapid application of nanotechnology and nanomaterials represents a promising vista for the development of anti-cancer therapeutics. However, how to integrate the novel properties of nanotechnology and nanomaterials into cancer treatment warrants close investigation. In the current study, we report a novel finding about the inhibitory effect of CdSe quantum dots (QDs) on Rho-associated kinase (ROCK) activity in cervical carcinoma HeLa cells associated with the attenuation of the ROCK-c-Myc signaling. We mechanistically demonstrated that QD-conducted ROCK inhibition greatly diminished c-Myc protein stability due to reduced phosphorylation, and also suppressed its activity in transcribing target genes (e.g. HSPC111). Thus, the treatment of QDs greatly restrained HeLa cell growth by inducing cell cycle arrest at G1 phase due to the reduced ability of c-Myc in driving cell proliferation. Additionally, since HSPC111, one of the c-Myc targets, is involved in regulating cell growth through ribosomal biogenesis and assembly, the downregulation of HSPC111 could also contribute to diminished proliferation in HeLa cells upon QD treatment. These results together suggested that inhibition of ROCK activity or ROCK-mediated c-Myc signaling in tumor cells upon QD treatment might represent a promising strategy to restrain tumor progression for human cervical carcinoma.

  19. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways.

    PubMed

    Kashafi, Elham; Moradzadeh, Maliheh; Mohamadkhani, Ashraf; Erfanian, Saiedeh

    2017-02-28

    Cervical cancer is one of the most frequent cancers in women worldwide. Defects in the apoptotic pathways are responsible for both the disease pathogenesis and its therapy resistance. It is thus a good candidate for treatment by pro-apoptotic agents. Kaempferol as a flavonoid has antioxidant and anti-tumor properties. Kaempferol has been shown to induce apoptosis and cell death in cancer cells. However, due to the problems in the treatment of cervical cancer, this study is designed to investigate the molecular mechanism by which kaempferol suppresses the growth of cervical cancer HeLa cell as compared with HFF cells (normal cells). Cells treated with kaempferol (12-100μM) and 5-FU (1-10μM), as the positive control, up to 72h. Cell viability was determined by MTT assay and real time PCR was used to investigate apoptosis and telomerase genes expression. The results showed that kaempferol decreased cell viability as concentration- and time-dependently. IC50 values were 10.48μM for HeLa and 707.00μM for HFF cells, as compared with 1.40μM and 16.38μM for 5-FU after 72h treatment, respectively. Also, kaempferol induced cellular apoptosis and aging through down-regulating the PI3K/AKT and hTERT pathways. This study suggests that kaempferol may be a useful adjuvant therapeutic agent in the treatment of cervical cancer.

  20. Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells.

    PubMed

    Yu, Yang; Yu, Xiaofeng; Ma, Jianxia; Tong, Yili; Yao, Jianfeng

    2016-07-01

    The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway plays a significant role in colorectal adenocarcinoma. NVP-BEZ235 (dactolisib) is a novel dual inhibitor of PI3K/mTOR. The effects of NVP-BEZ235 in human colorectal adenocarcinoma are still unclear. In the present study, we aimed to explore the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. HT-29 human colorectal adenocarcinoma cells were treated with NVP-BEZ235 (0, 0.001, 0.01, 0.1, 1 and 3 µM) for 24 and 48 h, respectively. Cells were also treated with NVP-BEZ235 (0.1 µM), DDP (100, 300 and 1,000 µM), and NVP-BEZ235 (0.1 µM) combined with DDP (100, 300 and 1,000 µM) respectively, and cultured for 24 h after treatment. MTT assay was utilized to evaluate the effects of NVP-BEZ235 alone or NVP-BEZ235 combined with cis-diamminedichloroplatinum (DDP) on proliferation of HT-29 cells. Cell wound-scratch assay was used detect cell migration. In addition, expression of microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B and LC3B) in HT-29 cells was detected by immunofluorescence at 48 h after NVP-BEZ235 (1 µM) treatment. Expression of proteins involved in cell cycle and proliferation (p-Akt, p-mTOR and cyclin D1), apoptosis (cleaved caspase-3), and autophagy (cleaved LC3B and Beclin-1) were detected by western blot analysis. NVP-BEZ235 inhibited the proliferation and migration of HT-29 human colorectal adenocarcinoma cells. NVP-BEZ235 decreased protein expression of p-Akt, p-mTOR and cyclin D1, and increased protein expression of cleaved caspase-3, cleaved LC3B and Beclin-1 as the concentrations and the incubation time of NVP-BEZ235 increased. In addition, NVP-BEZ235 and DDP had synergic effects in inhibiting cell proliferation and migration. The expression of protein involved in apoptosis (cleaved caspase-3) was higher in drug combination group compared to the NVP-BEZ235 single treatment group. NVP-BEZ235

  1. Preferential metabolism of N-nitrosodiethylamine by two cell lines derived from human pulmonary adenocarcinomas

    SciTech Connect

    Falzon, M.; McMahon, J.B.; Gazdar, A.F.; Schuller, H.M.

    1986-01-01

    Diethylnitrosamine (DEN), in common with other nitrosamines, is a carcinogenic agent which produces tumors in a wide variety of tissues in experimental animals. The pulmonary Clara cell is a major target of N-nitrosamine-induced carcinogenesis in hamsters and rats. DEN is believed to require metabolic activation to elicit its carcinogenic effects. The metabolism of (/sup 14/C)DEN was studied in two cell lines derived from human lung adenocarcinomas and two cell lines derived from human small cell lung cancers by monitoring /sup 14/CO/sub 2/ production and covalent binding of radiolabel from (/sup 14/C)DEN to the cell protein and DNA fractions. (/sup 14/C)DEN was metabolized by adenocarcinoma-derived NCI-H322 (with Clara cell features) and NCI-H358 (with features of alveolar type II cells) but not by NCI-H69 and NCI-H128 (derived from small cell carcinoma). Metabolism was markedly inhibited by heat denaturation of the cell protein. (/sup 14/C)DEN metabolism by NCI-H322 was greatly decreased when the incubation was carried out under anaerobic conditions and in the presence of a carbon monoxide enriched atmosphere. These results suggested the involvement of the cytochrome P-450-dependent monooxygenase enzyme system. Metabolism by NCI-H358 was also decreased in the absence of oxygen or presence of carbon monoxide although the effects were relatively small compared with the results with NCI-H322. On the other hand, aspirin or indomethacin, which are inhibitors of the fatty acid cyclooxygenase component of prostaglandin endoperoxide synthetase, preferentially inhibited (/sup 14/C)DEN metabolism by NIC-H358. There were little or no effects of these inhibitors on the metabolism of DEN in NCI-H322. The data suggest that DEN metabolism in different lung cell types may be carried out by different enzyme systems which in turn may contribute to the selective effect of DEN in the lung.

  2. The neem limonoids azadirachtin and nimbolide induce cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells.

    PubMed

    Priyadarsini, R Vidya; Murugan, R Senthil; Sripriya, P; Karunagaran, D; Nagini, S

    2010-06-01

    Limonoids from the neem tree (Azadirachta indica) have attracted considerable research attention in recent years owing to their potent antioxidant and anti-proliferative effects. The present study was designed to investigate the cellular and molecular mechanisms by which azadirachtin and nimbolide exert cytotoxic effects in the human cervical cancer (HeLa) cell line. Both azadirachtin and nimbolide significantly suppressed the viability of HeLa cells in a dose-dependent manner by inducing cell cycle arrest at G0/G1 phase accompanied by p53-dependent p21 accumulation and down-regulation of the cell cycle regulatory proteins cyclin B, cyclin D1 and PCNA. Characteristic changes in nuclear morphology, presence of a subdiploid peak and annexin-V staining pointed to apoptosis as the mode of cell death. Increased generation of reactive oxygen species with decline in the mitochondrial transmembrane potential and release of cytochrome c confirmed that the neem limonoids transduced the apoptotic signal via the mitochondrial pathway. Altered expression of the Bcl-2 family of proteins, inhibition of NF-kappaB activation and over-expression of caspases and survivin provide compelling evidence that azadirachtin and nimbolide induce a shift of balance toward a pro-apoptotic phenotype. Antioxidants such as azadirachtin and nimbolide that can simultaneously arrest the cell cycle and target multiple molecules involved in mitochondrial apoptosis offer immense potential as anti-cancer therapeutic drugs.

  3. Investigation of siRNA Nanoparticle Formation Using Mono-Cationic Detergents and Its Use in Gene Silencing in Human HeLa Cells

    PubMed Central

    Yamada, Yuma; Suzuki, Ryosuke; Harashima, Hideyoshi

    2013-01-01

    The focus of recent research has been on the development of siRNA vectors to achieve an innovative gene therapy. Most of the conventional vectors are siRNA nanoparticles complexed with cationic polymers and liposomes, making it difficult to release siRNA. In this study, we report on the use of MCD, a quaternary ammonium salt detergent containing a long aliphatic chain (L-chain) as an siRNA complexation agent using human HeLa cells (a model cancer cell). We prepared siRNA nanoparticles using various MCDs, and measured the diameters and zeta-potentials of the particles. The use of an MCD with a long L-chain resulted in the formation of a positively charged nanoparticle. In contrast, a negatively charged nanoparticle was formed when a MCD with a short L-chain was used. We next evaluated the gene silencing efficiency of the nanoparticles using HeLa cells expressing the luciferase protein. The results showed that the siRNA/MCD nanoparticles showed a higher gene silencing efficiency than Lipofectamine 2000. We also found that the efficiency of gene silencing is a function of the length of the alkyl chain in MCD and zeta-potential of the siRNA/MCD nanoparticles. Such information provides another viewpoint for designing siRNA vectors. PMID:24202451

  4. 2-[(Carboxymethyl)sulfanyl]-4-oxo-4-arylbutanoic acids selectively suppressed proliferation of neoplastic human HeLa cells. A SAR/QSAR study.

    PubMed

    Drakulić, Branko J; Juranić, Zorica D; Stanojković, Tatjana P; Juranić, Ivan O

    2005-08-25

    A series of twenty alkyl-, halo-, and methoxy-aryl-substituted 2-[(carboxymethyl)sulfanyl]-4-oxo-4-arylbutanoic acids were synthesized. The new compounds, called CSAB, suppressed proliferation of human cervix carcinoma, HeLa cells, in vitro in a concentration range of 0.644 to 29.48 microM/L. Two compounds exhibit antiproliferative activity in sub-micromolar concentrations. Five compounds act in low micromolar concentrations (<2 microM/L). The most active compounds exert lower cytotoxicity toward healthy human peripheral blood mononuclear cells (PBMC and PBMC+PHA) (selectivity indexes > 10). A strong structure-activity relationship, using estimated log P values and BCUT descriptors, was observed.

  5. Securinine from Phyllanthus glaucus Induces Cell Cycle Arrest and Apoptosis in Human Cervical Cancer HeLa Cells

    PubMed Central

    Krauze-Baranowska, Mirosława; Ochocka, J. Renata

    2016-01-01

    Background The Securinega-type alkaloids occur in plants belonging to Euphorbiaceae family. One of the most widely distributed alkaloid of this group is securinine, which was identified next to allosecurinine in Phyllanthus glaucus (leafflower). Recently, some Securinega-type alkaloids have paid attention to its antiproliferative potency towards different cancer cells. However, the cytotoxic properties of allosecurinine have not yet been evaluated. Methods The cytotoxicity of the extract, alkaloid fraction obtained from P. glaucus, isolated securinine and allosecurinine against HeLa cells was evaluated by real-time xCELLigence system and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by annexin V and 7-amino-actinomycin (7-AAD) staining and confirmed with fluorescent Hoechst 33342 dye. The assessment of mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation, the level of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), caspase-3/7 activity and cell cycle analysis were measured by flow cytometry. The enzymatic activity of caspase-9 was assessed by a luminometric assay. The expression of apoptosis associated genes was analyzed by real-time PCR. Results The experimental data revealed that securinine and the alkaloid fraction were significantly potent on HeLa cells growth inhibition with IC50 values of 7.02 ± 0.52 μg/ml (32.3 μM) and 25.46 ± 1.79 μg/ml, respectively. The activity of allosecurinine and Phyllanthus extract were much lower. Furthermore, our study showed that the most active securinine induced apoptosis in a dose-dependent manner in the tested cells, increased the percentage of ROS positive cells and depolarized cells as well as stimulated the activity of ERK1/2, caspase-9 and -3/7. Securinine also induced cell cycle arrest in S phase. Real-time PCR analysis showed high expression of TNFRSF genes in the cells stimulated with securinine. Conclusions Securinine

  6. Pioglitazone protects against cisplatin induced nephrotoxicity in rats and potentiates its anticancer activity against human renal adenocarcinoma cell lines.

    PubMed

    Mahmoud, Mona F; El Shazly, Shimaa M

    2013-01-01

    Cisplatin-induced nephrotoxicity is a serious problem that limits its use in cancer treatment. The present study aimed to investigate the renal protective capacity of pioglitazone to reduce the cisplatin- induced nephrotoxicity. The underlying suggested mechanism(s) and whether this nephroprotective effect (if any) interferes with the cytotoxic effect of cisplatin on cancer cells were also investigated. Pioglitazone, Bisphenol A diglycidyl ether, BADGE, IP injected (Peroxisome proliferator- activated receptor gamma (PPAR-γ) antagonist), or their combination were administered to rats one hour before cisplatin injection. Moreover, their effects on the cell viability of human renal adenocarcinoma cell models (ACHN) were studied. The obtained results showed that pioglitazone improved the renal function, structural changes, renal malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-κB) genes expression in cisplatin injected rats. It increased both renal reduced glutathione (GSH) content and PPAR-γ gene expression. In contrast to the data obtained by prior administration of BADGE. Pioglitazone also potentiated the cytotoxic effect of cisplatin on human renal adenocarcinoma cells and this effect was abolished by BADGE co administration. In conclusion, these results suggested that pioglitazone protected against cisplatin- induced nephrotoxicity through its interaction with PPAR-γ receptors and antioxidant effects. Furthermore, pioglitazone did not interfere but rather potentiated the cytotoxic effects of cisplatin on human renal adenocarcinoma cells.

  7. Tandem repeat polymers of a critical region of the human interferon-beta promoter exhibit a marked constitutive activity and enhanced responsiveness to transcriptional regulators in transfected HeLa cells.

    PubMed

    Dron, M; Rebouillat, D; Tovey, M G

    1992-10-01

    Multiple copy tandem repeats polymers of an authentic 30-bp region of the human interferon-beta (IFN-beta) promoter between positions-91 to -62 relative to the cap site or the hexanucleotide GAAAGT derived from this region, both acted as strong constitutive regulatory elements in transfected HeLa cells. Such polymers were unresponsive to treatment with IFN-alpha despite their considerable homology with the IFN-responsive elements of other genes but were highly responsive to treatment of HeLa cells with IFN-gamma. Virus induction of HeLa cells transfected with polymers of the 30-bp region linked to a CAT gene increased the activity of the reporter gene 500- to 2,000-fold over baseline levels. Treatment with IFN-alpha prior to virus induction did not increase further CAT activity. Cotransfection of HeLa cells with the CAT gene under the control of a 12-element tandem repeat polymer of the human IFN-beta promoter and an expression vector for the IRF-1 transcriptional activator markedly increased CAT activity while cotransfection of HeLa cells with the IFN-beta construct together with an expression vector for the transcriptional regulator IRF-2 markedly decreased CAT activity relative to cells transfected with the IFN-beta polymer alone.

  8. Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells

    PubMed Central

    Kim, Eunbi; Na, Sunghun; An, Borim; Yang, Se-Ran; Kim, Woo Jin; Ha, Kwon-Soo; Han, Eun-Taek; Park, Won Sun; Lee, Chang-Min; Lee, Ji Yoon

    2017-01-01

    Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer. PMID:28280409

  9. The comparison of anticancer activity of thymoquinone and nanothymoquinone on human breast adenocarcinoma.

    PubMed

    Dehghani, Hossein; Hashemi, Mehrdad; Entezari, Maliheh; Mohsenifar, Afshin

    2015-01-01

    Cancer is one of the main causes of mortality in the world which is created by the effect of enviromental physico-chemical mutagen and carcinogen agents. The identification of new cytotoxic drugs with low side effects on immune system has developed as important area in new studies of pharmacology. Thymoquinone (TQ), derived from the medicinal spice Nigella sativa (also calledt black cumin) exhibit anti-inflammatory and anti-cancer activities. In this study we employed nanogel-based nanoparticle approach to improve upon its effectiveness. Myristic acid-chitosan (MA-chitosan) nanogels were prepared by the technique of self-assembly. Thymoquinone was loaded into the nanogels. The surface morphology of the prepared nanoparticles was determined using SEM and TEM. The other objective of this study was to examine the in-vitro cytotoxic activity of cell death of Thymoquinone and nanothymoquinone on human breast adenocarcinoma cell line (MCF7). Cytotoxicity and viability of Thymoquinone and nanothymoquinone were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and dye exclusion assay. Transmission electron microscopy confirmed the particle diameter was between 150 to 200 nm. Proliferation of MCF7 cells was significantly inhibited by Thymoquinone and nanothymoquinone in a concentration-dependent manner in defined times. There were significant differences in IC50 Thymoquinone and nanothymoquinone. TQ-loaded nanoparticles proved more effective compared to TQ solution. The high drug-targeting potential and efficiency demonstrates the significant role of the anticancer properties of TQ-loaded nanoparticles.

  10. Previous heat shock treatment inhibits Mayaro virus replication in human lung adenocarcinoma (A549) cells.

    PubMed

    Virgilio, P L; Godinho-Netto, M C; Carvalho Mda, G

    1997-01-01

    Human lung adenocarcinoma cells (A549) were submitted to mild or severe heat shock (42 degrees C or 44 degrees C) for 1 h, while another group of cells was double-heat-shocked (submitted to 42 degrees C for 1 h, returned to 37 degrees C for 3 h, then exposed to 44 degrees C for 1 h). After each heat treatment, the cells were infected with Mayaro virus for 24 h and incubated at 37 degrees C. The results showed that the double-heat-shocked thermotolerant cells exhibited a 10(4)-fold virus titre inhibition, despite the recovery of protein synthesis and original morphology 24 h post-infection. In contrast, cells submitted to mild or severe heat shock exhibited weaker inhibition of Mayaro virus titre (10(2)-fold). The mildly heat-shocked cells also presented a full recovery in protein synthesis, which was not observed in severely heat-shocked cells. These results indicate that exposure of A549 cells to a mild or to a double heat shock treatment before Mayaro virus infection induces an antiviral state.

  11. Apoptotic effect of sodium acetate on a human gastric adenocarcinoma epithelial cell line.

    PubMed

    Xia, Y; Zhang, X L; Jin, F; Wang, Q X; Xiao, R; Hao, Z H; Gui, Q D; Sun, J

    2016-10-05

    The objective of this study was to investigate the effect of sodium acetate on the viability of the human gastric adenocarcinoma (AGS) epithelial cell line. AGS cells were exposed to a range of concentrations of sodium acetate for different periods of time, and the sodium acetate-induced cytotoxic effects, including cell viability, DNA fragmentation, apoptotic gene expression, and caspase activity, were assessed. The changes in these phenotypes were quantified by performing a lactate dehydrogenase cell viability assay, annexin V staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and several caspase activity assays. In vitro studies demonstrated that the cytotoxicity of sodium acetate on the AGS cell line were dose- and time-dependent manners. No differences were found between the negative control and sodium acetate-treated cells stained with annexin V and subjected to the TUNEL assay. However, caspase-3 activity was increased in AGS cells exposed to sodium acetate. Overall, it was concluded that sodium acetate exerted an apoptotic effect in AGS cells via a caspase-dependent apoptotic pathway.

  12. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells.

    PubMed

    Ignacio Barrasa, Juan; Olmo, Nieves; Pérez-Ramos, Pablo; Santiago-Gómez, Angélica; Lecona, Emilio; Turnay, Javier; Antonia Lizarbe, M

    2011-10-01

    The continuous exposure of the colonic epithelium to high concentrations of bile acids may exert cytotoxic effects and has been related to pathogenesis of colon cancer. A better knowledge of the mechanisms by which bile acids induce toxicity is still required and may be useful for the development of new therapeutic strategies. We have studied the effect of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) treatments in BCS-TC2 human colon adenocarcinoma cells. Both bile acids promote cell death, being this effect higher for CDCA. Apoptosis is detected after 30 min-2 h of treatment, as observed by cell detachment, loss of membrane asymmetry, internucleosomal DNA degradation, appearance of mitochondrial transition permeability (MPT), and caspase and Bax activation. At longer treatment times, apoptosis is followed in vitro by secondary necrosis due to impaired mitochondrial activity and ATP depletion. Bile acid-induced apoptosis is a result of oxidative stress with increased ROS generation mainly by activation of plasma membrane enzymes, such as NAD(P)H oxidases and, to a lower extent, PLA2. These effects lead to a loss of mitochondrial potential and release of pro-apoptotic factors to the cytosol, which is confirmed by activation of caspase-9 and -3, but not caspase-8. This initial apoptotic steps promote cleavage of Bcl-2, allowing Bax activation and formation of additional pores in the mitochondrial membrane that amplify the apoptotic signal.

  13. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells

    PubMed Central

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer. PMID:27610172

  14. Enhancement of Radiation Effects by Ursolic Acid in BGC-823 Human Adenocarcinoma Gastric Cancer Cell Line.

    PubMed

    Yang, Yang; Jiang, Man; Hu, Jing; Lv, Xin; Yu, Lixia; Qian, Xiaoping; Liu, Baorui

    2015-01-01

    Recent research has suggested that certain plant-derived polyphenols, i.e., ursolic acid (UA), which are reported to have antitumor activities, might be used to sensitize tumor cells to radiation therapy by inhibiting pathways leading to radiation therapy resistance. This experiment was designed to investigate the effects and possible mechanism of radiosensitization by UA in BGC-823 cell line from human adenocarcinoma gastric cancer in vitro. UA caused cytotoxicity in a dose-dependent manner, and we used a sub-cytotoxicity concentration of UA to test radioenhancement efficacy with UA in gastric cancer. Radiosensitivity was determined by clonogenic survival assay. Surviving fraction of the combined group with irradiation and sub-cytotoxicity UA significantly decreased compared with the irradiation group. The improved radiosensitization efficacy was associated with enhanced G2/M arrest, increased reactive oxygen species (ROS), down-regulated Ki-67 level and improved apoptosis. In conclusion, as UA demonstrated potent antiproliferation effect and synergistic effect, it could be used as a potential drug sensitizer for the application of radiotherapy.

  15. INOSITOL HEXAKISPHOSPHATE MEDIATES APOPTOSIS IN HUMAN BREAST ADENOCARCINOMA MCF-7 CELL LINE VIA INTRINSIC PATHWAY

    SciTech Connect

    Agarwal, Rakhee; Ali, Nawab

    2010-04-12

    Inositol polyphosphates (InsP{sub s}) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP{sub 6}) is the most abundant among all InsP{sub s} and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsP{sub s} also regulate cellular signaling mechanisms. InsP{sub s} have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP{sub 6} dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsP{sub s} tested (InsP{sub 3}, InsP{sub 4}, InsP{sub 5}, and InsP{sub 6}), InsP{sub 6} was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP{sub 6} were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP{sub 6} induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  16. Evaluation of interacellular tamoxifen-induced fluorescence in tamoxifen-resistant human breast adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Bachmann, Nathalie; Barberi-Heyob, Muriel; Gramain, Marie-Pierre; Bour, Corinne; Marchal, Sophie; Parache, Robert M.; Guillemin, Francois H.; Merlin, Jean-Louis

    1997-12-01

    A tamoxifen resistant cell line (MCF7TAM) was established from tamoxifen sensitive MCF-7 human adenocarcinoma cells expressing estrogen receptors. The resistant cell line was found to express estrogen receptors to similar level as the parent cell line but the receptors were found to be altered, having lost their ability to bind estradiol or tamoxifen. The fluorescence of eosin-tamoxifen ionic association was used to investigate intracellular location of tamoxifen in both sensitive and resistant cell lines. Fluorescence emission spectra of eosin, tamoxifen and eosin-tamoxifen complex ((lambda) exc equals 480 nm) were analyzed and showed that maximal fluorescence intensity of the complex ((lambda) em equals 540 nm) was four times higher than that of eosin alone while tamoxifen alone did not emit any fluorescence in this spectral range. In MCF-7 cells, tamoxifen was found to be diffusively located in the cytoplasm and nuclear fluorescence intensity was significantly lower. No difference was observed in fluorescence intensity or location in tamoxifen resistant cells, although it has been previously correlated with clinical responsiveness. Improvement of this fluorescence microscopy methodology appears necessary to provide accurate results taking into account the complexity of tamoxifen resistance molecular pathways.

  17. sup 131 I-anticarcinoembryonic antigen therapy of LS174T human colon adenocarcinoma spheroids

    SciTech Connect

    Langmuir, V.K.; McGann, J.K.; Buchegger, F.; Sutherland, R.M. )

    1989-06-15

    LS174T human colon adenocarcinoma multicell spheroids were used to study the radiobiological aspects of radioimmunotherapy. The spheroids were incubated in 131I-anticarcinoembryonic antigen (B7) at an antibody concentration of 0.5 microgram/ml and at 131I concentrations of 2.5 and 7.5 microCi/ml. After incubation times of 90 h, clonogenic cells per spheroid were reduced by 1400-fold and 23-fold at the high and low 131I concentrations, respectively. 131I Nonspecific antibody (PX63) resulted in 2- and 1.2-fold reductions. Spheroid diameter was not significantly affected by therapy but histological examination revealed that there had been a significant reduction in the cell density, particularly near the spheroid surface. Using a theoretical model to estimate radiation dose, a radiation survival curve was constructed. The resulting curve was somewhat concave suggesting the presence of a resistant population of cells. It is likely that this observation is primarily due to the fact that the inner cells received a lower dose than the outer cells. A population of radiobiologically hypoxic cells in the inner portion of the spheroids may also have contributed to the decreasing slope of the curve as well as ongoing cell division leading to new cells which receive a lower radiation dose per cell cycle. Because of the ability to estimate radiation dose for a given biological effect, these types of experiments may allow predictions of the efficacy of radiolabeled antibody therapy for micrometastatic disease.

  18. Rewiring of human lung cell lineage and mitotic networks in lung adenocarcinomas

    PubMed Central

    Kim, Il-Jin; Quigley, David; To, Minh D.; Pham, Patrick; Lin, Kevin; Jo, Brian; Jen, Kuang-Yu; Raz, Dan; Kim, Jae; Mao, Jian-Hua; Jablons, David; Balmain, Allan

    2015-01-01

    Analysis of gene expression patterns in normal tissues and their perturbations in tumors can help to identify the functional roles of oncogenes or tumor suppressors and identify potential new therapeutic targets. Here, gene expression correlation networks were derived from 92 normal human lung samples and patient-matched adenocarcinomas. The networks from normal lung show that NKX2-1 is linked to the alveolar type 2 lineage, and identify PEBP4 as a novel marker expressed in alveolar type 2 cells. Differential correlation analysis shows that the NKX2-1 network in tumors includes pathways associated with glutamate metabolism, and identifies Vaccinia-related kinase (VRK1) as a potential drug target in a tumor-specific mitotic network. We show that VRK1 inhibition cooperates with inhibition of PARP signaling to inhibit growth of lung tumor cells. Targeting of genes that are recruited into tumor mitotic networks may provide a wider therapeutic window than that seen by inhibition of known mitotic genes. PMID:23591868

  19. Proapoptotic effects of new pentabromobenzylisothiouronium salts in a human prostate adenocarcinoma cell line.

    PubMed

    Koronkiewicz, Mirosława; Kazimierczuk, Zygmunt; Szarpak, Kinga; Chilmonczyk, Zdzisław

    2012-01-01

    Prostate cancer is the second most common cancer in elderly men worldwide and its incidence rate is rising continuously. Agents capable of inducing apoptosis in prostate cancer cells seem a promising approach to treat this malignancy. In this study we describe the synthesis of a number of novel N- and N,N'-substituted S-2,3,4,5,6-pentabromobenzylisothiouronium bromides and their activity against the human prostate adenocarcinoma PC3 cell line. All the compounds produced changes in mitochondrial transmembrane potential and cell cycle progression, showed a cytostatic effect and induced apoptosis in the tested cancer line in a concentration- and time-dependent manner. The most effective compounds ZKK-3, ZKK-9 and ZKK-13 produced, at 20 microM concentration, apoptosis in 42, 46, and 66% of the cells, respectively, after 48 h incubation. Two selected S-2,3,4,5,6-pentabromobenzylisothiouronium bromides (ZKK-3, ZKK-9) showed also a synergic proapoptotic effect with the new casein kinase II inhibitor 2-(4-methylpiperazin-1-yl)-4,5,6,7-tetrabromo-1H-benzimidazole (TBIPIP) in the PC3 cell line.

  20. Cytotoxicity of a Quinone-containing Cockroach Sex Pheromone in Human Lung Adenocarcinoma Cells.

    PubMed

    Ma, Bennett; Carr, Brian A; Krolikowski, Paul; Chang, Frank N

    2007-01-01

    The cytotoxic effects of blattellaquinone (BTQ), a sex pheromone produced by adult female German cockroaches, have been studied using human lung adenocarcinoma A549 cells. 1,4-Benzoquinone (BQ), a toxic chemical implicated in benzene toxicity, was used as a reference compound. Both BQ and BTQ showed comparable toxicity toward A549 cells, with LD50 values estimated to be 14 and 19 microM, respectively. These two compounds increased the formation of an oxidized fluorescent probe, 2',7'-dichlorofluorescein, but had no effect on the cellular GSSG level. Interestingly, BTQ increased the level of 8-epi-prostaglandin F2alpha and was 4-fold more efficient in depleting cellular GSH content than BQ. Of the five GSH adducts of BTQ isolated, three were identified as mono-GSH conjugates, and the other two were di-conjugates. Mass spectrometric and NMR analyses of the di-conjugates showed that the second GSH molecule displaced the isovaleric acid moiety, potentially via a nucleophilic substitution reaction. The ability of BTQ to conjugate a second GSH molecule without quinone regeneration indicated that it may be a more effective cross-linking agent than BQ. Future experiments may be needed to evaluate the overall safety of BTQ before the commercialization of the compound as a cockroach attractant.

  1. Inositol Hexakisphosphate Mediates Apoptosis in Human Breast Adenocarcinoma MCF-7 Cell Line via Intrinsic Pathway

    NASA Astrophysics Data System (ADS)

    Agarwal, Rakhee; Ali, Nawab

    2010-04-01

    Inositol polyphosphates (InsPs) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP6) is the most abundant among all InsPs and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsPs also regulate cellular signaling mechanisms. InsPs have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP6 dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsPs tested (InsP3, InsP4, InsP5, and InsP6), InsP6 was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP6 were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP6 induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  2. Glutaraldehyde-Mediated Synthesis of Asparaginase-Bound Maghemite Nanocomposites: Cytotoxicity against Human Colon Adenocarcinoma Cells.

    PubMed

    Baskar, G; George, Garrick Bikku

    2016-01-01

    Drugs processed using nanobiotechnology may be more biocompatible, with sustainable and stabilised release or action. L-asparaginase produced from fungi has many advantages for treatment of lymphocytic leukemia with lesser side effect. In the present work, maghemite nanobiocomposites of fungal asparaginase were produced using glutaraldehyde-pretreated colloidal magnetic nanoparticles. Formation of nanobiocomposites was observed using laser light scattering and confirmed by UV-visible spectrophotometry with the absorption peak at 497 nm. The specific asparaginase activity was increased from 320 U/mg with crude asparaginase to 481.5 U/mg. FTIR analysis confirmed that primary amines are the functional groups involved in binding of asparaginase on magnetic nanoparticles. The average size of the produced nanobiocomposite was found in the range of 30 nm to 40 nm using histogram analysis. The magnetic nanobiocomposite of asparaginase synthesised using glutaraldehyde showed 90.75% cytotoxicity against human colon adenocarcinoma cell lines. Hence it can be used as an active anticancer drug with an augmented level of bioavailability.

  3. Expression of receptors for gut peptides in human pancreatic adenocarcinoma and tumour-free pancreas.

    PubMed Central

    Tang, C.; Biemond, I.; Offerhaus, G. J.; Verspaget, W.; Lamers, C. B.

    1997-01-01

    Gut hormones that modulate the growth of normal pancreas may also modulate the growth of cancers originating from pancreas. This study visualized and compared the receptors for cholecystokinin (CCK), bombesin (BBS), secretin and vasoactive intestinal peptide (VIP) in tumour-free tissue sections of human pancreas (n = 10) and pancreatic ductal adenocarcinomas (n = 12) with storage phosphor autoradiography using radioligands. CCK-B receptors, present in control pancreata, were not detected in any of the pancreatic cancers. BBS receptors were visualized in control pancreata, but they were absent in 10 of 12 pancreatic cancers. In 5 of 12 pancreatic cancers, receptors for secretin were visualized, while binding for secretin was present in all tumour-free pancreata. Conversely, no specific binding of VIP was detected in control pancreata but was identified in 3 of 12 pancreatic cancer specimens. It is concluded that the expression of gut peptide receptors in pancreatic cancer differs from that in tumour-free pancreas. Receptors for these peptides are present in only a minority of pancreatic cancer specimens. Images Figure 1 PMID:9166939

  4. Photodynamic activity of a glucoconjugated silicon(IV) phthalocyanine on human colon adenocarcinoma.

    PubMed

    Chan, Crystal M H; Lo, Pui-Chi; Yeung, Sin-Lui; Ng, Dennis K P; Fong, Wing-Ping

    2010-07-15

    Photodynamic therapy (PDT) involves the use of a non-toxic photosensitizer which exhibits a killing effect upon activation by light. In the past few years, we have synthesized a number of novel second generation photosensitizers with superior properties, most of them are phthalocyanines. Among them, the glucoconjugated silicon(IV) phthalocyanine (SiPcGlu) shows potent phototoxicity against human colorectal adenocarcinoma HT29 cells. In the present study, its action mechanism was investigated. The initiation of apoptosis by SiPcGlu-PDT, subsequent to reactive oxygen species production, was shown by the results of TUNEL assay, annexin V and propidium iodide staining and DNA ladder pattern analysis. Confocal microscopy revealed the presence of SiPcGlu in lysosome, mitochondria and endoplasmic reticulum. SiPcGlu-PDT did not cause any damage to the lysosomal membrane; whereas in the mitochondria, it caused membrane depolarization and the release of cytochrome c into the cytosol, which subsequently brought about caspase-3 activation. In the endoplasmic reticulum, the treatment led to Ca(2+) release and an increase in the expression level of the chaperone protein GRP78. These observations suggest that SiPcGlu-PDT triggered the apoptotic pathways in both mitochondria and endoplasmic reticulum, but not the lysosome. A preliminary study of the photodynamic activity of SiPcGlu in the in vivo animal model was also carried out. It retarded tumor growth in HT29 tumor-bearing nude mice while causing no apparent toxicity to the animal.

  5. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    PubMed

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  6. Latex of Euphorbia antiquorum-induced S-phase arrest via active ATM kinase and MAPK pathways in human cervical cancer HeLa cells.

    PubMed

    Hsieh, Wen-Tsong; Lin, Hui-Yi; Chen, Jou-Hsuan; Lin, Wen-Chung; Kuo, Yueh-Hsiung; Wood, W Gibson; Lu, Hsu-Feng; Chung, Jing-Gung

    2015-09-01

    Latex of Euphorbia antiquorum (EA) has demonstrated great chemotherapeutic potential for cancer. However, the mechanisms of anti-proliferation of EA on cancer cell remain to be further investigated. The purpose of this study was to explore the influence of EA in human cervical cancer cells. Here, the cell cycle distribution by flow cytometry was examined and the protein expression by the western blotting methods was analyzed. From the cytometric results it was shown that EA-induced S-phase arrest in a concentration manner both in human cervical cancer HeLa and CaSki cells. According the western blot results it was illustrated that EA could downregulate early cyclin E1-Cdk2; and cyclin A-Cdc2 provides a significant additional quantity of S-phase promotion, that in turn promoted the expression of p21(waf1/cip1) and p27(kip1) which were the inhibitors in the complex of cyclin A and Cdc2 that led to cell cycle arrest. Moreover, EA promoted the activation of ataxia telangiectasia mutated (ATM) and check-point kinase-2 (Chk2); however, it negatively regulated the expression of Topoisomerases I and II, Cdc25A, and Cdc25C signaling. Caffeine, an ATM/ATR inhibitor significantly reversed EA downregulation in the levels of Cdc25A. Furthermore, JNK inhibitor SP600125 and p38 MAPK inhibitor SB203580 both could reverse the EA upregulation of the protein of Chk2 level, significantly. This study, therefore, revealed that EA could downregulate topoisomerase, and activate ATM kinase, which then induce parallel Chk 1/2 and MAPK signaling pathways to promote the degradation of Cdc25A to induced S-phase arrest in human cervical cancer HeLa cells.

  7. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa)

    SciTech Connect

    Jeyaraj, M.; Arun, R.; Sathishkumar, G.; MubarakAli, D.; Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Ganapathi, A.

    2014-04-01

    Highlights: • Gold nanoparticles (AuNPs) have been synthesized using Podophyllum hexandrum L. • AuNPs induces the oxidative stress to cell death in human cervical carcinoma cells. • It activates the caspase-cascade to cellular death. • It is actively blocks G2/M phase of cell cycle. - Abstract: Current prospect of nanobiotechnology involves in the greener synthesis of nanostructured materials particularly noble metal nanoparticles for various biomedical applications. In this study, biologically (Podophyllum hexandrum L.) synthesized crystalline gold nanoparticles (AuNPs) with the size range between 5 and 35 nm were screened for its anticancereous potential against human cervical carcinoma cells (HeLa). Stoichiometric proportion of the reaction mixture and conditions were optimized to attain stable nanoparticles with narrow size range. Different high throughput techniques like transmission electron microscope (TEM), X-ray diffraction (XRD) and UV–vis spectroscopy were adopted for the physio-chemical characterization of AuNPs. Additionally, Fourier transform infrared spectroscopy (FTIR) study revealed that the water soluble fractions present in the plant extract solely influences the reduction of AuNPs. Sublimely, synthesized AuNPs exhibits an effective in vitro anticancer activity against HeLa cells via induction of cell cycle arrest and DNA damage. Furthermore, it was evidenced that AuNPs treated cells are undergone apoptosis through the activation of caspase cascade which subsequently leads to mitochondrial dysfunction. Thereby, this study proves that biogenic colloidal AuNPs can be developed as a promising drug candidature for human cervical cancer therapy.

  8. Novel monoclonal antibody against beta 1 integrin enhances cisplatin efficacy in human lung adenocarcinoma cells.

    PubMed

    Kim, Min-Young; Cho, Woon-Dong; Hong, Kwon Pyo; Choi, Da Bin; Hong, Jeong Won; Kim, Soseul; Moon, Yoo Ri; Son, Seung-Myoung; Lee, Ok-Jun; Lee, Ho-Chang; Song, Hyung Geun

    2016-05-01

    The use of anti-beta 1 integrin monoclonal antibody in lung cancer treatment has proven beneficial. Here, we developed a novel monoclonal antibody (mAb), called P5, by immunizing mice with human peripheral blood mononuclear cells (PBMC). Its anti-tumor effect is now being tested, in a clinical phase III trial, in combinatorial treatments with various chemical drugs. To confirm that P5 indeed binds to beta 1 integrin, cell lysates were immunoprecipitated with commercial anti-beta 1 integrin mAb (TS2/16) and immunoblotted against P5 to reveal a 140 kDa molecular weight band, as expected. Immunoprecipitation with P5 followed by LC/MS protein sequence analysis further verified P5 antigen to be beta 1 integrin. Cisplatin treatment upregulated cell surface expression of beta 1 integrin in A549 cells, while causing inhibition of cell growth. When cells were co-treated with different concentrations of P5 mAb, the cisplatin-mediated inhibitory effect was enhanced in a dose-dependent manner. Our findings show that a combinatorial treatment of P5 mAb and cisplatin in A549 cells resulted in a 30% increase in apoptosis, compared to baseline, and significantly more when compared to either the cisplatin or P5 alone group. The entire peptide sequences in CDR from variable region of Ig heavy and light chain gene for P5 mAb are also disclosed. Together, these results provide evidence of the beneficial effect of P5 mAb in combinatorial treatment of human lung adenocarcinoma.

  9. Characterization of vectorial chloride transport pathways in the human pancreatic duct adenocarcinoma cell line HPAF.

    PubMed

    Fong, Peying; Argent, Barry E; Guggino, William B; Gray, Michael A

    2003-08-01

    Pancreatic duct cells express a Ca2+-activated Cl- conductance (CaCC), upregulation of which may be beneficial to patients with cystic fibrosis. Here, we report that HPAF, a human pancreatic ductal adenocarcinoma cell line that expresses CaCC, develops into a high-resistance, anion-secreting epithelium. Mucosal ATP (50 microM) caused a fourfold increase in short-circuit current (Isc), a hyperpolarization of transepithelial potential difference (from -4.9 +/- 0.73 to -8.5 +/- 0.84 mV), and a fall in resistance to less than one-half of resting values. The effects of ATP were inhibited by mucosal niflumic acid (100 microM), implicating an apical CaCC in the response. RT-PCR indicated expression of hClC-2, hClC-3, and hClC-5, but surprisingly not hCLCA-1 or hCLCA-2. K+ channel activity was necessary to maintain the ATP-stimulated Isc. Using a pharmacological approach, we found evidence for two types of K+ channels in the mucosal and serosal membranes of HPAF cells, one activated by chlorzoxazone (500 microM) and sensitive to clotrimazole (30 microM), as well as one blocked by clofilium (100 microM) but not chromanol 293B (5 microM). RT-PCR indicated expression of the Ca2+-activated K+ channel KCNN4, as well as the acid-sensitive, four transmembrane domain, two pore K+ channel, KCNK5 (hTASK-2). Western blot analysis verified the expression of CLC channels, as well as KCNK5. We conclude that HPAF will be a useful model system for studying channels pertinent to anion secretion in human pancreatic duct cells.

  10. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  11. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  12. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  13. [Effects of the expression of mouse metallothionein-I gene in human HeLa cell line on drug resistance].

    PubMed

    Li, X; Lü, W; Yin, S; Li, L

    2000-07-01

    Metallothionein-I (MT-I) gene was inserted into EcoRI site by using pSV2-neo plasmid vector. Recombiant plasmid was transfected into HeLa cells by DNA-calcium phosphate precipitation technique. MT-I expression colones were growing in medium including G418. The amount of MT-I expression in transfected cells was found 2.6 times higher than that of non-transfected ones. In order to observe the relationship between the expression of MT-I gene in cells and drug resistance, cells were treated with different concentrations of cisplatin and adriamycin respectively. The results indicated that cisplatin (0.1 mumol/ml) inhibited the growth of both transfected and non-transfected cells. The inhibitory rates were 34% and 82% respectively(P < 0.05). IC50(50% inhibitory concentration for cell growing) was 0.144 mumol/ml and 0.061 mumol/ml and the ratio of them was 2.36: 1 after the treatment of cisplatin 72 h later. The cells were treated with adriamycin 72 h later, the inhibitory rates of transfected and non-transfected cells were 18% and 25% separately. The rates showed no significant difference (P > 0.05). The results indicated that MT was related to drug resistance of tumor cells.

  14. Tomatidine inhibits invasion of human lung adenocarcinoma cell A549 by reducing matrix metalloproteinases expression.

    PubMed

    Yan, Kun-Huang; Lee, Liang-Ming; Yan, Shao-Han; Huang, Hsiang-Ching; Li, Chia-Chen; Lin, Hui-Ting; Chen, Pin-Shern

    2013-05-25

    Tomatidine is an aglycone of glycoalkaloid tomatine in tomato. Tomatidine is found to possess anti-inflammatory properties and may serve as a chemosensitizer in multidrug-resistant tumor cells. However, the effect of tomatidine on cancer cell metastasis remains unclear. This study examines the effect of tomatidine on the migration and invasion of human lung adenocarcinoma A549 cell in vitro. The data demonstrates that tomatidine does not effectively inhibit the viability of A549 cells. When treated with non-toxic doses of tomatidine, cell invasion is markedly suppressed by Boyden chamber invasion assay, while cell migration is not affected. Tomatidine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9 and increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK), as well as tissue inhibitor of metalloproteinase-1 (TIMP-1). The immunoblotting assays indicate that tomatidine is very effective in suppressing the phosphorylation of Akt and extracellular signal regulating kinase (ERK). In addition, tomatidine significantly decreases the nuclear level of nuclear factor kappa B (NF-κB), which suggests that tomatidine inhibits NF-κB activity. Furthermore, the treatment of inhibitors specific for PI3K/Akt (LY294002), ERK (U0126), or NF-κB (pyrrolidine dithiocarbamate) to A549 cells reduced cell invasion and MMP-2/9 expression. The results suggest that tomatidine inhibits the invasion of A549 cells by reducing the expression of MMPs. It also inhibits ERK and Akt signaling pathways and NF-κB activity. These findings demonstrate a new therapeutic potential for tomatidine in anti-metastatic therapy.

  15. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques.

    PubMed

    Mihucz, Victor G; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-04-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge structure (TXRF-XANES), and micro-X-ray fluorescence imaging to obtain information on the intracellular storage of overloaded iron (Fe). The determined TfR1 mRNA expression for the investigated cells correlated with their proliferation rate. In all cases, the Fe XANES of cells overloaded with inorganic Fe was found to be similar to that of deliquescent Fe(III) sulfate characterized by a distorted octahedral geometry. A fitting model using a linear combination of the XANES of Tf and deliquescent Fe(III) sulfate allowed to explain the near edge structure recorded for HT-29 cells indicating that cellular overload with inorganic Fe results in a non-ferritin-like fast Fe storage. Hierarchical cluster analysis of XANES spectra recorded for Fe overloaded HT-29 and HCA-7 cells was able to distinguish between Fe treatments performed with different Fe species with a 95% hit rate, indicating clear differences in the Fe storage system. Micro-X-ray fluorescence imaging of Fe overloaded HT-29 cells revealed that Fe is primarily located in the cytosol of the cells. By characterizing the cellular Fe uptake, Fe/S content ratios were calculated based on the X-ray fluorescence signals of the analytes. These Fe/S ratios were dramatically lower for HCA-7 treated with organic Fe(III) treatments suggesting dissimilarities from the Tf-like Fe uptake.

  16. Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells

    PubMed Central

    Hossain, Md. Zakir; Kleve, Maurice G

    2011-01-01

    Background The ability to evade apoptosis is one of the key properties of cancer. The apoptogenic effect of nickel nanowires (Ni NWs) on cancer cell lines has never been adequately addressed. Due to the unique physicochemical characteristics of Ni NWs, we envision the development of a novel anticancer therapeutics specifically for pancreatic cancer. Thus, we investigated whether Ni NWs induce ROS-mediated apoptosis in human pancreatic adenocarcinoma (Panc-1) cells. Methods In this study Ni NWs were fabricated using the electrodeposition method. Synthesized Ni NWs were physically characterized by energy dispersive X-ray analysis, UV-Vis spectroscopy of NanoDrop 2000 (UV-Vis), magnetization study, scanning electron microscopy, and transmission electron microscopy. Assessment of morphological apoptotic characteristics by phase contrast microscopy (PCM), Ni-NWs-induced apoptosis staining with ethidium bromide (EB) and acridine orange (AO) followed by fluorescence microscopy (FM) was performed. For molecular biological and biochemical characterization, Panc-1 cell culture and cytotoxic effect of Ni NWs were determined by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Quantitative apoptosis was analyzed by flow cytometry staining with propidium iodide through cell cycle arrest and generation of ROS using 2′, 7′-dichlorofluorescein diacetate fluorescence intensity. In all experiments, Panc-1 cancer cells without any treatment were used as the negative controls. Results The intracellular uptake of Ni NWs through endocytosis by Panc-1 cells was observed by PCM. EB and AO staining of FM and MTT assay qualitatively and quantitatively confirmed the extent of apoptosis. Flow cytometric cell cycle arrest and ROS generation indicated Ni NWs as inducers of apoptotic cell death. Conclusion We investigated the role of Ni NWs as inducers of ROS-mediated apoptosis in Panc-1 cells. These results suggested that Ni NWs could be an effective

  17. Liposome uptake into human colon adenocarcinoma cells in monlayer, spinner, and trypsinized cultures

    SciTech Connect

    Tom, B.H.; Macek, C.M.; Raphael, L.; Sengupta, J.; Cerny, E.A.; Jonah, M.M.; Rahman, Y.E.

    1983-01-01

    The nature of liposome interactions with colon tumor cells was investigated. Thus, experiments were performed to study the uptake and incorporation of multilamellar and of reverse-phase evaporation liposomes of neutral charge into monolayers, suspended spinner cultures, and trypsinized cells of a human colon adenocarcinoma cell line, LS174T. The results showed that the same tumor cells cultured under each condition exhibited a distinct pattern of vesicle uptake as determined at 0, 15, 30, 60, and 120 min. In monolayer cultures of LS174T cells, the uptake of liposomes bearing (/sup 3/H)actinomycin D in the lipid bilayers was linear throughout the incubation period. In contrast, in trypsinized and spinner suspension cultures, uptake of liposomes was biphasic. There was a proportional uptake of both liposome (labeled with (/sup 3/H)phosphantidylcholine or (/sup 14/C)cholesterol) and of actinomycin D (trace labeled with /sup 3/H) into the cells under all culture conditions, indicating quantitative delivery of the drug with the intact lipid vesicle. Although the amount of actinomycin D presented to tumor cells by the two liposomes was equivalent, reverse-phase evaporation liposomes were more effectve than multilamellar vesicles in inhibiting uridine uptake. In the presence of excess liposomes (10 times the uptake studies), saturation of the tumor cell surface occurred by 120 min. However, the liposomes remained accessible to enzymatic removal for 60 min. Liposome-saturated tumor cells remained refractory to further binding of liposomes for at least 2 hr. The results thus revealed that differences in cell uptake were due to the state of the target cells and not the liposome types, or their differential leakage of labels.

  18. Apoptosis of AGS human gastric adenocarcinoma cells by methanolic extract of Dictamnus

    PubMed Central

    Park, Hyun Soo; Hong, Noo Ri; Ahn, Tae Seok; Kim, Hyungwoo; Jung, Myeong Ho; Kim, Byung Joo

    2015-01-01

    Background: The root bark of Dictamnus dasycarpus Turcz has traditionally been used in East Asia to treat skin diseases such as eczema, atopic dermatitis, and psoriasis. However, it has also been reported to exhibit an anti-proliferative effect on cancer cells. Objective: To investigate the anti-cancer effects of a methanol extract of Dictamnus dasycarpus root bark (MEDD) on AGS cells (a human gastric adenocarcinoma cell-line). Materials and Methods: An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium assay, a caspase activity assay, cell cycle analysis, mitochondrial membrane potential (MMP) measurements, and western blotting were used to investigate the anti-cancer effects of MEDD on AGS cells. Results: Treatment with MEDD significantly and concentration-dependently inhibited AGS cell growth. MEDD treatment in AGS cells led to increased accumulation of apoptotic sub-G1 phase cells in a concentration-dependent manner. Also, MEDD reduced the expressions of pro-caspase-3, -8 and -9, and increased the active form of caspase-3. Furthermore, subsequent Western blotting revealed elevated levels of poly (ADP-ribose) polymerase protein. MEDD treatment reduced levels of MMP and anti-apoptotic Bcl-2 and Bcl-xL proteins. Pretreatment with SB203580 (a specific inhibitor of p38 mitogen-activated protein kinases), SP600125 (a potent inhibitor of C-Jun N-terminal kinases), or PD98059 (a potent inhibitor of extracellular signal-regulated kinases) did not modify the effects of MEDD treatment. However, pretreatment with LY294002 (a specific inhibitor of Akt) significantly enhanced MEDD-induced cell death. Conclusion: These results suggest that MEDD-mediated cell death is associated with the intrinsic apoptotic pathway and that inhibition of Akt signaling contributes to apoptosis induction by MEDD. PMID:26664023

  19. A Lactose-Binding Lectin from the Marine Sponge Cinachyrella Apion (Cal) Induces Cell Death in Human Cervical Adenocarcinoma Cells

    PubMed Central

    Rabelo, Luciana; Monteiro, Norberto; Serquiz, Raphael; Santos, Paula; Oliveira, Ruth; Oliveira, Adeliana; Rocha, Hugo; Morais, Ana Heloneida; Uchoa, Adriana; Santos, Elizeu

    2012-01-01

    Cancer represents a set of more than 100 diseases, including malignant tumors from different locations. Strategies inducing differentiation have had limited success in the treatment of established cancers. Marine sponges are a biological reservoir of bioactive molecules, especially lectins. Several animal and plant lectins were purified with antitumor activity, mitogenic, anti-inflammatory and antiviral, but there are few reports in the literature describing the mechanism of action of lectins purified from marine sponges to induce apoptosis in human tumor cells. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL) was evaluated with respect to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death in tumor cells. The antiproliferative activity of CaL was tested against HeLa, PC3 and 3T3 cell lines, with highest growth inhibition for HeLa, reducing cell growth at a dose dependent manner (0.5–10 µg/mL). Hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC50 (10 µg/mL) for both trials and twice the IC50 for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. Results showed that lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase and acting as both dependent and/or independent of caspases pathway. These results indicate the potential of CaL in studies of medicine for treating cancer. PMID:22690140

  20. Aurora kinase-A overexpression in mouse mammary epithelium induces mammary adenocarcinomas harboring genetic alterations shared with human breast cancer.

    PubMed

    Treekitkarnmongkol, Warapen; Katayama, Hiroshi; Kai, Kazuharu; Sasai, Kaori; Jones, Jennifer Carter; Wang, Jing; Shen, Li; Sahin, Aysegul A; Gagea, Mihai; Ueno, Naoto T; Creighton, Chad J; Sen, Subrata

    2016-12-01

    Recent data from The Cancer Genome Atlas analysis have revealed that Aurora kinase A (AURKA) amplification and overexpression characterize a distinct subset of human tumors across multiple cancer types. Although elevated expression of AURKA has been shown to induce oncogenic phenotypes in cells in vitro, findings from transgenic mouse models of Aurora-A overexpression in mammary glands have been distinct depending on the models generated. In the present study, we report that prolonged overexpression of AURKA transgene in mammary epithelium driven by ovine β-lactoglobulin promoter, activated through multiple pregnancy and lactation cycles, results in the development of mammary adenocarcinomas with alterations in cancer-relevant genes and epithelial-to-mesenchymal transition. The tumor incidence was 38.9% (7/18) in Aurora-A transgenic mice at 16 months of age following 4-5 pregnancy cycles. Aurora-A overexpression in the tumor tissues accompanied activation of Akt, elevation of Cyclin D1, Tpx2 and Plk1 along with downregulation of ERα and p53 proteins, albeit at varying levels. Microarray comparative genomic hybridization (CGH) analyses of transgenic mouse mammary adenocarcinomas revealed copy gain of Glp1r and losses of Ercc5, Pten and Tcf7l2 loci. Review of human breast tumor transcriptomic data sets showed association of these genes at varying levels with Aurora-A gain of function alterations. Whole exome sequencing of the mouse tumors also identified gene mutations detected in Aurora-A overexpressing human breast cancers. Our findings demonstrate that prolonged overexpression of Aurora-A can be a driver somatic genetic event in mammary adenocarcinomas associated with deregulated tumor-relevant pathways in the Aurora-A subset of human breast cancer.

  1. Hypermethylation of the human proton-coupled folate transporter (SLC46A1) minimal transcriptional regulatory region in an antifolate-resistant HeLa cell line.

    PubMed

    Diop-Bove, Ndeye Khady; Wu, Julia; Zhao, Rongbao; Locker, Joseph; Goldman, I David

    2009-08-01

    This laboratory recently identified a novel proton-coupled folate transporter (PCFT) that mediates intestinal folate absorption and transport of folates into the central nervous system. The present study focuses on the definition of the minimum transcriptional regulatory region of this gene in HeLa cells and the mechanism(s) underlying the loss of PCFT expression in the methotrexate-resistant HeLa R1-11 cell line. The PCFT transcriptional regulatory controls were localized between -42 and +96 bases from the transcriptional start site using a luciferase-reporter gene system. The promoter is a G + C rich region of 139 nucleotides contained in a CpG island. HeLa R1-11 cells have no mutations in the PCFT open reading frame and its promoter; the transcription/translation machinery is intact because transient transfections in HeLa R1-11 and wild-type HeLa cells produced similar luciferase activities. Hypermethylation at CpG sites within the minimal transcriptional regulatory region was shown in HeLa R1-11 cells as compared with the parental PCFT-competent HeLa cells, using bisulfite conversion and sequence analysis. Treatment with 5-aza-2'-deoxycytidine resulted in a substantial restoration of transport and PCFT mRNA expression and small but significant decreases in methylation in the promoter region. In vitro methylation of the transfected reporter plasmid inhibited luciferase gene expression. Cytogenetics/fluorescence in situ hybridization indicated a loss of half the PCFT gene copies in HeLa R1-11 as compared with PCFT-competent HeLa cells. Taken together, promoter silencing through methylation and gene copy loss accounted for the loss of PCFT activity in antifolate-resistant HeLa R1-11 cells.

  2. Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma.

    PubMed

    Hanif, Zahid; Ahmed, Farrukh R; Shin, Seung Won; Kim, Young-Kee; Um, Soong Ho

    2014-07-01

    A controlled preparation of cellulose nanocrystals of different sizes and shapes has been carried out by acid hydrolysis of microcrystalline cellulose. The size- and concentration-dependent toxicity effects of the resulting cellulose nanocrystals were evaluated against two different cell lines, NIH3T3 murine embryo fibroblasts and HCT116 colon adenocarcinoma. It could serve as a therapeutic platform for cancer treatment.

  3. Differential expression of human leukocyte antigen-G (HLA-G) messenger RNAs and proteins in normal human prostate and prostatic adenocarcinoma.

    PubMed

    Langat, Daudi K; Sue Platt, J; Tawfik, Ossama; Fazleabas, Asgerally T; Hunt, Joan S

    2006-08-01

    Human leukocyte antigen-G (HLA-G) is a major histocompatibility complex class Ib gene expressed in normal organs and in some tumors. The glycoproteins encoded by this gene are best known for their immunosuppressive properties. Because isoform-specific expression of HLA-G in male reproductive organs has not been reported, we investigated HLA-G1, -G2, -G5, -G6 mRNAs and proteins in four-to-five samples of normal prostate glands, prostates with benign prostatic hyperplasia and prostate adenocarcinomas using RT-PCR and immunohistochemistry. All tissues contained HLA-G1, -G2, -G5 and -G6 specific mRNAs, but only HLA-G5 protein was detectable. In normal prostate glands, HLA-G5 protein was prominent in the cytoplasm of tubuloglandular epithelia and in glandular secretions. Staining was reduced in samples of benign prostatic hyperplasia but remained localized to the cytoplasm of glandular epithelia and secretions. In prostatic adenocarcinomas, HLA-G5 protein was detectable mainly in the secretions. Thus, HLA-G5 but not HLA-G1, -G2 or -G6 is produced in the normal prostate and is present in prostatic secretions. In addition, normal cellular localization is disturbed in benign and malignant prostatic adenocarcinomas. The results are consistent with this molecule may influencing female immune receptivity to sperm and suggest that such immunosuppression could be disturbed in men with prostatic adenocarcinomas.

  4. TipC and the chorea-acanthocytosis protein VPS13A regulate autophagy in Dictyostelium and human HeLa cells.

    PubMed

    Muñoz-Braceras, Sandra; Calvo, Rosa; Escalante, Ricardo

    2015-01-01

    Deficient autophagy causes a distinct phenotype in Dictyostelium discoideum, characterized by the formation of multitips at the mound stage. This led us to analyze autophagy in a number of multitipped mutants described previously (tipA(-), tipB(-), tipC(-), and tipD(-)). We found a clear autophagic dysfunction in tipC(-) and tipD(-) while the others showed no defects. tipD codes for a homolog of Atg16, which confirms the role of this protein in Dictyostelium autophagy and validates our approach. The tipC-encoded protein is highly similar to human VPS13A (also known as chorein), whose mutations cause the chorea-acanthocytosis syndrome. No member of the VPS13 protein family has been previously related to autophagy despite the presence of a region of similarity to Atg2 at the C terminus. This region also contains the conserved domain of unknown function DUF1162. Of interest, the expression of the TipC C-terminal coding sequence containing these 2 motifs largely complemented the mutant phenotype. Dictyostelium cells lacking TipC displayed a reduced number of autophagosomes visualized with the markers GFP-Atg18 and GFP-Atg8 and an impaired autophagic degradation as determined by a proteolytic cleavage assay. Downregulation of human VPS13A in HeLa cells by RNA interference confirmed the participation of the human protein in autophagy. VPS13A-depleted cells showed accumulation of autophagic markers and impaired autophagic flux.

  5. Association of STAT3 with Cx26 and Cx43 in human uterine endometrioid adenocarcinoma

    PubMed Central

    SULKOWSKA, URSZULA; FEBP, ANDRZEJ WINCEWICZ; SULKOWSKI, STANISLAW

    2016-01-01

    Signal transducer and activator of transcription-3 (STAT3) drives endometrial carcinogenesis, while signaling via gap junctions gets weakened during cancer progression. Connexin 26 (Cx26), Cx43 and STAT3 were immunohistochemically evaluated in 78 endometrioid adenocarcinomas: Nuclear expression of STAT3 positively correlated with cytoplasmic immunoreactivity to Cx43 (P=0.004, r=0.318) and Cx26 (P=0.006, r=0.309). STAT3 correlated with Cx43 (P=0.022, r=0.411) and Cx26 (P=0.008 r=0.466) in G1 tumors. A statistically significant linkage remained in G2 cancers between STAT3 and Cx43 (P=0.061, r=0.262) and Cx26 (P=0.016, r=0.331); however, no correlations were observed in G3 tumors. STAT3 was significantly associated with Cx 43 (p=0.003, r=0.684) and Cx26 (p=0.049, r=0.500) in estrogen receptor (ER) negative adenocarcinomas. STAT3 did not correlate with Cx43 in ER positive adenocarcinomas; however, STAT3 expression remained correlated with Cx26 expression (P=0.035, r=0.268). In progesterone receptor negative tumors STAT3 was significantly associated with Cx43 (P=0.035, r=0.451) and Cx26 (P<0.0001, r=0.707). However, in PgR positive adenocarcinomas STAT3 correlated with Cx43 (P=0.03, r=0.290) but not with Cx26. Thus, it appears that hormone dependent acceleration of cancer growth breaks the association between STAT3 and Cx expression. These associations become weaker as the tumors dedifferentiate from G1 to G3 endometrioid adenocarcinomas. The present study provides evidence that the loss of correlation between STAT3 and selected Cx proteins occurs in tumors with more aggressive behavior. PMID:27313754

  6. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway.

    PubMed

    Lin, Ming-Te; Lin, Chia-Liang; Lin, Tzu-Yu; Cheng, Chun-Wen; Yang, Shun-Fa; Lin, Chu-Liang; Wu, Chih-Chien; Hsieh, Yi-Hsien; Tsai, Jen-Pi

    2016-05-01

    Combining antitumor agents with bioactive compounds is a potential strategy for improving the effect of chemotherapy on cancer cells. The goal of this study was to elucidate the antitumor effect of the flavonoid, fisetin, combined with the multikinase inhibitor, sorafenib, against human cervical cancer cells in vitro and in vivo. The combination of fisetin and sorafenib synergistically induced apoptosis in HeLa cells, which is accompanied by a marked increase in loss of mitochondrial membrane potential. Apoptosis induction was achieved by caspase-3 and caspase-8 activation which increased the ratio of Bax/Bcl-2 and caused the subsequent cleavage of PARP level while disrupting the mitochondrial membrane potential in HeLa cells. Decreased Bax/Bcl-2 ratio level and mitochondrial membrane potential were also observed in siDR5-treated HeLa cells. In addition, in vivo studies revealed that the combined fisetin and sorafenib treatment was clearly superior to sorafenib treatment alone using a HeLa xenograft model. Our study showed that the combination of fisetin and sorafenib exerted better synergistic effects in vitro and in vivo than either agent used alone against human cervical cancer, and this synergism was based on apoptotic potential through a mitochondrial- and DR5-dependent caspase-8/caspase-3 signaling pathway. This combined fisetin and sorafenib treatment represents a novel therapeutic strategy for further clinical developments in advanced cervical cancer.

  7. Preliminary studies of fluorescence image-guided photothermal therapy of human oesophageal adenocarcinoma in vivo using multifunctional gold nanorods

    NASA Astrophysics Data System (ADS)

    Nabavi, Elham; Singh, Mohan; Zhou, Yu; Gallina, Maria Elena; Zhao, Hailin; Ma, Daqing; Cass, Anthony; Hanna, George; Elson, Daniel S.

    2016-03-01

    We present a preliminary in vivo study of fluorescence imaging and photothermal therapy (PTT) of human oesophageal adenocarcinoma using multi-functionalised gold nanorods (GNRs). After establishing tumour xenograft in mouse functionalised GNRs were administrated intravenously (IV). Fluorescence imaging was performed to detect the tumour area. The intensity of the fluorescence signal varied significantly across the tumour site and surrounding tissues. PTT was then performed using a 808 nm continuous wave diode laser to irradiate the tumour for 3 minutes, inducing a temperature rise of ~44°C, which photothermally ablated the tumour.

  8. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma.

    PubMed

    Xu, Liyun; Huang, Yanyan; Tan, Linlin; Yu, Wei; Chen, Dongdong; Lu, ChangChang; He, Jianying; Wu, Guoqing; Liu, Xiaoguang; Zhang, Yongkui

    2015-12-01

    T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been shown to play an important role in mediating NK-cell function in human diseases. However, the relationship between Tim-3 expression in natural killer (NK) cells and human lung adenocarcinoma remains unclear. We therefore investigated the expression of Tim-3 in NK cells and explored the effect of Tim-3 blockade on NK cell-mediated activity in human lung adenocarcinoma. Upregulated expression of Tim-3 on CD3-CD56+ cells (P<0.05) and CD3-CD56(dim) cells (P<0.05) of patients with lung adenocarcinoma was detected by flow cytometry. Moreover, Tim-3 expression in CD3-CD56+ NK cells was higher in patients with lung adenocarcinoma with lymph node metastasis (LNM) (P<0.05) or with tumor stage T3-T4 (P<0.05). Tim-3 expression in CD56(dim) NK-cell subset was higher in patients with tumor size ≥3cm (P<0.05), or LNM (P<0.05) or with tumor stage T3-T4 (P<0.05). Further analysis showed that higher expressions of Tim-3 on both CD3-CD56+ NK cells and CD56(dim) NK-cell subset were independently correlated with shorter overall survival of patients with lung adenocarcinoma (log-rank test, P=0.0418, 0.0406, respectively). Importantly, blockade of Tim-3 signaling with anti-Tim-3 antibodies resulted in the increased cytotoxicity and IFN-γ production of peripheral NK cells from patients with lung adenocarcinoma. Our data indicate that Tim-3 expression in NK cells can function as a prognostic biomarker in human lung adenocarcinoma and support that Tim-3 could be a new target for an immunotherapeutic strategy.

  9. Efficacy of irreversible electroporation in human pancreatic adenocarcinoma: advanced murine model

    PubMed Central

    Philips, Prejesh; Li, Yan; Li, Suping; St Hill, Charles R; Martin, Robert CG

    2015-01-01

    Irreversible electroporation (IRE) is a promising cell membrane ablative modality for pancreatic cancer. There have been recent concerns regarding local recurrence and the potential use of IRE as a debulking (partial ablation) modality. We hypothesize that incomplete ablation leads to early recurrence and a more aggressive biology. We created the first ever heterotopic murine model by inoculating BALB/c nude mice in the hindlimb with a subcutaneous injection of Panc-1 cells, an immortalized human pancreatic adenocarcinoma cell line. Tumors were allowed to grow from 0.75 to 1.5 cm and then treated with the goal of complete ablation or partial ablation using standard IRE settings. Animals were recovered and survived for 2 days (n = 6), 7 (n = 6), 14 (n = 6), 21 (n = 6), 30 (n = 8), and 60 (n = 8) days. All 40 animals/tumors underwent successful IRE under general anesthesia with muscle paralysis. The mean tumor volume of the animals undergoing ablation was 1,447.6 mm3 ± 884). Histologically, in the 14-, 21-, 30-, and 60-day survival groups the entire tumor was nonviable, with a persistent tumor nodule completely replaced fibrosis. In the group treated with partial ablation, incomplete electroporation/recurrences (N = 10 animals) were seen, of which 66% had confluent tumors and this was a significant predictor of recurrence (P < 0.001). Recurrent tumors were also significantly larger (mean 4,578 mm3 ± SD 877 versus completed electroporated tumors 925.8 ± 277, P < 0.001). Recurrent tumors had a steeper growth curve (slope = 0.73) compared with primary tumors (0.60, P = 0.02). Recurrent tumors also had a significantly higher percentage of EpCAM expression, suggestive of stem cell activation. Tumors that recur after incomplete electroporation demonstrate a biologically aggressive tumor that could be more resistant to standard of care chemotherapy. Clinical correlation of this data is limited, but should be considered when IRE of pancreatic cancer is being

  10. Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples

    PubMed Central

    2011-01-01

    Background Readthrough fusions across adjacent genes in the genome, or transcription-induced chimeras (TICs), have been estimated using expressed sequence tag (EST) libraries to involve 4-6% of all genes. Deep transcriptional sequencing (RNA-Seq) now makes it possible to study the occurrence and expression levels of TICs in individual samples across the genome. Methods We performed single-end RNA-Seq on three human prostate adenocarcinoma samples and their corresponding normal tissues, as well as brain and universal reference samples. We developed two bioinformatics methods to specifically identify TIC events: a targeted alignment method using artificial exon-exon junctions within 200,000 bp from adjacent genes, and genomic alignment allowing splicing within individual reads. We performed further experimental verification and characterization of selected TIC and fusion events using quantitative RT-PCR and comparative genomic hybridization microarrays. Results Targeted alignment against artificial exon-exon junctions yielded 339 distinct TIC events, including 32 gene pairs with multiple isoforms. The false discovery rate was estimated to be 1.5%. Spliced alignment to the genome was less sensitive, finding only 18% of those found by targeted alignment in 33-nt reads and 59% of those in 50-nt reads. However, spliced alignment revealed 30 cases of TICs with intervening exons, in addition to distant inversions, scrambled genes, and translocations. Our findings increase the catalog of observed TIC gene pairs by 66%. We verified 6 of 6 predicted TICs in all prostate samples, and 2 of 5 predicted novel distant gene fusions, both private events among 54 prostate tumor samples tested. Expression of TICs correlates with that of the upstream gene, which can explain the prostate-specific pattern of some TIC events and the restriction of the SLC45A3-ELK4 e4-e2 TIC to ERG-negative prostate samples, as confirmed in 20 matched prostate tumor and normal samples and 9 lung cancer

  11. Epigenetic downregulation of RUNX3 by DNA methylation induces docetaxel chemoresistance in human lung adenocarcinoma cells by activation of the AKT pathway.

    PubMed

    Zheng, Yun; Wang, Rui; Song, Hai-Zhu; Pan, Ban-Zhou; Zhang, You-Wei; Chen, Long-Bang

    2013-11-01

    The RUNX3 gene has been shown to function as a tumor suppressor gene implicated in various cancers, but its association with tumor chemoresistance has not been fully understood. Here, we investigated the effect of epigenetic downregulation of RUNX3 in docetaxel resistance of human lung adenocarcinoma and its possible molecular mechanisms. RUNX3 was found to be downregulated by hypermethylation in docetaxel-resistant lung adenocarcinoma cells. Its overexpression could resensitize cells to docetaxel both in vitro and in vivo by growth inhibition, enhancement of apoptosis and G1 phase arrest. Conversely, knockdown of RUNX3 could lead to the decreased sensitivity of parental human lung adenocarcinoma cells to docetaxel by enhancing proliferative capacity. Furthermore, we showed that overexpression of RUNX3 could inactivate the AKT/GSK3β/β-catenin signaling pathway in the docetaxel-resistant cells. Importantly, co-transfection of RUNX3 and constitutively active Akt1 could reverse the effects of RUNX3 overexpression, while treatment with the MK-2206 (AKT inhibitor) mimicked the effects of RUNX3 overexpression in docetaxel-resistant human lung adenocarcinoma cells. Immunohistochemical analysis revealed that decreased RUNX3 expression was correlated with high expression of Akt1 and decreased sensitivity of patients to docetaxel-based chemotherapy. Taken together, our results suggest that epigenetic downregulation of RUNX3 can induce docetaxel resistance in human lung adenocarcinoma cells by activating AKT signaling and increasing expression of RUNX3 may represent a promising strategy for reversing docetaxel resistance in the future.

  12. Involvement of aldolase A in X-ray resistance of human HeLa and UV{sup r}-1 cells

    SciTech Connect

    Lu, Jun; Suzuki, Toshikazu Satoh, Mamoru; Chen, Shiping; Tomonaga, Takeshi; Nomura, Fumio; Suzuki, Nobuo

    2008-05-09

    To find novel proteins involved in radio-resistance of human cells, we searched for nuclear proteins, whose expression levels alter after X-ray irradiation in HeLa cells, using agarose fluorescent two-dimensional differential gel electrophoresis following mass spectrometry. We identified 6 proteins, whose levels were increased in nuclei 24 h after irradiation at 5 Gy, including aldolase A. Nuclear aldolase A levels increased twofold after the irradiation, however, total aldolase A levels did not change. When the expression of aldolase A was suppressed by its specific siRNA, sensitization of the suppressed cells to X-ray-induced cell death was observed. In addition, UV{sup r}-1 cells with higher aldolase A expression exhibited lower sensitivity to X-ray-induced cell death than the parental RSa cells with lower aldolase A expression. These results suggest that aldolase A may play a role in the radio-response of human cells, probably in nuclei, in addition to its glycolytic role in the cytosol.

  13. Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers

    PubMed Central

    Mauri, Giorgio; Jachetti, Elena; Comuzzi, Barbara; Dugo, Matteo; Arioli, Ivano; Miotti, Silvia; Sangaletti, Sabina; Di Carlo, Emma; Tripodo, Claudio; Colombo, Mario P.

    2016-01-01

    Osteopontin (OPN) is a secreted glycoprotein, that belongs to the non-structural extracellular matrix (ECM), and its over expression in human prostate cancer has been associated with disease progression, androgen independence and metastatic ability. Nevertheless, the pathophysiology of OPN in prostate tumorigenesis has never been studied. We crossed TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice with OPN deficient (OPN−/−) mice and followed tumor onset and progression in these double mutants. Ultrasound examination detected the early onset of a rapidly growing, homogeneous and spherical tumor in about 60% of OPN−/− TRAMP mice. Such neoplasms seldom occurred in parental TRAMP mice otherwise prone to adenocarcinomas and were characterized for being androgen receptor negative, highly proliferative and endowed with neuroendocrine (NE) features. Gene expression profiling showed up-regulation of genes involved in tumor progression, cell cycle and neuronal differentiation in OPN-deficient versus wild type TRAMP tumors. Down-regulated genes included key genes of TGFa pathway, including SMAD3 and Filamin, which were confirmed at the protein level. Furthermore, NE genes and particularly those characterizing early prostatic lesions of OPN-deficient mice were found to correlate with those of human prostate NE tumours. These data underscore a novel role of OPN in the early stages of prostate cancer growth, protecting against the development of aggressive NE tumors. PMID:26700622

  14. Mitochondrial delivery of bongkrekic acid using a MITO-Porter prevents the induction of apoptosis in human HeLa cells.

    PubMed

    Yamada, Yuma; Nakamura, Kohei; Furukawa, Ryo; Kawamura, Eriko; Moriwaki, Takuya; Matsumoto, Kenji; Okuda, Katsuhiro; Shindo, Mitsuru; Harashima, Hideyoshi

    2013-03-01

    The fact that mitochondrial dysfunction has been implicated in a variety of human diseases suggests that they would be expected as a target organelle for these diseases. Bongkrekic acid (BKA) is a chemical that functions as a ligand of the adenine nucleotide translocator and is known to potently inhibit the mitochondrial permeability transition that is associated with apoptosis. Thus, delivering it to mitochondria would be an innovative therapy for the treatment of mitochondrial diseases that are largely associated with apoptosis. Here, we report on the use of a MITO-Porter, an innovative nanocarrier for mitochondrial delivery via mitochondrial membrane fusion, for delivering BKA to mitochondria. We first constructed a BKA-MITO-Porter, in which BKA is contained in lipid envelopes of a MITO-Porter. We then confirmed that the BKA-MITO-Porter was efficiently internalized into cells and is delivered to mitochondria, similar to a conventional MITO-Porter. Moreover, we evaluated the antiapoptosis effect of the BKA-MITO-Porter in HeLa cells by measuring caspase 3/7 activity. The findings confirmed that the BKA-MITO-Porter showed a strong antiapoptosis effect compared with naked BKA. The results reported here demonstrate its potential for the use in therapies aimed at mitochondrial diseases, as a mitochondrial medicine candidate.

  15. The Dynamin Chemical Inhibitor Dynasore Impairs Cholesterol Trafficking and Sterol-Sensitive Genes Transcription in Human HeLa Cells and Macrophages

    PubMed Central

    Girard, Emmanuelle; Paul, Jean Louis; Fournier, Natalie; Beaune, Philippe; Johannes, Ludger

    2011-01-01

    Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL) in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC) within the endolysosomal network. The measure of cholesterol esters (CE) further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER) was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2), 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR), and low-density lipoprotein receptor (LDLR). The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol. PMID:22205993

  16. A sequence dimorphism in a conserved domain of human 28S rRNA. Uneven distribution of variant genes among individuals. Differential expression in HeLa cells.

    PubMed Central

    Qu, L H; Nicoloso, M; Bachellerie, J P

    1991-01-01

    In humans, cellular 28S rRNA displays a sequence dimorphism within an evolutionarily conserved motif, with the presence, at position +60, of either a A (like the metazoan consensus) or a G. The relative abundance of the two forms of variant genes in the genome exhibit large differences among individuals. The two variant forms are generally represented in cellular 28S rRNA in proportion of their relative abundance in the genome, at least for leucocytes. However, in some cases, one form of variant may be markedly underexpressed as compared to the other. Thus, in HeLa cells, A-form genes contribute to only 1% of the cellular content in mature 28S rRNA although amounting to 15% of the ribosomal genes. The differential expression seems to result from different transcriptional activities rather than from differences in pre-rRNA processing efficiency or in stabilities of mature rRNAs. G-form ribosomal genes were not detected in other mammals, including chimpanzee, which suggests that the fixation of this variant type is a rather recent event in primate evolution. Images PMID:2020541

  17. The DNA Binding Domain of a Papillomavirus E2 Protein Programs a Chimeric Nuclease To Cleave Integrated Human Papillomavirus DNA in HeLa Cervical Carcinoma Cells▿

    PubMed Central

    Horner, Stacy M.; DiMaio, Daniel

    2007-01-01

    Viral DNA binding proteins that direct nucleases or other protein domains to viral DNA in lytically or latently infected cells may provide a novel approach to modulate viral gene expression or replication. Cervical carcinogenesis is initiated by high-risk human papillomavirus (HPV) infection, and viral DNA persists in the cancer cells. To test whether a DNA binding domain of a papillomavirus protein can direct a nuclease domain to cleave HPV DNA in cervical cancer cells, we fused the DNA binding domain of the bovine papillomavirus type 1 (BPV1) E2 protein to the catalytic domain of the FokI restriction endonuclease, generating a BPV1 E2-FokI chimeric nuclease (BEF). BEF introduced DNA double-strand breaks on both sides of an E2 binding site in vitro, whereas DNA binding or catalytic mutants of BEF did not. After expression of BEF in HeLa cervical carcinoma cells, we detected cleavage at E2 binding sites in the integrated HPV18 DNA in these cells and also at an E2 binding site in cellular DNA. BEF-expressing cells underwent senescence, which required the DNA binding activity of BEF, but not its nuclease activity. These results demonstrate that DNA binding domains of viral proteins can target effector molecules to cognate binding sites in virally infected cells. PMID:17392356

  18. Requirement of T-lymphokine-activated killer cell-originated protein kinase for TRAIL resistance of human HeLa cervical cancer cells

    SciTech Connect

    Kwon, Hyeok-Ran; Lee, Ki Won; Dong, Zigang; Lee, Kyung Bok; Oh, Sang-Muk

    2010-01-01

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) appears to be highly expressed in various cancer cells and to play an important role in maintaining proliferation of cancer cells. However, the underlying mechanism by which TOPK regulates growth of cancer cells remains elusive. Here we report that upregulated endogenous TOPK augments resistance of cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Stable knocking down of TOPK markedly increased TRAIL-mediated apoptosis of human HeLa cervical cancer cells, as compared with control cells. Caspase 8 or caspase 3 activities in response to TRAIL were greatly incremented in TOPK-depleted cells. Ablation of TOPK negatively regulated TRAIL-mediated NF-{kappa}B activity. Furthermore, expression of NF-{kappa}B-dependent genes, FLICE-inhibitory protein (FLIP), inhibitor of apoptosis protein 1 (c-IAP1), or X-linked inhibitor of apoptosis protein (XIAP) was reduced in TOPK-depleted cells. Collectively, these findings demonstrated that TOPK contributed to TRAIL resistance of cancer cells via NF-{kappa}B activity, suggesting that TOPK might be a potential molecular target for successful cancer therapy using TRAIL.

  19. TipC and the chorea-acanthocytosis protein VPS13A regulate autophagy in Dictyostelium and human HeLa cells

    PubMed Central

    Muñoz-Braceras, Sandra; Calvo, Rosa; Escalante, Ricardo

    2015-01-01

    Deficient autophagy causes a distinct phenotype in Dictyostelium discoideum, characterized by the formation of multitips at the mound stage. This led us to analyze autophagy in a number of multitipped mutants described previously (tipA−, tipB−, tipC−, and tipD−). We found a clear autophagic dysfunction in tipC− and tipD− while the others showed no defects. tipD codes for a homolog of Atg16, which confirms the role of this protein in Dictyostelium autophagy and validates our approach. The tipC-encoded protein is highly similar to human VPS13A (also known as chorein), whose mutations cause the chorea-acanthocytosis syndrome. No member of the VPS13 protein family has been previously related to autophagy despite the presence of a region of similarity to Atg2 at the C terminus. This region also contains the conserved domain of unknown function DUF1162. Of interest, the expression of the TipC C-terminal coding sequence containing these 2 motifs largely complemented the mutant phenotype. Dictyostelium cells lacking TipC displayed a reduced number of autophagosomes visualized with the markers GFP-Atg18 and GFP-Atg8 and an impaired autophagic degradation as determined by a proteolytic cleavage assay. Downregulation of human VPS13A in HeLa cells by RNA interference confirmed the participation of the human protein in autophagy. VPS13A-depleted cells showed accumulation of autophagic markers and impaired autophagic flux. PMID:25996471

  20. Anti-proliferative effect of RCE-4 from Reineckia carnea on human cervical cancer HeLa cells by inhibiting the PI3K/Akt/mTOR signaling pathway and NF-κB activation.

    PubMed

    Bai, Caihong; Yang, Xiaojiao; Zou, Kun; He, Haibo; Wang, Junzhi; Qin, Huilin; Yu, Xiaoqin; Liu, Chengxiong; Zheng, Juyan; Cheng, Fan; Chen, Jianfeng

    2016-06-01

    Cervical cancer is the second leading cause of cancer deaths in women worldwide. In recent years, the studies find that inflammation is a critical component of tumor progression, and the ideal therapeutic methods should be aimed at the inflammation reaction triggers. (1β,3β,5β,25S)-spirostan-1,3-diol1-[α-L-rhamnopyranosyl-(1 → 2)-β-D-xylopyranoside] (RCE-4) was the main active composition of Reineckia carnea (Andr.) Kunth. It significantly induced apoptosis in cervical cancer Caski cells through the mitochondrial pathway in our previous studies; however, its underlying mechanism remains poorly understood. This study aimed to further evaluate the effect of RCE-4 on human cervical cancer HeLa cells. Based on this observation, we investigated the anti-cervical cancer effect of RCE-4 by modulating phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway, nuclear factor-kappa B (NF-κB) activation, and inflammation-related key factors in HeLa cells. The results indicated that the HeLa cell was the most sensitive with an IC50 of 7.01 μM; RCE-4 significantly promoted the release of cellular lactate dehydrogenase (LDH); increased DNA fragmentation and apoptosis; reduced PI3K, Akt, mTOR, and NF-κBp65 phosphorylation levels; increased the Bax and cleaved poly (ADP-ribose) polymerase (PARP) protein levels; suppressed Bcl-2 protein expression; elevated the Bax/Bcl-2 expression ratio; and decreased the interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) mRNA expressions in HeLa cells in a concentration-dependent manner. These findings suggest that RCE-4 exerted beneficially anti-cervical cancer effect on HeLa cells, mainly inhibiting PI3K/Akt/mTOR signaling pathway phosphorylation and NF-κB activation, promoting HeLa cell apoptosis. Graphical abstract Anti-tumor effect of RCE-4 on HeLa cells.

  1. Effect of host microenvironment on the microcirculation of human colon adenocarcinoma.

    PubMed Central

    Fukumura, D.; Yuan, F.; Monsky, W. L.; Chen, Y.; Jain, R. K.

    1997-01-01

    It is generally accepted that the host microenvironment influences tumor biology. There are discrepancies in growth rate, metastatic potential, and efficacy of systemic treatment between ectopic and orthotopic tumors. Liver is the most common and critical site of distant metastasis of colorectal carcinoma. Tumorigenicity and efficacy of chemotherapeutic agents in colorectal tumors are different in liver and subcutaneous sites. Thus, we hypothesize that the liver (orthotopic) versus subcutaneous (ectopic) microenvironment would have different effects on the angiogenesis and maintenance of the microcirculation of colorectal tumor. To this end, we developed a new method to monitor and to quantify microcirculatory parameters in the tumor grown in the liver. Using this approach, we compared the microcirculation of LS174T, a human colon adenocarcinoma, metastasized to the liver with that of the host liver vessels and that of the same tumor grown in the subcutaneous space. In the liver metastasis model, 5 x 10(6) LS174T cells were injected into the spleen of nude mice. Four to eight weeks later, the liver with metastatic tumors was exteriorized and placed on a special stage and observed under an intravital fluorescence microscope. The dorsal skinfold chamber model was used to study the subcutaneous tumors. Red blood cell velocity, vessel diameter, density, permeability, and leukocyte-endothelial interactions were measured using fluorescence microscopy and image analysis. Vascular endothelial growth factor/ vascular permeability factor (VEGF/VPF) mRNA expression was determined by the Northern blot analysis. LS174T tumor foci in the liver had tortuous vascular architecture, heterogeneous blood flow, significantly lower vascular density, and significantly higher vascular permeability than normal liver tissue. Tumors grown in the liver had significantly lower vessel density, especially in the center coincident with central necrosis, than the subcutaneous tumors. The frequency

  2. Pantoprazole inhibits human gastric adenocarcinoma SGC-7901 cells by downregulating the expression of pyruvate kinase M2

    PubMed Central

    SHEN, YONGHUA; CHEN, MIN; HUANG, SHULING; ZOU, XIAOPING

    2016-01-01

    The Warburg effect is important in tumor growth. The human M2 isoform of pyruvate kinase (PKM2) is a key enzyme that regulates aerobic glycolysis in tumor cells. Recent studies have demonstrated that PKM2 is a potential target for cancer therapy. The present study investigated the effects of pantoprazole (PPZ) treatment and PKM2 transfection on human gastric adenocarcinoma SGC-7901 cells in vitro. The present study revealed that PPZ inhibited the proliferation of tumor cells, induced apoptosis and downregulated the expression of PKM2, which contributes to the current understanding of the functional association between PPZ and PKM2. In summary, PPZ may suppress tumor growth as a PKM2 protein inhibitor. PMID:26870273

  3. Potential roles of fibroblast growth factor-9 in the benzo(a)pyrene-induced invasion in vitro and the metastasis of human lung adenocarcinoma.

    PubMed

    Ueng, Tzuu-Huei; Chang, Yih-Leong; Tsai, Yi-Ya; Su, Jen-Liang; Chan, Ping-Kun; Shih, Jin-Yuan; Lee, Yung-Chie; Ma, Yee-Chung; Kuo, Min-Liang

    2010-08-01

    Fibroblast growth factor (FGF)-9 belongs to the FGF family which modulate cell proliferation, differentiation, and motility. Benzo(a)pyrene is a polycyclic aromatic hydrocarbon (PAH) and ubiquitous environmental carcinogen present in automobile exhaust, cigarette smoke, and foods. The major purposes of this study were to explore the roles of FGF-9 in the benzo(a)pyrene-induced lung cancer invasion in vitro and the metastatic development of lung adenocarcinoma in human. The data of RT-PCR analysis indicated that treatments of human lung adenocarcinoma CL5 cells with benzo(a)pyrene and a PAH mixture motorcycle exhaust particulate (MEP) extracts increased FGF-9 mRNA expression. The increased expression was blocked by cotreatments with a p38 mitogen-activated protein kinase inhibitor SB202190 and an extracellular signal-regulated kinase inhibitor PD98059. The results of immunoblot analysis and Matrigel assay showed that benzo(a)pyrene and MEP extracts produced a concomitant induction of FGF-9 protein and invasive ability of CL5 cells. The benzo(a)pyrene- and MEP-induced invasion was suppressed by FGF-9 neutralizing antibodies. The results of immunohistochemistry analysis of human lung adenocarcinoma specimens showed that FGF-9 protein was detected in the adenocarcinoma cells but not in normal epithelium. FGF-9 staining intensity was positively correlated with status of disease and degree of lymph node metastasis in these lung adenocarcinomas. These present findings suggest that FGF-9 has potential roles in benzo(a)pyrene-induced CL5 cell invasion and human lung adenocarcinoma metastasis.

  4. Effect of glutathione reductase knockdown in response to UVB-induced oxidative stress in human lung adenocarcinoma

    PubMed Central

    2014-01-01

    Background Glutathione reductase (GR) plays a critical role in the maintenance of physiological redox status in cells. However, the comprehensive investigations of GR-modulated oxidative stress have not been reported. Methods In the present study, we cultured a human lung adenocarcinoma line CL1-0 and its GR-knockdown derivative CL1-0ΔGR to evaluate their differential responses to UVB-irradiation. Results We identified 18 proteins that showed significant changes under UVB-irradiation in CL1-0ΔGR cells rather than in CL1-0 cells. Several proteins involving protein folding, metabolism, protein biosynthesis and redox regulation showed significant changes in expression. Conclusions In summary, the current study used a comprehensive lung adenocarcinoma-based proteomic approach for the identification of GR-modulated protein expression in response to UVB-irradiation. To our knowledge, this is the first global proteomic analysis to investigate the role of GR under UVB-irradiation in mammalian cell model. PMID:24405781

  5. Proteolysis of the Human DNA Polymerase Delta Smallest Subunit p12 by μ-Calpain in Calcium-Triggered Apoptotic HeLa Cells

    PubMed Central

    You, Chao; Qian, Yuanxia; Gao, Jing; Liu, Peng; Chen, Huiqing; Song, Huifang; Chen, Yan; Chen, Keping; Zhou, Yajing

    2014-01-01

    Degradation of p12 subunit of human DNA polymerase delta (Pol δ) that results in an interconversion between Pol δ4 and Pol δ3 forms plays a significant role in response to replication stress or genotoxic agents triggered DNA damage. Also, the p12 is readily degraded by human calpain in vitro. However, little has been done for the investigation of its degree of participation in any of the more common apoptosis. Here, we first report that the p12 subunit is a substrate of μ-calpain. In calcium-triggered apoptotic HeLa cells, the p12 is degraded at 12 hours post-induction (hpi), restored thereafter by 24 hpi, and then depleted again after 36 hpi in a time-dependent manner while the other three subunits are not affected. It suggests a dual function of Pol δ by its interconversion between Pol δ4 and Pol δ3 that is involved in a novel unknown apoptosis mechanism. The proteolysis of p12 could be efficiently blocked by both calpain inhibitor ALLN and proteasome inhibitor MG132. In vitro pull down and co-immunoprecipitation assays show that the μ-calpain binds to p12 through the interaction of μ-calpain with Pol δ other three subunits, not p12 itself, and PCNA, implying that the proteolysis of p12 by μ-calpain might be through a Pol δ4/PCNA complex. The p12 cleavage sites by μ-calpain are further determined as the location within a 16-amino acids peptide 28-43 by in vitro cleavage assays. Thus, the p12/Pol δ is a target as a nuclear substrate of μ-calpain in a calcium-triggered apoptosis and appears to be a potential marker in the study of the chemotherapy of cancer therapies. PMID:24691096

  6. Characterization of mammary adenocarcinomas in male rats after N-methyl-N-nitrosourea exposure--Potential for human male breast cancer model.

    PubMed

    Yoshizawa, Katsuhiko; Yuki, Michiko; Kinoshita, Yuichi; Emoto, Yuko; Yuri, Takashi; Shikata, Nobuaki; Elmore, Susan A; Tsubura, Airo

    2016-05-01

    The frequency of breast cancer in men is extremely rare, reported to be less than 1% and there is currently no available animal model for male mammary tumors. We compared the characteristics of various immunohistochemical markers in N-methyl-N-nitrosourea (MNU)-induced mammary adenocarcinomas in male and female Crj:CD(SD)IGS rats including: estrogen receptor α (ER), progesterone receptor (PgR), androgen receptor (AR), receptor tyrosine-protein kinase erbB-2 (HER2), GATA binding protein 3 (GATA3), and proliferating cell nuclear antigen (PCNA). Female mammary adenocarcinomas were strongly positive in the nuclei of tumor cells for PCNA and ER (100%) with only 60% and 53% expressing PgR and GATA3, respectively. 100% of male adenocarcinomas also exhibited strongly positive expression in the nuclei of tumor cells for PCNA, with 25% expressing AR and only 8% showing positivity for ER. Male carcinomas did not express PgR or GATA3 and none of the tumors, male or female, were positive for HER2. Based on the observed ER and PgR positivity and HER2 negativity within these tumors, MNU-induced mammary adenocarcinomas in female rats appear to be hormonally dependent, similar to human luminal A type breast cancer. In contrast, MNU-induced mammary adenocarcinomas in male rats showed no reactivity for ER, PgR, HER2 or GATA3, suggesting no hormonal dependency. Both male and female adenocarcinomas showed high proliferating activity by PCNA immunohistochemistry. Based on our literature review, human male breast cancers are mainly dependent on ER and/or PgR, therefore the biological pathogenesis of MNU-induced male mammary cancer in rats may differ from that of male breast cancer in humans.

  7. Fucan-coated silver nanoparticles synthesized by a green method induce human renal adenocarcinoma cell death.

    PubMed

    Rocha Amorim, Monica Oliveira; Lopes Gomes, Dayanne; Dantas, Larisse Araujo; Silva Viana, Rony Lucas; Chiquetti, Samanta Cristina; Almeida-Lima, Jailma; Silva Costa, Leandro; Oliveira Rocha, Hugo Alexandre

    2016-12-01

    Polysaccharides containing sulfated L-fucose are often called fucans. The seaweed Spatoglossum schröederi synthesizes three fucans, among which fucan A is the most abundant. This polymer is not cytotoxic against various normal cell lines and is non-toxic to rats when administered at high doses. In addition, it exhibits low toxicity against tumor cells. With the aim of increasing the toxicity of fucan A, silver nanoparticles containing this polysaccharide were synthesized using a green chemistry method. The mean size of these nanoparticles was 210nm. They exhibited a spherical shape and negative surface charge and were stable for 14 months. When incubated with cells, these nanoparticles did not show any toxic effects against various normal cell lines; however, they decreased the viability of various tumor cells, especially renal adenocarcinoma cells 786-0. Flow cytometry analyses showed that the nanoparticles induced cell death responses of 786-0 cells through necrosis. Assays performed with several renal cell lines (HEK, VERO, MDCK) showed that these nanoparticles only induce death of 786-0 cells. The data obtained herein leads to the conclusion that fucan A nanoparticles are promising agents against renal adenocarcinoma.

  8. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood

    PubMed Central

    Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Glazyrin, Yury E; Krat, Alexey V; Zubkova, Olga; Spivak, Ekaterina; Wehbe, Mohammed; Gargaun, Ana; Muharemagic, Darija; Komarova, Mariia; Grigorieva, Valentina; Savchenko, Andrey; Modestov, Andrey A; Berezovski, Maxim V; Zamay, Anna S

    2015-01-01

    Circulating tumor cells (CTCs) are rare cells and valuable clinical markers of prognosis of metastasis formation and prediction of patient survival. Most CTC analyses are based on the antibody-based detection of a few epithelial markers; therefore miss an important portion of mesenchymal cancer cells circulating in blood. In this work, we selected and identified DNA aptamers as specific affinity probes that bind to lung adenocarcinoma cells derived from postoperative tissues. The unique feature of our selection strategy is that aptamers are produced for lung cancer cell biomarkers in their native state and conformation without previous knowledge of the biomarkers. The aptamers did not bind to normal lung cells and lymphocytes, and had very low affinity to A549 lung adenocarcinoma culture. We applied these aptamers to detect CTCs, apoptotic bodies, and microemboli in clinical samples of peripheral blood of lung cancer and metastatic lung cancer patients. We identified aptamer-associated protein biomarkers for lung cancer such as vimentin, annexin A2, annexin A5, histone 2B, neutrophil defensin, and clusterin. Tumor-specific aptamers can be produced for individual patients and synthesized many times during anticancer therapy, thereby opening up the possibility of personalized diagnostics. PMID:26061649

  9. Therapeutic effects of sorafenib on the A549/DDP human lung adenocarcinoma cell line in vitro.

    PubMed

    Chen, Xiang-Qi; Wang, Yu-Lan; Li, Zhi-Ying; Lin, Ting-Yan

    2014-07-01

    The aim of the present study was to observe the effects of sorafenib on the proliferation, apoptosis and invasion of A549/DDP cisplatin-resistant lung adenocarcinoma cells cultured in vitro. The A549/DDP cisplatin-resistant lung adenocarcinoma cell strain was cultured in vitro, the cell culture group incubated in culture medium only was set as the control group (Group S0) and the four concentration gradients of sorafenib were added to the culture groups as the experimental groups: S1, 2 µmol/l; S2, 4 µmol/l; S3, 8 µmol/l; and S4, 16 µmol/l. The MTT assay was used to determine the growth inhibition rate of the cells, which were respectively subjected to sorafenib treatment for 24, 48 and 72 h. Flow cytometry was used to determine the rate of apoptosis of cells in each group following sorafenib treatment for 72 h. Furthermore, the Transwell invasion experiment was used to determine the effect on A549/DDP cell invasion following sorafenib treatment for 24 h. Based on the MTT assay, it was found that the inhibition rates of A549/DDP cisplatin-resistant lung adenocarcinoma cells in groups S1-4 following sorafenib treatment for 24 h were 4.58±2.82, 14.93±2.62, 37.58±7.13 and 58.39±8.15%, respectively. For 48 h, inhibition rates in S1-4 were 14.98±2.93, 26.28±7.31, 63.00±3.05 and 78.84±3.96%, respectively, and for 72 h, inhibition rates were 18.80±2.82, 32.71±2.55, 75.51±4.73 and 87.50±3.36%, respectively. The difference in the inhibition rates of cells among the experimental groups for the same incubation time showed statistical significance (P<0.05). Flow cytometric analysis indicated that the rate of apoptosis in the control group was 8.88±0.81% following sorafenib treatment for 72 h, and the rates of apoptosis in groups S1-4 were, 12.84±0.24, 17.27±0.78, 21.98±0.75 and 49.67±1.38%, respectively. The rate of apoptosis in each experimental group was higher compared with that in the control group (P<0.05). The difference in the rate of apoptosis

  10. NF-κB plays a key role in microcystin-RR-induced HeLa cell proliferation and apoptosis.

    PubMed

    Chen, Liang; Zhang, Xin; Chen, Jun; Zhang, Xuezhen; Fan, Huihui; Li, Shangchun; Xie, Ping

    2014-09-01

    Microcystins (MCs) are well-known cyanobacterial toxins produced in eutrophic waters and can act as potential carcinogens and have caused serious risk to human health. However, pleiotropic even paradoxical actions of cells exposure to MCs have been reported, and the mechanisms of MC-induced tumorigenesis and apoptosis are still unknown. In this study, we performed the first comprehensive in vitro investigation on carcinogenesis associated with nuclear factor kappa B (NF-κB) and its downstream genes in HeLa cells (Human cervix adenocarcinoma cell line from epithelial cells) exposure to MC-RR. HeLa cells were treated with 0, 20, 40, 60, and 80 µg/mL MC-RR for 4, 8, 12, and 24 h. HeLa cells presented dualistic responses to different doses of MCs. CCK8 assay showed that MC-RR exposure evidently enhanced cell viability of HeLa cells at lower MCs doses. Cell cycle and apoptosis analysis revealed that lower MCs doses promoted G1/S transition and cell proliferation while higher doses of MCs induced apoptosis, with a dose-dependent manner. Electrophoretic mobility shift assay (EMSA) revealed that MC-RR could increase/decrease NF-κB activity at lower/higher MC-RR doses, respectively. Furthermore, the expression of NF-κB downstream target genes including c-FLIP, cyclinD1, c-myc, and c-IAP2 showed the same variation trend as NF-κB activity both at mRNA and protein levels, which were induced by lower doses of MC-RR and suppressed by higher doses. Our data verified for the first time that NF-κB pathway may mediate MC-induced cell proliferation and apoptosis and provided a better understanding of the molecular mechanism for potential carcinogenicity of MC-RR.

  11. Shallot and licorice constituent isoliquiritigenin arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and initiation of the mitochondrial system in human cervical carcinoma HeLa cells.

    PubMed

    Hsu, Ya-Ling; Chia, Chun-Chieh; Chen, Ping-Jye; Huang, Su-Er; Huang, Soon-Cen; Kuo, Po-Lin

    2009-07-01

    This study is the first to investigate the anticancer effect of isoliquiritigenin (ISL) in human cervical carcinoma HeLa cells. The results reveal that ISL inhibits HeLa cells by blocking cell cycle progression in the G2/M phase and inducing apoptosis. Blockade of cell cycle is associated with increased activation of ataxia telangiectasia-mutated (ATM). Activation of ATM by ISL phosphorylated p53 at Serine15, resulting in increased stability of p53 by decreasing p53 and murine double minute-2 (MDM2) interaction. In addition, ISL-mediated G2/M phase arrest was also associated with decreases in the amounts of cyclin B, cyclin A, cdc2, and cdc25C, and increases in the phosphorylation of Chk2, cdc25C, and cdc2. The specific ATM inhibitor caffeine significantly decreased ISL-mediated G2/M arrest by inhibiting the phosphorylation of p53 (Serine15) and Chk2. ISL induced apoptotic cell death is associated with changes in the expression of Bax and Bak, decreasing levels of Bcl-2 and Bcl-X(L), and subsequently triggering mitochondrial apoptotic pathway. In addition, pretreatment of cells with caspase-9 inhibitor blocked ISL-induced apoptosis, indicating that caspase-9 activation is involved in ISL-mediated HeLa cell apoptosis. These findings suggest that ISL may be a promising chemopreventive agent against human uterine cervical cancer.

  12. Apoptotic effect of imatinib on human colon adenocarcinoma cells: influence on actin cytoskeleton organization and cell migration.

    PubMed

    Popow-Woźniak, Agnieszka; Woźniakowska, Aleksandra; Kaczmarek, Lukasz; Malicka-Błaszkiewicz, Maria; Nowak, Dorota

    2011-09-30

    Imatinib mesylate (STI571) is the first member of a new class of agents that act by inhibiting specific tyrosine kinases, rather than killing all rapidly dividing cells. This drug is usually used in the treatment of chronic myelogenous leukemia and gastrointestinal stromal tumors. It was recognized to inhibit activity of kinases such as Bcr/Abl, platelet-derived growth factor receptor, and c-kit. These proteins play important roles in cell growth, motility, and survival. Therefore, studies on the biological effects of imatinib on different cellular models are very important. Human colon adenocarcinoma LS180 cell line was used in the studies presented. Cells were exposed to 0.1-100 μM imatinib for 24 and 48 h. Dose-dependent decreases in cell viability and morphological changes were observed. Moreover, the apoptotic effect of imatinib (10 μM, 50 μM) after 24 h of exposure was demonstrated as evaluated by translocation of phosphatidylserine to external membrane leaflet and by increased activity of caspase-3. Special attention was focused on imatinib influence on actin cytoskeleton organization and migration ability of LS180 cells. Distinct alterations in actin cytoskeleton architecture occurred in response to drug treatment, accompanied by appearance of filamentous actin aggregates and decrease in actin polymerization state. These changes were correlated with remarkable decrease in cell migration capacity. In summary, our data clearly demonstrate that imatinib induces apoptosis and inhibits human colon adenocarcinoma cell migration. Therefore, this drug may have potential in colon cancer therapy in the future.

  13. Activity of growth factors in the IL-6 group in the differentiation of human lung adenocarcinoma.

    PubMed

    McCormick, C; Freshney, R I

    2000-02-01

    The role of the interleukin-6 (IL-6) group of cytokines in differentiation of two lung adenocarcinoma cell lines has been examined using induction of alkaline phosphatase and expression of surfactant protein A. Oncostatin M was the most active and potent for alkaline phosphatase in A549 cells, with IL-6 having similar activity but less potency. Neither cytokine induced alkaline phosphatase in NCI-H441 cells, although induction was obtained with lung fibroblast-conditioned medium. Surfactant protein A was induced in NCI-H441 cells by conditioned medium and dexamethasone and, to a much lesser extent, by oncostatin M or IL-6. Induction of alkaline phosphatase and surfactant protein A were both dexamethasone-dependent, though some induction of surfactant protein A was obtained with interferon-alpha in the absence of dexamethasone. The activity present in lung fibroblast-conditioned medium suggests paracrine control, but this appears not to be due to oncostatin M or IL-6 as disabling antibodies to either cytokine were not inhibitory, and, although alkaline phosphatase was induced in A549 by both cytokines, it was only induced by conditioned medium in NCI-H441 cells. Furthermore, surfactant protein A was induced in H441 by conditioned medium to a much greater extent than by oncostatin M or IL-6. These data demonstrate that cytokines of the IL-6 group have potential as differentiation inducers in lung adenocarcinoma cells and that there is an equivalent paracrine factor(s) in lung fibroblast conditioned medium. As the production of this factor by fibroblasts is not enhanced by glucocorticoid, although the response of the target cell is, it would appear to be distinct from the fibrocyte pneumocyte factor previously described by Post et al 1984.

  14. Activity of growth factors in the IL-6 group in the differentiation of human lung adenocarcinoma

    PubMed Central

    McCormick, C; Freshney, R I

    2000-01-01

    The role of the interleukin-6 (IL-6) group of cytokines in differentiation of two lung adenocarcinoma cell lines has been examined using induction of alkaline phosphatase and expression of surfactant protein A. Oncostatin M was the most active and potent for alkaline phosphatase in A549 cells, with IL-6 having similar activity but less potency. Neither cytokine induced alkaline phosphatase in NCI-H441 cells, although induction was obtained with lung fibroblast-conditioned medium. Surfactant protein A was induced in NCI-H441 cells by conditioned medium and dexamethasone and, to a much lesser extent, by oncostatin M or IL-6. Induction of alkaline phosphatase and surfactant protein A were both dexamethasone-dependent, though some induction of surfactant protein A was obtained with interferon-α in the absence of dexamethasone. The activity present in lung fibroblast-conditioned medium suggests paracrine control, but this appears not to be due to oncostatin M or IL-6 as disabling antibodies to either cytokine were not inhibitory, and, although alkaline phosphatase was induced in A549 by both cytokines, it was only induced by conditioned medium in NCI-H441 cells. Furthermore, surfactant protein A was induced in H441 by conditioned medium to a much greater extent than by oncostatin M or IL-6. These data demonstrate that cytokines of the IL-6 group have potential as differentiation inducers in lung adenocarcinoma cells and that there is an equivalent paracrine factor(s) in lung fibroblast conditioned medium. As the production of this factor by fibroblasts is not enhanced by glucocorticoid, although the response of the target cell is, it would appear to be distinct from the fibrocyte pneumocyte factor previously described by Post et al 1984 Nature308: 284–286. © 2000 Cancer Research Campaign PMID:10732762

  15. Read-through transcripts in normal human lung parenchyma are down-regulated in lung adenocarcinoma

    PubMed Central

    Cotroneo, Chiara E.; Galvan, Antonella; Noci, Sara; Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Incarbone, Matteo; Palleschi, Alessandro; Rosso, Lorenzo; Santambrogio, Luigi; Dragani, Tommaso A.; Colombo, Francesca

    2016-01-01

    Read-through transcripts result from the continuous transcription of adjacent, similarly oriented genes, with the splicing out of the intergenic region. They have been found in several neoplastic and normal tissues, but their pathophysiological significance is unclear. We used high-throughput sequencing of cDNA fragments (RNA-Seq) to identify read-through transcripts in the non-involved lung tissue of 64 surgically treated lung adenocarcinoma patients. A total of 52 distinct read-through species was identified, with 24 patients having at least one read-through event, up to a maximum of 17 such transcripts in one patient. Sanger sequencing validated 28 of these transcripts and identified an additional 15, for a total of 43 distinct read-through events involving 35 gene pairs. Expression levels of 10 validated read-through transcripts were measured by quantitative PCR in pairs of matched non-involved lung tissue and lung adenocarcinoma tissue from 45 patients. Higher expression levels were observed in normal lung tissue than in the tumor counterpart, with median relative quantification ratios between normal and tumor varying from 1.90 to 7.78; the difference was statistically significant (P < 0.001, Wilcoxon's signed-rank test for paired samples) for eight transcripts: ELAVL1–TIMM44, FAM162B–ZUFSP, IFNAR2–IL10RB, INMT–FAM188B, KIAA1841–C2orf74, NFATC3–PLA2G15, SIRPB1–SIRPD, and SHANK3–ACR. This report documents the presence of read-through transcripts in apparently normal lung tissue, with inter-individual differences in patterns and abundance. It also shows their down-regulation in tumors, suggesting that these chimeric transcripts may function as tumor suppressors in lung tissue. PMID:27058892

  16. Hypoxia in human colorectal adenocarcinoma: Comparison between extrinsic and potential intrinsic hypoxia markers

    SciTech Connect

    Goethals, Laurence; Debucquoy, Annelies; Perneel, Christiaan; Geboes, Karel; Ectors, Nadine; De Schutter, Harlinde; Penninckx, Freddy; McBride, William H.; Begg, Adrian C.; Haustermans, Karin M. . E-mail: karin.haustermans@uzleuven.be

    2006-05-01

    Purpose: To detect and quantify hypoxia in colorectal adenocarcinomas by use of pimonidazole and iododeoxyuridine (IdUrd) as extrinsic markers and carbonic anhydrase IX (CA IX), microvessel density (MVD), epidermal growth-factor receptor (EGFR), and vascular endothelial growth factor (VEGF) as intrinsic markers of hypoxia. Methods and Material: Twenty patients with an adenocarcinoma of the left colon and rectum treated by primary surgery were injected with pimonidazole and IdUrd. Serial sections of tumor biopsies were single stained for VEGF, EGFR, Ki67, and double stained for blood vessels in combination with either pimonidazole, IdUrd, or CA IX. Percentage of expression was scored as well as colocalization of pimonidazole with CA IX. Results: The median percentage of hypoxia, as judged by pimonidazole staining, was 16.7% (range, 0-52.4%). The expression of pimonidazole correlated inversely with the total MVD and endothelial cord MVD (R = -0.55, p = 0.01; R = -0.47, p = 0.04). Good colocalization was found between pimonidazole and CA IX in only 30% of tumors, with no correlation overall between pimonidazole and CA IX, VEGF, or EGFR or between the different intrinsic markers. Cells around some vessels (0.08-11%) were negative for IdUrd but positive for Ki 67, which indicated their lack of perfusion at the time of injection. Conclusion: Chronic and acute hypoxic regions are present in colorectal tumors, as shown by pimonidazole and IdUrd staining. Only in a minority of tumors did an association exist between the areas stained by pimonidazole and those positive for CA IX. Pimonidazole also did not correlate with expression of other putative intrinsic hypoxia markers (VEGF, EGFR)

  17. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.

  18. Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice

    PubMed Central

    2014-01-01

    Background The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. Methods PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. Results GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. Conclusions CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the

  19. Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation.

    PubMed

    Pariente, Roberto; Pariente, José A; Rodríguez, Ana B; Espino, Javier

    2016-01-01

    Melatonin has antitumor activity via several mechanisms including its antiproliferative and pro-apoptotic effects as well as its potent antioxidant actions, although recent evidence has indicated that melatonin may perform pro-oxidant actions in tumor cells. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs. This study was intended to evaluate the in vitro effect of melatonin on the cytotoxic and pro-apoptotic actions of various chemotherapeutic agents in cervical cancer HeLa cells. Herein, we found that both melatonin and three of the chemotherapeutic drugs tested, namely cisplatin (CIS), 5-fluorouracil (5-FU), and doxorubicin, induced a decrease in HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of such chemotherapeutic agents. Consistently, costimulation of HeLa cells with any chemotherapeutic agent in the presence of melatonin further increased caspase-3 activation, particularly in CIS- and 5-FU-challenged cells. Likewise, concomitant treatments with melatonin and CIS significantly enhanced the ratio of cells entering mitochondrial apoptosis due to reactive oxygen species (ROS) overproduction, substantially augmented the population of apoptotic cells, and markedly enlarged DNA fragmentation compared to the treatments with CIS alone. Nonetheless, melatonin only displayed moderate chemosensitizing effects in 5-FU-stimulated HeLa cells, as suggested by slight increments in the percentage of cells stimulated for ROS production and in the proportion of early apoptotic cells compared to the treatments with 5-FU alone. In summary, our findings provided evidence that in vitro melatonin strongly enhances CIS-induced cytotoxicity and apoptosis in HeLa cells and, hence, the indoleamine could be potentially applied to cervical cancer treatment as a powerful synergistic agent.

  20. Rose Bengal acetate photodynamic therapy (RBAc-PDT) induces exposure and release of Damage-Associated Molecular Patterns (DAMPs) in human HeLa cells.

    PubMed

    Panzarini, Elisa; Inguscio, Valentina; Fimia, Gian Maria; Dini, Luciana

    2014-01-01

    The new concept of Immunogenic Cell Death (ICD), associated with Damage Associated Molecular Patterns (DAMPs) exposure and/or release, is recently becoming very appealing in cancer treatment. In this context, PhotoDynamic Therapy (PDT) can give rise to ICD and to immune response upon dead cells removal. The list of PhotoSensitizers (PSs) able to induce ICD is still short and includes Photofrin, Hypericin, Foscan and 5-ALA. The goal of the present work was to investigate if Rose Bengal Acetate (RBAc), a powerful PS able to trigger apoptosis and autophagy, enables photosensitized HeLa cells to expose and/or release pivotal DAMPs, i.e. ATP, HSP70, HSP90, HMGB1, and calreticulin (CRT), that characterize ICD. We found that apoptotic HeLa cells after RBAc-PDT exposed and released, early after the treatment, high amount of ATP, HSP70, HSP90 and CRT; the latter was distributed on the cell surface as uneven patches and co-exposed with ERp57. Conversely, autophagic HeLa cells after RBAc-PDT exposed and released HSP70, HSP90 but not CRT and ATP. Exposure and release of HSP70 and HSP90 were always higher on apoptotic than on autophagic cells. HMGB1 was released concomitantly to secondary necrosis (24 h after RBAc-PDT). Phagocytosis assay suggests that CRT is involved in removal of RBAc-PDT generated apoptotic HeLa cells. Altogether, our data suggest that RBAc has all the prerequisites (i.e. exposure and/or release of ATP, CRT, HSP70 and HSP90), that must be verified in future vaccination experiments, to be considered a good PS candidate to ignite ICD. We also showed tha CRT is involved in the clearance of RBAc photokilled HeLa cells. Interestingly, RBAc-PDT is the first cancer PDT protocol able to induce the translocation of HSP90 and plasma membrane co-exposure of CRT with ERp57.

  1. Multidrug-resistant hela cells overexpressing MRP1 exhibit sensitivity to cell killing by hyperthermia: Interactions with etoposide

    SciTech Connect

    Souslova, Tatiana; Averill-Bates, Diana A. . E-mail: averill.diana@uqam.ca

    2004-12-01

    Purpose: Multidrug resistance (MDR) remains one of the primary obstacles in cancer chemotherapy and often involves overexpression of drug efflux transporters such as P-glycoprotein and multidrug resistance protein 1 (MRP1). Regional hyperthermia is undergoing clinical investigation in combination with chemotherapy or radiotherapy. This study evaluates whether hyperthermia can reverse MDR mediated by MRP1 in human cervical adenocarcinoma (HeLa) cells. Methods and materials: Cytotoxicity of hyperthermia and/or etoposide was evaluated using sulforhodamine-B in HeLa cells overexpressing MRP1 and their drug-sensitive counterparts. Glutathione, glutathione peroxidase (GPx), and glutathione S-transferase (GST) were quantified by spectrophotometry. GST isoenzymes were quantified by immunodetection. Caspase activation was evaluated by fluorometry and chromatin condensation by fluorescence microscopy using Hoechst 33258. Necrosis was determined using propidium iodide. Results: The major finding is that HeLa and HeLaMRP cells are both sensitive to cytotoxicity of hyperthermia (41-45 deg C). Hyperthermia induced activation of caspase 3 and chromatin condensation. Although total levels of cell killing were similar, there was a switch from apoptotic to necrotic cell death in MDR cells. This could be explained by decreased glutathione and GPx in MDR cells. MDR cells also contained very low levels of GST and were resistant to etoposide-induced apoptosis. Hyperthermia caused a modest increase in etoposide-induced apoptosis in HeLa and HeLaMRP cells, which required appropriate heat-drug scheduling. Conclusions: Hyperthermia could be useful in eliminating MDR cells that overexpress MRP1.

  2. K-ras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary.

    PubMed Central

    Enomoto, T.; Weghorst, C. M.; Inoue, M.; Tanizawa, O.; Rice, J. M.

    1991-01-01

    To explore the role of mutational activation of members of the ras family of cellular protooncogenes in the development of human ovarian neoplasms, a series of 37 ovarian tumors from Japanese patients was studied. These included 30 common epithelial tumors (1 mucinous tumor of borderline malignancy, 7 mucinous adenocarcinomas, and 22 nonmucinous carcinomas: 10 serous, 3 clear cell, 8 endometrioid, and 1 undifferentiated), 5 tumors of germ cell origin, and 2 sex cord/stromal cell tumors. Polymerase chain reaction was performed from selected areas of deparaffinized sections of formalin-fixed paraffin-embedded tissue, and the presence of activating point mutations in codons 12, 13, and 61 of the H-, N-, and K-ras genes was probed by dot-blot hybridization analysis with mutation specific oligonucleotides. Mutations in K-ras were also looked for by direct genomic sequencing. The overall frequency of ras gene mutations was 10/37 (27%). Mutations were detected only in K-ras, and were found in most of the mucinous tumors, including the one such tumor of borderline malignancy (6/8; 75%). In one mucinous adenocarcinoma, two mutations were detected in paraffin-embedded material that had not previously been found in high molecular weight DNA isolated from frozen tissue from the same case. K-ras mutations occurred significantly more frequently in mucinous tumors (6/8, 75%) than in serous carcinomas (2/10, 20%; P = 0.031) or in all nonmucinous types of epithelial ovarian tumors combined (3/22, 14%; P = 0.0031). Images Figure 1 Figure 2 PMID:1656759

  3. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    PubMed

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level.

  4. Characterization of binding of four monoclonal antibodies to the human ovarian adenocarcinoma cell line HEY.

    PubMed

    Sheldon, K; Marks, A; Baumal, R

    1987-05-01

    Four mouse monoclonal antibodies (mAb) (10B, IgG1; 8C, IgG2a; M2A, IgG2a; M2D, IgG2b) were characterized with respect to their binding to the ovarian adenocarcinoma cell line HEY, using displacement assays and Scatchard plot analyses. The four mAb reacted with different antigens on the surface of HEY cells, with affinity constants ranging from 1 X 10(9) to 3 X 10(9) M-1. The number of binding sites per cell for each antibody was approximately 2 X 10(4). mAb 8C and M2D remained associated with the cell surface following binding to their respective antigens, while mAb 10B was rapidly internalized, with 50% of the bound mAb being lost from the cell surface during 4 h of incubation at 37 degrees C. These different binding characteristics of the mAb may influence their ability to target radioactivity and cytotoxic drugs to HEY cells.

  5. Identifying candidate agents for lung adenocarcinoma by walking the human interactome

    PubMed Central

    Sun, Yajiao; Zhang, Ranran; Jiang, Zhe; Xia, Rongyao; Zhang, Jingwen; Liu, Jing; Chen, Fuhui

    2016-01-01

    Despite recent advances in therapeutic strategies for lung cancer, mortality is still increasing. Therefore, there is an urgent need to identify effective novel drugs. In the present study, we implement drug repositioning for lung adenocarcinoma (LUAD) by a bioinformatics method followed by experimental validation. We first identified differentially expressed genes between LUAD tissues and nontumor tissues from RNA sequencing data obtained from The Cancer Genome Atlas database. Then, candidate small molecular drugs were ranked according to the effect of their targets on differentially expressed genes of LUAD by a random walk with restart algorithm in protein–protein interaction networks. Our method identified some potentially novel agents for LUAD besides those that had been previously reported (eg, hesperidin). Finally, we experimentally verified that atracurium, one of the potential agents, could induce A549 cells death in non-small-cell lung cancer-derived A549 cells by an MTT assay, acridine orange and ethidium bromide staining, and electron microscopy. Furthermore, Western blot assays demonstrated that atracurium upregulated the proapoptotic Bad and Bax proteins, downregulated the antiapoptotic p-Bad and Bcl-2 proteins, and enhanced caspase-3 activity. It could also reduce the expression of p53 and p21Cip1/Waf1 in A549 cells. In brief, the candidate agents identified by our approach may provide greater insights into improving the therapeutic status of LUAD. PMID:27729798

  6. Protective autophagy is involved in resistance towards MET inhibitors in human gastric adenocarcinoma cells.

    PubMed

    Humbert, Magali; Medová, Michaela; Aebersold, Daniel M; Blaukat, Andree; Bladt, Friedhelm; Fey, Martin F; Zimmer, Yitzhak; Tschan, Mario P

    2013-02-08

    MET, also known as hepatocyte growth factor receptor (HGFR), is a receptor tyrosine kinase with an important role, both in normal cellular function as well as in oncogenesis. In many cancer types, abnormal activation of MET is related to poor prognosis and various strategies to inhibit its function, including small molecule inhibitors, are currently in preclinical and clinical evaluation. Autophagy, a self-digesting recycling mechanism with cytoprotective functions, is induced by cellular stress. This process is also induced upon cytotoxic drug treatment of cancer cells and partially allows these cells to escape cell death. Thus, since autophagy protects different tumor cells from chemotherapy-induced cell death, current clinical trials aim at combining autophagy inhibitors with different cancer treatments. We found that in a gastric adenocarcinoma cell line GTL-16, where MET activity is deregulated due to receptor overexpression, two different MET inhibitors PHA665752 and EMD1214063 lead to cell death paralleled by the induction of autophagy. A combined treatment of MET inhibitors together with the autophagy inhibitor 3-MA or genetically impairing autophagy by knocking down the key autophagy gene ATG7 further decreased cell viability of gastric cancer cells. In general, we observed the induction of cytoprotective autophagy in MET expressing cells upon MET inhibition and a combination of MET and autophagy inhibition resulted in significantly decreased cell viability in gastric cancer cells.

  7. Evaluation of human tissue kallikrein-related peptidases 6 and 10 expression in early gastroesophageal adenocarcinoma.

    PubMed

    Grin, Andrea; Samaan, Sara; Tripathi, Monika; Rotondo, Fabio; Kovacs, Kalman; Bassily, Mena N; Yousef, George M

    2015-04-01

    Kallikreins are a family of serine proteases that are linked to malignancy of different body organs with potential clinical utility as tumor markers. In this study, we investigated kallikrein-related peptidase 6 (KLK6) and KLK10 expression in early gastroesophageal junction adenocarcinoma and Barrett esophagus (BE) with and without dysplasia. Immunohistochemistry revealed significantly increased KLK6 expression in early invasive cancer compared with dysplastic (P = .009) and nondysplastic BE (P = .0002). There was a stepwise expression increase from metaplasia to dysplasia and invasive tumors. Significantly higher KLK10 was seen in dysplastic lesions compared with metaplasia but not between dysplastic lesions and invasive cancers. KLK6 staining intensity was increased at the invasive front (P = .006), suggesting its role in tumor invasiveness. Neither KLK6 nor KLK10 was significantly associated with other prognostic markers, including depth of invasion, indicating their potential as independent biomarkers. Our results should be interpreted with caution due to limited sample size. There was a significant correlation between KLK6 and KLK10 expression both at the invasive front and within the main tumor, indicating a collaborative effect. We then compared KLK6 and KLK10 messenger RNA expression between metaplastic and cancerous tissues in an independent data set of esophageal carcinoma from The Cancer Genome Atlas. KLK6 and KLK10 may be useful markers and potential therapeutic targets in gastroesophageal junction tumors.

  8. Oleifolioside A mediates caspase-independent human cervical carcinoma HeLa cell apoptosis involving nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG.

    PubMed

    Yu, Hai Yang; Jin, Cheng-Yun; Kim, Kyoung-Sook; Lee, Young-Choon; Park, Shin-Hyung; Kim, Gi-Young; Kim, Wun-Jae; Moon, Hyung-In; Choi, Yung Hyun; Lee, Jai-Heon

    2012-05-30

    Apoptosis, the main type of programmed cell death, plays an essential role in a variety of biological events. Whereas "classical" apoptosis is dependent on caspase activation, caspase-independent death is increasingly recognized as an alternative pathway. To develop new anticancer agents, oleifolioside A was isolated from Dendropanax morbifera Leveille and the biochemical mechanisms of oleifolioside A-induced apoptosis in HeLa cells were investigated. Exposure to oleifolioside A resulted in caspase activation and typical features of apoptosis, although cell death was not prevented by caspase inhibition. Oleifolioside A treatment induced up-regulation of Bad, loss of mitochondrial membrane potential, nuclear relocation of mitochondrial factors, apoptosis-inducing factor (AIF), endonuclease G (EndoG), and apoptosis induction. This is the first report of anticancer activity of oleifolioside A, and nuclear translocation of AIF and EndoG in oleifolioside A-treated HeLa cells might represent an alternative death signaling pathway in the absence of caspase activity.

  9. Elevated expression of H type GDP-L-fucose:beta-D-galactoside alpha-2-L-fucosyltransferase is associated with human colon adenocarcinoma progression.

    PubMed Central

    Sun, J; Thurin, J; Cooper, H S; Wang, P; Mackiewicz, M; Steplewski, Z; Blaszczyk-Thurin, M

    1995-01-01

    GDP-L-fucose:beta-D-galactoside alpha-2-L-fucosyltransferase (EC 2.4.1.69) is a key enzyme in the biosynthesis of fucosylated type 1 and 2 lactoseries structures, such as Lewis b and the H type 2 and Lewis Y, respectively, that are accumulated in colon adenocarcinoma. Analysis of the mRNA transcript level for the human H gene-encoded beta-D-galactoside alpha-2-L-fucosyltransferase revealed 40- and 340-fold increases in the mRNA levels in all adenocarcinomas and tumor cell lines, respectively, compared to normal colon mucosa where a low level of mRNA transcript was detected. A variable increase in mRNA transcript levels was observed in 50% of adenomatous polyps. Nucleotide sequence analysis of the protein coding region of the cDNAs derived from normal colon, adenoma, and colon adenocarcinoma revealed 100% homology, suggesting that there are no tumor-associated allelic variations within the H beta-D-galactoside alpha-2-L-fucosyltransferase cDNA. These results suggest that beta-D-galactoside alpha-2-L-fucosyltransferase expression highly correlates with malignant progression of colon adenocarcinoma. Images Fig. 1 Fig. 2 PMID:7539926

  10. LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans

    PubMed Central

    Tu, Ho-Chou; Schwitalla, Sarah; Qian, Zhirong; LaPier, Grace S.; Yermalovich, Alena; Ku, Yuan-Chieh; Chen, Shann-Ching; Viswanathan, Srinivas R.; Zhu, Hao; Nishihara, Reiko; Inamura, Kentaro; Kim, Sun A.; Morikawa, Teppei; Mima, Kosuke; Sukawa, Yasutaka; Yang, Juhong; Meredith, Gavin; Fuchs, Charles S.; Ogino, Shuji

    2015-01-01

    Colorectal cancer (CRC) remains a major contributor to cancer-related mortality. LIN28A and LIN28B are highly related RNA-binding protein paralogs that regulate biogenesis of let-7 microRNAs and influence development, metabolism, tissue regeneration, and oncogenesis. Here we demonstrate that overexpression of either LIN28 paralog cooperates with the Wnt pathway to promote invasive intestinal adenocarcinoma in murine models. When LIN28 alone is induced genetically, half of the resulting tumors harbor Ctnnb1 (β-catenin) mutation. When overexpressed in ApcMin/+ mice, LIN28 accelerates tumor formation and enhances proliferation and invasiveness. In conditional genetic models, enforced expression of a LIN28-resistant form of the let-7 microRNA reduces LIN28-induced tumor burden, while silencing of LIN28 expression reduces tumor volume and increases tumor differentiation, indicating that LIN28 contributes to tumor maintenance. We detected aberrant expression of LIN28A and/or LIN28B in 38% of a large series of human CRC samples (n = 595), where LIN28 expression levels were associated with invasive tumor growth. Our late-stage CRC murine models and analysis of primary human tumors demonstrate prominent roles for both LIN28 paralogs in promoting CRC growth and progression and implicate the LIN28/let-7 pathway as a therapeutic target. PMID:25956904

  11. The possible molecular regulation mechanism of CIK cells inhibiting the proliferation of Human Lung Adenocarcinoma NCL-H157 Cells

    PubMed Central

    Li, Dengrui; Yang, Yonghui; Gao, Li; Guo, Sumin; Hui, Li; Zhu, Guiyun; Hou, Hongwei

    2016-01-01

    Abstract Cytokine-induced killer (CIK) cells were isolated and proliferation from human peripheral blood and cultured in appropriate growth medium. The biological characteristics of CIK cells were further determined by the characterization of surface markers by flow cytometry. CIK cells inhibited the proliferation of human lung adenocarcinoma NCL-H157 cells. Vascular endothelial growth factor (VEGF) expression was down-regulated in CIK cells co-cultured with NCL-H157 cells by western blotting analysis. Furthermore, in comparison with cells untreated by CIK, the NCL-H157 had a lower proliferation capacity. We proposed that the pharmacological mechanisms of NCL-H157 promoted by CIK can be estimated possibly with different biological significance that can be ascribed to down-regulated VEGF expression in vitro. The results suggest that the VEGF pathway guides developmental inhibiting of NCL-H157, and we speculate that the function of VEGF pathways is to guide NCL-H157 to inhibition by abundant CIK. PMID:28352757

  12. Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model

    PubMed Central

    Riabov, Vladimir; Yin, Shuiping; Song, Bin; Avdic, Aida; Schledzewski, Kai; Ovsiy, Ilja; Gratchev, Alexei; Verdiell, Maria Llopis; Sticht, Carsten; Schmuttermaier, Christina; Schönhaber, Hiltrud; Weiss, Christel; Fields, Alan P.; Simon-Keller, Katja; Pfister, Frederick; Berlit, Sebastian; Marx, Alexander; Arnold, Bernd; Goerdt, Sergij; Kzhyshkowska, Julia

    2016-01-01

    Stabilin-1 is a multifunctional scavenger receptor expressed on alternatively-activated macrophages. Stabilin-1 mediates phagocytosis of “unwanted-self” components, intracellular sorting, and endocytic clearance of extracellular ligands including SPARC that modulates breast cancer growth. The expression of stabilin-1 was found on tumor-associated macrophages (TAM) in mouse and human cancers including melanoma, lymphoma, glioblastoma, and pancreatic insulinoma. Despite its tumor-promoting role in mouse models of melanoma and lymphoma the expression and functional role of stabilin-1 in breast cancer was unknown. Here, we demonstrate that stabilin-1 is expressed on TAM in human breast cancer, and its expression is most pronounced on stage I disease. Using stabilin-1 knockout (ko) mice we show that stabilin-1 facilitates growth of mouse TS/A mammary adenocarcinoma. Endocytosis assay on stabilin-1 ko TAM demonstrated impaired clearance of stabilin-1 ligands including SPARC that was capable of inducing cell death in TS/A cells. Affymetrix microarray analysis on purified TAM and reporter assays in stabilin-1 expressing cell lines demonstrated no influence of stabilin-1 expression on intracellular signalling. Our results suggest stabilin-1 mediated silent clearance of extracellular tumor growth-inhibiting factors (e.g. SPARC) as a mechanism of stabilin-1 induced tumor growth. Silent clearance function of stabilin-1 makes it an attractive candidate for delivery of immunomodulatory anti-cancer therapeutic drugs to TAM. PMID:27105498

  13. Phosphonooxymethyl Prodrug of Triptolide: Synthesis, Physicochemical Characterization, and Efficacy in Human Colon Adenocarcinoma and Ovarian Cancer Xenografts

    PubMed Central

    2015-01-01

    A disodium phosphonooxymethyl prodrug of the antitumor agent triptolide was prepared from the natural product in three steps (39% yield) and displayed excellent aqueous solubility at pH 7.4 (61 mg/mL) compared to the natural product (17 μg/mL). The estimated shelf life (t90) for hydrolysis of the prodrug at 4 °C and pH 7.4 was found to be two years. In a mouse model of human colon adenocarcinoma (HT-29), the prodrug administered intraperitoneally was effective in reducing or eliminating xenograft tumors at dose levels as low as 0.3 mg/kg when given daily and at 0.9 mg/kg when given less frequently. When given via intraperitoneal and oral routes at daily doses of 0.6 and 0.9 mg/kg, the prodrug was also effective and well tolerated in a mouse model of human ovarian cancer (A2780). PMID:26596892

  14. Type XV collagen in human colonic adenocarcinomas has a different distribution than other basement membrane zone proteins.

    PubMed

    Amenta, P S; Briggs, K; Xu, K; Gamboa, E; Jukkola, A F; Li, D; Myers, J C

    2000-03-01

    In situ carcinomas must penetrate their own basement membrane to be classified as invasive, and subsequently infiltrate surrounding connective tissue and cross vascular basement membranes to metastasize hematogenously. Accordingly, in many studies, integral basement membrane components, including type IV collagen, laminin, and heparan sulfate proteoglycan, have been localized in a spectrum of tumors to gain insight into their role in neoplasia. A number of recently identified extracellular matrix molecules and isoforms of the aforementioned proteins have been localized to the basement membrane zone, illustrating another level of biochemical heterogeneity in these structures. As the complexity of these matrices becomes more apparent, their roles in maintaining homeostasis and in tumor biology falls into question. Of the new group of collagens localized to the basement membrane zone, type XV was the first to be characterized (Cell Tissue Res, 286:493-505, 1996). This nonfibrillar collagen has a nearly ubiquitous distribution in normal human tissues via a strong association with basement membrane zones, suggesting that it functions to adhere basement membrane to the underlying stroma. To begin investigation of this protein in malignant tumors, we have localized type XV in human colonic adenocarcinomas and compared its distribution with that of type IV collagen and laminin. Collagens XV and IV and laminin were found in all normal and colonic epithelial, muscle, fat, neural, and vascular basement membrane zones, as shown previously. In moderately differentiated, invasive adenocarcinomas, laminin and type IV collagen were sometimes observed as continuous, linear deposits around some of the malignant glands, but more often they were seen in either discontinuous deposits or were completely absent. In contrast, type XV collagen was characterized as virtually absent from the basement membrane zones of malignant glandular elements in moderately differentiated tumors

  15. Two-dimensional culture of human pancreatic adenocarcinoma cells results in an irreversible transition from epithelial to mesenchymal phenotype.

    PubMed

    Kang, Ya'an; Zhang, Ran; Suzuki, Rei; Li, Shao-qiang; Roife, David; Truty, Mark J; Chatterjee, Deyali; Thomas, Ryan M; Cardwell, James; Wang, Yu; Wang, Huamin; Katz, Matthew H; Fleming, Jason B

    2015-02-01

    Many commercially available cell lines have been in culture for ages, acquiring phenotypes that differ from the original cancers from which these cell lines were derived. Therefore, research on new cell lines could improve the success rates of translational research in cancer. We have developed methods for the isolation and culture of human pancreatic ductal adenocarcinoma (PDAC) cells from murine xenografts of human PDAC. We hypothesize that phenotypes of PDAC cells are modified by in vitro culture conditions over time and by in vivo implantation. Patient-derived xenografts were created in immunodeficient mice using surgically resected tumor specimens. These murine xenografts were then used to establish human PDAC cell lines in culture. Earlier (<5) passage and later (>20) passage cell lines were evaluated separately regarding proliferation, cell cycle, genetic mutations, invasiveness, chemosensitivity, tumorigenesis, epithelial-mesenchymal transition (EMT) status, and proteomics. Later passage cells accelerated their doubling time and colony formation, and were more concentrated in the G0/G1 phase and less in the G2/M checkpoint phase. Later passage cells were more sensitive to gemcitabine and 5-fluorouracil than earlier passage cells, but all four new cell lines were more chemo-resistant compared with commercial ATCC cell lines. EMT induction was observed when establishing and passaging cell lines in vitro and furthermore by growing them as subcutaneous tumors in vivo. This study demonstrates a novel approach to the establishment of PDAC cell lines and observes a process by which newly established cell lines undergo phenotypic changes during in vitro culture and in vivo tumorigenesis. This may help explain differences of treatment effects often observed between experiments conducted in vitro, in vivo, and in human clinical trials.

  16. Production and radioimmunoimaging of novel fully human phage display recombinant antibodies and growth inhibition of lung adenocarcinoma cell line overexpressing Prx I.

    PubMed

    Luo, Yi; Pang, Hua; Li, Shujie; Cao, Hui; Peng, Zhiping; Fan, Chunbo; Li, Shaolin

    2009-07-01

    The Peroxiredoxin I (Prx I) is a member of the Peroxiredoxin family, which is overexpressed in many diverse tumor types and is an anti-apoptosis protein for tumor cell proliferation and survival. Therapeutic strategies targeting the Prx I may therefore be effective broad-spectrum anticancer agents. We constructed a phage display single-chain variable fragment (scFv) antibody library and sieve out the fully human, lung adenocarcinoma-sepcific monoclonal antibodies. The selection on Prx I was performed using above-mentioned lung adenocarcinoma-sepcific monoclonal antibodies with high affinity to Prx I overexpressing lung adenocarcinoma cells. The candidate scFv sequences, based on enzyme-linked immunosorbent assay (ELISA) screening data, were chosen for soluble expression, and a 30 kDa band was observed on polyacrylamide gel electrophoresis as predicted. The purified antibodies were characterized by immunoblotting and showed high specificity to Prx I-overexpressing lung adenocarcinoma cells A549. Radioimmunoimaging was taken to evaluate specificity and distribution of antibodies in vivo. The radiolocalization index (RI) of tumor/serum and tumor/muscle gradually increased, reaching its peak (4.06 +/- 0.13 and 5.17 +/- 0.97, respectively) at 48 h postadministration. Single photon emission computed tomography (SPECT) imaging showed the radioactivity was aggregated in tumor locations and tumor imaging was clearly observed. The internalized scFv resulted in antibody-mediated cell apoptosis and downregulation of Prx I expression. These results demonstrate that the scFv possesses strong antitumor activity on lung adenocarcinoma and may therefore be an effective therapeutic candidate for the treatment of cancers that are dependent on Prx I for growth and survival.

  17. Tumor cell and connective tissue cell interactions in human colorectal adenocarcinoma. Transfer of platelet-derived growth factor-AB/BB to stromal cells.

    PubMed Central

    Sundberg, C.; Branting, M.; Gerdin, B.; Rubin, K.

    1997-01-01

    Mechanisms underlying stimulation of platelet-derived growth factor (PDGF) beta-receptors expressed on connective tissue cells in human colorectal adenocarcinoma were investigated in this study. PDGF-AB/BB, but not PDGF receptors, was expressed by tumor cells in situ, as well as in tumor cell isolates of low passage from human colorectal adenocarcinoma. In an experimental co-culture system, conditioned medium from tumor cells only marginally activated PDGF beta-receptors expressed on fibroblasts. In contrast, co-culturing of the two cell types led to a marked PDGF beta-receptor activation. Functional PDGF-AB/BB was found to be associated with heparinase-I-sensitive components on the tumor cell surface. PDGF-AB/BB, isolated from heparinase-I-sensitive cell surface components, induced a marked activation of PDGF beta-receptors. Furthermore, co-culturing tumor cells together with fibroblasts led to a sustained activation of PDGF beta-receptors expressed on fibroblasts. Double immunofluorescence staining of tissue sections from human colorectal adenocarcinoma, combined with computer-aided image analysis, revealed that nonproliferating tumor cells were the predominant cellular source of PDGF-AB/BB in the tumor stroma. In addition, PDGF-AB/BB-expressing tumor cells were found juxtapositioned to microvascular cells expressing activated PDGF beta-receptors. Confocal microscopy revealed a cytoplasmic and cell-membrane-associated expression of PDGF-AB/BB in tumor cells situated in the stroma. In contrast, epithelial cells situated in normal or tumorous acinar structures revealed only a cell-membrane-associated PDGF-AB/BB expression. The is vitro and in situ results demonstrate that tumor cells not only facilitate but also have the ability to modulate connective tissue cell responsiveness to PDGF-AB/BB in a paracrine fashion, through direct cell-cell interactions in human colorectal adenocarcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9250160

  18. Schisandrin B inhibits the proliferation of human lung adenocarcinoma A549 cells by inducing cycle arrest and apoptosis

    PubMed Central

    Lv, Xue-Jiao; Zhao, Li-Jing; Hao, Yu-Qiu; Su, Zhen-Zhong; Li, Jun-Yao; Du, Yan-Wei; Zhang, Jie

    2015-01-01

    Lung cancer is the leading cause of cancer death in the world. Schizandrin B (Sch B) is one of the main dibenzocyclooctadiene lignans present in the fruit of Schisandra chinensis (Schisandraceae). Sch B has multiple functions against cancer. The aim of this study was to determine the effect of Sch B on the proliferation, cell cycling, apoptosis and invasion of lung adenocarcinoma A549 cells by MTT, flow cytometry, wound healing and transwell invasion assays. Treatment with Sch B inhibited the proliferation of A549 cells in a dose-dependent manner. Sch B induced cell cycle arrest at G0/G1 phase by down-regulating the expression of cyclin D1, cyclin-dependent kinase (CDK)4, and CDK6, but up-regulating p53 and p21 expression in A549 cells. Furthermore, Sch B triggered A549 cell apoptosis by increasing Bax, cleaved caspase-3, 9, Cyto C, but decreasing Bcl-2 and PCNA expression. In addition, Sch B inhibited the invasion and migration of A549 cells by down-regulating the expressions of HIF-1, VEGF, MMP-9 and MMP-2. Therefore, Sch B has potent anti-tumor activity and may be a promising traditional Chinese medicine for human lung carcinoma. PMID:26221229

  19. Anti-tumour activity of photodynamic therapy in combination with mitomycin C in nude mice with human colon adenocarcinoma.

    PubMed Central

    Ma, L. W.; Moan, J.; Steen, H. B.; Iani, V.

    1995-01-01

    The interaction of photodynamic therapy (PDT) and a chemotherapeutic drug, mitomycin C (MMC), was investigated using WiDr human colon adenocarcinoma tumours implanted on Balb/c athymic nude mice. The WiDr tumours were treated with PDT alone, MMC alone or with both. It was found that the combined treatment produced a greater retardation in the growth of the WiDr tumour than monotherapy with MMC or PDT. The synergistic effect was especially prominent when PDT was used in combination with a low dose of MMC (1 mg kg-1), since treatment of 1 mg kg-1 MMC alone had no effect on the tumour. The anti-tumour activity of PDT was found to be increased with MMC of 5 mg kg-1. The response of normal skin on mice feet to PDT slightly greater when PDT was combined with 5 mg kg-1 MMC than when PDT was applied alone, while no detectable additional effect on skin photosensitivity was observed when PDT was combined with 1 mg kg-1 MMC. An enhanced uptake of Photofrin in tumours was found 12 h and 24 h after administration of MMC. The effect of MMC on the cell cycle distribution of cell dissociated directly from the tumours was studied. The results suggest that the increased susceptibility to photoinactivation of Photofrin-sensitised tumours may be due to MMC-induced accumulation of the tumour cells in S-phase. PMID:7734319

  20. Cuminaldehyde from Cinnamomum verum Induces Cell Death through Targeting Topoisomerase 1 and 2 in Human Colorectal Adenocarcinoma COLO 205 Cells

    PubMed Central

    Tsai, Kuen-daw; Liu, Yi-Heng; Chen, Ta-Wei; Yang, Shu-Mei; Wong, Ho-Yiu; Cherng, Jonathan; Chou, Kuo-Shen; Cherng, Jaw-Ming

    2016-01-01

    Cinnamomum verum, also called true cinnamon tree, is employed to make the seasoning cinnamon. Furthermore, the plant has been used as a traditional Chinese herbal medication. We explored the anticancer effect of cuminaldehyde, an ingredient of the cortex of the plant, as well as the molecular biomarkers associated with carcinogenesis in human colorectal adenocarcinoma COLO 205 cells. The results show that cuminaldehyde suppressed growth and induced apoptosis, as proved by depletion of the mitochondrial membrane potential, activation of both caspase-3 and -9, and morphological features of apoptosis. Moreover, cuminaldehyde also led to lysosomal vacuolation with an upregulated volume of acidic compartment and cytotoxicity, together with inhibitions of both topoisomerase I and II activities. Additional study shows that the anticancer activity of cuminaldehyde was observed in the model of nude mice. Our results suggest that the anticancer activity of cuminaldehyde in vitro involved the suppression of cell proliferative markers, topoisomerase I as well as II, together with increase of pro-apoptotic molecules, associated with upregulated lysosomal vacuolation. On the other hand, in vivo, cuminaldehyde diminished the tumor burden that would have a significant clinical impact. Furthermore, similar effects were observed in other tested cell lines. In short, our data suggest that cuminaldehyde could be a drug for chemopreventive or anticancer therapy. PMID:27231935

  1. Dynamic Change of Polarity in Primary Cultured Spheroids of Human Colorectal Adenocarcinoma and Its Role in Metastasis.

    PubMed

    Okuyama, Hiroaki; Kondo, Jumpei; Sato, Yumi; Endo, Hiroko; Nakajima, Aya; Piulats, Jose M; Tomita, Yasuhiko; Fujiwara, Takeshi; Itoh, Yu; Mizoguchi, Akira; Ohue, Masayuki; Inoue, Masahiro

    2016-04-01

    Intestinal epithelial cells possess apical-basal polarity, which governs the exchange of nutrients and waste. Perturbation of cell polarity appears to be a general feature of cancers, although most colorectal cancers are differentiated adenocarcinomas, in which polarity is maintained to some extent. Little is known about the role of dysregulated polarity in cancer. The cancer tissue-originated spheroid method was applied to the preparation and culture of spheroids. Spheroids were cultured in suspension or in type I collagen gel. Polarity was assessed by IHC of apical markers and electron microscopy. Two types of polarity status in spheroids were observed: apical-in, with apical membrane located at cavities inside the spheroids in type I collagen gel; and apical-out, with apical membrane located at the outermost layer of spheroids in suspension. These polarities were highly interchangeable. Inhibitors of Src and dynamin attenuated the polarity switch. In patients, clusters of cancer cells that invaded vessels had both apical-in and apical-out morphologic features, whereas primary and metastatic tumors had apical-in features. In a mouse liver metastasis model, apical-out spheroids injected into the portal vein became apical-in spheroids in the liver within a few days. Inhibitors of Src and dynamin significantly decreased liver metastasis. Polarity switching was observed in spheroids and human cancer. The polarity switch was critical in an experimental liver metastasis model.

  2. Differentiation-associated decrease in the proportion of fucosylated polylactosaminoglycans of CaCo-2 human colonic adenocarcinoma cells.

    PubMed Central

    Youakim, A; Herscovics, A

    1987-01-01

    CaCo-2 cells are human colonic adenocarcinoma cells which can differentiate spontaneously into enterocytes when maintained confluent for extended periods of time. Cells kept in culture for 4 days (rapidly growing), 7-9 days (early confluence) and 19-22 days (late confluence) were incubated for 24 h with L-[5,6-3H]fucose or D-[6-3H]glucosamine in order to examine the changes in glycoprotein carbohydrate structure that occur during this differentiation. Labelled glycopeptides obtained by exhaustive Pronase digestion of the cell-surface and cell-pellet fractions were fractionated on Bio-Gel P-6. A high-Mr glycopeptide fraction which was excluded from Bio-Gel P-6 was present in all cases. These glycopeptides were then fractionated by affinity chromatography on Datura stramonium agglutinin-agarose. The glycopeptides which were specifically bound to the lectin column were largely degraded by endo-beta-galactosidase, thereby indicating that they consisted of fucosylated polylactosaminoglycans. The proportion of labelled polylactosaminoglycans decreased with increasing time in culture, whereas sucrase activity, which is characteristic of differentiated enterocytes, increased. These results demonstrate that a relatively large decrease in the proportion of fucosylated polylactosaminoglycans occurs with differentiation of CaCo-2 cells. PMID:3122722

  3. Use of the human colorectal adenocarcinoma (Caco-2) cell line for isolating respiratory viruses from nasopharyngeal aspirates.

    PubMed

    Chan, K H; Yan, M K; To, K K W; Lau, S K; Woo, P C; Cheng, V C C; Li, W S; Chan, J F W; Tse, H; Yuen, K Y

    2013-05-01

    The human colorectal adenocarcinoma-derived Caco-2 cell line was evaluated as a means isolating common respiratory viruses from nasopharyngeal aspirates for the diagnosis of respiratory diseases. One hundred eighty-nine direct immunofluorescence positive nasopharyngeal aspirates obtained from patients with various viral respiratory diseases were cultured in the presence of Caco-2 cells or the following conventional cell lines: LLC-MK2, MDCK, HEp-2, and A549. Caco-2 cell cultures effectively propagated the majority (84%) of the viruses present in nasopharyngeal aspirate samples compared with any positive cultures obtained using the panel cells (78%) or individual cell line MDCK (38%), HEp-2 (21%), LLC-MK2 (27%), or A549 (37%) cell lines. The differences against individual cell line were statistically significant (P = < 0.000001). Culture in Caco-2 cells resulted in the isolation of 85% (36/42) of viruses which were not cultivated in conventional cell lines. By contrast, 80% (24/30) of viruses not cultivated in Caco-2 cells were isolated using the conventional panel. The findings indicated that Caco-2 cells were sensitive to a wide range of viruses and can be used to culture a broad range of respiratory viruses.

  4. The uptake of hydroxypropyl methacrylamide based homo, random and block copolymers by human multi-drug resistant breast adenocarcinoma cells

    PubMed Central

    Barz, Matthias; Luxenhofer, Robert; Zentel, Rudolf; Kabanov, Alexander V.

    2011-01-01

    A series of well defined, fluorescently labelled homopolymers, random and block copolymers based on N-(2-hydroxypropyl)-methacrylamide was prepared by reversible addition-fragmentation chain transfer polymerization (RAFT-polymerization). The polydispersity indexes for all polymers were in the range of 1.2 to 1.3 and the number average of the molar mass (Mn) for each polymer was set to be in the range of 15 kDa to 30 kDa. The cellular uptake of these polymers was investigated in the human multi-drug resistant breast adenocarcinoma cell line MCF7/ADR. The uptake greatly depended on the polymer molecular mass and structure. Specifically, smaller polymers (approx. 15 kDa) were taken up by the cells at much lower concentrations than larger polymers (approx. 30 kDa). Furthermore, for polymers of the same molar mass, the random copolymers were more easily internalized in cells than block copolymers or homopolymers. This is attributed to the fact that random copolymers form micelle-like aggregates by intra- and interchain interactions, which are smaller and less stable than the block copolymer structures in which the hydrophobic domain is buried and thus prevented from unspecific interaction with the cell membrane. Our findings underline the need for highly defined polymeric carriers and excipients for future applications in the field of nanomedicine. PMID:19631373

  5. The effect of magnetic targeting on the uptake of magnetic-fluid-loaded liposomes by human prostatic adenocarcinoma cells.

    PubMed

    Martina, Marie-Sophie; Wilhelm, Claire; Lesieur, Sylviane

    2008-10-01

    Interactions of magnetic-fluid-loaded liposomes (MFL) with human adenocarcinoma prostatic cell line PC3 were investigated in vitro. MFL consisted of unilamellar phosphatidylcholine vesicles (mean hydrodynamic diameter close to 180 nm) encapsulating 8-nm nanocrystals of maghemite (gamma-Fe(2)O(3)) and sterically stabilized by introducing 5 mol.% of distearylphosphatidylcholine poly(ethylene glycol)(2000) (DSPE-PEG(2000)) in the vesicle bilayer. The association processes with living cells, including binding and effective internalization, were followed versus time at two levels. On one hand, the lipid vesicles labeled by 1 mol.% of rhodamine-marked phosphatidylethanolamine were imaged by confocal fluorescence microscopy. On the other hand, the iron oxide particles associated with cells were independently quantified by magnetophoresis. This allowed modeling of MFL uptake kinetics as a two-step process involving first binding adsorption onto the outer cell membrane followed by subsequent internalization. Capture efficiency was significantly improved by guiding MFL in the near vicinity of the cells by means of a 0.29-T external magnet developing a magnetic field gradient close to 30 mT/mm. Double detection of lipids by fluorescence tracking and of iron oxide by magnetophoresis showed excellent correlation. This demonstrated that MFL associate with tumor cells as intact vesicle structures which conserve their internal content.

  6. Integrin {beta}1-dependent invasive migration of irradiation-tolerant human lung adenocarcinoma cells in 3D collagen matrix

    SciTech Connect

    Ishihara, Seiichiro; Haga, Hisashi; Yasuda, Motoaki; Mizutani, Takeomi; Kawabata, Kazushige; Shirato, Hiroki; Nishioka, Takeshi

    2010-06-04

    Radiotherapy is one of the effective therapies used for treating various malignant tumors. However, the emergence of tolerant cells after irradiation remains problematic due to their high metastatic ability, sometimes indicative of poor prognosis. In this study, we showed that subcloned human lung adenocarcinoma cells (A549P-3) that are irradiation-tolerant indicate high invasive activity in vitro, and exhibit an integrin {beta}1 activity-dependent migratory pattern. In collagen gel overlay assay, majority of the A549P-3 cells displayed round morphology and low migration activity, whereas a considerable number of A549P-3IR cells surviving irradiation displayed a spindle morphology and high migration rate. Blocking integrin {beta}1 activity reduced the migration rate of A549P-3IR cells and altered the cell morphology allowing them to assume a round shape. These results suggest that the A549P-3 cells surviving irradiation acquire a highly invasive integrin {beta}1-dependent phenotype, and integrin {beta}1 might be a potentially effective therapeutic target in combination with radiotherapy.

  7. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells

    PubMed Central

    Jafarian, A.; Ghannadi, A.; Mohebi, B.

    2014-01-01

    Previous studies have indicated that some species of Cuscuta possess anticancer activity on various cell lines. Due to the lack of detailed researches on the cytotoxic effects of Cuscuta chinensis and Cuscuta epithymum, the aim of the present study was to evaluate cytotoxic effects of chloroform and hydroalcoholic extracts of these plants on the human breast carcinoma cell line (MDA-MB-468), human colorectal adenocarcinoma cell line (HT29) and human uterine cervical carcinoma (Hela). Using maceration method, different extracts of aerial parts of C. chinensis and C. epithymum were prepared. Extraction was performed using chloroform and ethanol/water (70/30). Total phenolic contents of the extracts were determined according to the Folin-Ciocalteu method. Using MTT assay, the cytotoxic activity of the extracts against HT29, Hela and MDA-MB-468 tumor cells was evaluated. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. The poly-phenolic content of the hydroalcoholic and chloroform extracts of C. chinensis and C. epithymum were 56.08 ± 4.11, 21.49 ± 2.00, 10.64 ± 0.86 and 4.81 ± 0.38, respectively. Our findings showed that the chloroform extracts of C. chinensis and C. epithyum significantly reduced the viability of Hela, HT-29 and MDA-MB-468 cells. Also, hydroalcoholic extracts of C. chinensis significantly decreased the viability of HT29, Hela and MDA-MB-468 cells. However, in the case of hydroalcoholic extracts of C. epithymum only significant decrease in the viability of MDA-MB-468 cells was observed (IC50 = 340 μg/ml). From these findings it can be concluded that C. chinensis and C. epithymum are good candidates for further study to find new possible cytotoxic agents. PMID:25657780

  8. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells.

    PubMed

    Jafarian, A; Ghannadi, A; Mohebi, B

    2014-01-01

    Previous studies have indicated that some species of Cuscuta possess anticancer activity on various cell lines. Due to the lack of detailed researches on the cytotoxic effects of Cuscuta chinensis and Cuscuta epithymum, the aim of the present study was to evaluate cytotoxic effects of chloroform and hydroalcoholic extracts of these plants on the human breast carcinoma cell line (MDA-MB-468), human colorectal adenocarcinoma cell line (HT29) and human uterine cervical carcinoma (Hela). Using maceration method, different extracts of aerial parts of C. chinensis and C. epithymum were prepared. Extraction was performed using chloroform and ethanol/water (70/30). Total phenolic contents of the extracts were determined according to the Folin-Ciocalteu method. Using MTT assay, the cytotoxic activity of the extracts against HT29, Hela and MDA-MB-468 tumor cells was evaluated. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. The poly-phenolic content of the hydroalcoholic and chloroform extracts of C. chinensis and C. epithymum were 56.08 ± 4.11, 21.49 ± 2.00, 10.64 ± 0.86 and 4.81 ± 0.38, respectively. Our findings showed that the chloroform extracts of C. chinensis and C. epithyum significantly reduced the viability of Hela, HT-29 and MDA-MB-468 cells. Also, hydroalcoholic extracts of C. chinensis significantly decreased the viability of HT29, Hela and MDA-MB-468 cells. However, in the case of hydroalcoholic extracts of C. epithymum only significant decrease in the viability of MDA-MB-468 cells was observed (IC50 = 340 μg/ml). From these findings it can be concluded that C. chinensis and C. epithymum are good candidates for further study to find new possible cytotoxic agents.

  9. The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells.

    PubMed

    Friederichs, J; Zeller, Y; Hafezi-Moghadam, A; Gröne, H J; Ley, K; Altevogt, P

    2000-12-01

    Carbohydrates on tumor cells have been shown to play an important role in tumor metastasis. We demonstrated before that CD24, a Mr 35,000-60,000 mucine-type glycosylphosphatidylinositol-linked cell surface molecule, can function as ligand for P-selectin and that the sialylLex carbohydrate is essential for CD24-mediated rolling of tumor cells on P-selectin. To investigate the role of both antigens more closely, we transfected human A125 adenocarcinoma cells with CD24 and/or fucosyltransferase VII (Fuc TVII) cDNAs. Stable transfectants expressed CD24 and/or sialylLex. Biochemical analysis confirmed that in A125-CD24/FucTVII double transfectants, CD24 was modified with sialylLex. Only double transfectants showed rolling on P-selectin in vivo. When injected into mice, double transfectants arrested in the lungs, and this step was P-selectin dependent because it was strongly enhanced in lipopolysaccharide (LPS) pretreated wild-type mice but not in P-selectin knockout mice. CD24 modified by sialylLex was required on the tumor cells because the LPS-induced lung arrest was abolished by removal of CD24 from the cell surface by phosphatidylinositol-specific phospholipase C. A125-FucTVII single transfectants expressing sialylLex but not CD24 did not show P-selectin-mediated lung arrest. The sialylLex epitope is abundantly expressed on human carcinomas, and significant correlations between sialylLex expression and clinical prognosis exist. Our data suggest an important role for sialylLex-modified CD24 in the lung colonization of human tumors.

  10. Effect of silencing SATB1 on proliferation, invasion and apoptosis of A549 human lung adenocarcinoma cells

    PubMed Central

    Huang, Bo; Zhou, Hongli; Wang, Siwang; Lang, Xian Ping; Wang, Xiaodong

    2016-01-01

    The present study aimed to explore the clinical characteristics of special adenine-thymine-rich sequence-binding protein 1 (SATB1) in lung adenocarcinoma and its role in the proliferation, invasion, migration and apoptosis of the lung adenocarcinoma cell line A549. The expression of SATB1 was first studied in tumor tissues of lung adenocarcinoma and adjacent non-tumor tissues. The siRNA green fluorescent protein expression vector of SATB1 was constructed and transfected into the lung adenocarcinoma cell line A549, then a fluorescence microscope was used to study the transfection efficiency. Western blot analysis was adopted to measure the silencing efficiency. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Transwell and scratch assays were used to study cell proliferation, invasion and migration activity, and the apoptosis rate was tested by flow cytometry. SATB1 expression was low in the adjacent non-tumor tissues but high in lung adenocarcinoma tissues, and it was reversely proportional to the differentiation degree. Following transfection with SATB1-siRNA, the expression of SATB1 in A549 cells was blocked (P<0.01). In addition, the proliferation, invasion and migration abilities of cells decreased significantly while the apoptosis rate increased significantly (P<0.01). In conclusion SATB1 is closely associated with the pathogenesis and development of lung adenocarcinoma. PMID:27895736

  11. In vitro and in vivo studies on antitumor effects of gossypol on human stomach adenocarcinoma (AGS) cell line and MNNG induced experimental gastric cancer

    SciTech Connect

    Gunassekaran, G.R.; Kalpana Deepa Priya, D.; Gayathri, R.; Sakthisekaran, D.

    2011-08-12

    Highlights: {yields} Gossypol is a well known polyphenolic compound used for anticancer studies but we are the first to report that gossypol has antitumor effect on MNNG induced gastric cancer in experimental animal models. {yields} Our study shows that gossypol inhibits the proliferation of AGS (human gastric adenocarcinoma) cell line. {yields} In animal models, gossypol extends the survival of cancer bearing animals and also protects the cells from carcinogenic effect. {yields} So we suggest that gossypol would be a potential chemotherapeutic and chemopreventive agent for gastric cancer. -- Abstract: The present study has evaluated the chemopreventive effects of gossypol on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced gastric carcinogenesis and on human gastric adenocarcinoma (AGS) cell line. Gossypol, C{sub 30}H{sub 30}O{sub 8}, is a polyphenolic compound that has anti proliferative effect and induces apoptosis in various cancer cells. The aim of this work was to delineate in vivo and in vitro anti-initiating mechanisms of orally administered gossypol in target (stomach) tissues and in human gastric adenocarcinoma (AGS) cell line. In vitro results prove that gossypol has potent cytotoxic effect and inhibit the proliferation of adenocarcinoma (AGS) cell line. In vivo results prove gossypol to be successful in prolonging the survival of MNNG induced cancer bearing animals and in delaying the onset of tumor in animals administrated with gossypol and MNNG simultaneously. Examination of the target (stomach) tissues in sacrificed experimental animals shows that administration of gossypol significantly reduces the level of tumor marker enzyme (carcino embryonic antigen) and pepsin. The level of Nucleic acid contents (DNA and RNA) significantly reduces, and the membrane damage of glycoprotein subsides, in the target tissues of cancer bearing animals, with the administration of gossypol. These data suggest that gossypol may create a beneficial effect in patients

  12. A molecular understanding of D-homoestrone-induced G2/M cell cycle arrest in HeLa human cervical carcinoma cells.

    PubMed

    Minorics, Renáta; Bózsity, Noémi; Molnár, Judit; Wölfling, János; Mernyák, Erzsébet; Schneider, Gyula; Ocsovszki, Imre; Zupkó, István

    2015-10-01

    2-Methoxyestradiol (ME), one of the most widely investigated A-ring-modified metabolites of estrone, exerts significant anticancer activity on numerous cancer cell lines. Its pharmacological actions, including cell cycle arrest, microtubule disruption and pro-apoptotic activity, have already been described in detail. The currently tested D-ring-modified analogue of estrone, D-homoestrone, selectively inhibits cervical cancer cell proliferation and induces a G2/M phase cell cycle blockade, resulting in the development of apoptosis. The question arose of whether the difference in the chemical structures of these analogues can influence the mechanism of anticancer action. The aim of the present study was therefore to elucidate the molecular contributors of intracellular processes induced by D-homoestrone in HeLa cells. Apoptosis triggered by D-homoestrone develops through activation of the intrinsic pathway, as demonstrated by determination of the activities of caspase-8 and -9. It was revealed that D-homoestrone-treated HeLa cells are not able to enter mitosis because the cyclin-dependent kinase 1-cyclin B complex loses its activity, resulting in the decreased inactivation of stathmin and a concomitant disturbance of microtubule formation. However, unlike 2-ME, D-homoestrone does not exert a direct effect on tubulin polymerization. These results led to the conclusion that the D-homoestrone-triggered intracellular processes resulting in a cell cycle arrest and apoptosis in HeLa cells differ from those in the case of 2-ME. This may be regarded as an alternative mechanism of action among steroidal anticancer compounds.

  13. Cell line-dependent cytotoxicity of poly(isobutylcyanoacrylate) nanoparticles coated with chitosan and thiolated chitosan: Insights from cultured human epithelial HeLa, Caco2/TC7 and HT-29/MTX cells.

    PubMed

    Pradines, Bénédicte; Lievin-Le Moal, Vanessa; Vauthier, Christine; Ponchel, Gilles; Loiseau, Philippe M; Bouchemal, Kawthar

    2015-08-01

    Nanoparticles composed of poly(isobutylcyanoacrylate) core coated with a mixture of chitosan and thiolated chitosan have already shown promising results in terms of mucoadhesion and permeation enhancement properties of pharmaceutical active drugs delivered via mucosal routes. In the present work, the cytotoxicity of these nanoparticles was first investigated using direct contact assay on undifferentiated human cervix epithelial HeLa cells. The results showed strong toxicity in HeLa cells for the two investigated concentrations 25 and 50 μg/mL. The cytotoxic effect was mainly attributed to the poly(isobutylcyanoacrylate) core since no significant differences in nanoparticle cytotoxicity were reported when nanoparticle shell composition was modified by adding chitosan or thiolated chitosan. In contrast, lower nanoparticle toxicity was reported using human fully-differentiated enterocyte-like Caco-2/TC7, and fully-differentiated mucus-secreting HT-29/MTX cells forming monolayer in culture mimicking an intestinal epithelial barrier. This study demonstrated that the toxicity of poly(isobutylcyanoacrylate) nanoparticles is highly cell line-dependent.

  14. Different effects of bile acids, ursodeoxycholic acid and deoxycholic acid, on cell growth and cell death in human colonic adenocarcinoma cells.

    PubMed

    Shiraki, Katsuya; Ito, Takeshi; Sugimoto, Kazushi; Fuke, Hiroyuki; Inoue, Tomoko; Miyashita, Kazumi; Yamanaka, Takenari; Suzuki, Masahiro; Nabeshima, Kazuo; Nakano, Takeshi; Takase, Koujiro

    2005-10-01

    Secondary bile acids have been implicated as an important etiological factor in colorectal cancer. We investigated the effects of ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) on the growth and cytotoxicity in HT29 human colonic adenocarcinoma cells. Proliferation assay, cell cycle analysis and cell death characterization by bile acids were performed. Both UDCA and DCA reduced their proliferation rate of HT29 over 48 h in a concentration- and time-dependent manner compared with control cultures. In terms of cell cycle effects, however, UDCA induced G2/M arrest, while DCA induced G1 arrest in a concentration- and time-dependent manner. As for the effects of each bile acid on cell toxicity, UDCA induced early apoptosis and DCA induced both early apoptosis and necrosis. Bile acids play an important role in regulating cell survival and cell death in colon adenocarcinoma cells.

  15. Frequency and spectrum of c-Ki-ras mutations in human sporadic colon carcinoma, carcinomas arising in ulcerative colitis, and pancreatic adenocarcinoma

    SciTech Connect

    Burmer, G.C.; Rabinovitch, P.S.; Loeb, L.A. )

    1991-06-01

    Sporadic colon carcinomas, carcinomas arising in chronic ulcerative colitis, and pancreatic adenocarcinomas have been analyzed for the presence of c-Ki-ras mutations by a combination of histological enrichment, cell sorting, polymerase chain reaction, and direct sequencing. Although 60% (37/61) of sporadic colon carcinomas contained mutations in codon 12, only 1 of 17 specimens of dysplasia or carcinoma from ulcerative colitis patients contained c-Ki-ras mutations, despite a high frequency of aneuploid tumors. In contrast, a higher percentage (16/20 = 80%) of pancreatic adenocarcinomas contained mutations in c-Ki-ras 2, despite a lower frequency of DNA aneuploidy in these neoplasms. Moreover, the spectrum of mutations differed between sporadic colon carcinoma, where the predominant mutation was a G to A transition, and pancreatic carcinomas, which predominantly contained G to C or T transversions. These results suggest that the etiology of ras mutations is different in these three human neoplasms.

  16. Loss of SOD3 (EcSOD) expression promotes an aggressive phenotype in human pancreatic ductal adenocarcinoma

    PubMed Central

    O’Leary, Brianne R.; Fath, Melissa A.; Bellizzi, Andrew M.; Hrabe, Jennifer E.; Button, Anna M.; Allen, Bryan G.; Case, Adam J.; Altekruse, Sean; Wagner, Brett A.; Buettner, Garry R.; Lynch, Charles F.; Hernandez, Brenda Y.; Cozen, Wendy; Beardsley, Robert A.; Keene, Jeffery; Henry, Michael D.; Domann, Frederick E.; Spitz, Douglas R.; Mezhir, James J.

    2015-01-01

    Purpose Pancreatic ductal adenocarcinoma (PDA) cells are known to produce excessive amounts of reactive oxygen species (ROS), particularly superoxide, which may contribute to the aggressive and refractory nature of this disease. Extracellular superoxide dismutase (EcSOD) is an antioxidant enzyme that catalyzes the dismutation of superoxide in the extracellular environment. The current work tests the hypothesis that EcSOD modulates PDA growth and invasion by modifying the redox balance in PDA. Experimental Design We evaluated the prognostic significance of EcSOD in a human tissue microarray of patients with PDA. EcSOD overexpression was performed in PDA cell lines and animal models of disease. The impact of EcSOD on PDA cell lines was evaluated with Matrigel invasion in combination with a superoxide-specific SOD mimic and a nitric oxide synthase inhibitor to determine the mechanism of action of EcSOD in PDA. Results Loss of EcSOD expression is a common event in PDA, which correlated with worse disease biology. Overexpression of EcSOD in PDA cell lines resulted in decreased invasiveness that appeared to be related to reactions of superoxide with nitric oxide. Pancreatic cancer xenografts overexpressing EcSOD also demonstrated slower growth and peritoneal metastasis. Over-expression of EcSOD or treatment with a superoxide-specific SOD mimic caused significant decreases in PDA cell invasive capacity. Conclusions These results support the hypothesis that loss of EcSOD leads to increased reactions of superoxide with nitric oxide which contributes to the invasive phenotype. These results allow for the speculation that superoxide dismutase mimetics might inhibit PDA progression in human clinical disease. PMID:25634994

  17. Clinical significance of immunogenic cell death biomarker rage and early growth response 1 in human primary gastric adenocarcinoma.

    PubMed

    Xu, X-C; Gao, H; Zhang, W-B; Abuduhadeer, X; Wang, Y-H

    2013-01-01

    The receptor for advanced glycation end products (RAGE), a pattern recognition receptor that binds multiple ligands derived from a damaged cell environment, contributes to multiple pathologies including cancer. Early growth response 1 (EGR1) is a tumor suppressor gene or a tumor promoter involved in tumorigenesis and progression of some cancers. However, there is some lack of knowledge about the expression and clinical significance of RAGE and EGR1 in human primary gastric adenocarcinoma (GAC). The present study was aimed to investigate the expression and clinical significance of RAGE and EGR1 in human GAC. One hundred and twenty cases of GAC tissues, adjacent non-cancer tissues (ANCT) and metastatic lymph node (MLN) tissues were collected. The expression of RAGE and EGR1 was assessed using immunohistochemistry (IHC) through tissue microarray procedure. The clinicopathologic characteristics of all patients were analyzed. As a result, the expression of RAGE in GAC and MLN tissues showed the positive staining mainly in the cytoplasm, with lower reactivity rate compared with the ANCT (P less than 0.001), while EGR1 expression had no significant difference between GAC, MLN tissues and ANCT (P=0.565). Moreover, the positive expression of RAGE was closely associated with the N stage of GAC patients, but did not correlate with their age, gender, tumor size, tumor sites, T stage, and metastatic lymph node (each P>0.05). In addition, Spearman Rank correlation analysis showed the positive correlation of RAGE expression with EGR1 in GAC tissues (r=0.658). Taken together, the expression of RAGE is decreased in GAC and MLN tissues, and is associated with the N stage of GAC patients, suggesting that RAGE may represent a potential therapeutic target for the treatment of GAC.

  18. Radioresistant human lung adenocarcinoma cells that survived multiple fractions of ionizing radiation are sensitive to HSP90 inhibition

    PubMed Central

    Gomez-Casal, Roberto; Epperly, Michael W.; Wang, Hong; Proia, David A.; Greenberger, Joel S.; Levina, Vera

    2015-01-01

    Despite the common usage of radiotherapy for the treatment of NSCLC, outcomes for these cancers when treated with ionizing radiation (IR) are still unsatisfactory. A better understanding of the mechanisms underlying resistance to IR is needed to design approaches to eliminate the radioresistant cells and prevent tumor recurrence and metastases. Using multiple fractions of IR we generated radioresistant cells from T2821 and T2851 human lung adenocarcinoma cells. The radioresistant phenotypes present in T2821/R and T2851/R cells include multiple changes in DNA repair genes and proteins expression, upregulation of EMT markers, alterations of cell cycle distribution, upregulation of PI3K/AKT signaling and elevated production of growth factors, cytokines, important for lung cancer progression, such as IL-6, PDGFB and SDF-1 (CXCL12). In addition to being radioresistant these cells were also found to be resistant to cisplatin. HSP90 is a molecular chaperone involved in stabilization and function of multiple client proteins implicated in NSCLC cell survival and radioresistance. We examined the effect of ganetespib, a novel HSP90 inhibitor, on T2821/R and T2851/R cell survival, migration and radioresistance. Our data indicates that ganetespib has cytotoxic activity against parental T2821 and T2851 cells and radioresistant T2821/R and T2851/R lung tumor cells. Ganetespib does not affect proliferation of normal human lung fibroblasts. Combining IR with ganetespib completely abrogates clonogenic survival of radioresistant cells. Our data show that HSP90 inhibition can potentiate the effect of radiotherapy and eliminate radioresistant and cisplatin -resistant residual cells, thus it may aid in reducing NSCLC tumor recurrence after fractionated radiotherapy. PMID:26517240

  19. Antigenotoxicity of probiotics and prebiotics on faecal water-induced DNA damage in human colon adenocarcinoma cells.

    PubMed

    Burns, Anthony J; Rowland, Ian R

    2004-07-13

    Six strains of lactic acid producing bacteria (LAB) were incubated (1 x 10(8)cfu/ml) with genotoxic faecal water from a human subject. HT29 human adenocarcinoma cells were then challenged with the resultant samples and DNA damage measured using the single cell gel electrophoresis (comet) assay. The LAB strains investigated were Bifidobacterium sp. 420, Bifidobacterium Bb12, Lactobacillus plantarum, Streptococcus thermophilus, Lactobacillus bulgaricus and Enterococcus faecium. DNA damage was significantly decreased by all bacteria used with the exception of Strep. thermophilus. Bif. Bb12 and Lact. plantarum showed the greatest protective effect against DNA damage. Incubation of faecal water with different concentrations of Bif. Bb12 and Lact. plantarum revealed that the decrease in genotoxicity was related to cell density. Non-viable (heat treated) probiotic cells had no effect on faecal water genotoxicity. In a second study, HT29 cells were cultured in the presence of supernatants of incubations of probiotics with various carbohydrates including known prebiotics; the HT29 cells were then exposed to faecal water. Overall, incubations involving Lact. plantarum with the fructooligosaccharide (FOS)-based prebiotics Inulin, Raftiline, Raftilose and Actilight were the most effective in increasing the cellular resistance to faecal water genotoxicity, whereas fermentations with Elixor (a galactooligosaccharide) and Fibersol (a maltodextrin) were less effective. Substantial reductions in faecal water-induced DNA damage were also seen with supernatants from incubation of prebiotics with Bif. Bb12. The supernatant of fermentations involving Ent. faecium and Bif. sp. 420 generally had less potent effects on genotoxicity although some reductions with Raftiline and Elixor fermentations were apparent.

  20. Creatine and cyclocreatine treatment of human colon adenocarcinoma xenografts: 31P and 1H magnetic resonance spectroscopic studies

    PubMed Central

    Kristensen, C A; Askenasy, N; Jain, R K; Koretsky, A P

    1999-01-01

    Creatine (Cr) and cyclocreatine (cyCr) have been shown to inhibit the growth of a variety of human and murine tumours. The purpose of this study was to evaluate the anti-tumour effect of these molecules in relation to drug accumulation, energy metabolism, tumour water accumulation and toxicity. Nude mice carrying a human colon adenocarcinoma (LS174T) with a creatine kinase (CK) activity of 2.12 units mg−1 protein were fed Cr (2.5% or 5%) or cyCr (0.025%, 0.1% or 0.5%) for 2 weeks and compared with controls fed standard diet. Cr concentrations of 2.5% and 5% significantly inhibited tumour growth, as did 0.1% and 0.5% cyCr. In vivo 31P magnetic resonance spectroscopy (MRS) after 2 weeks of treatment showed an increase in [phosphocreatine (PCr)+phosphocyclocreatine (PcyCr)]/nucleoside triphosphate (NTP) with increasing concentrations of dietary Cr and cyCr, without changes in absolute NTP contents. The antiproliferative effect of the substrates of CK was not related to energy deficiency but was associated with acidosis. Intratumoral substrate concentrations (measured by 1H-MRS) of 4.8 μmol g−1 wet weight Cr (mice fed 2.5% Cr) and 6.2 μmol g−1 cyCr (mice fed 0.1% cyCr) induced a similar decrease in growth rate, indicating that both substrates were equally potent in tumour growth inhibition. The best correlant of growth inhibition was the total Cr or (cyCr+Cr) concentrations in the tissue. In vivo, these agents did not induce excessive water accumulation and had no systemic effects on the mice (weight loss, hypoglycaemia) that may have caused growth inhibition. © 1999 Cancer Research Campaign PMID:9888469

  1. Proliferative activity of a blend of Echinacea angustifolia and Echinacea purpurea root extracts in human vein epithelial, HeLa, and QBC-939 cell lines, but not in Beas-2b cell lines

    PubMed Central

    Cichello, Simon Angelo; Yao, Qian; He, Xiao Qiong

    2015-01-01

    Echinacea is used for its immunostimulating properties and may have a role in modulating adverse immune effects of chemotherapy (i.e., use of 5-fluorouracil (5-FU); fluorouracil and its immunosuppressive effect). Patients may seek herbal remedies such as Echinacea (Echinacea angustifolia and Echinacea purpurea) for immune stimulation. Echinacea extracts have been prescribed to supplement cancer chemotherapy for their immune-supportive effects; however, the extracts may also influence tumourgenesis. Our study aimed to determine the proliferative effect of the ethanolic blend of E. angustifolia and E. purpurea on various cancer cervical and bile duct cell lines, including HELA and QBC-939. Various cancer cells (HeLa and QBC-939) and human vein epithelial cells (HUVEC) were treated with the Echinacea blend sample that was evaporated and reconstituted in Dimethyl sulfoxide (DMSO). As the extract concentration of Echinacea was increased from 12.5 μg/mL to 25 μg/mL, there was an increase in cell inhibition up to 100%, which then reduced to 90% over the next three concentrations, 50 μg/mL, 100 μg/mL, and 200 μg/mL, in HeLa cells; further inhibitory effects were observed in QBC-939 cells, from 9% inhibition at a concentration of 25 μg/mL up to 37.96% inhibition at 100 μg/mL concentration. Moreover, this is the first study to report the growth-promoting effects of this Echinacea blend in HUVEC, up to 800% at a dose concentration of 200 μg/mL. Previous studies have suggested that chicoric acid of Echinacea spp. is responsible for the increased cell growth. The results of this study show that the hydroethanolic extract of Echinacea herbal medicine promotes the growth of HeLa cells and QBC-939 cancer cell proliferation, and may interfere with cancer treatment (i.e., chemotherapy drugs such as 5-fluorouracil and Cisplatin (DDP)). However, the Echinacea blend shows potential in neurodegenerative diseases with growth-promoting effects in HUVEC. Further animal

  2. Lipase member H is a novel secreted protein selectively upregulated in human lung adenocarcinomas and bronchioloalveolar carcinomas

    SciTech Connect

    Seki, Yasuhiro; Yoshida, Yukihiro; Ishimine, Hisako; Shinozaki-Ushiku, Aya; Ito, Yoshimasa; Sumitomo, Kenya; Nakajima, Jun; Fukayama, Masashi; Michiue, Tatsuo; Asashima, Makoto; Kurisaki, Akira

    2014-01-24

    Highlights: • Most of the adenocarcinomas and bronchioloalveolar carcinomas were LIPH-positive. • LIPH is necessary for the proliferation of lung cancer cells in vitro. • A high level of LIPH in serum is correlated with better survival in early phase lung-cancer patients after surgery. - Abstract: Lung cancer is one of the most frequent causes of cancer-related death worldwide. However, molecular markers for lung cancer have not been well established. To identify novel genes related to lung cancer development, we surveyed publicly available DNA microarray data on lung cancer tissues. We identified lipase member H (LIPH, also known as mPA-PLA1) as one of the significantly upregulated genes in lung adenocarcinoma. LIPH was expressed in several adenocarcinoma cell lines when they were analyzed by quantitative real-time polymerase chain reaction (qPCR), western blotting, and sandwich enzyme-linked immunosorbent assay (ELISA). Immunohistochemical analysis detected LIPH expression in most of the adenocarcinomas and bronchioloalveolar carcinomas tissue sections obtained from lung cancer patients. LIPH expression was also observed less frequently in the squamous lung cancer tissue samples. Furthermore, LIPH protein was upregulated in the serum of early- and late-phase lung cancer patients when they were analyzed by ELISA. Interestingly, high serum level of LIPH was correlated with better survival in early phase lung cancer patients after surgery. Thus, LIPH may be a novel molecular biomarker for lung cancer, especially for adenocarcinoma and bronchioloalveolar carcinoma.

  3. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels.

    PubMed

    Park, Woo Hyun

    2017-02-01

    Gallic acid (GA; 3,4,5-triphydroxyl-benzoic acid) is widely dispersed in various plants, fruits and foods and it shows various biological properties including anticancer effects. This study investigated the effects of GA on HeLa cervical cancer cells in relation to cell death, reactive oxygen species (ROS) and glutathione (GSH). GA dose-dependently inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC) at 24 or 72 h. The susceptibility of HeLa cells to GA was higher than that of HUVEC. GA induced apoptosis in HeLa cells, which was accompanied by the loss of mitochondrial membrane potential (MMP; ∆ψm). GA increased ROS levels including O2•- in HeLa cells at 24 h and it also induced GSH depletion. N-acetyl cysteine (NAC) increased the growth inhibition of GA-treated HeLa cells and enhanced the death of these cells. NAC differently influenced ROS levels in GA-treated HeLa cells and significantly increased GSH depletion in these cells. L-buthionine sulfoximine (BSO) increased MMP (∆ψm) loss, ROS levels and GSH depletion in GA-treated HeLa cells. In conclusion, GA significantly inhibited the growth of HeLa cells. GA-induced HeLa cell death was tightly related to GSH depletion rather than ROS level changes.

  4. Lead exposure and heat shock inhibit cell proliferation in human HeLa and K562 cells by inducing expression and activity of the heme-regulated eIF-2alpha kinase.

    PubMed

    Sarkar, Angshuman; Chattopadhyay, Samit; Kaul, Ruchika; Pal, Jayanta K

    2002-12-01

    We have used human cell lines, namely, K562 and HeLa cells as model systems in understanding the mechanism of lead toxicity and heat shock, that may be mediated by the heme-regulated eIF-2alpha kinase which is also called the heme-regulated inhibitor (HRI). RT-PCR analysis using HRI-specific primers indicated a two- to three-fold increase in HRI expression in K562 and HeLa cells exposed to lead acetate and heat shock, respectively. Further, in vitro eIF-2alpha kinase assay indicated a two- to three-fold increase in HRI kinase activity during lead toxicity in K562 cells. This increase in HRI expression and its activity was accompanied by a significant decrease in cell proliferation and cell viability. This is therefore, the first report indicating that both heavy metal exposure and heat shock cause inhibition of protein synthesis not by activation of HRI alone but by its over-expression as well as activation. Our data indicate further that lead-induced inhibition of cell proliferation may be caused due to inhibition of protein synthesis resulted due to induced expression and activity of HRI.

  5. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Kathirvel, Poonkodi; Ravi, Subban

    2012-01-01

    This study examines the chemical composition and in vitro anticancer activity of the essential oil from Ocimum basilicum Linn. (Lamiaceae), cultivated in the Western Ghats of South India. The chemical compositions of basil fresh leaves were identified by GC-MS: 11 components were identified. The major constituents were found to be methyl cinnamate (70.1%), linalool (17.5%), β-elemene (2.6%) and camphor (1.52%). The results revealed that this plant may belong to the methyl cinnamate and linalool chemotype. A methyl thiazol tetrazolium assay was used for in vitro cytotoxicity screening against the human cervical cancer cell line (HeLa), human laryngeal epithelial carcinoma cell line (HEp-2) and NIH 3T3 mouse embryonic fibroblasts. The IC(50) values obtained were 90.5 and 96.3 µg mL(-1), respectively, and the results revealed that basil oil has potent cytotoxicity.

  6. Therapeutic efficacy evaluation of 111in-VNB-liposome on human colorectal adenocarcinoma HT-29/ luc mouse xenografts

    NASA Astrophysics Data System (ADS)

    Lee, Wan-Chi; Hwang, Jeng-Jong; Tseng, Yun-Long; Wang, Hsin-Ell; Chang, Ya-Fang; Lu, Yi-Ching; Ting, Gann; Whang-Peng, Jaqueline; Wang, Shyh-Jen

    2006-12-01

    The purpose of this study is to evaluate the therapeutic efficacy of the liposome encaged with vinorelbine (VNB) and 111In-oxine on human colorectal adenocarcinoma (HT-29) using HT-29/ luc mouse xenografts. HT-29 cells stably transfected with plasmid vectors containing luciferase gene ( luc) were transplanted subcutaneously into the male NOD/SCID mice. Biodistribution of the drug was performed when tumor size reached 500-600 mm 3. The uptakes of 111In-VNB-liposome in tumor and normal tissues/organs at various time points postinjection were assayed. Multimodalities, including gamma scintigraphy, bioluminescence imaging (BLI) and whole-body autoradiography (WBAR), were applied for evaluating the therapeutic efficacy when tumor size was about 100 mm 3. The tumor/blood ratios of 111In-VNB-liposome were 0.044, 0.058, 2.690, 20.628 and 24.327, respectively, at 1, 4, 24, 48 and 72 h postinjection. Gamma scinitigraphy showed that the tumor/muscle ratios were 2.04, 2.25 and 4.39, respectively, at 0, 5 and 10 mg/kg VNB. BLI showed that significant tumor control was achieved in the group of 10 mg/kg VNB ( 111In-VNB-liposome). WBAR also confirmed this result. In this study, we have demonstrated a non-invasive imaging technique with a luciferase reporter gene and BLI for evaluation of tumor treatment efficacy in vivo. The SCID mice bearing HT-29/ luc xenografts treated with 111In-VNB-liposome were shown with tumor reduction by this technique.

  7. ASSOCIATION BETWEEN HUMAN PAPILLOMAVIRUS AND COLORECTAL ADENOCARCINOMA AND ITS INFLUENCE ON TUMOR STAGING AND DEGREE OF CELL DIFFERENTIATION

    PubMed Central

    PICANÇO-JUNIOR, Olavo Magalhães; OLIVEIRA, Andre Luiz Torres; FREIRE, Lucia Thereza Mascarenhas; BRITO, Rosangela Baia; VILLA, Luisa Lina; MATOS, Délcio

    2014-01-01

    Background Colorectal cancer is one of the most common types of neoplasia among the worldwide adult population. Among neoplasms of the gastrointestinal tract, it is ranked second in relation to prevalence and mortality, but its etiology is only known in around 5% of the cases. It is believed that 15% of malignant diseases are related to viral oncogenesis. Aim To correlate the presence of HPV with the staging and degree of cell differentiation among patients with colorectal adenocarcinoma. Methods A retrospective case-control study was conducted on 144 patients divided between a test group of 79 cases of colorectal cancer and a control group to analyze 144 patients aged 25 to 85 years (mean, 57.85 years; standard deviation, 15.27 years and median, 58 years). Eighty-six patients (59.7%) were male. For both groups, tissue samples from paraffin blocks were subjected to DNA extraction followed by the polymerase chain reaction using generic and specific primers for HPV 16 and 18. Dot blot hybridization was also performed with the aim of identifying HPV DNA. Results The groups were shown to be homogenous regarding sex, age and site of HPV findings in the samples analyzed. Out of the 41 patients with HPV, 36 (45.6%) were in the cases and five (7.7%) were in the control group (p<0.001). All the HPV cases observed comprised HPV 16, and HPV 18 was not shown in any of the cases studied. There were no significant differences in comparisons of sex, age and site regarding the presence of HPV in either of the groups. It was not observe any significant difference in relation to staging or degree of cell differentiation among the patients with colorectal cancer. Conclusion Human papillomavirus type 16 is present in individuals with colorectal carcinoma. However, its presence was unrelated to staging or degree of differentiation. PMID:25184765

  8. Synergistic effects of tea polyphenols and ascorbic acid on human lung adenocarcinoma SPC-A-1 cells.

    PubMed

    Li, Wei; Wu, Jian-xiang; Tu, You-ying

    2010-06-01

    Tea polyphenols have been shown to have anticancer activity in many studies. In the present study, we investigated effects of theaflavin-3-3'-digallate (TF(3)), one of the major theaflavin monomers in black tea, in combination with ascorbic acid (AA), a reducing agent, and (-)-epigallocatechin-3-gallate (EGCG), the main polyphenol presented in green tea, in combination with AA on cellular viability and cell cycles of the human lung adenocarcinoma SPC-A-1 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay showed that the 50% inhibition concentrations (IC(50)) of TF(3), EGCG, and AA on SPC-A-1 cells were 4.78, 4.90, and 30.62 micromol/L, respectively. The inhibitory rates of TF(3) combined with AA (TF(3)+AA) and EGCG combined with AA (EGCG+AA) at a molar ratio of 1:6 on SPC-A-1 cells were 54.4% and 45.5%, respectively. Flow cytometry analysis showed that TF(3)+AA and EGCG+AA obviously increased the cell population in the G(0)/G(1) phase of the SPC-A-1 cell cycle from 53.9% to 62.8% and 60.0%, respectively. TF(3)-treated cells exhibited 65.3% of the G(0)/G(1) phase at the concentration of its IC(50). Therefore, TF(3)+AA and EGCG+AA had synergistic inhibition effects on the proliferation of SPC-A-1 cells, and significantly held SPC-A-1 cells in G(0)/G(1) phase. The results suggest that the combination of TF(3) with AA or EGCG with AA enhances their anticancer activity.

  9. Trans- and cis-2-phenylindole platinum(II) complexes as cytotoxic agents against human breast adenocarcinoma cell lines

    NASA Astrophysics Data System (ADS)

    Tomé, Maria; López, Concepción; González, Asensio; Ozay, Bahadir; Quirante, Josefina; Font-Bardía, Mercè; Calvet, Teresa; Calvis, Carme; Messeguer, Ramon; Baldomá, Laura; Badía, Josefa

    2013-09-01

    The synthesis and characterization of the new 2-phenylindole derivative: C8H3N-2-C6H5-3NOMe-5OMe (3c) and the trans- and cis-isomers of [Pt(3c)Cl2(DMSO)] complexes (4c and 5c, respectively) are described. The crystal structures of 4c·CH2Cl2 and 5c confirm: (a) the existence of a Pt-Nindole bond, (b) the relative arrangement of the Cl- ligands [trans- (in 4c) or cis- (in 5c)] and (c) the anti-(E) configuration of the oxime. The cytotoxic assessment of C8H3N-2-(C6H4-4‧R1)-3NOMe-5R2 [with R1 = R2 = H (3a); R1 = Cl, R2 = H (3b) and R1 = H, R2 = OMe (3c)] and the geometrical isomers of [Pt(L)Cl2(DMSO)] with L = 3a-3c [trans- (4a-4c) and cis- (5a-5c), respectively] against human breast adenocarcinoma cell lines (MDA-MB231 and MCF-7) is also reported and reveals that all the platinum(II) complexes (except 4a) are more cytotoxic than cisplatin in front of the MCF7 cell line. Electrophoretic DNA migration studies of the synthesized compounds in the absence and in the presence of topoisomerase-I have been performed, in order to get further insights into their mechanism of action.

  10. Benzo(a)pyrene induces p73 mRNA expression and necrosis in human lung adenocarcinoma H1299 cells.

    PubMed

    Jiang, Ying; Rao, Kaimin; Yang, Guangtao; Chen, Xi; Wang, Qian; Liu, Ailin; Zheng, Hongyan; Yuan, Jing

    2012-03-01

    p53 can mediate DNA damage-induced apoptosis in various cell lines treated with Benzo(a)pyrene (BaP). However, the potential role of p73, one of the p53 family members, in BaP-induced apoptotic cell death remains to be determined. In this study, normal fetal lung fibroblasts (MRC-5) and human lung adenocarcinoma cells (H1299, p53-null) were treated with BaP at concentrations of 8, 16, 32, 64, and 128 μM for 4 and 12 h. The oxidative stress status, extent of DNA damage, expression of p53, p73, mdm2, bcl-2, and bax at the mRNA and protein levels, and the percentages of apoptosis and/or necrosis were assessed. In the two BaP-treated cell lines, we observed increased malondialdehyde (MDA) formation and decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity at 4 h after the treatment; furthermore, at the time points of 4 and 12 h, we observed extremely high levels of DNA damage. In addition, at 4 h after the treatment, BaP had induced necrosis in MRC-5 and H1299 cells, but it had inhibited apoptosis in MRC-5 cells (P < 0.01 for all). Furthermore, in BaP-treated H1299 cells, only the p73 mRNA level was up-regulated. The results suggested that BaP-induced DNA damage could trigger a shift from apoptotic cell death toward necrotic cell death and that necrotic cell death is independent of p53 and p73 in these cell lines. Future studies are needed to investigate the time course of changes in the type of BaP-induced cell death in more cell lines.

  11. [A case of non-acquired immunodeficiency syndrome-defining lung adenocarcinoma in a multidrug-resistant human immunodeficiency virus-positive patient].

    PubMed

    Mori, Naoyoshi; Maeda, Hikaru; Fujiwara, Kentarou; Taniguchi, Haruki

    2013-10-01

    We report a case of non-acquired immunodeficiency syndrome-defining lung adenocarcinoma in a multidrug-resistant human immunodeficiency virus (HIV)-positive patient. The patient was a 47-year-old Japanese woman who received salvage combination anti-retroviral therapy with darunavir plus ritonavir plus raltegravir plus tenofovir/emtricitabine in May 2009. She was diagnosed with lung adenocarcinoma (T3N3M1, stage IV) in November 2010 and was not found to possess any activating mutations in the epidermal growth factor receptor gene. Therefore, 6 courses of carboplatin plus pemetrexed and 3 courses of gemcitabine followed by erlotinib were administrated, and therapy was changed to home medical care. The only drug-related adverse event was grade 1 neutropenia, and drug interaction between the simultaneously administered anti-retroviral and chemotherapeutic agents was not confirmed. The patient battled lung adenocarcinoma for 1 year after the diagnosis and died of cancer progression in October 2011. Her performance status was stable and the CD4 (+) lymphocyte count and HIV load were well controlled throughout the course of treatment. In conclusion, the agents used for this patient show high tolerability and can be used as an effective treatment strategy for lung cancer occurring in HIV-positive patients.

  12. Inhibitory and Cytotoxic Activities of Chrysin on Human Breast Adenocarcinoma Cells by Induction of Apoptosis

    PubMed Central

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Hasanzadeh, Malihe; Jabbari, Farahzad; Farkhondeh, Tahereh; Samini, Mohammad

    2016-01-01

    Objectives: Chrysin, an active natural bioflavonoid found in honey and many plant extracts, was first known for its antioxidant and anti-inflammatory effects. The fact that antioxidants have several inhibitory effects against different diseases, such as cancer, led to search for food rich in antioxidants. In this study, we investigated the antiproliferative and apoptotic effects of chrysin on the cultured human breast cancer cells (MCF-7). Materials and Methods: Cells were cultured in Roswell Park Memorial Institute medium and treated with different chrysin concentrations for three consecutive days. Cell viability was quantitated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The percentage of apoptotic cells was determined by flow cytometry using Annexin V-fluorescein isothiocyanate. Results: The MTT assay showed that chrysin had an antiproliferative effect on MCF-7 cells in a dose- and time-dependent manner. The 50% cell growth inhibition values for chrysin against MCF-7 cells were 19.5 and 9.2 μM after 48 and 72 h, respectively. Chrysin induced apoptosis in MCF-7 cells as determined by flow cytometry. Chrysin inhibits the growth of the breast cancer cells by inducing cancer cell apoptosis which may, in part, explain its anticancer activity. Conclusion: This study shows that chrysin could also be considered as a promising chemotherapeutic agent and anticancer activity in treatment of the breast cancer cells in future. SUMMARY Chrysin had an antiproliferative effect on human breast cancer cells (MCF-7) cells in a dose- and time-dependent mannerChrysin induced apoptosis in MCF-7 cells, as determined by flow cytometryChrysin inhibits the growth of the breast cancer cells by inducing cancer cell apoptosisChrysin may have anticancer activity. Abbreviations used: Human breast cancer cells (MCF-7), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), phosphate-buffered saline (PBS), normal fibroblast mouse (L929). PMID

  13. Extracts of Opuntia humifusa Fruits Inhibit the Growth of AGS Human Gastric Adenocarcinoma Cells

    PubMed Central

    Hahm, Sahng-Wook; Park, Jieun; Park, Kun-Young; Son, Yong-Suk; Han, Hyungchul

    2016-01-01

    Opuntia humifusa (OHF) has been used as a nutraceutical source for the prevention of chronic diseases. In the present study, the inhibitory effects of ethyl acetate extracts of OHF on the proliferation of AGS human gastric cancer cells and the mode of action were investigated. To elucidate the antiproliferative mechanisms of OHF in cancer cells, the expression of genes related to apoptosis and cell cycle arrest were determined with real-time PCR and western blot. The cytotoxic effect of OHF on AGS cells was observed in a dose-dependent manner. Exposure to OHF (100 μg/mL) significantly induced (P<0.05) the G1 phase cell cycle arrest. Additionally, the apoptotic cell population was greater (P<0.05) in OHF (200 μg/mL) treated AGS cells when compared to the control. The expression of genes associated with cell cycle progression (Cdk4, Cdk2, and cyclin E) was significantly downregulated (P<0.05) by the OHF treatment. Moreover, the expression of Bax and caspase-3 in OHF treated cells was higher (P<0.05) than in the control. These findings suggest that OHF induces the G1 phase cell cycle arrest and activation of mitochondria-mediated apoptosis pathway in AGS human gastric cancer cells. PMID:27069903

  14. Bax translocation into mitochondria during dihydroartemisinin(DHA)-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Lu, Ying-ying; Chen, Tong-sheng; Qu, Jun-Le

    2009-02-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, isolated from the traditional Chinese herb Artemisia annua, has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathways. However, the molecular mechanisms are not well understood. This study was investigated in human lung adenocarconoma ASTC-a-1 cell line and aimed to determine whether the apoptotic process was mediated by Bax activation and translocation during DHA-induced apoptosis. In this study, DHA induced a time-dependent apoptotic cell death, which was assayed by Cell Counting Kit (CCK-8) and Hoechst 33258 staining. Detection of Bax aggregation and translocation to mitochondria was observed in living cells which were co-transfected with GFP-Bax and Dsred-mito plasmid using confocal fluorescence microscope technique. Overall, these results demonstrated that Bax activation and translocation to mitochondria occurred during DHA-induced apoptosis.

  15. Response of a human colon adenocarcinoma (DLD-1) to x irradiation and mitomycin C in vivo

    SciTech Connect

    Spremulli, E.N.; Leith, J.T.; Bliven, S.F.; Campbell, D.E.; Dexter, D.L.; Glicksman, A.S.; Calabresi, P.

    1983-08-01

    Mice hosting a heterogeneous human colon xenograft tumor produced by subcutaneous injection of the DLD-1 tumor cell line were treated either with x irradiation alone, with mitomycin C alone (4 mg/kg), or with x irradiation given two hours after intraperitoneal injection of mitomycin C (4 mg/kg). Radiation alone produced a dose dependent delay in the time needed for tumors to regrow to twice their size at the time of irradiation, and in the mice receiving mitomycin C plus x irradiation, an additional growth delay equivalent to that produced by 3 to 3.5 Gy of x rays was seen at all x ray dose levels. As the DLD-1 tumor xenografts do not appear to possess a significant hypoxic fraction, we conclude that the two agents are acting in a simple additive cytotoxic manner by the killing of oxic tumor cells.

  16. Human Endometrial Adenocarcinoma Transplanted into Nude Mice: Growth Regulation by Estradiol

    NASA Astrophysics Data System (ADS)

    Satyaswaroop, P. G.; Zaino, R. J.; Mortel, R.

    1983-01-01

    A model for studying the growth of primary tumors of human endometrium and its regulation by 17β -estradiol has been developed in which ovariectomized nude mice are used as recipients. The receptors for sex steroids are maintained during serial transplantation of the tumor in this system. Although the rate of growth of receptor-negative endometrial tumors transplanted into ovariectomized nude mice is unaffected by the sustained presence or absence of estradiol, the growth of receptor-positive tumors is significantly increased by estradiol. Receptor-positive tumors treated with estradiol produced elevated concentrations of progesterone receptor. That the progesterone receptor is functional in this tumor is evident from the induction of estradiol 17β -dehydrogenase activity upon progestin administration. These findings are consistent with receptor-mediated regulation of growth of endometrial carcinoma.

  17. Gastrointestinal hormone mRNA expression in human colonic adenocarcinomas, hepatic metastases and cell lines

    PubMed Central

    Monges, G; Biagini, P; Cantaloube, J F; De Micco, P; Parriaux, D; Seitz, J F; Delpero, J R; Hassoun, J

    1996-01-01

    Aims—(1) To investigate the expression of the four main hormones of the digestive tract by performing reverse transcription polymerase chain reaction (RT-PCR) on a series of samples, comprising tumoral and healthy colonic tissues, hepatic metastases and colonic cell line samples; and (2) to study the patterns of labelling obtained with serological and morphological markers. Methods—After extraction and reverse transcription, gastrin, somatostatin, cholecystokinin (CCK) and transforming growth factor α (TGFα) mRNAs were detected by PCR and nested PCR using specific primers. The corresponding proteins were detected by immunohistochemistry. Results—The cell lines expressed all four mRNAs. Gastrin mRNA was present in most tumoral and metastatic samples, while the somatostatin transcript was detected in all samples and was frequently overexpressed in the normal colon. TGFα mRNA was expressed systematically in tumours of the right and transverse colon, but not in those located in the left colon; the expression of CCK mRNA was systematically absent in the left colon. Conclusions—The data presented here shed some light on the transcriptional events involved in the production of the various hormones present in the gastrointestinal tract, in both healthy and tumoral tissues. The various mRNAs expressed in cell lines are therefore not systematically expressed in the human pathology. Images PMID:16696065

  18. Cross-talk between E. coli strains and a human colorectal adenocarcinoma-derived cell line

    PubMed Central

    He, Xuan; Mishchuk, Darya O.; Shah, Jigna; Weimer, Bart C.; Slupsky, Carolyn M.

    2013-01-01

    Although there is great interest in the specific mechanisms of how gut microbiota modulate the biological processes of the human host, the extent of host-microbe interactions and the bacteria-specific metabolic activities for survival in the co-evolved gastrointestinal environment remain unclear. Here, we demonstrate a comprehensive comparison of the host epithelial response induced by either a pathogenic or commensal strain of Escherichia coli using a multi-omics approach. We show that Caco-2 cells incubated with E. coli display an activation of defense response genes associated with oxidative stress. Indeed, in the bacteria co-culture system, the host cells experience an altered environment compared with the germ-free system that includes reduced pH, depletion of major energy substrates, and accumulation of fermentation by-products. Measurement of intracellular Caco-2 cell metabolites revealed a significantly increased lactate concentration, as well as changes in TCA cycle intermediates. Our results will lead to a deeper understanding of acute microbial-host interactions. PMID:24301462

  19. Dual Anti-Metastatic and Anti-Proliferative Activity Assessment of Two Probiotics on HeLa and HT-29 Cell Lines

    PubMed Central

    Nouri, Zahra; Karami, Fatemeh; Neyazi, Nadia; Modarressi, Mohammad Hossein; Karimi, Roya; Khorramizadeh, Mohammad Reza; Taheri, Behrooz; Motevaseli, Elahe

    2016-01-01

    Objective Lactobacilli are a group of probiotics with beneficial effects on prevention of cancer. However, there is scant data in relation with the impacts of probiotics in late-stage cancer progration, especially metastasis. The present original work was aimed to evaluate the anti-metastatic and anti-proliferative activity of lactobacillus rhamnosus supernatant (LRS) and lactobacillus crispatus supernatant (LCS) on the human cervical and colon adenocarcinoma cell lines (HeLa and HT-29, respectively). Materials and Methods In this experimental study, the anti-proliferative activities of LRS and LCS were determined through MTT assay. MRC-5 was used as a normal cell line. Expression analysis of CASP3, MMP2, MMP9, TIMP1 and TIMP2 genes was performed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), following the cell synchronization. Results Supernatants of these two lactobacilli had cytotoxic effect on HeLa, however LRS treatment was only effective on HT-29 cell line. In addition, LRS had no side-effect on normal cells. It was shown that CASP3 gene expression has been reduced after treatment with supernatants of two studied lactobacilli. According to our study, LRS and LCS are efficacious in the prevention of metastasis potency in HeLa cells with decreased expression of MMP2, MMP9 and increased expression of their inhibitors. In the case of HT-29 cells, only LRS showed this effect. Conclusion Herein, we have demonstrated two probiotics which have anti-metastatic effects on malignant cells and they can be administrated to postpone late-stage of cancer disease. LRS and LCS are effective on HeLa cell lines while only the effect of LRS is significant on HT-29, through cytotoxic and anti-metastatic mechanisms. Further assessments are required to evaluate our results on the other cancer cell lines, in advance to use these probiotics in other extensive trial studies. PMID:27551673

  20. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells.

    PubMed

    Ghosh, Somnath; Ghosh, Anu; Krishna, Malini

    2015-12-01

    The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types.

  1. Co-expression of autophagic markers following photodynamic therapy in SW620 human colon adenocarcinoma cells

    PubMed Central

    Ziółkowska, Barbara; Woźniak, Marta; Ziółkowski, Piotr

    2016-01-01

    Photodynamic therapy (PDT) is a minimally invasive cancer treatment. It involves the combination of a photosensitizer and light of a specific wavelength to generate singlet oxygen and other reactive oxygen species that lead to tumor cell death. Autophagy is one of the pathways that tumor cells undergo during photodamage and it is common in photodynamic therapy. The aim of this study was to examine the effect of in vitro PDT on the expression of autophagy-related proteins, autophagy related 7 (Atg7), light chain 3 (LC3) and Beclin-1. Human SW620 colon carcinoma cells were treated with 5-aminolevulinic acid (ALA)-based PDT at a dose of 3 mM. The irradiation was performed using 4.5 J/cm2 total light and a fluence rate of 60 mW/cm2. Autophagy was evaluated by immunocytochemistry using specific antibodies to Atg7, Beclin-1 and LC3. The evaluation was repeated at several time points (0, 4, 8 and 24 h) following irradiation. The induction of autophagy was observed directly following the 5-ALA-mediated PDT procedure with the strongest expression of autophagy-related proteins at 4 and 8 h after irradiation as demonstrated using immunocytochemistry. It was characterized by significantly increased expression of Beclin-1, Atg7 and LC3. To the best of our knowledge this is the first study to analyze Beclin-1, Atg7 and LC3 expression in a PDT-related experiment. This study enhances the understanding of the role of autophagy in PDT, which may contribute to better and more effective tumor responses to this therapy. PMID:27485939

  2. The genomic and transcriptomic landscape of a HeLa cell line.

    PubMed

    Landry, Jonathan J M; Pyl, Paul Theodor; Rausch, Tobias; Zichner, Thomas; Tekkedil, Manu M; Stütz, Adrian M; Jauch, Anna; Aiyar, Raeka S; Pau, Gregoire; Delhomme, Nicolas; Gagneur, Julien; Korbel, Jan O; Huber, Wolfgang; Steinmetz, Lars M

    2013-08-07

    HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology.

  3. Comparison of the Effects of Carbon Ion and Photon Irradiation on the Angiogenic Response in Human Lung Adenocarcinoma Cells

    SciTech Connect

    Kamlah, Florentine; Haenze, Joerg; Arenz, Andrea; Seay, Ulrike; Hasan, Diya; Gottschald, Oana R.; Seeger, Werner; Rose, Frank

    2011-08-01

    Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/{mu}m; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug, allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 {+-} 1.55; X-ray, 36.44 {+-} 3.44; carbon ion, 16.33 {+-} 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 {+-} 3.44; X-ray and ISCK03, 4.33 {+-} 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells, a

  4. The in vitro photodynamic effect of laser activated gallium, indium and iron phthalocyanine chlorides on human lung adenocarcinoma cells.

    PubMed

    Maduray, K; Odhav, B

    2013-11-05

    Metal-based phthalocyanines currently are utilized as a colorant for industrial applications but their unique properties also make them prospective photosensitizers. Photosensitizers are non-toxic drugs, which are commonly used in photodynamic therapy (PDT), for the treatment of various cancers. PDT is based on the principle that, exposure to light shortly after photosensitizer administration predominately leads to the production of reactive oxygen species for the eradication of cancerous cells and tissue. This in vitro study investigated the photodynamic effect of gallium (GaPcCl), indium (InPcCl) and iron (FePcCl) phthalocyanine chlorides on human lung adenocarcinoma cells (A549). Experimentally, 2 × 10(4)cells/ml were seeded in 24-well tissue culture plates and allowed to attach overnight, after which cells were treated with different concentrations of GaPcCl, InPcCl and FePcCl ranging from 2 μg/ml to 100 μg/ml. After 2h, cells were irradiated with constant light doses of 2.5 J/cm(2), 4.5 J/cm(2) and 8.5 J/cm(2) delivered from a diode laser (λ = 661 nm). Post-irradiated cells were incubated for 24h before cell viability was measured using the MTT Assay. At 24h after PDT, irradiation with a light dose of 2.5 J/cm(2) for each photosensitizing concentration of GaPcCl, InPcCl and FePcCl produced a significant decrease in cell viability, but when the treatment light dose was further increased to 4.5 J/cm(2) and 8.5 J/cm(2) the cell survival was less than 40%. Results also showed that photoactivated FePcCl decreased cell survival of A549 cells to 0% with photosensitizing concentrations of 40 μg/ml and treatment light dose of 2.5 J/cm(2). A 20 μg/ml photosensitizing concentration of FePcCl in combination with an increased treatment light dose of either 4.5 J/cm(2) or 8.5 J/cm(2) also resulted in 0% cell survival. This PDT study concludes that low concentrations on GaPcCl, InPcCl and FePcCl activated with low level light doses can be used for the effective in

  5. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells.

    PubMed

    Dasiram, Jade Dhananjay; Ganesan, Ramamoorthi; Kannan, Janani; Kotteeswaran, Venkatesan; Sivalingam, Nageswaran

    2017-02-01

    Curcumin, a natural polyphenolic compound and it is isolated from the rhizome of Curcuma longa, have been reported to possess anticancer effect against stage I and II colon cancer. However, the effect of curcumin on colon cancer at Dukes' type C metastatic stage III remains still unclear. In the present study, we have investigated the anticancer effects of curcumin on p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. The cellular viability and proliferation were assessed by trypan blue exclusion assay and MTT assay, respectively. The cytotoxicity effect was examined by lactate dehydrogenase (LDH) cytotoxicity assay. Apoptosis was analyzed by DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis. Cell cycle distribution was performed by flow cytometry analysis. Here we have observed that curcumin treatment significantly inhibited the cellular viability and proliferation potential of p53 mutated COLO 320DM cells in a dose- and time-dependent manner. In addition, curcumin treatment showed no cytotoxic effects to the COLO 320DM cells. DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis revealed that curcumin treatment induced apoptosis in COLO 320DM cells. Furthermore, curcumin caused cell cycle arrest at the G1 phase, decreased the cell population in the S phase and induced apoptosis in COLO 320DM colon adenocarcinoma cells. Together, these data suggest that curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage.

  6. Zac1, an Sp1-like protein, regulates human p21{sup WAF1/Cip1} gene expression in HeLa cells

    SciTech Connect

    Liu, Pei-Yao; Hsieh, Tsai-Yuan; Liu, Shu-Ting; Chang, Yung-Lung; Lin, Wei-Shiang; Wang, Wei-Ming; Huang, Shih-Ming

    2011-12-10

    Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21{sup WAF1/Cip1} gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity by interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein-protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21{sup WAF1/Cip1} gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.

  7. 3-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-1,2,5-selenadiazole (G-1103), a novel combretastatin A-4 analog, induces G2/M arrest and apoptosis by disrupting tubulin polymerization in human cervical HeLa cells and fibrosarcoma HT-1080 cells.

    PubMed

    Zuo, Daiying; Guo, Dandan; Jiang, Xuewei; Guan, Qi; Qi, Huan; Xu, Jingwen; Li, Zengqiang; Yang, Fushan; Zhang, Weige; Wu, Yingliang

    2015-02-05

    Microtubule is a popular target for anticancer drugs. In this study, we describe the effect 3-(3-hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-1,2,5-selenadiazole (G-1103), a newly synthesized analog of combretastatin A-4 (CA-4), showing a strong time- and dose-dependent anti-proliferative effect on human cervical cancer HeLa cells and human fibrosarcoma HT-1080 cells. We demonstrated that the growth inhibitory effects of G-1103 in HeLa and HT-1080 cells were associated with microtubule depolymerization and proved that G-1103 acted as microtubule destabilizing agent. Furthermore, cell cycle analysis revealed that G-1103 treatment resulted in cell cycle arrest at the G2/M phase in a time-dependent manner with subsequent apoptosis induction. Western blot analysis revealed that down-regulation of cdc25c and up-regulation of cyclin B1 was related with G2/M arrest in HeLa and HT-1080 cells treatment with G-1103. In addition, G-1103 induced HeLa cell apoptosis by up-regulating cleaved caspase-3, Fas, cleaved caspase-8 expression, which indicated that G-1103 induced HeLa cell apoptosis was mainly associated with death receptor pathway. However, G-1103 induced HT-1080 cell apoptosis by up-regulating cleaved caspase-3, Fas, cleaved caspase-8, Bax and cleaved caspase-9 expression and down-regulating anti-apoptotic protein Bcl-2 expression, which indicated that G-1103 induced HT-1080 cell apoptosis was associated with both mitochondrial and death receptor pathway. Taken together, all the data demonstrated that G-1103 exhibited its antitumor activity through disrupting the microtubule assembly, causing cell cycle arrest and consequently inducing apoptosis in HeLa and HT-1080 cells. Therefore, the novel compound G-1103 is a promising microtubule inhibitor that has great potentials for therapeutic treatment of various malignancies.

  8. Fulminant Cryptosporidiosis after Near-Drowning: a Human Cryptosporidium parvum Strain Implicated in Invasive Gastrointestinal Adenocarcinoma and Cholangiocarcinoma in an Experimental Model

    PubMed Central

    Benamrouz, Sadia; Guyot, Karine; Mouray, Anthony; Chassat, Thierry; Flament, Nicolas; Delhaes, Laurence; Coiteux, Valerie; Delaire, Baptiste; Praet, Marleen; Cuvelier, Claude; Gosset, Pierre; Dei-Cas, Eduardo; Creusy, Colette

    2012-01-01

    In the present work, we report the characterization of a Cryptosporidium parvum strain isolated from a patient who nearly drowned in the Deule River (Lille, France) after being discharged from the hospital where he had undergone allogeneic stem cell transplantation. After being rescued and readmitted to the hospital, he developed fulminant cryptosporidiosis. The strain isolated from the patient's stools was identified as C. parvum II2A15G2R1 (subtype linked to zoonotic exposure) and inoculated into SCID mice. In this host, this virulent C. parvum isolate induced not only severe infection but also invasive gastrointestinal and biliary adenocarcinoma. The observation of adenocarcinomas that progressed through all layers of the digestive tract to the subserosa and spread via blood vessels confirmed the invasive nature of the neoplastic process. These results indicate for the first time that a human-derived C. parvum isolate is able to induce digestive cancer. This study is of special interest considering the exposure of a large number of humans and animals to this waterborne protozoan, which is highly tumorigenic when inoculated in a rodent model. PMID:22247151

  9. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    SciTech Connect

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  10. Brain metastases in gastro-oesophageal adenocarcinoma: insights into the role of the human epidermal growth factor receptor 2 (HER2)

    PubMed Central

    Feilchenfeldt, J; Varga, Z; Siano, M; Grabsch, H I; Held, U; Schuknecht, B; Trip, A; Hamaguchi, T; Gut, P; Balague, O; Khanfir, K; Diebold, J; Jochum, W; Shoji, H; Kushima, R; Wagner, D; Shimada, Y; Cats, A; Knuth, A; Moch, H; Aebi, S; Hofer, S

    2015-01-01

    Background: Gastro-oesophageal adenocarcinomas rarely metastasize to the central nervous system (CNS). The role of the human epidermal growth factor receptor 2 (HER2) in patients with these cancers and CNS involvement is presently unknown. Patients and Methods: A multicentre registry was established to collect data from patients with gastro-oesophageal adenocarcinomas and CNS involvement both retrospectively and prospectively. Inclusion in the study required a predefined clinical data set, a central neuro-radiological or histopathological confirmation of metastatic CNS involvement and central assessment of HER2 by immunohistochemistry (IHC) and in situ hybridisation (ISH). In addition, expression of E-cadherin and DNA mismatch repair (MMR) proteins were assessed by IHC. Results: One hundred patients fulfilled the inclusion criteria. The population's median age was 59 years (interquartile range: 54–68), of which 85 (85%) were male. Twenty-five patients were of Asian and 75 of Caucasian origin. HER2 status was positive in 36% (95% CI: 26.6–46.2) of cases. Median time from initial diagnosis to the development of brain metastases (BMets) or leptomeningeal carcinomatosis (LC) was 9.9 months (95% CI: 8.5–15.0). Median overall survival from diagnosis was 16.9 months (95% CI: 14.0–20.7) and was not related to the HER2 status. E-cadherin loss was observed in 9% of cases and loss of expression in at least one DNA MMR proteins in 6%. Conclusions: The proportion of a positive HER2 status in patients with gastro-oesophageal adenocarcinoma and CNS involvement was higher than expected. The impact of anti-HER2 therapies should be studied prospectively. PMID:26313663

  11. Inhibitory effect of radiotherapy combined with weekly recombinant human endostatin on the human pulmonary adenocarcinoma A549 xenografts in nude mice.

    PubMed

    Jiang, Xiao-dong; Dai, Peng; Wu, Jin; Song, Da-an; Yu, Jin-ming

    2011-05-01

    The aim of this study was to investigate the inhibitory effect of radiotherapy combined with weekly recombinant human endostatin (RHES) on the human pulmonary adenocarcinoma A549 xenografts in nude mice. The 40 A549 xenograft nude mice models were randomly divided into 4 groups (each group with 10 nude mice). Single radiotherapy group (group 1) was given a single external irradiation (6MV-X ray, 10 Gy) and peritumoral subcutaneous injection of 0.2 ml normal saline every day for 7 days. Single RHES group (group 2) was given peritumoral subcutaneous injection of 0.2 ml RHES (0.75 mg/ml) for 7 days. Combination therapy group (group 3) was given radiotherapy as the same as group 1 and RHES as the same as group 2. Control group was given normal saline as the same as group 1. The tumor volume was smaller in group 3 than in control group from the 8th day after treatment (P<0.05) and tumor regression occurred from the second week after treatment in group 3. On the 15th day after treatment, the inhibitory rates of tumor volume were 69.65%, 92.64% and 116.4% in groups 2, 1 and 3, respectively; MVD number was lower in group 3 than in group 1 (P<0.05); there was no statistical significance in VEGF expression between group 2 and control group as well as between group 3 and group 1 (P>0.05). Apoptosis was marked in group 3. Radiotherapy combined with weekly RHES can significantly inhibit tumor growth and earlier induce tumor regression, which may be related to the improvement of tumor hypoxia and the inhibition of radiation-induced tumor angiogenesis. Short-term application (1 week) of RHES is beneficial to clinical practice.

  12. Melatonin modulates the cadmium-induced expression of MT-2 and MT-1 metallothioneins in three lines of human tumor cells (MCF-7, MDA-MB-231 and HeLa).

    PubMed

    Alonso-Gonzalez, Carolina; Mediavilla, Dolores; Martinez-Campa, Carlos; Gonzalez, Alicia; Cos, Samuel; Sanchez-Barcelo, Emilio J

    2008-10-01

    Cadmium (Cd) is a human carcinogen present in tobacco smoke and contaminated industrial soils. Metallothioneins (MTs) are intracellular proteins involved in protecting against Cd. The toxic effects of Cd can be modified by compounds able to modulate MTs synthesis. Melatonin has oncostatic properties and has also been shown to counteract the toxic effects of Cd. In this study we examine the possible role of melatonin in Cd-induced expression of several MT isoforms (MT-2A, MT-1X, MT-1F and MT-1E) in three human tumor cell lines (MCF-7, MDA-MB-231 and HeLa). We found that, in all cell types, melatonin increases Cd-induced expression of MT-2A, which is considered to protect against Cd toxicity. As regards MT-1 subtypes, which have been related with cell invasiveness and high histological grade tumors, melatonin caused Cd-induced expression in both breast cancer cell lines to decrease. These effects point towards melatonin's possible role as a preventive agent for carcinogenesis dependent on Cd contamination.

  13. Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma DLD1 cells

    SciTech Connect

    Zhang Zhuo; Wang Xin; Cheng Senping; Sun Lijuan; Son, Young-Ok; Yao Hua; Li Wenqi; Budhraja, Amit; Li Li; Shelton, Brent J.; Tucker, Thomas; Arnold, Susanne M.; Shi Xianglin

    2011-10-15

    Long term exposure to arsenic can increase incidence of human cancers, such as skin, lung, and colon rectum. The mechanism of arsenic induced carcinogenesis is still unclear. It is generally believed that reactive oxygen species (ROS) may play an important role in this process. In the present study, we investigate the possible linkage between ROS, {beta}-catenin and arsenic induced transformation and tumorigenesis in human colorectal adenocarcinoma cell line, DLD1 cells. Our results show that arsenic was able to activate p47{sup phox} and p67{sup phox}, two key proteins for activation of NADPH oxidase. Arsenic was also able to generate ROS in DLD1 cells. Arsenic increased {beta}-catenin expression level and its promoter activity. ROS played a major role in arsenic-induced {beta}-catenin activation. Treatment of DLD1 cells by arsenic enhanced both transformation and tumorigenesis of these cells. The tumor volumes of arsenic treated group were much larger than those without arsenic treatment. Addition of either superoxide dismutase (SOD) or catalase reduced arsenic induced cell transformation and tumor formation. The results indicate that ROS are involved in arsenic induced cell transformation and tumor formation possible through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma cell line DLD1 cells. - Highlights: > Arsenic activates NADPH oxidase and increases reactive oxygen species generation in DLD1 cells. > Arsenic increases {beta}-catenin expression. > Inhibition of ROS induced by arsenic reduce {beta}-catenin expression. > Arsenic increases cell transformation in DLD1 cells and tumorigenesis in nude mice. > Blockage of ROS decrease cell transformation and tumorigenesis induced by arsenic.

  14. Monitoring of TGF-β 1-Induced Human Lung Adenocarcinoma A549 Cells Epithelial-Mesenchymal Transformation Process by Measuring Cell Adhesion Force with a Microfluidic Device.

    PubMed

    Li, Yuan; Gao, AnXiu; Yu, Ling

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties. It is believed that EMT is associated with initiation and completion of the invasion-metastasis cascade. In this study, an economic approach was developed to fabricate a microfluidic device with less instrumentation requirement for the investigation of EMT by quantifying cell adhesion force. Fluid shear force was precisely controlled by a homemade microfluidic perfusion apparatus and interface. The adhesion capability of the human lung adenocarcinoma cell line A549 on different types of extracellular matrix protein was studied. In addition, effects of transforming growth factor-β (TGF-β) on EMT in A549 cells were investigated by characterizing the adhesion force changes and on-chip fluorescent staining. The results demonstrate that the microfluidic device is a potential tool to characterize the epithelial-mesenchymal transition process by measuring cell adhesion force.

  15. Alpha-tomatine inactivates PI3K/Akt and ERK signaling pathways in human lung adenocarcinoma A549 cells: effect on metastasis.

    PubMed

    Shih, Yuan-Wei; Shieh, Jiunn-Min; Wu, Pei-Fen; Lee, Yi-Chieh; Chen, Yi-Zhi; Chiang, Tai-An

    2009-08-01

    This study first investigates the anti-metastatic effect of alpha-tomatine in the human lung adenocarcinoma cell line: A549. In this study, we first noted alpha-tomatine inhibited A549 cells invasion and migration by wound-healing assay and Boyden chamber assay. The data also showed alpha-tomatine could inhibit phosphorylation of Akt and extracellular signal-regulated kinase 1 and 2 (ERK1/2), which is involved in the up-regulating matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) or urokinase-type plasminogen activator (u-PA), whereas it did not affect phosphorylation of c-Jun N-terminal kinase (JNK) and p38. Next, alpha-tomatine significantly decreased the nuclear levels of nuclear factor kappa B (NF-kappaB), c-Fos, and c-Jun. Also, treating A549 cells with alpha-tomatine also leads to a dose-dependent inhibition on the binding abilities of NF-kappaB and activator protein-1 (AP-1). Further, the treatment of inhibitors specific for PI3K (Wortmannin) or ERK (U0126) to A549 cells could cause reduced activities of MMP-2, MMP-9, and u-PA. These results showed alpha-tomatine could inhibit the metastatic ability of A549 cells by reducing MMP-2, MMP-9, and u-PA activities through suppressing phosphoinositide 3-kinase/Akt (PI3K/Akt) or ERK1/2 signaling pathway and inhibition NF-kappaB or AP-1 binding activities. These findings proved alpha-tomatine might be an anti-metastatic agent against human lung adenocarcinoma.

  16. FOREWORD: HELAS II International Conference

    NASA Astrophysics Data System (ADS)

    Gizon, Laurent; Roth, Markus

    2008-07-01

    Volume 118 (2008) of Journal of Physics: Conference Series provides a written record of the talks and posters presented at the HELAS II International Conference `Helioseismology, Asteroseismology and MHD Connections'. The conference was held during the week 20-24 August 2007 in Göttingen, Germany, jointly hosted by the Max Planck Institute for Solar System Research and the Faculty of Physics of the University of Göttingen. A total of 140 scientists from all over the world attended. The Scientific Organizing Committee consisted of Conny Aerts, Annie Baglin, Jørgen Christensen-Dalsgaard, Thierry Corbard, Jadwiga Daszyńska-Daszkiewicz, Stefan Dreizler, Yvonne Elsworth, Laurent Gizon (Chairman), Wolfgang Glatzel, Frank Hill, Donald Kurtz, Oskar von der Lühe, Maria Pia Di Mauro, Mário Monteiro, Pere Pallé, Markus Roth, Philip Scherrer, Manfred Schüssler, and Michael Thompson. HELAS stands for the European Helio- and Asteroseismology Network, a Coordination Action supported by the sixth Framework Programme of the European Union. It aims to bring together researchers in the fields of solar and stellar oscillations. This volume consists of 91 articles organized into sections that reflect the scientific programme of the conference: 012001-07 Wave diagnostics in physics, geophysics and astrophysics 012008-09 Perspectives on helio- and asteroseismology 012010-17 Asteroseismology: Observations 012018-25 Asteroseismology: Theory 012026-32 Global helioseismology and solar models 012033-38 Local helioseismology and magnetic activity 012039-44 Future observational projects in helio- and asteroseismology 012045-91 Poster papers. The overwhelming majority of papers discuss the seismology of the Sun and stars. Papers in the first section provide a broader perspective on wave phenomena and techniques for probing other physical systems, from living beings to the universe as a whole. We were extremely fortunate to have particularly distinguished experts to cover these topics

  17. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression

    SciTech Connect

    Kao, Shang-Jyh; Su, Jen-Liang; Chen, Chi-Kuan; Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua; Bien, Mauo-Ying; Yang, Shun-Fa; Chien, Ming-Hsien

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole

  18. Induction of cytotoxicity in human lung adenocarcinoma cells by 6-O-carboxypropyl-alpha-tocotrienol, a redox-silent derivative of alpha-tocotrienol.

    PubMed

    Yano, Yoshihisa; Satoh, Haruna; Fukumoto, Keiko; Kumadaki, Itsumaro; Ichikawa, Tomio; Yamada, Kazuhiko; Hagiwara, Kiyokazu; Yano, Tomohiro

    2005-07-10

    Tocotrienols are one of the most potent anticancer agents of all natural compounds and the anticancer property may be related to the inactivation of Ras family molecules. The anticancer potential of tocotrienols, however, is weakened due to its short elimination half life in vivo. To overcome the disadvantage and reinforce the anticancer activity in tocotrienols, we synthesized a redox-silent analogue of alpha-tocotrienol (T3), 6-O-carboxypropyl-alpha-tocotrienol (T3E). We estimated the possibility of T3E as a new anticancer agent against lung adenocarcinoma showing poor prognosis based on the mutation of ras gene. T3E showed cytotoxicity against A549 cells, a human lung adenocarcinoma cell line with a ras gene mutation, in a dose-dependent manner (0-40 microM), whereas T3 and a redox-silent analogue of alpha-tocopherol (T), 6-O-carboxypropyl-alpha-tocopherol (TE), showed much less cytotoxicity in cells within 40 microM. T3E cytotoxicity was based on the accumulation of cells in the G1-phase of the cell-cycle and the subsequent induction of apoptosis. Similar to this event, 24-hr treatment of A549 cells with 40 microM T3E caused the inhibition of Ras farnesylation, and a marked decrease in the levels of cyclin D required for G1/S progression in the cell-cycle and Bcl-xL, a key anti-apoptotic molecule. Moreover, the T3E-dependent inhibition of RhoA geranyl-geranylation is an inducing factor for the occurrence of apoptosis in A549 cells. Our results suggest that T3E suppresses Ras and RhoA prenylation, leading to negative growth control against A549 cells. In conclusion, a redox-silent analogue of T3, T3E may be a new candidate as an anticancer agent against lung adenocarcinoma showing poor prognosis based on the mutation of ras genes.

  19. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors.

    PubMed Central

    Bertran, J; Miller, J L; Yang, Y; Fenimore-Justman, A; Rueda, F; Vanin, E F; Nienhuis, A W

    1996-01-01

    Adeno-associated virus has a broad host range, is nonpathogenic, and integrates into a preferred location on chromosome 19, features that have fostered development of recombinant adeno-associated viruses (rAAV) as gene transfer vectors for therapeutic applications. We have used an rAAV to transfer and express the murine cationic amino acid transporter which functions as the ecotropic retroviral receptor, thereby rendering human cells conditionally susceptible to infection by an ecotropic retroviral vector. The proportion of human HeLa cells expressing the receptor at 60 h varied as a function of the multiplicity of infection (MOI) with the rAAV. Cells expressing the ecotropic receptor were efficiently transduced with an ecotropic retroviral vector encoding a nucleus-localized form of beta-galactosidase. Cells coexpressing the ecotropic receptor and nucleus-localized beta-galactosidase were isolated by fluorescence-activated cell sorting, and cell lines were recovered by cloning at limiting dilution. After growth in culture, all clones contained the retroviral vector genome, but fewer than 10% (3 of 47) contained the rAAV genome and continued to express the ecotropic receptor. The ecotropic receptor coding sequences in the rAAV genome were under the control of a tetracycline-modulated promoter. In the presence of tetracycline, receptor expression was low and the proportion of cells transduced by the ecotropic retroviral vector was decreased. Modulation of receptor expression was achieved with both an episomal and an integrated form of the rAAV genome. These data establish that functional gene expression from an rAAV genome can occur transiently without genome integration. PMID:8794313

  20. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion.

    PubMed

    Guo, Fengjie; Li, Yalin; Liu, Yan; Wang, Jiajia; Li, Yuehui; Li, Guancheng

    2010-03-15

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is suggested to be a long (~7 kb) non-coding RNA. MALAT1 is overexpressed in many human carcinomas, but its function remains unknown. To investigate the role of MALAT1 in human cervical cancer progression, we designed and used short hairpin RNA to inhibit MALAT1 expression in CaSki cells and validated its effect on cell proliferation and invasion. Changes in gene expression were analyzed by reverse transcriptase- polymerase chain reaction. Our data demonstrated that MALAT1 was involved in cervical cancer cell growth, cell cycle progression, and invasion through the regulation of gene expression, such as caspase-3, -8, Bax, Bcl-2, and BclxL, suggesting that MALAT1 could have important implications in cervical cancer biology. Our findings illustrate the biological significance of MALAT1 in cervical cancer progression and provide novel evidence that MALAT1 may serve as a therapeutic target in the prevention of human cervical cancer.

  1. Human pancreatic stellate cells modulate 3D collagen alignment to promote the migration of pancreatic ductal adenocarcinoma cells.

    PubMed

    Drifka, Cole R; Loeffler, Agnes G; Esquibel, Corinne R; Weber, Sharon M; Eliceiri, Kevin W; Kao, W John

    2016-12-01

    A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the ability for cancer cells to aggressively infiltrate and navigate through a dense stroma during the metastatic process. Key features of the PDAC stroma include an abundant population of activated pancreatic stellate cells (PSCs) and highly aligned collagen fibers; however, important questions remain regarding how collagen becomes aligned and what the biological manifestations are. To better understand how PSCs, aligned collagen, and PDAC cells might cooperate during the transition to invasion, we utilized a microchannel-based in vitro tumor model and advanced imaging technologies to recreate and examine in vivo-like heterotypic interactions. We found that PSCs participate in a collaborative process with cancer cells by orchestrating the alignment of collagen fibers that, in turn, are permissive to enhanced cell migration. Additionally, direct contact between PSCs, collagen, and PDAC cells is critical to invasion and co-migration of both cell types. This suggests PSCs may accompany and assist in navigating PDAC cells through the stromal terrain. Together, our data provides a new role for PSCs in stimulating the metastatic process and underscores the importance of collagen alignment in cancer progression.

  2. Orphan nuclear receptor Nurr1 as a potential novel marker for progression in human pancreatic ductal adenocarcinoma

    PubMed Central

    Ji, Li; Gong, Chen; Ge, Liangyu; Song, Linping; Chen, Fenfen; Jin, Chunjing; Zhu, Hongyan; Zhou, Guoxiong

    2017-01-01

    Nuclear receptor related-1 protein (Nurr1) is a novel orphan member of the nuclear receptor superfamily (the NR4A family) involved in tumorigenesis. The aim of the present study was to investigate the expression and possible function of Nurr1 in pancreatic ductal adenocarcinoma (PDAC). The expression pattern of Nurr1 protein was determined using immunohistochemical staining in 138 patients with PDAC. Elevated Nurr1 expression was more commonly observed in PDAC tissues and cell lines compared with healthy controls. Elevated expression was significantly associated with histological differentiation (P=0.041), lymph node metastasis (P=0.021), TNM classification of malignant tumors stage (P=0.031) and poor survival (P=0.001). Further experiments demonstrated that suppression of endogenous Nurr1 expression attenuated cell proliferation, migration and invasion, and induced apoptosis of PDAC cells. In conclusion, these results suggest that Nurr1 has an important role in the progression of PDAC and may be used as a novel marker for therapeutic targets. PMID:28352330

  3. Scaffold-Free Coculture Spheroids of Human Colonic Adenocarcinoma Cells and Normal Colonic Fibroblasts Promote Tumorigenicity in Nude Mice123

    PubMed Central

    Park, Jong-il; Lee, Jisu; Kwon, Ju-Lee; Park, Hong-Bum; Lee, Su-Yel; Kim, Ji-Yeon; Sung, Jaekye; Kim, Jin Man; Song, Kyu Sang; Kim, Kyung-Hee

    2016-01-01

    The aim of this study was to form a scaffold-free coculture spheroid model of colonic adenocarcinoma cells (CACs) and normal colonic fibroblasts (NCFs) and to use the spheroids to investigate the role of NCFs in the tumorigenicity of CACs in nude mice. We analysed three-dimensional (3D) scaffold-free coculture spheroids of CACs and NCFs. CAC Matrigel invasion assays and tumorigenicity assays in nude mice were performed to examine the effect of NCFs on CAC invasive behaviour and tumorigenicity in 3D spheroids. We investigated the expression pattern of fibroblast activation protein-α (FAP-α) by immunohistochemical staining. CAC monocultures did not form densely-packed 3D spheroids, whereas cocultured CACs and NCFs formed 3D spheroids. The 3D coculture spheroids seeded on a Matrigel extracellular matrix showed higher CAC invasiveness compared to CACs alone or CACs and NCFs in suspension. 3D spheroids injected into nude mice generated more and faster-growing tumors compared to CACs alone or mixed suspensions consisting of CACs and NCFs. FAP-α was expressed in NCFs-CACs cocultures and xenograft tumors, whereas monocultures of NCFs or CACs were negative for FAP-α expression. Our findings provide evidence that the interaction between CACs and NCFs is essential for the tumorigenicity of cancer cells as well as for tumor propagation. PMID:26947885

  4. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway.

  5. A double-negative feedback loop between E2F3b and miR- 200b regulates docetaxel chemosensitivity of human lung adenocarcinoma cells

    PubMed Central

    Gao, Yanping; Chen, Longbang; Song, Haizhu; Chen, Yitian; Wang, Rui; Feng, Bing

    2016-01-01

    MicroRNAs (miRNAs) are non-coding small RNAs which negatively regulate gene expressions mainly through 3′-untranslated region (3′-UTR) binding of target mRNAs. Recent studies have highlighted the feedback loops between miRNAs and their target genes in physiological and pathological processes including chemoresistance of cancers. Our previous study identified miR-200b/E2F3 axis as a chemosensitivity restorer of human lung adenocarcinoma (LAD) cells. Moreover, E2F3b was bioinformatically proved to be a potential transcriptional regulator of pre-miR-200b gene promoter. The existance of this double-negative feedback minicircuitry comprising E2F3b and miR-200b was confirmed by chromatin immunoprecipitation (ChIP) assay, site-specific mutation and luciferase reporter assay. And the underlying regulatory mechanisms of this feedback loop on docetaxel resistance of LAD cells were further investigated by applying in vitro chemosensitivity assay, colony formation assay, flow cytometric analysis of cell cycle and apoptosis, as well as mice xenograft model. In conclusion, our results suggest that the double-negative feedback loop between E2F3b and miR-200b regulates docetaxel chemosensitivity of human LAD cells mainly through cell proliferation, cell cycle distribution and apoptosis. PMID:27027446

  6. Effect of CCR7, CXCR4 and VEGF-C on the lymph node metastasis of human pancreatic ductal adenocarcinoma.

    PubMed

    Guo, Jinghui; Lou, Wenhui; Ji, Yuan; Zhang, Shuncai

    2013-05-01

    The aim of the present study was to investigate the association between the expression of chemokine receptors CCR7 and CXCR4 and vascular endothelial growth factor (VEGF)-C and the lymph node metastasis of pancreatic ductal adenocarcinoma (PDAC). The mRNA transcription levels of CCR7, CXCR4 and VEGF-C were measured in 24 specimens by real-time reverse transcription (RT)-PCR, while the protein expression levels were measured in 65 specimens by immuohistochemistry. Professional software for pathological image manipulation (Image Pro Plus 6.0) was used to quantitate the results of the immunohistochemical staining. The mRNA and protein expression levels of CCR7, CXCR4 and VEGF-C were all significantly higher in the cancer samples compared with those in the adjacent normal tissue. The CCR7 and VEGF-C mRNA and protein expression levels were significantly higher in the patients with cancer types exhibiting lymph node metastasis and an advanced International Union Against Cancer (UICC) stage (P<0.05). The greater the number of metastatic lymph nodes, the higher the levels of CCR7 expression (P<0.05). There was a significant positive linear correlation between the mRNA and protein expression levels of CCR7 and VEGF-C (P<0.05). The mRNA and protein expression levels of CXCR4 were not correlated with the lymph node metastasis (P>0.05), however the strong positive expression of CCR7 and VEGF-C was significantly associated with the lymph node metastasis of PDAC.

  7. Primary appendiceal mucinous adenocarcinoma.

    PubMed

    Behera, Prativa Kumari; Rath, Pramod Kumar; Panda, Rabiratna; Satpathi, Sanghamitra; Behera, Rajan

    2011-04-01

    Primary Adenocarcinomas of the appendix are extremely rare tumor. We report a case of primary mucinous adenocarcinoma in a 40 year old lady misdiagnosed as having acute appendicitis. All the routine investigations were within normal limit. USG of abdomen showed dilated appendix with little fluid collection adjacent to it and no other abnormality was seen which suggested acute appendicitis. Appendicectomy was done and excised appendix was sent for histopathological examination. Mucinous Adenocarcinoma of the appendix was confirmed after histopathological examination. Right hemicolectomy was done as a second stage procedure. As some cases are incidentally discovered, this case emphasizes that histological examination of all appendicectomy specimens is mandatory.

  8. Small Bowel Adenocarcinoma.

    PubMed

    Aparicio, Thomas; Zaanan, Aziz; Mary, Florence; Afchain, Pauline; Manfredi, Sylvain; Evans, Thomas Ronald Jeffry

    2016-09-01

    Small bowel adenocarcinomas (SBAs) are rare tumors, but their incidence is increasing. The most common primary location is the duodenum. Even though SBAs are more often sporadic, some diseases are risk factors. Early diagnosis of small bowel adenocarcinoma remains difficult, despite significant radiologic and endoscopic progress. After R0 surgical resection, the main prognostic factor is lymph node invasion. An international randomized trial (BALLAD [Benefit of Adjuvant Chemotherapy For Small Bowel Adenocarcinoma] study) will evaluate the benefit of adjuvant chemotherapy. For metastatic disease, retrospectives studies suggest that platinum-based chemotherapy is the most effective treatment. Phase II studies are ongoing to evaluate targeted therapy in metastatic SBA.

  9. Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines

    SciTech Connect

    Gestl, Erin E.; Anne Boettger, S.

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated with p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53

  10. High variability of genomic instability and gene expression profiling in different HeLa clones

    PubMed Central

    Frattini, Annalisa; Fabbri, Marco; Valli, Roberto; De Paoli, Elena; Montalbano, Giuseppe; Gribaldo, Laura; Pasquali, Francesco; Maserati, Emanuela

    2015-01-01

    The HeLa cell line is one of the most popular cell lines in biomedical research, despite its well-known chromosomal instability. We compared the genomic and transcriptomic profiles of 4 different HeLa batches and showed that the gain and loss of genomic material varies widely between batches, drastically affecting basal gene expression. Moreover, different pathways were activated in response to a hypoxic stimulus. Our study emphasizes the large genomic and transcriptomic variability among different batches, to the point that the same experiment performed with different batches can lead to distinct conclusions and irreproducible results. The HeLa cell line is thought to be a unique cell line but it is clear that substantial differences between the primary tumour and the human genome exist and that an indeterminate number of HeLa cell lines may exist, each with a unique genomic profile. PMID:26483214

  11. Adenocarcinoma of the urinary bladder.

    PubMed

    Dadhania, Vipulkumar; Czerniak, Bogdan; Guo, Charles C

    2015-01-01

    Adenocarcinoma is an uncommon malignancy in the urinary bladder which may arise primarily in the bladder as well as secondarily from a number of other organs. Our aim is to provide updated information on primary and secondary bladder adenocarcinomas, with focus on pathologic features, differential diagnosis, and clinical relevance. Primary bladder adenocarcinoma exhibits several different growth patterns, including enteric, mucinous, signet-ring cell, not otherwise specified, and mixed patterns. Urachal adenocarcinoma demonstrates similar histologic features but it can be distinguished from bladder adenocarcinoma on careful pathologic examination. Secondary bladder adenocarcinomas may arise from the colorectum, prostate, endometrium, cervix and other sites. Immunohistochemical study is valuable in identifying the origin of secondary adenocarcinomas. Noninvasive neoplastic glandular lesions, adenocarcinoma in situ and villous adenoma, are frequently associated with bladder adenocarcinoma. It is also important to differentiate bladder adenocarcinoma from a number of nonneoplastic lesions in the bladder. Primary bladder adenocarcinoma has a poor prognosis largely because it is usually diagnosed at an advanced stage. Urachal adenocarcinoma shares similar histologic features with bladder adenocarcinoma, but it has a more favorable prognosis than bladder adenocarcinoma, partly due to the relative young age of patients with urachal adenocarcinoma.

  12. Adenocarcinoma of the urinary bladder

    PubMed Central

    Dadhania, Vipulkumar; Czerniak, Bogdan; Guo, Charles C

    2015-01-01

    Adenocarcinoma is an uncommon malignancy in the urinary bladder which may arise primarily in the bladder as well as secondarily from a number of other organs. Our aim is to provide updated information on primary and secondary bladder adenocarcinomas, with focus on pathologic features, differential diagnosis, and clinical relevance. Primary bladder adenocarcinoma exhibits several different growth patterns, including enteric, mucinous, signet-ring cell, not otherwise specified, and mixed patterns. Urachal adenocarcinoma demonstrates similar histologic features but it can be distinguished from bladder adenocarcinoma on careful pathologic examination. Secondary bladder adenocarcinomas may arise from the colorectum, prostate, endometrium, cervix and other sites. Immunohistochemical study is valuable in identifying the origin of secondary adenocarcinomas. Noninvasive neoplastic glandular lesions, adenocarcinoma in situ and villous adenoma, are frequently associated with bladder adenocarcinoma. It is also important to differentiate bladder adenocarcinoma from a number of nonneoplastic lesions in the bladder. Primary bladder adenocarcinoma has a poor prognosis largely because it is usually diagnosed at an advanced stage. Urachal adenocarcinoma shares similar histologic features with bladder adenocarcinoma, but it has a more favorable prognosis than bladder adenocarcinoma, partly due to the relative young age of patients with urachal adenocarcinoma. PMID:26309895

  13. Prostate Ductal Adenocarcinoma.

    PubMed

    Amin, Ali

    2017-03-30

    Prostate ductal adenocarcinoma (PDA) is a rare subtype of prostate adenocarcinoma that shows more aggressive behavior than conventional prostatic acinar adenocarcinoma. PDA demonstrates similar clinical and paraclinical features such as prostatic acinar adenocarcinoma; therefore, clinical distinction of the 2 entities is very difficult (if not impossible) and histopathology plays an important role in the diagnosis of the disease. This review discusses all the necessary information needed for the diagnosis and prognosis of PDA including the morphologic features of PDA, an introduction about the known variants of PDA with helpful hints in grading of each variant, tips on differential diagnosis of PDA from the common morphologic mimickers, a detailed discussion on the value of immunohistochemistry in the diagnosis of PDA, and pathologic features that are helpful in determining the outcome.

  14. Inhibitory effects of prostaglandin E2 on collagen synthesis and cell proliferation in human stellate cells from pancreatic head adenocarcinoma

    PubMed Central

    2014-01-01

    Background Several studies have described an increased cyclooxygenase-2 (COX-2) expression in pancreatic cancer, but the role of COX-2 in tumour development and progression is not clear. The aim of the present study was to examine expression of COX-2 in cancer cells and stromal cells in pancreatic cancer specimens, and to explore the role of PGE2 in pancreatic stellate cell proliferation and collagen synthesis. Methods Immunohistochemistry and immunofluorescence was performed on slides from whole sections of tissue blocks using antibodies against COX-2 and α-smooth muscle actin (αSMA). Pancreatic stellate cells (PSC) were isolated from surgically resected tumour tissue by the outgrowth method. Cells were used between passages 4 and 8. Collagen synthesis was determined by [3H]-proline incorporation, or by enzyme immunoassay measurement of collagen C-peptide. DNA synthesis was measured by incorporation of [3H]-thymidine in DNA. Cyclic AMP (cAMP) was determined by radioimmunoassay. Collagen 1A1 mRNA was determined by RT-qPCR. Results Immunohistochemistry staining showed COX-2 in pancreatic carcinoma cells, but not in stromal cells. All tumours showed positive staining for αSMA in the fibrotic stroma. Cultured PSC expressed COX-2, which could be further induced by interleukin-1β (IL-1β), epidermal growth factor (EGF), thrombin, and PGE2, but not by transforming growth factor-β1 (TGFβ). Indirect coculture with the adenocarcinoma cell line BxPC-3, but not HPAFII or Panc-1, induced COX-2 expression in PSC. Treatment of PSC with PGE2 strongly stimulated cAMP accumulation, mediated by EP2 receptors, and also stimulated phosphorylation of extracellular signal-regulated kinase (ERK). Treatment of PSC with PGE2 or forskolin suppressed both TGFβ-stimulated collagen synthesis and PDGF-stimulated DNA synthesis. Conclusions The present results show that COX-2 is mainly produced in carcinoma cells and suggest that the cancer cells are the main source of PGE2 in pancreatic

  15. Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells.

    PubMed

    Klenow, S; Glei, M; Haber, B; Owen, R; Pool-Zobel, B L

    2008-04-01

    An extract of the Mediterranean carob (Ceratonia siliqua L.) pod (carob fibre extract), products formed after its fermentation by the gut flora and the major phenolic ingredient gallic acid (GA), were comparatively investigated for their influence on survival and growth parameters of colon adenocarcinoma HT29 cells and adenoma LT97 cells. Hydrogen peroxide (H2O2) formation in the cell culture media was quantified. After 1h 97+/-4 microM or 70+/-15 microM were found in HT29 medium and 6+/-1 microM or 3+/-3 microM in LT97 medium for carob fibre extract or GA, respectively. After 72 h carob fibre extract reduced survival of rapidly proliferating HT29 cells (by 76.4+/-12.9%) whereas metabolic activity and DNA-synthesis were only transiently impaired. Survival of slower growing LT97 cells was less decreased (by 21.5+/-12.9%), but there were marked effects on DNA-synthesis (reduction by 95.6+/-7%, 72 h). GA and fermented carob fibre did not have comparable effects. Thus, carob fibre extract resulted in H2O2 formation, which, however, could not explain impairment of cell growth. The differently modulated growth of human colon cell lines was more related to proliferation rates and impairment of DNA-synthesis than to H2O2 formation.

  16. Artemisinin induces caspase-8/9-mediated and Bax/Bak-independent apoptosis in human lung adenocarcinoma (ASTC-a-1) cells.

    PubMed

    Xiao, Feng-Lian; Gao, Wei-Jie; Liu, Cheng-Yi; Wang, Xiao-Ping; Chen, Tong-Sheng

    2011-01-01

    Artemisinin (ARTE), an antimalarial phytochemical component from the sweet wormwood plant, has been shown a potential anticancer activity by inducing cell apoptosis. The aim of this report is to explore the mechanism of ARTE-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. Cell counting kit (CCK-8) assay showed that ARTE induced cytotoxcity in a dose- and time-dependent manner. Confocal microscopy fluorescence imaging of cells stained with Hoechst 33258 and flow cytometry (FCM) analysis of cells stained with Annexin V-FITC/propidium iodide (PI) showed that ARTE induced reactive oxygen species (ROS)-dependent apoptosis. Confocal fluorescence resonance energy transfer (FRET) imaging of single living cells expressing SCAT3, SCAT9 or CFP-Bid-YFP and fluorometic substrate assay showed that ARTE induced the activation of caspase-3, -8 and -9. Moreover, inhibition of caspase-8 or -9 completely blocked ARTE-induced apoptosis which was only partially attenuated by caspase-3 inhibitor. Interestingly, silencing Bax and Bak by RNA interference (RNAi) did not attenuate ARTE-induced apoptosis. Collectively, ARTE induces caspase-dependent but Bax/Bak-independent apoptosis in ASTC-a-1 cells.

  17. Daucus carota Pentane-Based Fractions Suppress Proliferation and Induce Apoptosis in Human Colon Adenocarcinoma HT-29 Cells by Inhibiting the MAPK and PI3K Pathways.

    PubMed

    Shebaby, Wassim N; Bodman-Smith, K B; Mansour, Anthony; Mroueh, Mohamad; Taleb, Robin I; El-Sibai, Mirvat; Daher, Costantine F

    2015-07-01

    Daucus carota L. ssp. carota (Apiacea, wild carrot, Queen Anne's lace) has been used in folk medicine throughout the world and recently was shown to possess anticancer and antioxidant activities. This study aims to determine the anticancer activity of the pentane fraction (F1) and the 1:1 pentane:diethyl ether fraction (F2) of the Daucus Carota oil extract (DCOE) against human colon adenocarcinoma cell lines (HT-29 and Caco-2). Treatment of cells with various concentrations of F1 or F2 fractions produced a dose-dependent inhibition of cell proliferation. Flow cytometric analysis indicated that both fractions induced sub-G1 phase accumulation and increased apoptotic cell death. Western blot revealed the activation of caspase-3, PARP cleavage, and a considerable increase in Bax and p53 levels, and a decrease in Bcl-2 level. Treatment of HT-29 cells with either fraction markedly decreased the levels of both phosphorylated Erk and Akt. Furthermore, the combined treatment of F1 or F2 with wortmannin showed no added inhibition of cell survival suggesting an effect of F1 or F2 through the phosphatidyl inositol 3-kinase (PI3K) pathway. This study proposes that DCOE fractions (F1 and F2) inhibit cell proliferation by inducing cell cycle arrest and apoptosis in HT-29 cells through the suppression of mitogen-activated protein kinase (MAPK)/Erk and PI3K/Akt pathways.

  18. Cytotoxic Activities of Physalis minima L. Chloroform Extract on Human Lung Adenocarcinoma NCI-H23 Cell Lines by Induction of Apoptosis

    PubMed Central

    Leong, Ooi Kheng; Muhammad, Tengku Sifzizul Tengku; Sulaiman, Shaida Fariza

    2011-01-01

    Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72 h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53 mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug. PMID:19541726

  19. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells.

    PubMed

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  20. Lupeol, a fruit and vegetable based triterpene, induces apoptotic death of human pancreatic adenocarcinoma cells via inhibition of Ras signaling pathway.

    PubMed

    Saleem, Mohammad; Kaur, Satwinderjeet; Kweon, Mee-Hyang; Adhami, Vaqar Mustafa; Afaq, Farrukh; Mukhtar, Hasan

    2005-11-01

    Pancreatic cancer is an exceptionally aggressive disease, the treatment of which has largely been unsuccessful due to higher resistance offered by pancreatic cancer cells to conventional approaches such as surgery, radiation and/or chemotherapy. The aberration of Ras oncoprotein has been linked to the induction of multiple signaling pathways and to the resistance offered by pancreatic cancer cells to apoptosis. Therefore, there is a need for development of new and effective chemotherapeutic agents which can target multiple pathways to induce responsiveness of pancreatic cancer cells to death signals. In this study, human pancreatic adenocarcinoma cells AsPC-1 were used to investigate the effect of Lupeol on cell growth and its effects on the modulation of multiple Ras-induced signaling pathways. Lupeol caused a dose-dependent inhibition of cell growth as assessed by MTT assay and induction of apoptosis as assessed by flow cytometry, fluorescence microscopy and western blotting. Lupeol treatment to cells was found to significantly reduce the expression of Ras oncoprotein and modulate the protein expression of various signaling molecules involved in PKCalpha/ODC, PI3K/Akt and MAPKs pathways along with a significant reduction in the activation of NFkappaB signaling pathway. Our data suggest that Lupeol can adopt a multi-prong strategy to target multiple signaling pathways leading to induction of apoptosis and inhibition of growth of pancreatic cancer cells. Lupeol could be a potential agent against pancreatic cancer, however, further in-depth in vivo studies are warranted.

  1. Efficient T3P(®) mediated synthesis, differential cytotoxicity and apoptosis induction by indolo-triazolo-thiadiazoles in human breast adenocarcinoma cells.

    PubMed

    Kamath, Pooja R; Sunil, Dhanya; Das, Shubhankar; Abdul Salam, Abdul Ajees; Rao, B S Satish

    2017-02-21

    The limited efficacy of marketed anticancer agents demands the design of novel target-specific hybrid molecules incorporating multiple bioactive pharmacores to combat cancer. In the present study, a one-pot simple and efficient T3P(®) mediated procedure for the preparation of twelve new 3-(substituted- [1,2,4]triazolo[3,4-b] [1,3,4]thiadiazolo)-1H-indoles with short reaction times, easy workup procedure, good yields, and purity of products is described. Cytotoxicity assay (MTT), flow-cytometric univariate cell cycle analysis, Annexin V-FITC staining and DNA fragmentation for cell death mechanism suggested that compound 3d with chloro-substituted phenyl ring induced enhanced cytotoxicity by an apoptotic pathway with high differential toxicity to breast adenocarcinoma cells (MCF-7) when compared with normal human dermal fibroblast cells. Additionally, the interaction between the BH3 domain of anti-apoptotic proteins Bcl-2 and Bcl-xL with the pharmacophore 3d was examined by molecular docking simulations to assess its potential to induce apoptosis. The docking solutions were proposed to explain the observed selectivity of 3d to Bcl-xL protein. From the present findings, the lead compound, 3d exhibited better anticancer activity when related to the other synthesized molecules with specific action on MCF-7 cells and hence can be considered as a plausible candidate chemo-therapeutic agent, although this warrants further experimentation.

  2. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    SciTech Connect

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  3. Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: an effective inhibitor for the migration of human breast adenocarcinoma (MCF-7) cells.

    PubMed

    Sathishkumar, Palanivel; Vennila, Krishnan; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Hadibarata, Tony; Palvannan, Thayumanavan

    2016-04-01

    In this study, phyto-synthesis of silver nanoparticles (AgNPs) was achieved using an aqueous leaf extract of Alternanthera tenella. The phytochemical screening results revealed that flavonoids are responsible for the AgNPs formation. The AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray, transmission electron microscopy, fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction. The average size of the nanoparticles was found to be ≈48 nm. The EDX results show that strong signals were observed for the silver atoms. The strong band appearing at 1601-1595 cm(-1) correspond to C-C stretching vibration from dienes in FT-IR spectrum indicating the formation of AgNPs. Human breast adenocarcinoma (MCF-7) cells treated with various concentrations of AgNPs showed a dose-dependent increase in cell inhibition. The IC50 value of the AgNPs was calculated to be 42.5 μg mL(-1). The AgNPs showed a significant reduction in the migration of MCF-7 cells.

  4. Cytotoxicity and intracellular fate of PLGA and chitosan-coated PLGA nanoparticles in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells.

    PubMed

    Trif, Mihaela; Florian, Paula E; Roseanu, Anca; Moisei, Magdalena; Craciunescu, Oana; Astete, Carlos E; Sabliov, Cristina M

    2015-11-01

    Polymeric nanoparticles (NPs) are known to facilitate intracellular uptake of drugs to improve their efficacy, with minimum bioreactivity. The goal of this study was to assess cellular uptake and trafficking of PLGA NPs and chitosan (Chi)-covered PLGA NPs in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells. Both PLGA and Chi-PLGA NPs were not cytotoxic to the studied cells at concentrations up to 2500 μg/mL. The positive charge conferred by the chitosan deposition on the PLGA NPs improved NPs uptake by MDBK cells. In this cell line, Chi-PLGA NPs colocalized partially with early endosomes compartment and showed a more consistent perinuclear localization than PLGA NPs. Kinetic uptake of PLGA NPs by Colo 205 was slower than that by MDBK cells, detected only at 24 h, exceeding that of Chi-PLGA NPs. This study offers new insights on NP interaction with target cells supporting the use of NPs as novel nutraceuticals/drug delivery systems in metabolic disorders or cancer therapy. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3599-3611, 2015.

  5. The bioactive potential of red raspberry (Rubus idaeus L.) leaves in exhibiting cytotoxic and cytoprotective activity on human laryngeal carcinoma and colon adenocarcinoma.

    PubMed

    Durgo, Ksenija; Belščak-Cvitanović, Ana; Stančić, Angela; Franekić, Jasna; Komes, Draženka

    2012-03-01

    In this article, the bioactive potential of red raspberry leaves, a by-product of this widely spread plant, mostly valued for its antioxidant-rich fruits, was determined. The polyphenolic profile and antioxidative properties of red raspberry leaf extract were determined and examined for potential biological activity. Cytotoxic effect, antioxidative/prooxidative effect, and effect on total glutathione concentration were determined in human laryngeal carcinoma (HEp2) and colon adenocarcinoma (SW 480) cell lines. SW 480 cells are more susceptible to raspberry leaf extract in comparison with HEp2 cells. The antioxidative nature of raspberry leaf extract was detected in HEp2 cells treated with hydrogen peroxide, as opposed to SW 480 cells, where raspberry leaf extract induced reactive oxygen species formation. Raspberry leaf extract increased total glutathione level in HEp2 cells. This effect was reinforced after 24 hours of recovery, indicating that induction was caused by products formed during cellular metabolism of compounds present in the extract. Comparison of the results obtained on these two cell lines indicates that cellular response to raspberry extract will depend on the type of the cells that are exposed to it. The results obtained confirmed the biological activity of red raspberry leaf polyphenols and showed that this traditional plant can supplement the daily intake of valuable natural antioxidants, which exhibit beneficial health effects.

  6. Cytotoxic Activities of Physalis minima L. Chloroform Extract on Human Lung Adenocarcinoma NCI-H23 Cell Lines by Induction of Apoptosis.

    PubMed

    Leong, Ooi Kheng; Muhammad, Tengku Sifzizul Tengku; Sulaiman, Shaida Fariza

    2011-01-01

    Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72 h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53 mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug.

  7. Progesterone inhibits proliferation and modulates expression of proliferation-Related genes in classical progesterone receptor-negative human BxPC3 pancreatic adenocarcinoma cells.

    PubMed

    Goncharov, Alexey I; Maslakova, Aitsana A; Polikarpova, Anna V; Bulanova, Elena A; Guseva, Alexandra A; Morozov, Ivan A; Rubtsov, Petr M; Smirnova, Olga V; Shchelkunova, Tatiana A

    2017-01-01

    Recent studies suggest that progesterone may possess anti-tumorigenic properties. However, a growth-modulatory role of progestins in human cancer cells remains obscure. With the discovery of a new class of membrane progesterone receptors (mPRs) belonging to the progestin and adipoQ receptor gene family, it becomes important to study the effect of this hormone on proliferation of tumor cells that do not express classical nuclear progesterone receptors (nPRs). To identify a cell line expressing high levels of mPRs and lacking nPRs, we examined mRNA levels of nPRs and three forms of mPRs in sixteen human tumor cell lines of different origin. High expression of mPR mRNA has been found in pancreatic adenocarcinoma BxPC3 cells, while nPR mRNA has not been detected in these cells. Western blot analysis confirmed these findings at the protein level. We revealed specific binding of labeled progesterone in these cells with affinity constant similar to that of human mPR expressed in yeast cells. Progesterone at high concentration of 20 μM significantly reduced the mRNA levels of proliferation markers Ki67 and PCNA, as well as of cyclin D1, and increased the mRNA levels of cyclin dependent kinase inhibitors p21 and p27. Progesterone (1 μM and 20 μM) significantly inhibited proliferative activity of BxPC3 cells. These results point to anti-proliferative effects of the progesterone high concentrations on BxPC3 cells and suggest that activation of mPRs may mediate this action. Our data are a starting point for further investigations regarding the application of progesterone in pancreatic cancer.

  8. Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells

    SciTech Connect

    Yi, Ho-Keun; Kim, Sun-Young; Hwang, Pyoung-Han; Kim, Chan-Young; Yang, Doo-Hyun; Oh, Youngman; Lee, Dae-Yeol . E-mail: leedy@chonbuk.ac.kr

    2005-05-13

    PTEN is a tumor suppressor gene that is frequently mutated or deleted in a variety of human cancers including human gastric cancer. PTEN functions primarily as a lipid phosphatase and plays a key role in the regulation of the PI3 kinase/Akt pathway, thereby modulating cell proliferation and cell survival. On the other hand, the IGF system plays an important role in cell proliferation and cell survival via the PI3 kinase/Akt and MAP kinase pathways in many cancer cells. To characterize the impact of PTEN on the IGF-IGFR-IGFBP axis in gastric cancer, we overexpressed PTEN using an adenovirus gene transfer system in human gastric adenocarcinoma cells, SNU-484 and SNU-663, which lack PTEN. Overexpression of PTEN inhibited serum-induced as well as IGF-I-induced cell proliferation as compared to control cells. PTEN overexpression resulted in a significant decrease in the expression of IGF-I, -II, and IGF-IR. Interestingly, amongst the six IGFBPs, only IGFBP-3 was upregulated by PTEN, whereas IGFBP-4 and -6 were reduced. The IGFBP-3 promoter activity assay and Western immunoblotting demonstrate that PTEN regulates IGFBP-3 at the transcriptional level. In addition, the PI3 kinase inhibitor, LY294002, upregulates IGFBP-3 expression but downregulates IGF-I and IGF-II, indicating that PTEN controls IGFBP-3 and IGFs by an Akt-dependent pathway. These findings suggest that PTEN may inhibit antiapoptotic IGF actions not only by blocking the IGF-IGFR-induced Akt activity, but also by regulating expression of components of the IGF system, in particular, upregulation of IGFBP-3, which is known to exert antiproliferative effects through IGF-dependent and IGF-independent mechanisms in cancer cells.

  9. Quercetin suppresses HeLa cells by blocking PI3K/Akt pathway.

    PubMed

    Xiang, Tao; Fang, Yong; Wang, Shi-Xuan

    2014-10-01

    To explore the effect of quercetin on the proliferation and apoptosis of HeLa cells, HeLa cells were incubated with quercetin at different concentrations. Cell viability was evaluated by MTT assay, cell apoptosis was detected by Annexin-V/PI double labeled cytometry and DNA ladder assay. Cell cycle was flow cytometrically determined and the morphological changes of the cells were observed under a fluorescence microscope after Hoechst 33258 staining and the apoptosis-related proteins in the HeLa cells were assessed by Western blotting. The results showed that quercetin significantly inhibited the growth of HeLa cells and induced obvious apoptosis in vitro in a time- and dose-dependent manner. Moreover, quercetin induced apoptosis of HeLa cells in cell cycle-dependent manner because quercetin could induce arrest of HeLa cells at G0/G1 phase. Quercetin treatment down-regulated the expression of the PI3K and p-Akt. In addition, quercetin could down-regulate expression of bcl-2, up-regulate Bax, but exerted no effect on the overall expression of Akt. We are led to conclude that quercetin induces apoptosis via PI3k/Akt pathways, and quercetin has potential to be used as an anti-tumor agent against human cervix cancer.

  10. Feline mammary basal-like adenocarcinomas: a potential model for human triple-negative breast cancer (TNBC) with basal-like subtype

    PubMed Central

    2013-01-01

    Background Breast cancer is one of the leading causes of cancer deaths. Triple-negative breast cancer (TNBC), an immunophenotype defined by the absence of immunolabeling for estrogen receptor (ER), progesterone receptor (PR) and HER2 protein, has a highly aggressive behavior. A subpopulation of TNBCs exhibit a basal-like morphology with immunohistochemical positivity for cytokeratins 5/6 (CK5/6) and/or epidermal growth factor receptor (EGFR), and have a high incidence of BRCA (breast cancer susceptibility) mutations. Feline mammary adenocarcinomas (FMAs) are highly malignant and share a similar basal-like subtype. The purpose of this study was to classify FMAs according to the current human classification of breast cancer that includes evaluation of ER, PR and HER2 status and expression of basal CK 5/6 and EGFR. Furthermore, we selected triple negative, basal-like FMAs to screen for BRCA mutations similar to those described in human TNBC. Methods Twenty four FMAs were classified according to the current human histologic breast cancer classification including immunohistochemistry (IHC) for ER, PR HER2, CK5/6 and EGFR. Genetic alteration and loss of heterozygosity of BRCA1 and BRCA2 genes were analyzed in triple negative, basal-like FMAs. Results IHC for ER, PR and HER2 identified 14 of the 24 (58%) FMAs as a triple negative. Furthermore, 11of these 14 (79%) triple negative FMAs had a basal-like subtype. However, no genetic abnormalities were detected in BRCA1 and BRCA2 by direct sequencing and loss of heterozygosity analysis. Conclusion FMAs are highly aggressive neoplasms that are commonly triple negative and exhibit a basal-like morphology. This is similar to human TNBC that are also commonly classified as a basal-like subtype. While sequencing of a select number of triple negative, basal-like FMAs and testing for loss of heterozygosity of BRCA1 and BRCA2 did not identify mutations similar to those described in human TNBC, further in-depth evaluation is required

  11. Micropallet arrays for the capture, isolation and culture of circulating tumor cells from whole blood of mice engrafted with primary human pancreatic adenocarcinoma.

    PubMed

    Gach, Philip C; Attayek, Peter J; Whittlesey, Rebecca L; Yeh, Jen Jen; Allbritton, Nancy L

    2014-04-15

    Circulating tumor cells (CTCs) are important biomarkers of cancer progression and metastatic potential. The rarity of CTCs in peripheral blood has driven the development of technologies to isolate these tumor cells with high specificity; however, there are limited techniques available for isolating target CTCs following enumeration. A strategy is described to capture and isolate viable tumor cells from whole blood using an array of releasable microstructures termed micropallets. Specific capture of nucleated cells or cells expressing epithelial cell adhesion molecules (EpCAM) was achieved by functionalizing micropallet surfaces with either fibronectin, Matrigel or anti-EpCAM antibody. Surface grafting of poly(acrylic acid) followed by covalent binding of protein A/G enabled efficient capture of EpCAM antibody on the micropallet surface. MCF-7 cells, a human breast adenocarcinoma, were retained on the array surface with 90±8% efficiency when using an anti-EpCAM-coated array. To demonstrate the efficiency of tumor cell retention on micropallet arrays in the presence of blood, MCF-7 cells were mixed into whole blood and added to small arrays (71 mm(2)) coated with fibronectin, Matrigel or anti-EpCAM. These approaches achieved MCF-7 cell capture from ≤10 µL of whole blood with efficiencies greater than 85%. Furthermore, MCF-7 cells intermixed with 1 mL blood and loaded onto large arrays (7171 mm(2)) were captured with high efficiencies (≥97%), could be isolated from the array by a laser-based approach and were demonstrated to yield a high rate of colony formation (≥85%) after removal from the array. Clinical utility of this technology was shown through the capture, isolation and successful culture of CTCs from the blood of mice engrafted with primary human pancreatic tumors. Direct capture and isolation of living tumor cells from blood followed by analysis or culture will be a valuable tool for cancer cell characterization.

  12. Antitumor effects of the flavone chalcone: inhibition of invasion and migration through the FAK/JNK signaling pathway in human gastric adenocarcinoma AGS cells.

    PubMed

    Lin, Su-Hsuan; Shih, Yuan-Wei

    2014-06-01

    Chalcones (benzylideneacetophenone) are cancer-preventive food components found in a human diet rich in fruits and vegetables. In this study, we first report the chemopreventive effect of chalcone in human gastric adenocarcinoma cell lines: AGS. The results showed that chalcone could inhibit the abilities of the adhesion, invasion, and migration by cell-matrix adhesion assay, Boyden chamber invasion/migration assay, and wound-healing assay. Molecular data showed that the effect of chalcone in AGS cells might be mediated via sustained inactivation of the phosphorylation of focal adhesion kinase (FAK) and c-Jun N-terminal kinase 1 and 2 (JNK1/2) signal involved in the downregulation of the expressions of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Next, chalcone-treated AGS cells showed tremendous decrease in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, treating FAK small interfering RNA (FAK siRNA) and specific inhibitor for JNK (SP600125) to AGS cells could reduce the phosphorylation of JNK1/2 and the activity of MMP-2 and MMP-9. Our results revealed that chalcone significantly inhibited the metastatic ability of AGS cells by reducing MMP-2 and MMP-9 expressions concomitantly with a marked reduction on cell invasion and migration through suppressing and JNK signaling pathways. We suggest that chalcone may offer the application in clinical medicine.

  13. Determination using synchrotron radiation-based Fourier transform infrared microspectroscopy of putative stem cells in human adenocarcinoma of the intestine: corresponding benign tissue as a template.

    PubMed

    Ahmadzai, Abdullah A; Patel, Imran I; Veronesi, Giulia; Martin-Hirsch, Pierre L; Llabjani, Valon; Cotte, Marine; Stringfellow, Helen F; Martin, Francis L

    2014-01-01

    The epithelial-cell layer lining the two morphologically and functionally distinct segments of the mammalian intestinal tract, small intestine, and colon is constantly being renewed. This renewal is necessitated by a harsh lumen environment and is hypothesized to be driven by a small population of stem cells (SCs) that are believed to reside at the base of intestinal crypts. A lack of specific markers has hampered previous attempts to identify their exact location. We obtained tissue sections containing small intestine and colon crypts derived from normal (benign) or adenocarcinoma (AC) human intestine. The samples were floated onto BaF2 windows and analyzed using synchrotron radiation-based Fourier transform infrared microspectroscopy via an aperture size of 10 × 10 μm. Derived infrared (IR) spectral data was then analyzed using principal component analysis and/or linear discriminant analysis. Hypothesized cell types (as a function of aperture location along the length of individual crypts) within benign crypts were classed based on exploratory unsupervised IR spectral point clustering. Scores plots derived from individual small intestine crypts consistently generated one or two distinct spectra that clustered away from the remaining cell categories; these were retrospectively classed as "distinct base region" spectra. In these plots, a clear progression of locations along crypt lengths designated as from putative stem cells (SCs) to transit-amplifying (TA) cells to terminally differentiated (TD) cells was observed in benign small intestine and colon crypts. This progression of spectral points was crypt specific, pointing away from a unifying cell lineage model in human intestinal crypts. On comparison of AC-derived spectra versus corresponding benign, a subpopulation of AC-derived spectra suggested a putative SC-like spectral fingerprint; remaining IR spectra were classed as exhibiting TA cell-like or TD cell-like spectral characteristics. These observations

  14. Hop proanthocyanidins induce apoptosis, protein carbonylation, and cytoskeleton disorganization in human colorectal adenocarcinoma cells via reactive oxygen species

    PubMed Central

    Chung, Woon-Gye; Miranda, Cristobal L.; Stevens, Jan F.; Maier, Claudia S.

    2009-01-01

    Proanthocyanidins (PCs) have been shown to suppress the growth of diverse human cancer cells and are considered as promising additions to the arsenal of chemopreventive phytochemicals. An oligomeric mixture of PCs from hops (Humulus lupulus) significantly decreased cell viability of human colon cancer HT-29 cells in a dose-dependent manner. Hop PCs, at 50 or 100 μg/ml, exhibited apoptosis-inducing properties as shown by the increase in caspase-3 activity. Increased levels of intracellular reactive oxygen species (ROS) was accompanied by an augmented accumulation of protein carbonyls. Mass spectrometry-based proteomic analysis in combination with 2-alkenal-specific immunochemical detection identified β-actin and protein disulfide isomerase as major putative targets of acrolein adduction. Incubation of HT-29 cells with hop PCs resulted in morphological changes that indicated disruption of the actin cytoskeleton. PC-mediated hydrogen peroxide (H2O2) formation in the cell culture media was also quantified; but, the measured H2O2 levels would not explain the observed changes in the oxidative modifications of actin. These findings suggest new modes of action for proanthocyandins as antitumorgenic agents in human colon cancer cells, namely, promotion of protein oxidative modifications and cytoskeleton derangement. PMID:19271284

  15. Hop proanthocyanidins induce apoptosis, protein carbonylation, and cytoskeleton disorganization in human colorectal adenocarcinoma cells via reactive oxygen species.

    PubMed

    Chung, Woon-Gye; Miranda, Cristobal L; Stevens, Jan F; Maier, Claudia S

    2009-04-01

    Proanthocyanidins (PCs) have been shown to suppress the growth of diverse human cancer cells and are considered as promising additions to the arsenal of chemopreventive phytochemicals. An oligomeric mixture of PCs from hops (Humulus lupulus) significantly decreased cell viability of human colon cancer HT-29 cells in a dose-dependent manner. Hop PCs, at 50 or 100 microg/ml, exhibited apoptosis-inducing properties as shown by the increase in caspase-3 activity. Increased levels of intracellular reactive oxygen species (ROS) was accompanied by an augmented accumulation of protein carbonyls. Mass spectrometry-based proteomic analysis in combination with 2-alkenal-specific immunochemical detection identified beta-actin and protein disulfide isomerase as major putative targets of acrolein adduction. Incubation of HT-29 cells with hop PCs resulted in morphological changes that indicated disruption of the actin cytoskeleton. PC-mediated hydrogen peroxide (H2O2) formation in the cell culture media was also quantified; but, the measured H2O2 levels would not explain the observed changes in the oxidative modifications of actin. These findings suggest new modes of action for proanthocyandins as anticarcinogenic agents in human colon cancer cells, namely, promotion of protein oxidative modifications and cytoskeleton derangement.

  16. Immuno-detection of OCTN1 (SLC22A4) in HeLa cells and characterization of transport function.

    PubMed

    Pochini, Lorena; Scalise, Mariafrancesca; Indiveri, Cesare

    2015-11-01

    OCTN1 was immuno-detected in the cervical cancer cell HeLa, in which the complete pattern of acetylcholine metabolizing enzymes is expressed. Comparison of immuno-staining intensity of HeLa OCTN1 with the purified recombinant human OCTN1 allowed measuring the specific OCTN1 concentration in the HeLa cell extract and, hence calculating the HeLa OCTN1 specific transport activity that was about 10 nmol×min(-1)×mg protein(-1), measured as uptake of [(3)H]acetylcholine in proteoliposomes reconstituted with HeLa extract. This value was very similar to the specific activity of the recombinant protein. Acetylcholine transport was suppressed by incubation of the protein or proteoliposomes with the anti-OCTN1 antibody and was strongly inhibited by PLP and MTSEA, known inhibitors of OCTN1. The absence of ATP in the internal side of proteoliposomes strongly impaired transport function of both the HeLa and, as expected, the recombinant OCTN1. HeLa OCTN1 was inhibited by spermine, NaCl (Na(+)), TEA, γ-butyrobetaine, choline, acetylcarnitine and ipratropium but not by neostigmine. Besides acetylcholine, choline was taken up by HeLa OCTN1 proteoliposomes. The transporter catalyzed also acetylcholine and choline efflux which, differently from uptake, was not inhibited by MTSEA. Time course of [(3)H]acetylcholine uptake in intact HeLa cells was measured. As in proteoliposomes, acetylcholine transport in intact cells was inhibited by TEA and NaCl. Efflux of [(3)H]acetylcholine occurred in intact cells, as well. The experimental data concur in demonstrating a role of OCTN1 in transporting acetylcholine and choline in HeLa cells.

  17. In vitro anti-cancer activities of Job’s tears (Coix lachryma-jobi Linn.) extracts on human colon adenocarcinoma

    PubMed Central

    Manosroi, Aranya; Sainakham, Mathukorn; Chankhampan, Charinya; Manosroi, Worapaka; Manosroi, Jiradej

    2015-01-01

    The whole seed (W), endosperm (E) and hull (H) of five cultivars of Job’s tears (Coix lachryma-jobi Linn. var. ma-yuen Stapf) including Thai Black Phayao, Thai Black Loei, Laos Black Loei, Laos White Loei and Laos Black Luang Phra Bang were processed before solvent extraction by non-cooking, roasting, boiling and steaming Each part of the Job’s tears was extracted by the cold and hot process by refluxing with methanol and hexane. The total of 330 extracts included 150 methanol extracts and 180 hexane extracts were investigated for anti-proliferative activity on human colon adenocarcinoma cell line (HT-29) by the sulforhodamine B (SRB) assay. The extracts which gave high anti-proliferative activity were tested for apoptotic activity by acridine orange and ethidium bromide double staining and anti-oxidative activities including free radical scavenging and lipid peroxidation inhibition activities. The extract from the hull of Thai Black Loei roasted before extracting by hot methanol (M-HTBL-R2) showed the highest anti-proliferative activity on HT-29 with the IC50 values of 11.61 ± 0.95 μg/ml, while the extract from the non-cooked hull of Thai Black Loei by cold methanol extraction (M-HTBL-N1) gave the highest apoptosis (8.17 ± 1.18%) with no necrosis. In addition, M-HTBL-R2 and M-HTBL-N1 indicated free radical scavenging activity at the SC50 values of 0.48 ± 0.12 and 2.47 ± 1.15 mg/ml, respectively. This study has demonstrated the anti-colorectal cancer potential of the M-HTBL-R2 and M-HTBL-N1 extracts. PMID:26981007

  18. The inhibitory effect of flavonoids on interleukin-8 release by human gastric adenocarcinoma (AGS) cells infected with cag PAI (+) Helicobacter pylori

    PubMed Central

    Szendzielorz, Kornelia; Mazur, Bogdan; Król, Wojciech

    2016-01-01

    Introduction It is well known that the presence of Helicobacter pylori in the stomach induces gastritis and causes an immune response. Exposure of gastric epithelial cell lines to this germ induces the secretion of interleukin-8 (IL-8), which is a potent PMN-activating chemotactic cytokine. Interleukin-8 is usually elevated in gastric biopsy samples of patients with H. pylori-associated gastritis and significantly increases in the supernatant of in vitro cultivated biopsy samples of gastric mucosa with active H. pylori gastritis. Interleukin-8 is an activating factor for leucocytes and other pro-inflammatory factors, free radicals, and proteolytic enzymes. That is why natural compounds potentially useful in therapy are still investigated – among them flavonoids. They reveal anti-oxidative and anti-inflammatory activities and significantly inhibit the gastric mucosa damage. The aim of the study Was the estimation of the anti-inflammatory effects of flavonoids on H. pylori-induced activation of human gastric adenocarcinoma cells (AGS). After infection of AGS cells by cag PAI (+) H. pylori in vitro, secretion of IL-8, effects of flavonoids on viability of AGS cells, and effects of flavonoids on increase of H. pylori were determined. Such flavones as chrysin, quercetin, kaemferide, flavanone, galangin, and kaempferol were examined. Results This study has shown an inhibitory effect of flavonoids on the release of IL-8 through infected AGS cells (except chrysin), and no toxic effects to AGS cells were observed. Galangin revealed antibacterial effects against H. pylori. Flavonoids limit the inflammatory process through the inhibition of IL-8 release in infected AGS cells with H. pylori. The strongest inhibitor of IL-8 was galangin. PMID:27833438

  19. Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest

    PubMed Central

    Khan, Fazal; Ahmed, Farid; Pushparaj, Peter Natesan; Abuzenadah, Adel; Kumosani, Taha; Barbour, Elie; AlQahtani, Mohammed; Gauthaman, Kalamegam

    2016-01-01

    Introduction Phoenix dactylifera L (Date palm) is a native plant of the Kingdom of Saudi Arabia (KSA) and other Middle Eastern countries. Ajwa date has been described in the traditional and alternative medicine to provide several health benefits including anticholesteremic, antioxidant, hepatoprotective and anticancer effects, but most remains to be scientifically validated. Herein, we evaluated the anticancer effects of the Methanolic Extract of Ajwa Date (MEAD) on human breast adenocarcinoma (MCF7) cells in vitro. Methods MCF7 cells were treated with various concentrations (5, 10, 15, 20 and 25 mg/ml) of MEAD for 24, 48 and 72 h and changes in cell morphology, cell cycle, apoptosis related protein and gene expression were studied. Results Phase contrast microscopy showed various morphological changes such as cell shrinkage, vacuolation, blebbing and fragmentation. MTT (2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay demonstrated statistically significant dose-dependent inhibitions of MCF7 cell proliferation from 35% to 95%. Annexin V-FITC and TUNEL assays showed positive staining for apoptosis of MCF7 cells treated with MEAD (15 mg and 25 mg for 48 h). Flow cytometric analyses of MCF7 cells with MEAD (15 mg/ml and 20 mg/ml) for 24 h demonstrated cell cycle arrest at 'S' phase; increased p53, Bax protein expression; caspase 3activation and decreased the mitochondrial membrane potential (MMP). Quantitative real time PCR (qRT-PCR) analysis showed up-regulation of p53, Bax, Fas, and FasL and down-regulation of Bcl-2. Conclusions MEAD inhibited MCF7 cells in vitro by the inducing cell cycle arrest and apoptosis. Our results indicate the anticancer effects of Ajwa dates, which therefore may be used as an adjunct therapy with conventional chemotherapeutics to achieve a synergistic effect against breast cancer. PMID:27441372

  20. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell.

    PubMed

    Chen, Ni; Wu, Lijun; Yuan, Hang; Wang, Jun

    2015-01-01

    Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549.

  1. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell

    PubMed Central

    Chen, Ni; Wu, Lijun; Yuan, Hang; Wang, Jun

    2015-01-01

    Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549. PMID:26078725

  2. Cytotoxicity of Manganese (III) Complex in Human Breast Adenocarcinoma Cell Line Is Mediated by the Generation of Reactive Oxygen Species Followed by Mitochondrial Damage.

    PubMed

    Al-Anbaky, Qudes; Al-Karakooly, Zeiyad; Kilaparty, Surya P; Agrawal, Megha; Albkuri, Yahya M; RanguMagar, Ambar B; Ghosh, Anindya; Ali, Nawab

    2016-11-01

    Manganese (Mn) complexes are widely studied because of their important catalytic properties in synthetic and biochemical reactions. A Mn (III) complex of an amidoamine ligand was synthesized using a tetradentate amidoamine ligand. In this study, the Mn (III) complex was evaluated for its biological activity by measuring its cytotoxicity in human breast adenocarcinoma cell line (MCF-7). Cytotoxic effects of the Mn (III) complex were determined using established biomarkers in an attempt to delineate the mechanism of action and the utility of the complex as a potential anticancer drug. The Mn (III) complex induces cell death in a dose- and time-dependent manner as shown by microculture tetrazolium assay, a measure of cytotoxic cell death. Our results demonstrated that cytotoxic effects were significantly increased at higher concentrations of Mn (III) complex and with longer time of treatment. The IC50 (Inhibitor concentration that results in 50% cell death) value of Mn (III) complex in MCF-7 cells was determined to be 2.5 mmol/L for 24 hours of treatment. In additional experiments, we determined the Mn (III) complex-mediated cell death was due to both apoptotic and nonspecific necrotic cell death mechanisms. This was assessed by ethidium bromide/acridine orange staining and flow cytometry techniques. The Mn (III) complex produced reactive oxygen species (ROS) triggering the expression of manganese superoxide dismutase 1 and ultimately damaging the mitochondrial function as is evident by a decline in mitochondrial membrane potential. Treatment of the cells with free radical scavenger, N, N-dimethylthiourea decreased Mn (III) complex-mediated generation of ROS and attenuated apoptosis. Together, these results suggest that the Mn (III) complex-mediated MCF-7 cell death utilizes combined mechanism involving apoptosis and necrosis perhaps due to the generation of ROS.

  3. Photodynamic therapy mediated antiproliferative activity of some metal-doped ZnO nanoparticles in human liver adenocarcinoma HepG2 cells under UV irradiation.

    PubMed

    Ismail, Amel F M; Ali, Mamdouh M; Ismail, Laila F M

    2014-09-05

    Photodynamic therapy (PDT) is a promising new modality for the treatment of cancer through generation of reactive oxygen species (ROS). In this work, human liver adenocarcinoma cells HepG2 were treated with zinc oxide nanoparticles (ZnO-NPs), metal-doped-ZnO-NPs: Fe-ZnO-NPs Ag-ZnO-NPs, Pb-ZnO-NPs, and Co-ZnO-NPs, Silica-coated ZnO-NPs, titanium dioxide nanoparticles (TiO2-NPs), titanium dioxide nano-tubes (TiO2-NTs) and ZnO-NPs/TiO2-NTs nanocomposite under UV irradiation. Doxorubicin was used as a standard drug. The results demonstrated that the ZnO-NPs, Fe-ZnO-NPs, Ag-ZnO-NPs, Pb-ZnO-NPs, and Co-ZnO-NPs showed cytotoxicity against HepG2 cells, with the median growth inhibitory concentrations (IC50) 42.60, 37.20, 45.10, 77.20 and 56.50 μg/ml, respectively, as compared to doxorubicin (IC50: 20.10 μg/ml). Treatment of the cancer cells with ZnO-NPs, Fe-ZnO-NPs, Ag-ZnO-NPs, Pb-ZnO-NPs, and Co-ZnO-NPs resulted in a significant increase in the activity of SOD and the levels of H2O2 and NO than those of control, accompanied with a significant decrease in the activity of CAT and GSH-Px. Also, depletion of reduced GSH, total protein and nucleic acids levels was observed. In conclusion, metal-doped ZnO-NPs may induce antiproliferative effect on HepG2 cells under UV-irradiation due to generation of ROS. Therefore, they could be included in modern clinical trials after in vivo more investigations, using photodynamic therapy technique.

  4. Inhibition of NF-kappaB by combination therapy with parthenolide and hyperthermia and kinetics of apoptosis induction and cell cycle arrest in human lung adenocarcinoma cells.

    PubMed

    Hayashi, Sachiko; Sakurai, Hiroaki; Hayashi, Akio; Tanaka, Yukie; Hatashita, Masanori; Shioura, Hiroki

    2010-01-01

    We investigated the mechanisms of thermosensitization related to combination therapy with sesquiterpene lactone parthenolide (PTL), a nuclear factor-kappaB (NF-kappaB) inhibitor, and hyperthermia using human lung adenocarcinoma cells A549. The kinetics of apoptosis induction and cell cycle of cells treated with PTL, heating, and combined treatment were examined by flow cytometric analysis. The flow cytometric distribution was calculated and expressed as a percentage. The ratios of the sub-G1 division, used to determine the induction of apoptosis, increased significantly with the combination therapy. Furthermore, the ratios of G2/M division increased and the ratios of G0/G1 division decreased, indicating cell cycle arrest in G2/M. The cell phase response to PTL by A549 cells synchronized in the G1/S border with hydroxyurea was also analyzed. PTL showed remarkable cytotoxicity at the S phase of the cell cycle in A549 cells at all concentrations as well as with hyperthermia, thus PTL reduced the number of cells in the proliferation phase. Inhibition of intracellular transcription factor NF-kappaB activation in A549 cells with various incubation periods after treatments with PTL, heating and combined treatment was examined by Western blot analysis. Unexpectedly, PTL alone did not inhibit NF-kappaB activation in cells stimulated with TNF-alpha, while heating alone inhibited NF-kappaB early after treatment and that effect faded over time. In contrast, PTL combined with heating completely inhibited NF-kappaB activation. Our results demonstrated that PTL and heating in combination cause significant thermosensitization of A549 cells via induction of apoptosis or cell cycle arrest in G2/M by inhibiting NF-kappaB activation in a synergistic manner.

  5. Comparison of growth inhibition of a human ovarian adenocarcinoma cell line by free monoclonal antibodies and their corresponding antibody-recombinant ricin A chain immunotoxins.

    PubMed

    Ettenson, D; Sheldon, K; Marks, A; Houston, L L; Baumal, R

    1988-01-01

    Four mouse monoclonal antibodies (mAb) (8C, IgG2a; M2A, IgG2a; M2D, IgG2b; 10B, IgG1) directed against the human ovarian adenocarcinoma cell line HEY were compared for their ability in the free form and as immunotoxins made with recombinant ricin A chain (rRA) to inhibit the growth of HEY cells. For in vitro studies cultured HEY cells were assayed for protein synthesis and plated in agarose to form colonies, and for in vivo studies they were injected intraperitoneally (i.p.) into BALB/c nu/nu (nude) mice at a challenge dose (3 X 10(5) cells) which produced carcinomatosis with ascites, leading to death 30 days following injection. In the free form, mAB 8C was the most potent in inhibiting colony formation in the complement (C)-mediated and ADCC (antibody-dependent cell-mediated cytoxicity) assays in vitro. This mAb was also the only one capable of prolonging survival of mice, both in tumor cell neutralization, and tumor growth inhibition experiments. The four mAb-rRA immunotoxins were effective in inhibiting protein synthesis in vitro in the presence of 10(-7) M monensin. However, in vivo, only 8C-rRA and M2A-rRA were capable of prolonging survival of mice in tumor growth inhibition experiments. Our results suggest that mAb 8C might be useful in the free form and as an 8C-rRA immunotoxin for i.p. immunotherapy of ovarian cancer.

  6. Cyto- and genotoxicity of a vanadyl(IV) complex with oxodiacetate in human colon adenocarcinoma (Caco-2) cells: potential use in cancer therapy.

    PubMed

    Di Virgilio, Ana L; Rivadeneira, Josefina; Muglia, Cecilia I; Reigosa, Miguel A; Butenko, Nataliya; Cavaco, Isabel; Etcheverry, Susana B

    2011-12-01

    The complex of vanadyl(IV) cation with oxodiacetate, VO(oda) caused an inhibitory effect on the proliferation of the human colon adenocarcinoma cell line Caco-2 in the range of 25-100 μM (P < 0.001). This inhibition was partially reversed by scavengers of free radicals. The difference in cell proliferation in the presence and the absence of scavengers was statistically significant in the range of 50-100 μM (P < 0.05). VO(oda) altered lysosomal and mitochondria metabolisms (neutral red and MTT bioassays) in a dose-response manner from 10 μM (P < 0.001). Morphological studies showed important transformations that correlated with the disassembly of actin filaments and a decrease in the number of cells in a dose response manner. Moreover, VO(oda) caused statistically significant genotoxic effects on Caco-2 cells in the low range of concentration (5-25 μM) (Comet assay). Increment in the oxidative stress and a decrease in the GSH level are the main cytotoxic mechanisms of VO(oda). These effects were partially reversed by scavengers of free radicals in the range of 50-100 μM (P < 0.05). Besides, VO(oda) interacted with plasmidic DNA causing single and double strand cleavage, probably through the action of free radical species. Altogether, these results suggest that VO(oda) is a good candidate to be evaluated for alternative therapeutics in cancer treatment.

  7. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Pujari, Geetanjali; Semwal, Manoj K.; Sarma, Asitikantha; Avasthi, Devesh Kumar

    2013-04-01

    Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The γ-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells.

  8. Bisdemethoxycurcumin exerts pro-apoptotic effects in human pancreatic adenocarcinoma cells through mitochondrial dysfunction and a GRP78-dependent pathway

    PubMed Central

    Yang, Haopeng; Fan, Shengjun; An, Yu; Wang, Xin; Pan, Yan; Xiaokaiti, Yilixiati; Duan, Jianhui; Li, Xin; Tie, Lu; Ye, Min; Li, Xuejun

    2016-01-01

    Pancreatic cancer is a highly aggressive malignancy, which is intrinsically resistant to current chemotherapies. Herein, we investigate whether bisdemethoxycurcumin (BDMC), a derivative of curcumin, potentiates gemcitabine in human pancreatic cancer cells. The result suggests that BDMC sensitizes gemcitabine by inducing mitochondrial dysfunctions and apoptosis in PANC-1 and MiaPaCa-2 pancreatic cancer cells. Utilizing two-dimensional gel electrophoresis and mass spectrometry, we identify 13 essential proteins with significantly altered expressions in response to gemcitabine alone or combined with BDMC. Protein-protein interaction network analysis pinpoints glucose-regulated protein 78 (GRP78) as the key hub activated by BDMC. We then reveal that BDMC upregulates GRP78 and facilitates apoptosis through eIF2α/CHOP pathway. Moreover, DJ-1 and prohibitin, two identified markers of chemoresistance, are increased by gemcitabine in PANC-1 cells. This could be meaningfully reversed by BDMC, suggesting that BDMC partially offsets the chemoresistance induced by gemcitabine. In summary, these findings show that BDMC promotes apoptosis through a GRP78-dependent pathway and mitochondrial dysfunctions, and potentiates the antitumor effect of gemcitabine in human pancreatic cancer cells. PMID:27845899

  9. Quantitative autoradiographic evaluation of the influence of protein dose on monoclonal antibody distribution in human ovarian adenocarcinoma xenografts.

    PubMed

    Yang, F E; Brown, R S; Koral, K F; Clavo, A C; Jackson, G A; Wahl, R L

    1992-01-01

    We studied the effect of monoclonal antibody protein dose on the uniformity of radioiodinated antibody distribution within tumor masses using quantitative autoradiography. Groups (n = 11-13/group) of athymic nude mice with subcutaneous HTB77 human ovarian carcinoma xenografts were injected intraperitoneally with an 125I-labeled anticarcinoma-associated antigen murine monoclonal antibody, 5G6.4 using a high or a low protein dose (500 micrograms or 5 micrograms). At 6 days post-injection the macroscopic and microscopic intratumoral biodistribution of radiolabeled antibody was determined. The degree of heterogeneity of the labeled antibody distribution within each tumor was quantified and expressed as the coefficient of variation (CV) of the activity levels in serial histological sections. Tumors from mice given the 500-micrograms protein doses had substantially lower CV values, 0.327 +/- 0.027, than did tumors from animals given 5-micrograms protein doses, 0.458 +/- 0.041, (P = 0.0078), indicating that the higher protein dose resulted in more homogeneous distribution of radioactivity in tumors than did the lower dose. While the percentage of the injected dose reaching the tumor was comparable between groups, injecting the higher dose of protein resulted in significantly lower tumor to non-tumor uptake ratios than those obtained for the lower protein dose. These data indicate, in this system, that to achieve more uniform intratumoral antibody (and radiation for radioimmunotherapy) delivery, a relatively high protein dose must be administered. However, to obtain this increased uniformity, a substantial drop in tumor/background uptake ratios was seen. Quantitative autoradiographic evaluation of human tumor xenografts is a useful method to assess the intratumoral distribution of antibodies.

  10. Differential DNA sequence deletions from chromosomes 3, 11, 13, and 17 in squamous-cell carcinoma, large-cell carcinoma, and adenocarcinoma of the human lung

    SciTech Connect

    Weston, A.; Willey, J.C.; Modali, R.; Sugimura, H.; McDowell, E.M.; Resau, J.; Light, B.; Haugen, A.; Mann, D.L.; Trump, B.F.; Harris, C.C. )

    1989-07-01

    Activation of protooncogens and inactivation of putative tumor suppressor genes are genetic lesions considered to be important in lung carcinogenesis. Fifty-four cases of non-small-cell lung cancer (23 adenocarcinomas, 23 squamous-cell carcinomas, and 8 large-cell carcinomas) were examined for loss of DNA sequences at 13 polymorphic genetic loci. Loss of heterozygosity was seen more frequently in squamous-cell carcinoma than in adenocarcinoma. The loss of DNA sequences from the short arm of chromosome 17 (D17S1 locus) was detected in 8 of 9 heterozygous cases of squamous-cell carcinoma and in only 2 of 11 heterozygous cases of adenocarcinomas. Loss of DNA sequences from chromosome 3 was seen in 16 of 31 cases where the constitutive DNA was heterozygous-i.e., informative. Loss of heterozygosity at the chromosome 13q locus, D13S3, was seen in 9 of 21 informative cases, and in 2 cases, both adenocarcinomas, duplication of the intact DNA sequences suggested the possibility that mitotic recombination had occurred. Frequent DNA sequence deletions, including those from chromosome 17, in squamous-cell carcinomas may reflect the extensive mutagenic and clastogenic effects of tobacco smoke that may lead to inactivation of putative tumor-suppressor genes.

  11. Cellular stress induced by photodynamic reaction with CoTPPS and MnTMPyPCl5 in combination with electroporation in human colon adenocarcinoma cell lines (LoVo and LoVoDX).

    PubMed

    Kulbacka, J; Kotulska, M; Rembiałkowska, N; Choromańska, A; Kamińska, I; Garbiec, A; Rossowska, J; Daczewska, M; Jachimska, B; Saczko, J

    2013-11-01

    Two porphyrins, CoTPPS and MnTMPyPCl5, were tested for their photodynamic activity and potential novel use in a therapy of human cancers. We investigated an effect of photodynamic reaction (PDR), electroporation (EP) and their combination (electro-photodynamic reaction [EP-PDR]) on human colon adenocarcinoma cell lines (LoVo and resistant to doxorubicin LoVoDX), human breast adenocarcinoma (wild type MCF-7/WT and resistant to doxorubicin MCF-7/DOX), and human melanoma (Me45). The efficiency of macromolecules transport was examined with cytofluorymetry by assessing the degree of propidium iodide (PI) penetration. Additionally, cellular ultrastructure after EP was evaluated. We determined cyto- and photo-cytotoxic effect on the cells viability (MTT assay) after standard PDR and PDR combined with EP. Intracellular distribution and mitochondrial colocalization of both porphyrins was also performed. The experiments proved that both complexes exhibit desirable photodynamic properties on LoVo LoVoDX cells, and EP effectively supports photodynamic method in this type of cancer. The application of EP provided shorter time of incubation (only 10 min) and enhanced effect of applied therapy. The porphyrins did not affect the MCF-7 and Me45 cell lines.

  12. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line.

    PubMed

    Adey, Andrew; Burton, Joshua N; Kitzman, Jacob O; Hiatt, Joseph B; Lewis, Alexandra P; Martin, Beth K; Qiu, Ruolan; Lee, Choli; Shendure, Jay

    2013-08-08

    The HeLa cell line was established in 1951 from cervical cancer cells taken from a patient, Henrietta Lacks. This was the first successful attempt to immortalize human-derived cells in vitro. The robust growth and unrestricted distribution of HeLa cells resulted in its broad adoption--both intentionally and through widespread cross-contamination--and for the past 60 years it has served a role analogous to that of a model organism. The cumulative impact of the HeLa cell line on research is demonstrated by its occurrence in more than 74,000 PubMed abstracts (approximately 0.3%). The genomic architecture of HeLa remains largely unexplored beyond its karyotype, partly because like many cancers, its extensive aneuploidy renders such analyses challenging. We carried out haplotype-resolved whole-genome sequencing of the HeLa CCL-2 strain, examined point- and indel-mutation variations, mapped copy-number variations and loss of heterozygosity regions, and phased variants across full chromosome arms. We also investigated variation and copy-number profiles for HeLa S3 and eight additional strains. We find that HeLa is relatively stable in terms of point variation, with few new mutations accumulating after early passaging. Haplotype resolution facilitated reconstruction of an amplified, highly rearranged region of chromosome 8q24.21 at which integration of the human papilloma virus type 18 (HPV-18) genome occurred and that is likely to be the event that initiated tumorigenesis. We combined these maps with RNA-seq and ENCODE Project data sets to phase the HeLa epigenome. This revealed strong, haplotype-specific activation of the proto-oncogene MYC by the integrated HPV-18 genome approximately 500 kilobases upstream, and enabled global analyses of the relationship between gene dosage and expression. These data provide an extensively phased, high-quality reference genome for past and future experiments relying on HeLa, and demonstrate the value of haplotype resolution for

  13. In Vitro Ultramorphological Assessment of Apoptosis Induced by Zerumbone on (HeLa)

    PubMed Central

    Abdel Wahab, Siddig Ibrahim; Abdul, Ahmad Bustamam; Alzubairi, Adel Sharaf; Mohamed Elhassan, Manal; Mohan, Syam

    2009-01-01

    Zerumbone (ZER), a potential anticancer compound, isolated from the fresh rhizomes of Zingiber zerumbet. In this investigation, the cytotoxic properties of ZER were evaluated, on cancer cells of human cervix (HeLa), breast and ovary, and normal cells of Chinese Hamster ovary, using MTT assay. Apoptogenic effects of ZER on HeLa were studied using fluorescence microscopy (AO/PI double staining), scanning and transmission electron microscopy (SEM and TEM), and colorimetric assay of the apoptosis promoter enzyme, caspase-3. The results of MTT assay showed that ZER has less effect on normal cells compared to cancer cells. The lowest IC50 of ZER was observed on HeLa cells. Cytological observations showed nuclear and chromatin condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, holes, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double staining of AO/PI, SEM and TEM. Statistical analysis (two-tailed t-test) of differential counting of 200 cells under fluorescence microscope revealed significant difference in apoptotic cells populations between treated and untreated HeLa cells. In addition, ZER has increased the cellular level of caspase-3 on the treated HeLa cells. It could be concluded that ZER was able to produce distinctive morphological features of cell death that corresponds to apoptosis. PMID:19343171

  14. HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells

    SciTech Connect

    Liu, Junye; Zhang, Jing; Wang, Xiaowu; Li, Yan; Chen, Yongbin; Li, Kangchu; Zhang, Jian; Yao, Libo; Guo, Guozhen

    2010-07-15

    Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.

  15. Dynamic behavior of histone H1 microinjected into HeLa cells

    SciTech Connect

    Wu, L.H.; Kuehl, L.; Rechsteiner, M.

    1986-01-01

    Histone H1 was purified from bovine thymus and radiolabeled with tritium by reductive methylation or with /sup 125/I using chloramine-T. Red blood cell-mediated microinjection was then used to introduce the labeled H1 molecules into HeLa cells synchronized in S phase. The injected H1 molecules rapidly entered HeLa nuclei, and a number of tests indicate that their association with chromatin was equivalent to that of endogenous histone H1. The injected molecules copurified with HeLa cell nucleosomes, exhibited a half-life of approx.100h, and were hyperphosphorylated at mitosis. When injected HeLa cells were fused with mouse 3T3 fibroblasts < 10% of the labeled H1 molecules migrated to mouse nuclei during the next 48 h. Despite their slow rate of migration between nuclei, the injected H1 molecules were evenly distributed on mouse and human genomes soon after mitosis of HeLa-3T3 heterokaryons. These results suggest that although most histone H1 molecules are stably associated with interphase chromatin, they undergo extensive redistribution after mitosis.

  16. Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2siRNA3 enhances the sensitivity to cisplatin

    SciTech Connect

    Yu Yan . E-mail: gyfyuyan@hotmail.com; Sun Ping . E-mail: sunny19750502@hotmail.com; Sun Lichun; Liu Guoyi; Chen Guohua . E-mail: olivebranch_82@hotmail.com; Shang Lihua . E-mail: leval1000@sina.com; Wu Hongbo . E-mail: whpwl@sina.com; Hu Jing; Li Yue; Mao Yinling; Sui Guangjie; Sun Xiwen

    2006-01-06

    To investigate the biological effect of mdm2 in human colorectal adenocarcinoma LoVo cells, three mdm2siRNA constructions were recombinated and transient transfected into human colorectal adenocarcinoma LoVo cells with low differentiation character in vitro. The results showed that mdm2siRNA3 reduced mRNA level of mdm2 and protein level of mdm2, leading to proliferation inhibition on LoVo cells, and reduced tumor growth in nude mice. It was found that depletion of MDM2 in this pattern promoted apoptosis of LoVo cells and Cisplatin (DDP) treated in the mdm2siRNA3 transfected cell population would result in a substantial decrease by MTT colorimetry. Decreasing the MDM2 protein level in LoVo cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, which indicated that mdm2 gene played a definite role in the development and aggressiveness of human colon carcinoma. It also could be a therapeutic target in colorectal carcinoma. The synergistic activation of RNAi and cell toxicity agents indicated that the combination of chemotherapy and gene therapy will be a promising approach in the future.

  17. CpG-ODN 7909 increases radiation sensitivity of radiation-resistant human lung adenocarcinoma cell line by overexpression of Toll-like receptor 9.

    PubMed

    Yan, Li; Xu, Guoxiong; Qiao, Tiankui; Chen, Wei; Yuan, Sujuan; Li, Xuan

    2013-09-01

    Radioresistance is one of the main reasons for the failure of radiotherapy in lung cancer. The aim of this study was to establish a radiation-resistant lung cancer cell line, to evaluate whether CpG oligodeoxyribonucleotide (CpG-ODN) 7909 could increase its radiosensitivity and to explore the relevant mechanisms. The radioresistant cell line, referred to as R-A549, was generated by reduplicative fractionated irradiation from the human lung adenocarcinoma cell line A549. The radioresistance of R-A549 cells were confirmed by the Cell Counting Kit-8 (CCK-8), cell viability assay, and clonogenic assay. Cell growth kinetics, morphological feature, and radiosensitivity were compared between the original A549 cells and R-A549 cells treated with or without CpG-ODN 7909 or radiation. To further explore the potential mechanisms of radiosensitivity, the cell cycle distributions and the expression of Toll-like receptor 9 (TLR-9) were examined by Western blot and flow cytometry. The R-A549 cell line was generated and its radioresistance was further confirmed. CpG-ODN 7909 was found to increase much more radiosensitivity of R-A549 cells under combined treatments with CpG-ODN 7909 and radiation compared with its control group without any treatments. They presented their respective D0 1.33 ± 0.20 Gy versus 1.76 ± 0.25 Gy with N 3.44 ± 1.01 versus 4.96 ± 0.32. Further, there was a larger cell population of R-A549 cells under combined treatment in the G2/M phase compared with the control group after treatment with CpG-ODN7909 or radiation alone at 24 and 48 hour. The expression level of TLR-9 in R-A549 cells was found higher than in A549 cells. These results suggested that CpG-ODN 7909 increased the radiosensitivity of R-A549 cells, which might be mediated via the upregulated TLR-9 and prolonged cell cycle arrest in the G2/M phase compared with A549 cells.

  18. Microenvironment influence on human colon adenocarcinoma phenotypes and matrix metalloproteinase-2, p53 and β-catenin tumor expressions from identical monoclonal cell tumor in the orthotopic model in athymic nude rats.

    PubMed

    Priolli, Denise Gonçalves; Abrantes, Ana Margarida; Neves, Silvia; Gonçalves, Ana Cristina; Lopes, Camila Oliveira; Martinez, Natalia Peres; Cardinalli, Izilda Aparecida; Ribeiro, Ana Bela Sarmento; Botelho, Maria Filomena

    2014-03-01

    The present study aims to identify differences between left and right colon adenocarcinoma arising from identical clonal cell and to find out if microenvironment has any influence on matrix metalloproteinase-2 (MMP2), p53 and β-catenin tumor expressions. MATERIAL AND METHODS. Rats (RNU) were submitted to cecostomy to obtain the orthotopic model of right colon tumor (n = 10), while for the left colon model (n = 10), a colon diversion and distal mucous fistula in the descending colon was used. Cultivated human colon adenocarcinoma cells (WiDr) were inoculated in stomas submucosa. Histopathological analysis, real-time reverse transcription-PCR for β-catenin, p53 and MMP2, as well as immunohistochemical analysis for p53 and β-catenin expression were conducted. Central tendency, variance analysis and the Livak delta-delta-CT method were used for statistical analysis, adopting a 5% significance level. RESULTS. All tumors from the left colon exhibited infiltrative ulceration, while in the right colon tumor growth was predominantly exophytic (67%). In the left colon, tumor growth was undifferentiated (100%), while it was moderately differentiated in the right colon (83%). In right colon tumors, MMP2, p53, and β-catenin gene expressions were higher than compared to left colon (p = 4.59354E-05, p = 0.0035179, p = 0.00093798, respectively, for MMP2, p53 and β-catenin). β-catenin and p53 results obtained by real-time polymerase chain reaction were confirmed by immunohistochemistry assay (p = 0.01 and p = 0.001, respectively, for β-catenin and p53). CONCLUSION. Left and right human colon adenocarcinomas developed in animal models have distinct phenotypes even when they have the same clonal origin. Microenvironment has influenced p53, β-catenin, and MMP2 expression in animal models of colon cancer.

  19. Villoglandular papillary adenocarcinoma: case report

    PubMed Central

    Salek, Ghizlane; Lalya, Issam; Rahali, Driss Moussaoui; Dehayni, Mohamed

    2016-01-01

    Villoglandular papillary adenocarcinoma (VPA) is a very rare subtype of adenocarcinoma of the uterine cervix, but a well-recognized variant of cervical adenocarcinoma with a favorable prognosis and generally occurring in women of child-bearing age. Herein, we report a case of VPA diagnosed and managed successfully with conservative measure. This management is particularly desirable in young women to preserve reproductive capability. PMID:28293348

  20. In vitro antiproliferativeactivity of Annona reticulata roots on human cancer cell lines

    PubMed Central

    Suresh, H. M.; Shivakumar, B.; Hemalatha, K.; Heroor, S. S.; Hugar, D. S.; Rao, K. R. S. Sambasiva

    2011-01-01

    Background: The phytochemical and pharmacological activities of Annona reticulata components suggest a wide range of clinical application in lieu of cancer chemotherapy. Materials and Methods: Ethanol and aqueous extracts of roots of Annona reticulata Linn were studied for their in vitro antiproliferative activity on A-549 (human lung carcinoma), K-562 (human chronic myelogenous leukemia bone marrow), HeLa (human cervix) and MDA-MB (human adenocarcinoma mammary gland) cancer cell lines by MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] colorimetric assay. Results: The ethanol extract exhibited a prominent inhibitory effect against A-549, K-562, HeLa and MDA-MB human cancer cell lines at a concentration range between 10 and 40 μg/ml, whereas the aqueous extract showed a lower activity at the same concentration. Simultaneously, the effect of the ethanol extract toward the inhibition of Vero cell line proliferation was lower in comparison with the cancer cell lines. Conclusion: The significant antiproliferative activity of the ethanol extract of Annona reticulata roots against A-549, K-562, HeLa and MDA-MB human cancer cell lines may be attributed toward the collective presence of acetogenins, alkaloids and lower inhibitory effect on Vero cell line, which suggests Annona reticulata be used as a chemopreventive agent in cancer therapy. PMID:21731389

  1. Effect of a bispidinone analog on mitochondria‑mediated apoptosis in HeLa cells.

    PubMed

    Yi, Myeongjin; Parthiban, Paramasivam; Hwang, Jiyoung; Zhang, Xin; Jeong, Hyunjin; Park, Dong Ho; Kim, Dong-Kyoo

    2014-01-01

    The present study was carried out to investigate the effect of 2,4,6,8-tetraaryl-3,7-diazabicyclo[3.3.1]nonan-9-one (bispidinone) analogs on the in vitro growth of human cervical carcinoma (HeLa) cells. A series of 11 bispidinone analogs was synthesized with substituents, e.g., fluoro/methyl/ethyl/isopropyl/thiomethyl/methoxy groups, at various positions. These compounds were synthesized to identify which substituent and position induced the strongest cytotoxic effect in cancer cells. Among these synthetics, analog 9, which contains methoxy groups, had the most significant cytotoxic effect on HeLa cells, and its IC50 value was less than 13 µM. A WST-8 assay also showed that analog 9 inhibited the proliferation of HeLa cells. By using DNA content analysis, we found that analog 9 induced sub-G1 and G1 phase arrest in a time-dependent manner. A [3H]-thymidine incorporation assay suggested that analog 9 inhibited DNA replication in HeLa cells. On performing light microscopy, morphological changes such as cellular shrinkage and disruption, which are apoptotic features, were observed in HeLa cells. Annexin V/propidium iodide double staining and rhodamine-123 staining showed that analog 9 induced apoptosis and disrupted the intracellular mitochondrial membrane potential in HeLa cells. The western blot analysis results suggested that analog 9 induced mitochondria-mediated apoptosis. In addition, we have shown that analog 9 may play a role in the Fas signaling apoptotic pathway.

  2. Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells.

    PubMed

    Canonico, B; Campana, R; Luchetti, F; Arcangeletti, M; Betti, M; Cesarini, E; Ciacci, C; Vittoria, E; Galli, L; Papa, S; Baffone, W

    2014-08-01

    Campylobacter jejuni is the most common cause of bacterial gastroenteritis in humans. The synthesis of cytolethal distending toxin appears essential in the infection process. In this work we evaluated the sequence of lethal events in HeLa cells exposed to cell lysates of two distinct strains, C. jejuni ATCC 33291 and C. jejuni ISS3. C. jejuni cell lysates (CCLys) were added to HeLa cell monolayers which were analysed to detect DNA content, death features, bcl-2 and p53 status, mitochondria/lysosomes network and finally, CD54 and CD59 alterations, compared to cell lysates of C. jejuni 11168H cdtA mutant. We found mitochondria and lysosomes differently targeted by these bacterial lysates. Death, consistent with apoptosis for C. jejuni ATCC 33291 lysate, occurred in a slow way (>48 h); concomitantly HeLa cells increase their endolysosomal compartment, as a consequence of toxin internalization besides a simultaneous and partial lysosomal destabilization. C. jejuni CCLys induces death in HeLa cells mainly via a caspase-dependent mechanism although a p53 lysosomal pathway (also caspase-independent) seems to appear in addition. In C. jejuni ISS3-treated cells, the p53-mediated oxidative degradation of mitochondrial components seems to be lost, inducing the deepest lysosomal alterations. Furthermore, CD59 considerably decreases, suggesting both a degradation or internalisation pathway. CCLys-treated HeLa cells increase CD54 expression on their surface, because of the action of lysate as its double feature of toxin and bacterial peptide. In conclusion, we revealed that C. jejuni CCLys-treated HeLa cells displayed different features, depending on the particular strain.

  3. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  4. Establishment of HeLa Cell Mutants Deficient in Sphingolipid-Related Genes Using TALENs

    PubMed Central

    Yamaji, Toshiyuki; Hanada, Kentaro

    2014-01-01

    Sphingolipids are essential components in eukaryotes and have various cellular functions. Recent developments in genome-editing technologies have facilitated gene disruption in various organisms and cell lines. We here show the disruption of various sphingolipid metabolic genes in human cervical carcinoma HeLa cells by using transcription activator-like effector nucleases (TALENs). A TALEN pair targeting the human CERT gene (alternative name COL4A3BP) encoding a ceramide transport protein induced a loss-of-function phenotype in more than 60% of HeLa cells even though the cell line has a pseudo-triploid karyotype. We have isolated several loss-of-function mutant clones for CERT, UGCG (encoding glucosylceramide synthase), and B4GalT5 (encoding the major lactosylceramide synthase), and also a CERT/UGCG double-deficient clone. Characterization of these clones supported previous proposals that CERT primarily contributes to the synthesis of SM but not GlcCer, and that B4GalT5 is the major LacCer synthase. These newly established sphingolipid-deficient HeLa cell mutants together with our previously established stable transfectants provide a ‘sphingolipid-modified HeLa cell panel,’ which will be useful to elucidate the functions of various sphingolipid species against essentially the same genomic background. PMID:24498430

  5. Induction of apoptosis in the LNCaP human prostate carcinoma cell line and prostate adenocarcinomas of SV40T antigen transgenic rats by the Bowman-Birk inhibitor.

    PubMed

    Tang, MingXi; Asamoto, Makoto; Ogawa, Kumiko; Naiki-Ito, Aya; Sato, Shinya; Takahashi, Satoru; Shirai, Tomoyuki

    2009-11-01

    The soybean-derived serine protease inhibitor, Bowman-Birk inhibitor (BBI), has been reported as a potent chemoprevention agent against several types of tumors. The present study was undertaken to evaluate the effects of BBI on androgen-sensitive/dependent prostate cancers using a human prostate cancer cell (LNCaP) and the transgenic rats developing adenocarcinoma of the prostate (TRAP) model. Treatment of LNCaP prostate cancer cells with 500 microg/mL BBI resulted in inhibition of viability measured on WST-1 assays, with induction of connexin 43 (Cx43) and cleaved caspase-3 protein expression. Feeding of 3% roughly prepared BBI (BBIC) to TRAP from the age 3 weeks to 13 weeks resulted in significant reduction of the relative epithelial areas within the acinus and multiplicity of the adenocarcinomas in the lateral prostate lobes. Cx43- and terminal deoxynucleotidyl transferase mediated dUTP-biotin end labeling of fragmented DNA (TUNEL)-positive apoptotic cancer cells were more frequently observed in the lateral prostates treated with BBIC than in the controls. These in vivo and in vitro results suggest that BBI possesses chemopreventive activity associated with induction of Cx43 expression and apoptosis.

  6. Binding and cytotoxicity of Ricinus communis lectins to HeLa cells, Sarcoma 180 ascites tumor cells and erythrocytes.

    PubMed

    Oda, T; Aizono, Y; Funatsu, G

    1984-08-01

    The binding of Ricinus communis lectins to HeLa cells, Sarcoma 180 ascites tumor cells and human erythrocytes was studied in detail. Scatchard plots of binding of 125I-lectins to these cells gave biphasic lines except for HeLa cells at 0 degree C. The association constants of lectins for the three cell types at 37 degrees C were lower than those at 0 degree C. The numbers of total binding sites were estimated to be 7 to 16 X 10(7) per HeLa cell, 3 to 4 X 10(7) per Sarcoma 180 ascites tumor cell and 0.4 to 1 X 10(6) per erythrocyte. A fraction, 16 to 27% of the total amount of cell-bound lectin at 37 degrees C, appeared to be bound irreversibly as judged by non-removal on washing with 0.1 M lactose, whereas no lectin was irreversibly bound at 0 degree C. In the case of erythrocytes, no lectin became irreversibly bound even at 37 degrees C. The toxicity of lectins on HeLa cells and Sarcoma 180 ascites tumor cells was investigated. The toxicity of ricin D was 50 times for Sarcoma 180 ascites tumor cells and 140 times for HeLa cells as much as that for castor bean hemagglutinin. As to the sensitivities of both cell types to these lectins, it became apparent that Sarcoma 180 ascites tumor cells were more susceptible than HeLa cells.

  7. Oxidative modification induced by photodynamic therapy with Photofrin®II and 2-methoxyestradiol in human ovarian clear carcinoma (OvBH-1) and human breast adenocarcinoma (MCF-7) cells.

    PubMed

    Saczko, Jolanta; Choromańska, Anna; Rembiałkowska, Nina; Dubińska-Magiera, Magda; Bednarz-Misa, Iwona; Bar, Julia; Marcinkowska, Anna; Kulbacka, Julita

    2015-04-01

    Ovarian cancer is among the most lethal cancers in women. The successful anticancer treatment depends on the effectiveness of cytotoxic effect of applied therapeutic procedures either alone or in combination with other treatments. Photodynamic therapy (PDT) is a relatively new method of anticancer therapy. Its dominant mechanism of action is the over-production of reactive oxygen species induced by oxidative stress in malignant cells, which attack lipid membranes, proteins and nucleic acids. One of the important mechanisms is induction of unfolded protein response, ubiquitin-proteasome pathway of protein degradation. The aim of this study was to evaluate the cytotoxic effect of various protective enzymes in ovarian carcinoma clear cell line in comparison to the model breast cell line after photodynamic reaction and photodynamic reaction with 2-methoxyestradiol (2-Me). Human malignant ovarian cell line (OvBH-1) was used and human breast adenocarcinoma cells (MCF-7) were used as a control. Photodynamic reaction (PDR) with Photofrin(®)II and Ph(®)II with 2-Me was performed. The expression of protective proteins by immunocytochemistry (HSP70 and iNOS) and western blot (Hsp27 and Hsp70) methods was evaluated directly, 3 and 6 h after PDR. The changes in cells' cytoskeleton were evaluated using immunofluorescence by confocal microscopy. The expression of iNOS was observed for both experiments with differential intensity and quantity. A higher expression of Hsp70 in MCF-7 cells was observed than in OvBh-1 cells. The reorganization of cytoskeleton and nucleus was observed after 3 and 6 h after exposition to light.

  8. Cytotoxic and apoptogenic effects of Bryonia aspera root extract against Hela and HN-5 cancer cell lines

    PubMed Central

    Pourgonabadi, Solmaz; Amiri, Mohammad Sadegh; Mousavi, Seyed Hadi

    2017-01-01

    Objective: Bryonia aspera (Stev. ex Ledeb) is a plant that grows in northeast of Iran. In the present study, cytotoxic and apoptogenic properties of B. aspera root extract was determined against HN-5(head and neck squamous cell carcinoma) and Hela (cervix adenocarcinoma) cell lines. Materials and Methods: HN-5 and Hela cell lines were cultured in DMEM medium and incubated with different concentrations of B. aspera root extract. Cell viability was quantitated by MTT assay and the optical absorbance was measured at 570 nm (620 nm as the reference) by an ELISA reader, in each experiment. Apoptotic cells were assessed using PI staining of DNA fragmentation by flow cytometry (sub-G1 peak). The B. aspera inhibited 50% growth (IC50) of Hela and HN-5 cell lines at 100±28 μg/ml and 12.5±4 μg/ml, respectively after 48 hr of incubation. Results: Cell viability assay showed that inhibitory effects of B. aspera were time and dose-dependent in both cell lines, which were consistent with morphological changes, observed under light microscope. Apoptosis was investigated by flow cytometry in which percentage of apoptotic cells increased in a dose and time-dependent manner. Conclusion: Based on our data, B. aspera has cytotoxic effects in which apoptosis played an important role. Further evaluations are needed to assess the possible anti-tumor properties of this plant. PMID:28265548

  9. Erybraedin C and bitucarpin A, two structurally related pterocarpans purified from Bituminaria bituminosa, induced apoptosis in human colon adenocarcinoma cell lines MMR- and p53-proficient and -deficient in a dose-, time-, and structure-dependent fashion.

    PubMed

    Maurich, Tiziana; Iorio, Mariacarla; Chimenti, Daniele; Turchi, Gino

    2006-02-01

    Pterocarpans, the second group of natural isoflavonoids, have received considerable interest on account of their medicinal properties. These drugs are employed as antitoxins, but display antifungal, antiviral and antibacterial properties as well. Erybraedin C and bitucarpin A are two new structurally related pterocarpans recently purified and characterized. Bitucarpin A differs from erybraedin C for the absence of a prenyl group in 5' position and the presence of a methoxylate hydroxyl group in 7, 4' positions. These compounds proved not to be clastogens in human lymphocytes per se but displayed anticlastogenic activity against mytomicin C and bleomycin C. Here we extended the study of their antiproliferative and apoptosis-inducing mechanism on human cell lines. Two human adenocarcinoma cell lines, LoVo and HT29, as examples of slow-growing solid tumors, proficient and deficient in mismatch repair system (MMR), p53 and Bcl-2, were used to evaluate the cytotoxicity of the drugs and their effects on the cell cycle, measured by flow cytometry. Erybraedin C similarly affects the survival of HT29 (MMR +/+, p53 -/- and Bcl-2 +/+) and LoVo (MMR -/-, p53 +/+ and Bcl-2 -/-) cells (LD(50): 1.94 and 1.73 microg/ml, respectively). By contrast, bitucarpin A exhibits a differential cytotoxicity in the cell lines (LD(50): 6.00 microg/ml, HT29, and 1.84 microg/ml, LoVo). The cell cycle distributions of the LoVo and HT29 cells treated with erybraedin C lacked a specific checkpoint arrest, whereas they underwent a characteristic sub-G(1) peak, time- and drug-concentration dependent. So that apoptotic process induced by erybraedin C in both adenocarcinoma cell lines is independent of cell cycle arrest and of phenotypic status of the cells as well. By contrast, bitucarpin A affects cell cycle progression on both cell lines, inducing a transient block in G(0)/G(1) along 24-96 h, and induces apoptosis with a cell density and treatment time dependency. Similar results were obtained with

  10. Modification of some biological properties of HeLa cells containing adeno-associated virus DNA integrated into chromosome 17.

    PubMed Central

    Walz, C; Schlehofer, J R

    1992-01-01

    Parvoviruses are known to interfere with cellular transformation and carcinogenesis. Since infecting adeno-associated virus (AAV) frequently integrates its DNA into the cellular genome, we analyzed whether this integration influences the transformed phenotype of the human tumor cell line HeLa. Analysis of three independent HeLa cell clones with integrated AAV DNA (HA-3x, HA-16, and HA-28) revealed the following phenotypic changes of these cells: (i) reduced growth rate, (ii) increased serum requirement, (iii) reduced capacity for colony formation in soft agar, (iv) reduced cloning efficiency on plastic, (v) elevated sensitivity to genotoxic agents (N-methyl-N'-nitro-N-nitrosoguanidine, 7,12-dimethylbenz[a]anthracene, human tumor necrosis factor alpha, UV irradiation [256 nm], and heat [42 degrees C]), and (vi) reduced sensitivity to the cytolytic effect of parvovirus H-1. Reduced growth rate and enhanced sensitivity to gamma irradiation were also observed in vivo when tumors from AAV DNA-containing HeLa cells were transplanted into nude mice. This alteration of the biological properties of HeLa cells was independent of the number of AAV genomes integrated, the physical structure of integrated AAV DNA, and the transcription of AAV genes. Integration of AAV DNA was found to occur preferentially on the long arm of chromosome 17 in the three HeLa cell clones analyzed. These findings demonstrate that genomic integration of AAV DNA can alter the biological properties of human tumor cells. Images PMID:1313913

  11. Single-walled carbon nanotube interactions with HeLa cells

    PubMed Central

    Yehia, Hadi N; Draper, Rockford K; Mikoryak, Carole; Walker, Erin Kate; Bajaj, Pooja; Musselman, Inga H; Daigrepont, Meredith C; Dieckmann, Gregg R; Pantano, Paul

    2007-01-01

    This work concerns exposing cultured human epithelial-like HeLa cells to single-walled carbon nanotubes (SWNTs) dispersed in cell culture media supplemented with serum. First, the as-received CoMoCAT SWNT-containing powder was characterized using scanning electron microscopy and thermal gravimetric analyses. Characterizations of the purified dispersions, termed DM-SWNTs, involved atomic force microscopy, inductively coupled plasma – mass spectrometry, and absorption and Raman spectroscopies. Confocal microRaman spectroscopy was used to demonstrate that DM-SWNTs were taken up by HeLa cells in a time- and temperature-dependent fashion. Transmission electron microscopy revealed SWNT-like material in intracellular vacuoles. The morphologies and growth rates of HeLa cells exposed to DM-SWNTs were statistically similar to control cells over the course of 4 d. Finally, flow cytometry was used to show that the fluorescence from MitoSOX™ Red, a selective indicator of superoxide in mitochondria, was statistically similar in both control cells and cells incubated in DM-SWNTs. The combined results indicate that under our sample preparation protocols and assay conditions, CoMoCAT DM-SWNT dispersions are not inherently cytotoxic to HeLa cells. We conclude with recommendations for improving the accuracy and comparability of carbon nanotube (CNT) cytotoxicity reports. PMID:17956629

  12. Apoptotic effects of bovine apo-lactoferrin on HeLa tumor cells.

    PubMed

    Luzi, Carla; Brisdelli, Fabrizia; Iorio, Roberto; Bozzi, Argante; Carnicelli, Veronica; Di Giulio, Antonio; Lizzi, Anna Rita

    2017-01-01

    Lactoferrin (Lf), a cationic iron-binding glycoprotein of 80 kDa present in body secretions, is known as a compound with marked antimicrobial activity. In the present study, the apoptotic effect of iron-free bovine lactoferrin (apo-bLf) on human epithelial cancer (HeLa) cells was examined in association with reactive oxygen species and glutathione (GSH) levels. Apoptotic effect of iron-free bovine lactoferrin inhibited the growth of HeLa cells after 48 hours of treatment while the diferric-bLf was ineffective in the concentration range tested (from 1 to 12.5 μM). Western blot analysis showed that key apoptotic regulators including Bax, Bcl-2, Sirt1, Mcl-1, and PARP-1 were modulated by 1.25 μM of apo-bLf. In the same cell line, apo-bLf induced apoptosis together with poly (ADP-ribose) polymerase cleavage, caspase activation, and a significant drop of NAD(+) . In addition, apo-bLf-treated HeLa cells showed a marked increase of reactive oxygen species level and a significant GSH depletion. On the whole, apo-bLf triggered apoptosis of HeLa cells upon oxygen radicals burst and GSH decrease.

  13. Sulphamoylated 2-Methoxyestradiol Analogues Induce Apoptosis in Adenocarcinoma Cell Lines

    PubMed Central

    Visagie, Michelle; Theron, Anne; Mqoco, Thandi; Vieira, Warren; Prudent, Renaud; Martinez, Anne; Lafanechère, Laurence; Joubert, Annie

    2013-01-01

    2-Methoxyestradiol (2ME2) is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1–25 μM) was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues. PMID:24039728

  14. Potent in vivo anticancer activity and stability of liposomes encapsulated with semi-purified Job's tear (Coix lacryma-jobi Linn.) extracts on human colon adenocarcinoma (HT-29) xenografted mice.

    PubMed

    Sainakham, Mathukorn; Manosroi, Aranya; Abe, Masahiko; Manosroi, Worapaka; Manosroi, Jiradej

    2016-11-01

    The in vivo anticancer activity and stability of liposomes encapsulated with semi-purified Job's tear (Coix lacryma-jobi Linn.) extracts (S5L), prepared by supercritical carbon dioxide fluid technique, on human colon adenocarcinoma (HT29) xenografted mice were investigated. For the stability and the physicochemical characteristics, S5L showed a high stability of pH, good dispersibility, small particle size and stable zeta potential. Liposomes can protect linoleic acid in the extract comparing with the free S5. S5L kept at 4 °C for 3 months showed the highest linoleic acid content of 63.50%, whereas at 45 °C, the lowest linoleic acid content of 42.66% was observed. The anticancer activity and toxicity on xenografted mice were observed for 14 days. At the end of the experiment, the relative tumor volume (RTV) in the S5L-treated xenografted mice showed a significant RTV reduction. The high dose of S5 and S5L were potent with the highest inhibition of tumor growth of 48.67 and 54.75%, which was 86.94% and 97.81% of 5-fluorouracil, respectively. The apoptotic activity was shown in xenografted mice treated with S5 at medium and high dose, S5L, 5-fluorouracil and commercial product. All treated xenografted mice showed no toxic signs and symptoms, abnormality of internal organs histopathology and blood chemistry. This study has demonstrated the high physicochemical stability of liposomes encapsulated with semi-purified Job's tear extract and their potent anticancer activity on human colon adenocarcinoma xenografted model with the potential for further development to anticolon cancer drug.

  15. Coxsackievirus B5 induced apoptosis of HeLa cells: Effects on p53 and SUMO

    SciTech Connect

    Gomes, Rogerio; Guerra-Sa, Renata; Arruda, Eurico

    2010-01-20

    Coxsackievirus B5 (CVB5), a human enterovirus of the family Picornaviridae, is a frequent cause of acute and chronic human diseases. The pathogenesis of enteroviral infections is not completely understood, and the fate of the CVB5-infected cell has a pivotal role in this process. We have investigated the CVB5-induced apoptosis of HeLa cells and found that it happens by the intrinsic pathway by a mechanism dependent on the ubiquitin-proteasome system, associated with nuclear aggregation of p53. Striking redistribution of both SUMO and UBC9 was noted at 4 h post-infection, simultaneously with a reduction in the levels of the ubiquitin-ligase HDM2. Taken together, these results suggest that CVB5 infection of HeLa cells elicit the intrinsic pathway of apoptosis by MDM2 degradation and p53 activation, destabilizing protein sumoylation, by a mechanism that is dependent on a functional ubiquitin-proteasome system.

  16. CHKA mediates the poor prognosis of lung adenocarcinoma and acts as a prognostic indicator

    PubMed Central

    Zhang, Li; Chen, Ping; Yang, Shen; Li, Guodong; Bao, Wentao; Wu, Peng; Jiang, Shujuan

    2016-01-01

    Choline kinase α (CHKA), the enzyme that converts choline to phosphocholine, has been studied in human carcinogenesis widely. However, the expression and underlying clinicopathological characteristics of CHKA in lung adenocarcinoma remains elusive. In the present study, a tissue microarray of 119 pairs of lung adenocarcinoma samples and corresponding adjacent normal mucosae was used to analysis CHKA expression by immunohistochemistry, and CHKA was observed to exhibit enhanced expression in lung adenocarcinoma tissues. Elevated CHKA expression in lung adenocarcinoma tissues at the gene and protein level was observed. The levels of CHKA expression were closely associated with the poor prognosis status of lung adenocarcinoma patients. Furthermore, certain clinicopathological characteristics such as tumor diameter and differentiation were observed to be significant in those lung adenocarcinoma patients who displayed enhanced CHKA expression. The analysis of CHKA expression could provide a more precise way to predict the prognosis of lung adenocarcinoma patients. Collectively, the present study revealed a novel biomarker in lung adenocarcinoma, and indicated that CHKA may be a promising prognostic marker and therapeutic target for lung adenocarcinoma. PMID:27588131

  17. Cholecystokinin A and B receptors are differentially expressed in normal pancreas and pancreatic adenocarcinoma.

    PubMed Central

    Weinberg, D S; Ruggeri, B; Barber, M T; Biswas, S; Miknyocki, S; Waldman, S A

    1997-01-01

    Cholecystokinin (CCK) plays an important role in pancreatic carcinogenesis. While human CCK-A and -B receptors have been fully characterized, their relative roles in human pancreatic adenocarcinoma remain unclear. Thus, expression of CCK-A and -B receptors in normal human pancreas, pancreatic adenocarcinomas, and other human extrapancreatic tissues and malignancies was examined, using reverse transcription followed by the polymerase chain reaction (RT-PCR). mRNA isolated from 15 normal pancreas specimens, 22 pancreatic adenocarcinomas, and 58 extrapancreatic tissues and tumors was subjected to RT-PCR using primers specific for human CCK-A and -B receptors. Expression of CCK-B receptors was detected in all tissues arising from pancreas and in most extrapancreatic tissues and tumors. In contrast, CCK-A receptors exhibited a more selective pattern of expression in gall bladder, intestine, brain, ovary, spleen, and thymus. Of significance, CCK-A receptors were expressed selectively in all pancreatic adenocarcinomas, but not in any normal pancreas specimens. In situ hybridization, using receptor-specific riboprobes, localized CCK-A receptor expression to ductal cells, the presumed origin of most human pancreatic adenocarcinomas. Southern blot analysis revealed no evidence of CCK-A receptor gene amplification or rearrangement in pancreatic adenocarcinomas. Because of its selective expression, the CCK-A receptor may serve as selective biomarker for pancreatic adenocarcinoma. PMID:9239407

  18. Preclinical models of pancreatic ductal adenocarcinoma.

    PubMed

    Hwang, Chang-Il; Boj, Sylvia F; Clevers, Hans; Tuveson, David A

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDA) is one of the most difficult human malignancies to treat. The 5-year survival rate of PDA patients is 7% and PDA is predicted to become the second leading cancer-related cause of death in the USA. Despite intensive efforts, the translation of findings in preclinical studies has been ineffective, due partially to the lack of preclinical models that faithfully recapitulate features of human PDA. Here, we review current preclinical models for human PDA (eg human PDA cell lines, cell line-based xenografts and patient-derived tumour xenografts). In addition, we discuss potential applications of the recently developed pancreatic ductal organoids, three-dimensional culture systems and organoid-based xenografts as new preclinical models for PDA.

  19. In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy.

    PubMed

    Higashi, K; Clavo, A C; Wahl, R L

    1993-05-01

    The tumor cell uptake of three tracers that can be labeled with isotopes suitable for PET imaging--FDG, L-methionine and thymidine--were examined in vitro in a human ovarian carcinoma cell line (HTB77IP3) at varying times following 30 Gy 60Co irradiation and were compared to a nonirradiated control group. FDG, methionine and thymidine uptake per tissue culture well all increased following irradiation when compared to basal values, although to a much lower extent than the increases in uptake seen in a nonirradiated group. This increase in tracer uptake occurred despite a 6.25-fold decline in viable cell numbers. When examined per cell, FDG uptake per cell increased 9.77-fold, methionine 7.82-fold and thymidine 9.48-fold over basal levels from Day 0 to Day 12 following irradiation. Part of these increases may be due to giant cell formation and/or radiation repair processes that require energy, protein and DNA substrates. While the in vitro system differs from in vivo systems due to the absence of a blood supply in vitro, a lack of infiltrating leukocytes and other factors, our data suggest that early assessment of human adenocarcinoma response to radiotherapy by PET with these tracers may be complicated by this normal increase in tracer uptake postirradiation. Clearly, in this human cancer cell line, early radiation-induced cell death is not associated with an early decline in tumor cell uptake of FDG, methionine or thymidine.

  20. Inhibitory Effects and Underlying Mechanism of 7-Hydroxyflavone Phosphate Ester in HeLa Cells

    PubMed Central

    Liu, Liguo; Chen, Xiaolan; Yang, Fang; Jin, Qi

    2012-01-01

    Chrysin and its phosphate ester have previously been shown to inhibit cell proliferation and induce apoptosis in Hela cells; however, the underlying mechanism remains to be characterized. In the present study, we therefore synthesized diethyl flavon-7-yl phosphate (FP, C19H19O6P) by a simplified Atheron-Todd reaction, and explored its anti-tumor characteristics and mechanisms. Cell proliferation, cell cycle progression and apoptosis were measured by MTS, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling techniques, respectively in human cervical cancer HeLa cells treated with 7-hydroxyflavone (HF) and FP. p21, proliferating cell nuclear antigen (PCNA) and cAMP levels in Hela cells were analyzed by western blot and radioimmunoassay. Both HF and FP inhibited proliferation and induced apoptosis in HeLa cells via induction of PCNA/p21 expression, cleaved caspase-3/poly (ADP-ribose) polymerase (PARP)-1, elevation of cAMP levels, and cell cycle arrest with accumulation of cells in the G0/G1 fraction. The effects of FP were more potent than those of HF. The interactions of FP with Ca2+-calmodulin (CaM) and Ca2+-CaM-phosphodiesterase (PDE)1 were explored by electrospray ionization-mass spectrometry and fluorescence spectra. FP, but not HF, formed non-covalent complexes with Ca2+-CaM-PDE1, indicating that FP is an inhibitor of PDE1, and resulting in elevated cellular cAMP levels. It is possible that the elevated cAMP levels inhibit growth and induce apoptosis in Hela cells through induction of p21 and cleaved caspase-3/PARP-1 expression, and causing down-regulation of PCNA and cell cycle arrest with accumulation of cells in the G0/G1 and G2/M fractions. In conclusion, FP was shown to be a Ca2+-CaM-PDE inhibitor, which might account for its underlying anti-cancer mechanism in HeLa cells. These observations clearly demonstrate the special roles of phosphorylated flavonoids in biological processes, and suggest that FP might represent a potential

  1. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells

    PubMed Central

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells. PMID:24591829

  2. Pleomorphic adenoma gene like-2 induces epithelial-mesenchymal transition via Wnt/β-catenin signaling pathway in human colorectal adenocarcinoma.

    PubMed

    Wang, Yong-Peng; Guo, Peng-Tao; Zhu, Zhi; Zhang, Hao; Xu, Yan; Chen, Yu-Ze; Liu, Fang; Ma, Si-Ping

    2017-04-01

    Epithelial-mesenchymal transition (EMT) is a critical step in the acquisition of metastatic and invasive power for tumor cells. Colorectal adenocarcinoma (CRC) is a common cancer where metastasis is directly linked to patient survival. Recent studies show that pleomorphic adenoma gene like-2 (PLAGL2) could induce tumor EMT and is an independent predictive factor associated with poor prognosis in cancer. In the present study, we confirmed the role of PLAGL2 in the prognosis of CRC patients and provide molecular evidence of PLAGL2 promoted EMT in CRC cell line SW480. We found that PLAGL2 expression was upregulated in the paraffin-embedded CRC tissues compared to borderline or benign tissues. Experimental EMT induced by PLAGL2 plasmid transfection proved PLAGL2 protein overexpression could enhance the cell scratch wound-healing and transwell ability and significantly upregulated mesenchymal marker proteins, N-cadherin and vimentin and concurrently downregulated epithelial marker of E-cadherin. Subsequently, through western blot assay, we found that PLAGL2 could activate the wnt-signaling component β-catenin in the nuclei. More CRC cell metastasis to the lungs was observed when the PLAGL2 overexpressing SW480 cells were injected into the tail vein of rats, compared with the cell control and PLAGL2 silence group. Our findings indicated that PLAGL2 might be a very upstream key molecule regulating EMT involved in Wnt/β‑catenin signaling pathway.

  3. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia triloba against human breast adenocarcinoma cells.

    PubMed

    Al-Kalaldeh, Jelnar Z; Abu-Dahab, Rana; Afifi, Fatma U

    2010-04-01

    Medicinal plants and culinary herbs have gained importance in the last decade as cytotoxic and antitumor agents. We hypothesized that some of the commonly used spices with reported antimicrobial activity might have antiproliferative activity. In the present study, selected spices used in Jordan were chemically analyzed and investigated for their antiproliferative activity to the adenocarcinoma of breast cell line (MCF7). The composition of the essential oils of Laurus nobilis L, Origanum syriacum L, Origanum vulgare L, and Salvia triloba L was analyzed by gas chromatography-mass spectrometry. The antiproliferative activities of the hydrodistilled volatile oils and the crude ethanol and water extracts were evaluated using the sulphorhodamine B assay. 1,8-Cineol was the major constituent in the hydrodistilled oils of both plants, L nobilis and S triloba, with concentrations of 40.91% and 45.16%, respectively. The major constituent of O syriacum was the carvacrol (47.10%), whereas that of O vulgare was trans-sabinene hydrate (27.19%). The ethanol crude extracts of O syriacum, L nobilis, and S triloba showed antiproliferative activity to MCF7 with IC(50) values 6.40, 24.49, and 25.25 microg/mL, respectively. However, none of the hydrodistilled essential oils of the tested plant species or their aqueous extracts demonstrated cytotoxic activity.

  4. Green tea induces annexin-I expression in human lung adenocarcinoma A549 cells: involvement of annexin-I in actin remodeling.

    PubMed

    Lu, Qing-Yi; Jin, Yu Sheng; Zhang, Zuo-Feng; Le, Anh D; Heber, David; Li, Frederick P; Dubinett, Steven M; Rao, Jian Yu

    2007-05-01

    Green tea polyphenols exhibit multiple antitumor activities in various in vitro and in vivo tumor models, and the mechanisms of action are not clear. Previously, we found that green tea extract (GTE) regulates actin remodeling in different cell culture systems. Actin remodeling plays an important role in cancer cell morphology, cell adhesion, motility, and invasion. Using proteomic approaches, we found GTE-induced expression of annexin-I, a multifunctional actin binding protein, in these cell lines. In this study, we aimed to further define the functional role of GTE-induced annexin-I expression in actin remodeling, cell adhesion, and motility in lung adenocarcinoma A549 cells. We found that GTE stimulates the expression of annexin-I in a dose-dependent fashion. The GTE-induced annexin-I expression appears to be at the transcription level, and the increased annexin-I expression mediates actin polymerization, resulting in enhanced cell adhesion and decreased motility. Annexin-I specific interference resulted in loss of GTE-induced actin polymerization and cell adhesion, but not motility. In fact, annexin-I specific interference itself inhibited motility even without GTE. Together, annexin-I plays an important role in GTE-induced actin remodeling, and it may serve as a potential molecular target associated with the anticancer activities of green tea.

  5. Alpha-chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-kappaB in human lung adenocarcinoma A549 cells.

    PubMed

    Shih, Yuan-Wei; Chen, Pin-Shern; Wu, Cheng-Hsun; Jeng, Ya-Fang; Wang, Chau-Jong

    2007-12-26

    Alpha-chaconine, isolated from Solanum tuberosum Linn., is a naturally occurring steroidal glycoalkaloid in potato sprouts. Some reports demonstrated that alpha-chaconine had various anticarcinogenic properties. The aim of this study is to investigate the inhibitory effect of alpha-chaconine on lung adenocarcinoma cell metastasis in vitro. We chose the highly metastatic A549 cells, which were treated with various concentrations of alpha-chaconine to clarify the potential of inhibiting A549 cells invasion and migration. Data showed that alpha-chaconine inhibited A549 cell invasion/migration according to wound healing assay and Boyden chamber assay. Our results also showed that alpha-chaconine could inhibit phosphorylation of c-Jun N-terminal kinase (JNK) and Akt, whereas it did not affected phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly decreased the nuclear level of nuclear factor kappa B (NF-kappaB) and the binding ability of NF-kappaB. These results suggested that alpha-chaconine inhibited A549 cell metastasis by a reduction of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities involving suppression of phosphoinositide 3-kinase/Akt/NF-kappaB (PI3K/Akt/NF-kappaB) signaling pathway. Inhibiting metastasis by alpha-chaconine might offer a pivotal mechanism for its effective chemotherapeutic action.

  6. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells.

    PubMed

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells.

  7. Cesium reversibly suppresses HeLa cell proliferation by inhibiting cellular metabolism.

    PubMed

    Kobayashi, Daisuke; Kakinouchi, Kei; Nagae, Tomoki; Nagai, Toshihiko; Shimura, Kiyohito; Hazama, Akihiro

    2017-03-01

    The aim of the present study was to investigate the influence of Cs(+) on cultured human cells. We find that HeLa cell growth is suppressed by the addition of 10 mm CsCl into the culture media. In the Cs(+) -treated cells, the intracellular Cs(+) and K(+) concentrations are increased and decreased, respectively. This leads to a decrease in activity of the glycolytic enzyme pyruvate kinase, which uses K(+) as a cofactor. Cs(+) -treated cells show an intracellular pH shift towards alkalization. Based on these results, CsCl presumably suppresses HeLa cell proliferation by inducing an intracellular cation imbalance that affects cell metabolism. Our findings may have implications for the use of Cs(+) in cancer therapy.

  8. RNA METABOLISM IN HELA CELLS AT REDUCED TEMPERATURE

    PubMed Central

    Stevens, Ronald H.; Amos, Harold

    1972-01-01

    Incubation of HeLa cells at 24°C results in the modification of the processing of pre-tRNA to tRNA. Both methylation and size reduction were shown to take place in vitro when purified pre-tRNA was subjected to processing in a cytoplasmic extract of HeLa cells The migration of pre-tRNA from the nucleus to the cytoplasm was not significantly altered at 24°C PMID:5038872

  9. Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1

    PubMed Central

    YANG, LIANG; LIU, REN; MA, HONG-BIN; YING, MING-ZHEN; WANG, YA-JIE

    2015-01-01

    The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 (GSTP1) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G2/M phase arrest in the GSTP1-expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1-expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G2/M phase arrest. PMID:26622693

  10. Coordinate up-regulation of low-density lipoprotein receptor and cyclo-oxygenase-2 gene expression in human colorectal cells and in colorectal adenocarcinoma biopsies

    NASA Technical Reports Server (NTRS)

    Lum, D. F.; McQuaid, K. R.; Gilbertson, V. L.; Hughes-Fulford, M.

    1999-01-01

    Many colorectal cancers have high levels of cyclo-oxygenase 2 (COX-2), an enzyme that metabolizes the essential fatty acids into prostaglandins. Since the low-density lipoprotein receptor (LDLr) is involved in the uptake of essential fatty acids, we studied the effect of LDL on growth and gene regulation in colorectal cancer cells. DiFi cells grown in lipoprotein-deficient sera (LPDS) grew more slowly than cells with LDL. LDLr antibody caused significant inhibition of tumor cell growth but did not affect controls. In addition, LDL uptake did not change in the presence of excess LDL, suggesting that ldlr mRNA lacks normal feedback regulation in some colorectal cancers. Analysis of the ldlr mRNA showed that excess LDL in the medium did not cause down-regulation of the message even after 24 hr. The second portion of the study examined the mRNA expression of ldlr and its co-regulation with cox-2 in normal and tumor specimens from patients with colorectal adenocarcinomas. The ratio of tumor:paired normal mucosa of mRNA expression of ldlr and of cox-2 was measured in specimens taken during colonoscopy. ldlr and cox-2 transcripts were apparent in 11 of 11 carcinomas. There was significant coordinate up-regulation both of ldlr and of cox-2 in 6 of 11 (55%) tumors compared with normal colonic mucosa. There was no up-regulation of cox-2 without concomitant up-regulation of ldlr. These data suggest that the LDLr is abnormally regulated in some colorectal tumors and may play a role in the up-regulation of cox-2. Copyright 1999 Wiley-Liss, Inc.

  11. [Baicalein promotes the apoptosis of HeLa cells by inhibiting ERK1/2 expression].

    PubMed

    Wang, Yongzhou; Xia, Jiyi; Tang, Xiaoping; Tang, Li; Mao, Xiguang; Zhang, Yujiao; Yu, Xiaolan

    2016-11-01

    Objective To investigate the effects of baicalein and U0126 treatment on the apoptosis of human cervical carcinoma HeLa cells and the potential mechanism. Methods HeLa cells were subjected to (1, 2, 5, 10, 20, 50, 100, 200, 300) μmol/L baicalein or (1, 2, 5, 10, 20, 30) μmol/L U0126 treatment for 24 hours. The optimal concentrations of baicalein and U0126 for HeLa inhibition was determined by a cell counting Kit-8 assay. HeLa cells were then treated with these inhibitory concentrations for 24 hours separately or in combination. The cell cycle and the degree of apoptosis were analyzed by flow cytometry. The cell apoptosis index was evaluated by the TUNEL assay. The expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), Bax, and Bcl-2 at the mRNA and protein levels were examined by real-time PCR and Western blotting, respectively. Results Optimal inhibitory concentrations of baicalein and U0126 for HeLa cells were 200 μmol/L and 10 μmol/L, respectively. Compared with the control group, baicalein treatment increased the growth rate of cells in the G0/G1 phase but decreased the S phase. Combination treatment of 200 μmol/L baicalein and 10 μmol/L U0126 for 24 hours further reduced the S phase growth rate. Treatment with 10 μmol/L U0126 or 200 μmol/L baicalein for 24 hours induced cell apoptosis, and the combination treatment induced more apoptosis. Treatment by baicalein alone or in combination with U0126 for 24 hours significantly decreased ERK1/2 and Bcl-2 mRNA expressions, and upregulated Bax mRNA expression. It also downregulated ERK1/2 phosphorylation and Bcl-2 protein expression, while increasing Bax protein expression. Conclusion Both baicalein and U012 appear to inhibit proliferation, induce apoptosis, and increase the growth rate in the G0/G1 phase but reduce the S phase of HeLa cells. This effect is enhanced when they are used synergistically.

  12. SMAD4 loss enables EGF, TGFβ1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells

    PubMed Central

    Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H.; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario

    2016-01-01

    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner. PMID:27655713

  13. Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells.

    PubMed

    Panzarini, Elisa; Mariano, Stefania; Vergallo, Cristian; Carata, Elisabetta; Fimia, Gian Maria; Mura, Francesco; Rossi, Marco; Vergaro, Viviana; Ciccarella, Giuseppe; Corazzari, Marco; Dini, Luciana

    2017-02-20

    This study aims to determine the interaction (uptake and biological effects on cell viability and cell cycle progression) of glucose capped silver nanoparticles (AgNPs-G) on human epithelioid cervix carcinoma (HeLa) cells, in relation to amount, 2×10(3) or 2×10(4) NPs/cell, and exposure time, up to 48h. The spherical and well dispersed AgNPs (30±5nm) were obtained by using glucose as reducing agent in a green synthesis method that ensures to stabilize AgNPs avoiding cytotoxic soluble silver ions Ag(+) release. HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner. HeLa cells were arrested at S and G2/M phases of the cell cycle and subG1 population increased when incubated with 2×10(4) AgNPs-G/cell. Mitotic index decreased accordingly. The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag(+) release. The AgNPs-G influence on HeLa cells viability and cell cycle progression suggest that AgNPs-G, alone or in combination with chemotherapeutics, may be exploited for the development of novel antiproliferative treatment in cancer therapy. However, the possible influence of the cell cycle on cellular uptake of AgNPs-G and the mechanism of AgNPs entry in cells need further investigation.

  14. [Endoscopic diagnosis of Barrett's adenocarcinoma].

    PubMed

    Yoshio, H; Takashi, Y; Mitsuyo, H; Nobuhiko, Y; Tatsurou, T; Kazuhiko, S; Yoko, H; Shigemasa, I; Hisanaga, M; Osamu, H; Katsuyoshi, S; Seishi, U; Matsushita, H; Masahiko, T

    1999-03-01

    Biopsy specimens can reveal that esophageal cancer is an adenocarcinoma but they cannot show that its origin is Barrett's mucosa. Therefore we must show during endoscopy that the tumor exists in Barrett's mucosa. We reported that Barrett's esophagus could be clearly diagnosed at endoscopy as the columnar mucosa lying on the longitudinal vessels in the lower esophagus. We define Barrett's esophagus as "the columnar mucosa in the esophagus which exists continuously more than 2 cm in circumference from the stomach." Short-segment Barrett's esophagus (SSBE) is "the columnar mucosa which exists in the esophagus continuously from the stomach but its length has a part under 2 cm in length." Endoscopically Barrett's adenocarcinoma is visualized as a lesion with a reddish and uneven mucosal surface. Barrett's adenocarcinomas occur in the SSBE as well. Endoscopic observation at periodic intervals is necessary not only for cases with Barrett's esophagus but also with SSBE. A further examination is necessary to determine the application of EMR for superficial Barrett's adenocarcinoma.

  15. Adenocarcinoma arising from vaginal stump: unusual vaginal carcinogenesis 7 years after hysterectomy due to cervical intraepithelial neoplasia.

    PubMed

    Shibata, Takashi; Ikura, Yoshihiro; Iwai, Yasuhiro; Tokuda, Hisato; Cho, Yuka; Morimoto, Noriyuki; Nakago, Satoshi; Oishi, Tetsuya

    2013-11-01

    Primary vaginal adenocarcinomas are one of the rarest malignant neoplasms, which develop in the female genital tract. Because of the extremely low incidence, their clinical and pathologic characteristics are still obscure. Recently, we experienced a case of vaginal adenocarcinoma that appeared 7 yr after hysterectomy because of cervical intraepithelial neoplasia. The patient, a 65-yr-old obese woman, was diagnosed as having adenocarcinoma in the vaginal stump and was treated by simple tumor excision and radiation. Immunohistochemical and molecular biologic examinations indicated a potential association with human papilloma virus infection in the development of the vaginal adenocarcinoma. There has been no evidence of recurrence for 3 yr after the operation.

  16. Ethanol Extracts of Fruiting Bodies of Antrodia cinnamomea Suppress CL1-5 Human Lung Adenocarcinoma Cells Migration by Inhibiting Matrix Metalloproteinase-2/9 through ERK, JNK, p38, and PI3K/Akt Signaling Pathways

    PubMed Central

    Chen, Ying-Yi; Liu, Fon-Chang; Chou, Pei-Yu; Chien, Yi-Chung; Chang, Wun-Shaing Wayne; Huang, Guang-Jhong; Wu, Chieh-Hsi; Sheu, Ming-Jyh

    2012-01-01

    Cancer metastasis is a primary cause of cancer death. Antrodia cinnamomea (A. cinnamomea), a medicinal mushroom in Taiwan, has shown antioxidant and anticancer activities. In this study, we first observed that ethanol extract of fruiting bodies of A. cinnamomea (EEAC) exerted a concentration-dependent inhibitory effect on migration and motility of the highly metastatic CL1-5 cells in the absence of cytotoxicity. The results of a gelatin zymography assay showed that A. cinnamomea suppressed the activities of matrix metalloproteinase-(MMP-) 2 and MMP-9 in a concentration-dependent manner. Western blot results demonstrated that treatment with A. cinnamomea decreased the expression of MMP-9 and MMP-2; while the expression of the endogenous inhibitors of these proteins, that is, tissue inhibitors of MMP (TIMP-1 and TIMP-2) increased. Further investigation revealed that A. cinnamomea suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. A. cinnamomea also suppressed the expressions of PI3K and phosphorylation of Akt. Furthermore, treatment of CL1-5 cells with inhibitors specific for PI3K (LY 294002), ERK1/2 (PD98059), JNK (SP600125), and p38 MAPK (SB203580) decreased the expression of MMP-2 and MMP-9. This is the first paper confirming the antimigration activity of this potentially beneficial mushroom against human lung adenocarcinoma CL1-5 cancer cells. PMID:22454661

  17. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    PubMed

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra.

  18. The cytotoxic effect of α-tomatine in MCF-7 human adenocarcinoma breast cancer cells depends on its interaction with cholesterol in incubation media and does not involve apoptosis induction

    PubMed Central

    SUCHA, LENKA; HROCH, MILOS; REZACOVA, MARTINA; RUDOLF, EMIL; HAVELEK, RADIM; SISPERA, LUDEK; CMIELOVA, JANA; KOHLEROVA, RENATA; BEZROUK, ALES; TOMSIK, PAVEL

    2013-01-01

    In recent years, α-tomatine has been studied for its anticancer activity. In the present study, we focused on the cytotoxic effect of α-tomatine in the MCF-7 human breast adenocarcinoma cell line, its mechanism of action, biotransformation and stability in the culture medium. We observed an inhibition of cell proliferation and viability at concentrations of 6 and 9 μM but then a recovery of cells occurred. The recovery was not caused by the biotransformation of α-tomatine in MCF-7 cells, but by a substantial decrease in the concentration of α-tomatine in the culture medium due to its binding with cholesterol. Regarding the mechanism of action of α-tomatine, we observed no DNA damage, no changes in the levels of the proteins p53 and p21WAF1/Cip1, and no apoptosis (neither activated caspase-8 and -9, nor sub-G1 peak, or morphological signs). We found a loss of ATP in α-tomatine-treated cells. These results support the conclusion that α-tomatine does not induce apoptosis in the MCF-7 cell line. PMID:24100733

  19. Inactivated Tianjin strain, a novel genotype of Sendai virus, induces apoptosis in HeLa, NCI-H446 and Hep3B cells.

    PubMed

    Chen, Jun; Han, Han; Wang, Bin; Shi, Liying

    2016-07-01

    The Sendai virus strain Tianjin is a novel genotype of the Sendai virus. In previous studies, ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) demonstrated antitumor effects on human breast cancer cells. The aim of the present study was to investigate the in vitro antitumor effects of UV-Tianjin on the human cervical carcinoma HeLa, human small cell lung cancer NCI-H446 and human hepatocellular carcinoma Hep 3B cell lines, and the possible underlying mechanisms of these antitumor effects. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay revealed that UV-Tianjin treatment inhibited the proliferation of HeLa, NCI-H446 and Hep 3B cells in a dose- and time-dependent manner. Hoechst and Annexin V-fluorescein isothiocyanate/propidium iodide double staining indicated that UV-Tianjin induced dose-dependent apoptosis in all three cell lines with the most significant effect observed in the HeLa cell line. In the HeLa cell line, UV-Tianjin-induced apoptosis was further confirmed by the disruption of the mitochondria membrane potential and the activation of caspases, as demonstrated by fluorescent cationic dye and colorimetric assays, respectively. In addition, western blot analysis revealed that UV-Tianjin treatment resulted in significant upregulation of cytochrome c, apoptosis protease activating factor-1, Fas, Fas ligand and Fas-associated protein with death domain, and activated caspase-9, -8 and -3 in HeLa cells. Based on these results, it is hypothesized that UV-Tianjin exhibits anticancer activity in HeLa, NCI-H446 and Hep 3B cell lines via the induction of apoptosis. In conclusion, the results of the present study indicate that in the HeLa cell line, intrinsic and extrinsic apoptotic pathways may be involved in UV-Tianjin-induced apoptosis.

  20. Down-regulation of microRNA-9 leads to activation of IL-6/Jak/STAT3 pathway through directly targeting IL-6 in HeLa cell.

    PubMed

    Zhang, Jiangbo; Jia, Junqiao; Zhao, Lijun; Li, Xiaojun; Xie, Qing; Chen, Xiangmei; Wang, Jianliu; Lu, Fengmin

    2016-05-01

    MicroRNA-9 (miR-9) presents to exert distinct and even opposite functions in different kinds of tumors through targeting different cellular genes. However, its role in cervical adenocarcinoma remains uncertain. Here, we report that miR-9 is down-regulated in cervical adenocarcinoma due to its frequent promoter-hypermethylation and exerts its tumor suppressor role through inhibiting several novel target genes, including interleukin-6 (IL-6). The promoters of miR-9 precursors (mir-9-1, -2, and -3) were hypermethylated in cervical adenocarcinoma tissues. Demethylation treatment of HeLa dramatically increased the expression of mature miR-9. Both in vitro and in vivo functional experiments confirmed that miR-9 can inhibit the proliferation, migration, and malignant transformation abilities of HeLa cells. Bioinformatics methods and array-based RNA expression profiles were used to screen the downstream target genes of miR-9. Dual-luciferase reporting assay, real-time qPCR, and ELISA or Western blot confirmed four genes (CKAP2, HSPC159, IL-6, and TC10) to be novel direct target genes of miR-9. Pathway annotation analysis of the differently expressed genes (DEGs) induced by ectopic miR-9 expression revealed the enrichment in Jak/STAT3 pathway, which is one of the downstream pathways of IL-6. Ectopic expression of miR-9 in HeLa inhibited Jak/STAT3 signaling activity. Moreover, such effect could be partially reversed by the addition of exogenous IL-6. In conclusion, our results here present a tumor suppressor potential of miR-9 in cervical adenocarcinoma for the first time and suggest that miR-9 could repress tumorigenesis through inhibiting the activity of IL-6/Jak/STAT3 pathway.

  1. DAG/PKCδ and IP3/Ca²⁺/CaMK IIβ Operate in Parallel to Each Other in PLCγ1-Driven Cell Proliferation and Migration of Human Gastric Adenocarcinoma Cells, through Akt/mTOR/S6 Pathway.

    PubMed

    Dai, Lianzhi; Zhuang, Luhua; Zhang, Bingchang; Wang, Fen; Chen, Xiaolei; Xia, Chun; Zhang, Bing

    2015-12-01

    Phosphoinositide specific phospholipase Cγ (PLCγ) activates diacylglycerol (DAG)/protein kinase C (PKC) and inositol 1,4,5-trisphosphate (IP3)/Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) axes to regulate import events in some cancer cells, including gastric adenocarcinoma cells. However, whether DAG/PKCδ and IP3/Ca(2+)/CaMK IIβ axes are simultaneously involved in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells and the underlying mechanism are not elucidated. Here, we investigated the role of DAG/PKCδ or CaMK IIβ in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells, using the BGC-823 cell line. The results indicated that the inhibition of PKCδ and CaMK IIβ could block cell proliferation and migration of BGC-823 cells as well as the effect of inhibiting PLCγ1, including the decrease of cell viability, the increase of apoptotic index, the down-regulation of matrix metalloproteinase (MMP) 9 expression level, and the decrease of cell migration rate. Both DAG/PKCδ and CaMK IIβ triggered protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/S6 pathway to regulate protein synthesis. The data indicate that DAG/PKCδ and IP3/Ca(2+)/CaMK IIβ operate in parallel to each other in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells through Akt/mTOR/S6 pathway, with important implication for validating PLCγ1 as a molecular biomarker in early gastric cancer diagnosis and disease surveillance.

  2. Autophagy facilitates Salmonella replication in HeLa cells.

    PubMed

    Yu, Hong B; Croxen, Matthew A; Marchiando, Amanda M; Ferreira, Rosana B R; Cadwell, Ken; Foster, Leonard J; Finlay, B Brett

    2014-03-11

    Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. IMPORTANCE As a host defense system, autophagy is known to target a population of Salmonella for degradation and hence restricting Salmonella replication. In contrast to this concept, a recent report showed that knockdown of Rab1, a GTPase required for autophagy of Salmonella, decreases Salmonella replication in HeLa cells. Here, we have reexamined the fate of Salmonella targeted by autophagy by various cell biology-based assays. We found that the association of autophagy components with cytosolic Salmonella increases shortly after initiation of intracellular bacterial replication. Furthermore, through a live-cell imaging method, a subset of cytosolic Salmonella was found to be extensively associated with autophagy components p62 and/or LC3, and they replicated quickly. Most importantly, depletion of autophagy components significantly reduced the replication of cytosolic Salmonella in HeLa cells. Hence, in contrast to previous reports, we propose

  3. Hepatoid Adenocarcinoma of the Urachus

    PubMed Central

    Jimenez, Carlos Andrés; Carrascal, Edwin

    2016-01-01

    Hepatoid adenocarcinoma of the urachus is a rare condition. We present the case of a 51-year-old female who developed abdominal pain and hematuria. Pelvic magnetic resonance imaging (MRI) reported an urachal mass with invasion to the bladder that was resected by partial cystectomy. On light microscopy the tumor resembled liver architecture, with polygonal atypical cells in nest formation and trabecular structures. Immunochemistry was positive for alfa-fetoprotein (AFP) and serum AFP was elevated. Hepatoid adenocarcinomas have been reported in multiple organs, being most commonly found in the stomach and the ovaries. Bladder compromise has been rarely described in the literature, and it has been associated with poor prognosis, low remission rates, and early metastasis. PMID:27803830

  4. Oncocytic Adenocarcinoma of the Orbit.

    PubMed

    Harris, Gerald J; Paul, Sean; Hunt, Bryan C

    Oncocytic adenocarcinoma of the orbit is a rare tumor, with 1 case of nonlacrimal sac, nonlacrimal gland origin, and a poor outcome previously reported. An 85-year-old man with a 2-month history of left-sided epiphora, enlarging eyelid nodules, and diplopia in left gaze was found on imaging to have a poorly circumscribed, nodular mass of uniform radiodensity in the inferomedial orbit. Incisional biopsy revealed morphologic and immunohistochemical features of oncocytic adenocarcinoma with origin in the caruncle suspected, and CT of the neck, chest, abdomen, and pelvis showed no metastases or remote primary tumor source. Based on multidisciplinary consensus, orbital exenteration with adjuvant radiation therapy was performed, and there was no evidence of residual or recurrent tumor 2 years after treatment.

  5. Optimal lymphadenectomy for esophageal adenocarcinoma.

    PubMed

    Oezcelik, A

    2013-08-01

    Recently published data have shown that an extended lymphadenectomy during the en bloc esophagectomy leads to a significant increased long-term survival for esophageal adenocarcinoma. On the other hand some studies indicate that the increased survival is based on stage migration and that the surgical complication rate is increased after extended lymphadenectomy. The aim of this review was to give an overview about all aspects of an extended lymphadenectomy in patients with esophageal adenocarcinoma. The review of the literature shows clearly that the number of involved lymph nodes is an independent prognostic factor in patients with esophageal adenocarcinoma. Furthermore, an extended lymphadenectomy leads to an increased long-term survival. Some studies describe that 23 lymph nodes should be removed to predict survival; other studies 18 lymph nodes or 15 lymph nodes. Opponents indicate that the survival benefit is based on stage migration. The studies with a large study population have performed a Cox regression analyzes and identified the number of lymph nodes removed as an independent factor for improved survival, which means it is significant independently from other parameters. Under these circumstances is stage migration not an option to explain the survival benefit. An important difficulty is, that there is no standardized definition of an extended lymphadenectomy, which means the localization and number of removed lymph nodes differ depending from the performing centre. The controversies regarding the survival benefit of the lymphadenectomy is based on the lack of standardisation of the lymphadenectomy. The main goal of further studies should be to generate a clear definition of an extended lymphadenectomy in patients with esophageal adenocarcinoma.

  6. Targeting Pancreatic Ductal Adenocarcinoma Acidic Microenvironment

    NASA Astrophysics Data System (ADS)

    Cruz-Monserrate, Zobeida; Roland, Christina L.; Deng, Defeng; Arumugam, Thiruvengadam; Moshnikova, Anna; Andreev, Oleg A.; Reshetnyak, Yana K.; Logsdon, Craig D.

    2014-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA, accounting for ~40,000 deaths annually. The dismal prognosis for PDAC is largely due to its late diagnosis. Currently, the most sensitive diagnosis of PDAC requires invasive procedures, such as endoscopic ultrasonography, which has inherent risks and accuracy that is highly operator dependent. Here we took advantage of a general characteristic of solid tumors, the acidic microenvironment that is generated as a by-product of metabolism, to develop a novel approach of using pH (Low) Insertion Peptides (pHLIPs) for imaging of PDAC. We show that fluorescently labeled pHLIPs can localize and specifically detect PDAC in human xenografts as well as PDAC and PanIN lesions in genetically engineered mouse models. This novel approach may improve detection, differential diagnosis and staging of PDAC.

  7. Gynecologic Cancer InterGroup (GCIG) consensus review for cervical adenocarcinoma.

    PubMed

    Fujiwara, Hiroyuki; Yokota, Harushige; Monk, Bradley; Treilleux, Isabelle; Devouassoux-Shisheboran, Mojgan; Davis, Alison; Kim, Jae-Weon; Mahner, Sven; Stany, Michael; Pignata, Sandro; Ray-Coquard, Isabelle; Fujiwara, Keiichi

    2014-11-01

    Cervical adenocarcinoma is known to be less common than squamous cell carcinoma of the cervix comprising approximately 25% of all cervical carcinomas. Differences in associated human papillomavirus types, patterns of spread, and prognosis call for treatments that are not always like those for squamous cancers. In this review, we report a consensus developed by the Gynecologic Cancer InterGroup surrounding cervical adenocarcinoma for epidemiology, pathology, treatment, and unanswered questions. Prospective clinical trials are needed to help develop treatment guidelines.

  8. Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma.

    PubMed

    Zhou, Jun; Gong, Guanghui; Tan, Hong; Dai, Furong; Zhu, Xin; Chen, Yile; Wang, Junpu; Liu, Ying; Chen, Puxiang; Wu, Xiaoying; Wen, Jifang

    2015-06-01

    MicroRNAs (miRNAs) can serve as biomarkers in human cancer. To determine the clinical value of urinary miRNAs for ovarian serous adenocarcinoma, we collected urine samples from 39 ovarian serous adenocarcinoma patients, 26 patients with benign gynecological disease and 30 healthy controls. The miRNA microarray data showed that only miR-30a-5p was upregulated and 37 miRNAs were downregulated in the urine samples of ovarian serous adenocarcinoma patients, when compared to healthy controls, which was confirmed after conducting quantitative PCR. The upregulation of urinary miR-30a-5p was closely associated with early stage of ovarian serous adenocarcinoma as well as lymphatic metastasis. Receiver operator characteristic (ROC) analysis demonstrated the potential use of urinary miR-30a-5p as a diagnostic marker for ovarian serous adenocarcinoma. Furthermore, a lower urine level of miR-30a-5p was found in 20 gastric cancer and 20 colon carcinoma patients when compared to ovarian serous adenocarcinoma, suggesting that the upregulation of urinary miR-30a-5p may be specific for ovarian serous adenocarcinoma. miR-30a-5p was also upregulated in ovarian serous adenocarcinoma tissues and cell lines, while urinary miR-30a-5p from ovarian cancer patients was notably reduced following the surgical removal of ovarian serous adenocarcinoma, suggesting that urinary miR-30a-5p was derived from the ovarian serous adenocarcinoma tissue. Notably, miR-30a-5p was concentrated with exosomes from the ovarian cancer cell supernatant or urine from ovarian serous adenocarcinoma patients, supporting a pathway for excretion into the urine. The results also showed that the knockdown of miR-30a-5p significantly inhibited the proliferation and migration of ovarian cancer cells. In summary, to the best of our knowledge, the present study provided the first evidence of increased miR-30a-5p in the urine of ovarian serous adeno-carcinoma patients, while the inhibition of miR-30a-5p suppressed the

  9. MAMMARY GLAND ADENOCARCINOMA IN A MALE BORNEAN ORANGUTAN (PONGO PYGMAEUS).

    PubMed

    Carpenter, Nancy A; Crook, Erika K

    2017-03-01

    An adult male Bornean orangutan ( Pongo pygmaeus ) was diagnosed with invasive, poorly differentiated grade 9/9 mammary gland adenocarcinoma from a subcutaneous mass that was surgically removed during a routine preventative health examination. The tumor was tested for estrogen and progesterone receptors, human epidermal growth factor receptor 2 (HER2), and HER2 fluorescence in situ hybridization (HER2 FISH). Whole blood was tested for breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) genes. The orangutan was treated orally with two common human breast cancer drugs; tamoxifen and anastrozole. The orangutan lived for 4.5 yr postdetection, dying from an unrelated cause. This is the first reported case of mammary gland adenocarcinoma in a male great ape.

  10. Allelotyping of butadiene-induced lung and mammary adenocarcinomas of B6C3F1 mice: frequent losses of heterozygosity in regions homologous to human tumor-suppressor genes.

    PubMed Central

    Wiseman, R W; Cochran, C; Dietrich, W; Lander, E S; Söderkvist, P

    1994-01-01

    To identify the potential involvement of tumor-suppressor gene inactivation during neoplastic development in B6C3F1 mice, genetic losses were determined from allelotypes of butadiene-induced lung and mammary adenocarcinomas. By using length polymorphisms in restriction fragments and simple sequence repeats, or "microsatellites," markers on each autosome were analyzed for allele losses in tumor DNAs. Losses of heterozygosity on chromosome 11 were observed at several loci surrounding the p53 tumor-suppressor gene (Trp53) in 12 of 17 mammary tumors and 2 of 8 lung tumors. Although most of these alterations appeared to result from nondisjunction, at least two examples of somatic recombination or deletion were also observed. Southern analysis revealed a homozygous deletion of the remaining Trp53 allele of one of these mammary tumors. Losses of heterozygosity were also detected at the Rb-1 tumor-suppressor gene in 7 of 17 mammary tumors and 1 lung tumor. Finally, frequent allele losses were observed on chromosome 4 in lung tumors. Analysis of nine chromosome 4 loci defined an interstitial deletion containing the Ifa gene cluster in one of the lung tumors. A tumor-suppressor gene was previously mapped to this region of chromosome 4 in studies with somatic cell hybrids. In addition, homozygous deletions have been reported in a homologous region of human chromosome 9p for acute lymphocytic leukemias, glioblastomas, melanomas, and lung carcinomas. These findings suggest that the inactivation of tumor-suppressor genes including Trp53, Rb-1, and an unidentified gene on chromosome 4 plays a significant role during carcinogenesis in mice. Images PMID:8170984

  11. Overexpression of a novel regulator of p120 catenin, NLBP, promotes lung adenocarcinoma proliferation

    PubMed Central

    Kim, Chang Hee; Nam, Hae-Seong; Lee, Eun Hee; Han, Seung Hun; Cho, Hyun Jung; Chung, Hee Jin; Lee, Nam Soo; Choi, Suk Jin; Kim, Hojoong; Ryu, Jeong Seon; Kwon, Junhye; Kim, Hongtae

    2013-01-01

    NLBP (novel LZAP-binding protein) was recently shown to function as a tumor suppressor capable of inhibiting the NFκB signaling pathway. NLBP is also known as a negative regulator of cell invasion, and its expression is reduced in several cancer cell lines that have little invasive activity. Although these phenomena suggest that NLBP may be a potential tumor suppressor, its role as a tumor suppressor in human lung cancer is not well established. In contrast to our expectation, NLBP was highly expressed in the early stage of lung adenocarcinoma tissues, and overexpression of NLBP promoted proliferation of H1299 lung adenocarcinoma cells. We also found that p120 catenin (p120ctn) was a novel binding partner of NLBP, and that NLBP binds to the regulatory domain of p120ctn, and p120ctn associates with N-terminal region of NLBP, respectively. This binding leads to p120ctn stability to inhibit proteasomal degradation of p120ctn by inhibiting its ubiqutination. In addition, we also found that overexpression of NLBP and p120ctn in human lung cancer are closely related with adenocarcinoma compared with squamous cell carcinoma. Taken together, our findings reveal that NLBP is highly overexpressed in human lung adenocarcinoma, and that overexpression of NLBP promotes the cell proliferation of lung adenocarcinoma through interacting with p120ctn and suggest that NLBP may function as an oncogene in early stage carcinogenesis of lung adenocarcinoma. PMID:23839039

  12. Metastatic adenocarcinoma of unknown primary origin.

    PubMed

    Hammar, S P

    1998-12-01

    Adenocarcinomas account for up to 60% of all metastatic neoplasms of unknown primary origin. In general, adenocarcinomas are the most difficult metastatic tumor to accurately identify the primary site. Some metastatic adenocarcinomas have distinctive histological features that allow for their site determination (eg, colonic adenocarcinoma, bronchioloalveolar cell carcinoma), although the majority of metastatic adenocarcinomas have histological features that are not distinctive enough to allow for a specific diagnosis of their origin. For this reason, electron microscopy and immunohistochemistry have been used to help identify the exact type (origin) of metastatic adenocarcinomas. Relatively specific ultrastructural features used to diagnose metastatic adenocarcinomas of unknown primary origin include tubular myelin, intranuclear surfactant apoprotein tubular inclusions, Clara cell granules, uniform short microvilli with filamentous cores and core rootlets, Langerhans cells associated with neoplastic cells, cytoplasmic hyaline globules, lipid droplets, glycogen, and cytoplasmic crystals. Only a few of these ultrastructural features are absolutely specific. Relatively specific immunohistochemical tests used to diagnose metastatic adenocarcinomas of unknown primary origin include prostate-specific antigen, thyroglobulin, estrogen and progesterone receptor proteins, thyroid transcription factor-I, and surfactant apoproteins. Of these, prostate-specific antigen and thyroglobulin are the most specific. The purpose of this article is to discuss the use of electron microscopy and immunohistochemistry in the site-specific diagnosis of metastatic adenocarcinomas of unknown primary origin.

  13. Pseudolaric acid B exerts antitumor activity via suppression of the Akt signaling pathway in HeLa cervical cancer cells.

    PubMed

    Li, Mingqun; Hong, Li

    2015-08-01

    Pseudolaric acid B (PAB) is a diterpene acid isolated from the bark of the root and trunk of Pseudolarix kaempferi Gordon (Pinaceae), which has demonstrated cytotoxic effects against various types of cancer. However, the mechanisms underlying the anticancer effects of PAB have remained to be elucidated. In the present study, the effects of PAB on the viability and apoptosis of HeLa cells were investigated by MTT assay, flow cytometric analysis of Annexin V-fluorescein isothiocyanate/propidium iodide staining, Rhodamine 123 staining and western blot analysis. The results demonstrated that PAB had antiproliferative and apoptosis-inducing effects on HeLa cells. PAB markedly inhibited HeLa cell viability in a time- and concentration-dependent manner. Flow cytometric analysis indicated that PAB induced apoptosis in HeLa cells in a dose-dependent manner. Treatment with PAB suppressed the expression of anti-apoptotic factor B cell lymphoma-2, and promoted the expression of pro-apoptotic factor Bcl-2-associated X protein. In addition, PAB induced an increase in Caspase-3 activity and loss of mitochondrial membrane potential, suggesting that this apoptosis may be mediated by mitochondrial pathways. Furthermore, the results of western blot analysis indicated that PAB was able to reduce Akt phosphorylation, thereby inhibiting the Akt pathway. These results suggested that PAB inhibited cell proliferation and induced apoptosis in HeLa cells, and that the anti-tumor effects of PAB were associated with inhibition of the Akt pathway. In conclusion, the results of the present study suggested that PAB may represent a novel therapeutic strategy for the treatment of human cervical cancer. However, additional studies are required to investigate the underlying apoptotic mechanisms.

  14. Anticancer effects of brominated indole alkaloid Eudistomin H from marine ascidian Eudistoma viride against cervical cancer cells (HeLa).

    PubMed

    Rajesh, Rajaian Pushpabai; Annappan, Murugan

    2015-01-01

    Marine invertebrates called ascidians are prolific producers of bioactive substances. The ascidian Eudistoma viride, distributed along the Southeast coast of India, was investigated for its in vitro cytotoxic activity against human cervical carcinoma (HeLa) cells by the MTT assay. The crude methanolic extract of E. viride, with an IC50 of 53 μg/ml, was dose-dependently cytotoxic. It was more potent at 100 μg/ml than cyclohexamide (1 μg/ml), reducing cell viability to 9.2%. Among nine fractions separated by chromatography, ECF-8 exhibited prominent cytoxic activity at 10 μg/ml. The HPLC fraction EHF-21 of ECF-8 was remarkably dose- and time-dependently cytotoxic, with 39.8% viable cells at 1 μg/ml compared to 51% in cyclohexamide-treated cells at the same concentration; the IC50 was 0.49 μg/ml. Hoechst staining of HeLa cells treated with EHF-21 at 0.5 μg/ml revealed apoptotic events such an cell shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies. Cell size and granularity study showed changes in light scatter, indicating the characteristic feature of cells dying by apoptosis. The cell-cycle analysis of HeLa cells treated with fraction EHF-21 at 1 μg/ml showed the marked arrest of cells in G0/G1, S and G2/M phases and an increase in the sub G0/G1 population indicated an increase in the apoptotic cell population. The statistical analysis of the sub-G1 region showed a dose-dependent induction of apoptosis. DNA fragmentation was also observed in HeLa cells treated with EHF-21. The active EHF-21 fraction, a brominated indole alkaloid Eudistomin H, led to apoptotic death of HeLa cells.

  15. LIV-1 suppression inhibits HeLa cell invasion by targeting ERK1/2-Snail/Slug pathway

    SciTech Connect

    Zhao Le; Chen Wei; Taylor, Kathryn M.; Cai Bin; Li Xu

    2007-11-09

    It was reported that expression of the estrogen-regulated zinc transporter LIV-1 was particularly high in human cervical cancer cell line HeLa. This result prompted us to study the role that LIV-1 played in human cervical cancer. The results of real-time PCR showed that LIV-1 mRNA was significantly higher in cervical cancer in situ than in normal tissues. RNAi mediated suppression of LIV-1 in HeLa cells significantly inhibited cell proliferation, colony formation, migration, and invasive ability, but had no effect on cell apoptosis. Furthermore, LIV-1 suppression is accompanied by down-regulation of p44/42 MAPK, phospho-p44/42 MAPK, Snail and Slug expression levels. Hence, our data provide the first evidence that LIV-1 mRNA is overexpressed in cervical cancer in situ and is involved in invasion of cervical cancer cells through targeting MAPK-mediated Snail and Slug expression.

  16. Constitutive hypophosphorylation of extracellular signal-regulated kinases-1/2 and down-regulation of c-Jun in human gastric adenocarcinoma

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Joe Yiu; Yu Le; Li Zhijie; Chu, Kent Man; Cho, C.H.

    2008-08-22

    Hyperphosphorylation of extracellular signal-regulated protein kinases-1/2 (ERK1/2) is known to promote cancer cell proliferation. We therefore investigated the constitutive phosphorylation levels of ERK1/2 and the expression of its downstream targets c-Fos, c-Jun, and cyclooxygenase-2 (COX-2) in biopsied human gastric cancer tissues. Results showed that ERK1/2 phosphorylation and c-Jun expression were significantly lowered in gastric cancer compared with the non-cancer adjacent tissues. The expression of c-Fos, however, was not altered while COX-2 was significantly up-regulated. To conclude, we demonstrate that hypophosphorylation of ERK1/2 may occur in gastric cancer. Such discovery may have implication in the application of pathway-directed therapy for this malignant disease.

  17. Cyto-/genotoxic effect of CdSe/ZnS quantum dots in human lung adenocarcinoma cells for potential photodynamic UV therapy applications.

    PubMed

    Choi, Young Joo; Kim, Yang Jee; Lee, Joong Won; Lee, Younghyun; Lim, Yong-Beom; Chung, Hai Won

    2012-03-01

    Quantum dots (QDs) are luminescent nanoparticles (NPs) with promising potential in numerous medical applications, but there remain persistent human health and safety concerns. Although the cytotoxic effects of QDs have been extensively investigated, their genotoxic effects remain under-explored. This study scrutinized the cyto- and genotoxic effects of QDs with a Cadmium selenide/Zinc sulfide (CdSe/ZnS) core/shell, and suggests comprehensive guidelines for the application of QDs in cancer therapy. QDs were used to treat A549 cells in the presence and absence of ultraviolet A/B (UVA/UVB) irradiation. QD-induced cell death was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), apoptosis, and lactate dehydrogenase (LDH) assays, as well as by real-time PCR analysis of differential mRNA levels of genes, such as ataxia telangiectasia mutated (ATM), p53, and caspase-9, involved in apoptosis. The genotoxic effect of CdSe/ZnS QDs was measured in human cancer cells, for the first time, by comet and micronucleus assays. Treatment with CdSe/ZnS QDs and UVB irradiation resulted in the most severe extent of cell death, indicating strong induction of phototoxicity by CdSe/ZnS QDs in the presence of UVB. Both apoptotic and necrotic cell death were observed upon QDs and UVB combined treatment. The induction of Olive tail moments and micronuclei formation was also most significant when CdSe/ZnS QDs and UVB irradiation were combined. Our results on the genotoxic effect and mechanistic details of CdSe/ZnS QD-induced cell death suggest that UVB irradiation is the most effective method for increasing the potency of QDs during photodynamic cancer therapy.

  18. Paclitaxel-resistant HeLa cells have up-regulated levels of reactive oxygen species and increased expression of taxol resistance gene 1.

    PubMed

    Bi, Wenxiang; Wang, Yuxia; Sun, Gaoying; Zhang, Xiaojin; Wei, Yongqing; Li, Lu; Wang, Xiaoyuan

    2014-07-01

    This study is to establish a paclitaxel (PTX)-resistant human cervical carcinoma HeLa cell line (HeLa/PTX) and to investigate its redox characteristics and the expression of taxol resistance gene 1 (Txr1). HeLa cells were treated with PTX and effects of PTX on cell proliferation were detected through cell counting and the MTT assay. Levels of cellular reactive oxygen species (ROS), reduced glutathione (GSH), and oxidized glutathione (GSSG) as well as the ratio of GSH to GSSG were measured by the 2,7-difluorescein diacetate (DCFH-DA) method and the 5,5'dithiobis(2-nitrobenzoic acid) (DTNB) method. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined by the nitrite formation method, the molybdate colorimetric method, and the DTNB colorimetric method, respectively. The level of Txr1 mRNA was determined by real-time PCR. Compared with the regular HeLa cells, HeLa/PTX cells were larger in size and had more cytoplasmic granules. The population doubling time for HeLa/PTX cells was 1.32 times of that of HeLa cells (P<0.01). HeLa/PTX cells showed stronger resistance to PTX than HeLa cells with a resistance index of 122.69. HeLa/PTX cells had higher levels of ROS (P<0.01) and Txr1 mRNA (P<0.01), lower level of GSH (P < 0.05), and lower activities of SOD (P<0.01) and GPx (P < 0.05) than HeLa cells. HeLa/PTX cells, with higher levels of ROS and Txr1 mRNA expression, are more resistant to PTX than HeLa cells.

  19. Dicarbonyl/L-xylulose reductase: a potential biomarker identified by laser-capture microdissection-micro serial analysis of gene expression of human prostate adenocarcinoma.

    PubMed

    Cho-Vega, Jeong Hee; Tsavachidis, Spiridon; Do, Kim-Anh; Nakagawa, Junichi; Medeiros, L Jeffrey; McDonnell, Timothy J

    2007-12-01

    To identify genes involved in prostate carcinogenesis, we used laser-capture microdissection-micro serial analysis of gene expression to construct libraries of paired cancer and normal cells from human tissue samples. After computational comparison of the two libraries, we identified dicarbonyl/l-xylulose reductase (DCXR), an enzyme that catalyzes alpha-dicarbonyl and l-xylulose, as being significantly up-regulated in prostate cancer cells. The specificity of DCXR up-regulation for prostate cancer tissues was confirmed by quantitative real-time reverse transcriptase-PCR, virtual Northern blot, and Western blot analyses. Furthermore, DCXR expression at the protein level was assessed using fresh-frozen tissues and a tissue microarray consisting of 46 cases of organ-confined early-stage prostate cancer and 29 cases of chemohormonally treated prostate cancer. In most normal prostate epithelial cells, DCXR was expressed at low levels and was localized predominantly in the cytoplasmic membrane. In contrast, in virtually all grades of early-stage prostate cancer and in all chemohormonally treated cases, DCXR was strikingly overexpressed and was localized predominantly in the cytoplasm and nucleus. In all samples, the stromal cells were completely devoid of DCXR expression. Based on these findings, we suggest that DCXR overexpression has the potential to be an additional useful biomarker for prostate cancer.

  20. Alteration of cellular phenotype and responses to oxidative stress by manganese superoxide dismutase and a superoxide dismutase mimic in RWPE-2 human prostate adenocarcinoma cells.

    PubMed

    Zhong, Weixiong; Yan, Tao; Webber, Mukta M; Oberley, Terry D

    2004-06-01

    To study biologic effects of increased manganese superoxide dismutase (MnSOD) on cell behavior, we overexpressed MnSOD in a human prostate cancer cell line RWPE-2 by cDNA transfection. Stable transfectants of MnSOD showed a two- to threefold increase in MnSOD protein and enzymatic activity and a decrease in growth rate with prolonged cell population doubling times. Western blot analysis showed a 1.5- to twofold increase in the cyclin-dependent kinase inhibitor p21(Waf1) in MnSOD transfectants. Overexpression of MnSOD resulted in a seven- to eightfold increase in reduced glutathione (GSH), 18- to 26-fold increase in oxidized glutathione (GSSG), and a two- to threefold decrease in the ratio of GSH to GSSG. MnSOD-overexpressing cells showed an increase in sensitivity to the cytotoxicity of buthionine sulfoximine, a glutathione-depleting agent, and vitamin C, but a decrease in sensitivity to sodium selenite. Treatment with a superoxide dismutase (SOD) mimic MnTMPyP resulted in similar effects of MnSOD overexpression on cell responses to vitamin C and selenium. These data demonstrate that overexpression of MnSOD or treatment with SOD mimics can result in antioxidant or prooxidant effects in cells, depending on the presence of other antioxidants and prooxidants. MnSOD also has redox regulatory effects on cell growth and gene expression. These findings suggest that MnSOD and SOD mimics have the potential for cancer prevention or treatment.

  1. Transcriptomic Microenvironment of Lung Adenocarcinoma.

    PubMed

    Bossé, Yohan; Sazonova, Olga; Gaudreault, Nathalie; Bastien, Nathalie; Conti, Massimo; Pagé, Sylvain; Trahan, Sylvain; Couture, Christian; Joubert, Philippe

    2017-03-01

    Background: Tissues surrounding tumors are increasingly studied to understand the biology of cancer development and identify biomarkers.Methods: A unique geographic tissue sampling collection was obtained from patients that underwent curative lobectomy for stage I pulmonary adenocarcinoma. Tumor and nontumor lung samples located at 0, 2, 4, and 6 cm away from the tumor were collected. Whole-genome gene expression profiling was performed on all samples (n = 5 specimens × 12 patients = 60). Analyses were carried out to identify genes differentially expressed in the tumor compared with adjacent nontumor lung tissues at different distances from the tumor as well as to identify stable and transient genes in nontumor tissues with respect to tumor proximity.Results: The magnitude of gene expression changes between tumor and nontumor sites was similar with increasing distance from the tumor. A total of 482 up- and 843 downregulated genes were found in tumors, including 312 and 566 that were consistently differentially expressed across nontumor sites. Twenty-nine genes induced and 34 knocked-down in tumors were also identified. Tumor proximity analyses revealed 15,700 stable genes in nontumor lung tissues. Gene expression changes across nontumor sites were subtle and not statistically significant.Conclusions: This study describes the transcriptomic microenvironment of lung adenocarcinoma and adjacent nontumor lung tissues collected at standardized distances relative to the tumor.Impact: This study provides further insights about the molecular transitions that occur from normal tissue to lung adenocarcinoma and is an important step to develop biomarkers in nonmalignant lung tissues. Cancer Epidemiol Biomarkers Prev; 26(3); 389-96. ©2016 AACR.

  2. Sorbus rufopilosa Extract Exhibits Antioxidant and Anticancer Activities by Inducing Cell Cycle Arrest and Apoptosis in Human Colon Adenocarcinoma HT29 Cells

    PubMed Central

    Oh, You Na; Jin, Soojung; Park, Hyun-Jin; Kwon, Hyun Ju; Kim, Byung Woo

    2016-01-01

    Background Sorbus rufopilosa, a tsema rowan, is a species of the small ornamental trees in the genus Sorbus and the family Rosaceae found in East Asia. The bioactivities of S. rufopilosa have not yet been fully determined. The objective of this study is to evaluate the antioxidant and anticancer effects of ethanol extract of S. rufopilosa (EESR) and to determine the molecular mechanism of its anticancer activity in human colon carcinoma HT29 cells. Methods To examine the antioxidant activity of EESR, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay was performed. Inhibitory effect of EESR on cancer cell growth and proliferation was determined by water-soluble tetrazolium salt assay. To investigate the mechanism of EESR-mediated cytotoxicity, HT29 cells were treated with various concentrations of EESR and the induction of cell cycle arrest and apoptosis was analyzed by flow cytometry, 4,6-diamidino-2-phenylindole staining, and Western blot analysis. Results EESR showed significant antioxidant activity and inhibitory effect on HT29 cell growth in a dose-dependent manner. EESR induced cell cycle arrest at G2/M phase in a dose-dependent manner by modulating cyclin B, cyclin-dependent kinase 1 (CDK1), and CDK inhibitor p21 expression. EESR-induced apoptosis was associated with the upregulation of p53, a death receptor Fas, and a pro-apoptotic protein Bax and the activation of caspase 3, 8, and 9, resulting in the degradation of PARP. Conclusions EESR possessing antioxidant activity efficiently inhibits proliferation of HT29 cells by inducing both cell cycle arrest and apoptosis. EESR may be a possible candidate for the anticancer drug development. PMID:28053959

  3. Participation of non-neuronal muscarinic receptors in the effect of carbachol with paclitaxel on human breast adenocarcinoma cells. Roles of nitric oxide synthase and arginase.

    PubMed

    Español, Alejandro Javier; Salem, Agustina; Rojo, Daniela; Sales, María Elena

    2015-11-01

    Breast cancer is the most common type of cancer in women and represents a major issue in public health. The most frequent methods to treat these tumors are surgery and/or chemotherapy. The latter can exert not only beneficial effects by reducing tumor growth and metastasis, but also toxic actions on normal tissues. Metronomic therapy involves the use of low doses of cytotoxic drugs alone or in combination to improve efficacy and to reduce adverse effects. We have previously reported that breast tumors highly express functional muscarinic acetylcholine receptors (mAChRs) that regulate tumor progression. For this reason, mAChRs could be considered as therapeutic targets in breast cancer. In this paper, we investigated the ability of a combination of the cytotoxic drug paclitaxel plus carbachol, a cholinergic agonist, at low doses, to induce death in breast tumor MCF-7 cells, via mAChR activation, and the role of nitric oxide synthase (NOS) and arginase in this effect. We observed that the combination of carbachol plus paclitaxel at subthreshold doses significantly increased cytotoxicity in tumor cells without affecting MCF-10A cells, derived from human normal mammary gland. This effect was reduced in the presence of the muscarinic antagonist atropine. The combination also increased nitric oxide production by NOS1 and NOS3 via mAChR activation, concomitantly with an up-regulation of NOS3 expression. The latter effects were accompanied by a reduction in arginase II activity. In conclusion, our work demonstrates that mAChRs expressed in breast tumor cells could be considered as candidates to become targets for metronomic therapy in cancer treatment.

  4. Comparison of oxycodone and morphine on the proliferation, apoptosis and expression of related molecules in the A549 human lung adenocarcinoma cell line

    PubMed Central

    Tian, Mi; Jin, Li; Li, Renqi; Zhu, Sihai; Ji, Muhuo; Li, Weiyan

    2016-01-01

    The present study aimed to compare the effects of oxycodone and morphine hydrochloride on the proliferation, apoptosis and migration of A549 lung cancer cells. A549 human lung cancer cells were cultured in vitro and treated with oxycodone or morphine at various concentrations (10, 20 and 40 µg/ml). Cell migration was determined using a wound healing assay, whereas apoptosis was detected using flow cytometry. Reverse transcription quantitative-polymerase chain reaction was performed in order to assess the apoptosis-related gene expression levels, including p53, B-cell lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax). The levels of vascular endothelial growth factor (VEGF) and urokinase-type plasminogen activator (uPA) were detected using enzyme-linked immunosorbent assays. The expression levels of intercellular cell adhesion molecule (ICAM)-1 were determined by immunofluorescence. In the present study, oxycodone and morphine induced apoptosis in A549 lung cancer cells with similar potency; however, >20 µg/ml oxycodone was more effective at inhibiting cell proliferation (P<0.05) and migration (P<0.05), as compared with morphine at the same concentration. Oxycodone induced a dose-dependent increase in the expression levels of p53 and Bax apoptosis-related genes, whereas it decreased the gene expression levels of Bcl-2. Furthermore, oxycodone decreased, whereas morphine increased, the expression levels of ICAM-1 in a concentration-dependent manner. In addition, at 40 µg/ml, the expression levels of VEGF and uPA in the morphine group were significantly higher than those demonstrated in the oxycodone group (P<0.05). In conclusion, oxycodone was more effective in inhibiting the proliferation and migration of A549 lung cancer cells, as compared with morphine. PMID:27446244

  5. Validation of a Strategy for Cancer Therapy: Delivering Aminoglycoside Drugs to Mitochondria in HeLa Cells.

    PubMed

    Abe, Jiro; Yamada, Yuma; Harashima, Hideyoshi

    2016-02-01

    Mitochondria in human cancer cells have been implicated in cancer cell proliferation, invasion, metastasis, and even drug-resistance mechanisms, making them a potential target organelle for the treatment of human malignancies. Gentamicin (GM), an aminoglycoside drug (AG), is a small molecule that functions as an antibiotic and has ototoxic and nephrotoxic characteristics. Thus, the delivery of GM to mitochondria in cancer cells would be an innovative anticancer therapeutic strategy. In this study, we attempted mitochondrial delivery of GM in HeLa cells derived from a human cervical cancer. For the mitochondrial delivery, we used MITO-Porter, a liposomal nanocarrier for mitochondrial delivery via membrane fusion. We first encapsulated GM in the aqueous phase of the carrier to construct GM-MITO-Porter. Flow cytometry analysis and fluorescent microscopy observations permitted us to confirm that the GM-MITO-Porter was efficiently taken up by HeLa cells and accumulated in mitochondria, whereas naked GM was not taken up by the cells. Moreover, cell viability assays using HeLa cells showed that the GM-MITO-Porter induced strong cytotoxic effects related to mitochondrial disorder. This finding is the first report of the mitochondrial delivery of an AG to cancer cells for cancer therapeutic strategy.

  6. Boron supplementation inhibits the growth and local expression of IGF-1 in human prostate adenocarcinoma (LNCaP) tumors in nude mice.

    PubMed

    Gallardo-Williams, Maria T; Chapin, Robert E; King, Paula E; Moser, Glenda J; Goldsworthy, Thomas L; Morrison, James P; Maronpot, Robert R

    2004-01-01

    Prostate-specific antigen (PSA) is a serine protease and one of the most abundant proteins secreted by the human prostate epithelium. PSA is used as a well-established marker of prostate cancer. The involvement of PSA in several early events leading to the development of malignant prostate tumors has made it a target for prevention and intervention. It is thought that PSA cleaves insulin-like growth factor binding protein-3 (IGFBP-3), providing increased local levels of IGF-1, leading to tumor growth. Separately, there are data that suggest an enzymatic regulatory role for dietary boron, which is a serine protease inhibitor. In this study we have addressed the use of boric acid as a PSA inhibitor in an animal study. We have previously reported that low concentrations (6 ug/mL) of boric acid can partially inhibit the proteolytic activity of purified PSA towards a synthetic fluorogenic substrate. Also, by Western blot we have followed the degradation of fibronectin by enzymatically active PSA and have found significant inhibition in the presence of boric acid. We proposed that dietary supplementation with boric acid would inhibit PSA and reduce the development and proliferation of prostate carcinomas in an animal model. We tested this hypothesis using nude mice implanted subcutaneously with LNCaP cells in Matrigel. Two groups (10 animals/group) were dosed with boric acid solutions (1.7, 9.0 mgB/kg/day) by gavage. Control group received only water. Tumor sizes were measured weekly for 8 weeks. Serum PSA and IGF-1 levels were determined at terminal sacrifice. The size of tumors was decreased in mice exposed to the low and high dose of boric acid by 38% and 25%, respectively. Serum PSA levels decreased by 88.6% and 86.4%, respectively, as compared to the control group. There were morphological differences between the tumors in control and boron-dosed animals, including a significantly lower incidence of mitotic figures in the boron-supplemented groups. Circulating IGF-1

  7. Transcriptionally targeted in vivo gene therapy for carcinoembrionic antigen-producing adenocarcinoma.

    PubMed

    Konishi, F; Maeda, H; Yamanishi, Y; Hiyama, K; Ishioka, S; Yamakido, M

    1999-09-01

    Inoperable adenocarcinoma in colon or lung shows resistance to conventional anti-cancer therapy. For these cancers, the feasibility of transcriptionally targeted killing of carcinoembryonic antigen (CEA)-producing adenocarcinoma cells was investigated. Adenovirus vectors carrying a CEA promoter to express E. coli lacZ (AdCEALacZ) or herpes simplex thymidine kinase (AdCEATK) were made and their in vitro and in vivo tumoricidal effects on CEA-producing or non-producing colon and lung cancer cells were evaluated. In vitro infection with AdCEALacZ showed significantly higher CEA promoter-driven lacZ expression in CEA-producing adenocarcinoma cells including VMRC-LCD and LoVo than in CEA-non-producing cells. AdCEATK-infected LoVo showed higher sensitivity to ganciclovir than control vector-infected LoVo or AdCEATK-infected HeLa both in vitro and in subcutaneously implanted tumors of nude mice. Moreover, total tumor elimination in vivo was achieved by either pre-infection of as few as 30% of cells comprising tumors or by direct in vivo injection of AdCEATK to pre-established LoVo tumors. In addition, CEA promoter-driven lacZ expression in LoVo cells was enhanced by the addition of interleukin-6 (IL-6) in vitro. These results provide a rationale for CEA-promoter-driven, adenovirus-mediated gene therapy for CEA-producing adenocarcinomas in colon and lung with reduced toxicity to normal cells.

  8. Uterine adenocarcinoma with feline leukemia virus infection.

    PubMed

    Cho, Sung-Jin; Lee, Hyun-A; Hong, Sunhwa; Kim, Okjin

    2011-12-01

    Feline endometrial adenocarcinomas are uncommon malignant neoplasms that have been poorly characterized to date. In this study, we describe a uterine adenocarcinoma in a Persian cat with feline leukemia virus infection. At the time of presentation, the cat, a female Persian chinchilla, was 2 years old. The cat underwent surgical ovariohystectomy. A cross-section of the uterine wall revealed a thickened uterine horn. The cat tested positive for feline leukemia virus as detected by polymerase chain reaction. Histopathological examination revealed uterine adenocarcinoma that had metastasized to the omentum, resulting in thickening and the formation of inflammatory lesions. Based on the histopathological findings, this case was diagnosed as a uterine adenocarcinoma with abdominal metastasis. To the best of our knowledge, this is the first report of a uterine adenocarcinoma with feline leukemia virus infection.

  9. Antiproliferative and Apoptosis Inducing Effects of Non-Polar Fractions from Lawsonia inermis L. in Cervical (HeLa) Cancer Cells.

    PubMed

    Kumar, Manish; Kaur, Paramjeet; Kumar, Subodh; Kaur, Satwinderjeet

    2015-04-01

    Two non-polar fractions viz. hexane (Hex-LI) and chloroform fraction (CHCl3-LI) of Lawsonia inermis were studied for their antiproliferative potential in various cancer cell lines viz. HeLa, MCF-7, A549 and C6 glioma cells. Both the fractions showed more than 60 % of growth inhibition in all the tested cell lines at highest tested concentration. In clonogenic assay, different concentrations of Hex-LI and CHCl3-LI decreased the number and size of colonies as compared to control in HeLa cells. The apoptotic effects as nuclear condensation, fragmentation were visualized with Hoechst-33342 staining of HeLa cells using confocal microscope. Both fractions induced apoptotic cell death in human cervical carcinoma (HeLa) cells as evident from flow cytometric analysis carried out using Annexin V-FITC and propidium iodide dyes. CHCl3-LI treated cells significantly induced apoptosis (25.43 %) in comparison to control. Results from Neutral Comet assay demonstrated that both fractions induced double stranded breaks (DSB's) in HeLa cells. Our data indicated that Hex-LI and CHCl3-LI treated cells showed significant increase of 32.2 and 18.56 % reactive oxygen species (ROS) levels in DCFH-DA assay respectively. Further, experimental studies to decipher exact pathway via which these fractions induce cell death are in progress.

  10. Curcumin-mediated decrease in the expression of nucleolar organizer regions in cervical cancer (HeLa) cells.

    PubMed

    Lewinska, Anna; Adamczyk, Jagoda; Pajak, Justyna; Stoklosa, Sylwia; Kubis, Barbara; Pastuszek, Paulina; Slota, Ewa; Wnuk, Maciej

    2014-09-01

    Curcumin, the major yellow-orange pigment of turmeric derived from the rhizome of Curcuma longa, is a highly pleiotropic molecule with the potential to modulate inflammation, oxidative stress, cell survival, cell secretion, homeostasis and proliferation. Curcumin, at relatively high concentrations, was repeatedly reported to be a potent inducer of apoptosis in cancer cells and thus considered a promising anticancer agent. In the present paper, the effects of low concentrations of curcumin on human cervical cancer (HeLa) cells were studied. We found curcumin-mediated decrease in the cell number and viability, and increase in apoptotic events and superoxide level. In contrast to previously shown curcumin cytotoxicity toward different cervical cancer lines, we observed toxic effects when even as low as 1 μM concentration of curcumin was used. Curcumin was not genotoxic to HeLa cells. Because argyrophilic nucleolar protein (AgNOR protein) expression is elevated in malignant cells compared to normal cells reflecting the rapidity of cancer cell proliferation, we evaluated curcumin-associated changes in size (area) and number of silver deposits. We showed curcumin-induced decrease in AgNOR protein pools, which may be mediated by global DNA hypermethylation observed after low concentration curcumin treatment. In summary, we have shown for the first time that curcumin at low micromolar range may be effective against HeLa cells, which may have implications for curcumin-based treatment of cervical cancer in humans.

  11. microRNA expression profiling of endometrial endometrioid adenocarcinomas and serous adenocarcinomas reveals profiles containing shared, unique and differentiating groups of microRNAs.

    PubMed

    Devor, Eric J; Hovey, Adriann M; Goodheart, Michael J; Ramachandran, Shyam; Leslie, Kimberly K

    2011-10-01

    microRNAs (miRNAs) control a multitude of pathways in human cancers. Differential expression of miRNAs among different histological types of tumors within the same type of tissue offers insight into the mechanism of pathogenesis and may help to direct treatment to improve prognosis. We assessed expression of 667 miRNAs in endometrial endometrioid and serous adenocarcinomas using RNA extracted from benign endometrium as well as from primary endometrial tumors. Quantitative miRNA profiling of endometrial adenocarcinomas revealed four overlapping groups of significantly overexpressed and underexpressed miRNAs. The first group was composed of 20 miRNAs significantly dysregulated in both adenocarcinoma types compared with benign endometrium, two groups were composed of miRNAs significantly dysregulated in either endometrioid adenocarcinomas or in serous adenocarcinomas compared with benign endometrium, and the fourth group was composed of 17 miRNAs that significantly distinguished between endometrioid adenocarcinomas and serous adenocarcinomas themselves. Validation of the expression levels of the selected miRNAs was carried out in a second panel composed of ten endometrioid and five serous tumors. Experimentally validated mRNA targets of these dysregulated miRNAs were identified using published sources, whereas TargetScan was used to predict targets of miRNAs in the first and fourth profile groups. These validated and potential miRNA target lists were filtered using published lists of genes displaying significant overexpression or underexpression in endometrial cancers compared to benign endometrium. Our results revealed a number of dysregulated miRNAs that are commonly found in endometrial (and other) cancers as well as several dysregulated miRNAs not previously identified in endometrial cancers. Understanding these differences may permit the development of both prognostic and diagnostic biomarkers.

  12. MLN0264 in Previously Treated Asian Participants With Advanced Gastrointestinal Carcinoma or Metastatic or Recurrent Gastric or Gastroesophageal Junction Adenocarcinoma Expressing Guanylyl Cyclase C

    ClinicalTrials.gov

    2017-02-08

    Advanced Gastrointestinal Carcinoma; Gastroesophageal Junction Adenocarcinoma; Recurrent Gastric Adenocarcinoma; Recurrent Gastroesophageal Junction Adenocarcinoma; Metastatic Gastric Adenocarcinoma; Metastatic Gastroesophageal Junction Adenocarcinoma; Recurrent Gastrointestinal Carcinoma

  13. [An unusual secondary localization of bronchial adenocarcinoma].

    PubMed

    Mirallie, E; Courant, O; Sagan, C; Letessier, E; Paineau, J; Visset, J

    1993-01-01

    The authors report a rare case of metastatic carcinoma of the large bowel, secondary to a primary bronchogenic adenocarcinoma. Abdominal pain developed in a 44-year old man 5 months after lobectomy for lung adenocarcinoma. The diagnosis of a large caecal extraluminal mass was established by means of sonography, scanner and laparoscopy. Palliative resection (brain metastases) was performed. Postoperative histological examination revealed the resected tumor to be identical to the lung adenocarcinoma. The patient eventually died 4 months after resection (complication of intracranial hypertension). Diagnosis and therapeutic features of metastatic extra-thoracic lung carcinoma are discussed.

  14. [Mesocolic excision for colonic adenocarcinoma].

    PubMed

    Debove, Clotilde; Lefèvre, Jérémie H; Parc, Yann

    2017-02-01

    On the same principle than total mesorectal excision in rectal cancer, the effect of complete mesocolic excision on short and long-term outcomes is actually evaluated for colonic adenocarcinoma. This method, usually performed for left colectomy, offers a surgical specimen of higher quality, with a larger number of lymph nodes harvested. For right colectomy, surgical specifications make it less common complete mesocolic excision and conventional surgery offer comparable outcomes, as regards to postoperative morbidity and mortality rates. No differences are identified between laparoscopic and open surgery. On oncologic outcomes, only two studies report a higher free-disease survival after complete mesocolic excision. Then, there is evidence that complete mesocolic excision offers a higher rate of specimen with extensive lymph node resection, without increased morbidity rate. However, there is limited evidence that it leads to improve long-term oncological outcomes.

  15. IL-17 induces EMT via Stat3 in lung adenocarcinoma

    PubMed Central

    Huang, Qi; Han, Jieli; Fan, Jinshuo; Duan, Limin; Guo, Mengfei; Lv, Zhilei; Hu, Guorong; Chen, Lian; Wu, Feng; Tao, Xiaonan; Xu, Juanjuan; Jin, Yang

    2016-01-01

    Epithelial-mesenchymal transition (EMT) plays a vital role in lung inflammatory diseases, including lung cancer. However, the role and mechanism of action of the proinflammatory cytokine IL-17 in EMT in lung adenocarcinoma remain unresolved. In our study, we discovered that the expression of N-cadherin, Vimentin, Snail1, Snail2, and Twist1 was positively correlated with IL-17 expression, while E-cadherin expression was negatively correlated with IL-17 expression in human lung adenocarcinoma tissues. Moreover, we confirmed that IL-17 promoted EMT in A549 and Lewis lung carcinoma (LLC) cells in vitro by upregulating N-cadherin, Vimentin, Snail1, Snail2, and Twist1 expression and downregulating E-cadherin expression. Stat3 was activated in IL-17-treated A549 and LLC cells, and Stat3 inhibition or siRNA knockdown notably reduced IL-17-induced EMT in A549 and LLC cells. Thus, IL-17 promotes EMT in lung adenocarcinoma via Stat3 signaling; these observations suggest that targeting IL-17 and EMT are potential novel therapeutic strategies for lung cancer. PMID:27186414

  16. Targeting adhesion signaling in KRAS, LKB1 mutant lung adenocarcinoma.

    PubMed

    Gilbert-Ross, Melissa; Konen, Jessica; Koo, Junghui; Shupe, John; Robinson, Brian S; Wiles, Walter Guy; Huang, Chunzi; Martin, W David; Behera, Madhusmita; Smith, Geoffrey H; Hill, Charles E; Rossi, Michael R; Sica, Gabriel L; Rupji, Manali; Chen, Zhengjia; Kowalski, Jeanne; Kasinski, Andrea L; Ramalingam, Suresh S; Fu, Haian; Khuri, Fadlo R; Zhou, Wei; Marcus, Adam I

    2017-03-09

    Loss of LKB1 activity is prevalent in KRAS mutant lung adenocarcinoma and promotes aggressive and treatment-resistant tumors. Previous studies have shown that LKB1 is a negative regulator of the focal adhesion kinase (FAK), but in vivo studies testing the efficacy of FAK inhibition in LKB1 mutant cancers are lacking. Here, we took a pharmacologic approach to show that FAK inhibition is an effective early-treatment strategy for this high-risk molecular subtype. We established a lenti-Cre-induced Kras and Lkb1 mutant genetically engineered mouse model (KLLenti) that develops 100% lung adenocarcinoma and showed that high spatiotemporal FAK activation occurs in collective invasive cells that are surrounded by high levels of collagen. Modeling invasion in 3D, loss of Lkb1, but not p53, was sufficient to drive collective invasion and collagen alignment that was highly sensitive to FAK inhibition. Treatment of early, stage-matched KLLenti tumors with FAK inhibitor monotherapy resulted in a striking effect on tumor progression, invasion, and tumor-associated collagen. Chronic treatment extended survival and impeded local lymph node spread. Lastly, we identified focally upregulated FAK and collagen-associated collective invasion in KRAS and LKB1 comutated human lung adenocarcinoma patients. Our results suggest that patients with LKB1 mutant tumors should be stratified for early treatment with FAK inhibitors.

  17. Targeting adhesion signaling in KRAS, LKB1 mutant lung adenocarcinoma

    PubMed Central

    Konen, Jessica; Koo, Junghui; Robinson, Brian S.; Wiles, Walter Guy; Huang, Chunzi; Martin, W. David; Behera, Madhusmita; Smith, Geoffrey H.; Hill, Charles E.; Rossi, Michael R.; Sica, Gabriel L.; Rupji, Manali; Chen, Zhengjia; Kowalski, Jeanne; Kasinski, Andrea L.; Ramalingam, Suresh S.; Khuri, Fadlo R.; Marcus, Adam I.

    2017-01-01

    Loss of LKB1 activity is prevalent in KRAS mutant lung adenocarcinoma and promotes aggressive and treatment-resistant tumors. Previous studies have shown that LKB1 is a negative regulator of the focal adhesion kinase (FAK), but in vivo studies testing the efficacy of FAK inhibition in LKB1 mutant cancers are lacking. Here, we took a pharmacologic approach to show that FAK inhibition is an effective early-treatment strategy for this high-risk molecular subtype. We established a lenti-Cre–induced Kras and Lkb1 mutant genetically engineered mouse model (KLLenti) that develops 100% lung adenocarcinoma and showed that high spatiotemporal FAK activation occurs in collective invasive cells that are surrounded by high levels of collagen. Modeling invasion in 3D, loss of Lkb1, but not p53, was sufficient to drive collective invasion and collagen alignment that was highly sensitive to FAK inhibition. Treatment of early, stage-matched KLLenti tumors with FAK inhibitor monotherapy resulted in a striking effect on tumor progression, invasion, and tumor-associated collagen. Chronic treatment extended survival and impeded local lymph node spread. Lastly, we identified focally upregulated FAK and collagen-associated collective invasion in KRAS and LKB1 comutated human lung adenocarcinoma patients. Our results suggest that patients with LKB1 mutant tumors should be stratified for early treatment with FAK inhibitors. PMID:28289710

  18. Bap31 enhances the endoplasmic reticulum export and quality control of human class I MHC molecules.

    PubMed

    Ladasky, John J; Boyle, Sarah; Seth, Malini; Li, Hewang; Pentcheva, Tsvetelina; Abe, Fumiyoshi; Steinberg, Steven J; Edidin, Michael

    2006-11-01

    The assembly of class I MHC molecules and their export from the endoplasmic reticulum (ER) is governed by chaperones and accessory proteins. We present evidence that the putative cargo receptor protein Bap31 participates in the transport and the quality control of human class I molecules. Transfection of the human adenocarcinoma cell line HeLa with yellow fluorescent protein-Bap31 chimeras increased surface levels of class I in a dose-dependent manner, by as much as 3.7-fold. The increase in surface class I resulted from an increase in the rate of export of newly synthesized class I molecules to the cell surface and from an increase in the stability of the exported molecules. We propose that Bap31 performs quality control on class I molecules in two distinct phases: first, by exporting peptide-loaded class I molecules to the ER/Golgi intermediate compartment, and second, by retrieving class I molecules that have lost peptides in the acidic post-ER environment. This function of Bap31 is conditional or redundant, because we find that Bap31 deficiency does not reduce surface class I levels. Overexpression of the Bap31 homolog, Bap29, decreases surface class levels in HeLa, indicating that it does not substitute for Bap31.

  19. Hibiscus sabdariffa L. extracts inhibit the mutagenicity in microsuspension assay and the proliferation of HeLa cells.

    PubMed

    Olvera-García, V; Castaño-Tostado, E; Rezendiz-Lopez, R I; Reynoso-Camacho, R; González de Mejía, E; Elizondo, G; Loarca-Piña, G

    2008-06-01

    Hibiscus sabdariffa L. is used as a refreshing beverage and as a traditional medicine. The objective of this study was to determine the in vitro effect of phenolic compounds present in aqueous, ethyl acetate, and chloroform extracts of H. sabdariffa against mutagenicity of 1-nitropyrene (1-NP), and also the antiproliferative effect of these extracts. Inhibition of cell proliferation and DNA fragmentation were tested on transformed human HeLa cells. The hot aqueous extract (HAE) contained 22.27 +/- 2.52 mg of protocatechuic acid (PCA) per gram of lyophilized dried extract, and was not statistically different from the cold aqueous or chloroform extracts; the ethyl acetate extract produced the least amount of PCA. The H. sabdariffa extracts inhibited mutagenicity of 1-NP in a dose-response manner. The inhibition rate on HeLa cells of HAE was also dose-dependent. The HAE did not induce DNA fragmentation. The results suggest that H. sabdariffa L. extracts have antimutagenic activity against 1-NP and decrease the proliferation of HeLa cells, probably due to phenolic acid composition.

  20. Triphala, a formulation of traditional Ayurvedic medicine, shows protective effect against X-radiation in HeLa cells.

    PubMed

    Takauji, Yuki; Miki, Kensuke; Mita, Juma; Hossain, Mohammad Nazir; Yamauchi, Masatake; Kioi, Mitomu; Ayusawa, Dai; Fujii, Michihiko

    2016-12-01

    Ayurveda is a holistic medical system of traditional medicine, and Triphala is one of the most popular formulations in Ayurveda. Triphala is composed of three kinds of herb, Terminalia chebula, Terminalia bellirica, and Emblica officinalis. Since Triphala is shown to exhibit a protective activity against ionizing radiation in mice, we investigated its activity in HeLa cells. We found that Triphala showed the protective effects against X-radiation and bleomycin, both of which generate DNA strand breaks, in HeLa cells. Further, Triphala efficiently eliminated reactive oxygen species (ROS) in HeLa cells. Thus, the antioxidant activity of Triphala would likely play a role in its protective actions against X-radiation and bleomycin because both agents damage DNA through the generation of ROS. These observations suggested that the radioprotective activity of Triphala can be, at least partly, studied with the cells cultured in vitro. The simple bioassay system with human cultured cells would facilitate the understanding of the molecular basis for the beneficial effects of Triphala.

  1. Reovirus type 3 synthesizes proteins in interferon-treated HeLa cells without reversing the antiviral state.

    PubMed

    Feduchi, E; Esteban, M; Carrasco, L

    1988-06-01

    Treatment of HeLa cells with human lymphoblastoid interferon (IFN-alpha) does not inhibit reovirus type 3 protein synthesis during virus infection. In contrast, reovirus translation is blocked by treatment of L cells with mouse IFN-alpha. The (2'-5')A synthetase activity is induced in HeLa cells by IFN-alpha treatment and is activated after reovirus infection, since cell lysates from these cells synthesize in vitro (2'-5')A oligonucleotides. The IFN-induced protein kinase activity is also triggered in those lysates upon dsRNA addition. Thus, contrary to DNA-containing viruses, such as vaccinia virus or adenovirus, reovirus infection does not destroy or reverse the IFN-induced antiviral state. In support of this conclusion, superinfection with poliovirus or vesicular stomatitis virus of reovirus-infected HeLa cells treated with IFN leads only to a blockade of translation of the former viruses. These results provide a remarkable example where in the same cells doubly infected with two different viruses, the antiviral state induced by IFN-alpha is manifested by selectively inhibiting translation of one kind of virus (poliovirus or vesicular stomatitis virus) without affecting the translation of reovirus type 3. In addition, these results indicate that the resistance of reovirus translation to inhibition by IFN is different from the mechanism of resistance induced by DNA-containing viruses.

  2. Colonic adenocarcinoma with metastasis to the gingiva.

    PubMed

    Alvarez-Alvarez, Carlos; Iglesias-Rodríguez, Begoña; Pazo-Irazu, Susana; Delgado-Sánchez-Gracián, Carlos

    2006-01-01

    Metastatic tumors involve the oral cavity, and the most common primary sites are the breast and lung. Most cases affect the mandible and maxilla in that order, although some of them can be located in the soft perioral tissues. We report the case of a 62-year-old male who had been diagnosed with sigmoid adenocarcinoma with nodal and liver metastasis, who presented 6 months later with a gingival polypoid tumor, at first considered as a primary neoplasm of gingiva, that was diagnosed in a biopsy as metastatic intestinal adenocarcinoma. The histological evaluation is essential to separate adenocarcinoma from the commoner in this site squamous cell carcinoma, and the immunohistochemical techniques are useful to distinguish metastatic tumor versus primary adenocarcinoma from the minor salivary glands of the area. The intraoral spread of a disseminated neoplasm is generally a sign of bad prognosis, although a longer survival can be expected if a radical surgical treatment of a solitary metastasis is carried out.

  3. Host Cell Responses to Persistent Mycoplasmas - Different Stages in Infection of HeLa Cells with Mycoplasma hominis

    PubMed Central

    Hopfe, Miriam; Deenen, René; Degrandi, Daniel; Köhrer, Karl; Henrich, Birgit

    2013-01-01

    Mycoplasma hominis is a facultative human pathogen primarily associated with bacterial vaginosis and pelvic inflammatory disease, but it is also able to spread to other sites, leading to arthritis or, in neonates, meningitis. With a minimal set of 537 annotated genes, M. hominis is the second smallest self-replicating mycoplasma and thus an ideal model organism for studying the effects of an infectious agent on its host more closely. M. hominis adherence, colonisation and invasion of HeLa cells were characterised in a time-course study using scanning electron microscopy, confocal microscopy and microarray-based analysis of the HeLa cell transcriptome. At 4 h post infection, cytoadherence of M. hominis to the HeLa cell surface was accompanied by differential regulation of 723 host genes (>2 fold change in expression). Genes associated with immune responses and signal transduction pathways were mainly affected and components involved in cell-cycle regulation, growth and death were highly upregulated. At 48 h post infection, when mycoplasma invasion started, 1588 host genes were differentially expressed and expression of genes for lysosome-specific proteins associated with bacterial lysis was detected. In a chronically infected HeLa cell line (2 weeks), the proportion of intracellular mycoplasmas reached a maximum of 10% and M. hominis-filled protrusions of the host cell membrane were seen by confocal microscopy, suggesting exocytotic dissemination. Of the 1972 regulated host genes, components of the ECM-receptor interaction pathway and phagosome-related integrins were markedly increased. The immune response was quite different to that at the beginning of infection, with a prominent induction of IL1B gene expression, affecting pathways of MAPK signalling, and genes connected with cytokine-cytokine interactions and apoptosis. These data show for the first time the complex, time-dependent reaction of the host directed at mycoplasmal clearance and the counter measures of

  4. Formation of Nup98-containing nuclear bodies in HeLa sublines is linked to genomic rearrangements affecting chromosome 11.

    PubMed

    Romana, Serge; Radford-Weiss, Isabelle; Lapierre, Jean-Michel; Doye, Valérie; Geoffroy, Marie-Claude

    2016-09-01

    Nup98 is an important component of the nuclear pore complex (NPC) and also a rare but recurrent target for chromosomal translocation in leukaemogenesis. Nup98 contains multiple cohesive Gly-Leu-Phe-Gly (GLFG) repeats that are critical notably for the formation of intranuclear GLFG bodies. Previous studies have reported the existence of GLFG bodies in cells overexpressing exogenous Nup98 or in a HeLa subline (HeLa-C) expressing an unusual elevated amount of endogenous Nup98. Here, we have analysed the presence of Nup98-containing bodies in several human cell lines. We found that HEp-2, another HeLa subline, contains GLFG bodies that are distinct from those identified in HeLa-C. Rapid amplification of cDNA ends (RACE) revealed that HEp-2 cells express additional truncated forms of Nup98 fused to a non-coding region of chromosome 11q22.1. Cytogenetic analyses using FISH and array-CGH further revealed chromosomal rearrangements that were distinct from those observed in leukaemic cells. Indeed, HEp-2 cells feature a massive amplification of juxtaposed NUP98 and 11q22.1 loci on a chromosome marker derived from chromosome 3. Unexpectedly, minor co-amplifications of NUP98 and 11q22.1 loci were also observed in other HeLa sublines, but on rearranged chromosomes 11. Altogether, this study reveals that distinct genomic rearrangements affecting NUP98 are associated with the formation of GLFG bodies in specific HeLa sublines.

  5. Pathologic classification of adenocarcinoma of lung.

    PubMed

    Van Schil, Paul E; Sihoe, Alan D L; Travis, William D

    2013-10-01

    Recently, the 1999/2004 World Health Organization (WHO) classification of adenocarcinoma became less useful from a clinical standpoint as most adenocarcinomas belonged to the mixed subtype and the term bronchioloalveolar carcinoma (BAC) gave rise to much confusion among clinicians. For these reasons a new adenocarcinoma classification was introduced in 2011 by a joint working group of the International Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS), and European Respiratory Society (ERS). This represents an international, multidisciplinary effort joining pathologists, molecular biologists, pulmonary physicians, thoracic oncologists, radiologists, and thoracic surgeons. Currently, a distinction is made between pre-invasive lesions, minimally invasive and invasive lesions. The confusing term BAC is not used anymore and new subcategories include adenocarcinoma in situ and minimally invasive adenocarcinoma. Several aspects of this classification are discussed with main emphasis on its correlation with imaging techniques and its impact on diagnosis, treatment and prognosis. On chest computed tomography (CT) a distinction is made between solid and subsolid nodules, the latter comprising ground glass opacities (GGO), and partly solid lesions. Several studies incorporating CT and positron emission tomographic (PET) data show a good imaging-pathologic correlation. With the implementation of screening programs early lung cancer has become a hotly debated topic and sublobar resection is currently reconsidered for early lesions without lymph node involvement. This new classification will also have an impact on the TNM classification. Thoracic surgeons will continue to play a major role in the application, evaluation and further refinement of this new adenocarcinoma classification.

  6. The effect of ataxia-telangiectasia mutated kinase-dependent hyperphosphorylation of checkpoint kinase-2 on oligodeoxynucleotide 7909 containing CpG motifs-enhanced sensitivity to X-rays in human lung adenocarcinoma A549 cells

    PubMed Central

    Liu, Xiaoqun; Liu, Xiangdong; Qiao, Tiankui; Chen, Wei; Yuan, Sujuan

    2015-01-01

    Objective The aim of the study reported here was to further investigate the potential effect of ataxia-telangiectasia mutated (ATM) kinase-dependent hyperphosphorylation of checkpoint kinase-2 (Chk2) on radiosensitivity enhanced by oligodeoxynucleotide 7909 containing CpG motifs (CpG ODN7909) in human lung adenocarcinoma A549 cells. Methods In vitro A549 cells were randomly separated into control, CpG, X-ray, CpG+ X-ray, ATM kinase-small interfering RNA (siRNA)+CpG+X-ray (ATM-siRNA), and Chk2-siRNA+CpG+X-ray (Chk2-siRNA) groups. siRNAs were adopted to silence the ATM and Chk2 genes. Expression and phosphorylation of ATM kinase and Chk2 were detected by Western blot assay. Cell colonies were observed under inverted phase-contrast microscopy. Cellular survival curves were fitted using a multi-target single-hitting model. Cell cycle and apoptosis were analyzed by flow cytometry. Results Expression of ATM kinase and Chk2 was similar among the control, CpG, X-ray, and CpG+X-ray groups. Phosphorylated ATM kinase and Chk2 were significantly increased in the CpG+X-ray group compared with in the X-ray group (t=6.00, P<0.01 and t=3.13, P<0.05, respectively), though these were hardly detected in the control and CpG groups. However, expression of ATM kinase and Chk2 was clearly downregulated in the ATM-siRNA and Chk2-siRNA groups, respectively. Similarly, their phosphorylation levels were also significantly decreased in the ATM-siRNA group (t=14.35, P<0.01 and t=8.46, P<0.01, respectively) and a significant decrease in phosphorylated Chk2 was observed in the Chk2-siRNA group (t=7.28, P<0.01) when compared with the CpG+X-ray group. Further, the number of A549 cells at Gap 2/mitotic phase and the apoptosis rate were clearly increased in the CpG+X-ray group compared with in the other groups (all P<0.05). The multi-target single-hitting model showed that the sensitization enhancement ratio calculated by mean death dose was 1.39 in CpG+X-ray group (vs 1.04 and 1.03 in the ATM

  7. ISOLATION OF PLASMA MEMBRANE FRAGMENTS FROM HELA CELLS

    PubMed Central

    Boone, Charles W.; Ford, Lincoln E.; Bond, Howard E.; Stuart, Donald C.; Lorenz, Dianne

    1969-01-01

    A method for isolating plasma membrane fragments from HeLa cells is described. The procedure starts with the preparation of cell membrane "ghosts," obtained by gentle rupture of hypotonically swollen cells, evacuation of most of the cell contents by repeated washing, and isolation of the ghosts on a discontinuous sucrose density gradient. The ghosts are then treated by minimal sonication (5 sec) at pH 8.6, which causes the ghost membranes to pinch off into small vesicles but leaves any remaining larger intracellular particulates intact and separable by differential centrifugation. The ghost membrane vesicles are then subjected to isopycnic centrifugation on a 20–50% w/w continuous sucrose gradient in tris-magnesium buffer, pH 8.6. A band of morphologically homogeneous smooth vesicles, derived principally from plasma membrane, is recovered at 30–33% (peak density = 1.137). The plasma membrane fraction contained a Na-K-activated ATPase activity of 1.5 µmole Pi/hr per mg, 3% RNA, and 13.8% of the NADH-cytochrome c reductase activity of a heavier fraction from the same gradient which contained mitochondria and rough endoplasmic vesicles. The plasma membranes of viable HeLa cells were marked with 125I-labeled horse antibody and followed through the isolation procedure. The specific antibody binding of the plasma membrane vesicle fraction was increased 49-fold over that of the original whole cells. PMID:4239370

  8. Betulin as an antitumor agent tested in vitro on A431, HeLa and MCF7, and as an angiogenic inhibitor in vivo in the CAM assay.

    PubMed

    Dehelean, Cristina Adriana; Feflea, Stefana; Molnár, Judit; Zupko, Istvan; Soica, Codruta

    2012-08-01

    Betulin, an important compound found in birch tree bark, can be converted to betulinic acid, an important pharmacological substance. Betulin has recently been reported as a cytotoxic agent for several tumor cell lines and as an apoptotic inductor. Angiogenesis is a key process involved in tumor metastasis and in developing tumor resistance to cytotoxic therapy. There are little data on betulin as an anti angiogenic agent. This preliminary study aimed to evaluate the cytotoxic effect of betulin on three cancer cell lines: HeLa (cervix adenocarcinoma), MCF7 (breast adenocarcinoma) and A431 (skin epidermoid carcinoma), and the apoptotic mechanism, as well as the implication in the capillary formation of the chicken embryo chorioallantoic membrane. The analysis consisted in the interpretation of the MTT assay and fluorescence double staining with Hoechst dye 33258 and propidium iodide, while the angiogenic effect was evaluated using morphological and immunohistochemical techniques. The antitumor activity is revealed by the double fluorescence staining, indicating that at higher concentrations, the cell membrane permeability is enhanced, while at lower concentrations there is evidence for nuclear fragmentation. In what concerns its effect on the process of blood vessel formation, betulin induced the reduction of newly formed capillaries, especially in the mesenchyme, possible through targeting the normal function of endothelial cells. In vitro results proved the superior specificity of betulin on cervical cancer cells, followed by skin cancer cells.

  9. Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ashraf, Sumara; Ahmad, Shakil; Ikram, Masroor

    2015-05-01

    Mueller matrix polarimetry along with polar decomposition algorithm was employed for the characterization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral range (425-725 nm). Six derived polarization metrics [total diattenuation (DT), retardance (RT), depolarization (ΔT), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adenocarcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma samples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polarization properties spectra (ΔT, ΔL, RT,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DT and D showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination of polarization analysis and given classification methods provides a framework to distinguish the normal and cancerous tissues.

  10. Short-interfering RNA-mediated silencing of proliferating cell nuclear antigen inhibit proliferation and induce apoptosis in HeLa cells.

    PubMed

    Hao, H; Xin, T; Nancai, Y; Yanxia, W; Qian, L; Wei, M; Yandong, Y; Hanju, H

    2008-01-01

    Proliferating cell nuclear antigen (PCNA) is an important protein for DNA polymerase delta in the nucleus, and shown to have a fundamental role in cellular proliferation. It is overexpressed to support cell growth in cervical carcinoma. To study its role in stress response, we design and use short hairpin RNA (shRNA) to inhibit PCNA expression in HeLa cells and validate its effect on cell proliferation. In this study, three PCNA-shRNA expression vectors are constructed and introduced into HeLa cells, and the cell cycle is analyzed by flow cytometry. Apoptotic cell is detected by single cell gel electrophoresis assay (comet assay), and caspase cleavage is studied also. Expression of PCNA is assessed by real-time reverse transcription-polymerase chain reaction and Western blot analysis. Upon transient transfection with plasmid encoding shRNA, it is found that expression of PCNA decreased in shRNA-transfected cells, downregulation of PCNA inhibit cell growth and induce apoptosis in HeLa cells. PCNA downregulation also increase cell population in the G0-G1 phase. In conclusion, our findings demonstrate that shRNA can inhibit the DNA replication and induce apoptosis in HeLa cells effectively and, therefore, could be used as a new potential anticancer tool for therapy of human cervical carcinoma.

  11. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 (2.).

    PubMed

    Lin, Yue; Yang, Linlin; Yue, Guiyin; Chen, Lifen; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-10-01

    Telomerase is one of the most common markers of human malignant tumors, such as uterine, stomach, esophageal, breast, colorectal, laryngeal squamous cell, thyroid, bladder, and so on. It is necessary to develop some sensitive but convenient detection methods for telomerase activity determination. In this study, a label-free and ultrasensitive electrochemiluminescence (ECL) biosensor has been fabricated to detect the activity of telomerase extracted from HeLa cells. Thiolated telomerase substrate (TS) primer was immobilized on the gold electrode surface through gold-sulfur (Au-S) interaction and then elongated by telomerase specifically. Then, it was hybridized with complementary DNA to form double-stranded DNA (dsDNA) fragments on the electrode surface, and Ru(phen)3 (2+) has been intercalated into the dsDNA grooves to act as the ECL probe. The enhanced ECL intensity has a linear relationship with the number of HeLa cells in the range of 5∼5000 and with a detection limit of 2 HeLa cells. The proposed ECL biosensor has high specificity to telomerase in the presence of common interferents. The relative standard deviations (RSDs) were <5 % at 100 HeLa cells. The proposed method provides a convenient approach for telomerase-related cancer screening or diagnosis.

  12. Development of a panel of DNA Aptamers with High Affinity for Pancreatic Ductal Adenocarcinoma

    NASA Astrophysics Data System (ADS)

    Champanhac, Carole; Teng, I.-Ting; Cansiz, Sena; Zhang, Liqin; Wu, Xiaoqiu; Zhoa, Zilong; Fu, Ting; Tan, Weihong

    2015-11-01

    Pancreatic cancer costs nearly 40,000 lives in the U.S. each year and has one of the lowest survival rates among cancers. Effective treatment of pancreatic ductal adenocarcinoma is hindered by lack of a reliable biomarker. To address this challenge, aptamers were selected by cell-SELEX (Systematic Evolution of Ligands by EXponential enrichment) targeting human pancreatic ductal adenocarcinoma (PL45). Five promising aptamers presenting low Kd values and good specificity were generated. Among these five aptamers, one was tailored into a nanostructure carrying a high drug payload for specific drug delivery. The results show a viability of almost 80% for negative cells while only 50% of the target cells remained alive after 48 h incubation. These results lead to the conclusion that further research could reveal protein biomarkers specific to pancreatic adenocarcinoma, with probes available for early detection.

  13. Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics

    PubMed Central

    Szczesny, Bartosz; Marcatti, Michela; Zatarain, John R.; Druzhyna, Nadiya; Wiktorowicz, John E.; Nagy, Péter; Hellmich, Mark R.; Szabo, Csaba

    2016-01-01

    Therapeutic manipulation of the gasotransmitter hydrogen sulfide (H2S) has recently been proposed as a novel targeted anticancer approach. Here we show that human lung adenocarcinoma tissue expresses high levels of hydrogen sulfide (H2S) producing enzymes, namely, cystathionine beta-synthase (CBS), cystathionine gamma lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), in comparison to adjacent lung tissue. In cultured lung adenocarcinoma but not in normal lung epithelial cells elevated H2S stimulates mitochondrial DNA repair through sulfhydration of EXOG, which, in turn, promotes mitochondrial DNA repair complex assembly, thereby enhancing mitochondrial DNA repair capacity. In addition, inhibition of H2S-producing enzymes suppresses critical bioenergetics parameters in lung adenocarcinoma cells. Together, inhibition of H2S-producing enzymes sensitize lung adenocarcinoma cells to chemotherapeutic agents via induction of mitochondrial dysfunction as shown in in vitro and in vivo models, suggesting a novel mechanism to overcome tumor chemoresistance. PMID:27808278

  14. What Happens After Treatment for Small Intestine Adenocarcinoma?

    MedlinePlus

    ... After Treatment What Happens After Treatment for Small Intestine Adenocarcinoma? For some people with small intestine cancer, ... Small Intestine Adenocarcinoma Stops Working More In Small Intestine Cancer About Small Intestine Cancer Causes, Risk Factors, ...

  15. What Should You Ask Your Doctor About Small Intestine Adenocarcinoma?

    MedlinePlus

    ... What Should You Ask Your Doctor About Small Intestine Adenocarcinoma? It’s important to have honest, open discussions ... Doctor About Small Intestine Adenocarcinoma? More In Small Intestine Cancer About Small Intestine Cancer Causes, Risk Factors, ...

  16. Juglans mandshurica Maxim extracts exhibit antitumor activity on HeLa cells in vitro.

    PubMed

    Xin, Nian; Hasan, Murtaza; Li, Wei; Li, Yan

    2014-04-01

    The present study examined the potential application of Juglans mandshurica Maxim extracts (HT) for cancer therapy by assessing their anti‑proliferative activity, reduction of telomerase activity, induction of apoptosis and cell cycle arrest in S phase in HeLa cells. From the perspective of using HT as a herbal medicine, photomicroscopy and florescent microscopy techniques were utilized to characterize the effect of the extracts on telomerase activity and cell morphology. Flow cytometry was employed to study apoptosis and cell cycle of HeLa cells, and DNA laddering was performed. The results showed that HT inhibited cell proliferation and telomerase activity, induced apoptosis and caused S phase arrest of HeLa cells in vitro. HT inhibited HeLa cell proliferation significantly, and the highest inhibition rate was 83.7%. A trap‑silver staining assay showed that HT was capable of markedly decreasing telomerase activity of HeLa cells and this inhibition was enhanced in a time‑ and dose‑dependent manner. Results of a Hoechst 33258 staining assay showed that HeLa cells treated by HT induced cell death. Through DNA agarose gel electrophoresis, DNA ladders of HeLa cells treated with HT were observed, indicating apoptosis. In conclusion, the present study demonstrated that HT exhibited anti‑tumor effects comprising the inhibition of growth and telomerase activity as well as apoptosis and cell cycle arrest in HeLa cells.

  17. Discriminating between Terminal- and Non-Terminal Respiratory Unit-Type Lung Adenocarcinoma Based on MicroRNA Profiles.

    PubMed

    Kim, Mi-Hyun; Cho, Jeong Su; Kim, Yeongdae; Lee, Chang Hun; Lee, Min Ki; Shin, Dong Hoon

    2016-01-01

    Lung adenocarcinomas can be classified into terminal respiratory unit (TRU) and non-TRU types. We previously reported that non-TRU-type adenocarcinoma has unique clinical and morphological features as compared to the TRU type. Here we investigated whether micro (mi)RNA expression profiles can be used to distinguish between these two subtypes of lung adenocarcinoma. The expression of 1205 human and 144 human viral miRNAs was analyzed in TRU- and non-TRU-type lung adenocarcinoma samples (n = 4 each) by microarray. Results were validated by quantitative real-time (qRT-)PCR and in situ hybridization. A comparison of miRNA profiles revealed 29 miRNAs that were differentially expressed between TRU- and non-TRU adenocarcinoma types. Specifically, hsa-miR-494 and ebv-miR-BART19 were up regulated by > 5-fold, whereas hsa-miR-551b was down regulated by > 5-fold in the non-TRU relative to the TRU type. The miRNA signature was confirmed by qRT-PCR analysis using an independent set of paired adenocarcinoma (non-TRU-type, n = 21 and TRU-type, n = 12) and normal tissue samples. Non-TRU samples showed increased expression of miR-494 (p = 0.033) and ebv-miR-BART19 (p = 0.001) as compared to TRU-type samples. Both miRNAs were weakly expressed in the TRU type but strongly expressed in the non-TRU type. Neither subtype showed miR-551b expression. TRU- and non-TRU-type adenocarcinomas have distinct miRNA expression profiles, suggesting that tumorigenesis in lung adenocarcinoma occur via different pathways.

  18. From Reflux Esophagitis to Esophageal Adenocarcinoma.

    PubMed

    Souza, Rhonda F

    Reflux esophagitis causes Barrett's metaplasia, an abnormal esophageal mucosa predisposed to adenocarcinoma. Medical therapy for reflux esophagitis focuses on decreasing gastric acid production with proton pump inhibitors. We have reported that reflux esophagitis in a rat model develops from a cytokine-mediated inflammatory injury, not from a caustic chemical (acid) injury. In this model, refluxed acid and bile stimulate the release of inflammatory cytokines from esophageal squamous cells, recruiting lymphocytes first to the submucosa and later to the luminal surface. Emerging studies on acute reflux esophagitis in humans support this new concept, suggesting that reflux-induced cytokine release may be a future target for medical therapies. Sometimes, reflux esophagitis heals with Barrett's metaplasia, a process facilitated by reflux-related nitric oxide (NO) production and Sonic Hedgehog (Hh) secretion by squamous cells. We have shown that NO reduces expression of genes that promote a squamous cell phenotype, while Hh signaling induces genes that mediate the development of the columnar cell phenotypes of Barrett's metaplasia. Agents targeting esophageal NO production or Hh signaling conceivably could prevent the development of Barrett's esophagus. Persistent reflux promotes cancer in Barrett's metaplasia. We have reported that acid and bile salts induce DNA damage in Barrett's cells. Bile salts also cause NF-x03BA;B activation in Barrett's cells, enabling them to resist apoptosis in the setting of DNA damage and likely contributing to carcinogenesis. Oral treatment with ursodeoxycholic acid prevents the esophageal DNA damage and NF-x03BA;B activation induced by toxic bile acids. Altering bile acid composition might be another approach to cancer prevention.

  19. Adenocarcinoma of Meckel's cave: case report.

    PubMed

    Tacconi, L; Arulampalam, T; Johnston, F; Symon, L

    1995-12-01

    A rare localization of adenocarcinoma in Meckel's cave is reported in a 58-year-old woman, who had a 5-month history of pain and altered sensation in the second division of the left trigeminal nerve. Removal of the lesion was achieved by a subtemporal route. Histology showed this to be an adenocarcinoma. The patient underwent investigations for a primary tumor; the investigations were all negative, and the patient was subsequently treated with a course of radiotherapy. At 4-month follow-up, there was no evidence of recurrence, and she remains symptomatically well. The various mechanisms of secondary localization are discussed.

  20. From HeLa cell division to infectious diarrhoea

    SciTech Connect

    Stephen, J.; Osborne, M.P.; Spencer, A.J.; Warley, A. )

    1990-09-01

    Hela S3 cells were grown in suspension both randomly and, synchronously using hydroxyurea which blocks cells at the G1/S interface. Cryosections were prepared, freeze-dried and analyzed by X-ray microanalysis. As cells moved into S and through M phases (Na) and (Cl) increased; both returned to normal levels upon re-entering G1 phase. The Na/K ratio was 1:1 in G1 phase. Infection of HeLa S3 cells in G1 phase with vaccinia virus resulted in no change in intracellular (Na). Infection of neonatal mice with murine rotavirus was localized to villus tip enterocytes and gave rise to diarrhoea which was maximal at 72h post-infection (p.i.). Diarrhoea was preceded by ischemia of villi (18-42h p.i.) and villus shortening (maximal at 42h p.i.), and was also coincident with a dramatic regrowth of villi. At 48h p.i. a proliferative zone of electron lucent cells was observed in villus base regions. Cryosections of infected gut, taken before, during, and after infection, together with corresponding age-matched controls, were freeze-dried and analysed by X-ray microanalysis. At 48h p.i. electron lucent villus base cells were shown to be more hydrated, and, to contain higher levels of both Na and Cl and lower levels of P, S, K and Mg than corresponding control cells. These studies increase confidence in the use of X-ray microanalysis in studying biological systems, provide some insight into the process of cell division, and constitute the basis of a new concept of diarrhoeal secretion.27 references.

  1. 184AA3: A Xenograft Model of ER+ Breast Adenocarcinoma

    PubMed Central

    Hines, William C.; Kuhn, Irene; Thi, Kate; Chu, Berbie; Stanford-Moore, Gaelen; Sampayo, Rocío; Garbe, James C.; Stampfer, Martha; Borowsky, Alexander D.; Bissell, Mina

    2015-01-01

    Purpose Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER+) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development, and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Methods Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Results Xenografts of one cell line, 184AA3, consistently formed ER+ adenocarcinomas that had a high proliferative rate and other features consistent with “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44High subpopulation was discovered, yet their tumor forming ability was far less than CD44Low cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER+ cancers. Conclusions This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing and drug development. PMID:26661596

  2. CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma

    PubMed Central

    Saintigny, Pierre; Massarelli, Erminia; Lin, Steven; Chen, Yulong; Goswami, Sangeeta; Erez, Baruch; O’Reilly, Michael S.; Liu, Diane; Lee, J. Jack; Zhang, Li; Ping, Yuan; Behrens, Carmen; Soto, Luisa M. Solis; Heymach, John V.; Kim, Edward S.; Herbst, Roy S.; Lippman, Scott M.; Wistuba, Ignacio I.; Hong, Waun Ki; Kurie, Jonathan M.; Koo, Ja Seok

    2012-01-01

    CXCR2 in non-small cell lung cancer (NSCLC) has been studied mainly in stromal cells and is known to increase tumor inflammation and angiogenesis. Here, we examined the prognostic importance of CXCR2 in NSCLC and the role of CXCR2 and its ligands in lung cancer cells. The effect of CXCR2 expression on tumor cells was studied using stable knockdown clones derived from a murine KRAS/p53-mutant lung adenocarcinoma cell line with high metastatic potential and an orthotopic syngeneic mouse model and in vitro using a CXCR2 small molecule antagonist (SB225002). CXCR2 protein expression was analyzed in tumor cells from 262 NSCLC. Gene expression profiles for CXCR2 and its ligands (CXCR2 axis) were analyzed in 52 human NSCLC cell lines and 442 human lung adenocarcinomas. Methylation of CXCR2 axis promoters was determined in 70 human NSCLC cell lines. Invasion and metastasis were decreased in CXCR2 knockdown clones in vitro and in vivo. SB225002 decreased invasion in vitro. In lung adenocarcinomas, CXCR2 expression in tumor cells was associated with smoking and poor prognosis. CXCR2 axis gene expression profiles in human NSCLC cell lines and lung adenocarcinomas defined a cluster driven by CXCL5 and associated with smoking, poor prognosis and RAS pathway activation. Expression of CXCL5 was regulated by promoter methylation. The CXCR2 axis may be an important target in smoking-related lung adenocarcinoma. PMID:23204236

  3. Anticancer effects of the engineered stem cells transduced with therapeutic genes via a selective tumor tropism caused by vascular endothelial growth factor toward HeLa cervical cancer cells.

    PubMed

    Kim, Hye-Sun; Yi, Bo-Rim; Hwang, Kyung-A; Kim, Seung U; Choi, Kyung-Chul

    2013-10-01

    The aim of the present study was to investigate the therapeutic efficacy of genetically engineered stem cells (GESTECs) expressing bacterial cytosine deaminase (CD) and/or human interferon-beta (IFN-β) gene against HeLa cervical cancer and the migration factors of the GESTECs toward the cancer cells. Anticancer effect of GESTECs was examined in a co-culture with HeLa cells using MTT assay to measure cell viability. A transwell migration assay was performed so as to assess the migration capability of the stem cells to cervical cancer cells. Next, several chemoattractant ligands and their receptors related to a selective migration of the stem cells toward HeLa cells were determined by real-time PCR. The cell viability of HeLa cells was decreased in response to 5-fluorocytosine (5-FC), a prodrug, indicating that 5-fluorouracil (5-FU), a toxic metabolite, was converted from 5-FC by CD gene and it caused the cell death in a co-culture system. When IFN-β was additionally expressed with CD gene by these GESTECs, the anticancer activity was significantly increased. In the migration assay, the GESTECs selectively migrated to HeLa cervical cancer cells. As results of real-time PCR, chemoattractant ligands such as MCP-1, SCF, and VEGF were expressed in HeLa cells, and several receptors such as uPAR, VEGFR2, and c-kit were produced by the GESTECs. These GESTECs transduced with CD gene and IFN-β may provide a potential of a novel gene therapy for anticervical cancer treatments via their selective tumor tropism derived from VEGF and VEGFR2 expressions between HeLa cells and the GESTECs.

  4. Immunohistochemical detection of P-glycoprotein in endometrial adenocarcinoma.

    PubMed Central

    Axiotis, C. A.; Monteagudo, C.; Merino, M. J.; LaPorte, N.; Neumann, R. D.

    1991-01-01

    P-glycoprotein (Pgp) has emerged as the central mediator in classic multidrug resistance in model systems in vitro. High levels of Pgp also have been detected in many normal human tissues and tumors; and its role in clinical drug resistance is currently under investigation. Recently significant levels of Pgp were localized to gravid and secretory endometrium; and it was demonstrated that the combination of estrogen and progesterone is sufficient to induce high levels of both Pgp mRNA and Pgp in uterine secretory epithelium. These findings suggest that increased Pgp expression also may be present in hormone-responsive malignancies such as endometrial adenocarcinoma. To determine whether Pgp is expressed in endometrial adenocarcinoma, 36 endometrial adenocarcinomas (grade I [n = 17]; grade II [n = 6]; grade III [n = 13]) were investigated retrospectively by the avidin-biotin-complex immunohistochemical procedure using three murine monoclonal antibodies (MAb) MAb C219, MAb C494, and MAb JSB-1, which recognize spatially distinct cytoplasmic epitopes of Pgp. Seventy-two percent of the tumors showed positive immunostaining with at least one MAb; 67% showed immunostaining with MAb C219, 50% with MAb C494, and 62% with MAb JSB-1. Forty-six percent of tumors were immunoreactive to two and 29% to all three antibodies. Membranous and Golgi/paranuclear type staining patterns were observed. Overall the intensity of immunostaining varied from one sample to another for a given tumor type, and considerable heterogeneity of expression was commonly seen within a given tumor. Strong to moderate immunoreactivity was seen in diffusely infiltrating, adenosquamous, and serous papillary carcinomas. In general, immunoreactivity to MAb C494 was weaker than MAb C219 or MAb JSB-1. Adenomatous and non-neoplastic endometrium adjacent to the tumors displayed strong membranous immunostaining with MAb JSB-1. Endometrial capillaries showed weak-to-moderate immunostaining to all three antibodies. It

  5. Aggressive digital papillary adenoma-adenocarcinoma.

    PubMed

    Keramidas, Evangelos G; Miller, Gavin; Revelos, Kyriakos; Kitsanta, Panagiota; Page, Robert E

    2006-01-01

    Aggressive digital papillary adenocarcinoma and aggressive digital papillary adenoma are rare tumours of the sweat glands. They are most common in the most distal part of the fingers and are locally aggressive with a 50% local recurrence rate; 14% of tumours metastasize. We present two cases.

  6. Adenocarcinoma - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows adenocarcinoma of the lung. There is a rounded light spot in the right upper lung (left side ... density. Diseases that may cause this type of x-ray result would be tuberculous or fungal granuloma, and ...

  7. Co-encapsulation of chrysophsin-1 and epirubicin in PEGylated liposomes circumvents multidrug resistance in HeLa cells.

    PubMed

    Lo, Yu-Li; Tu, Wei-Chen

    2015-12-05

    Chrysophsin-1, an amphipathic alpha-helical antimicrobial peptide, is isolated from the gills of the red sea bream and possesses different structure and mechanism(s) in comparison with traditional multidrug resistance (MDR) modulators. For the purpose of reducing off-target normal cell toxicity, it is rational to incorporate chrysophsin-1 and epirubicin in a PEGylated liposomal formulation. In the present study, we report a multifunctional liposomes with epirubicin as an antineoplastic agent and an apoptosis inducer, as well as chrysophsin-1 as a MDR transporter inhibitor and an apoptosis modulator in human cervical cancer HeLa cells. Co-incubation of HeLa cells with PEGylated liposomal formulation of epirubicin and chrysophsin-1 resulted in a significant increase in the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or chrysophsin-1 were shown to considerably improve the intracellular H2O2 and O2(-) levels of HeLa cells. Furthermore, these treatments were found to extensively reduce mRNA expression levels of MDR1, MRP1, and MRP2. The addition of chrysophsin-1 in liposomes was demonstrated to substantially enhance the intracellular accumulation of epirubicin in HeLa cells. Moreover, the PEGylated liposomes of epirubicin and chrysophsin-1 were also found to significantly increase the mRNA expressions of p53, Bax, and Bcl-2. The ratio of Bax to Bcl-2 was noticeably amplified in the presence of these formulations. Apoptosis induction was also validated by chromatin condensation, a reduction in mitochondrial membrane potential, the increased sub-G1 phase of cell cycle, and more populations of apoptosis using annexin V/PI assay. These formulations were verified to increase the activity and mRNA expression levels of caspase-9 and caspases-3. Collectively, our findings provide the first evidence that cotreatment with free or liposomal chrysophsin-1 and epirubicin leads to cell death in human cervical cancer cells through the ROS

  8. TGF-β/SMAD3 Pathway Stimulates Sphingosine-1 Phosphate Receptor 3 Expression: IMPLICATION OF SPHINGOSINE-1 PHOSPHATE RECEPTOR 3 IN LUNG ADENOCARCINOMA PROGRESSION.

    PubMed

    Zhao, Jiawei; Liu, Jingjing; Lee, Jen-Fu; Zhang, Wenliang; Kandouz, Mustapha; VanHecke, Garrett C; Chen, Shiyou; Ahn, Young-Hoon; Lonardo, Fulvio; Lee, Menq-Jer

    2016-12-30

    Previously, we showed that levels of sphingosine-1 phosphate receptor 3 (S1PR3) are increased in a panel of cultured human lung adenocarcinoma cell lines, and that S1PR3-mediated signaling pathways regulate proliferation, soft agar growth, and invasion of human lung adenocarcinoma cells in vitro In the present study, we examine S1PR3 levels in human lung adenocarcinoma specimens. cDNA array and tumor microarray analysis shows that mRNA and protein levels of S1PR3 are significantly increased in human lung adenocarcinomas when compared with normal lung epithelial cells. Promoter analysis shows 16 candidate SMAD3 binding sites in the promoter region of S1PR3. ChIP indicates that TGF-β treatment stimulates the binding of SMAD3 to the promoter region of S1PR3. Luciferase reporter assay demonstrates that SMAD3 transactivates S1PR3 promoter. TGF-β stimulation or ectopic expression of TGF-β up-regulates S1PR3 levels in vitro and ex vivo Pharmacologic inhibition of TGF-β receptor or SMAD3 abrogates the TGF-β-stimulated S1PR3 up-regulation. Moreover, S1PR3 knockdown dramatically inhibits tumor growth and lung metastasis, whereas ectopic expression of S1PR3 promotes the growth of human lung adenocarcinoma cells in animals. Pharmacological inhibition of S1PR3 profoundly inhibits the growth of lung carcinoma in mice. Our studies suggest that levels of S1PR3 are up-regulated in human lung adenocarcinomas, at least in part due to the TGF-β/SMAD3 signaling axis. Furthermore, S1PR3 activity promotes the progression of human lung adenocarcinomas. Therefore, S1PR3 may represent a novel therapeutic target for the treatment of deadly lung adenocarcinomas.

  9. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    PubMed

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  10. FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells.

    PubMed

    Zheng, Yanhong; Tang, Yunlan; Bao, Zhirong; Wang, Hui; Ren, Feng; Guo, Mingxiong; Quan, Hong; Jiang, Changzhong

    2015-01-01

    Nanomaterials have an advantage in "personalized" therapy, which is the ultimate goal of tumor treatment. In order to investigate the potential ability of FePt nanoparticles (NPs) in the diagnosis and chemoradiotherapy treatment of malignant tumors, superparamagnetic, monodispersed FePt (~3 nm) alloy NPs were synthesized, using cysteamine as a capping agent. The NPs were characterized by means of X-ray diffraction; transmission electron microscopy, Physical Property Measurement System, and Fourier transform infrared spectroscopy. The cytotoxicity of FePt NPs on Vero cells was assessed using an MTT assay, and tumor cell proliferation inhibited by individual FePt NPs and FePt NPs combined with X-ray beams were also collected using MTT assays; HeLa human cancer cell lines were used as in vitro models. Further confirmation of the combined effect of FePt NPs and X-rays was verified using HeLa cells, after which, the cellular uptake of FePt NPs was captured by transmission electron microscopy. The results indicated that the growth of HeLa cells was significantly inhibited by FePt NPs in a concentration-dependent manner, and the growth was significantly more inhibited by FePt NPs combined with a series of X-ray beam doses; the individual NPs did not display any remarkable cytotoxicity on Vero cells at a concentration <250 μg/mL. Meanwhile, the FePt NPs showed negative/positive contrast enhancement for MRI/CT molecule imaging at the end of the study. Therefore, the combined results implied that FePt NPs might potentially serve as a promising nanoprobe for the integration of tumor diagnosis and chemoradiotherapy.

  11. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  12. FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells

    PubMed Central

    Zheng, Yanhong; Tang, Yunlan; Bao, Zhirong; Wang, Hui; Ren, Feng; Guo, Mingxiong; Quan, Hong; Jiang, Changzhong

    2015-01-01

    Nanomaterials have an advantage in “personalized” therapy, which is the ultimate goal of tumor treatment. In order to investigate the potential ability of FePt nanoparticles (NPs) in the diagnosis and chemoradiotherapy treatment of malignant tumors, superparamagnetic, monodispersed FePt (~3 nm) alloy NPs were synthesized, using cysteamine as a capping agent. The NPs were characterized by means of X-ray diffraction; transmission electron microscopy, Physical Property Measurement System, and Fourier transform infrared spectroscopy. The cytotoxicity of FePt NPs on Vero cells was assessed using an MTT assay, and tumor cell proliferation inhibited by individual FePt NPs and FePt NPs combined with X-ray beams were also collected using MTT assays; HeLa human cancer cell lines were used as in vitro models. Further confirmation of the combined effect of FePt NPs and X-rays was verified using HeLa cells, after which, the cellular uptake of FePt NPs was captured by transmission electron microscopy. The results indicated that the growth of HeLa cells was significantly inhibited by FePt NPs in a concentration-dependent manner, and the growth was significantly more inhibited by FePt NPs combined with a series of X-ray beam doses; the individual NPs did not display any remarkable cytotoxicity on Vero cells at a concentration <250 μg/mL. Meanwhile, the FePt NPs showed negative/positive contrast enhancement for MRI/CT molecule imaging at the end of the study. Therefore, the combined results implied that FePt NPs might potentially serve as a promising nanoprobe for the integration of tumor diagnosis and chemoradiotherapy. PMID:26604740

  13. Purification and characterization of the glycoprotein hormone. cap alpha. -subunit-like material secreted by HeLa cells

    SciTech Connect

    Cox, G.S.; Rimerman, R.A.

    1988-08-23

    The protein secreted by HeLa cells that cross-reacts with antiserum developed against the ..cap alpha..-subunit of human chorionic gonadotropin (hCG) has been purified approximately 30,000-fold from concentrated culture medium by organic solvent fractionation followed by ion exchange, gel filtration, and lectin affinity chromatography. The final preparation had a specific activity (by RIA) of 6.8 x 10/sup 5/ ng of ..cap alpha../mg of protein and appeared homogeneous by electrophoresis on reducing/denaturing polyacrylamide gels (SDS-PAGE). Amino acid analysis indicated that HeLa-..cap alpha.. had a composition very similar to that of the urinary hCG ..cap alpha..-subunit. However, comparison of hCG-..cap alpha.. and HeLa-..cap alpha.. demonstrated that the tumor-associated subunit was not identical with its normal counterpart. The purified tumor protein had an apparent molecular weight greater than that of the urinary ..cap alpha..-subunit when analyzed by SDS-PAGE, and this difference was even greater when a partially purified preparation was examined by an immunoblot technique (Western). Isoelectric focusing of the HeLa and hCG subunits demonstrated that the tumor protein had a lower pI. Immunoprecipitation and electrophoresis of ..cap alpha..-subunit from HeLa cultures labeled with (/sup 3/H)fucose indicated that the tumor subunit was fucosylated, whereas analysis of hCG-..cap alpha.. hydrosylates by HPLC confirmed previous reports that the placental subunit does not contain fucose. The results indicate that, regardless of whether or not a single ..cap alpha..-subunit gene is being expressed in both normal and neoplastic tissues, posttranslational modifications lead to a highly altered subunit in the tumor. The differences observed may be useful in diagnosing neoplastic vs hyperplastic conditions and may lend insight into the mechanism of ectopic hormone production by tumors.

  14. Localization of HeLa cell tumor-suppressor gene to the long arm of chromosome II.

    PubMed Central

    Misra, B C; Srivatsan, E S

    1989-01-01

    Cytogenetic and molecular genetic analyses of human intraspecific HeLa x fibroblast hybrids have provided evidence for the presence of a tumor-suppressor gene(s) on chromosome 11 of normal cells. In the present study, we have carried out extensive RFLP analysis of various nontumorigenic and tumorigenic hybrids with at least 50 different chromosome 11-specific probes to determine the precise location of this tumor-suppressor gene(s). Two different hybrid systems, (1) microcell hybrids derived by the transfer of a normal chromosome 11 into a tumorigenic HeLa-derived hybrid cell and (2) somatic cell hybrids derived by the fusion of the HeLa (D98OR) cells to a retinoblastoma (Y79) cell line, were particularly informative. The analysis showed that all but one of the nontumorigenic hybrid cell lines contained a complete copy of the normal chromosome 11. This variant hybrid contained a segment of the long arm but had lost the entire short arm of the chromosome. The tumorigenic microcell and somatic cell hybrids had retained the short arm of the chromosome but had lost at least the q13-23 region of the chromosome. Thus, these results showed a perfect correlation between the presence of the long arm of chromosome 11 and the suppression of the tumorigenic phenotype. We conclude therefore that the gene(s) involved in the suppression of the HeLa cell tumors is localized to the long arm (q arm) of chromosome 11. Images Figure 3 Figure 1 Figure 2 Figure 4 Figure 5 PMID:2577469

  15. MicroRNA expression profiles associated with pancreatic adenocarcinoma and ampullary adenocarcinoma.

    PubMed

    Schultz, Nicolai A; Werner, Jens; Willenbrock, Hanni; Roslind, Anne; Giese, Nathalia; Horn, Thomas; Wøjdemann, Morten; Johansen, Julia S

    2012-12-01

    MicroRNAs have potential as diagnostic cancer biomarkers. The aim of this study was (1) to define microRNA expression patterns in formalin-fixed parafin-embedded tissue from pancreatic ductal adenocarcinoma, ampullary adenocarcinoma, normal pancreas and chronic pancreatitis without using micro-dissection and (2) to discover new diagnostic microRNAs and combinations of microRNAs in cancer tissue. The expression of 664 microRNAs in tissue from 170 pancreatic adenocarcinomas and 107 ampullary adenocarcinomas were analyzed using a commercial microRNA assay. Results were compared with chronic pancreatitis, normal pancreas and duodenal adenocarcinoma. In all, 43 microRNAs had higher and 41 microRNAs reduced expression in pancreatic cancer compared with normal pancreas. In all, 32 microRNAs were differently expressed in pancreatic adenocarcinoma compared with chronic pancreatitis (17 higher; 15 reduced). Several of these microRNAs have not before been related to diagnosis of pancreatic cancer (eg, miR-492, miR-614, miR-622). MiR-614, miR-492, miR-622, miR-135b and miR-196 were most differently expressed. MicroRNA profiles of pancreatic and ampullary adenocarcinomas were correlated (0.990). MicroRNA expression profiles for pancreatic cancer described in the literature were consistent with our findings, and the microRNA profile for pancreatic adenocarcinoma (miR-196b-miR-217) was validated. We identified a more significant expression profile, the difference between miR-411 and miR-198 (P=2.06 × 10(-54)) and a diagnostic LASSO classifier using 19 microRNAs (sensitivity 98.5%; positive predictive value 97.8%; accuracy 97.0%). We also identified microRNA profiles to subclassify ampullary adenocarcinomas into pancreatobiliary or intestinal type. In conclusion, we found that combinations of two microRNAs could roughly separate neoplastic from non-neoplastic samples. A diagnostic 19 microRNA classifier was constructed which without micro-dissection could discriminate pancreatic

  16. Pravastatin and simvastatin inhibit the adhesion, replication and proliferation of Toxoplasma gondii (RH strain) in HeLa cells.

    PubMed

    Sanfelice, Raquel Arruda; da Silva, Suelen Santos; Bosqui, Larissa Rodrigues; Miranda-Sapla, Milena Menegazzo; Barbosa, Bellisa Freitas; Silva, Rafaela José; Ferro, Eloísa A Vieira; Panagio, Luciano Aparecido; Navarro, Italmar Teodorico; Bordignon, Juliano; Conchon-Costa, Ivete; Pavanelli, Wander Rogerio; Almeida, Ricardo Sergio; Costa, Idessania Nazareth

    2017-03-01

    The conventional treatment for toxoplasmosis with pyrimethamine and sulfadiazine shows toxic effects to the host, and it is therefore necessary to search for new drugs. Some studies suggest the use of statins, which inhibit cholesterol synthesis in humans and also the initial processes of isoprenoid biosynthesis in the parasite. Thus, the objective of this study was to evaluate the activity of the statins pravastatin and simvastatin in HeLa cells infected in vitro with the RH strain of T. gondii. HeLa cells (1×10(5)) were infected with T. gondii tachyzoites (5×10(5)) following two different treatment protocols. In the first protocol, T. gondii tachyzoites were pretreated with pravastatin (50 and 100μg/mL) and simvastatin (1.56 and 3.125μg/mL) for 30min prior to infection. In the second, HeLa cells were first infected (5×10(5)) with tachyzoites and subsequently treated with pravastatin and simvastatin for 24h at the concentrations noted above. Initially, we evaluated the cytotoxicity of drugs by the MTT assay, number of tachyzoites adhered to cells, number of infected cells, and viability of tachyzoites by trypan blue exclusion. The supernatant of the cell cultures was collected post-treatment for determination of the pattern of Th1/Th2/Th17 cytokines by cytometric bead array. There was no cytotoxicity to HeLa cells with 50 and 100μg/mL pravastatin and 1.56 and 3.125μg/mL simvastatin. There was no change in the viability of tachyzoites that received pretreatment. Regarding the pre- and post-treatment of the cells with pravastatin and simvastatin alone, there was a reduction in adhesion, invasion and proliferation of cells to T. gondii. As for the production of cytokines, we found that IL-6 and IL-17 were significantly reduced in cells infected with T. gondii and treated with pravastatin and simvastatin, when compared to control. Based on these results, we can infer that pravastatin and simvastatin alone possess antiproliferative effects on tachyzoites forms

  17. Real-time sonoporation through HeLa cells

    NASA Astrophysics Data System (ADS)

    Kotopoulis, Spiros; Delalande, Anthony; Pichon, Chantal; Postema, Michiel

    2012-09-01

    The purpose of this study was to investigate the physical mechanisms of sonoporation, to understand and ameliorate ultrasound-assisted drug and gene delivery. Sonoporation is the transient permeabilisation of a cell membrane with help of ultrasound and/or an ultrasound contrast agent, allowing for the trans-membrane delivery and cellular uptake of macromolecules between 10 kDa and 3 MDa. We studied the behaviour of ultrasound contrast agent microbubbles near cancer cells at low acoustic amplitudes. After administering an ultrasound contrast agent, HeLa cells were subjected to 6.6-MHz ultrasound with a mechanical index of 0.2 and observed with a highspeed camera. Microbubbles were seen to enter cells and rapidly dissolve. The quick dissolution after entering suggests that the microbubbles lose (part of) their shell whilst entering. We have demonstrated that lipid-shelled microbubbles can be forced to enter cells at a low mechanical index. Hence, if a therapeutic load is added to the bubble, ultrasound-guided delivery could be facilitated at diagnostic settings. However, these results may have implications for the safety regulations on the use of ultrasound contrast agents for diagnostic imaging.

  18. FOLFOX-6 Induction Chemotherapy Followed by Esophagectomy and Post-operative Chemoradiotherapy in Patients With Esophageal Adenocarcinoma

    ClinicalTrials.gov

    2016-09-15

    Adenocarcinoma of the Esophagus; Adenocarcinoma of the Gastroesophageal Junction; Adenocarcinoma of the Gastric Cardia; Stage IIIA Esophageal Cancer; Stage IIIB Esophageal Cancer; Stage IIIC Esophageal Cancer

  19. Novel mixed ligand di-n-butyltin(IV) complexes derived from acylpyrazolones and fluorinated benzoic acids: synthesis, characterization, cytotoxicity and the induction of apoptosis in Hela cancer cells.

    PubMed

    Zhao, Bin; Shang, Xianmei; Xu, Ling; Zhang, Wendian; Xiang, Guangya

    2014-04-09

    Twenty one novel mixed ligand di-n-butyltin(IV) complexes [(n)Bu2SnAL] (A = substituted 4-acyl-5-pyrazolone, and L = fluorinated benzoic acid) were prepared by condensation of di-n-butyltin(IV) oxide with HL and HA in 1:1:1 molar ratio in refluxing methanol. All of the complexes were characterized by elemental analyses, IR, NMR ((1)H, (13)C, (119)Sn) and in four cases by X-ray diffraction. Cytotoxicity of the compounds was studied against two human cancer cell lines (KB and Hela) by means of the MTT assay compared to cisplatin, featuring IC₅₀ values in the low micromolar range. Hela cancer cell apoptosis-induced by 2 was examined by flow cytometry analysis, and preliminary results showed that 2 at concentrations of more than 1.0 μM can induce apoptosis.

  20. [EFFECT OF FUCOIDANS ISOLATED FROM SEAWEEDS LAMINARIA DIGITATA AND FUCUS VESICULOSUS ON CELL LINES HELA G-63, ECV 304 AND PC 12].

    PubMed

    Zhurishkina, E V; Lapina, I M; Ivanen, D R; Stepanov, S I; Shvetsova, S V; Shavarda, A L; Giliano, N Ya; Kulminskaya, A A

    2015-01-01

    The aim of the research was to investigate cytotoxicity of fucoidans on mammals cells. Three different samples of fucoidans were isolated from mechanically grounded brown algae Laminaria digitata and Fucus ve- siculosus. The sample F2 that differed from the others by higher sulfatation level and suppression of HeLa G-63 line culture growth was taken for further study in cell lines HeLa G-63, ECV 304 and PC 12. We have shown that fucoidan preparation F2 inhibits proliferation and induces cell death in a dose- and time-dependent manner for all investigated cell lines. Neuroendocrine tumor rat cell line PC 12 appeared to be the most sensitive to fucoidan treatment whereas endothelial human cells ECV 304 were the least sensitive.

  1. Crohn enteritis-associated small bowel adenocarcinomas exhibit gastric differentiation.

    PubMed

    Whitcomb, Emma; Liu, Xiuli; Xiao, Shu-Yuan

    2014-02-01

    Primary small bowel adenocarcinoma is rare. Although generally similar to colonic adenocarcinoma, some small bowel adenocarcinomas exhibit unique morphologic features, particularly those arising in association with Crohn disease. In this study, 15 sporadic small bowel adenocarcinomas and 11 Crohn enteritis-associated small bowel adenocarcinomas were examined for histology and immunohistochemical profile including cytokeratins (CK) 7 and 20, intestinal markers CDX2 and MUC2, and gastric epithelial markers MUC5AC and MUC6. We found that Crohn enteritis-associated small bowel adenocarcinomas frequently resemble gastric tubular adenocarcinoma histologically. In addition, when compared to sporadic small bowel adenocarcinoma, the former expressed MUC5AC and MUC6 with much higher frequency (82% vs. 7% and 73% vs. 0%, respectively). Ten of 11 Crohn enteritis-associated small bowel adenocarcinomas (91%) were positive for at least one gastric-type marker (MUC5AC or MUC6). Expression of CK7 was also more frequent in Crohn enteritis-associated small bowel adenocarcinoma (73% versus 27%) while expression of CK20 was less frequent (64% vs. 100%). There was no difference between sporadic and Crohn enteritis-associated small bowel adenocarcinoma in expression of CDX2 (100% vs. 91%) and MUC2 (93% vs. 73%). These observations suggest that there is a difference in the morphologic and immunohistochemical characteristics of sporadic versus Crohn enteritis-associated small bowel adenocarcinoma, particularly in their expression of gastric-type mucin. The findings also suggest that gastric differentiation in Crohn enteritis-associated small bowel adenocarcinoma is related to gastric metaplasia, a common phenomenon in Crohn disease.

  2. Betulin induces mitochondrial cytochrome c release associated apoptosis in human cancer cells.

    PubMed

    Li, Yang; He, Kan; Huang, Yinghui; Zheng, Daxin; Gao, Chang; Cui, Lin; Jin, Ying-Hua

    2010-07-01

    We examined whether betulin, a naturally abundant compound, has anticancer functions in human cancer cells. The results showed that betulin significantly inhibited cell viability in cervix carcinoma HeLa cells, hepatoma HepG2 cells, lung adenocarcinoma A549 cells, and breast cancer MCF-7 cells with IC(50) values ranging from 10 to 15 microg/mL. While betulin exhibited only moderate anticancer activity in other human cancer cells such as hepatoma SK-HEP-1 cells, prostate carcinoma PC-3, and lung carcinoma NCI-H460, with IC(50) values ranging from 20 to 60 microg/mL, it showed minor growth inhibition in human erythroleukemia K562 cells (IC(50) > 100 microg/mL). We further investigated the mechanism of anticancer activity by betulin, using HeLa cells as an experimental model. Betulin (10 microg/mL) induces apoptotic cell death, as evidenced by morphological characteristics such as membrane phosphatidylserine translocation, nuclear condensation/fragmentation, and apoptotic body formation. A kinetics analysis showed that the depolarization of mitochondrial membrane potential and the release of mitochondrial cytochrome c occurred as early as 30 min after treatment with betulin. Betulin, unlike its chemical derivative betulinic acid, did not directly trigger mitochondrial cytochrome c release in isolated mitochondria. Importantly, Bax and Bak were rapidly translocated to the mitochondria 30 min after betulin treatment. The sequential activation of caspase-9 and caspase-3/-7 and the cleavage of poly(ADP-ribose) polymerase (PARP) were observed behind those mitochondrial events. Furthermore, specific downregulation of either caspase-9, Bax, or Bak by siRNA effectively reduced PARP cleavage and caspase-3 activation. Taken together, the lines of evidence demonstrate that betulin triggers apoptosis of human cancer cells through the intrinsic apoptotic pathway.

  3. Effects of selected sulfhydryl inhibitors on nonhistone chromosomal proteins of HeLa cells.

    PubMed

    Knock, F E; Stein, G S; Davis, J; Galt, R M; Oester, Y T; Sylvester, R

    1975-01-01

    Effects of the SH inhibitor sodium iodoacetate, alone and with adjuncts menadiol diphosphate, sodium malonate, sodium fluoride and heparin, on incorporation of tryptophane-3 H into nonhistone chromosomal proteins of HeLa cells were examined. The drugs block incorporation of tryptophane-3 H into nonhistone chromosomal proteins far more than incorporation of leucine-3 H into total cellular proteins. Drug effects on thymidine phosphorylation and DNA synthesis in HeLa cells exceed corresponding effects on fibroblasts from normal healing wounds.

  4. Primary Vaginal Adenocarcinoma Arising in Vaginal Adenosis After CO2 Laser Vaporization and 5-Fluorouracil Therapy

    PubMed Central

    Paczos, Tamera A.; Ackers, Stacey; Odunsi, Kunle; Lele, Shashikant; Mhawech-Fauceglia, Paulette

    2016-01-01

    Summary We present a case of a 45-year-old woman with a long-standing history of persistent cervical dysplasia that resulted in a hysterectomy. Subsequent vaginal smears revealed high-grade vaginal intraepithelial neoplasia (VAIN III) on Pap smear with positive human papilloma virus (HPV) testing. Over the course of 2 years, the patient underwent 2 CO2 laser vaporization procedures of the upper vagina and intermittent 5-fluorouracil therapy. A biopsy performed at the time of the second laser procedure revealed endocervical-type well-differentiated adenocarcinoma, associated with VAIN III. HPV in situ hybridization for HPV types 16 and 18 was positive in both the glandular and squamous mucosa. The patient has no known history of intrauterine diethylstilbestrol exposure or mullerian developmental abnormalities. Subsequently, the patient underwent a radical upper vaginetcomy with bilateral pelvic lymph nodes dissection and bilateral salpingo-oophorectomy. The vaginectomy specimen showed residual adenocarcinoma associated with VAIN-III and extensive vaginal adenosis with free resection margins. This is the second reported case in the literature of adenocarcinoma arising in vaginal adenosis after 5-fluorouracil. Herein, we highlight these important findings and shed some light on the pathogenesis of vaginal adenosis and the subsequent development of vaginal adenocarcinoma. PMID:20173507

  5. Primary vaginal adenocarcinoma arising in vaginal adenosis after CO2 laser vaporization and 5-fluorouracil therapy.

    PubMed

    Paczos, Tamera A; Ackers, Stacey; Odunsi, Kunle; Lele, Shashikant; Mhawech-Fauceglia, Paulette

    2010-03-01

    We present a case of a 45-year-old woman with a long-standing history of persistent cervical dysplasia that resulted in a hysterectomy. Subsequent vaginal smears revealed high-grade vaginal intraepithelial neoplasia (VAIN III) on Pap smear with positive human papilloma virus (HPV) testing. Over the course of 2 years, the patient underwent 2 CO(2) laser vaporization procedures of the upper vagina and intermittent 5-fluorouracil therapy. A biopsy performed at the time of the second laser procedure revealed endocervical-type well-differentiated adenocarcinoma, associated with VAIN III. HPV in situ hybridization for HPV types 16 and 18 was positive in both the glandular and squamous mucosa. The patient has no known history of intrauterine diethylstilbestrol exposure or mullerian developmental abnormalities. Subsequently, the patient underwent a radical upper vaginetcomy with bilateral pelvic lymph nodes dissection and bilateral salpingo-oophorectomy. The vaginectomy specimen showed residual adenocarcinoma associated with VAIN-III and extensive vaginal adenosis with free resection margins. This is the second reported case in the literature of adenocarcinoma arising in vaginal adenosis after 5-fluorouracil. Herein, we highlight these important findings and shed some light on the pathogenesis of vaginal adenosis and the subsequent development of vaginal adenocarcinoma.

  6. Translational stability of native and deadenylylated rabbit globin mRNA injected into HeLa cells.

    PubMed Central

    Huez, G; Bruck, C; Cleuter, Y

    1981-01-01

    HeLa human cells were injected with a natural mixture of rabbit alpha and beta globin mRNA. They were incubated for 6 hr with [35S]methionine either immediately after injection or 20 hr later. The labeled proteins in the injected cells were analyzed by fluorography of two-dimensional electrophoresis gels. By using this procedure, it was possible to show that, during the first few hours after injection, both alpha and beta globin molecules are synthesized with an alpha to beta ratio approximately equal to 0.6. The rate of synthesis of alpha globin decreased significantly faster than that of beta globin over a 26-hr period after injection of the two mRNAs. It thus seems that two messenger RNAs coding for closely related polypeptides possess a markedly different translational stability. When deadenylylated rabbit globin mRNAs were injected into HeLa cells, no globin synthesis could be detected by the techniques used. We conclude that the translational half-life of mRNAs lacking poly(A) is very short in these cells. It is thus clear that the poly(A) segment is required to ensure stability to globin mRNA in somatic cells as in Xenopus oocytes. Images PMID:6940155

  7. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    SciTech Connect

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  8. Pancreatic Adenocarcinoma, Version 2.2012

    PubMed Central

    Tempero, Margaret A.; Arnoletti, J. Pablo; Behrman, Stephen W.; Ben-Josef, Edgar; Benson, Al B.; Casper, Ephraim S.; Cohen, Steven J.; Czito, Brian; Ellenhorn, Joshua D. I.; Hawkins, William G.; Herman, Joseph; Hoffman, John P.; Ko, Andrew; Komanduri, Srinadh; Koong, Albert; Ma, Wen Wee; Malafa, Mokenge P.; Merchant, Nipun B.; Mulvihill, Sean J.; Muscarella, Peter; Nakakura, Eric K.; Obando, Jorge; Pitman, Martha B.; Sasson, Aaron R.; Tally, Anitra; Thayer, Sarah P.; Whiting, Samuel; Wolff, Robert A.; Wolpin, Brian M.; Freedman-Cass, Deborah A.; Shead, Dorothy A.

    2013-01-01

    The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Pancreatic Adenocarcinoma discuss the workup and management of tumors of the exocrine pancreas. These NCCN Guidelines Insights provide a summary and explanation of major changes to the 2012 NCCN Guidelines for Pancreatic Adenocarcinoma. The panel made 3 significant updates to the guidelines: 1) more detail was added regarding multiphase CT techniques for diagnosis and staging of pancreatic cancer, and pancreas protocol MRI was added as an emerging alternative to CT; 2) the use of a fluoropyrimidine plus oxaliplatin (e.g., 5-FU/leucovorin/oxaliplatin or capecitabine/oxaliplatin) was added as an acceptable chemotherapy combination for patients with advanced or metastatic disease and good performance status as a category 2B recommendation; and 3) the panel developed new recommendations concerning surgical technique and pathologic analysis and reporting. PMID:22679115

  9. Canine pulmonary adenocarcinoma tyrosine kinase receptor expression and phosphorylation

    PubMed Central

    2014-01-01

    Background This study evaluated tyrosine kinase receptor (TKR) expression and activation in canine pulmonary adenocarcinoma (cpAC) biospecimens. As histological similarities exist between human and cpAC, we hypothesized that cpACs will have increased TKR mRNA and protein expression as well as TKR phosphorylation. The molecular profile of cpAC has not been well characterized making the selection of therapeutic targets that would potentially have relevant biological activity impossible. Therefore, the objectives of this study were to define TKR expression and their phosphorylation state in cpAC as well as to evaluate the tumors for the presence of potential epidermal growth factor receptor (EGFR) tyrosine kinase activating mutations in exons 18–21. Immunohistochemistry (IHC) for TKR expression was performed using a tissue microarray (TMA) constructed from twelve canine tumors and companion normal lung samples. Staining intensities of the IHC were quantified by a veterinary pathologist as well as by two different digitalized algorithm image analyses software programs. An antibody array was used to evaluate TKR phosphorylation of the tumor relative to the TKR phosphorylation of normal tissues with the resulting spot intensities quantified using array analysis software. Each EGFR exon PCR product from all of the tumors and non-affected lung tissues were sequenced using sequencing chemistry and the sequencing reactions were run on automated sequencer. Sequence alignments were made to the National Center for Biotechnology Information canine EGFR reference sequence. Results The pro-angiogenic growth factor receptor, PDGFRα, had increased cpAC tumor mRNA, protein expression and phosphorylation when compared to the normal lung tissue biospecimens. Similar to human pulmonary adenocarcinoma, significant increases in cpAC tumor mRNA expression and receptor phosphorylation of the anaplastic lymphoma kinase (ALK) tyrosine receptor were present when compared to the

  10. Effects of sustained antibiotic bactericidal treatment on Chlamydia trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937).

    PubMed

    Mpiga, Philomene; Ravaoarinoro, Madeleine

    2006-04-01

    Chlamydia trachomatis is a human pathogen that causes multiple diseases worldwide. Despite appropriate therapy with existing antichlamydial antibiotics, chronic exacerbated diseases often occur and lead to serious sequelae. Since C. trachomatis has been found to enter a persistent state after exposure to deleterious conditions, the role of persistence in the failure of chlamydial antibiotherapy is questioned. HeLa, THP-1 and U-937 cells were infected with 10(4)C. trachomatis serovar L2 infectious particles. Three days later the infected cells were treated with minimal bactericidal concentrations of doxycycline (DOX), erythromycin (ERY) or tetracycline (TET) for 24 days or 30 days. Antibiotic efficacy was assessed by measuring chlamydial inclusions and infectious particles, by investigating the resumption of chlamydial growth after antibiotic removal and by testing Chlamydia viability using reverse transcriptase polymerase chain reaction targeting unprocessed 16S rRNA, processed 16S rRNA and Omp-1 mRNA. Treatment of infected HeLa cells with the usual antichlamydial antibiotics suppressed chlamydial active growth. The infection remained unapparent. However, 24 days post treatment the bacterium was found to be viable, as proved by continued expression of unprocessed and processed 16S rRNA and Omp-1 mRNA. This inactive unapparent chlamydial state is not infectious, suggesting Chlamydia persistence. Chlamydia trachomatis also developed persistence both in permissive THP-1 and non-permissive U-937 cells. Unlike in HeLa cells, persistent chlamydial infection in THP-1 and U-937 cells was resolved after 30 days of DOX treatment. Of interest, we noticed that only THP-1 and U-937 cells that were persistently infected following their interaction with infected HeLa cells remained capable of transmitting active infection to HeLa cells. These findings suggest that DOX, TET and ERY, usually administered to combat chlamydial diseases, fail to resolve persistent infection occurring

  11. The critical role of quercetin in autophagy and apoptosis in HeLa cells.

    PubMed

    Wang, Yijun; Zhang, Wei; Lv, Qiongying; Zhang, Juan; Zhu, Dingjun

    2016-01-01

    In recent years, the effects of quercetin on autophagy and apoptosis of cancer cells have been widely reported, while effects on HeLa cells are still unclear. Here, HeLa cells were subjected to quercetin treatment, and then proliferation, apoptosis, and autophagy were evaluated using MTT, flow cytometry, and MDC staining, respectively. The LC3-I/II, Beclin 1, active caspase-3, and S6K1 phosphorylation were detected using Western blot assay. The ultrastructure of HeLa was observed via transmission electron microscope (TEM). Our findings showed that quercetin can dose-dependently inhibit the growth of HeLa cells. The MDC fluorescence was enhanced with increased concentration of quercetin and hit a plateau at 50 μmol/l. Western blot assay revealed that LC3-I/II ratio, Beclin 1, and active caspase-3 protein were enforced in a dose-dependent method. However, the phosphorylation of S6K1 gradually decreased, concomitant with an increase of autophagy. In addition, TEM revealed that the number of autophagic vacuoles was peaked at 50 μmol/l of quercetin. Besides, interference of autophagy with 3-MA led to proliferation inhibition and increased apoptosis in HeLa cells, accompanied by the decreased LC3-I/II conversion and the increased active caspase-3. In conclusion, quercetin can inhibit HeLa cell proliferation and induce protective autophagy at low concentrations; thus, 3-MA plus quercetin would suppress autophagy and effectively increased apoptosis.

  12. The deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth.

    PubMed

    Liu, Ying-Li; Zheng, Jie; Tang, Li-Juan; Han, Wei; Wang, Jian-Min; Liu, Dian-Wu; Tian, Qing-Bao

    2015-11-01

    Ubiquitin-specific protease 22 (USP22) can regulate the cell cycle and apoptosis in many cancer cell types, while it is still unclear whether the deubiquitinating enzyme activity of USP22 is necessary for these processes. As little is known about the impact of USP22 on the growth of HeLa cell, we observed whether USP22 can effectively regulate HeLa cell growth as well as the necessity of deubiquitinating enzyme activity for these processes in HeLa cell. In this study, we demonstrate that USP22 can regulate cell cycle but not apoptosis in HeLa cell. The deubiquitinating enzyme activity of USP22 is necessary for this process as confirmed by an activity-deleted mutant (C185S) and an activity-decreased mutant (Y513C). In addition, the deubiquitinating enzyme activity of USP22 is related to the levels of BMI-1, c-Myc, cyclin D2 and p53. Our findings indicate that the deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth, and it promotes cell proliferation via the c-Myc/cyclin D2, BMI-1 and p53 pathways in HeLa cell.

  13. Does St. John's Wort cause regression in gastrointestinal system adenocarcinomas?

    PubMed

    Karaarslan, Serap; Cokmert, Suna; Cokmez, Atilla

    2015-11-15

    St. John's Wort (SJW) is an old herb which has long been consumed widely for its anti-inflammatory, antiviral, and anti-depressive properties. Here we present a detailed clinical evaluation of three cases (two colon and one duodenal adenocarcinoma) with remarkable and intensive lymphoplasmocytic host reaction, at the basal part of tumor, intensive fibrosis, giant cells, plasma cell increase in lymph nodes and few giant cells in germinal centers in resection specimens. The observation of similar host reaction in those tumors having otherwise usual appearance was interesting. None of the cases received neoadjuvant chemoradiotherapy or additional treatment before surgery but only SJW. These cases are presented to increase the awareness about such cases. Further research is needed to reveal the possible effect of SJW, which has long been consumed for different treatment purposes, on human tumors.

  14. Afatinib-Induced Acute Fatal Pneumonitis in Metastatic Lung Adenocarcinoma

    PubMed Central

    Yoo, Sang Hoon; Ryu, Jin Ah; Kim, Seo Ree; Oh, Su Yun; Jung, Gu Sung; Lee, Dong Jae; Kwak, Bong Gyu; Nam, Yu Hyun; Kim, Kyung Hyun

    2016-01-01

    Afatinib is an oral tyrosine kinase inhibitor (TKI) that inhibit Endothelial Growth Factor Receptor (EGFR), Human Epidermal Growth Factor Receptor 2 (HER2), and HER4. The common side effects of EGFR TKI are rash, acne, diarrhea, stomatitis, pruritus, nausea, and loss of appetite. Drug induced pneumonitis is the less common adverse effects of EGFR TKI. Afatinib, 2nd generation EGFR TKI is anticipated to overcome drug resistance from 1st generation EGFR TKI according to preclinical study, and several studies are being conducted to compare clinical efficacy between 1st and 2nd EGFR TKI. Several cases of rug induced acute fatal pneumonitis were reported after use of erlotinib or gefitinib. However, a case of acute fatal pneumonitis associated with afatinib was note reported except drug induced pneumonitis in other clinical study. Here, we present a cases of acute severe pneumonitis related with afatinib in metastatic lung adenocarcinoma with literature review. PMID:27900074

  15. Review: Experimental models for Barrett's esophagus and esophageal adenocarcinoma

    PubMed Central

    Orlando, Roy C.; Chen, Xiaoxin

    2012-01-01

    Several different cell culture systems and laboratory animal models have been used over the years to study Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Most of the existing models have key differences with the human esophagus and complex pathogenesis of disease. None of the models offers an ideal system for the complex study of environmental exposure, genetic risk, and prevention strategies. In fact, different model systems may be required to answer different specific research questions about the pathogenesis of BE and EAC. Given the high mortality associated with EAC and the fact that current screening strategies miss most cases of EAC, advances in basic and translational science related to esophageal injury, repair, and carcinogenesis are clearly needed. This review describes several of the existing and potential model systems for BE and EAC with their benefits and disadvantages. PMID:22421618

  16. [Atypical metastatic site of lung adenocarcinoma].

    PubMed

    Sakhri, L; Mennecier, B; Jacqmin, D; Di Marco, A; Schumacher, C; Chenard, M-P; Bergmann, E; Quoix, E

    2011-12-01

    The case concerns a 40 years old smoker male, treated for an adenocarcinoma of the left upper lobe, metastatic in muscle extended to the right femur cortex. The patient had first a surgical excision of the mass of the thigh, an intramedullary femoral nailing, and six courses of chemotherapy (cisplatin-vinorelbine) with concurrent thoracic radiotherapy. This treatment led to disease stability. One year later, hematuria revealed a bladder tumor. Cystoscopy with biopsy concluded to an adenocarcinoma pulmonary origin. The PET-scanner showed an uptake of the bladder mass, a hypermetabolic right adrenal gland and subcutaneous left shoulder nodule. The patient had a partial cystectomy associated with enterocystoplasty and left ureteral reimplantation, plus excision of the subcutaneous nodule located in the left shoulder and a right adrenalectomy during the same time. All of the sites were metastasis from adenocarcinoma of pulmonary origin. A salvage chemotherapy was initiated. In the vast majority of cases, bladder metastasis as primary bladder tumours is revealed by hematuria, cystitis or sometimes vague pelvic pain. Our case is a very unusual bladder metastatic site from lung cancer. We will discuss the different procedures and the therapeutic strategies on the basis of the published data.

  17. Laparoscopy in the management of gastric adenocarcinoma.

    PubMed Central

    Burke, E C; Karpeh, M S; Conlon, K C; Brennan, M F

    1997-01-01

    OBJECTIVE: The authors determined the accuracy of laparoscopy in detecting metastatic disease in patients with gastric adenocarcinoma. SUMMARY BACKGROUND DATA: The majority of patients with gastric adenocarcinoma in the United States present with advanced disease. They are at high risk for intraabdominal metastatic spread. METHODS: One hundred eleven patients with gastric adenocarcinoma underwent laparoscopy at Memorial-Sloan Kettering Cancer Center from December 1991 to December 1995. All were judged to be free of intra-abdominal metastatic disease on preoperative computed tomographic scan imaging. RESULTS: Laparoscopic exploration was successful in 110 of 111 patients and accurately staged 94% of the patients with respect to metastatic disease with a sensitivity of 84% and a specificity of 100%. The prevalence rate of metastatic disease was 37%. Twenty-four patients underwent laparoscopy only and were discharged in an average 1.4 days versus 6.5 days in patients undergoing exploratory laparotomy without resection (p < 0.05). No patients undergoing laparoscopy only have returned for palliative surgery. CONCLUSIONS: Laparoscopy should be performed in nonobstructed, nonbleeding patients with advanced gastric cancer in the United States. More than one third of these patients have unsuspected metastatic disease at time of operation. Laparoscopy is highly accurate in detecting occult metastases and identifies a unique population of stage IV patients who may benefit from newer induction chemotherapeutic approaches while avoiding unnecessary laparotomy. Images Figure 4. PMID:9060581

  18. Carcinogenesis of Pancreatic Adenocarcinoma: Precursor Lesions

    PubMed Central

    Gnoni, Antonio; Licchetta, Antonella; Scarpa, Aldo; Azzariti, Amalia; Brunetti, Anna Elisabetta; Simone, Gianni; Nardulli, Patrizia; Santini, Daniele; Aieta, Michele; Delcuratolo, Sabina; Silvestris, Nicola

    2013-01-01

    Pancreatic adenocarcinoma displays a variety of molecular changes that evolve exponentially with time and lead cancer cells not only to survive, but also to invade the surrounding tissues and metastasise to distant sites. These changes include: genetic alterations in oncogenes and cancer suppressor genes; changes in the cell cycle and pathways leading to apoptosis; and also changes in epithelial to mesenchymal transition. The most common alterations involve the epidermal growth factor receptor (EGFR) gene, the HER2 gene, and the K-ras gene. In particular, the loss of function of tumor-suppressor genes has been documented in this tumor, especially in CDKN2a, p53, DPC4 and BRCA2 genes. However, other molecular events involved in pancreatic adenocarcinoma pathogenesis contribute to its development and maintenance, specifically epigenetic events. In fact, key tumor suppressors that are well established to play a role in pancreatic adenocarcinoma may be altered through hypermethylation, and oncogenes can be upregulated secondary to permissive histone modifications. Indeed, factors involved in tumor invasiveness can be aberrantly expressed through dysregulated microRNAs. This review summarizes current knowledge of pancreatic carcinogenesis from its initiation within a normal cell until the time that it has disseminated to distant organs. In this scenario, highlighting these molecular alterations could provide new clinical tools for early diagnosis and new effective therapies for this malignancy. PMID:24084722

  19. Intraoperative molecular imaging to identify lung adenocarcinomas

    PubMed Central

    Newton, Andrew D.; Kennedy, Gregory T.; Predina, Jarrod D.; Low, Philip S.

    2016-01-01

    Intraoperative molecular imaging is a promising new technology with numerous applications in lung cancer surgery. Accurate identification of small nodules and assessment of tumor margins are two challenges in pulmonary resections for cancer, particularly with increasing use of video-assisted thoracoscopic surgery (VATS). One potential solution to these problems is intraoperative use of a fluorescent contrast agent to improve detection of cancer cells. This technology requires both a targeted fluorescent dye that will selectively accumulate in cancer cells and a specialized imaging system to detect the cells. In several studies, we have shown that intraoperative imaging with indocyanine green (ICG) can be used to accurately identify indeterminate pulmonary nodules. The use of a folate-tagged fluorescent molecule targeted to the folate receptor-α (FRα) further improves the sensitivity and specificity of detecting lung adenocarcinomas. We have demonstrated this technology can be used as an “optical biopsy” to differentiate adenocarcinoma versus other histological subtypes of pulmonary nodules. This strategy has potential applications in assessing bronchial stump margins, identifying synchronous or metachronous lesions, and rapidly assessing lymph nodes for lung adenocarcinoma. PMID:28066672

  20. Comprehensive molecular profiling of lung adenocarcinoma

    PubMed Central

    2014-01-01

    Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas