Science.gov

Sample records for adenocarcinoma hela human

  1. Methanolic extracts from brown seaweeds Dictyota cilliolata and Dictyota menstrualis induce apoptosis in human cervical adenocarcinoma HeLa cells.

    PubMed

    Gomes, Dayanne Lopes; Telles, Cinthia Beatrice Silva; Costa, Mariana Santana Santos Pereira; Almeida-Lima, Jailma; Costa, Leandro Silva; Keesen, Tatjana Souza Lima; Rocha, Hugo Alexandre Oliveira

    2015-01-01

    Carcinoma of the uterine cervix is the second most common female tumor worldwide, surpassed only by breast cancer. Natural products from seaweeds evidencing apoptotic activity have attracted a great deal of attention as new leads for alternative and complementary preventive or therapeutic anticancer agents. Here, methanol extracts from 13 species of tropical seaweeds (Rhodophytas, Phaeophyta and Chlorophyta) collected from the Northeast of Brazil were assessed as apoptosis-inducing agents on human cervical adenocarcinoma (HeLa). All extracts showed different levels of cytotoxicity against HeLa cells; the most potent were obtained from the brown alga Dictyota cilliolata (MEDC) and Dictyota menstrualis (MEDM). In addition, MEDC and MEDM also inhibits SiHa (cervix carcinoma) cell proliferation. Studies with these two extracts using flow cytometry and fluorescence microscopy showed that HeLa cells exposed to MEDM and MEDC exhibit morphological and biochemical changes that characterize apoptosis as shown by loss of cell viability, chromatin condensation, phosphatidylserine externalization, and sub-G1 cell cycle phase accumulation, also MEDC induces cell cycle arrest in cell cycle phase S. Moreover, the activation of caspases 3 and 9 by these extracts suggests a mitochondria-dependent apoptosis route. However, other routes cannot be ruled out. Together, these results point out the methanol extracts of the brown algae D. mentrualis and D. cilliolata as potential sources of molecules with antitumor activity. PMID:25871374

  2. Modulation of intracellular calcium homeostasis by trimethyltin chloride in human tumour cells: neuroblastoma SY5Y and cervix adenocarcinoma HeLa S3.

    PubMed

    Florea, Ana-Maria; Splettstoesser, Frank; Dopp, Elke; Rettenmeier, Albert W; Büsselberg, Dietrich

    2005-12-01

    Physiological modifications of intracellular Ca2+ ([Ca2+]i) levels trigger and/or regulate a diversity of cellular activities (e.g. neurotransmitter release, synaptic plasticity, muscular contraction, cell proliferation), while calcium overloads could result in cytotoxicity. Previously, we have shown that trimethyltin chloride (Me3SnCl; TMT) modulates calcium homeostasis in cervix adenocarcinoma (HeLa S3) cells [Florea, A.-M., Dopp, E., Büsselberg, D., 2005. TMT induces elevated calcium transients in HeLa cells: types and levels of response. Cell Calcium 37, 252-258]. Here we compare [Ca2+]i-changes induced by trimethyltin chloride in neuroblastoma SY5Y and HeLa S3 cells using calcium-sensitive dyes (fluo-4/AM (fluo-4) and rhod-2/AM (rhod-2)) and laser scanning microscopy (LSM). TMT-induced calcium elevations in neuroblastoma SY5Y as well as in HeLa S3 cells. [Ca2+]i rose to a sustained plateau or to transient spikes. Overall, the detected averaged increase of the maximum calcium elevation were: 0.5 microM approximately 125.6%; 5 microM approximately 130.1%; 500 microM approximately 145% in HeLa S3 cells and 0.5 microM approximately 133.3%; 5 microM approximately 136.1%; 500 microM approximately 147.1% in neuroblastoma SY5Y cells. The calcium rise derived from internal stores did not significantly depend on the presence of calcium in the external solution: approximately 109% (no calcium added) versus approximately 117% (2 mM calcium; 5 microM TMT) in HeLa cells. This difference was similar in neuroblastoma SY5Y cells, were approximately 127% versus approximately 136% increase (5 microM TMT) were measured. Staining of calcium stores with rhod-2 showed a TMT-induced [Ca2+]i-decrease in the stores followed by an increase of the calcium concentration in the nuclei of the two cell lines tested. Our results suggest that toxic effects in human tumour cells after exposure to trimethyltin compounds might be due to an elevation of [Ca2+]i.

  3. Resistance of cervical adenocarcinoma cells (HeLa) to venom from the scorpion Centruroides limpidus limpidus

    PubMed Central

    2013-01-01

    Background The venom of Centruroides limpidus limpidus (Cll) is a mixture of pharmacologically active principles. The most important of these are toxic proteins that interact both selectively and specifically with different cellular targets such as ion channels. Recently, anticancer properties of the venom from other scorpion species have been described. Studies in vitro have shown that scorpion venom induces cell death, inhibits proliferation and triggers the apoptotic pathway in different cancer cell lines. Herein, after treating human cervical adenocarcinoma (HeLa) cells with Cll crude venom, their cytotoxic activity and apoptosis induction were assessed. Results Cll crude venom induced cell death in normal macrophages in a dose-dependent manner. However, through viability assays, HeLa cells showed high survival rates after exposure to Cll venom. Also, Cll venom did not induce apoptosis after performing ethidium bromide/acridine orange assays, nor was there any evidence of chromatin condensation or DNA fragmentation. Conclusions Crude Cll venom exposure was not detrimental to HeLa cell cultures. This may be partially attributable to the absence of specific HeLa cell membrane targets for molecules present in the venom of Centruroides limpidus limpidus. Although these results might discourage additional studies exploring the potential of Cll venom to treat human papilloma cervical cancer, further research is required to explore positive effects of crude Cll venom on other cancer cell lines. PMID:24004568

  4. In vitro study of 5-aminolevulinic acid-based photodynamic therapy for apoptosis in human cervical HeLa cell line

    NASA Astrophysics Data System (ADS)

    Atif, M.; Firdous, S.; Khurshid, A.; Noreen, L.; Zaidi, S. S. Z.; Ikram, M.

    2009-12-01

    5-aminolevulanic acid (ALA), belonging among the promising second generation of sensitizers, was evaluated as an inducer of photodamage on HeLa (human cervical adenocarcinoma) cell line. A diode laser (635 nm) was used as a source for initiation of the photodynamic effect. We studied the influence of different incubation times, various concentrations of sensitizer, different irradiation doses and various combinations of sensitizer and light doses on the photodamage of HeLa cells. Viability of cells was determined by means of neutral red assay. The quantitative cellular uptake of ALA sensitizer was done by spectrophotometric measurements. No prominent cytotoxic or phototoxic effects on HeLa were observed due to sensitizer or light doses when studied independently of each other. However phototoxicity evoked by laser irradiated sensitizer was detected in HeLa cell line.

  5. Anticancer activity of Bombyx batryticatus ethanol extract against the human tumor cell line HeLa.

    PubMed

    Wu, W P; Cao, J; Wu, J Y; Chen, H; Wang, D

    2015-01-15

    Anticancer activity of Bombyx batryticatus ethanol extract (BBE) against HeLa cells was studied using cell viability, DNA fragmentation, real-time polymerase chain reaction, and Western blot analyses. The BBE inhibited the growth and induced apoptosis of HeLa cells. The MTT assay indicated that the BBE induced cytotoxicity in HeLa cells in a time- and concentration-dependent manner. When HeLa cells were treated for 48 h, the 50% inhibitory concentration (IC₅₀) value for the BBE was 1.564 mg/mL. The microscopy results showed that HeLa cells were severely distorted and showed slow growth; some cells became round in shape when treated with 5 mg/mL BBE for 24 h. The DNA ladder results revealed excessive DNA fragmentation in HeLa cells treated with 7 mg/mL BBE for 36 h. The proapoptotic activity of the BBE was attributed to its ability to modulate the expression of Bcl-2 and Bax genes. The mRNA and protein expression levels of Bax were remarkably higher whereas those of Bcl-2 were lower than those in the control cells; this led to an increased Bax/Bcl-2 ratio in cells treated with the BBE for 36 h. The results suggest that the BBE might play an important role in tumor growth suppression by inducing apoptosis in human cervical cancer cells via the regulation of the Bcl-2- and Bax-mediated apoptotic pathways.

  6. Locomotory invasion of human cervical epithelium and avian fibroblasts by HeLa cells in vitro.

    PubMed

    Stephenson, E M

    1982-10-01

    The locomotory invasive ability of HeLa cells was tested against: (a) embryonic chick heart fibroblasts (CHF); and (b) normal epithelial cells from human cervix (HCE) in explant confrontations. Data for analyses were obtained from replicate cultures fixed 24 h after junction and from 24-h time-lapse films. The mean invasion index for HeLa versus CHF did not indicate significant obstruction but analyses of hourly radial advance and orientation frequencies showed that obstruction eventually developed as postjunctional incubation time increased. Early contacts between HeLa and CHF demonstrated non-reciprocity of type I contact inhibition of locomotion by the tumour cells, which continued moving in their original direction to underlap contact-inhibited fibroblasts and eventually to occupy spaces vacated by them. When CHF population density increased and free space diminished, HeLa cells displayed directional and probably substrate-dependent contact inhibition. The high invasion index of HeLa versus HCE was largely due to occupation of previous HCE territory by tumour cells and only occasionally to actual infiltration of the epithelial sheet. After contact with HeLa, ruffling substrate-adherent marginal epithelial cells displayed contractile, type I contact inhibition of locomotion. After orientation changes, they gradually retreated. Against HCE, HeLa cells exhibited non-reciprocity of type I contact inhibition and continued radially forward, following the retreating epithelial margin. They did not move onto exposed upper surfaces of epithelial cells and did not underlap marginal cells firmly adherent to the substratum. Invasion of the epithelial sheet was seen only when initial access beneath a cell with a non-adherent margin was available. The contact relationships of isolated invading HeLa cells with their epithelial neighbours suggested successive non-reciprocal contact inhibition reactions.

  7. Baicalein induces apoptosis of human cervical cancer HeLa cells in vitro.

    PubMed

    Peng, Yong; Guo, Congshan; Yang, Yanhong; Li, Fenglin; Zhang, Yanxia; Jiang, Bin; Li, Qingwang

    2015-03-01

    A number of studies have shown that baicalein shows high antitumor activity in vitro and in vivo. In this study, the inhibitory effect of baicalein on human cervical cancer HeLa cells was studied in vitro. HeLa cells were treated with high (100 µg/ml) and low (50 µg/ml) doses of baicalein, and cell growth inhibition rates were examined by the MTT assay. The morphological changes of apoptotic cells were observed under the light and electron microscope, while the rate of cell apoptosis was examined by flow cytometry. The expression of apoptosis-related proteins was analyzed by western blot, and caspase-3 activation was examined by a caspase-3 activity assay and spectrophotometry. The results demonstrated that baicalein inhibits the proliferation of HeLa cells and induces apoptosis in a caspase-3-dependent pathway, through downregulation of the B-cell lymphoma 2 (Bcl-2) protein and upregulation of the Bcl-2-associated X protein (Bax), Fas, Fas ligand (FasL) and caspase-8. Thus, we conclude that baicalein induces apoptosis of HeLa cells via the mitochondrial and the death receptor pathways. Cell apoptosis in HeLa cells was most likely promoted by the activation of the proteolytic enzyme caspase-3 in both pathways.

  8. Effects of TGF-β1 on the Proliferation and Apoptosis of Human Cervical Cancer Hela Cells In Vitro.

    PubMed

    Tao, Ming-Zhu; Gao, Xia; Zhou, Tie-Jun; Guo, Qing-Xi; Zhang, Qiang; Yang, Cheng-Wan

    2015-12-01

    To investigate the effects of TGF-β1 on the proliferation and apoptosis of cervical cancer Hela cells in vitro. Human cervical cancer Hela cells were cultured in vitro and divided into the experimental and control groups. In the experimental groups, Hela cells were stimulated with different concentrations of TGF-β1 (0.01, 0.1, 1, and 10 ng/mL), while Hela cells cultured in serum-free medium without TGF-β1 were used as controls. The CCK8 method was adopted to detect the effect of TGF-β1 on Hela cell proliferation, and flow cytometry was used to determine cell apoptosis 72 h after TGF-β1 treatment. Compared with the control group, the CCK-8 tests showed that different concentrations of TGF-β1 had no obvious effect on Hela cell proliferation 24 h after treatment (P > 0.05). However, upon 48 or 72 h of treatment, TGF-β1 significantly inhibited the proliferation of Hela cells in a time- and dose-dependent manner (P < 0.05). The flow cytometry results indicated that TGF-β1 influenced the apoptosis of human cervical cancer Hela cells in a dose-dependent manner after 72 h of treatment (P < 0.05). TGF-β1 significantly inhibited the growth and induced the apoptosis of human cervical Hela cells in vitro.

  9. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    PubMed

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  10. Human androgen receptor expressed in HeLa cells activates transcription in vitro.

    PubMed Central

    De Vos, P; Schmitt, J; Verhoeven, G; Stunnenberg, H G

    1994-01-01

    The androgen receptor (AR) is a ligand-responsive transcription factor, belonging to the class of steroid receptors. AR mutations have been associated with various X-linked diseases, characterized by complete or partial resistance to androgens. To further analyse the molecular mechanism of action of the AR, we have produced the human AR in HeLa cells with a Vaccinia virus expression system. Binding studies on infected HeLa cells demonstrate that the recombinant AR interacts specifically and with high affinity with natural and synthetic androgens. In a gel retardation assay the partially purified AR specifically recognizes an androgen response element of the rat prostatic binding protein gene. Moreover, the recombinant AR activates transcription in vitro from a synthetic promoter construct containing glucocorticoid response elements (GRE). Images PMID:8165128

  11. Identification of CELF1 RNA targets by CLIP-seq in human HeLa cells.

    PubMed

    Le Tonquèze, Olivier; Gschloessl, Bernhard; Legagneux, Vincent; Paillard, Luc; Audic, Yann

    2016-06-01

    The specific interactions between RNA-binding proteins and their target RNAs are an essential level to control gene expression. By combining ultra-violet cross-linking and immunoprecipitation (CLIP) and massive SoliD sequencing we identified the RNAs bound by the RNA-binding protein CELF1, in human HeLa cells. The CELF1 binding sites deduced from the sequence data allow characterizing specific features of CELF1-RNA association. We present therefore the first map of CELF1 binding sites in human cells. PMID:27222809

  12. Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins.

    PubMed Central

    Löhr, M.; Trautmann, B.; Göttler, M.; Peters, S.; Zauner, I.; Maillet, B.; Klöppel, G.

    1994-01-01

    Pancreatic ductal adenocarcinomas are characterised by a dense connective tissue reaction. To test the hypothesis that stroma components are synthesised and produced by the tumour cells themselves, eight cell lines as well as six xenografted tumours from human ductal adenocarcinomas of the pancreas were examined for the expression of extracellular matrix proteins (ECM), using cDNA probes and antibodies to collagen types I, III and IV, vitronectin, fibronectin, undulin and laminin. All tumour cell lines (CAPAN-1, CAPAN-2, AsPC-1, BxPC-3, PANC-1, PaCa-2, PaCa-3, PaCa-44) and xenografted human pancreatic tumours expressed at least one of the examined ECM at the RNA (collagen type IV > laminin = fibronectin = vitronectin > collagen type III > undulin > collagen type I) or protein level (collagen type IV = collagen type III > vitronectin > laminin > collagen type I = fibronectin > undulin). In nude mouse tumours expression of laminin and collagen I was most pronounced in well-differentiated carcinomas. In a few tumours, collagen type III, vitronectin and undulin were expressed on the luminal side of the neoplastic glands, suggesting loss of normal polar differentiation. Incubation with fetal calf serum modulated ECM RNA levels to a varying extent in all but one cell line (AsPC-1). The results suggest that human pancreatic ductal adenocarcinomas cells are capable of synthesising and producing extracellular matrix proteins in vitro and in vivo, but that the extent and pattern of ECM expression differs between the various tumours and conditions tested. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8286197

  13. Human colon adenocarcinoma HT-29 cell: electrochemistry and nicotine stimulation.

    PubMed

    Oliveira, S C B; Santarino, I B; Enache, T A; Nunes, C; Laranjinha, J; Barbosa, R M; Oliveira-Brett, A M

    2013-12-01

    Recently, it was demonstrated that colorectal cancer HT-29 cells can secrete epinephrine (adrenaline) in an autocrine manner to auto-stimulate cellular growth by adrenoreceptors activation, and that this secretion is enhanced by nicotine, showing an indirect relation between colorectal cancer and tobacco. The electrochemical behaviour of human colon adenocarcinoma HT-29 cells from a colorectal adenocarcinoma cell line, the hormone and neurotransmitter epinephrine, and nicotine, were investigated by cyclic voltammetry, using indium tin oxide (ITO), glassy carbon (GC) and screen printed carbon (SPC) electrodes. The oxidation of the HT-29 cells, previously grown onto ITO or SPC surfaces, followed an irreversible oxidation process that involved the formation of a main oxidation product that undergoes irreversible reduction, as in the epinephrine oxidation mechanism. The effect of nicotine stimulation of the HT-29 cells was also investigated. Nicotine, at different concentration levels 1, 2 and 15 mM, was introduced in the culture medium and an increase with incubation time, 0 to 3h and 30 min, of the HT-29 cells oxidation and reduction peaks was observed. The interaction of nicotine with the HT-29 cells stimulated the epinephrine secretion causing an increase in epinephrine release concentration, and enabling the conclusion that epinephrine and nicotine play an important role in the colorectal tumour growth.

  14. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    SciTech Connect

    Sun, Bin; Cai, Yingyue; Li, Yongshu; Li, Jingjing; Liu, Kaiyu; Li, Yi; Yang, Yongbo

    2013-05-25

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization.

  15. Total Alkaloids of Sophora alopecuroides Inhibit Growth and Induce Apoptosis in Human Cervical Tumor HeLa Cells In vitro

    PubMed Central

    Li, Jian-Guang; Yang, Xiao-Yi; Huang, Wei

    2016-01-01

    Background: Uygur females of Xinjiang have the higher incidence of cervical tumor in the country. Alkaloids are the major active ingredients in Sophora alopecuroides, and its antitumor effect was recognized by the medical profession. Xinjiang is the main site of S. alopecuroides production in China so these plants are abundant in the region. Studies on the antitumor properties of total alkaloids of S. alopecuroides (TASA) can take full use of the traditional folk medicine in antitumor unique utility. Objectives: To explore the effects of TASA on proliferation and apoptosis of human cervical tumor HeLa cells in vitro. Materials and Methods: TASA was extracted, purified, and each monomer component was analyzed by high-performance liquid chromatography. The effect of TASA at different concentrations on the survival of HeLa cells was determined after 24 h using the Cell Counting Kit-8. In addition, cells were photographed using an inverted microscope to document morphological changes. The effect of TASA on apoptotic rate of HeLa cells was assessed by flow cytometry. Results: Monomers of TASA were found to be sophoridine, matrine, and sophocarpine. On treatment with 8.75 mg/ml of TASA, more than 50% of HeLa cells died, and cell death rate increased further with longer incubation. The apoptotic rates of HeLa cells in the experimental groups were 16.0% and 33.3% at concentrations of 6.25 mg/ml and 12.50 mg/ml, respectively. Conclusion: TASA can induce apoptosis in cervical tumor HeLa cells, and it has obvious inhibitory effects on cell growth. SUMMARY Total alkaloids of Sophora alopecuroides (TASA) exhibits anti-human cervical tumor propertiesMonomer component of TASA was analyzed by high-performance liquid chromatography, and its main effect component are sophoridine, matrine, and sophocarpineTASA inhibits growth and induces apoptosis in HeLa cells. Abbreviations used: TASA: Total alkaloids of S. alopecuroides, CCK-8: Cell Counting Kit-8, FBS: Fetal bovine serum, PBS

  16. Inhibition of collagen peptidase in HeLa cells and human tumours by compounds including drugs used in cancer therapy.

    PubMed Central

    Boggust, W. A.; McGauley, H.

    1978-01-01

    Collagen-peptidase activity in extracts of HeLa cells and human tumours is inactivated by Razoxane (ICRF-159), cyclophosphamide, 5-fluorouracil, thiotepa, aprotinin, EDTA and phenanthroline. As this activity, in association with other enzymes, may contribute to tissue lysis in cancers, chemical intervention may reduce invasiveness and modify the processes of infiltration and metastasis. Accordingly, some drugs used in therapy or for the prevention of metastasis may produce their observed effects by a combination of factors including enzyme inhibition. PMID:212092

  17. (-)-Anonaine induces apoptosis through Bax- and caspase-dependent pathways in human cervical cancer (HeLa) cells.

    PubMed

    Chen, Chung-Yi; Liu, Tsan-Zon; Tseng, Wei-Chang; Lu, Fung-Jou; Hung, Ray-Ping; Chen, Chi-Hung; Chen, Ching-Hsein

    2008-08-01

    (-)-Anonaine has been shown to have some anticancer activities, but the mechanisms of (-)-anonaine inducing cell death of human cancer cells is not fully understood. We investigated the mechanisms of apoptosis induced by (-)-anonaine in human HeLa cancer cells. Treatment with (-)-anonaine induces dose-dependent DNA damage that is correlated with increased intracellular nitric oxide, reactive oxygen species, glutathione depletion, disruptive mitochondrial transmembrane potential, activation of caspase 3, 7, 8, and 9, and poly ADP ribose polymerase cleavage. Our data indicate that (-)-anonaine up-regulated the expression of Bax and p53 proteins in HeLa cancer cells. The apoptosis and expression of Bax induced by (-)-anonaine could be inhibited when the HeLa cells were pretreated with Boc-Asp(OMe)-fmk, which is a broad caspases inhibitor. There was no obvious DNA damage in the (-)-anonaine-treated Madin-Darby canine kidney and Vero cell lines. Both Madin-Darby canine kidney and Vero cell lines are kidney epithelial cellular morphology. These results suggest that (-)-anonaine might be considered a potent compound for chemotherapy against cervical cancer or a health food supplement for cancer chemoprevention.

  18. Curcumin causes DNA damage and affects associated protein expression in HeLa human cervical cancer cells.

    PubMed

    Shang, Hung-Sheng; Chang, Chuan-Hsun; Chou, Yu-Ru; Yeh, Ming-Yang; Au, Man-Kuan; Lu, Hsu-Feng; Chu, Yung-Lin; Chou, Hsiao-Min; Chou, Hsiu-Chen; Shih, Yung-Luen; Chung, Jing-Gung

    2016-10-01

    Cervical cancer is one of the most common cancers in women worldwide and it is a prominent cause of cancer mortality. Curcumin is one of the major compounds from Turmeric and has been shown to induce cytotoxic cell death in human cervical cancer cells. However, there is no study to show curcumin induced DNA damage action via the effect on the DNA damage and repair protein in cervical cancer cells in detail. In this study, we investigated whether or not curcumin induced cell death via DNA damage, chromatin condensation in human cervical cancer HeLa cells by using comet assay and DAPI staining, respectively, we found that curcumin induced cell death through the induction of DNA damage, and chromatin condensation. Western blotting and confocal laser microscopy examination were used to examine the effects of curcumin on protein expression associated with DNA damage, repair and translocation of proteins. We found that curcumin at 13 µM increased the protein levels associated with DNA damage and repair, such as O6-methylguanine-DNA methyltransferase, early-onset breast cancer 1 (BRCA1), mediator of DNA damage checkpoint 1, p-p53 and p-H2A.XSer140 in HeLa cells. Results from confocal laser systems microscopy indicated that curcumin increased the translocation of p-p53 and p-H2A.XSer140 from cytosol to nuclei in HeLa cells. In conclusion, curcumin induced cell death in HeLa cells via induction of DNA damage, and chromatin condensation in vitro. PMID:27499229

  19. Curcumin causes DNA damage and affects associated protein expression in HeLa human cervical cancer cells.

    PubMed

    Shang, Hung-Sheng; Chang, Chuan-Hsun; Chou, Yu-Ru; Yeh, Ming-Yang; Au, Man-Kuan; Lu, Hsu-Feng; Chu, Yung-Lin; Chou, Hsiao-Min; Chou, Hsiu-Chen; Shih, Yung-Luen; Chung, Jing-Gung

    2016-10-01

    Cervical cancer is one of the most common cancers in women worldwide and it is a prominent cause of cancer mortality. Curcumin is one of the major compounds from Turmeric and has been shown to induce cytotoxic cell death in human cervical cancer cells. However, there is no study to show curcumin induced DNA damage action via the effect on the DNA damage and repair protein in cervical cancer cells in detail. In this study, we investigated whether or not curcumin induced cell death via DNA damage, chromatin condensation in human cervical cancer HeLa cells by using comet assay and DAPI staining, respectively, we found that curcumin induced cell death through the induction of DNA damage, and chromatin condensation. Western blotting and confocal laser microscopy examination were used to examine the effects of curcumin on protein expression associated with DNA damage, repair and translocation of proteins. We found that curcumin at 13 µM increased the protein levels associated with DNA damage and repair, such as O6-methylguanine-DNA methyltransferase, early-onset breast cancer 1 (BRCA1), mediator of DNA damage checkpoint 1, p-p53 and p-H2A.XSer140 in HeLa cells. Results from confocal laser systems microscopy indicated that curcumin increased the translocation of p-p53 and p-H2A.XSer140 from cytosol to nuclei in HeLa cells. In conclusion, curcumin induced cell death in HeLa cells via induction of DNA damage, and chromatin condensation in vitro.

  20. Silencing Aurora-A with siRNA inhibits cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Zhong, Ning; Shi, Shunbin; Wang, Hongzhen; Wu, Guangzhou; Wang, Yunliang; Ma, Qiang; Wang, Hongwei; Liu, Yuanhua; Wang, Jinzhi

    2016-09-01

    Aurora kinase A (AURKA) is an oncogenic serine/threonine kinase, it plays important roles in tumorigenesis and chemoresistance. In this study, we investigated the expression of AURKA in lung adenocarcinoma tissues, the role of small interference RNA targeting AURKA on growth, cell cycle, and apoptosis of lung adenocarcinoma cell lines in vitro. The AURKA is highly expressed in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines. Lentivirus-mediated short hairpin RNA (shRNA) was used to knock down AURKA expression in human lung adenocarcinoma cell lines H1299 and A549. The results indicated that depletion of AURKA could inhibit cell growth, cause cell cycle arrest and apoptosis. The potential mechanisms of AURKA inhibition induced cell cycle arrest and apoptosis are associated with downregulated RAF-1, CCND2, CCND3, CDK4, PAK4, EGFR and upregulated WEE1 expression. Furthermore, AURKA knockdown cooperated with vincristine (VCR) to repress A549 cell proliferation. Therefore, AURKA plays important roles in the proliferation of human lung adenocarcinoma cells, which suggests that AURKA could be a promising tool for lung adenocarcinoma therapy. PMID:27571708

  1. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  2. Helicobacter pylori-binding gangliosides of human gastric adenocarcinoma.

    PubMed

    Roche, N; Larsson, T; Angström, J; Teneberg, S

    2001-11-01

    Acidic and neutral glycosphingolipids were isolated from a human gastric adenocarcinoma, and binding of Helicobacter pylori to the isolated glycosphingolipids was assessed using the chromatogram binding assay. The isolated glycosphingolipids were characterized using fast atom bombardment mass spectrometry and by binding of antibodies and lectins. The predominating neutral glycosphingolipids were found to migrate in the di- to tetraglycosylceramide regions as revealed by anisaldehyde staining and detection with lectins. No binding of H. pylori to these compounds was obtained. The most abundant acidic glycosphingolipids, migrating as the GM3 ganglioside and sialyl-neolactotetraosylceramide, were not recognized by the bacteria. Instead, H. pylori selectively interacted with slow-migrating, low abundant gangliosides not detected by anisaldehyde staining. Binding-active gangliosides were isolated and characterized by mass spectrometry, proton nuclear magnetic resonance, and lectin binding as sialyl-neolactohexaosylceramide (NeuAcalpha3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and sialyl-neolactooctaosylceramide (NeuAcalpha3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer).

  3. Effect of gyromagnetic fields on human prostatic adenocarcinoma cells

    PubMed Central

    Lei, Hongen; Xu, Yongde; Guan, Ruili; Li, Meng; Hui, Yu; Gao, Zhezhu; Yang, Bicheng; Xin, Zhongcheng

    2015-01-01

    Purpose To investigate the biological effect of gyromagnetic fields (GMFs) on cell proliferation and apoptosis of human prostatic adenocarcinoma cells and explore the underlying mechanisms. Methods PC-3 cells were grouped into normal control (NC) and GMF treatment groups. Cell proliferation was analyzed with kit-8 and Ki67 immunofluorescence staining, while cell apoptosis was analyzed with flow cytometry double staining of Annexin V-PE/7-AAD. The Akt and p38 MAPK/Caspase signaling pathways were analyzed by western blotting and immunofluorescence staining, and cell polarization was analyzed with PARD3. Results Cell proliferation and activity of the Akt pathway were significantly decreased by the GMF, while cell apoptosis, activity of p38 MAPK, and PARD3-positive cell number were significantly increased in the GMF group compared to the NC group. Conclusion GMFs inhibit cell proliferation, induce apoptosis, and regulate tumor cell polarity conditions, potentially through down-regulating Akt, activating the p38 MAPK/Caspase pathway, and promoting PARD3 expression in PC-3 cells. PMID:26648740

  4. Cytochalasin B induces apoptosis through the mitochondrial apoptotic pathway in HeLa human cervical carcinoma cells.

    PubMed

    Hwang, Jiyoung; Yi, Myeongjin; Zhang, Xin; Xu, Yi; Jung, Jee H; Kim, Dong-Kyoo

    2013-10-01

    Cytochalasin B (CB) is a cell-permeable mycotoxin. It inhibits cytoplasmic division by blocking the formation of contractile microfilaments, it inhibits cell movement and induces nuclear extrusion. In the present study, we investigated the anticancer activity of CB in HeLa human cervical carcinoma cells. CB showed significant cytotoxicity, with an IC50 of 7.9 µM, in a WST-8 assay and significantly inhibited cell proliferation. Furthermore, results from Annexin V-FITC/propidium iodide double-staining indicated that CB induced early apoptosis of HeLa cells in a time-dependent manner. The cells exhibited apoptotic morphology, including cell shrinkage and nuclear condensation. CB induced cell cycle arrest at the S phase. We also observed inhibition of DNA replication in a [3H]-thymidine incorporation assay. Furthermore, CB induced a time-dependent increase in reactive oxygen species and a decrease in mitochondrial membrane potential. Western blot analysis showed an increase in levels of mitochondrial factors Bax and Bcl-2, which was followed by activation of caspase-9 and -3. These results suggested that CB induced apoptosis via a mitochondrial-dependent pathway in HeLa cells. PMID:23863920

  5. Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells.

    PubMed

    Jamsheena, Vellekkatt; Shilpa, Ganesan; Saranya, Jayaram; Harry, Nissy Ann; Lankalapalli, Ravi Shankar; Priya, Sulochana

    2016-03-01

    Bis(indolyl)methane appended biaryls were designed, synthesized and evaluated in human cervical cancer cell lines (HeLa) for their anticancer activities and compared against normal rat cardiac myoblasts (H9C2) cells. Compounds 1-12 were synthesized, with variations in one of the phenyl unit, in a single step by condensation of biaryl-2-carbaldehydes with indole in the presence of para-toluenesulfonic acid. Compound 1 exhibited a GI50 value of 11.00 ± 0.707 μM and the derivatives, compounds 4 and 11 showed a GI50 value of 8.33 ± 0.416 μM and 9.13 ± 0.177 μM respectively in HeLa cells and was found to be non-toxic to H9C2 cells up to 20 μM. Furthermore, compounds 1, 4 and 11 induced caspase dependent cellular apoptosis in a concentration-dependent manner, reduced mitochondrial membrane potential, inhibited the cell migration and downregulated the production of MMP-2 and MMP-9 in HeLa cells.

  6. Lactoferrin and free secretory component of human milk inhibit the adhesion of enteropathogenic Escherichia coli to HeLa cells

    PubMed Central

    de Araújo, Andréa Nascimento; Giugliano, Loreny Gimenes

    2001-01-01

    Background Diarrhoea caused by Escherichia coli is an important cause of infant morbidity and mortality in developing countries. Enteropathogenic Escherichia coli (EPEC) is considered one of the major causes of diarrhoea in children living in developing countries. The ability of diarrhoeagenic strains of E. coli to adhere to and colonize the intestine is the first step towards developing the disease. EPEC strains adhere to enterocytes and HeLa cells in a characteristic pattern known as localized adherence. Many epidemiological studies of diarrhoea have shown that breast-feeding protects infants from intestinal infections. Both immunoglobulin and non-immunoglobulin elements of human milk are thought to contribute to the protection from diarrhoeal agents. Results The effects of human milk and its protein components on the localized adherence of EPEC were investigated. Non-immunoglobulin components of human milk responsible for the inhibition of EPEC adhesion to HeLa cells were isolated by chromatographic fractionation of human whey proteins. Besides secretory immunoglobulin A, which has been previously reported to affect the adhesion of EPEC, free secretory component (fSC) and lactoferrin (Lf) were isolated. Even in concentrations lower than those usually found in whole milk, fSC and Lf were able to inhibit the adhesion of EPEC. α-lactalbumin was also isolated, but showed no activity on EPEC adhesion. Conclusions This study demonstrated that the immunoglobulin fraction, the free secretory component and lactoferrin of human milk inhibit EPEC adhesion to HeLa cells. These results indicate that fSC and Lf may be important non-specific defence factors against EPEC infections. PMID:11690544

  7. The effect of uranyl acetate on human lymphoblastoid cells (RPMI 6410) and HeLa cells.

    PubMed Central

    Ghadially, F. N.; Yang-Steppuhn, S. E.; Lalonde, J. M.

    1982-01-01

    RPMI 6410 cells and HeLa cells were exposed to uranyl acetate. In RPMI 6410 cell cultures this produced single-membrane-bound presumably lysosomal bodies (called "uraniosomes") containing electron-dense crystals in the cultured cells and crystalline deposits in extracellular locations. Neither uraniosomes nor extracellular uranium deposits were found in HeLa cell cultures. All uraniosomes and extracellular uranium deposits analysed by electron-probed X-ray analysis were found to contain uranium, potassium and phosphorus. Traces of sulphur were detected in some but not all uraniosomes and extracellular uranium deposits. Traces of calcium were found in all extracellular uranium deposits and in some uraniosomes also. Images Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7093141

  8. The complex relationship between human papillomavirus and cervical adenocarcinoma.

    PubMed

    Molijn, Anco; Jenkins, David; Chen, Wen; Zhang, Xun; Pirog, Edyta; Enqi, Wu; Liu, Bin; Schmidt, Johannes; Cui, Jiangfeng; Qiao, Youlin; Quint, Wim

    2016-01-15

    Human Papillomavirus (HPV) is reported in 60-100% of cervical adenocarcinoma (CADC) globally. We investigated this relationship in a hospital-based survey in China. 718 CADC samples from nine Chinese regions were analysed. Expert pathologists reviewed cases with p16 and progesterone receptor immunostaining. Cases were tested for HPV using whole-tissue sections (WTS) and laser-capture microdissection. All cases were HPV-tested by L1 based broad-spectrum SPF10 -DEIA-LiPA25 PCR. Negative cases were tested for DNA adequacy and with E6 oncogene, type-specific HPV PCRs. Using WTS-PCR CADC showed overall 75% HPV-positivity (33-100% for different histological types). LCM-PCR showed that none of minimal deviation or serous CADC, and <10% of all clear cell and endometrioid CADC were HPV-positive in tumour cells. Usual and adenosquamous CADC showed a single HPV genotype in 60 and 78% cases. In some cases, HPV was found in adjacent cervix but not in tumour. HPV 16, 18 and 45 accounted for 90% of HPV in tumour cells. Patients with HPV-positive tumours were on average 6 years younger and presented at a lower clinicopathological stage as compared to patients with HPV-negative cancers. CADC is diverse pathologically and in HPV status. Special histopathological tumor subtypes may develop through different cellular and molecular pathways. Between 20 and 40% usual and adenosquamous types, in particular these diagnosed in older women and at advanced FIGO stages, are not driven by oncogenic HPV. In these cases HPV may not be involved in carcinogenisis or maybe lost during tumour progression.

  9. Ethanol Metabolism by HeLa Cells Transduced with Human Alcohol Dehydrogenase Isoenzymes: Control of the Pathway by Acetaldehyde Concentration†

    PubMed Central

    Matsumoto, Michinaga; Cyganek, Izabela; Sanghani, Paresh C.; Cho, Won Kyoo; Liangpunsakul, Suthat; Crabb, David W.

    2010-01-01

    Background Human class I alcohol dehydrogenase 2 isoenzymes (encoded by the ADH1B locus) have large differences in kinetic properties; however, individuals inheriting the alleles for the different isoenzymes exhibit only small differences in alcohol elimination rates. This suggests that other cellular factors must regulate the activity of the isoenzymes. Methods The activity of the isoenzymes expressed from ADH1B*1, ADH1B*2, and ADH1B*3 cDNAs was examined in stably transduced HeLa cell lines, including lines which expressed human low Km aldehyde dehydrogenase (ALDH2). The ability of the cells to metabolize ethanol was compared with that of HeLa cells expressing rat class I ADH (HeLa-rat ADH cells), rat hepatoma (H4IIEC3) cells, and rat hepatocytes. Results The isoenzymes had similar protein half-lives in the HeLa cells. Rat hepatocytes, H4IIEC3 cells, and HeLa-rat ADH cells oxidized ethanol much faster than the cells expressing the ADH1B isoenzymes. This was not explained by high cellular NADH levels or endogenous inhibitors; but rather because the activity of the β1 and β2 ADHs were constrained by the accumulation of acetaldehyde, as shown by the increased rate of ethanol oxidation by cell lines expressing β2 ADH plus ALDH2. Conclusion The activity of the human β2 ADH isoenzyme is sensitive to inhibition by acetaldehyde, which likely limits its activity in vivo. This study emphasizes the importance of maintaining a low steady–state acetaldehyde concentration in hepatocytes during ethanol metabolism. PMID:21166830

  10. The role of the obestatin/GPR39 system in human gastric adenocarcinomas.

    PubMed

    Alén, Begoña O; Leal-López, Saúl; Alén, María Otero; Viaño, Patricia; García-Castro, Victoria; Mosteiro, Carlos S; Beiras, Andrés; Casanueva, Felipe F; Gallego, Rosalía; García-Caballero, Tomás; Camiña, Jesús P; Pazos, Yolanda

    2016-02-01

    Obestatin, a 23-amino acid peptide encoded by the ghrelin gene, and the GPR39 receptor were reported to be involved in the control of mitogenesis of gastric cancer cell lines; however, the relationship between the obestatin/GPR39 system and gastric cancer progression remains unknown. In the present study, we determined the expression levels of the obestatin/GPR39 system in human gastric adenocarcinomas and explored their potential functional roles. Twenty-eight patients with gastric adenocarcinomas were retrospectively studied, and clinical data were obtained. The role of obestatin/GPR39 in gastric cancer progression was studied in vitro using the human gastric adenocarcinoma AGS cell line. Obestatin exogenous administration in these GPR39-bearing cells deregulated the expression of several hallmarks of the epithelial-mesenchymal transition (EMT) and angiogenesis. Moreover, obestatin signaling promoted phenotypic changes via GPR39, increasingly impacting on the cell morphology, proliferation, migration and invasion of these cells. In healthy human stomachs, obestatin expression was observed in the neuroendocrine cells and GPR39 expression was localized mainly in the chief cells of the oxyntic glands. In human gastric adenocarcinomas, no obestatin expression was found; however, an aberrant pattern of GPR39 expression was discovered, correlating to the dedifferentiation of the tumor. Altogether, our data strongly suggest the involvement of the obestatin/GPR39 system in the pathogenesis and/or clinical outcome of human gastric adenocarcinomas and highlight the potential usefulness of GPR39 as a prognostic marker in gastric cancer.

  11. The role of the obestatin/GPR39 system in human gastric adenocarcinomas

    PubMed Central

    Alén, Begoña O.; Leal-López, Saúl; Alén, María Otero; Viaño, Patricia; García-Castro, Victoria; Mosteiro, Carlos S.; Beiras, Andrés; Casanueva, Felipe F.; Gallego, Rosalía; García-Caballero, Tomás; Camiña, Jesús P.; Pazos, Yolanda

    2016-01-01

    Obestatin, a 23-amino acid peptide encoded by the ghrelin gene, and the GPR39 receptor were reported to be involved in the control of mitogenesis of gastric cancer cell lines; however, the relationship between the obestatin/GPR39 system and gastric cancer progression remains unknown. In the present study, we determined the expression levels of the obestatin/GPR39 system in human gastric adenocarcinomas and explored their potential functional roles. Twenty-eight patients with gastric adenocarcinomas were retrospectively studied, and clinical data were obtained. The role of obestatin/GPR39 in gastric cancer progression was studied in vitro using the human gastric adenocarcinoma AGS cell line. Obestatin exogenous administration in these GPR39-bearing cells deregulated the expression of several hallmarks of the epithelial-mesenchymal transition (EMT) and angiogenesis. Moreover, obestatin signaling promoted phenotypic changes via GPR39, increasingly impacting on the cell morphology, proliferation, migration and invasion of these cells. In healthy human stomachs, obestatin expression was observed in the neuroendocrine cells and GPR39 expression was localized mainly in the chief cells of the oxyntic glands. In human gastric adenocarcinomas, no obestatin expression was found; however, an aberrant pattern of GPR39 expression was discovered, correlating to the dedifferentiation of the tumor. Altogether, our data strongly suggest the involvement of the obestatin/GPR39 system in the pathogenesis and/or clinical outcome of human gastric adenocarcinomas and highlight the potential usefulness of GPR39 as a prognostic marker in gastric cancer. PMID:26716511

  12. A Critical Role for Rac1 in Tumor Progression of Human Colorectal Adenocarcinoma Cells

    PubMed Central

    Espina, Carolina; Céspedes, María Virtudes; García-Cabezas, Miguel Angel; del Pulgar, María Teresa Gómez; Boluda, Alicia; Oroz, Lourdes García; Cejas, Paloma; Nistal, Manuel; Mangues, Ramón; Lacal, Juan Carlos

    2008-01-01

    Colorectal adenocarcinoma is the second cause of cancer mortality in developed countries. Rac1 is a member of the family of Rho GTPases that regulates many intracellular signaling pathways, including those involved in tumorigenesis, invasion, and metastasis. We have investigated the role of Rac1 in colorectal tumor progression by genetic modification of the human colorectal adenocarcinoma cell line SW620 to either overexpress Rac1 or lack Rac1 expression. Tumor behavior was studied by orthotopic injection of stably modified cell lines into the cecal wall of athymic nude mice, a model that replicates the histopathological appearance and clinical behavior of human colorectal adenocarcinoma in humans. While overexpression of Rac1 resulted in an accelerated tumorigenic process, inducing a faster mortality rate, inhibition of Rac1 completely suppressed tumor formation. These results suggest that Rac1 plays a major role in colorectal adenocarcinoma progression. Finally, interference with Rac1 function may provide an important tool to block the malignant phenotype of colorectal adenocarcinoma cells. PMID:18165265

  13. Emodin induces apoptosis of human cervical cancer hela cells via intrinsic mitochondrial and extrinsic death receptor pathway

    PubMed Central

    2013-01-01

    Background Emodin is a natural anthraquinone derivative isolated from the Rheum palmatum L. Aim: The aim of the present study was to investigate the effect of emodin on the apoptosis of the human cervical cancer line HeLa and to identify the mechanisms involved. Methods Relative cell viability was assessed by MTT assay after treatment with emodin. Cell apoptosis was detected with TUNEL, Hoechst 33342 staining and quantified with flow cytometry using annexin FITC-PI staining. Results The percentage of apoptotic cells was 0.8, 8.2, 22.1, and 43.7%, respectively. The mRNA levels of Caspase-9, -8 and −3 detected by Real-time PCR after treatment with emodin were significantly increased. Emodin increased the protein levels of Cytochome c, Apaf-1, Fas, FasL, and FADD but decreased the protein levels of Pro-caspase-9, Pro-caspase-8 and Pro-caspase-3. Conclusion We conclude that the emodin inhibited HeLa proliferation by inducing apoptosis through the intrinsic mitochondrial and extrinsic death receptor pathways. PMID:23866157

  14. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells

    PubMed Central

    Zhen, Hong; Huang, Ming; Zheng, Xi; Feng, Lixing; Jiang, Baohong; Yang, Min; Wu, Wanying; Liu, Xuan; Guo, Dean

    2016-01-01

    Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K

  15. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells.

    PubMed

    Yue, Qingxi; Zhen, Hong; Huang, Ming; Zheng, Xi; Feng, Lixing; Jiang, Baohong; Yang, Min; Wu, Wanying; Liu, Xuan; Guo, Dean

    2016-01-01

    Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K

  16. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells.

    PubMed

    Yue, Qingxi; Zhen, Hong; Huang, Ming; Zheng, Xi; Feng, Lixing; Jiang, Baohong; Yang, Min; Wu, Wanying; Liu, Xuan; Guo, Dean

    2016-01-01

    Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K

  17. Physico-chemical characteristics of ZnO nanoparticles-based discs and toxic effect on human cervical cancer HeLa cells

    NASA Astrophysics Data System (ADS)

    Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor Haida Mohd.; Sendi, Rabab

    2014-10-01

    In this study, we investigated physico-chemical properties of zinc oxide nanoparticles (ZnO NPs)-based discs and their toxicity on human cervical cancer HeLa cell lines. ZnO NPs (80 nm) were produced by the conventional ceramic processing method. FESEM analysis indicated dominant structure of nanorods with dimensions 100-500 nm in length, and 20-100 nm in diameter. The high content of ZnO nanorods in the discs probably played significant role in toxicity towards HeLa cells. Structural defects (oxygen vacancies and zinc/oxygen interstitials) were revealed by PL spectra peaks at 370-376 nm and 519-533 nm for the ZnO discs. The structural, optical and electrical properties of prepared sample have influenced the toxicological effects of ZnO discs towards HeLa cell lines via the generation of reactive oxygen species (ROS), internalization, membrane damage, and eventually cell death. The larger surface to volume area of the ZnO nanorods, combined with defects, stimulated enhanced toxicity via ROS generation hydrogen peroxide, hydroxyl radicals, and superoxide anion. The preliminary results confirmed the ZnO-disc toxicity on HeLa cells was significantly associated with the unique physicochemical properties of ZnO NPs and to our knowledge, this is the first cellular study for treatment of HeLa cells with ZnO discs made from 80 nm ZnO particles.

  18. Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Ikari, Akira; Watanabe, Ryo; Sato, Tomonari; Taga, Saeko; Shimobaba, Shun; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Endo, Satoshi; Matsunaga, Toshiyuki; Sugatani, Junko

    2014-09-01

    Claudin-2 is expressed in human lung adenocarcinoma tissue and cell lines, although it is absent in normal lung tissue. However, the role of claudin-2 in cell proliferation and the regulatory mechanism of intracellular distribution remain undefined. Proliferation of human adenocarcinoma A549 cells was decreased by claudin-2 knockdown together with a decrease in the percentage of S phase cells. This knockdown decreased the expression levels of ZONAB and cell cycle regulators. Claudin-2 was distributed in the nucleus in human adenocarcinoma tissues and proliferating A549 cells. The nuclear distribution of ZONAB and percentage of S phase cells were higher in cells exogenously expressing claudin-2 with a nuclear localization signal than in cells expressing claudin-2 with a nuclear export signal. Nuclear claudin-2 formed a complex with ZO-1, ZONAB, and cyclin D1. Nuclear distribution of S208A mutant, a dephosphorylated form of claudin-2, was higher than that of wild type. We suggest that nuclear distribution of claudin-2 is up-regulated by dephosphorylation and claudin-2 serves to retain ZONAB and cyclin D1 in the nucleus, resulting in the enhancement of cell proliferation in lung adenocarcinoma cells.

  19. Nucleotide sequences of cDNAs for human papillomavirus type 18 transcripts in HeLa cells

    SciTech Connect

    Inagaki, Yutaka; Tsunokawa, Youko; Takebe, Naoko; Terada, Masaaki; Sugimura, Takashi ); Nawa, Hiroyuki; Nakanishi, Shigetada )

    1988-05-01

    HeLa cells expressed 3.4- and 1.6-kilobase (kb) transcripts of the integrated human papillomavirus (HPV) type 18 genome. Two types of cDNA clones representing each size of HPV type 18 transcript were isolated. Sequence analysis of these two types of cDNA clones revealed that the 3.4-kb transcript contained E6, E7, the 5{prime} portion of E1, and human sequence and that the 1.6-kb transcript contained spliced and frameshifted E6 (E6{sup *}), E7, and human sequence. There was a common human sequence containing a poly(A) addition signal in the 3{prime} end portions of both transcripts, indicating that they were transcribed from the HPV genome at the same integration site with different splicing. Furthermore, the 1.6-kb transcript contained both of the two viral TATA boxes upstream of E6, strongly indicating that a cellular promoter was used for its transcription.

  20. Association between human papillomavirus and EGFR mutations in advanced lung adenocarcinoma

    PubMed Central

    Li, Ming; Deng, Fang; Qian, Li-Ting; Meng, Shui-Ping; Zhang, Yang; Shan, Wu-Lin; Zhang, Xiao-Lei; Wang, Bao-Long

    2016-01-01

    Previous studies have demonstrated an association between human papillomavirus (HPV) and mutations in the epidermal growth factor receptor (EGFR) gene in lung cancer patients; however, few studies have investigated this association in advanced lung adenocarcinoma patients undergoing gefitinib treatment. The present study investigated the association between HPV and EGFR mutations in advanced lung adenocarcinoma patients. A total of 95 advanced lung adenocarcinoma patients were enrolled in the study. The HPV infection status and presence of EGFR mutations in tumor tissue was evaluated. Patient clinical characteristics were also determined and compared with HPV infection and EGFR mutation status to analyze their impact on progression-free survival. HPV DNA was identified in 27/95 (28.4%) lung adenocarcinoma tumors and was most common in patients with lymph node metastasis (P=0.016). A total of 44/95 (46.3%) cases exhibited EGFR mutations, which were predominantly observed in female patients and non-smokers. The presence of HPV DNA was significantly associated with EGFR mutations (P=0.012) and multivariate analysis also revealed that HPV DNA was significantly associated with EGFR mutations (odds ratio=3.971) in advanced lung adenocarcinoma. Patients with both HPV infections and EGFR mutations exhibit a marked decrease in the risk of lung cancer progression when compared with those without HPV infection or EGFR mutations (adjusted HR=0.640; 95% confidence interval: 0.488–0.840; P=0.001). HPV infection was significantly associated with EGFR mutations in advanced lung adenocarcinoma patients. Furthermore, patients with HPV infections exhibited the longest progression-free survival times, which may be due to good response to tyrosine kinase inhibitor- or platinum-based-adjuvant therapy in these patients. Patients with EGFR mutations exhibited a better prognosis when compared with those exhibiting wild-type EGFR, regardless of HPV status. PMID:27602120

  1. Association between human papillomavirus and EGFR mutations in advanced lung adenocarcinoma

    PubMed Central

    Li, Ming; Deng, Fang; Qian, Li-Ting; Meng, Shui-Ping; Zhang, Yang; Shan, Wu-Lin; Zhang, Xiao-Lei; Wang, Bao-Long

    2016-01-01

    Previous studies have demonstrated an association between human papillomavirus (HPV) and mutations in the epidermal growth factor receptor (EGFR) gene in lung cancer patients; however, few studies have investigated this association in advanced lung adenocarcinoma patients undergoing gefitinib treatment. The present study investigated the association between HPV and EGFR mutations in advanced lung adenocarcinoma patients. A total of 95 advanced lung adenocarcinoma patients were enrolled in the study. The HPV infection status and presence of EGFR mutations in tumor tissue was evaluated. Patient clinical characteristics were also determined and compared with HPV infection and EGFR mutation status to analyze their impact on progression-free survival. HPV DNA was identified in 27/95 (28.4%) lung adenocarcinoma tumors and was most common in patients with lymph node metastasis (P=0.016). A total of 44/95 (46.3%) cases exhibited EGFR mutations, which were predominantly observed in female patients and non-smokers. The presence of HPV DNA was significantly associated with EGFR mutations (P=0.012) and multivariate analysis also revealed that HPV DNA was significantly associated with EGFR mutations (odds ratio=3.971) in advanced lung adenocarcinoma. Patients with both HPV infections and EGFR mutations exhibit a marked decrease in the risk of lung cancer progression when compared with those without HPV infection or EGFR mutations (adjusted HR=0.640; 95% confidence interval: 0.488–0.840; P=0.001). HPV infection was significantly associated with EGFR mutations in advanced lung adenocarcinoma patients. Furthermore, patients with HPV infections exhibited the longest progression-free survival times, which may be due to good response to tyrosine kinase inhibitor- or platinum-based-adjuvant therapy in these patients. Patients with EGFR mutations exhibited a better prognosis when compared with those exhibiting wild-type EGFR, regardless of HPV status.

  2. Lentivirus-mediated PLCγ1 gene short-hairpin RNA suppresses tumor growth and metastasis of human gastric adenocarcinoma.

    PubMed

    Zhang, Bingchang; Wang, Fen; Dai, Lianzhi; Cai, Heguo; Zhan, Yanyan; Gang, Song; Hu, Tianhui; Xia, Chun; Zhang, Bing

    2016-02-16

    Targeted molecular therapy has gradually been a potential solution in cancer therapy. Other authors' and our previous studies have demonstrated that phosphoinositide-specific phospholipase γ (PLCγ) is involved in regulating tumor growth and metastasis. However, the molecular mechanism underlying PLCγ-dependent tumor growth and metastasis of gastric adenocarcinoma and whether PLCγ may be a potential target for tumor therapy in human gastric adenocarcinoma are not yet well determined. Here, we investigated the role of PLCγ inhibition in tumor growth and metastasis of human gastric adenocarcinoma using BGC-823 cell line and a nude mouse tumor xenograft model. The results manifested that the depletion of PLCγ1 by the transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vector led to the decrease of tumor growth and metastasis of human gastric adenocarcinoma in vitro and in vivo. Furthermore, the Akt/Bad, Akt/S6, and ERK/Bad signal axes were involved in PLCγ1-mediated tumor growth and metastasis of human gastric adenocarcinoma. Therefore, the abrogation of PLCγ1 signaling by shRNA could efficaciously suppress human gastric adenocarcinoma tumor growth and metastasis, with important implication for validating PLCγ1 as a potential target for human gastric adenocarcinoma. PMID:26811493

  3. Lentivirus-mediated PLCγ1 gene short-hairpin RNA suppresses tumor growth and metastasis of human gastric adenocarcinoma

    PubMed Central

    Zhang, Bingchang; Wang, Fen; Dai, Lianzhi; Cai, Heguo; Zhan, Yanyan; Gang, Song; Hu, Tianhui; Xia, Chun; Zhang, Bing

    2016-01-01

    Targeted molecular therapy has gradually been a potential solution in cancer therapy. Other authors' and our previous studies have demonstrated that phosphoinositide-specific phospholipase γ (PLCγ) is involved in regulating tumor growth and metastasis. However, the molecular mechanism underlying PLCγ-dependent tumor growth and metastasis of gastric adenocarcinoma and whether PLCγ may be a potential target for tumor therapy in human gastric adenocarcinoma are not yet well determined. Here, we investigated the role of PLCγ inhibition in tumor growth and metastasis of human gastric adenocarcinoma using BGC-823 cell line and a nude mouse tumor xenograft model. The results manifested that the depletion of PLCγ1 by the transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vector led to the decrease of tumor growth and metastasis of human gastric adenocarcinoma in vitro and in vivo. Furthermore, the Akt/Bad, Akt/S6, and ERK/Bad signal axes were involved in PLCγ1-mediated tumor growth and metastasis of human gastric adenocarcinoma. Therefore, the abrogation of PLCγ1 signaling by shRNA could efficaciously suppress human gastric adenocarcinoma tumor growth and metastasis, with important implication for validating PLCγ1 as a potential target for human gastric adenocarcinoma. PMID:26811493

  4. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells.

    PubMed

    Forte, Maurizio; Iachetta, Giuseppina; Tussellino, Margherita; Carotenuto, Rosa; Prisco, Marina; De Falco, Maria; Laforgia, Vincenza; Valiante, Salvatore

    2016-03-01

    The increase in the use of nanoparticles, as a promising tool for drug delivery or as a food additive, raises questions about their interaction with biological systems, especially in terms of evoked responses. In this work, we evaluated the kinetics of uptake of 44 nm (NP44) and 100 nm (NP100) unmodified polystyrene nanoparticles (PS-NPs) in gastric adenocarcinoma (AGS) cells, as well as the endocytic mechanism involved, and the effect on cell viability and gene expression of genes involved in cell cycle regulation and inflammation processes. We showed that NP44 accumulate rapidly and more efficiently in the cytoplasm of AGS compared to NP100; both PS-NPs showed an energy dependent mechanism of internalization and a clathrin-mediated endocytosis pathway. Dose response treatments revealed a non-linear curve. PS-NPs also affected cell viability, inflammatory gene expression and cell morphology. NP44 strongly induced an up-regulation of IL-6 and IL-8 genes, two of the most important cytokines involved in gastric pathologies. Our study suggests that parameters such as time, size and concentration of NPs must be taken carefully into consideration during the development of drug delivery systems based on NPs and for the management of nanoparticles associated risk factors. PMID:26585375

  5. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells.

    PubMed

    Ujhelyi, Zoltán; Kalantari, Azin; Vecsernyés, Miklós; Róka, Eszter; Fenyvesi, Ferenc; Póka, Róbert; Kozma, Bence; Bácskay, Ildikó

    2015-07-21

    The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations.

  6. Cryptolepine, isolated from Sida acuta, sensitizes human gastric adenocarcinoma cells to TRAIL-induced apoptosis.

    PubMed

    Ahmed, Firoj; Toume, Kazufumi; Ohtsuki, Takashi; Rahman, Mahmudur; Sadhu, Samir Kumar; Ishibashi, Masami

    2011-01-01

    Bioassay guided separation of Sida acuta whole plants led to the isolation of an alkaloid, cryptolepine (1), along with two kaempferol glycosides (2-3). Compound 1 showed strong activity in overcoming TRAIL-resistance in human gastric adenocarcinoma (AGS) cells at 1.25, 2.5 and 5 μm. Combined treatment of 1 and TRAIL sensitized AGS cells to TRAIL-induced apoptosis at the aforementioned concentrations.

  7. Activation of endoplasmic reticulum stress is involved in the activity of icariin against human lung adenocarcinoma cells.

    PubMed

    Di, Shouyin; Fan, Chongxi; Yang, Yang; Jiang, Shuai; Liang, Miaomiao; Wu, Guiling; Wang, Bodong; Xin, Zhenlong; Hu, Wei; Zhu, Yifang; Li, Weimiao; Zhou, Yongan; Li, Xiaofei; Yan, Xiaolong

    2015-09-01

    In this study, we investigated the anticancer activity of icariin (ICA) against human lung adenocarcinoma cells in vitro and in vivo and explored the role of endoplasmic reticulum (ER) stress (ERS) signaling in this process. ICA treatment resulted in a dose- and time-dependent decrease in the viability of human lung adenocarcinoma A549 cells. Additionally, ICA exhibited potent anticancer activity, as evidenced by reductions in A549 cell adhesion, migration and intracellular glutathione (GSH) levels and increases in the apoptotic index, Caspase 3 activity, and reactive oxygen species. Furthermore, ICA treatment increased the expression of ERS-related molecules (p-PERK, ATF6, GRP78, p-eIF2α, and CHOP), up-regulated the apoptosis-related protein PUMA and down-regulated the anti-apoptosis-related protein Bcl2. The down-regulation of ERS signaling using PERK siRNA desensitized lung adenocarcinoma cells to ICA treatment, whereas the up-regulation of ERS signaling using thapsigargin (THA) sensitized lung adenocarcinoma cells to ICA treatment. Additionally, ICA inhibited the growth of human lung adenocarcinoma A549 cell xenografts by increasing the expression of ERS-related molecules (p-PERK and CHOP), up-regulating PUMA, and down-regulating Bcl2. These data indicate that ICA is a potential inhibitor of lung adenocarcinoma cell growth by targeting ERS signaling and suggest that the activation of ERS signaling may represent a novel therapeutic intervention for lung adenocarcinoma.

  8. Effect of human mesenchymal stem cells on the growth of HepG2 and Hela cells.

    PubMed

    Long, Xiaohui; Matsumoto, Rena; Yang, Pengyuan; Uemura, Toshimasa

    2013-01-01

    Human mesenchymal stem cells (hMSCs) accumulate at carcinomas and have a great impact on cancer cell's behavior. Here we demonstrated that hMSCs could display both the promotional and inhibitive effects on growth of HepG2 and Hela cells by using the conditioned media, indirect co-culture, and cell-to-cell co-culture. Cell growth was increased following the addition of lower proportion of hMSCs while decreased by treatment of higher proportion of hMSCs. We also established a novel noninvasive label way by using internalizing quantum dots (i-QDs) for study of cell-cell contact in the co-culture, which was effective and sensitive for both tracking and distinguishing different cells population without the disturbance of cells. Furthermore, we investigated the role of hMSCs in regulation of cell growth and showed that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways were involved in hMSC-mediated cell inhibition and proliferation. Our findings suggested that hMSCs regulated cancer cell function by providing a suitable environment, and the discovery from the study would provide some clues for development of effective strategy for hMSC-based cancer therapies.

  9. Increased expression of S100A4, a metastasis-associated gene, in human colorectal adenocarcinomas.

    PubMed

    Takenaga, K; Nakanishi, H; Wada, K; Suzuki, M; Matsuzaki, O; Matsuura, A; Endo, H

    1997-12-01

    The S100A4 gene (also known as pEL98/mts1/p9Ka/18A2/42A/calvasculin /FSP1/CAPL) encoding an S100-related calcium-binding protein is implied to be involved in the invasion and metastasis of murine tumor cells. In the present study, the expression of S100A4 in human colorectal adenocarcinoma cell lines (SW837, LoVo, DLD-1, HT-29, SW480, SW620, WiDr, and Colo201) and surgically resected neoplastic tissues was examined to investigate whether S100A4 plays a role in the invasion and metastasis of human tumor cells. Northern blot analysis using total RNA isolated from the adenocarcinoma cell lines revealed that five of the eight cell lines expressed substantial amounts of S100A4 mRNA. Normal colon fibroblasts (CCD-18Co) expressed little of the RNA. Using surgically resected specimens, it seemed that the amount of S100A4 mRNA in adenomas was nearly equal to that in normal colonic mucosa, whereas adenocarcinomas expressed a significantly higher amount of the RNA than did the adjacent normal colonic mucosa. Immunohistochemical analysis using formalin-fixed paraffin-embedded surgical specimens and monoclonal anti-S100A4 antibody demonstrated that none of 12 adenoma specimens were immunopositive, whereas 8 of 18 (44%) focal carcinomas in carcinoma in adenoma specimens and 50 of 53 (94%) adenocarcinoma specimens were immunopositive. Interestingly, the incidence of immunopositive cells increased according to the depth of invasion, and nearly all of the carcinoma cells in 14 metastases in the liver were positive. These results suggest that S100A4 may be involved in the progression and the metastatic process of human colorectal neoplastic cells. PMID:9815629

  10. Human papillomavirus types 16 and 18 in adenocarcinoma of the uterine cervix

    SciTech Connect

    Leminen, A.; Paavonen, J.; Vesterinen, E.; Wahlstroem, T.R.; Rantala, I.; Lehtinen, M. )

    1991-05-01

    Many reports have shown a link between human papillomavirus (HPV) and cervical squamous neoplasia. However, the association of HPV with cervical adenocarcinoma has been studied less extensively. The authors evaluated the presence of HPV-DNA in 106 patients with adenocarcinoma of the uterine cervix by in situ hybridization, using {sup 35}S-labeled probes for HPV 16 DNA and HPV 18 DNA. The overall prevalence of HPV-DNA was 18% (19 of 106). HPV 16 was present in 2 (2%) cases, HPV 18 was observed in 15 (14%) cases, and both HPV 16 and HPV 18 were found in 2 (2%) cases. There was a correlation between HPV-DNA positivity and tumor stage (P less than 0.01) and tumor size (P less than 0.05), but there was no relationship between HPV-DNA positivity and tumor differentiation, proliferation (S-phase fraction), ploidy, lymph node metastases, or five-year survival rate. These results suggest that HPV 18 DNA is associated with cervical adenocarcinoma but the presence of HPV 18 has no influence on overall survival.

  11. Application of Gold Nanorods for Photothermal Therapy in Ex Vivo Human Oesophagogastric Adenocarcinoma.

    PubMed

    Singh, Mohan; Harris-Birtill, David C C; Zhou, Yu; Gallina, Maria E; Cass, Anthony E G; Hanna, George B; Elson, Daniel S

    2016-03-01

    Gold nanoparticles are chemically fabricated and tuned to strongly absorb near infrared (NIR) light, enabling deep optical penetration and therapy within human tissues, where sufficient heating induces tumour necrosis. In our studies we aim to establish the optimal gold nanorod (GNR) concentration and laser power for inducing hyperthermic effects in tissues and test this photothermal effect on ex vivo human oesophagogastric adenocarcinoma. The ideal GNR concentration and NIR laser power that would elicit sufficient hyperthermia for tumour necrosis was pre-determined on porcine oesophageal tissues. Human ex vivo oesophageal and gastric adenocarcinoma tissues were incubated with GNR solutions and a GNR-free control solution with corresponding healthy tissues for comparison, then irradiated with NIR light for 10 minutes. Temperature rise was found to vary linearly with both the concentration of GNRs and the laser power. Human ex vivo oesophageal and gastric tissues consistently demonstrated a significant temperature rise when incubated in an optimally concentrated GNR solution (3 x 10(10) GNRs/ml) prior to NIR irradiation delivered at an optimal power (2 W/cm2). A mean temperature rise of 27 degrees C was observed in tissues incubated with GNRs, whereas only a modest 2 degrees C rise in tissues not exposed to any GNRs. This study evaluates the photothermal effects of GNRs on oesophagogastric tissue examines their application in the minimally invasive therapeutics of oesophageal and gastric adenocarcinomas. This could potentially be an effective method of clinically inducing irreversible oesophagogastric tumour photodestruction, with minimal collateral damage expected in (healthy) tissues free from GNRs. PMID:27280246

  12. Application of Gold Nanorods for Photothermal Therapy in Ex Vivo Human Oesophagogastric Adenocarcinoma.

    PubMed

    Singh, Mohan; Harris-Birtill, David C C; Zhou, Yu; Gallina, Maria E; Cass, Anthony E G; Hanna, George B; Elson, Daniel S

    2016-03-01

    Gold nanoparticles are chemically fabricated and tuned to strongly absorb near infrared (NIR) light, enabling deep optical penetration and therapy within human tissues, where sufficient heating induces tumour necrosis. In our studies we aim to establish the optimal gold nanorod (GNR) concentration and laser power for inducing hyperthermic effects in tissues and test this photothermal effect on ex vivo human oesophagogastric adenocarcinoma. The ideal GNR concentration and NIR laser power that would elicit sufficient hyperthermia for tumour necrosis was pre-determined on porcine oesophageal tissues. Human ex vivo oesophageal and gastric adenocarcinoma tissues were incubated with GNR solutions and a GNR-free control solution with corresponding healthy tissues for comparison, then irradiated with NIR light for 10 minutes. Temperature rise was found to vary linearly with both the concentration of GNRs and the laser power. Human ex vivo oesophageal and gastric tissues consistently demonstrated a significant temperature rise when incubated in an optimally concentrated GNR solution (3 x 10(10) GNRs/ml) prior to NIR irradiation delivered at an optimal power (2 W/cm2). A mean temperature rise of 27 degrees C was observed in tissues incubated with GNRs, whereas only a modest 2 degrees C rise in tissues not exposed to any GNRs. This study evaluates the photothermal effects of GNRs on oesophagogastric tissue examines their application in the minimally invasive therapeutics of oesophageal and gastric adenocarcinomas. This could potentially be an effective method of clinically inducing irreversible oesophagogastric tumour photodestruction, with minimal collateral damage expected in (healthy) tissues free from GNRs.

  13. The Cytotoxicity Mechanism of 6-Shogaol-Treated HeLa Human Cervical Cancer Cells Revealed by Label-Free Shotgun Proteomics and Bioinformatics Analysis

    PubMed Central

    Liu, Qun; Peng, Yong-Bo; Qi, Lian-Wen; Cheng, Xiao-Lan; Xu, Xiao-Jun; Liu, Le-Le; Liu, E-Hu; Li, Ping

    2012-01-01

    Cervical cancer is one of the most common cancers among women in the world. 6-Shogaol is a natural compound isolated from the rhizome of ginger (Zingiber officinale). In this paper, we demonstrated that 6-shogaol induced apoptosis and G2/M phase arrest in human cervical cancer HeLa cells. Endoplasmic reticulum stress and mitochondrial pathway were involved in 6-shogaol-mediated apoptosis. Proteomic analysis based on label-free strategy by liquid chromatography chip quadrupole time-of-flight mass spectrometry was subsequently proposed to identify, in a non-target-biased manner, the molecular changes in cellular proteins in response to 6-shogaol treatment. A total of 287 proteins were differentially expressed in response to 24 h treatment with 15 μM 6-shogaol in HeLa cells. Significantly changed proteins were subjected to functional pathway analysis by multiple analyzing software. Ingenuity pathway analysis (IPA) suggested that 14-3-3 signaling is a predominant canonical pathway involved in networks which may be significantly associated with the process of apoptosis and G2/M cell cycle arrest induced by 6-shogaol. In conclusion, this work developed an unbiased protein analysis strategy by shotgun proteomics and bioinformatics analysis. Data observed provide a comprehensive analysis of the 6-shogaol-treated HeLa cell proteome and reveal protein alterations that are associated with its anticancer mechanism. PMID:23243437

  14. 8-p-Hdroxybenzoyl Tovarol Induces Paraptosis Like Cell Death and Protective Autophagy in Human Cervical Cancer HeLa Cells.

    PubMed

    Zhang, Cui; Jiang, Yingnan; Zhang, Jin; Huang, Jian; Wang, Jinhui

    2015-01-01

    8-p-Hdroxybenzoyl tovarol (TAW) is a germacrane-type sesquiterpenoid that can be isolated from the roots of Ferula dissecta (Ledeb.) Ledeb. In this study, the growth inhibitory effects induced by TAW were screened on some types of tumor cells, and the mechanism was investigated on TAW-induced growth inhibition, including paraptosis and autophagy in human cervical cancer HeLa cells. TAW-induced paraptosis involved extensive cytoplasmic vacuolization in the absence of caspase activation. Additionally, TAW evoked cell paraptotic death mediated by endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Autophagy induced by TAW was found to antagonize paraptosis in HeLa cells. This effect was enhanced by rapamycin and suppressed by the autophagy inhibitor, 3-methyladenine (3MA). Loss of beclin 1 (an autophagic regulator) function led to promote ER stress. Taken together, these results suggest that TAW induces paraptosis like cell death and protective autophagy in HeLa cells, which would provide a new clue for exploiting TAW as a promising agent for the treatment of cervical cancer.

  15. Human Papillomavirus E6 Knockdown Restores Adenovirus Mediated-estrogen Response Element Linked p53 Gene Transfer in HeLa Cells.

    PubMed

    Kajitani, Koji; Honda, Ken-Ichi; Terada, Hiroyuki; Yasui, Tomoyo; Sumi, Toshiyuki; Koyama, Masayasu; Ishiko, Osamu

    2015-01-01

    The p53 gene is inactivated by the human papillomavirus (HPV) E6 protein in the majority of cervical cancers. Treatment of HeLa S3 cells with siRNA for HPV E6 permitted adenovirus-mediated transduction of a p53 gene linked to an upstream estrogen response element (ERE). Our previous study in non-siRNA treated HHUA cells, which are derived from an endometrial cancer and express estrogen receptor β, showed enhancing effects of an upstream ERE on adenovirus-mediated p53 gene transduction. In HeLa S3 cells treated with siRNA for HPV E6, adenovirus-mediated transduction was enhanced by an upstream ERE linked to a p53 gene carrying a proline variant at codon 72, but not for a p53 gene with arginine variant at codon 72. Expression levels of p53 mRNA and Coxsackie/adenovirus receptor (CAR) mRNA after adenovirus-mediated transfer of an ERE-linked p53 gene (proline variant at codon 72) were higher compared with those after non-ERE-linked p53 gene transfer in siRNA-treated HeLa S3 cells. Western blot analysis showed lower β-tubulin levels and comparatively higher p53/β-tubulin or CAR /β-tubulin ratios in siRNA-treated HeLa S3 cells after adenovirus-mediated ERE-linked p53 gene (proline variant at codon 72) transfer compared with those in non-siRNA-treated cells. Apoptosis, as measured by annexin V binding, was higher after adenovirus-mediated ERE-linked p53 gene (proline variant at codon 72) transfer compared with that after non-ERE-linked p53 gene transfer in siRNA-treated cells.

  16. Human Immunodeficiency Virus Type 1 Attachment to HeLa CD4 Cells Is CD4 Independent and gp120 Dependent and Requires Cell Surface Heparans

    PubMed Central

    Mondor, Isabelle; Ugolini, Sophie; Sattentau, Quentin J.

    1998-01-01

    The binding of human immunodeficiency virus type 1 (HIV-1) (Hx10) virions to two different cell lines was analyzed by using a novel assay based on the detection, by anti-HLA-DR-specific antibodies, of HLA-DR+ virus binding to HLA-DR− cells. Virion attachment to the CD4+-T-cell line A3.01 was highly CD4 dependent in that it was potently inhibited by CD4 monoclonal antibodies (MAbs), and little virus binding to the CD4− sister A2.01 line was observed. By contrast, virion binding to HeLa cells expressing moderate or high levels of CD4 was equivalent to, or lower than, binding to wild-type CD4− HeLa cells. Moreover, several CD4 MAbs did not reduce, but enhanced, HIV-1 attachment to HeLa-CD4 cells. CD4 was required for infection of HeLa cells, however, demonstrating a postattachment role for this receptor. MAbs specific for the V2 and V3 loops and the CD4i epitope of gp120 strongly inhibited virion binding to HeLa-CD4 cells, whereas MAbs specific for the CD4bs and the 2G12 epitopes enhanced attachment. Despite this, all gp120- and gp41-specific MAbs tested neutralized infectivity on HeLa-CD4 cells. HIV-1 attachment to HeLa cells was only partially inhibited by MAbs specific for adhesion molecules present on the virus or target cells but was completely blocked by polyanions such as heparin, dextran sulfate, and pentosan sulfate. Treatment of HeLa-CD4 cells with heparinases completely eliminated HIV attachment and infection, strongly implicating cell surface heparans in the attachment process. CD4 dependence for HIV-1 attachment to target cells is thus highly cell line specific and may be replaced by other ligand-receptor interactions. PMID:9557643

  17. Morphological evidence of neutrophil-tumor cell phagocytosis (cannibalism) in human gastric adenocarcinomas.

    PubMed

    Caruso, R A; Muda, A O; Bersiga, A; Rigoli, L; Inferrera, C

    2002-01-01

    The phenomenon of neutrophil-tumor cell emperipolesis or phagocytosis has been documented by light microscopy in various human carcinomas, but little is known about the cellular pathological processes and the morphological changes involved. In an attempt to clarify the nature of this phenomenon, the authors' ultrastructural studies on the relationships among neutrophils and tumor cells in human gastric carcinomas are reviewed and analyzed. At the electron microscopy level, apoptotic neutrophils were found within vacuoles of adenocarcinoma cells in 2 cases. They showed either early apoptotic morphology with perinuclear chromatin aggregation but cytoplasm integrity or late apoptotic morphology with uniform, collapsed nucleus and tightly packed cytoplasmic granules. A light microscopy review of 200 cases of resected gastric carcinomas identified 22 cases (11%) that were characterized by neutrophil-tumor cell phagocytosis (cannibalism). TUNEL staining confirmed the presence of apoptotic neutrophils within the cytoplasm of the tumor cells. This study provides light and electron microscopic evidence of apoptotic neutrophils phagocytosed by gastric adenocarcinoma cells. The morphological features of neutrophil-tumor cell phagocytosis (cannibalism) would suggest a particular mechanism of tumor-immune escape in human gastric carcinoma. PMID:12396242

  18. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    SciTech Connect

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo . E-mail: miyazawa@biochem.tohoku.ac.jp

    2006-09-15

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with {delta}-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol.

  19. Expected resolution and detectability of adenocarcinoma tumors within human breast in time-resolved images

    NASA Astrophysics Data System (ADS)

    Gandjbakhche, Amir H.; Nossal, Ralph J.; Dadmarz, Roya; Schwartzentruber, Douglas; Bonner, Robert F.

    1995-04-01

    The prospects for time-resolved optical mammography rests on the ability to detect adenocarcinoma within the breast with sufficient resolution and specificity to compete with X-ray mammography. We characterized the optical properties of an unusually large (6 cm diameter) fresh adenocarcinoma and normal breast tissue (determined by histology to be predominantly adipose tissue) obtained from a patient undergoing mastectomy. Large specimens (5 mm thick and 3 cm wide) allowed the determination of absorption and scattering coefficients and their spatial heterogeneity as probed with a 1 mm diameter laser beam at 633 nm and 800 nm utilizing total reflectance and transmittance measure with integrating spheres. The difference between scattering coefficients of the malignant tumor and those of normal (principally adipose) breast tissue at 633 nm was much greater than the heterogeneity within each sample. This scattering difference is the principal source of contrast, particularly in time-resolved images. However, the high scattering coefficient of normal breast tissue at 633 nm limits the practicality of time-resolved mammography of a human breast compressed to 5 cm. Although the scattering coefficient of the normal breast tissue decreases at 800 nm, the differences between the optical properties of normal and abnormal breast tissue also are reduced. We used these empirical results in theoretical expressions obtained from random walk theory to quantify the expected resolution, contrast, and the detected intensity of 3, 6, and 9 mm tumors within otherwise homogeneous human breasts as a function of the gating-time of time-resolved optical mammography.

  20. Quantum dots (QDs) restrain human cervical carcinoma HeLa cell proliferation through inhibition of the ROCK-c-Myc signaling.

    PubMed

    Chen, Liqun; Qu, Guangbo; Zhang, Changwen; Zhang, Shuping; He, Jiuyang; Sang, Nan; Liu, Sijin

    2013-03-01

    Cancers often cause significant morbidity and even death to patients. To date, conventional therapies, such as chemotherapy, radiation and surgery, are often limited; meanwhile, novel anticancer therapeutics are urgently needed to improve clinical treatments. Rapid application of nanotechnology and nanomaterials represents a promising vista for the development of anti-cancer therapeutics. However, how to integrate the novel properties of nanotechnology and nanomaterials into cancer treatment warrants close investigation. In the current study, we report a novel finding about the inhibitory effect of CdSe quantum dots (QDs) on Rho-associated kinase (ROCK) activity in cervical carcinoma HeLa cells associated with the attenuation of the ROCK-c-Myc signaling. We mechanistically demonstrated that QD-conducted ROCK inhibition greatly diminished c-Myc protein stability due to reduced phosphorylation, and also suppressed its activity in transcribing target genes (e.g. HSPC111). Thus, the treatment of QDs greatly restrained HeLa cell growth by inducing cell cycle arrest at G1 phase due to the reduced ability of c-Myc in driving cell proliferation. Additionally, since HSPC111, one of the c-Myc targets, is involved in regulating cell growth through ribosomal biogenesis and assembly, the downregulation of HSPC111 could also contribute to diminished proliferation in HeLa cells upon QD treatment. These results together suggested that inhibition of ROCK activity or ROCK-mediated c-Myc signaling in tumor cells upon QD treatment might represent a promising strategy to restrain tumor progression for human cervical carcinoma.

  1. A renal adenocarcinoma in a corn snake (Pantherophis guttatus) resembling human collecting duct carcinoma.

    PubMed

    Kao, Chi-Fei; Chen, Jiun-Liang; Tsao, Wen-Tien; Lee, An-Hsing; Liu, Chen-Hsuan; Wang, Fun-In

    2016-09-01

    A 5-year-old male captive corn snake (Pantherophis guttatus) with caudal coelomic swelling was admitted for surgical treatment. Laparotomy revealed a 5 × 4 × 2.5 cm, firm, expansile, irregularly shaped mass arising from the middle portion of the right kidney with a mild lobulated pattern and mottled white-to-tan. Microscopically, the mass was composed of numerous bizarre angulated tubules of polygonal neoplastic cells separated by a scirrhous stroma with remarkable heterophilic infiltrates. The neoplastic cells were nonciliated and mucin secreting, with abundant brightly eosinophilic cytoplasm. There were marked cellular and nuclear atypia, frequent cell individualization, and stromal invasion, indicative of malignant behavior, which was confirmed by metastasis to the left kidney 1.5 months postoperatively. Both neoplastic epithelial cells and mesenchymal cells contributing to the scirrhous stroma had variable immunopositivity for pan-cytokeratin. The neoplasm was considered a renal adenocarcinoma resembling human collecting duct carcinoma. PMID:27493139

  2. Bax is not involved in the resveratrol-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-wei; Wang, Zhi-ping; Chen, Tong-sheng

    2010-02-01

    Resveratrol (RV) is a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts. Previous studies indicate that RV has an ability to inhibit various stages of carcinogenesis and eliminate preneoplastic cells in vitro and in vivo. However, little is known about the molecular mechanism of RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cell. In this report, we analyzed whether Bax translocation from cytoplasm to mitochondria during RV-induced apoptosis in single living cell using onfocal microscopey. Cells were transfected with GFP-Bax plasmid. Cell counting kit (CCK-8) assay was used to assess the inhibition of RV on the cells viability. Apoptotic activity of RV was detected by Hoechst 33258 and propidium iodide (PI) staining. Our results showed that RV induced a dose-dependent apoptosis in which Bax did not translocate to mitochondrias.

  3. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  4. High fluence laser irradiation induces reactive oxygen species generation in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xing, Da; Chen, Tong-Sheng

    2006-09-01

    Low-power laser irradiation (LPLI) has been used for therapies such as curing spinal cord injury, healing wound et al. Yet, the mechanism of LPLI remains unclear. Our previous study showed that low fluences laser irradiation induces human lung adenocarcinoma cells (ASTC-a-1) proliferation, but high fluences induced apoptosis and caspase-3 activation. In order to study the mechanism of apoptosis induced by high fluences LPLI further, we have measured the dynamics of generation of reactive oxygen species (ROS) using H IIDCFDA fluorescence probes during this process. ASTC-a-1 cells apoptosis was induced by He-Ne laser irradiation at high fluence of 120J/cm2. A confocal laser scanning microscope was used to perform fluorescence imaging. The results demonstrated that high fluence LPLI induced the increase of mitochondria ROS. Our studies contribute to clarify the biological mechanism of high fluence LPLI-induced cell apoptosis.

  5. Oncolytic Activity of Avian Influenza Virus in Human Pancreatic Ductal Adenocarcinoma Cell Lines

    PubMed Central

    Pizzuto, Matteo S.; Silic-Benussi, Micol; Pavone, Silvia; Ciminale, Vincenzo; Capua, Ilaria

    2014-01-01

    ABSTRACT Pancreatic ductal adenocarcinoma (PDA) is the most lethal form of human cancer, with dismal survival rates due to late-stage diagnoses and a lack of efficacious therapies. Building on the observation that avian influenza A viruses (IAVs) have a tropism for the pancreas in vivo, the present study was aimed at testing the efficacy of IAVs as oncolytic agents for killing human PDA cell lines. Receptor characterization confirmed that human PDA cell lines express the alpha-2,3- and the alpha-2,6-linked glycan receptor for avian and human IAVs, respectively. PDA cell lines were sensitive to infection by human and avian IAV isolates, which is consistent with this finding. Growth kinetic experiments showed preferential virus replication in PDA cells over that in a nontransformed pancreatic ductal cell line. Finally, at early time points posttreatment, infection with IAVs caused higher levels of apoptosis in PDA cells than gemcitabine and cisplatin, which are the cornerstone of current therapies for PDA. In the BxPC-3 PDA cell line, apoptosis resulted from the engagement of the intrinsic mitochondrial pathway. Importantly, IAVs did not induce apoptosis in nontransformed pancreatic ductal HPDE6 cells. Using a model based on the growth of a PDA cell line as a xenograft in SCID mice, we also show that a slightly pathogenic avian IAV significantly inhibited tumor growth following intratumoral injection. Taken together, these results are the first to suggest that IAVs may hold promise as future agents of oncolytic virotherapy against pancreatic ductal adenocarcinomas. IMPORTANCE Despite intensive studies aimed at designing new therapeutic approaches, PDA still retains the most dismal prognosis among human cancers. In the present study, we provide the first evidence indicating that avian IAVs of low pathogenicity display a tropism for human PDA cells, resulting in viral RNA replication and a potent induction of apoptosis in vitro and antitumor effects in vivo. These

  6. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    PubMed Central

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L.; Ornitz, David M.

    2016-01-01

    ABSTRACT Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  7. Securinine from Phyllanthus glaucus Induces Cell Cycle Arrest and Apoptosis in Human Cervical Cancer HeLa Cells

    PubMed Central

    Krauze-Baranowska, Mirosława; Ochocka, J. Renata

    2016-01-01

    Background The Securinega-type alkaloids occur in plants belonging to Euphorbiaceae family. One of the most widely distributed alkaloid of this group is securinine, which was identified next to allosecurinine in Phyllanthus glaucus (leafflower). Recently, some Securinega-type alkaloids have paid attention to its antiproliferative potency towards different cancer cells. However, the cytotoxic properties of allosecurinine have not yet been evaluated. Methods The cytotoxicity of the extract, alkaloid fraction obtained from P. glaucus, isolated securinine and allosecurinine against HeLa cells was evaluated by real-time xCELLigence system and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by annexin V and 7-amino-actinomycin (7-AAD) staining and confirmed with fluorescent Hoechst 33342 dye. The assessment of mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation, the level of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), caspase-3/7 activity and cell cycle analysis were measured by flow cytometry. The enzymatic activity of caspase-9 was assessed by a luminometric assay. The expression of apoptosis associated genes was analyzed by real-time PCR. Results The experimental data revealed that securinine and the alkaloid fraction were significantly potent on HeLa cells growth inhibition with IC50 values of 7.02 ± 0.52 μg/ml (32.3 μM) and 25.46 ± 1.79 μg/ml, respectively. The activity of allosecurinine and Phyllanthus extract were much lower. Furthermore, our study showed that the most active securinine induced apoptosis in a dose-dependent manner in the tested cells, increased the percentage of ROS positive cells and depolarized cells as well as stimulated the activity of ERK1/2, caspase-9 and -3/7. Securinine also induced cell cycle arrest in S phase. Real-time PCR analysis showed high expression of TNFRSF genes in the cells stimulated with securinine. Conclusions Securinine

  8. The cytotoxic effects of titanium oxide and zinc oxide nanoparticles oh Human Cervical Adenocarcinoma cell membranes

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana; Applebaum, Ariella; Applebaum, Eliana; Guterman, Shoshana; Applebaum, Kayla; Grossman, Daniel; Gordon, Chris; Brink, Peter; Wang, H. Z.; Rafailovich, Miriam

    2013-03-01

    The importance of titanium dioxide (TiO2) and zinc oxide (ZnO), inorganic metal oxides nanoparticles (NPs) stems from their ubiquitous applications in personal care products, solar cells and food whitening agents. Hence, these NPs come in direct contact with the skin, digestive tracts and are absorbed into human tissues. Currently, TiO2 and ZnO are considered safe commercial ingredients by the material safety data sheets with no reported evidence of carcinogenicity or ecotoxicity, and do not classify either NP as a toxic substance. This study examined the direct effects of TiO2 and ZnO on HeLa cells, a human cervical adenocarcinonma cell line, and their membrane mechanics. The whole cell patch-clamp technique was used in addition to immunohistochemistry staining, TEM and atomic force microscopy (AFM). Additionally, we examined the effects of dexamethasone (DXM), a glucocorticoid steroid known to have an effect on cell membrane mechanics. Overall, TiO2 and ZnO seemed to have an adverse effect on cell membrane mechanics by effecting cell proliferation, altering cellular structure, decreasing cell-cell adhesion, activating existing ion channels, increasing membrane permeability, and possibly disrupting cell signaling.

  9. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa)

    SciTech Connect

    Jeyaraj, M.; Arun, R.; Sathishkumar, G.; MubarakAli, D.; Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Ganapathi, A.

    2014-04-01

    Highlights: • Gold nanoparticles (AuNPs) have been synthesized using Podophyllum hexandrum L. • AuNPs induces the oxidative stress to cell death in human cervical carcinoma cells. • It activates the caspase-cascade to cellular death. • It is actively blocks G2/M phase of cell cycle. - Abstract: Current prospect of nanobiotechnology involves in the greener synthesis of nanostructured materials particularly noble metal nanoparticles for various biomedical applications. In this study, biologically (Podophyllum hexandrum L.) synthesized crystalline gold nanoparticles (AuNPs) with the size range between 5 and 35 nm were screened for its anticancereous potential against human cervical carcinoma cells (HeLa). Stoichiometric proportion of the reaction mixture and conditions were optimized to attain stable nanoparticles with narrow size range. Different high throughput techniques like transmission electron microscope (TEM), X-ray diffraction (XRD) and UV–vis spectroscopy were adopted for the physio-chemical characterization of AuNPs. Additionally, Fourier transform infrared spectroscopy (FTIR) study revealed that the water soluble fractions present in the plant extract solely influences the reduction of AuNPs. Sublimely, synthesized AuNPs exhibits an effective in vitro anticancer activity against HeLa cells via induction of cell cycle arrest and DNA damage. Furthermore, it was evidenced that AuNPs treated cells are undergone apoptosis through the activation of caspase cascade which subsequently leads to mitochondrial dysfunction. Thereby, this study proves that biogenic colloidal AuNPs can be developed as a promising drug candidature for human cervical cancer therapy.

  10. Apoptosis induction and mitochondria alteration in human HeLa tumour cells by photoproducts of Rose Bengal acetate.

    PubMed

    Panzarini, Elisa; Tenuzzo, Bernadette; Palazzo, Fabio; Chionna, Alfonsina; Dini, Luciana

    2006-04-01

    The aim of this work was to investigate the apoptosis induction and mitochondria alteration after photodamage exerted by incubation of HeLa cells with Rose Bengal acetate-derivative (RBAc) followed by irradiation for a total dose of 1.6 J/cm2. This treatment was previously demonstrated to reduce cell viability under mild treatment conditions, suggesting the restoration of the photoactive molecule in particularly sensitive cell sites. Indeed, Rose Bengal (RB) is a very efficient photosensitizer, whose photophysical properties are inactivated by addition of the quencher group acetate. The RBAc behaves as a fluorogenic substrate by entering easily the cells where the original, photoactive molecule is restored by specific esterases. Different intracellular sites of photodamage of RB are present. In particular, fluorescence imaging of Rodamine 123 and JC-1 labelled cells showed altered morphology and loss of potential membrane of mitochondria. MTT and NR assays gave indications of alteration of mitochondrial and lysosomal enzyme activities. These damaged sites were likely responsible for triggering apoptosis. Significant amount of apoptotic cell death (about 40%) was induced after light irradiation followed RBAc incubation as revealed by morphological (modification of cell shape and blebs formation), cytochemical (FITC-Annexin-V positive cells) and nuclear fragmentation assays.

  11. Expression and Prognostic Significance of Human Epidermal Growth Factor Receptors 1 and 3 in Gastric and Esophageal Adenocarcinoma

    PubMed Central

    Hedner, Charlotta; Borg, David; Nodin, Björn; Karnevi, Emelie; Jirström, Karin; Eberhard, Jakob

    2016-01-01

    Background Gastric and esophageal adenocarcinomas are major global cancer burdens. These cancer forms are characterized by a poor prognosis and a modest response to chemo- radio- and targeted treatment. Hence there is an obvious need for further enhanced diagnostic and treatment strategies. The aim of this study was to examine the expression and prognostic impact of human epidermal growth factor receptor 1 (HER1/EGFR) and 3 (HER3), as well as the occurrence of EGFR and KRAS mutations in gastric and esophageal adenocarcinoma. Methods Immunohistochemical expression of EGFR and HER3 was analysed in all primary tumours and a subset of lymph node metastases in a consecutive cohort of 174 patients with adenocarcinoma of the stomach, cardia and esophagus. The anti-HER3 antibody used was validated by siRNA-mediated knockdown, immunohistochemistry and quantitative real-time PCR. EGFR and KRAS mutation status was analysed by pyrosequencing tecchnology. Results and Discussion High EGFR expression was an independent risk factor for shorter overall survival (OS), whereas high HER3 expression was associated with a borderline significant trend towards a longer OS. KRAS mutations were present in only 4% of the tumours and had no prognostic impact. All tumours were EGFR wild-type. These findings contribute to the ongoing efforts to decide on the potential clinical value of different HERs and druggable mutations in gastric and esophageal adenocarcinomas, and attention is drawn to the need for more standardised investigational methods. PMID:26844548

  12. Preferential metabolism of N-nitrosodiethylamine by two cell lines derived from human pulmonary adenocarcinomas

    SciTech Connect

    Falzon, M.; McMahon, J.B.; Gazdar, A.F.; Schuller, H.M.

    1986-01-01

    Diethylnitrosamine (DEN), in common with other nitrosamines, is a carcinogenic agent which produces tumors in a wide variety of tissues in experimental animals. The pulmonary Clara cell is a major target of N-nitrosamine-induced carcinogenesis in hamsters and rats. DEN is believed to require metabolic activation to elicit its carcinogenic effects. The metabolism of (/sup 14/C)DEN was studied in two cell lines derived from human lung adenocarcinomas and two cell lines derived from human small cell lung cancers by monitoring /sup 14/CO/sub 2/ production and covalent binding of radiolabel from (/sup 14/C)DEN to the cell protein and DNA fractions. (/sup 14/C)DEN was metabolized by adenocarcinoma-derived NCI-H322 (with Clara cell features) and NCI-H358 (with features of alveolar type II cells) but not by NCI-H69 and NCI-H128 (derived from small cell carcinoma). Metabolism was markedly inhibited by heat denaturation of the cell protein. (/sup 14/C)DEN metabolism by NCI-H322 was greatly decreased when the incubation was carried out under anaerobic conditions and in the presence of a carbon monoxide enriched atmosphere. These results suggested the involvement of the cytochrome P-450-dependent monooxygenase enzyme system. Metabolism by NCI-H358 was also decreased in the absence of oxygen or presence of carbon monoxide although the effects were relatively small compared with the results with NCI-H322. On the other hand, aspirin or indomethacin, which are inhibitors of the fatty acid cyclooxygenase component of prostaglandin endoperoxide synthetase, preferentially inhibited (/sup 14/C)DEN metabolism by NIC-H358. There were little or no effects of these inhibitors on the metabolism of DEN in NCI-H322. The data suggest that DEN metabolism in different lung cell types may be carried out by different enzyme systems which in turn may contribute to the selective effect of DEN in the lung.

  13. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.

    PubMed

    Bhattacharjee, A; Richards, W G; Staunton, J; Li, C; Monti, S; Vasa, P; Ladd, C; Beheshti, J; Bueno, R; Gillette, M; Loda, M; Weber, G; Mark, E J; Lander, E S; Wong, W; Johnson, B E; Golub, T R; Sugarbaker, D J; Meyerson, M

    2001-11-20

    We have generated a molecular taxonomy of lung carcinoma, the leading cause of cancer death in the United States and worldwide. Using oligonucleotide microarrays, we analyzed mRNA expression levels corresponding to 12,600 transcript sequences in 186 lung tumor samples, including 139 adenocarcinomas resected from the lung. Hierarchical and probabilistic clustering of expression data defined distinct subclasses of lung adenocarcinoma. Among these were tumors with high relative expression of neuroendocrine genes and of type II pneumocyte genes, respectively. Retrospective analysis revealed a less favorable outcome for the adenocarcinomas with neuroendocrine gene expression. The diagnostic potential of expression profiling is emphasized by its ability to discriminate primary lung adenocarcinomas from metastases of extra-pulmonary origin. These results suggest that integration of expression profile data with clinical parameters could aid in diagnosis of lung cancer patients. PMID:11707567

  14. The study of optimal condition of SPIO labeling human lung adenocarcinoma cell line (SPC-A-1)

    NASA Astrophysics Data System (ADS)

    Yu, Ming-xi; Chen, Wen-li; Zhou, Quan; Xing, Da; Tang, Yong-hong

    2008-02-01

    Propose: To study the optimal concentration and time of incubation of human lung adenocarcinoma cell line (SPC-A-1) labeled with superparamagnetic iron oxide (SPIO) particles in vitro. Methods: Human lung adenocarcinoma cell line (SPC-A-1) was cultured with different concenration of SPIO and different time of incubation (labeled with media containing Fe-PLL: 25μg /mL, 100μg /mL, and 200 μg /mL, and for 30min, 90min, 180min. The phagocytosis of the cells was observed by laser scanning confocal microscopy (LSCM) to determine particle uptake and their distribution in cells. Results: Human lung adenocarcinoma cells(SPC-A-1) have taken up a large amount of SPIO particles within the first 3h. Conclusion: In this study, the concentration of iron with 25μg/ml SPIO and time of incubation for 30min is the optimal condition for labeling the SPC-A-1 with SPIO.

  15. Identification of crucial microRNAs and genes in hypoxia-induced human lung adenocarcinoma cells

    PubMed Central

    Geng, Ying; Deng, Lili; Su, Dongju; Xiao, Jinling; Ge, Dongjie; Bao, Yongxia; Jing, Hui

    2016-01-01

    Background Variations of microRNA (miRNA) expression profile in hypoxic lung cancer cells have not been studied so far. Therefore, using miRNA microarray technology, this study aimed to study the miRNA expression profile and investigate the potential crucial miRNAs and their target genes in hypoxia-induced human lung adenocarcinoma cells. Materials and methods Based on miRNA microarray, miRNA expression profiling of hypoxia-induced lung adenocarcinoma A549 cells was obtained. After identification of differentially expressed miRNAs (DE-miRNAs) in hypoxic cells, target genes of DE-miRNAs were predicted, and functional enrichment analysis of targets was conducted. Furthermore, the expression levels of DE-miRNAs and their target genes were validated by real-time quantitative polymerase chain reaction. In addition, using miRNA mimics, the effect of overexpressed DE-miRNAs on A549 cell behaviors (cell proliferation, cell cycle, and apoptosis) was evaluated. Results In total, 14 DE-miRNAs (nine upregulated miRNAs and five downregulated miRNAs) were identified in hypoxic cells, compared with normoxic cells. Target genes of both upregulated and downregulated miRNAs were enriched in the functions such as chromatin modification, and pathways such as Wnt signaling pathway and transforming growth factor (TGF)-β signaling pathway. The expression levels of several miRNAs and their target genes were confirmed, including hsa-miR-301b/FOXF2, hsa-miR-148b-3p/WNT10B, hsa-miR-769-5p/(SMAD2, ARID1A), and hsa-miR-622. Among them, hsa-miR-301b was verified to regulate FOXF2, and hsa-miR-769-5p was verified to modulate ARID1A. In addition, the overexpression of hsa-miR-301b and hsa-miR-769-5p significantly affected the cell cycle of A549 cells, but not cell proliferation and apoptosis. Conclusion miRNA expression profile was changed in hypoxia-induced lung cancer cells. Those validated miRNAs and genes may play crucial roles in the response of lung cancer cells to hypoxia. PMID:27524914

  16. Hsa-miR-623 suppresses tumor progression in human lung adenocarcinoma

    PubMed Central

    Wei, Shuang; Zhang, Zun-yi; Fu, Sheng-ling; Xie, Jun-gang; Liu, Xian-sheng; Xu, Yong-jian; Zhao, Jian-ping; Xiong, Wei-ning

    2016-01-01

    Our previous study revealed that Ku80 was overexpressed in lung cancer tissues and hsa-miR-623 regulated the Ku80 expression; however, the detailed function of hsa-miR-623 in lung cancer was unclear. We identified that hsa-miR-623 bound to the 3'-UTR of Ku80 mRNA, thus significantly decreasing Ku80 expression in lung adenocarcinoma cells. Hsa-miR-623 was downregulated in lung adenocarcinoma tissues compared with corresponding non-tumorous tissues, and its expression was inversely correlated with Ku80 upregulation. Downregulation of hsa-miR-623 was associated with poor clinical outcomes of lung adenocarcinoma patients. Hsa-miR-623 suppressed lung adenocarcinoma cell proliferation, clonogenicity, migration and invasion in vitro. Hsa-miR-623 inhibited xenografts growth and metastasis of lung adenocarcinoma in vivo. Ku80 knockdown in lung adenocarcinoma cells suppressed tumor properties in vitro and in vivo similar to hsa-miR-623 overexpression. Further, hsa-miR-623 overexpression decreased matrix metalloproteinase-2 (MMP-2) and MMP-9 expression levels, with decreased ERK/JNK phosphorylation. Inhibition of hsa-miR-623 or overexpression of Ku80 promoted lung adenocarcinoma cell invasion, activated ERK/JNK phosphorylation and increased MMP-2/9 expressions, which could be reversed by ERK kinase inhibitor or JNK kinase inhibitor. In summary, our results showed that hsa-miR-623 was downregulated in lung adenocarcinoma and suppressed the invasion and metastasis targeting Ku80 through ERK/JNK inactivation mediated downregulation of MMP-2/9. These findings reveal that hsa-miR-623 may serve as an important therapeutic target in lung cancer therapy. PMID:27685632

  17. Cytotoxicity of a Quinone-containing Cockroach Sex Pheromone in Human Lung Adenocarcinoma Cells.

    PubMed

    Ma, Bennett; Carr, Brian A; Krolikowski, Paul; Chang, Frank N

    2007-01-01

    The cytotoxic effects of blattellaquinone (BTQ), a sex pheromone produced by adult female German cockroaches, have been studied using human lung adenocarcinoma A549 cells. 1,4-Benzoquinone (BQ), a toxic chemical implicated in benzene toxicity, was used as a reference compound. Both BQ and BTQ showed comparable toxicity toward A549 cells, with LD50 values estimated to be 14 and 19 microM, respectively. These two compounds increased the formation of an oxidized fluorescent probe, 2',7'-dichlorofluorescein, but had no effect on the cellular GSSG level. Interestingly, BTQ increased the level of 8-epi-prostaglandin F2alpha and was 4-fold more efficient in depleting cellular GSH content than BQ. Of the five GSH adducts of BTQ isolated, three were identified as mono-GSH conjugates, and the other two were di-conjugates. Mass spectrometric and NMR analyses of the di-conjugates showed that the second GSH molecule displaced the isovaleric acid moiety, potentially via a nucleophilic substitution reaction. The ability of BTQ to conjugate a second GSH molecule without quinone regeneration indicated that it may be a more effective cross-linking agent than BQ. Future experiments may be needed to evaluate the overall safety of BTQ before the commercialization of the compound as a cockroach attractant.

  18. Inositol Hexakisphosphate Mediates Apoptosis in Human Breast Adenocarcinoma MCF-7 Cell Line via Intrinsic Pathway

    NASA Astrophysics Data System (ADS)

    Agarwal, Rakhee; Ali, Nawab

    2010-04-01

    Inositol polyphosphates (InsPs) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP6) is the most abundant among all InsPs and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsPs also regulate cellular signaling mechanisms. InsPs have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP6 dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsPs tested (InsP3, InsP4, InsP5, and InsP6), InsP6 was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP6 were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP6 induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  19. Evaluation of interacellular tamoxifen-induced fluorescence in tamoxifen-resistant human breast adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Bachmann, Nathalie; Barberi-Heyob, Muriel; Gramain, Marie-Pierre; Bour, Corinne; Marchal, Sophie; Parache, Robert M.; Guillemin, Francois H.; Merlin, Jean-Louis

    1997-12-01

    A tamoxifen resistant cell line (MCF7TAM) was established from tamoxifen sensitive MCF-7 human adenocarcinoma cells expressing estrogen receptors. The resistant cell line was found to express estrogen receptors to similar level as the parent cell line but the receptors were found to be altered, having lost their ability to bind estradiol or tamoxifen. The fluorescence of eosin-tamoxifen ionic association was used to investigate intracellular location of tamoxifen in both sensitive and resistant cell lines. Fluorescence emission spectra of eosin, tamoxifen and eosin-tamoxifen complex ((lambda) exc equals 480 nm) were analyzed and showed that maximal fluorescence intensity of the complex ((lambda) em equals 540 nm) was four times higher than that of eosin alone while tamoxifen alone did not emit any fluorescence in this spectral range. In MCF-7 cells, tamoxifen was found to be diffusively located in the cytoplasm and nuclear fluorescence intensity was significantly lower. No difference was observed in fluorescence intensity or location in tamoxifen resistant cells, although it has been previously correlated with clinical responsiveness. Improvement of this fluorescence microscopy methodology appears necessary to provide accurate results taking into account the complexity of tamoxifen resistance molecular pathways.

  20. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells

    PubMed Central

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer. PMID:27610172

  1. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells.

    PubMed

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer.

  2. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma.

    PubMed

    Penny, Hweixian Leong; Sieow, Je Lin; Adriani, Giulia; Yeap, Wei Hseun; See Chi Ee, Peter; San Luis, Boris; Lee, Bernett; Lee, Terence; Mak, Shi Ya; Ho, Ying Swan; Lam, Kong Peng; Ong, Choon Kiat; Huang, Ruby Y J; Ginhoux, Florent; Rotzschke, Olaf; Kamm, Roger D; Wong, Siew Cheng

    2016-08-01

    Patients with pancreatic ductal adenocarcinoma (PDAC) face a clinically intractable disease with poor survival rates, attributed to exceptionally high levels of metastasis. Epithelial-to-mesenchymal transition (EMT) is pronounced at inflammatory foci within the tumor; however, the immunological mechanisms promoting tumor dissemination remain unclear. It is well established that tumors exhibit the Warburg effect, a preferential use of glycolysis for energy production, even in the presence of oxygen, to support rapid growth. We hypothesized that the metabolic pathways utilized by tumor-infiltrating macrophages are altered in PDAC, conferring a pro-metastatic phenotype. We generated tumor-conditioned macrophages in vitro, in which human peripheral blood monocytes were cultured with conditioned media generated from normal pancreatic or PDAC cell lines to obtain steady-state and tumor-associated macrophages (TAMs), respectively. Compared with steady-state macrophages, TAMs promoted vascular network formation, augmented extravasation of tumor cells out of blood vessels, and induced higher levels of EMT. TAMs exhibited a pronounced glycolytic signature in a metabolic flux assay, corresponding with elevated glycolytic gene transcript levels. Inhibiting glycolysis in TAMs with a competitive inhibitor to Hexokinase II (HK2), 2-deoxyglucose (2DG), was sufficient to disrupt this pro-metastatic phenotype, reversing the observed increases in TAM-supported angiogenesis, extravasation, and EMT. Our results indicate a key role for metabolic reprogramming of tumor-infiltrating macrophages in PDAC metastasis, and highlight the therapeutic potential of using pharmacologics to modulate these metabolic pathways. PMID:27622062

  3. In-vitro depth-dependent hyperthermia of human mammary gland adenocarcinoma.

    PubMed

    Dunn, Andrew W; Zhang, Yu; Mast, David; Pauletti, Giovanni M; Xu, Hong; Zhang, Jiaming; Ewing, Rodney C; Shi, Donglu

    2016-12-01

    Nanoparticle mediated photothermal ablation of cancerous tissue shows promising results and applicability as a highly efficacious treatment method. As a majority of the photothermal work has been conducted with minimal attenuation of the laser before reaching the nanoparticles within surface seeded tumors in-vivo or through buffered media in-vitro, it is important to understand the effects of greater laser attenuation on photothermal efficacy mediated by changes in the scattering and absorption of the laser. Photothermal efficacy using a near infrared (NIR) 785nm laser irradiating polystyrene (PS) stabilized magnetite (Fe3O4) nanoparticles (PS-Fe3O4) is examined on MDA-MB-231 human mammary gland adenocarcinoma in-vitro. Agarose gel columns of various heights were created to simulate soft tissue and subsequently used for NIR laser attenuation. Polystyrene was found to significantly improve magnetite nanoparticle stability in serum containing media and modified Hank's Balanced Salt Solution and was able to induce significant hyperthermic ablation at mass concentrations which also did not elicit significant innate toxicity. Furthermore it was found that the polystyrene coating significantly reduced innate toxicity over 48h compared to uncoated magnetite. Agar gel layers provided similar optical attenuation in the NIR region to skin and prostate. PMID:27612683

  4. Expression of Pdx-1 in human gastric metaplasia and gastric adenocarcinoma.

    PubMed

    Leys, Charles M; Nomura, Sachiyo; Rudzinski, Erin; Kaminishi, Michio; Montgomery, Elizabeth; Washington, Mary Kay; Goldenring, James R

    2006-09-01

    Metaplastic lineages represent critical putative preneoplastic precursors for gastrointestinal metaplasia. Two metaplastic processes are associated with gastric cancer: intestinal metaplasia (the presence of intestinal goblet cell containing lineages in the stomach) and spasmolytic polypeptide-expressing metaplasia (SPEM; antralization of the gastric fundus). The transcription factor Pdx-1 is expressed in the adult pancreatic islet cells as well as the gastric antrum and duodenum. We have previously noted the increase in Pdx-1 expression in models of TGFalpha overexpression in mice but not in other models of SPEM in rodents. We have therefore sought to examine the presence of Pdx-1 expression in gastric metaplasias and gastric adenocarcinoma in humans. Tissue microarrays containing gastric cancers from the fundus and antrum and samples of SPEM and intestinal metaplasia were immunostained for Pdx-1. Nuclear Pdx-1 expression was observed in only 50% of antral-derived cancers and was present in 40% of fundic tumors. Pdx-1 expression did not correlate with clinical outcome. Although SPEM lineages did not show any staining for Pdx-1, intestinal metaplasia showed strong nuclear staining for Pdx-1. Thus, Pdx-1 expression is not associated with antralizing metaplasia (SPEM) but is associated with intestinal metaplasia. Given the pattern of normal Pdx-1 expression in the duodenum, goblet cell metaplasia in the stomach may reflect the adoption of a duodenal lineage paradigm.

  5. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells.

    PubMed

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer. PMID:27610172

  6. MiR-200b regulates autophagy associated with chemoresistance in human lung adenocarcinoma.

    PubMed

    Pan, Banzhou; Feng, Bing; Chen, Yitian; Huang, Guichun; Wang, Rui; Chen, Longbang; Song, Haizhu

    2015-10-20

    Chemoresistance remains a major clinical problem in combating human lung adenocarcinoma (LAD), and abnormal autophagy is closely associated with this phenomenon. In the present study, an inverse correlation between miR-200b and autophagy-associated gene 12 (ATG12) expressions was observed in docetaxel-resistant (SPC-A1/DTX and H1299/DTX) and sensitive (SPC-A1 and H1299) LAD cells as well as in tissue samples. Further study showed that miR-200b directly targeted ATG12 in LAD. Moreover, miR-200b-dependent ATG12 downregulation inhibited autophagy and enhanced the chemosensitivity of SPC-A1/DTX and H1299/DTX cells both in vivo and in vitro. LAD chemoresistance is therefore closely related to downregulation of miR-200b and the corresponding upregulation of ATG12. These results provide new evidence for the mechanisms governing the microRNA (miRNA)-ATG12 network and their possible contribution to autophagy modulation and LAD chemoresistance.

  7. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells

    PubMed Central

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer.

  8. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    PubMed Central

    Kuo, Chen-Tzu; Chen, Bing-Chang; Yu, Chung-Chi; Weng, Chih-Ming; Hsu, Ming-Jen; Chen, Chien-Chih; Chen, Mei-Chieh; Teng, Che-Ming; Pan, Shiow-Lin; Bien, Mauo-Ying; Shih, Chung-Hung; Lin, Chien-Huang

    2009-01-01

    In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1) in denbinobin-induced apoptosis in human lung adenocarcinoma (A549) cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN), two antioxidants (N-acetyl-L-cysteine (NAC) and glutathione (GSH)), a c-Jun N-terminal kinase (JNK) inhibitor (SP600125), and an activator protein-1 (AP-1) inhibitor (curcumin). Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS) production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis. PMID:19405983

  9. Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma

    PubMed Central

    Castino, Giovanni Francesco; Cortese, Nina; Capretti, Giovanni; Serio, Simone; Di Caro, Giuseppe; Mineri, Rossana; Magrini, Elena; Grizzi, Fabio; Cappello, Paola; Novelli, Francesco; Spaggiari, Paola; Roncalli, Massimo; Ridolfi, Cristina; Gavazzi, Francesca; Zerbi, Alessandro; Allavena, Paola; Marchesi, Federica

    2016-01-01

    ABSTRACT B-cell responses are emerging as critical regulators of cancer progression. In this study, we investigated the role of B lymphocytes in the microenvironment of human pancreatic ductal adenocarcinoma (PDAC), in a retrospective consecutive series of 104 PDAC patients and in PDAC preclinical models. Immunohistochemical analysis revealed that B cells occupy two histologically distinct compartments in human PDAC, either scatteringly infiltrating (CD20-TILs), or organized in tertiary lymphoid tissue (CD20-TLT). Only when retained within TLT, high density of B cells predicted longer survival (median survival 16.9 mo CD20-TLThi vs. 10.7 mo CD20-TLTlo; p = 0.0085). Presence of B cells within TLT associated to a germinal center (GC) immune signature, correlated with CD8-TIL infiltration, and empowered their favorable prognostic value. Immunotherapeutic vaccination of spontaneously developing PDAC (KrasG12D-Pdx1-Cre) mice with α-enolase (ENO1) induced formation of TLT with active GCs and correlated with increased recruitment of T lymphocytes, suggesting induction of TLT as a strategy to favor mobilization of immune cells in PDAC. In contrast, in an implanted tumor model devoid of TLT, depletion of B cells with an anti-CD20 antibody reinstated an antitumor immune response. Our results highlight B cells as an essential element of the microenvironment of PDAC and identify their spatial organization as a key regulator of their antitumor function. A mindfully evaluation of B cells in human PDAC could represent a powerful prognostic tool to identify patients with distinct clinical behaviors and responses to immunotherapeutic strategies. PMID:27141376

  10. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    PubMed

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  11. Prognostic significance of a component of the Hippo pathway, TAZ, in human uterine endometrioid adenocarcinoma

    PubMed Central

    ZHAN, MAOSHENG; IKEDA, JUN-ICHIRO; WADA, NAOKI; HORI, YUMIKO; NOJIMA, SATOSHI; TAHARA, SHIN-ICHIRO; UEDA, YUTAKA; YOSHINO, KIYOSHI; KIMURA, TADASHI; MORII, EIICHI

    2016-01-01

    Transcriptional coactivator with PDZ-binding motif (TAZ) is a crucial component of the Hippo tumor suppressor pathway, interacting with transcriptional factors to regulate cell proliferation, apoptosis and tumorigenesis. TAZ and its paralog, Yes-associated protein (YAP), are activated at high frequencies during the progression towards malignancy in various tumors. Recently, YAP has been identified to modulate oncogenic features in endometrial adenocarcinoma, and it has also been reported that the nuclear expression of YAP is correlated with the poorly-differentiated form of endometrioid adenocarcinoma. In contrast to YAP, no studies have investigated TAZ expression in endometrioid adenocarcinoma. In the present study, TAZ expression was immunohistochemically examined in 55 clinical samples of endometrioid adenocarcinoma, and the clinical implications were evaluated. The results demonstrated that TAZ was located primarily in the cell nuclei, and that high TAZ expression was significantly correlated with high tumor-factor (P=0.024), stage (P=0.041) and histological grade (P=0.001), lymph node metastasis (P=0.046), recurrence (P=0.002) and a poor prognosis (P=0.007). Furthermore, univariate analysis identified that high TAZ expression was a poor prognostic factor for overall and disease-free survival. To the best of our knowledge, the present case is the first to report the clinical implications of TAZ in endometrioid adenocarcinoma of the uterus. TAZ may become a marker of a poor prognosis in endometrioid adenocarcinoma. PMID:27284362

  12. Assessment of the anti-invasion potential and mechanism of select cinnamic acid derivatives on human lung adenocarcinoma cells.

    PubMed

    Tsai, Chiung-Man; Yen, Gow-Chin; Sun, Fang-Ming; Yang, Shun-Fa; Weng, Chia-Jui

    2013-05-01

    Patients with lung adenocarcinoma are often diagnosed with metastasizing symptoms and die of early and distal metastasis. Metastasis is made up of a cascade of interrelated and sequential steps, including cell adhesion, extracellular matrix degradation, cell movement, and invasion. Hence, substances carrying the ability to stop one of the metastasis-associated steps could be a potential candidate for preventing tumor cells from metastasizing and prolonging the life of cancer patients. Cinnamic acid (CA) was demonstrated to be such a candidate for human lung adenocarcinoma cells. Nevertheless, the effectiveness of CA derivatives on invasion of lung cancer cells is still unclear. The aims of this study were to explore the mechanisms underlying several select CA derivatives against invasion of human lung adenocarcinoma A549 cells. The results revealed that caffeic acid (CAA), chlorogenic acid (CHA), and ferulic acid (FA) can inhibit phorbol-12-myristate-13-acetate (PMA)-stimulated invasion of A549 cells at a concentration of ≥100 μM. The MMP-9 activity was suppressed by these compounds through regulating urokinase-type plasminogen activator (uPA), tissue inhibitor of metalloproteinase (TIMP)-1, plasminogen activator inhibitor (PAI)-1, and PAI-2; the cell-matrix adhesion was decreased by CAA only. The proposed molecular mechanism involved not only decreasing the signaling of MAPK and PI3K/Akt but also inactivating NF-κB, AP-1, and STAT3. In the present study, we selected CAA, CHA, and FA as potential inhibitors for invasive behaviors of human lung adenocarcinoma cells and disclosed the possible mechanisms. The association between structural features and anti-invasive activity of these compounds cannot be determined here and needs to be further verified.

  13. TipC and the chorea-acanthocytosis protein VPS13A regulate autophagy in Dictyostelium and human HeLa cells.

    PubMed

    Muñoz-Braceras, Sandra; Calvo, Rosa; Escalante, Ricardo

    2015-01-01

    Deficient autophagy causes a distinct phenotype in Dictyostelium discoideum, characterized by the formation of multitips at the mound stage. This led us to analyze autophagy in a number of multitipped mutants described previously (tipA(-), tipB(-), tipC(-), and tipD(-)). We found a clear autophagic dysfunction in tipC(-) and tipD(-) while the others showed no defects. tipD codes for a homolog of Atg16, which confirms the role of this protein in Dictyostelium autophagy and validates our approach. The tipC-encoded protein is highly similar to human VPS13A (also known as chorein), whose mutations cause the chorea-acanthocytosis syndrome. No member of the VPS13 protein family has been previously related to autophagy despite the presence of a region of similarity to Atg2 at the C terminus. This region also contains the conserved domain of unknown function DUF1162. Of interest, the expression of the TipC C-terminal coding sequence containing these 2 motifs largely complemented the mutant phenotype. Dictyostelium cells lacking TipC displayed a reduced number of autophagosomes visualized with the markers GFP-Atg18 and GFP-Atg8 and an impaired autophagic degradation as determined by a proteolytic cleavage assay. Downregulation of human VPS13A in HeLa cells by RNA interference confirmed the participation of the human protein in autophagy. VPS13A-depleted cells showed accumulation of autophagic markers and impaired autophagic flux.

  14. Expression of toll-like receptors on human rectal adenocarcinoma cells.

    PubMed

    Tchórzewski, Marcin; Lewkowicz, Przemysław; Dziki, Adam; Tchórzewski, Henryk

    2014-06-01

    The innate immune system uses Toll-like receptors (TLR) to detect the presence of pathogen patterns thus allowing for rapid host defense responses. Stimulation of TLR results in inflammatory response and regulatory cytokine production affecting acquired immunity. The aim of the study was an evaluation of TLR2 and TLR4 expression on the surface of human colon cancer cells in primary culture with or without autologous peripheral blood mononuclear cells. Surgical specimens of colon cancer were processed to obtain cancer cells. Cancer cells separation was conducted first by mechanical tissue disintegration and than by gradient centrifugation to obtain 95 % cell confluence. By staining the isolated cells the pathologist determined them as adenocarcinoma. Colon cancer cells were then co-cultured in 24 h culture alone or together with autologous lymphocytes. Reverse-transcription polymerase chain reaction was performed for detection of TLR2 and TLR4 mRNA in colon cancer and normal colon epithelial cells using commercially available primers. Resting as well as phytohemagglutinin or lipopolysaccharide (LPS) stimulated cells were tested. Receptor proteins on cancer cells were examined by immunohistochemistry. TLR4 mRNA was detected in cancer cells. Autologous lymphocytes do not exert any effect on these receptors expression. TLR4 mRNA expression was not observed in normal colon epithelial cells. TLR2 mRNA was present on LPS stimulated cancer cells as well as on resting and stimulated lymphocytes. Expression of TLR2 and TLR4 receptor proteins on colon cancer cells were confirmed by immunohistochemistry. TLR4 may be responsible for uncontrolled tumor growth under LPS stimulation in human colon environment.

  15. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  16. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  17. Novel monoclonal antibody against beta 1 integrin enhances cisplatin efficacy in human lung adenocarcinoma cells

    PubMed Central

    Kim, Min-Young; Cho, Woon-Dong; Hong, Kwon Pyo; Choi, Da Bin; Hong, Jeong won; Kim, Soseul; Moon, Yoo Ri; Son, Seung-Myoung; Lee, Ok-Jun; Lee, Ho-Chang; Song, Hyung Geun

    2016-01-01

    Abstract The use of anti-beta 1 integrin monoclonal antibody in lung cancer treatment has proven beneficial. Here, we developed a novel monoclonal antibody (mAb), called P5, by immunizing mice with human peripheral blood mononuclear cells (PBMC). Its anti-tumor effect is now being tested, in a clinical phase III trial, in combinatorial treatments with various chemical drugs. To confirm that P5 indeed binds to beta 1 integrin, cell lysates were immunoprecipitated with commercial anti-beta 1 integrin mAb (TS2/16) and immunoblotted against P5 to reveal a 140 kDa molecular weight band, as expected. Immunoprecipitation with P5 followed by LC/MS protein sequence analysis further verified P5 antigen to be beta 1 integrin. Cisplatin treatment upregulated cell surface expression of beta 1 integrin in A549 cells, while causing inhibition of cell growth. When cells were co-treated with different concentrations of P5 mAb, the cisplatin-mediated inhibitory effect was enhanced in a dose-dependent manner. Our findings show that a combinatorial treatment of P5 mAb and cisplatin in A549 cells resulted in a 30% increase in apoptosis, compared to baseline, and significantly more when compared to either the cisplatin or P5 alone group. The entire peptide sequences in CDR from variable region of Ig heavy and light chain gene for P5 mAb are also disclosed. Together, these results provide evidence of the beneficial effect of P5 mAb in combinatorial treatment of human lung adenocarcinoma. PMID:27533932

  18. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  19. Expression profiling of wild type and β-catenin gene disrupted human BxPC-3 pancreatic adenocarcinoma cells.

    PubMed

    Olsen, Petter Angell; Lund, Kaja; Krauss, Stefan

    2015-06-01

    To study the role of WNT/β-catenin signaling in pancreatic adenocarcinoma, human BxPC-3 cell lines deficient of the central canonical WNT signaling protein β-catenin were established by using zinc-finger nuclease mediated targeted genomic disruption of the β-catenin gene (CTNNB1). Comparison of the global transcription levels in wild type cells with two β-catenin gene disrupted clones identified 85 transcripts that were the most differentially regulated. Gene ontology (GO) term enrichment analysis of these transcripts identified "cell adhesion" as the most significantly enriched GO term. Here we describe the data from the transcription profiling analysis published in the article "Implications of Targeted Genomic Disruption of β-Catenin in BxPC-3 Pancreatic Adenocarcinoma Cells" [1]. Data have been deposited to the Gene Expression Omnibus (GEO) database repository with the dataset identifier GSE63072. PMID:26484203

  20. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway.

    PubMed

    Lin, Ming-Te; Lin, Chia-Liang; Lin, Tzu-Yu; Cheng, Chun-Wen; Yang, Shun-Fa; Lin, Chu-Liang; Wu, Chih-Chien; Hsieh, Yi-Hsien; Tsai, Jen-Pi

    2016-05-01

    Combining antitumor agents with bioactive compounds is a potential strategy for improving the effect of chemotherapy on cancer cells. The goal of this study was to elucidate the antitumor effect of the flavonoid, fisetin, combined with the multikinase inhibitor, sorafenib, against human cervical cancer cells in vitro and in vivo. The combination of fisetin and sorafenib synergistically induced apoptosis in HeLa cells, which is accompanied by a marked increase in loss of mitochondrial membrane potential. Apoptosis induction was achieved by caspase-3 and caspase-8 activation which increased the ratio of Bax/Bcl-2 and caused the subsequent cleavage of PARP level while disrupting the mitochondrial membrane potential in HeLa cells. Decreased Bax/Bcl-2 ratio level and mitochondrial membrane potential were also observed in siDR5-treated HeLa cells. In addition, in vivo studies revealed that the combined fisetin and sorafenib treatment was clearly superior to sorafenib treatment alone using a HeLa xenograft model. Our study showed that the combination of fisetin and sorafenib exerted better synergistic effects in vitro and in vivo than either agent used alone against human cervical cancer, and this synergism was based on apoptotic potential through a mitochondrial- and DR5-dependent caspase-8/caspase-3 signaling pathway. This combined fisetin and sorafenib treatment represents a novel therapeutic strategy for further clinical developments in advanced cervical cancer.

  1. Primary cilia found on HeLa and other cancer cells.

    PubMed

    Kowal, Tia J; Falk, Matthias M

    2015-11-01

    For many years now, researchers have known of a sensory appendage on the surface of most differentiated cell types called primary cilium. Primary cilia are both chemo- and mechano-sensory in function and have an obvious role in cell cycle control. Because of this, it has been thought that primary cilia are not found on rapidly proliferating cells, for example, cancer cells. Here we report using immunofluorescent staining for the ciliary protein Arl13b that primary cilia are frequently found on HeLa (human epithelial adenocarcinoma) and other cancer cell lines such as MG63 (human osteosarcoma) commonly used for cell culture studies and that the ciliated population is significantly higher (ave. 28.6% and 46.5%, respectively in starved and 15.7-18.6% in un-starved cells) than previously anticipated. Our finding impacts the current perception of primary cilia formed in highly proliferative cells.

  2. Suppression of human cervical cancer cell lines Hela and DoTc2 4510 by a mixture of lysine, proline, ascorbic acid, and green tea extract.

    PubMed

    Roomi, M W; Ivanov, V; Kalinovsky, T; Niedzwiecki, A; Rath, M

    2006-01-01

    Cervical cancer, the second most common cancer in women, once metastasized, leads to poor prognosis. We investigated the antitumor effect of a nutrient mixture (NM) containing lysine, proline, arginine, ascorbic acid, and green tea extract on human cervical cancer cells Hela (CCL-2) and DoTc2 4510 by measuring cell proliferation (MTT assay), modulation of matrix metalloproteinases (MMP)-2 and MMP-9) expression (gelatinase zymography), and cancer cell invasive potential (Matrigel). NM showed significant antiproliferative effect on CCL-2 and DoTc2 4510 cancer cells. The NM inhibited CCL-2 expression of MMP-2 and MMP-9 in a dose-dependent fashion, with virtual total inhibition of MMP-2 at 1000 microg/mL and MMP-9 at 500 microg/mL NM. Untreated DoTc2 4510 cells showed MMP-9 expression, which was enhanced with phorbol 12-myristate 13-acetate treatment. NM inhibited MMP-9 expression in a dose-dependent fashion, with virtual inhibition at 500 microg/mL. Invasion of human cervical cancer cells CCL-2 and DoTc2 4510 through Matrigel decreased in a dose-dependent fashion, with 100% inhibition at 500 microg/mL NM (P < 0.0001) and 1000 microg/mL NM (P < 0.0001), respectively. Our results suggest that the mixture of lysine, proline, arginine, ascorbic acid, and green tea extract has potential in the treatment of cervical cancer by inhibiting critical steps in cancer development and spread.

  3. Involvement of aldolase A in X-ray resistance of human HeLa and UV{sup r}-1 cells

    SciTech Connect

    Lu, Jun; Suzuki, Toshikazu Satoh, Mamoru; Chen, Shiping; Tomonaga, Takeshi; Nomura, Fumio; Suzuki, Nobuo

    2008-05-09

    To find novel proteins involved in radio-resistance of human cells, we searched for nuclear proteins, whose expression levels alter after X-ray irradiation in HeLa cells, using agarose fluorescent two-dimensional differential gel electrophoresis following mass spectrometry. We identified 6 proteins, whose levels were increased in nuclei 24 h after irradiation at 5 Gy, including aldolase A. Nuclear aldolase A levels increased twofold after the irradiation, however, total aldolase A levels did not change. When the expression of aldolase A was suppressed by its specific siRNA, sensitization of the suppressed cells to X-ray-induced cell death was observed. In addition, UV{sup r}-1 cells with higher aldolase A expression exhibited lower sensitivity to X-ray-induced cell death than the parental RSa cells with lower aldolase A expression. These results suggest that aldolase A may play a role in the radio-response of human cells, probably in nuclei, in addition to its glycolytic role in the cytosol.

  4. Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells.

    PubMed Central

    Mills, G B; May, C; Hill, M; Campbell, S; Shaw, P; Marks, A

    1990-01-01

    Human ovarian cancer, the leading cause of death from gynecologic malignancy, tends to remain localized to the peritoneal cavity until late in the disease. In established disease, ascitic fluid accumulates in the peritoneal cavity. We have previously demonstrated that this ascitic fluid is a potent source of in vitro mitogenic activity including at least one unique growth factor. We now report that the human ovarian adenocarcinoma line, HEY, can be induced to grow intraperitoneally in immunodeficient nude mice in the presence (23/28 mice), but not absence (0/21 mice) of ascitic fluid from ovarian cancer patients. Ascitic fluid from patients with benign disease did not have similar effects on intraperitoneal growth of HEY cells (1/15 mice). Once tumors were established by injections of exogenous ascitic fluid, they could progress in the absence of additional injections of ascitic fluid. The mice eventually developed ascitic fluid which contained potent growth factor activity, suggesting that the tumors eventually produced autologous growth factors. This nude mouse model provides a system to study the action of ovarian cancer growth factors on tumor growth in vivo and to evaluate preclinically, therapeutic approaches designed to counteract the activity of these growth factors. PMID:2394835

  5. Apoptosis of AGS human gastric adenocarcinoma cells by methanolic extract of Dictamnus

    PubMed Central

    Park, Hyun Soo; Hong, Noo Ri; Ahn, Tae Seok; Kim, Hyungwoo; Jung, Myeong Ho; Kim, Byung Joo

    2015-01-01

    Background: The root bark of Dictamnus dasycarpus Turcz has traditionally been used in East Asia to treat skin diseases such as eczema, atopic dermatitis, and psoriasis. However, it has also been reported to exhibit an anti-proliferative effect on cancer cells. Objective: To investigate the anti-cancer effects of a methanol extract of Dictamnus dasycarpus root bark (MEDD) on AGS cells (a human gastric adenocarcinoma cell-line). Materials and Methods: An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium assay, a caspase activity assay, cell cycle analysis, mitochondrial membrane potential (MMP) measurements, and western blotting were used to investigate the anti-cancer effects of MEDD on AGS cells. Results: Treatment with MEDD significantly and concentration-dependently inhibited AGS cell growth. MEDD treatment in AGS cells led to increased accumulation of apoptotic sub-G1 phase cells in a concentration-dependent manner. Also, MEDD reduced the expressions of pro-caspase-3, -8 and -9, and increased the active form of caspase-3. Furthermore, subsequent Western blotting revealed elevated levels of poly (ADP-ribose) polymerase protein. MEDD treatment reduced levels of MMP and anti-apoptotic Bcl-2 and Bcl-xL proteins. Pretreatment with SB203580 (a specific inhibitor of p38 mitogen-activated protein kinases), SP600125 (a potent inhibitor of C-Jun N-terminal kinases), or PD98059 (a potent inhibitor of extracellular signal-regulated kinases) did not modify the effects of MEDD treatment. However, pretreatment with LY294002 (a specific inhibitor of Akt) significantly enhanced MEDD-induced cell death. Conclusion: These results suggest that MEDD-mediated cell death is associated with the intrinsic apoptotic pathway and that inhibition of Akt signaling contributes to apoptosis induction by MEDD. PMID:26664023

  6. The Comparison of Anticancer Activity of Thymoquinone and Nanothymoquinone on Human Breast Adenocarcinoma

    PubMed Central

    Dehghani, Hossein; Hashemi, Mehrdad; Entezari, Maliheh; Mohsenifar, Afshin

    2015-01-01

    Cancer is one of the main causes of mortality in the world which is created by the effect of enviromental physico-chemical mutagen and carcinogen agents. The identification of new cytotoxic drugs with low side effects on immune system has developed as important area in new studies of pharmacology. Thymoquinone (TQ), derived from the medicinal spice Nigella sativa (also calledt black cumin) exhibit anti-inflammatory and anti-cancer activities. In this study we employed nanogel-based nanoparticle approach to improve upon its effectiveness. Myristic acid-chitosan (MA-chitosan) nanogels were prepared by the technique of self-assembly. Thymoquinone was loaded into the nanogels. The surface morphology of the prepared nanoparticles was determined using SEM and TEM. The other objective of this study was to examine the in-vitro cytotoxic activity of cell death of Thymoquinone and nanothymoquinone on human breast adenocarcinoma cell line (MCF7). Cytotoxicity and viability of Thymoquinone and nanothymoquinone were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and dye exclusion assay. Transmission electron microscopy confirmed the particle diameter was between 150 to 200 nm. Proliferation of MCF7 cells was significantly inhibited by Thymoquinone and nanothymoquinone in a concentration-dependent manner in defined times. There were significant differences in IC50 Thymoquinone and nanothymoquinone. TQ-loaded nanoparticles proved more effective compared to TQ solution. The high drug-targeting potential and efficiency demonstrates the significant role of the anticancer properties of TQ-loaded nanoparticles. PMID:25901162

  7. Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells

    PubMed Central

    Hossain, Md. Zakir; Kleve, Maurice G

    2011-01-01

    Background The ability to evade apoptosis is one of the key properties of cancer. The apoptogenic effect of nickel nanowires (Ni NWs) on cancer cell lines has never been adequately addressed. Due to the unique physicochemical characteristics of Ni NWs, we envision the development of a novel anticancer therapeutics specifically for pancreatic cancer. Thus, we investigated whether Ni NWs induce ROS-mediated apoptosis in human pancreatic adenocarcinoma (Panc-1) cells. Methods In this study Ni NWs were fabricated using the electrodeposition method. Synthesized Ni NWs were physically characterized by energy dispersive X-ray analysis, UV-Vis spectroscopy of NanoDrop 2000 (UV-Vis), magnetization study, scanning electron microscopy, and transmission electron microscopy. Assessment of morphological apoptotic characteristics by phase contrast microscopy (PCM), Ni-NWs-induced apoptosis staining with ethidium bromide (EB) and acridine orange (AO) followed by fluorescence microscopy (FM) was performed. For molecular biological and biochemical characterization, Panc-1 cell culture and cytotoxic effect of Ni NWs were determined by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Quantitative apoptosis was analyzed by flow cytometry staining with propidium iodide through cell cycle arrest and generation of ROS using 2′, 7′-dichlorofluorescein diacetate fluorescence intensity. In all experiments, Panc-1 cancer cells without any treatment were used as the negative controls. Results The intracellular uptake of Ni NWs through endocytosis by Panc-1 cells was observed by PCM. EB and AO staining of FM and MTT assay qualitatively and quantitatively confirmed the extent of apoptosis. Flow cytometric cell cycle arrest and ROS generation indicated Ni NWs as inducers of apoptotic cell death. Conclusion We investigated the role of Ni NWs as inducers of ROS-mediated apoptosis in Panc-1 cells. These results suggested that Ni NWs could be an effective

  8. The comparison of anticancer activity of thymoquinone and nanothymoquinone on human breast adenocarcinoma.

    PubMed

    Dehghani, Hossein; Hashemi, Mehrdad; Entezari, Maliheh; Mohsenifar, Afshin

    2015-01-01

    Cancer is one of the main causes of mortality in the world which is created by the effect of enviromental physico-chemical mutagen and carcinogen agents. The identification of new cytotoxic drugs with low side effects on immune system has developed as important area in new studies of pharmacology. Thymoquinone (TQ), derived from the medicinal spice Nigella sativa (also calledt black cumin) exhibit anti-inflammatory and anti-cancer activities. In this study we employed nanogel-based nanoparticle approach to improve upon its effectiveness. Myristic acid-chitosan (MA-chitosan) nanogels were prepared by the technique of self-assembly. Thymoquinone was loaded into the nanogels. The surface morphology of the prepared nanoparticles was determined using SEM and TEM. The other objective of this study was to examine the in-vitro cytotoxic activity of cell death of Thymoquinone and nanothymoquinone on human breast adenocarcinoma cell line (MCF7). Cytotoxicity and viability of Thymoquinone and nanothymoquinone were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and dye exclusion assay. Transmission electron microscopy confirmed the particle diameter was between 150 to 200 nm. Proliferation of MCF7 cells was significantly inhibited by Thymoquinone and nanothymoquinone in a concentration-dependent manner in defined times. There were significant differences in IC50 Thymoquinone and nanothymoquinone. TQ-loaded nanoparticles proved more effective compared to TQ solution. The high drug-targeting potential and efficiency demonstrates the significant role of the anticancer properties of TQ-loaded nanoparticles. PMID:25901162

  9. Requirement of T-lymphokine-activated killer cell-originated protein kinase for TRAIL resistance of human HeLa cervical cancer cells

    SciTech Connect

    Kwon, Hyeok-Ran; Lee, Ki Won; Dong, Zigang; Lee, Kyung Bok; Oh, Sang-Muk

    2010-01-01

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) appears to be highly expressed in various cancer cells and to play an important role in maintaining proliferation of cancer cells. However, the underlying mechanism by which TOPK regulates growth of cancer cells remains elusive. Here we report that upregulated endogenous TOPK augments resistance of cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Stable knocking down of TOPK markedly increased TRAIL-mediated apoptosis of human HeLa cervical cancer cells, as compared with control cells. Caspase 8 or caspase 3 activities in response to TRAIL were greatly incremented in TOPK-depleted cells. Ablation of TOPK negatively regulated TRAIL-mediated NF-{kappa}B activity. Furthermore, expression of NF-{kappa}B-dependent genes, FLICE-inhibitory protein (FLIP), inhibitor of apoptosis protein 1 (c-IAP1), or X-linked inhibitor of apoptosis protein (XIAP) was reduced in TOPK-depleted cells. Collectively, these findings demonstrated that TOPK contributed to TRAIL resistance of cancer cells via NF-{kappa}B activity, suggesting that TOPK might be a potential molecular target for successful cancer therapy using TRAIL.

  10. Effect of glucocorticoid on epidermal growth factor receptor in human salivary gland adenocarcinoma cell line HSG.

    PubMed

    Kyakumoto, S; Kurokawa, R; Ota, M

    1990-07-12

    Human salivary gland adenocarcinoma (HSG) cells treated with 10(-6) M triamcinolone acetonide for 48 h exhibited a 1.7- to 2.0-fold increase in [125I]human epidermal growth factor (hEGF) binding capacity as compared with untreated HSG cells. Scatchard analysis of [125I]EGF binding data revealed that the number of binding sites was 83,700 (+/- 29,200) receptors/cell in untreated cells and 160,500 (+/- 35,500) receptors/cell in treated cells. No substantial change in receptor affinity was detected. The dissociation constant of the EGF receptor was 0.78 (+/- 0.26).10(-9) M for untreated cells, whereas it was 0.93 (+/- 0.31).10(-9)M for treated cells. The triamcinolone acetonide-induced increase in [125I]EGF binding capacity was dose-dependent between 10(-9) and 10(-6)M, and maximal binding was observed at 10(-6)M. EGF receptors on HSG cells were affinity-labeled with [125I]EGF by use of the cross-linking reagent disuccinimidyl suberate (DSS). The cross-linked [125I]EGF was 3-4% of the total [125I]EGF bound to HSG cells. The affinity-labeled EGF receptor was detected as a specific 170 kDa band in the autoradiograph after SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Densitometric analysis revealed that triamcinolone acetonide amplified the intensity of this band 2.0-fold over that of the band of untreated cells. EGF receptor synthesis was also measured by immunoprecipitation of [3H]leucine-labeled EGF receptor protein with anti-hEGF receptor monoclonal antibody. Receptor synthesis was increased 1.7- to 1.8-fold when HSG cells were treated with 10(-8)-10(-6)M triamcinolone acetonide for 48 h. When the immunoprecipitated, [35S]methionine-pulse-labeled EGF receptor was analyzed by SDS-PAGE and fluorography, the newly synthesized EGF receptor was detected at the position of 170 kDa; and treatment of HSG cells with triamcinolone acetonide resulted in a 2.0-fold amplification of this 170 kDa band. There was no significant difference in turnover rate of EGF receptor

  11. TipC and the chorea-acanthocytosis protein VPS13A regulate autophagy in Dictyostelium and human HeLa cells

    PubMed Central

    Muñoz-Braceras, Sandra; Calvo, Rosa; Escalante, Ricardo

    2015-01-01

    Deficient autophagy causes a distinct phenotype in Dictyostelium discoideum, characterized by the formation of multitips at the mound stage. This led us to analyze autophagy in a number of multitipped mutants described previously (tipA−, tipB−, tipC−, and tipD−). We found a clear autophagic dysfunction in tipC− and tipD− while the others showed no defects. tipD codes for a homolog of Atg16, which confirms the role of this protein in Dictyostelium autophagy and validates our approach. The tipC-encoded protein is highly similar to human VPS13A (also known as chorein), whose mutations cause the chorea-acanthocytosis syndrome. No member of the VPS13 protein family has been previously related to autophagy despite the presence of a region of similarity to Atg2 at the C terminus. This region also contains the conserved domain of unknown function DUF1162. Of interest, the expression of the TipC C-terminal coding sequence containing these 2 motifs largely complemented the mutant phenotype. Dictyostelium cells lacking TipC displayed a reduced number of autophagosomes visualized with the markers GFP-Atg18 and GFP-Atg8 and an impaired autophagic degradation as determined by a proteolytic cleavage assay. Downregulation of human VPS13A in HeLa cells by RNA interference confirmed the participation of the human protein in autophagy. VPS13A-depleted cells showed accumulation of autophagic markers and impaired autophagic flux. PMID:25996471

  12. Association of STAT3 with Cx26 and Cx43 in human uterine endometrioid adenocarcinoma

    PubMed Central

    SULKOWSKA, URSZULA; FEBP, ANDRZEJ WINCEWICZ; SULKOWSKI, STANISLAW

    2016-01-01

    Signal transducer and activator of transcription-3 (STAT3) drives endometrial carcinogenesis, while signaling via gap junctions gets weakened during cancer progression. Connexin 26 (Cx26), Cx43 and STAT3 were immunohistochemically evaluated in 78 endometrioid adenocarcinomas: Nuclear expression of STAT3 positively correlated with cytoplasmic immunoreactivity to Cx43 (P=0.004, r=0.318) and Cx26 (P=0.006, r=0.309). STAT3 correlated with Cx43 (P=0.022, r=0.411) and Cx26 (P=0.008 r=0.466) in G1 tumors. A statistically significant linkage remained in G2 cancers between STAT3 and Cx43 (P=0.061, r=0.262) and Cx26 (P=0.016, r=0.331); however, no correlations were observed in G3 tumors. STAT3 was significantly associated with Cx 43 (p=0.003, r=0.684) and Cx26 (p=0.049, r=0.500) in estrogen receptor (ER) negative adenocarcinomas. STAT3 did not correlate with Cx43 in ER positive adenocarcinomas; however, STAT3 expression remained correlated with Cx26 expression (P=0.035, r=0.268). In progesterone receptor negative tumors STAT3 was significantly associated with Cx43 (P=0.035, r=0.451) and Cx26 (P<0.0001, r=0.707). However, in PgR positive adenocarcinomas STAT3 correlated with Cx43 (P=0.03, r=0.290) but not with Cx26. Thus, it appears that hormone dependent acceleration of cancer growth breaks the association between STAT3 and Cx expression. These associations become weaker as the tumors dedifferentiate from G1 to G3 endometrioid adenocarcinomas. The present study provides evidence that the loss of correlation between STAT3 and selected Cx proteins occurs in tumors with more aggressive behavior. PMID:27313754

  13. Preliminary studies of fluorescence image-guided photothermal therapy of human oesophageal adenocarcinoma in vivo using multifunctional gold nanorods

    NASA Astrophysics Data System (ADS)

    Nabavi, Elham; Singh, Mohan; Zhou, Yu; Gallina, Maria Elena; Zhao, Hailin; Ma, Daqing; Cass, Anthony; Hanna, George; Elson, Daniel S.

    2016-03-01

    We present a preliminary in vivo study of fluorescence imaging and photothermal therapy (PTT) of human oesophageal adenocarcinoma using multi-functionalised gold nanorods (GNRs). After establishing tumour xenograft in mouse functionalised GNRs were administrated intravenously (IV). Fluorescence imaging was performed to detect the tumour area. The intensity of the fluorescence signal varied significantly across the tumour site and surrounding tissues. PTT was then performed using a 808 nm continuous wave diode laser to irradiate the tumour for 3 minutes, inducing a temperature rise of ~44°C, which photothermally ablated the tumour.

  14. Anti-proliferative effect of RCE-4 from Reineckia carnea on human cervical cancer HeLa cells by inhibiting the PI3K/Akt/mTOR signaling pathway and NF-κB activation.

    PubMed

    Bai, Caihong; Yang, Xiaojiao; Zou, Kun; He, Haibo; Wang, Junzhi; Qin, Huilin; Yu, Xiaoqin; Liu, Chengxiong; Zheng, Juyan; Cheng, Fan; Chen, Jianfeng

    2016-06-01

    Cervical cancer is the second leading cause of cancer deaths in women worldwide. In recent years, the studies find that inflammation is a critical component of tumor progression, and the ideal therapeutic methods should be aimed at the inflammation reaction triggers. (1β,3β,5β,25S)-spirostan-1,3-diol1-[α-L-rhamnopyranosyl-(1 → 2)-β-D-xylopyranoside] (RCE-4) was the main active composition of Reineckia carnea (Andr.) Kunth. It significantly induced apoptosis in cervical cancer Caski cells through the mitochondrial pathway in our previous studies; however, its underlying mechanism remains poorly understood. This study aimed to further evaluate the effect of RCE-4 on human cervical cancer HeLa cells. Based on this observation, we investigated the anti-cervical cancer effect of RCE-4 by modulating phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway, nuclear factor-kappa B (NF-κB) activation, and inflammation-related key factors in HeLa cells. The results indicated that the HeLa cell was the most sensitive with an IC50 of 7.01 μM; RCE-4 significantly promoted the release of cellular lactate dehydrogenase (LDH); increased DNA fragmentation and apoptosis; reduced PI3K, Akt, mTOR, and NF-κBp65 phosphorylation levels; increased the Bax and cleaved poly (ADP-ribose) polymerase (PARP) protein levels; suppressed Bcl-2 protein expression; elevated the Bax/Bcl-2 expression ratio; and decreased the interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) mRNA expressions in HeLa cells in a concentration-dependent manner. These findings suggest that RCE-4 exerted beneficially anti-cervical cancer effect on HeLa cells, mainly inhibiting PI3K/Akt/mTOR signaling pathway phosphorylation and NF-κB activation, promoting HeLa cell apoptosis. Graphical abstract Anti-tumor effect of RCE-4 on HeLa cells.

  15. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma.

    PubMed

    Xu, Liyun; Huang, Yanyan; Tan, Linlin; Yu, Wei; Chen, Dongdong; Lu, ChangChang; He, Jianying; Wu, Guoqing; Liu, Xiaoguang; Zhang, Yongkui

    2015-12-01

    T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been shown to play an important role in mediating NK-cell function in human diseases. However, the relationship between Tim-3 expression in natural killer (NK) cells and human lung adenocarcinoma remains unclear. We therefore investigated the expression of Tim-3 in NK cells and explored the effect of Tim-3 blockade on NK cell-mediated activity in human lung adenocarcinoma. Upregulated expression of Tim-3 on CD3-CD56+ cells (P<0.05) and CD3-CD56(dim) cells (P<0.05) of patients with lung adenocarcinoma was detected by flow cytometry. Moreover, Tim-3 expression in CD3-CD56+ NK cells was higher in patients with lung adenocarcinoma with lymph node metastasis (LNM) (P<0.05) or with tumor stage T3-T4 (P<0.05). Tim-3 expression in CD56(dim) NK-cell subset was higher in patients with tumor size ≥3cm (P<0.05), or LNM (P<0.05) or with tumor stage T3-T4 (P<0.05). Further analysis showed that higher expressions of Tim-3 on both CD3-CD56+ NK cells and CD56(dim) NK-cell subset were independently correlated with shorter overall survival of patients with lung adenocarcinoma (log-rank test, P=0.0418, 0.0406, respectively). Importantly, blockade of Tim-3 signaling with anti-Tim-3 antibodies resulted in the increased cytotoxicity and IFN-γ production of peripheral NK cells from patients with lung adenocarcinoma. Our data indicate that Tim-3 expression in NK cells can function as a prognostic biomarker in human lung adenocarcinoma and support that Tim-3 could be a new target for an immunotherapeutic strategy.

  16. Estimate of the global burden of cervical adenocarcinoma and potential impact of prophylactic human papillomavirus vaccination

    PubMed Central

    2013-01-01

    Background Data on the current burden of adenocarcinoma (ADC) and histology-specific human papillomavirus (HPV) type distribution are relevant to predict the future impact of prophylactic HPV vaccines. Methods We estimate the proportion of ADC in invasive cervical cancer, the global number of cases of cervical ADC in 2015, the effect of cervical screening on ADC, the number of ADC cases attributable to high-risk HPV types -16, -18, -45, -31 and -33, and the potential impact of HPV vaccination using a variety of data sources including: GLOBOCAN 2008, Cancer Incidence in Five Continents (CI5) Volume IX, cervical screening data from the World Health Organization/Institut Català d'Oncologia Information Centre on HPV and cervical cancer, and published literature. Results ADC represents 9.4% of all ICC although its contribution varies greatly by country and region. The global crude incidence rate of cervical ADC in 2015 is estimated at 1.6 cases per 100,000 women, and the projected worldwide incidence of ADC in 2015 is 56,805 new cases. Current detection rates for HPV DNA in cervical ADC tend to range around 80–85%; the lower HPV detection rates in cervical ADC versus squamous cell carcinoma may be due to technical artefacts or to misdiagnosis of endometrial carcinoma as cervical ADC. Published data indicate that the five most common HPV types found in cervical ADC are HPV-16 (41.6%), -18 (38.7%), -45 (7.0%), -31 (2.2%) and -33 (2.1%), together comprising 92% of all HPV positive cases. Future projections using 2015 data, assuming 100% vaccine coverage and a true HPV causal relation of 100%, suggest that vaccines providing protection against HPV-16/18 may theoretically prevent 79% of new HPV-related ADC cases (44,702 cases annually) and vaccines additionally providing cross-protection against HPV-31/33/45 may prevent 89% of new HPV-related ADC cases (50,769 cases annually). Conclusions It is predicted that the currently available HPV vaccines will be highly effective

  17. Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples

    PubMed Central

    2011-01-01

    Background Readthrough fusions across adjacent genes in the genome, or transcription-induced chimeras (TICs), have been estimated using expressed sequence tag (EST) libraries to involve 4-6% of all genes. Deep transcriptional sequencing (RNA-Seq) now makes it possible to study the occurrence and expression levels of TICs in individual samples across the genome. Methods We performed single-end RNA-Seq on three human prostate adenocarcinoma samples and their corresponding normal tissues, as well as brain and universal reference samples. We developed two bioinformatics methods to specifically identify TIC events: a targeted alignment method using artificial exon-exon junctions within 200,000 bp from adjacent genes, and genomic alignment allowing splicing within individual reads. We performed further experimental verification and characterization of selected TIC and fusion events using quantitative RT-PCR and comparative genomic hybridization microarrays. Results Targeted alignment against artificial exon-exon junctions yielded 339 distinct TIC events, including 32 gene pairs with multiple isoforms. The false discovery rate was estimated to be 1.5%. Spliced alignment to the genome was less sensitive, finding only 18% of those found by targeted alignment in 33-nt reads and 59% of those in 50-nt reads. However, spliced alignment revealed 30 cases of TICs with intervening exons, in addition to distant inversions, scrambled genes, and translocations. Our findings increase the catalog of observed TIC gene pairs by 66%. We verified 6 of 6 predicted TICs in all prostate samples, and 2 of 5 predicted novel distant gene fusions, both private events among 54 prostate tumor samples tested. Expression of TICs correlates with that of the upstream gene, which can explain the prostate-specific pattern of some TIC events and the restriction of the SLC45A3-ELK4 e4-e2 TIC to ERG-negative prostate samples, as confirmed in 20 matched prostate tumor and normal samples and 9 lung cancer

  18. Human Leukocyte Antigen Class I and II Alleles and Cervical Adenocarcinoma

    PubMed Central

    Safaeian, Mahboobeh; Johnson, Lisa G.; Yu, Kai; Wang, Sophia S.; Gravitt, Patti E.; Hansen, John A.; Carrington, Mary; Schwartz, Stephen M.; Gao, Xiaojiang; Hildesheim, Allan; Madeleine, Margaret M.

    2014-01-01

    Background: Associations between human leukocyte antigens (HLA) alleles and cervical cancer are largely representative of squamous cell carcinoma (SCC), the major histologic subtype. We evaluated the association between HLA class I (A, B, and C) and class II (DRB1 and DQB1) loci and risk of cervical adenocarcinoma (ADC), a less common but aggressive histologic subtype. Methods: We pooled data from the Eastern and Western US Cervical Cancer studies, and evaluated the association between individual alleles and allele combinations and ADC (n = 630 ADC; n = 775 controls). Risk estimates were calculated for 11 a priori (based on known associations with cervical cancer regardless of histologic type) and 38 non a priori common alleles, as odds ratios (OR) and 95% confidence intervals (CI), adjusted for age and study. In exploratory analysis, we compared the risk associations between subgroups with HPV16 or HPV18 DNA in ADC tumor tissues in the Western US study cases and controls. Results: Three of the a priori alleles were significantly associated with decreased risk of ADC [DRB1*13:01 (OR = 0.61; 95% CI: 0.41–0.93), DRB1*13:02 (OR = 0.49; 95% CI: 0.31–0.77), and DQB1*06:03 (OR = 0.64; 95% CI: 0.42–0.95)]; one was associated with increased risk [B*07:02 (OR = 1.39; 95% CI: 1.07–1.79)]. Among alleles not previously reported, DQB1*06:04 (OR = 0.46; 95% CI: 0.27–0.78) was associated with decreased risk of ADC and remained significant after correction for multiple comparisons, and C*07:02 (OR = 1.41; 95% CI: 1.09–1.81) was associated with increased risk. We did not observe a difference by histologic subtype. ADC was most strongly associated with increased risk with B*07:02/C*07:02 alleles (OR = 1.33; 95% CI: 1.01–1.76) and decreased risk with DRB1*13:02/DQB1*06:04 (OR = 0.41; 95% CI: 0.21–0.80). Conclusion: Results suggest that HLA allele associations with cervical ADC are similar to those for cervical SCC. An intriguing

  19. Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8-/caspase-3-dependent pathway.

    PubMed

    Ying, Tsung-Ho; Yang, Shun-Fa; Tsai, Su-Ju; Hsieh, Shu-Ching; Huang, Yi-Chang; Bau, Da-Tian; Hsieh, Yi-Hsien

    2012-02-01

    Fisetin is a naturally occurring flavonoid that has been reported to inhibit the proliferation and to induce apoptotic cell death in several tumor cells. However, the apoptosis-inducing effect of fisetin on tumor cell lines was investigated besides HeLa cells. In this study, we found that fisetin induced apoptosis of HeLa cells in a dose- and time-dependent manner, as evidenced by nuclear staining of 4'-6-Diamidino-2-phenylindole (DAPI), flow cytometry assay, and Annexin-V/PI double-labeling. In addition, fisetin triggered the activations of caspases-3 and -8 and the cleavages of poly (ADP-ribose) polymerase, resulting in apoptosis induction. Moreover, treatment of HeLa cells with fisetin induced a sustained activation of the phosphorylation of ERK1/2, and inhibition of ERK1/2 by PD98059 (MEK1/2 inhibitor) or transfection with the mutant ERK1/2 expression vector significantly abolished the fisetin-induced apoptosis through the activation of caspase-8/-3 pathway. The in vivo xenograft mice experiments revealed that fisetin significantly reduced tumor growth in mice with HeLa tumor xenografts. In conclusion, our results indicated that fisetin exhibited anti-cancer effect and induced apoptosis in HeLa cell lines both in vitro and in vivo.

  20. Kinetic analysis of butyrate transport in human colon adenocarcinoma cells reveals two different carrier-mediated mechanisms.

    PubMed

    Lecona, Emilio; Olmo, Nieves; Turnay, Javier; Santiago-Gómez, Angélica; López de Silanes, Isabel; Gorospe, Myriam; Lizarbe, M Antonia

    2008-01-01

    Butyrate has antitumorigenic effects on colon cancer cells, inhibits cell growth and promotes differentiation and apoptosis. These effects depend on its intracellular concentration, which is regulated by its transport. We have analysed butyrate uptake kinetics in human colon adenocarcinoma cells sensitive to the apoptotic effects of butyrate (BCS-TC2, Caco-2 and HT-29), in butyrate-resistant cells (BCS-TC2.BR2) and in normal colonic cells (FHC). The properties of transport were analysed with structural analogues, specific inhibitors and different bicarbonate and sodium concentrations. Two carrier-mediated mechanisms were detected: a low-affinity/high-capacity (K(m)=109+/-16 mM in BCS-TC2 cells) anion exchanger and a high-affinity/low-capacity (K(m)=17.9+/-4.0 microM in BCS-TC2 cells) proton-monocarboxylate co-transporter that was energy-dependent and activated via PKCdelta (protein kinase Cdelta). All adenocarcinoma cells analysed express MCT (monocarboxylate transporter) 1, MCT4, ancillary protein CD147 and AE2 (anion exchanger 2). Silencing experiments show that MCT1, whose expression increases with butyrate treatment in butyrate-sensitive cells, plays a key role in high-affinity transport. Low-affinity uptake was mediated by a butyrate/bicarbonate antiporter along with a possible contribution of AE2 and MCT4. Butyrate treatment increased uptake in a time- and dose-dependent manner in butyrate-sensitive but not in butyrate-resistant cells. The two butyrate-uptake activities in human colon adenocarcinoma cells enable butyrate transport at different physiological conditions to maintain cell functionality. The high-affinity/low-capacity transport functions under low butyrate concentrations and may be relevant for the survival of carcinoma cells in tumour regions with low glucose and butyrate availability as well as for the normal physiology of colonocytes.

  1. Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers

    PubMed Central

    Mauri, Giorgio; Jachetti, Elena; Comuzzi, Barbara; Dugo, Matteo; Arioli, Ivano; Miotti, Silvia; Sangaletti, Sabina; Di Carlo, Emma; Tripodo, Claudio; Colombo, Mario P.

    2016-01-01

    Osteopontin (OPN) is a secreted glycoprotein, that belongs to the non-structural extracellular matrix (ECM), and its over expression in human prostate cancer has been associated with disease progression, androgen independence and metastatic ability. Nevertheless, the pathophysiology of OPN in prostate tumorigenesis has never been studied. We crossed TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice with OPN deficient (OPN−/−) mice and followed tumor onset and progression in these double mutants. Ultrasound examination detected the early onset of a rapidly growing, homogeneous and spherical tumor in about 60% of OPN−/− TRAMP mice. Such neoplasms seldom occurred in parental TRAMP mice otherwise prone to adenocarcinomas and were characterized for being androgen receptor negative, highly proliferative and endowed with neuroendocrine (NE) features. Gene expression profiling showed up-regulation of genes involved in tumor progression, cell cycle and neuronal differentiation in OPN-deficient versus wild type TRAMP tumors. Down-regulated genes included key genes of TGFa pathway, including SMAD3 and Filamin, which were confirmed at the protein level. Furthermore, NE genes and particularly those characterizing early prostatic lesions of OPN-deficient mice were found to correlate with those of human prostate NE tumours. These data underscore a novel role of OPN in the early stages of prostate cancer growth, protecting against the development of aggressive NE tumors. PMID:26700622

  2. 4-Nitroquinoline-1-oxide effects human lung adenocarcinoma A549 cells by regulating the expression of POLD4

    PubMed Central

    HUANG, QIN-MIAO; ZENG, YI-MING; ZHANG, HUA-PING; LV, LIANG-CHAO; YANG, DONG-YONG; LIN, HUI-HUANG

    2016-01-01

    The aim of the present study was to explore the expression of POLD4 in human lung adenocarcinoma A549 cells under 4-nitroquinoline-1-oxide (4NQO) stimulation to investigate the role of POLD4 in smoking-induced lung cancer. The lung cancer A549 cell line was treated with 4NQO, with or without MG132 (an inhibitor of proteasome activity), and subsequently the POLD4 level was determined by western blot analysis. Secondly, the cell sensitivity to 4NQO and Taxol was determined when the POLD4 expression level was downregulated by siRNA. The POLD4 protein levels in the A549 cells decreased following treatment with 4NQO; however, MG132 could reverse this phenotype. Downregulation of the POLD4 expression by siRNA enhanced A549 cell sensitivity to 4NQO, but not to Taxol. In conclusion, 4NQO affects human lung adenocarcinoma A549 cells by regulating the expression of POLD4. PMID:26998273

  3. In vitro evaluation of the cellular effect of indium tin oxide nanoparticles using the human lung adenocarcinoma A549 cells.

    PubMed

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2015-05-01

    Indium tin oxide (ITO) is widely used in liquid crystal displays (LCDs) or plasma and mobile phone displays. Elevated production and usage of ITO in such displays have led to increased concerns over the safety of industrial workers exposed to particulate aerosols produced during cutting, grinding and polishing of these materials. However, the cellular effects of ITO nanoparticles (NPs) are still unclear, although it has been reported that micro-scale ITO particles induce cytotoxicity. The aim of this study was to examine the potential of ITO NPs to induce cytotoxicity, oxidative stress, and DNA damage using human lung adenocarcinoma A549 cells. Here, stable dispersions of a medium containing ITO NPs were obtained using pre-adsorption and centrifugal fractionation methods, and the A549 cells were incubated in this medium. The ITO NPs showed low cytotoxic effects as shown by the WST-1 and LDH assays. Transmission electron microscopy observations showed the cellular uptake of ITO NPs. The ITO NPs increased the intracellular level of reactive oxygen species and the expression of the heme oxygenase 1 gene. Further, the results of alkaline comet assays showed that ITO NPs induced DNA damage. Thus, these results suggest that ITO NPs possess a genotoxic potential on human lung adenocarcinoma A549 cells.

  4. Shallot and licorice constituent isoliquiritigenin arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and initiation of the mitochondrial system in human cervical carcinoma HeLa cells.

    PubMed

    Hsu, Ya-Ling; Chia, Chun-Chieh; Chen, Ping-Jye; Huang, Su-Er; Huang, Soon-Cen; Kuo, Po-Lin

    2009-07-01

    This study is the first to investigate the anticancer effect of isoliquiritigenin (ISL) in human cervical carcinoma HeLa cells. The results reveal that ISL inhibits HeLa cells by blocking cell cycle progression in the G2/M phase and inducing apoptosis. Blockade of cell cycle is associated with increased activation of ataxia telangiectasia-mutated (ATM). Activation of ATM by ISL phosphorylated p53 at Serine15, resulting in increased stability of p53 by decreasing p53 and murine double minute-2 (MDM2) interaction. In addition, ISL-mediated G2/M phase arrest was also associated with decreases in the amounts of cyclin B, cyclin A, cdc2, and cdc25C, and increases in the phosphorylation of Chk2, cdc25C, and cdc2. The specific ATM inhibitor caffeine significantly decreased ISL-mediated G2/M arrest by inhibiting the phosphorylation of p53 (Serine15) and Chk2. ISL induced apoptotic cell death is associated with changes in the expression of Bax and Bak, decreasing levels of Bcl-2 and Bcl-X(L), and subsequently triggering mitochondrial apoptotic pathway. In addition, pretreatment of cells with caspase-9 inhibitor blocked ISL-induced apoptosis, indicating that caspase-9 activation is involved in ISL-mediated HeLa cell apoptosis. These findings suggest that ISL may be a promising chemopreventive agent against human uterine cervical cancer.

  5. Shallot and licorice constituent isoliquiritigenin arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and initiation of the mitochondrial system in human cervical carcinoma HeLa cells.

    PubMed

    Hsu, Ya-Ling; Chia, Chun-Chieh; Chen, Ping-Jye; Huang, Su-Er; Huang, Soon-Cen; Kuo, Po-Lin

    2009-07-01

    This study is the first to investigate the anticancer effect of isoliquiritigenin (ISL) in human cervical carcinoma HeLa cells. The results reveal that ISL inhibits HeLa cells by blocking cell cycle progression in the G2/M phase and inducing apoptosis. Blockade of cell cycle is associated with increased activation of ataxia telangiectasia-mutated (ATM). Activation of ATM by ISL phosphorylated p53 at Serine15, resulting in increased stability of p53 by decreasing p53 and murine double minute-2 (MDM2) interaction. In addition, ISL-mediated G2/M phase arrest was also associated with decreases in the amounts of cyclin B, cyclin A, cdc2, and cdc25C, and increases in the phosphorylation of Chk2, cdc25C, and cdc2. The specific ATM inhibitor caffeine significantly decreased ISL-mediated G2/M arrest by inhibiting the phosphorylation of p53 (Serine15) and Chk2. ISL induced apoptotic cell death is associated with changes in the expression of Bax and Bak, decreasing levels of Bcl-2 and Bcl-X(L), and subsequently triggering mitochondrial apoptotic pathway. In addition, pretreatment of cells with caspase-9 inhibitor blocked ISL-induced apoptosis, indicating that caspase-9 activation is involved in ISL-mediated HeLa cell apoptosis. These findings suggest that ISL may be a promising chemopreventive agent against human uterine cervical cancer. PMID:19536869

  6. [Urachal adenocarcinoma].

    PubMed

    Dakir, M; Dahami, Z; Sarf, I; Tahri, A; Elmrini, M; Benjelloun, S

    2001-09-01

    Cancer of the urachus is very unusual. The lesion is a mucosecretory adenocarcinoma. The diagnosis is usually established late, and has a serious prognosis because of a long clinical latency. We report a case of metastatic adenocarcinoma of the urachus revealed by hematuria. A review of the literature allows us to demonstrate the rarity of this tumour and to demonstrate its various clinical, histological, radiological and therapeutical aspects.

  7. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles

    PubMed Central

    Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter–driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter’s tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP’s gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter–driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk–carrying JCPyV VLPs. In mice injected with pSPB-tk–carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma. PMID:27322500

  8. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    PubMed

    Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma. PMID:27322500

  9. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.

  10. Down-regulation of lipocalin 2 suppresses the growth of human lung adenocarcinoma through oxidative stress involving Nrf2/HO-1 signaling.

    PubMed

    Song, Baoquan; Zhang, Hairui; Jiang, Lei; Chi, Ying; Tian, Jianjian; Du, Wenjing; Yu, Bentong; Han, Zhongchao

    2015-10-01

    Lipocalin 2 (LCN2), a multifunctional secretory protein known as neutrophil gelatinase-associated lipocalin (NGAL), is expressed in a variety of cancers. However, little is known about the biological functions of NGAL in the development of lung adenocarcinoma. In the present study, we primarily found that NGAL expression was up-regulated in human lung adenocarcinoma tissues. Additionally, depletion of NGAL expression decreased the ability of cell proliferation and induced cell apoptosis. Furthermore, with the addition of N-acetylcysteine, a scavenger of reactive oxygen species (ROS), it was found that NGAL depletion was sufficient to cause apoptosis of lung adenocarcinoma cells by generating ROS through the inhibition of the nuclear factor E2-related factor 2/heme oxygenase-1 anti-oxidant pathway. Finally, the effect of NGAL down-regulation on the growth of human lung adenocarcinoma was determined in BALB/c nude mice. These findings demonstrate that NGAL may be a potential therapy target for patients with lung adenocarcinoma.

  11. Induction of apoptosis by gallic acid in human stomach cancer KATO III and colon adenocarcinoma COLO 205 cell lines.

    PubMed

    Yoshioka, K; Kataoka, T; Hayashi, T; Hasegawa, M; Ishi, Y; Hibasami, H

    2000-01-01

    Antitumor effects of gallic acid on human stomach cancer KATO III cells and human colon adenocarcinoma COLO 205 cells were investigated. The exposures of KATO III and COLO 205 cells to gallic acid led to both growth inhibition and induction of apoptosis. Morphological changes showing apoptotic bodies were observed in both the cell lines treated with gallic acid. The fragmentations by gallic acid of DNA to oligonucleosomal-sized fragments, that are characteristics of apoptosis, were observed to be concentration- and time-dependent. These findings suggest that growth inhibitions by gallic acid of KATO III cells and COLO 205 cells result from the apoptosis induced by gallic acid. Thus, gallic acid might be a candidate drug for digestive gut cancer treatment to overcome the resistance to chemotherapeutic drugs. PMID:11032918

  12. NF-κB plays a key role in microcystin-RR-induced HeLa cell proliferation and apoptosis.

    PubMed

    Chen, Liang; Zhang, Xin; Chen, Jun; Zhang, Xuezhen; Fan, Huihui; Li, Shangchun; Xie, Ping

    2014-09-01

    Microcystins (MCs) are well-known cyanobacterial toxins produced in eutrophic waters and can act as potential carcinogens and have caused serious risk to human health. However, pleiotropic even paradoxical actions of cells exposure to MCs have been reported, and the mechanisms of MC-induced tumorigenesis and apoptosis are still unknown. In this study, we performed the first comprehensive in vitro investigation on carcinogenesis associated with nuclear factor kappa B (NF-κB) and its downstream genes in HeLa cells (Human cervix adenocarcinoma cell line from epithelial cells) exposure to MC-RR. HeLa cells were treated with 0, 20, 40, 60, and 80 µg/mL MC-RR for 4, 8, 12, and 24 h. HeLa cells presented dualistic responses to different doses of MCs. CCK8 assay showed that MC-RR exposure evidently enhanced cell viability of HeLa cells at lower MCs doses. Cell cycle and apoptosis analysis revealed that lower MCs doses promoted G1/S transition and cell proliferation while higher doses of MCs induced apoptosis, with a dose-dependent manner. Electrophoretic mobility shift assay (EMSA) revealed that MC-RR could increase/decrease NF-κB activity at lower/higher MC-RR doses, respectively. Furthermore, the expression of NF-κB downstream target genes including c-FLIP, cyclinD1, c-myc, and c-IAP2 showed the same variation trend as NF-κB activity both at mRNA and protein levels, which were induced by lower doses of MC-RR and suppressed by higher doses. Our data verified for the first time that NF-κB pathway may mediate MC-induced cell proliferation and apoptosis and provided a better understanding of the molecular mechanism for potential carcinogenicity of MC-RR.

  13. Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation.

    PubMed

    Pariente, Roberto; Pariente, José A; Rodríguez, Ana B; Espino, Javier

    2016-01-01

    Melatonin has antitumor activity via several mechanisms including its antiproliferative and pro-apoptotic effects as well as its potent antioxidant actions, although recent evidence has indicated that melatonin may perform pro-oxidant actions in tumor cells. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs. This study was intended to evaluate the in vitro effect of melatonin on the cytotoxic and pro-apoptotic actions of various chemotherapeutic agents in cervical cancer HeLa cells. Herein, we found that both melatonin and three of the chemotherapeutic drugs tested, namely cisplatin (CIS), 5-fluorouracil (5-FU), and doxorubicin, induced a decrease in HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of such chemotherapeutic agents. Consistently, costimulation of HeLa cells with any chemotherapeutic agent in the presence of melatonin further increased caspase-3 activation, particularly in CIS- and 5-FU-challenged cells. Likewise, concomitant treatments with melatonin and CIS significantly enhanced the ratio of cells entering mitochondrial apoptosis due to reactive oxygen species (ROS) overproduction, substantially augmented the population of apoptotic cells, and markedly enlarged DNA fragmentation compared to the treatments with CIS alone. Nonetheless, melatonin only displayed moderate chemosensitizing effects in 5-FU-stimulated HeLa cells, as suggested by slight increments in the percentage of cells stimulated for ROS production and in the proportion of early apoptotic cells compared to the treatments with 5-FU alone. In summary, our findings provided evidence that in vitro melatonin strongly enhances CIS-induced cytotoxicity and apoptosis in HeLa cells and, hence, the indoleamine could be potentially applied to cervical cancer treatment as a powerful synergistic agent.

  14. Galectin-1 is overexpressed in CD133+ human lung adenocarcinoma cells and promotes their growth and invasiveness

    PubMed Central

    Zhou, Xuefeng; Li, Dan; Wang, Xianguo; Zhang, Bo; Zhu, Hua; Zhao, Jinping

    2015-01-01

    Previous studies demonstrated that a subpopulation of cancer cells, which are CD133 positive (CD133+) feature higher invasive and metastatic abilities, are called cancer stem cells (CSCs). By using tumor cells derived from patients with lung adenocarcinoma, we found that galectin-1 is highly overexpressed in the CD133+ cancer cells as compared to the normal cancer cells (CD133−) from the same patients. We overexpressed galectin-1 in CD133− cancer cells and downregulated it in CSCs. We found that overexpression of galectin-1 promoted invasiveness of CD133− cells, while knockdown of galectin-1 suppressed proliferation, colony formation and invasiveness of CSCs. Furthermore, tumor growth was significantly inhibited in CSCs xenografts with knockdown of galectin-1 as compared to CSCs treated with scramble siRNAs. Biochemical studies revealed that galectin-1 knockdown led to the suppression of COX-2/PGE2 and AKT/mTOR pathways, indicating galectin-1 might control the phenotypes of CSCs by regulating these signaling pathways. Finally, a retrospective study revealed that galectin-1 levels in blood circulation negatively correlates with overall survival and positively correlates with lymph node metastasis of the patients. Taken together, these findings suggested that galectin-1 plays a major role on the tumorigenesis and invasiveness of CD133+ cancer cells and might serve as a potential therapeutic target for treatment of human patients with lung adenocarcinoma. PMID:25605013

  15. Antitumor effect of COOH-terminal polypeptide of human TERT is associated with the declined expression of hTERT and NF-κB p65 in HeLa cells.

    PubMed

    Wu, Xian; Chen, Jiasheng; Cao, Ying; Xie, Baoping; Li, Hongwei; Zhou, Pingzheng; Qiu, Yuchang; Pang, Jianxin

    2015-12-01

    Human telomerase reverse transcriptase (hTERT) plays an important role in the development of tumors and has been investigated as a potent target for anticancer therapy. In the present study, we constructed a recombinant adenovirus, Ad-EGFP-C197 which was capable of expressing COOH‑terminal polypeptide of hTERT (amino acid 936-1,132, termed as C197 for the reason that it contains 197 amino acids). Infection of HeLa cells with Ad-EGFP-C197 suppressed the activity of telomerase, decreased the expression of hTERT and NF-κB p65, and induced rapid growth delay and apoptosis of HeLa cells in vitro. In nude mice xenografted with HeLa tumors, injection of Ad-EGFP-C197 into the tumor nodule significantly slowed tumor growth and promoted tumor cell apoptosis, as well as reduced the expression of NF-κB p65 in tumor tissues. In the present study, we suggest that the antitumor effect of C197 is associated with the declined expression of hTERT and NF-κB p65. Our results highlight the potential of C197 in tumor therapy.

  16. The aqueous extract of Ficus religiosa induces cell cycle arrest in human cervical cancer cell lines SiHa (HPV-16 Positive) and apoptosis in HeLa (HPV-18 positive).

    PubMed

    Choudhari, Amit S; Suryavanshi, Snehal A; Kaul-Ghanekar, Ruchika

    2013-01-01

    Natural products are being extensively explored for their potential to prevent as well as treat cancer due to their ability to target multiple molecular pathways. Ficus religiosa has been shown to exert diverse biological activities including apoptosis in breast cancer cell lines. In the present study, we report the anti-neoplastic potential of aqueous extract of F. religiosa (FRaq) bark in human cervical cancer cell lines, SiHa and HeLa. FRaq altered the growth kinetics of SiHa (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner. It blocked the cell cycle progression at G1/S phase in SiHa that was characterized by an increase in the expression of p53, p21 and pRb proteins with a simultaneous decrease in the expression of phospho Rb (ppRb) protein. On the other hand, in HeLa, FRaq induced apoptosis through an increase in intracellular Ca(2+) leading to loss of mitochondrial membrane potential, release of cytochrome-c and increase in the expression of caspase-3. Moreover, FRaq reduced the migration as well as invasion capability of both the cervical cancer cell lines accompanied with downregulation of MMP-2 and Her-2 expression. Interestingly, FRaq reduced the expression of viral oncoproteins E6 and E7 in both the cervical cancer cell lines. All these data suggest that F. religiosa could be explored for its chemopreventive potential in cervical cancer. PMID:23922932

  17. The Aqueous Extract of Ficus religiosa Induces Cell Cycle Arrest in Human Cervical Cancer Cell Lines SiHa (HPV-16 Positive) and Apoptosis in HeLa (HPV-18 Positive)

    PubMed Central

    Choudhari, Amit S.; Suryavanshi, Snehal A.; Kaul-Ghanekar, Ruchika

    2013-01-01

    Natural products are being extensively explored for their potential to prevent as well as treat cancer due to their ability to target multiple molecular pathways. Ficus religiosa has been shown to exert diverse biological activities including apoptosis in breast cancer cell lines. In the present study, we report the anti-neoplastic potential of aqueous extract of F. religiosa (FRaq) bark in human cervical cancer cell lines, SiHa and HeLa. FRaq altered the growth kinetics of SiHa (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner. It blocked the cell cycle progression at G1/S phase in SiHa that was characterized by an increase in the expression of p53, p21 and pRb proteins with a simultaneous decrease in the expression of phospho Rb (ppRb) protein. On the other hand, in HeLa, FRaq induced apoptosis through an increase in intracellular Ca2+ leading to loss of mitochondrial membrane potential, release of cytochrome-c and increase in the expression of caspase-3. Moreover, FRaq reduced the migration as well as invasion capability of both the cervical cancer cell lines accompanied with downregulation of MMP-2 and Her-2 expression. Interestingly, FRaq reduced the expression of viral oncoproteins E6 and E7 in both the cervical cancer cell lines. All these data suggest that F. religiosa could be explored for its chemopreventive potential in cervical cancer. PMID:23922932

  18. A novel dithiocarbamate derivative induces cell apoptosis through p53-dependent intrinsic pathway and suppresses the expression of the E6 oncogene of human papillomavirus 18 in HeLa cells.

    PubMed

    Li, Yanhong; Qi, Hongxue; Li, Xiaobo; Hou, Xueling; Lu, Xueying; Xiao, Xiangwen

    2015-06-01

    Dithiocarbamates (DTCs) exhibit a broad spectrum of antitumor activities, however, their molecular mechanisms of antitumor have not yet been elucidated. Previously, we have synthesized a series of novel dithiocarbamate derivatives. These DTCs were examined for cytotoxic activities against five human cancer cell lines. In this study, one of dithiocarbamate (DTC1) with higher potential for HeLa cells was chosen to investigate molecular mechanisms for its anti-tumor activities. DTC1 could inhibit proliferation, and highly induce apoptosis in HeLa cells by activating caspase-3, -6 and -9; moreover, activities of caspase-3, -6 and -9 were inhibited by pan-caspase inhibitor, Z-VAD-FMK. Furthermore, DTC1 decreased the levels of Bcl-2 and Bcl-xL, and increased expression of cytosol cytochrome c, Bak, Bax and p53 in a time-dependent manner but had no effect on the level of Rb. It was shown that DTC1 induced HeLa cells apoptosis through a p53-dependent pathway as tested by the wild type p53 inhibitor, pifithrin-α. Additionally, the relative expression of E6 and E7 were evaluated in HPV18-positive (HeLa cells) by real-time PCR and western blotting. The results firstly demonstrated that DTC1 suppressed both expression of E6 mRNA and E6 oncoprotein, but had no effect on the expression of E7 mRNA and protein in HPV18. Our results suggested that DTC1 may serve as novel chemotherapeutic agents in the treatment of cervical cancer and potential anti-HPV virus candidates that merit further studies. PMID:25772545

  19. A novel dithiocarbamate derivative induces cell apoptosis through p53-dependent intrinsic pathway and suppresses the expression of the E6 oncogene of human papillomavirus 18 in HeLa cells.

    PubMed

    Li, Yanhong; Qi, Hongxue; Li, Xiaobo; Hou, Xueling; Lu, Xueying; Xiao, Xiangwen

    2015-06-01

    Dithiocarbamates (DTCs) exhibit a broad spectrum of antitumor activities, however, their molecular mechanisms of antitumor have not yet been elucidated. Previously, we have synthesized a series of novel dithiocarbamate derivatives. These DTCs were examined for cytotoxic activities against five human cancer cell lines. In this study, one of dithiocarbamate (DTC1) with higher potential for HeLa cells was chosen to investigate molecular mechanisms for its anti-tumor activities. DTC1 could inhibit proliferation, and highly induce apoptosis in HeLa cells by activating caspase-3, -6 and -9; moreover, activities of caspase-3, -6 and -9 were inhibited by pan-caspase inhibitor, Z-VAD-FMK. Furthermore, DTC1 decreased the levels of Bcl-2 and Bcl-xL, and increased expression of cytosol cytochrome c, Bak, Bax and p53 in a time-dependent manner but had no effect on the level of Rb. It was shown that DTC1 induced HeLa cells apoptosis through a p53-dependent pathway as tested by the wild type p53 inhibitor, pifithrin-α. Additionally, the relative expression of E6 and E7 were evaluated in HPV18-positive (HeLa cells) by real-time PCR and western blotting. The results firstly demonstrated that DTC1 suppressed both expression of E6 mRNA and E6 oncoprotein, but had no effect on the expression of E7 mRNA and protein in HPV18. Our results suggested that DTC1 may serve as novel chemotherapeutic agents in the treatment of cervical cancer and potential anti-HPV virus candidates that merit further studies.

  20. Role of HOXB7 in regulation of progression and metastasis of human lung adenocarcinoma.

    PubMed

    Yuan, Weiwei; Zhang, Xuelin; Xu, Yu; Li, Shasha; Hu, Yide; Wu, Shiyong

    2014-01-01

    Dysregulation of homeobox B7 (HOXB7), a member of the homeobox genes family, was suggested to play a role in regulation of tumorigenesis and metastases of some cancers. However, the functions of HOXB7 in association with lung adenocarcinoma (LAC) have not been investigated. The correlation between the level of HOXB7 expression and cancer progression in patients is not known. In this study, through analysis of 75 LAC samples and their corresponding normal lung epithelium tissues immunohistochemistry (IHC), we demonstrate that HOXB7 was overexpressed in LAC specimens compared to their paired normal lung epithelium tissues. Increased expression of HOXB7 was associated with poor clinical outcomes, correlating significantly with a short survival time in patients who had LAC. Moreover, HOXB7 expression level was correlated with the tumor status (P = 0.028), nodal status (P = 0.012) and tumor stage (P = 0.029) in lung adenocarcinoma. Silencing HOXB7 inhibited cell growth and metastases in vitro and in vivo. In conclusion, our results suggest that HOXB7 promotes LAC progression by enhancing proliferation and metastasis. The increased expression of HOXB7 in LAC is a potential prognostic indicator for patients, and HOXB7 could be a novel target for treatment of LAC patients. PMID:22911672

  1. Solid adenocarcinoma

    Cancer.gov

    Uniformly solid character of the lesions is usually indicative of a well differentiated tumor. No solid adenocarcinomas have observed in our series. However, rare cases have been described by others. In human pathology this diagnosis is usually based on detection of mucin after periodic acid-Schiff reaction with diastase (α-amylase) digestion.

  2. Multidrug-resistant hela cells overexpressing MRP1 exhibit sensitivity to cell killing by hyperthermia: Interactions with etoposide

    SciTech Connect

    Souslova, Tatiana; Averill-Bates, Diana A. . E-mail: averill.diana@uqam.ca

    2004-12-01

    Purpose: Multidrug resistance (MDR) remains one of the primary obstacles in cancer chemotherapy and often involves overexpression of drug efflux transporters such as P-glycoprotein and multidrug resistance protein 1 (MRP1). Regional hyperthermia is undergoing clinical investigation in combination with chemotherapy or radiotherapy. This study evaluates whether hyperthermia can reverse MDR mediated by MRP1 in human cervical adenocarcinoma (HeLa) cells. Methods and materials: Cytotoxicity of hyperthermia and/or etoposide was evaluated using sulforhodamine-B in HeLa cells overexpressing MRP1 and their drug-sensitive counterparts. Glutathione, glutathione peroxidase (GPx), and glutathione S-transferase (GST) were quantified by spectrophotometry. GST isoenzymes were quantified by immunodetection. Caspase activation was evaluated by fluorometry and chromatin condensation by fluorescence microscopy using Hoechst 33258. Necrosis was determined using propidium iodide. Results: The major finding is that HeLa and HeLaMRP cells are both sensitive to cytotoxicity of hyperthermia (41-45 deg C). Hyperthermia induced activation of caspase 3 and chromatin condensation. Although total levels of cell killing were similar, there was a switch from apoptotic to necrotic cell death in MDR cells. This could be explained by decreased glutathione and GPx in MDR cells. MDR cells also contained very low levels of GST and were resistant to etoposide-induced apoptosis. Hyperthermia caused a modest increase in etoposide-induced apoptosis in HeLa and HeLaMRP cells, which required appropriate heat-drug scheduling. Conclusions: Hyperthermia could be useful in eliminating MDR cells that overexpress MRP1.

  3. Anti-proliferative effect of rhein, an anthraquinone isolated from Cassia species, on Caco-2 human adenocarcinoma cells

    PubMed Central

    Aviello, Gabriella; Rowland, Ian; Gill, Christopher I; Acquaviva, Angela Maria; Capasso, Francesco; McCann, Mark; Capasso, Raffaele; Izzo, Angelo A; Borrelli, Francesca

    2010-01-01

    Abstract In recent years, the use of anthraquinone laxatives, in particular senna, has been associated with damage to the intestinal epithelial layer and an increased risk of developing colorectal cancer. In this study, we evaluated the cytotoxicity of rhein, the active metabolite of senna, on human colon adenocarcinoma cells (Caco-2) and its effect on cell proliferation. Cytotoxicity studies were performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR) and trans-epithelial electrical resistance (TEER) assays whereas 3H-thymidine incorporation and Western blot analysis were used to evaluate the effect of rhein on cell proliferation. Moreover, for genoprotection studies Comet assay and oxidative biomarkers measurement (malondialdehyde and reactive oxygen species) were used. Rhein (0.1–10 μg/ml) had no significant cytotoxic effect on proliferating and differentiated Caco-2 cells. Rhein (0.1 and 1 μg/ml) significantly reduced cell proliferation as well as mitogen-activated protein (MAP) kinase activation; by contrast, at high concentration (10 μg/ml) rhein significantly increased cell proliferation and extracellular-signal-related kinase (ERK) phosphorylation. Moreover, rhein (0.1–10 μg/ml): (i) did not adversely affect the integrity of tight junctions and hence epithelial barrier function; (ii) did not induce DNA damage, rather it was able to reduce H2O2-induced DNA damage and (iii) significantly inhibited the increase in malondialdehyde and reactive oxygen species (ROS) levels induced by H2O2/Fe2+. Rhein was devoid of cytotoxic and genotoxic effects in colon adenocarcinoma cells. Moreover, at concentrations present in the colon after a human therapeutic dosage of senna, rhein inhibited cell proliferation via a mechanism that seems to involve directly the MAP kinase pathway. Finally, rhein prevents the DNA damage probably via an anti-oxidant mechanism. PMID:19538468

  4. Hypoxia in human colorectal adenocarcinoma: Comparison between extrinsic and potential intrinsic hypoxia markers

    SciTech Connect

    Goethals, Laurence; Debucquoy, Annelies; Perneel, Christiaan; Geboes, Karel; Ectors, Nadine; De Schutter, Harlinde; Penninckx, Freddy; McBride, William H.; Begg, Adrian C.; Haustermans, Karin M. . E-mail: karin.haustermans@uzleuven.be

    2006-05-01

    Purpose: To detect and quantify hypoxia in colorectal adenocarcinomas by use of pimonidazole and iododeoxyuridine (IdUrd) as extrinsic markers and carbonic anhydrase IX (CA IX), microvessel density (MVD), epidermal growth-factor receptor (EGFR), and vascular endothelial growth factor (VEGF) as intrinsic markers of hypoxia. Methods and Material: Twenty patients with an adenocarcinoma of the left colon and rectum treated by primary surgery were injected with pimonidazole and IdUrd. Serial sections of tumor biopsies were single stained for VEGF, EGFR, Ki67, and double stained for blood vessels in combination with either pimonidazole, IdUrd, or CA IX. Percentage of expression was scored as well as colocalization of pimonidazole with CA IX. Results: The median percentage of hypoxia, as judged by pimonidazole staining, was 16.7% (range, 0-52.4%). The expression of pimonidazole correlated inversely with the total MVD and endothelial cord MVD (R = -0.55, p = 0.01; R = -0.47, p = 0.04). Good colocalization was found between pimonidazole and CA IX in only 30% of tumors, with no correlation overall between pimonidazole and CA IX, VEGF, or EGFR or between the different intrinsic markers. Cells around some vessels (0.08-11%) were negative for IdUrd but positive for Ki 67, which indicated their lack of perfusion at the time of injection. Conclusion: Chronic and acute hypoxic regions are present in colorectal tumors, as shown by pimonidazole and IdUrd staining. Only in a minority of tumors did an association exist between the areas stained by pimonidazole and those positive for CA IX. Pimonidazole also did not correlate with expression of other putative intrinsic hypoxia markers (VEGF, EGFR)

  5. Read-through transcripts in normal human lung parenchyma are down-regulated in lung adenocarcinoma

    PubMed Central

    Cotroneo, Chiara E.; Galvan, Antonella; Noci, Sara; Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Incarbone, Matteo; Palleschi, Alessandro; Rosso, Lorenzo; Santambrogio, Luigi; Dragani, Tommaso A.; Colombo, Francesca

    2016-01-01

    Read-through transcripts result from the continuous transcription of adjacent, similarly oriented genes, with the splicing out of the intergenic region. They have been found in several neoplastic and normal tissues, but their pathophysiological significance is unclear. We used high-throughput sequencing of cDNA fragments (RNA-Seq) to identify read-through transcripts in the non-involved lung tissue of 64 surgically treated lung adenocarcinoma patients. A total of 52 distinct read-through species was identified, with 24 patients having at least one read-through event, up to a maximum of 17 such transcripts in one patient. Sanger sequencing validated 28 of these transcripts and identified an additional 15, for a total of 43 distinct read-through events involving 35 gene pairs. Expression levels of 10 validated read-through transcripts were measured by quantitative PCR in pairs of matched non-involved lung tissue and lung adenocarcinoma tissue from 45 patients. Higher expression levels were observed in normal lung tissue than in the tumor counterpart, with median relative quantification ratios between normal and tumor varying from 1.90 to 7.78; the difference was statistically significant (P < 0.001, Wilcoxon's signed-rank test for paired samples) for eight transcripts: ELAVL1–TIMM44, FAM162B–ZUFSP, IFNAR2–IL10RB, INMT–FAM188B, KIAA1841–C2orf74, NFATC3–PLA2G15, SIRPB1–SIRPD, and SHANK3–ACR. This report documents the presence of read-through transcripts in apparently normal lung tissue, with inter-individual differences in patterns and abundance. It also shows their down-regulation in tumors, suggesting that these chimeric transcripts may function as tumor suppressors in lung tissue. PMID:27058892

  6. Adenocarcinoma

    Cancer.gov

    Compared to adenomas, adenocarcinomas show greater cytological atypia, increased frequency of mitoses, regional variation in growth pattern, more papillary structures, have size over 5 mm in diameter, show invasion of vessels, large airways or pleura, as well as lymphatic and hematogenous metastases.

  7. Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice

    PubMed Central

    2014-01-01

    Background The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. Methods PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. Results GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. Conclusions CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the

  8. K-ras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary.

    PubMed Central

    Enomoto, T.; Weghorst, C. M.; Inoue, M.; Tanizawa, O.; Rice, J. M.

    1991-01-01

    To explore the role of mutational activation of members of the ras family of cellular protooncogenes in the development of human ovarian neoplasms, a series of 37 ovarian tumors from Japanese patients was studied. These included 30 common epithelial tumors (1 mucinous tumor of borderline malignancy, 7 mucinous adenocarcinomas, and 22 nonmucinous carcinomas: 10 serous, 3 clear cell, 8 endometrioid, and 1 undifferentiated), 5 tumors of germ cell origin, and 2 sex cord/stromal cell tumors. Polymerase chain reaction was performed from selected areas of deparaffinized sections of formalin-fixed paraffin-embedded tissue, and the presence of activating point mutations in codons 12, 13, and 61 of the H-, N-, and K-ras genes was probed by dot-blot hybridization analysis with mutation specific oligonucleotides. Mutations in K-ras were also looked for by direct genomic sequencing. The overall frequency of ras gene mutations was 10/37 (27%). Mutations were detected only in K-ras, and were found in most of the mucinous tumors, including the one such tumor of borderline malignancy (6/8; 75%). In one mucinous adenocarcinoma, two mutations were detected in paraffin-embedded material that had not previously been found in high molecular weight DNA isolated from frozen tissue from the same case. K-ras mutations occurred significantly more frequently in mucinous tumors (6/8, 75%) than in serous carcinomas (2/10, 20%; P = 0.031) or in all nonmucinous types of epithelial ovarian tumors combined (3/22, 14%; P = 0.0031). Images Figure 1 Figure 2 PMID:1656759

  9. miR-511 and miR-1297 Inhibit Human Lung Adenocarcinoma Cell Proliferation by Targeting Oncogene TRIB2

    PubMed Central

    Wang, Ping Yu; Wang, Ya Qi; Zhang, Yan Xia; Deng, Jingti; Lv, Chang Jun; Xie, Shu Yang

    2012-01-01

    microRNAs (miRNAs) are small noncoding RNAs that regulate genes and contribute to many kinds of human diseases, including cancer. Two miRNAs, miR-511 and miR-1297, were investigated for a possible role in adenocarcinoma based on predicted binding sites for the TRIB2 oncogene by microRNA analysis software, and the pcDNA-GFP-TRIB2–3′UTR vector was constructed to investigate the interaction between TRIB2 and miR-511/1297 in the adenocarcinoma cell line A549. Green fluorescent protein (GFP) expression was estimated by fluorescence microscopy and flow cytometry after A549 cells were co-transfected with miR-511 (or miR-1297) and pcDNA-GFP-TRIB2–3′UTR vector. The expression of GFP in the miR-511- and miR-1297-treated cells was significantly downregulated in contrast with the negative-control (NC) miRNA-treated cells. The decreased expression of TRIB2 was further detected after miR-511 (or miR-1297) treatment by western blotting. The MTT test showed inhibition of A549 cell proliferation and Annexin V-FITC/PI dual staining showed increased apoptosis in the miR-511- and miR-1297-treated cells compared to the NC cultures. A transcription factor downstream of TRIB2, the CCAAT/enhancer-binding protein alpha (C/EBPα), was expression at higher levels after miR-511 (or miR-1297) decreasing TRIB2 expression. Our results illustrate that miR-511 and miR-1297 act as tumor suppressor genes, which could suppress A549 cell proliferation in vitro and in vivo by suppressing TRIB2 and further increasing C/EBPα expression. PMID:23071539

  10. Oxidovanadium(IV) complexes with chrysin and silibinin: anticancer activity and mechanisms of action in a human colon adenocarcinoma model.

    PubMed

    León, I E; Cadavid-Vargas, J F; Tiscornia, I; Porro, V; Castelli, S; Katkar, P; Desideri, A; Bollati-Fogolin, M; Etcheverry, S B

    2015-10-01

    Vanadium compounds were studied during recent years to be considered as a representative of a new class of nonplatinum metal antitumor agents in combination to its low toxicity. On the other hand, flavonoids are a wide family of polyphenolic compounds synthesized by plants that display many interesting biological effects. Since coordination of ligands to metals can improve the pharmacological properties, we report herein, for the first time, a exhaustive study of the mechanisms of action of two oxidovanadium(IV) complexes with the flavonoids: silibinin Na₂[VO(silibinin)₂2]·6H₂O (VOsil) and chrysin [VO(chrysin)₂EtOH]₂(VOchrys) on human colon adenocarcinoma derived cell line HT-29. The complexes inhibited the cell viability of colon adenocarcinoma cells in a dose dependent manner with a greater potency than that the free ligands and free metal, demonstrating the benefit of complexation. The decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of both complexes. Besides, VOchrys caused cell cycle arrest in G2/M phase while VOsil activated caspase 3 and triggering the cells directly to apoptosis. Moreover, VOsil diminished the NF-kB activation via increasing the sensitivity of cells to apoptosis. On the other hand, VOsil inhibited the topoisomerase IB activity concluding that this is important target involved in the anticancer vanadium effects. As a whole, the results presented herein demonstrate that VOsil has a stronger deleterious action than VOchrys on HT-29 cells, whereby suggesting that Vosil is the potentially best candidate for future use in alternative anti-tumor treatments.

  11. Correlation between expression of cyclooxygenase-2 and angiogenesis in human gastric adenocarcinoma

    PubMed Central

    Li, Hong-Xia; Chang, Xin-Ming; Song, Zheng-Jun; He, Shui-Xiang

    2003-01-01

    AIM: To evaluate the expression of cyclooxygenase (COX-2) and the relationship with tumor angiogenesis and advancement in gastric adenocarcinoma. METHODS: Immunohistochemical stain was used for detecting the expression of COX-2 in 45 resected specimens of gastric adenocarcinoma; the monoclonal antibody against CD34 was used for displaying vascular endothelial cells, and microvascular density (MVD) was detected by counting of CD34-positive vascular endothelial cells. Paracancerous tissues were examined as control. RESULTS: Immunohistological staining with COX-2-specific polyclonal antibody showed cytoplasmic staining in the cancer cells, some atypical hyperplasia and intestinal metaplasia, as well as angiogenic vasculature present within the tumors and prexisting vasculature adjacent to cancer lesions. The rate of expression of COX-2 and MVD index in gastric cancers were significantly increased, compared with those in the paracancerous tissues (77.78 vs 33.33%, 58.13 ± 19.99 vs 24.02 ± 10.28, P < 0.01, P < 0.05, respectively). In 36 gastric carcinoma specimens with lymph node metastasis, the rate of COX-2 expression and MVD were higher than those in the specimens without metostasis (86.11 vs 44.44%, 58.60 ± 18.24 vs 43.54 ± 15.05, P < 0.05, P < 0.05, respectively). The rate of COX-2 expression and MVD in the specimens with invasive serosa were significantly higher than those in the specimens without invasion to serosa (87.88 vs 50.0%, 57.01 ± 18.79 vs 42.35 ± 14.65, P < 0.05, P < 0.05). Moreover, MVD in COX-2-positive specimens was higher than that in COX-2-negative specimens (61.29 ± 14.31 vs 45.38 ± 12.42, P < 0.05). COX-2 expression was positively correlated with MVD (r = 0.63, P < 0.05). CONCLUSION: COX-2 expression might correlate with the occurance and advancement of gastric carcinoma and is involved in tumor angiogenesis in gastric carcinoma. It is likely that COX-2 by inducing angiogenesis can be one of mechanisms which promotes invasion and

  12. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    PubMed

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level.

  13. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    PubMed

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level. PMID:24021157

  14. Identifying candidate agents for lung adenocarcinoma by walking the human interactome

    PubMed Central

    Sun, Yajiao; Zhang, Ranran; Jiang, Zhe; Xia, Rongyao; Zhang, Jingwen; Liu, Jing; Chen, Fuhui

    2016-01-01

    Despite recent advances in therapeutic strategies for lung cancer, mortality is still increasing. Therefore, there is an urgent need to identify effective novel drugs. In the present study, we implement drug repositioning for lung adenocarcinoma (LUAD) by a bioinformatics method followed by experimental validation. We first identified differentially expressed genes between LUAD tissues and nontumor tissues from RNA sequencing data obtained from The Cancer Genome Atlas database. Then, candidate small molecular drugs were ranked according to the effect of their targets on differentially expressed genes of LUAD by a random walk with restart algorithm in protein–protein interaction networks. Our method identified some potentially novel agents for LUAD besides those that had been previously reported (eg, hesperidin). Finally, we experimentally verified that atracurium, one of the potential agents, could induce A549 cells death in non-small-cell lung cancer-derived A549 cells by an MTT assay, acridine orange and ethidium bromide staining, and electron microscopy. Furthermore, Western blot assays demonstrated that atracurium upregulated the proapoptotic Bad and Bax proteins, downregulated the antiapoptotic p-Bad and Bcl-2 proteins, and enhanced caspase-3 activity. It could also reduce the expression of p53 and p21Cip1/Waf1 in A549 cells. In brief, the candidate agents identified by our approach may provide greater insights into improving the therapeutic status of LUAD. PMID:27729798

  15. Molecular signature and pathway analysis of human primary squamous and adenocarcinoma lung cancers

    PubMed Central

    Daraselia, Nikolai; Wang, Yipeng; Budoff, Adam; Lituev, Alexander; Potapova, Olga; Vansant, Gordon; Monforte, Joseph; Mazo, Ilya; Ossovskaya, Valeria S

    2012-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with a poor response to chemotherapy and low survival rate. This unfavorable treatment response is likely to derive from both late diagnosis and from complex, incompletely understood biology, and heterogeneity among NSCLC subtypes. To define the relative contributions of major cellular pathways to the biogenesis of NSCLC and highlight major differences between NSCLC subtypes, we studied the molecular signatures of lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC), based on analysis of gene expression and comparison of tumor samples with normal lung tissue. Our results suggest the existence of specific molecular networks and subtype-specific differences between lung ADC and SCC subtypes, mostly found in cell cycle, DNA repair, and metabolic pathways. However, we also observed similarities across major gene interaction networks and pathways in ADC and SCC. These data provide a new insight into the biology of ADC and SCC and can be used to explore novel therapeutic interventions in lung cancer chemoprevention and treatment. PMID:22206048

  16. A molecular understanding of D-homoestrone-induced G2/M cell cycle arrest in HeLa human cervical carcinoma cells.

    PubMed

    Minorics, Renáta; Bózsity, Noémi; Molnár, Judit; Wölfling, János; Mernyák, Erzsébet; Schneider, Gyula; Ocsovszki, Imre; Zupkó, István

    2015-10-01

    2-Methoxyestradiol (ME), one of the most widely investigated A-ring-modified metabolites of estrone, exerts significant anticancer activity on numerous cancer cell lines. Its pharmacological actions, including cell cycle arrest, microtubule disruption and pro-apoptotic activity, have already been described in detail. The currently tested D-ring-modified analogue of estrone, D-homoestrone, selectively inhibits cervical cancer cell proliferation and induces a G2/M phase cell cycle blockade, resulting in the development of apoptosis. The question arose of whether the difference in the chemical structures of these analogues can influence the mechanism of anticancer action. The aim of the present study was therefore to elucidate the molecular contributors of intracellular processes induced by D-homoestrone in HeLa cells. Apoptosis triggered by D-homoestrone develops through activation of the intrinsic pathway, as demonstrated by determination of the activities of caspase-8 and -9. It was revealed that D-homoestrone-treated HeLa cells are not able to enter mitosis because the cyclin-dependent kinase 1-cyclin B complex loses its activity, resulting in the decreased inactivation of stathmin and a concomitant disturbance of microtubule formation. However, unlike 2-ME, D-homoestrone does not exert a direct effect on tubulin polymerization. These results led to the conclusion that the D-homoestrone-triggered intracellular processes resulting in a cell cycle arrest and apoptosis in HeLa cells differ from those in the case of 2-ME. This may be regarded as an alternative mechanism of action among steroidal anticancer compounds.

  17. Short-term desensitization of the histamine H1 receptor in human HeLa cells: involvement of protein kinase C dependent and independent pathways.

    PubMed Central

    Smit, M. J.; Bloemers, S. M.; Leurs, R.; Tertoolen, L. G.; Bast, A.; de Laat, S. W.; Timmerman, H.

    1992-01-01

    1. In this study we have investigated the effects of short-term exposure of cells to histamine on the subsequent H1 receptor responsiveness in HeLa cells, using Ca2+ fluorescence microscopy and video digital imaging. 2. In HeLa cells, histamine (100 microM) induces an immediate H1 receptor-mediated biphasic elevation of the intracellular Ca2+ concentration ([Ca2+]i) (basal [Ca2+]i: 81 +/- 30 nM, histamine-induced Ca2+ response: first phase: 1135 +/- 79 nM; second phase: 601 +/- 52 nM, n = 11). 3. The histamine H1 receptors on HeLa cells are readily susceptible to desensitization since repetitive exposure of the same group of cells to histamine (100 microM) markedly affected the release and influx component of the induced Ca2+ response (second application of histamine: first phase: 590 +/- 92 nM, second phase: 279 +/- 47 nM; third application of histamine: first phase: 454 +/- 127 nM, second phase: 240 +/- 45 nM, n = 6). Video digital imaging revealed an increase in the lag time between stimulation and monitoring of the Ca2+ response and a reduced increase in [Ca2+]i after desensitization with histamine. 4. Neither the release component of the ATP response (50 microM) nor the caffeine (3 mM)-induced Ca2+ release were found to be affected by desensitization with 100 microM histamine. However, the second phase of the ATP response was significantly reduced after desensitization with histamine (control cells: 516 +/- 33 nM; desensitized cells: 331 +/- 96 nM, n = 4, P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 PMID:1422591

  18. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways.

    PubMed

    Wu, Rong; Hendrix-Lucas, Neali; Kuick, Rork; Zhai, Yali; Schwartz, Donald R; Akyol, Aytekin; Hanash, Samir; Misek, David E; Katabuchi, Hidetaka; Williams, Bart O; Fearon, Eric R; Cho, Kathleen R

    2007-04-01

    One histologic subtype of ovarian carcinoma, ovarian endometrioid adenocarcinoma (OEA), frequently harbors mutations that constitutively activate Wnt/beta-catenin-dependent signaling. We now show that defects in the PI3K/Pten and Wnt/beta-catenin signaling pathways often occur together in a subset of human OEAs, suggesting their cooperation during OEA pathogenesis. Deregulation of these two pathways in the murine ovarian surface epithelium by conditional inactivation of the Pten and Apc tumor suppressor genes results in the formation of adenocarcinomas morphologically similar to human OEAs with 100% penetrance, short latency, and rapid progression to metastatic disease in upwards of 75% of mice. The biological behavior and gene expression patterns of the murine cancers resemble those of human OEAs with defects in the Wnt/beta-catenin and PI3K/Pten pathways.

  19. Evaluation of antitumor activity of a TGF-beta receptor I inhibitor (SD-208) on human colon adenocarcinoma

    PubMed Central

    2014-01-01

    Background Transforming growth factor-β (TGF-β) pathway is involved in primary tumor progression and in promoting metastasis in a considerable proportion of human cancers such as colorectal cancer (CRC). Therefore, blockage of TGF-β pathway signaling via an inhibitor could be a valuable tool in CRC treatment. Methods To evaluate the efficacy of systemic targeting of the TGF-β pathway for therapeutic effects on CRC, we investigated the effects of a TGβRI (TGF-β receptor 1) or TβRI kinase inhibitor, SD-208, on SW-48, colon adenocarcinoma cells. In this work, in vitro cell proliferation was studied by methyl thiazolyl tetrazolium (MTT) and bromo-2′-deoxyuridine (BrdU) assays. Also, the histopathological and immunohistochemical evaluations were conducted by hematoxylin and eosin, and Ki-67 and CD34 markers were stained, respectively. Results Our results showed no significant reduction in cell proliferation and vessel formation (170 ± 70 and 165 ± 70, P > 0.05) in treated SW-48 cells with SD-208 compared to controls. Conclusion Our data suggested that SD-208 could not significantly reduce tumor growth and angiogenesis in human colorectal cancer model at least using SW-48 cells. PMID:24902843

  20. Sanguinarine Inhibits Vascular Endothelial Growth Factor Release by Generation of Reactive Oxygen Species in MCF-7 Human Mammary Adenocarcinoma Cells

    PubMed Central

    Dong, Xian-zhe; Zhang, Miao; Wang, Kun; Liu, Ping; Guo, Dai-hong; Zheng, Xiao-li; Ge, Xiao-yue

    2013-01-01

    The inhibitory action and the possible mechanism of anticancer compound Sanguinarine (SAN) on vascular endothelial growth factor (VEGF) in human mammary adenocarcinoma cells MCF-7 were evaluated in this study. We exposed MCF-7 to SAN for 24 h, then cell viability was assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Human VEGF was measured using a paired antibody quantitative ELISA kit, relative expression of VEGF mRNA was calculated using the real-time PCR studies, and the effect of SAN on the reactive oxygen species (ROS) level was detected by the flow cytometer. Treatment with SAN remarkably inhibited growth of MCF-7 cells and induced cell apoptosis. We found that VEGF release was stimulated by subtoxic concentrations of SAN and inhibited by high dose of SAN, SAN-evoked VEGF release was mimicked by low concentration of H2O2, and SAN-regulated VEGF inhibition was accompanied by increasing of ROS; these changes were abolished by antioxidant. High concentration of SAN inhibited VEGF mRNA expression in MCF-7 cultures, suggesting an effect at transcriptional level, and was also abolished by antioxidant. The present findings indicated that the regulation of VEGF expression and release from MCF-7 cells were possibly through reactive oxygen species evoked by SAN. PMID:23762849

  1. Phosphonooxymethyl Prodrug of Triptolide: Synthesis, Physicochemical Characterization, and Efficacy in Human Colon Adenocarcinoma and Ovarian Cancer Xenografts

    PubMed Central

    2015-01-01

    A disodium phosphonooxymethyl prodrug of the antitumor agent triptolide was prepared from the natural product in three steps (39% yield) and displayed excellent aqueous solubility at pH 7.4 (61 mg/mL) compared to the natural product (17 μg/mL). The estimated shelf life (t90) for hydrolysis of the prodrug at 4 °C and pH 7.4 was found to be two years. In a mouse model of human colon adenocarcinoma (HT-29), the prodrug administered intraperitoneally was effective in reducing or eliminating xenograft tumors at dose levels as low as 0.3 mg/kg when given daily and at 0.9 mg/kg when given less frequently. When given via intraperitoneal and oral routes at daily doses of 0.6 and 0.9 mg/kg, the prodrug was also effective and well tolerated in a mouse model of human ovarian cancer (A2780). PMID:26596892

  2. LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans

    PubMed Central

    Tu, Ho-Chou; Schwitalla, Sarah; Qian, Zhirong; LaPier, Grace S.; Yermalovich, Alena; Ku, Yuan-Chieh; Chen, Shann-Ching; Viswanathan, Srinivas R.; Zhu, Hao; Nishihara, Reiko; Inamura, Kentaro; Kim, Sun A.; Morikawa, Teppei; Mima, Kosuke; Sukawa, Yasutaka; Yang, Juhong; Meredith, Gavin; Fuchs, Charles S.; Ogino, Shuji

    2015-01-01

    Colorectal cancer (CRC) remains a major contributor to cancer-related mortality. LIN28A and LIN28B are highly related RNA-binding protein paralogs that regulate biogenesis of let-7 microRNAs and influence development, metabolism, tissue regeneration, and oncogenesis. Here we demonstrate that overexpression of either LIN28 paralog cooperates with the Wnt pathway to promote invasive intestinal adenocarcinoma in murine models. When LIN28 alone is induced genetically, half of the resulting tumors harbor Ctnnb1 (β-catenin) mutation. When overexpressed in ApcMin/+ mice, LIN28 accelerates tumor formation and enhances proliferation and invasiveness. In conditional genetic models, enforced expression of a LIN28-resistant form of the let-7 microRNA reduces LIN28-induced tumor burden, while silencing of LIN28 expression reduces tumor volume and increases tumor differentiation, indicating that LIN28 contributes to tumor maintenance. We detected aberrant expression of LIN28A and/or LIN28B in 38% of a large series of human CRC samples (n = 595), where LIN28 expression levels were associated with invasive tumor growth. Our late-stage CRC murine models and analysis of primary human tumors demonstrate prominent roles for both LIN28 paralogs in promoting CRC growth and progression and implicate the LIN28/let-7 pathway as a therapeutic target. PMID:25956904

  3. Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model

    PubMed Central

    Riabov, Vladimir; Yin, Shuiping; Song, Bin; Avdic, Aida; Schledzewski, Kai; Ovsiy, Ilja; Gratchev, Alexei; Verdiell, Maria Llopis; Sticht, Carsten; Schmuttermaier, Christina; Schönhaber, Hiltrud; Weiss, Christel; Fields, Alan P.; Simon-Keller, Katja; Pfister, Frederick; Berlit, Sebastian; Marx, Alexander; Arnold, Bernd; Goerdt, Sergij; Kzhyshkowska, Julia

    2016-01-01

    Stabilin-1 is a multifunctional scavenger receptor expressed on alternatively-activated macrophages. Stabilin-1 mediates phagocytosis of “unwanted-self” components, intracellular sorting, and endocytic clearance of extracellular ligands including SPARC that modulates breast cancer growth. The expression of stabilin-1 was found on tumor-associated macrophages (TAM) in mouse and human cancers including melanoma, lymphoma, glioblastoma, and pancreatic insulinoma. Despite its tumor-promoting role in mouse models of melanoma and lymphoma the expression and functional role of stabilin-1 in breast cancer was unknown. Here, we demonstrate that stabilin-1 is expressed on TAM in human breast cancer, and its expression is most pronounced on stage I disease. Using stabilin-1 knockout (ko) mice we show that stabilin-1 facilitates growth of mouse TS/A mammary adenocarcinoma. Endocytosis assay on stabilin-1 ko TAM demonstrated impaired clearance of stabilin-1 ligands including SPARC that was capable of inducing cell death in TS/A cells. Affymetrix microarray analysis on purified TAM and reporter assays in stabilin-1 expressing cell lines demonstrated no influence of stabilin-1 expression on intracellular signalling. Our results suggest stabilin-1 mediated silent clearance of extracellular tumor growth-inhibiting factors (e.g. SPARC) as a mechanism of stabilin-1 induced tumor growth. Silent clearance function of stabilin-1 makes it an attractive candidate for delivery of immunomodulatory anti-cancer therapeutic drugs to TAM. PMID:27105498

  4. Emission spectral analysis of caspase-3 activation during artesunate (ART)-induced apoptosis of human lung adenocarcinoma cell

    NASA Astrophysics Data System (ADS)

    Pan, Wen-liang; Chen, Tong-sheng; Qu, Junle

    2009-02-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. Artemisinin-derivative combination chemotherapy is recommended by WHO since it acts rapidly and is well tolerated and particularly effective. In present investigation, we used CKK-8 assay to assess the inhibitory effects of ART on human lung adenocarcinoma (ASTC-a-1) cells. Apoptotic activity of ART in ASTC-a-1 cells was detected by means of nuclear staining with Hoechst33258. In order to monitor the activity of caspase-3 during ART-induced ASTC-a-1 cells apoptosis, the dynamical emission spectra of SCAT3, a FRET plasmid based on GFPs, were performed inside living cell expressed stably with SCAT3 after ART treatment. The results showed that (1) ART could inhibit ASTC-a-1 cells proliferation in a dose-dependent manner; (2) chromatin condensation was observed after ART treatment for 48 h; (3) the SCAT3 inside living cells were cleaved after ART treatment for 48 h, implying that caspase-3 was involved in the ART-induced apoptosis.

  5. Apoptosis of human lung adenocarcinoma A549 cells induced by prodigiosin analogue obtained from an entomopathogenic bacterium Serratia marcescens.

    PubMed

    Zhou, Wei; Jin, Zhi-Xiong; Wan, Yong-Ji

    2010-12-01

    An entomopathogenic bacterial strain SCQ1 was isolated from silkworm (Bombyx mori) and identified as Serratia marcescens via 16S rRNA gene analysis. This strain produces a red pigment that causes acute septicemia of silkworm. The red pigment of strain SCQ1 was identified as prodigiosin analogue (PGA) with various reported biological activities. In this study, we found that low concentration of PGA showed significant anticancer activity in human lung adenocarcinoma A549 cells, but has little effect in human bone marrow stem cells, in vitro. By exposure to different concentrations of PGA for 24 h, morphological changes and the MTT assay showed that A549 cell line was very sensitive to PGA, with IC(50) value about 2.2 mg/L. Early stage of apoptosis was detected by flow cytometry while A549 cells were treated with PGA for 4 and 12 h, respectively. The proportion of dead cells was increased with treatment time or the concentrations of PGA, but it was inversely proportional to that of apoptotic cells. These results indicate that PGA obtained from strain SCQ1 induces apoptosis in A549 cells, but the molecular mechanisms of cell death are complicated, and the S. marcescens strain SCQ1 may serve as a source of the anticancer compound, PGA.

  6. The pertinence of expression of heat shock proteins (HSPs) to the efficacy of cryopreservation in HELAs.

    PubMed

    Wang, Peitao; Shu, Zhiquan; He, Liqun; Cui, Xiangdong; Wang, Yuzhen; Gao, Dayong

    2005-01-01

    HELAs (Hela cells, passed cells of human cervical carcinoma) were heat or cold treated (named heat or cold shock) and then resumed normal culture for 2, 4 or 8 hours respectively. The expressions of heat shock protein 70 (HSP70) and 90 (HSP90) of the HELAs were measured by Northern and Western blotting. HELAs after 4-hour culture were exposed to or cryopreserved with different concentration of dimethyl sulfoxide (Me2SO, 2.5%, 5%, 10%, 15% and 20% respectively, V/V). Meanwhile, the HELAs after different culture time (2, 4 and 6 hours of culture) were cryopreserved with 5% Me2SO. After exposure or cryopreservation, the number of live HELAs was counted and the survival rate was calculated. The results showed that heat shock increased the expression of HSP70 and HSP90 of HELAs, while cold shock decreased the expression of the two proteins. When the concentrations of Me2SO were 10%, 15% and 20%, the survival rates of HELAs after exposure to Me2SO or cryopreservation were much lower than those when the concentrations were small. The survival rates of the heat shocked HELAs were significantly higher than those of the cold shocked and control HELAs. After cryopreservation with 5% Me2SO, the survival rate of heat shocked HELAs group with 2 hours culture time was the lowest among all the groups of HELAs with different cultural time. From the results of this study, we conclude that the expressions of HSP70 and HSP90 in HELAs increased significantly after heat shock, while cold shock decreased the expressions of these two proteins. The over-expressions of HSPs in the heat shocked HELAs could protect the cells from both injury caused by potential toxicity of high concentrations of Me2SO and cryoinjury caused by the freeze-thawing/cryopreservation procedure.

  7. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells

    PubMed Central

    Jafarian, A.; Ghannadi, A.; Mohebi, B.

    2014-01-01

    Previous studies have indicated that some species of Cuscuta possess anticancer activity on various cell lines. Due to the lack of detailed researches on the cytotoxic effects of Cuscuta chinensis and Cuscuta epithymum, the aim of the present study was to evaluate cytotoxic effects of chloroform and hydroalcoholic extracts of these plants on the human breast carcinoma cell line (MDA-MB-468), human colorectal adenocarcinoma cell line (HT29) and human uterine cervical carcinoma (Hela). Using maceration method, different extracts of aerial parts of C. chinensis and C. epithymum were prepared. Extraction was performed using chloroform and ethanol/water (70/30). Total phenolic contents of the extracts were determined according to the Folin-Ciocalteu method. Using MTT assay, the cytotoxic activity of the extracts against HT29, Hela and MDA-MB-468 tumor cells was evaluated. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. The poly-phenolic content of the hydroalcoholic and chloroform extracts of C. chinensis and C. epithymum were 56.08 ± 4.11, 21.49 ± 2.00, 10.64 ± 0.86 and 4.81 ± 0.38, respectively. Our findings showed that the chloroform extracts of C. chinensis and C. epithyum significantly reduced the viability of Hela, HT-29 and MDA-MB-468 cells. Also, hydroalcoholic extracts of C. chinensis significantly decreased the viability of HT29, Hela and MDA-MB-468 cells. However, in the case of hydroalcoholic extracts of C. epithymum only significant decrease in the viability of MDA-MB-468 cells was observed (IC50 = 340 μg/ml). From these findings it can be concluded that C. chinensis and C. epithymum are good candidates for further study to find new possible cytotoxic agents. PMID:25657780

  8. Clinicopathologic features and treatment outcomes of patients with human epidermal growth factor receptor 2-positive adenocarcinoma of the esophagus and gastroesophageal junction.

    PubMed

    Phillips, B E; Tubbs, R R; Rice, T W; Rybicki, L A; Plesec, T; Rodriguez, C P; Videtic, G M; Saxton, J P; Ives, D I; Adelstein, D J

    2013-04-01

    Human epidermal growth factor receptor 2 (HER2) is overexpressed in 21% of gastric and 33% of gastroesophageal junction (GEJ) adenocarcinomas. Trastuzumab has been approved for metastatic HER2-positive gastric/GEJ cancer in combination with chemotherapy. This retrospective analysis was undertaken to better define the clinicopathologic features, treatment outcomes, and prognosis in patients with HER2-positive adenocarcinoma of the esophagus/GEJ. Pathologic specimens from 156 patients with adenocarcinoma of the esophagus/GEJ treated on clinical trials with chemoradiation and surgery were tested for HER2. Seventy-six patients also received 2 years of gefitinib. Baseline characteristics and treatment outcomes of the HER2-positive and negative patients were compared both in aggregate and separately for each of the two trials. Of 156 patients, 135 had sufficient pathologic material available for HER2 assessment. HER2 positivity was found in 23%; 28% with GEJ primaries and 15% with esophageal primaries (P= 0.10). There was no statistical difference in clinicopathologic features between HER2-positive and negative patients except HER2-negative tumors were more likely to be poorly differentiated (P < 0.001). Locoregional recurrence, distant metastatic recurrence, any recurrence, and overall survival were also statistically similar between the HER2-positive and the HER2-negative groups, in both the entire cohort and in the gefitinib-treated subset. Except for tumor differentiation, HER2-positive and negative patients with adenocarcinoma of the esophagus and GEJ do not differ in clinicopathologic characteristics and treatment outcomes. Given the demonstrated benefit of trastuzumab in HER2-positive gastric cancer and the similar incidence of HER2 overexpression in esophageal/GEJ adenocarcinoma, further evaluation of HER2-directed therapy in this disease seems indicated.

  9. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Kathirvel, Poonkodi; Ravi, Subban

    2012-01-01

    This study examines the chemical composition and in vitro anticancer activity of the essential oil from Ocimum basilicum Linn. (Lamiaceae), cultivated in the Western Ghats of South India. The chemical compositions of basil fresh leaves were identified by GC-MS: 11 components were identified. The major constituents were found to be methyl cinnamate (70.1%), linalool (17.5%), β-elemene (2.6%) and camphor (1.52%). The results revealed that this plant may belong to the methyl cinnamate and linalool chemotype. A methyl thiazol tetrazolium assay was used for in vitro cytotoxicity screening against the human cervical cancer cell line (HeLa), human laryngeal epithelial carcinoma cell line (HEp-2) and NIH 3T3 mouse embryonic fibroblasts. The IC(50) values obtained were 90.5 and 96.3 µg mL(-1), respectively, and the results revealed that basil oil has potent cytotoxicity.

  10. Cuminaldehyde from Cinnamomum verum Induces Cell Death through Targeting Topoisomerase 1 and 2 in Human Colorectal Adenocarcinoma COLO 205 Cells

    PubMed Central

    Tsai, Kuen-daw; Liu, Yi-Heng; Chen, Ta-Wei; Yang, Shu-Mei; Wong, Ho-Yiu; Cherng, Jonathan; Chou, Kuo-Shen; Cherng, Jaw-Ming

    2016-01-01

    Cinnamomum verum, also called true cinnamon tree, is employed to make the seasoning cinnamon. Furthermore, the plant has been used as a traditional Chinese herbal medication. We explored the anticancer effect of cuminaldehyde, an ingredient of the cortex of the plant, as well as the molecular biomarkers associated with carcinogenesis in human colorectal adenocarcinoma COLO 205 cells. The results show that cuminaldehyde suppressed growth and induced apoptosis, as proved by depletion of the mitochondrial membrane potential, activation of both caspase-3 and -9, and morphological features of apoptosis. Moreover, cuminaldehyde also led to lysosomal vacuolation with an upregulated volume of acidic compartment and cytotoxicity, together with inhibitions of both topoisomerase I and II activities. Additional study shows that the anticancer activity of cuminaldehyde was observed in the model of nude mice. Our results suggest that the anticancer activity of cuminaldehyde in vitro involved the suppression of cell proliferative markers, topoisomerase I as well as II, together with increase of pro-apoptotic molecules, associated with upregulated lysosomal vacuolation. On the other hand, in vivo, cuminaldehyde diminished the tumor burden that would have a significant clinical impact. Furthermore, similar effects were observed in other tested cell lines. In short, our data suggest that cuminaldehyde could be a drug for chemopreventive or anticancer therapy. PMID:27231935

  11. Anti-tumour activity of photodynamic therapy in combination with mitomycin C in nude mice with human colon adenocarcinoma.

    PubMed Central

    Ma, L. W.; Moan, J.; Steen, H. B.; Iani, V.

    1995-01-01

    The interaction of photodynamic therapy (PDT) and a chemotherapeutic drug, mitomycin C (MMC), was investigated using WiDr human colon adenocarcinoma tumours implanted on Balb/c athymic nude mice. The WiDr tumours were treated with PDT alone, MMC alone or with both. It was found that the combined treatment produced a greater retardation in the growth of the WiDr tumour than monotherapy with MMC or PDT. The synergistic effect was especially prominent when PDT was used in combination with a low dose of MMC (1 mg kg-1), since treatment of 1 mg kg-1 MMC alone had no effect on the tumour. The anti-tumour activity of PDT was found to be increased with MMC of 5 mg kg-1. The response of normal skin on mice feet to PDT slightly greater when PDT was combined with 5 mg kg-1 MMC than when PDT was applied alone, while no detectable additional effect on skin photosensitivity was observed when PDT was combined with 1 mg kg-1 MMC. An enhanced uptake of Photofrin in tumours was found 12 h and 24 h after administration of MMC. The effect of MMC on the cell cycle distribution of cell dissociated directly from the tumours was studied. The results suggest that the increased susceptibility to photoinactivation of Photofrin-sensitised tumours may be due to MMC-induced accumulation of the tumour cells in S-phase. PMID:7734319

  12. Dynamic Change of Polarity in Primary Cultured Spheroids of Human Colorectal Adenocarcinoma and Its Role in Metastasis.

    PubMed

    Okuyama, Hiroaki; Kondo, Jumpei; Sato, Yumi; Endo, Hiroko; Nakajima, Aya; Piulats, Jose M; Tomita, Yasuhiko; Fujiwara, Takeshi; Itoh, Yu; Mizoguchi, Akira; Ohue, Masayuki; Inoue, Masahiro

    2016-04-01

    Intestinal epithelial cells possess apical-basal polarity, which governs the exchange of nutrients and waste. Perturbation of cell polarity appears to be a general feature of cancers, although most colorectal cancers are differentiated adenocarcinomas, in which polarity is maintained to some extent. Little is known about the role of dysregulated polarity in cancer. The cancer tissue-originated spheroid method was applied to the preparation and culture of spheroids. Spheroids were cultured in suspension or in type I collagen gel. Polarity was assessed by IHC of apical markers and electron microscopy. Two types of polarity status in spheroids were observed: apical-in, with apical membrane located at cavities inside the spheroids in type I collagen gel; and apical-out, with apical membrane located at the outermost layer of spheroids in suspension. These polarities were highly interchangeable. Inhibitors of Src and dynamin attenuated the polarity switch. In patients, clusters of cancer cells that invaded vessels had both apical-in and apical-out morphologic features, whereas primary and metastatic tumors had apical-in features. In a mouse liver metastasis model, apical-out spheroids injected into the portal vein became apical-in spheroids in the liver within a few days. Inhibitors of Src and dynamin significantly decreased liver metastasis. Polarity switching was observed in spheroids and human cancer. The polarity switch was critical in an experimental liver metastasis model.

  13. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms

    PubMed Central

    Maurya, Dharmendra K.; Nandakumar, Nivedita; Devasagayam, Thomas Paul Asir

    2011-01-01

    Gallic acid is widely distributed in plants, fruits and foods with a range of biological activities. In the present study the possible mechanisms of gallic acid anticancer properties were explored in A549, a human lung adenocarcinoma cell line. Our study shows that it inhibited the A549 cell growth and decreased cell viability monitored at 24 h. It also inhibited cell proliferation in dose- and time-dependent manner as measured by 3-[4,5-methylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assay at 24 and 48 h. Morphological examination of the cells after gallic acid treatment showed the typical feature of cell death such as cell shrinkage and rounding up of the cells. Clonogenic assay indicated that gallic acid treatments inhibited the colony formation. DNA fragmentation assay indicated the disappearance of the genomic DNA in dose-dependent manner. To find out possible mechanisms, mitochondrial potential and intracellular reactive oxygen species were measured. It was observed that gallic acid treatment decreased mitochondrial membrane potential and increased intracellular reactive oxygen species. Further caspases activity was measured and it was found that gallic acid activated the caspase-3 but not caspase-8 indicating the involvement of intrinsic pathway of cell apoptosis. PMID:21297918

  14. In vitro evaluation of antitumoral efficacy of catalase in combination with traditional chemotherapeutic drugs against human lung adenocarcinoma cells.

    PubMed

    de Oliveira, Valeska Aguiar; da Motta, Leonardo Lisbôa; De Bastiani, Marco Antônio; Lopes, Fernanda Martins; Müller, Carolina Beatriz; Gabiatti, Bernardo Papini; França, Fernanda Stapenhorst; Castro, Mauro Antônio Alves; Klamt, Fabio

    2016-08-01

    Lung cancer is the most lethal cancer-related disease worldwide. Since survival rates remain poor, there is an urgent need for more effective therapies that could increase the overall survival of lung cancer patients. Lung tumors exhibit increased levels of oxidative markers with altered levels of antioxidant defenses, and previous studies demonstrated that the overexpression of the antioxidant enzyme catalase (CAT) might control tumor proliferation and aggressiveness. Herein, we evaluated the effect of CAT treatment on the sensitivity of A549 human lung adenocarcinoma cells toward various anticancer treatments, aiming to establish the best drug combination for further therapeutic management of this disease. Exponentially growing A549 cells were treated with CAT alone or in combination with chemotherapeutic drugs (cisplatin, 5-fluorouracil, paclitaxel, daunorubicin, and hydroxyurea). CalcuSyn(®) software was used to assess CAT/drug interactions (synergism or antagonism). Growth inhibition, NFκB activation status, and redox parameters were also evaluated in CAT-treated A549 cells. CAT treatment caused a cytostatic effect, decreased NFκB activation, and modulated the redox parameters evaluated. CAT treatment exhibited a synergistic effect among most of the anticancer drugs tested, which is significantly correlated with an increased H2O2 production. Moreover, CAT combination caused an antagonism in paclitaxel anticancer effect. These data suggest that combining CAT (or CAT analogs) with traditional chemotherapeutic drugs, especially cisplatin, is a promising therapeutic strategy for the treatment of lung cancer.

  15. Cuminaldehyde from Cinnamomum verum Induces Cell Death through Targeting Topoisomerase 1 and 2 in Human Colorectal Adenocarcinoma COLO 205 Cells.

    PubMed

    Tsai, Kuen-Daw; Liu, Yi-Heng; Chen, Ta-Wei; Yang, Shu-Mei; Wong, Ho-Yiu; Cherng, Jonathan; Chou, Kuo-Shen; Cherng, Jaw-Ming

    2016-01-01

    Cinnamomum verum, also called true cinnamon tree, is employed to make the seasoning cinnamon. Furthermore, the plant has been used as a traditional Chinese herbal medication. We explored the anticancer effect of cuminaldehyde, an ingredient of the cortex of the plant, as well as the molecular biomarkers associated with carcinogenesis in human colorectal adenocarcinoma COLO 205 cells. The results show that cuminaldehyde suppressed growth and induced apoptosis, as proved by depletion of the mitochondrial membrane potential, activation of both caspase-3 and -9, and morphological features of apoptosis. Moreover, cuminaldehyde also led to lysosomal vacuolation with an upregulated volume of acidic compartment and cytotoxicity, together with inhibitions of both topoisomerase I and II activities. Additional study shows that the anticancer activity of cuminaldehyde was observed in the model of nude mice. Our results suggest that the anticancer activity of cuminaldehyde in vitro involved the suppression of cell proliferative markers, topoisomerase I as well as II, together with increase of pro-apoptotic molecules, associated with upregulated lysosomal vacuolation. On the other hand, in vivo, cuminaldehyde diminished the tumor burden that would have a significant clinical impact. Furthermore, similar effects were observed in other tested cell lines. In short, our data suggest that cuminaldehyde could be a drug for chemopreventive or anticancer therapy. PMID:27231935

  16. Bad is not involved in DHA-induced apoptosis in human lung adenocarcinoma ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Yu, Huai-na; Lu, Ying-ying; Chen, Tong-sheng

    2011-03-01

    Dihydroartemisinin (DHA), a first-line anti-malarial drug with low toxicity, has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathway, but the molecular mechanisms are not well understood. In this paper, we focus on whether Bad, a BH3-only pro-apoptotic protein, is involved in apoptotic cell death in DHA-treated human lung adenocarcinoma (ASTC-a-1) cells. Confocal fluorescence microscope imaging was used to monitor the temporal and spatial distribution of Bad in single living cells. Our results indicate that Bad is still located in cytoplasm and does not translocate to mitochondria after treatment with DHA for 24 h, while only a small proportion of Bad located in cytoplasm in the STS-treated cells for 6 h. These results show for the first time that Bad is not involved in DHA-induced apoptosis in ASTC-a-1 cells, which could give more evidence for the molecular mechanisms of apoptosis induced by DHA.

  17. New Alkyl Phloroglucinol Derivatives from Rhus trichocarpa Roots and Their Cytotoxic Effects on Human Gastric Adenocarcinoma AGS Cells.

    PubMed

    Lee, Ki Yong; Choi, Ji Hoon; Kim, Hyeon Woo; Yan, Xi-Tao; Shin, Hyeji; Jeon, Young Ho; Sung, Sang Hyun

    2016-05-01

    The phytochemical investigation of the roots of Rhus trichocarpa led to this isolation of five new alkyl phloroglucinol derivatives, characterized as (Z)-15-hydroxy-1-(2,4,6-trihydroxyphenyl)-9-octadecen-1-one (named trichocarpol A, 1), (Z)-15-hydroxy-1-(2,6-dihydroxy-4-methoxyphenyl)-9-octadecen-1-one (named trichocarpol B, 2), (Z)-17-hydroxy-1-(2,4,6-trihydroxyphenyl)-9-octadecen-1-one (named trichocarpol C, 3), (Z)-18-hydroxy-1-(2,4,6-trihydroxyphenyl)-9-octadecen-1-one (named trichocarpol D, 4), and (9Z,12Z)-18-hydroxy-1-(2,4,6-trihydroxyphenyl)-9,12-octadecadien-1-one (named trichocarpol E, 5), together with a known compound, 4-(2,6-dihydroxy-4-methoxyphenyl)-4-oxobutanoic acid (6). In vitro cytotoxic activity of compounds 1-6 was evaluated in the human gastric adenocarcinoma AGS cell line and compounds 1-5 showed significant cytotoxicity. Our results indicate that R. trichocarpa, especially the alkyl phloroglucinol derivatives in it, is a good source of promising natural agents for the treatment of gastric cancer. PMID:26845711

  18. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines

    PubMed Central

    Clemente-Vicario, Francisco; Alvarez, Carlos E.; Rowell, Jennie L.; Roy, Satavisha; London, Cheryl A.; Kisseberth, William C.; Lorch, Gwendolen

    2015-01-01

    Background It has been an open question how similar human and canine lung cancers are. This has major implications in availability of human treatments for dogs and in establishing translational models to test new therapies in pet dogs. The prognosis for canine advanced lung cancer is poor and new treatments are needed. Heat shock protein 90 (HSP90) is an ATPase-dependent molecular chaperone ubiquitously expressed in eukaryotic cells. HSP90 is essential for posttranslational conformational maturation and stability of client proteins including protein kinases and transcription factors, many of which are important for the proliferation and survival of cancer cells. We investigated the activity of STA-1474, a HSP90 inhibitor, in two canine lung cancer cell lines, BACA and CLAC. Results Comparative genomic hybridization analysis of both cell lines revealed genetic relevance to human non-small cell lung cancer. STA-1474 inhibited growth and induced apoptosis of both cell lines in a dose- and time-dependent manner. The ICs50 after 72 h treatment with STA-1474 were 0.08 and 0.11 μM for BACA and CLAC, respectively. When grown as spheroids, the IC50 of STA-1474 for BACA cells was approximately two-fold higher than when grown as a monolayer (0.348 μM vs. 0.168 μM), whereas CLAC spheroids were relatively drug resistant. Treatment of tumor-stromal fibroblasts with STA-1474 resulted in a dose-dependent decrease in their relative cell viability with a low IC50 of 0.28 μM. Conclusions Here we first established that lung adenocarcinoma in people and dogs are genetically and biochemically similar. STA1474 demonstrated biological activity in both canine lung cancer cell lines and tumor-stromal fibroblasts. As significant decreases in relative cell viability can be achieved with nanomolar concentrations of STA-1474, investigation into the clinical efficacy of this drug in canine lung cancer patients is warranted. PMID:26560147

  19. In vitro and in vivo studies on antitumor effects of gossypol on human stomach adenocarcinoma (AGS) cell line and MNNG induced experimental gastric cancer

    SciTech Connect

    Gunassekaran, G.R.; Kalpana Deepa Priya, D.; Gayathri, R.; Sakthisekaran, D.

    2011-08-12

    Highlights: {yields} Gossypol is a well known polyphenolic compound used for anticancer studies but we are the first to report that gossypol has antitumor effect on MNNG induced gastric cancer in experimental animal models. {yields} Our study shows that gossypol inhibits the proliferation of AGS (human gastric adenocarcinoma) cell line. {yields} In animal models, gossypol extends the survival of cancer bearing animals and also protects the cells from carcinogenic effect. {yields} So we suggest that gossypol would be a potential chemotherapeutic and chemopreventive agent for gastric cancer. -- Abstract: The present study has evaluated the chemopreventive effects of gossypol on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced gastric carcinogenesis and on human gastric adenocarcinoma (AGS) cell line. Gossypol, C{sub 30}H{sub 30}O{sub 8}, is a polyphenolic compound that has anti proliferative effect and induces apoptosis in various cancer cells. The aim of this work was to delineate in vivo and in vitro anti-initiating mechanisms of orally administered gossypol in target (stomach) tissues and in human gastric adenocarcinoma (AGS) cell line. In vitro results prove that gossypol has potent cytotoxic effect and inhibit the proliferation of adenocarcinoma (AGS) cell line. In vivo results prove gossypol to be successful in prolonging the survival of MNNG induced cancer bearing animals and in delaying the onset of tumor in animals administrated with gossypol and MNNG simultaneously. Examination of the target (stomach) tissues in sacrificed experimental animals shows that administration of gossypol significantly reduces the level of tumor marker enzyme (carcino embryonic antigen) and pepsin. The level of Nucleic acid contents (DNA and RNA) significantly reduces, and the membrane damage of glycoprotein subsides, in the target tissues of cancer bearing animals, with the administration of gossypol. These data suggest that gossypol may create a beneficial effect in patients

  20. Loss of SOD3 (EcSOD) expression promotes an aggressive phenotype in human pancreatic ductal adenocarcinoma

    PubMed Central

    O’Leary, Brianne R.; Fath, Melissa A.; Bellizzi, Andrew M.; Hrabe, Jennifer E.; Button, Anna M.; Allen, Bryan G.; Case, Adam J.; Altekruse, Sean; Wagner, Brett A.; Buettner, Garry R.; Lynch, Charles F.; Hernandez, Brenda Y.; Cozen, Wendy; Beardsley, Robert A.; Keene, Jeffery; Henry, Michael D.; Domann, Frederick E.; Spitz, Douglas R.; Mezhir, James J.

    2015-01-01

    Purpose Pancreatic ductal adenocarcinoma (PDA) cells are known to produce excessive amounts of reactive oxygen species (ROS), particularly superoxide, which may contribute to the aggressive and refractory nature of this disease. Extracellular superoxide dismutase (EcSOD) is an antioxidant enzyme that catalyzes the dismutation of superoxide in the extracellular environment. The current work tests the hypothesis that EcSOD modulates PDA growth and invasion by modifying the redox balance in PDA. Experimental Design We evaluated the prognostic significance of EcSOD in a human tissue microarray of patients with PDA. EcSOD overexpression was performed in PDA cell lines and animal models of disease. The impact of EcSOD on PDA cell lines was evaluated with Matrigel invasion in combination with a superoxide-specific SOD mimic and a nitric oxide synthase inhibitor to determine the mechanism of action of EcSOD in PDA. Results Loss of EcSOD expression is a common event in PDA, which correlated with worse disease biology. Overexpression of EcSOD in PDA cell lines resulted in decreased invasiveness that appeared to be related to reactions of superoxide with nitric oxide. Pancreatic cancer xenografts overexpressing EcSOD also demonstrated slower growth and peritoneal metastasis. Over-expression of EcSOD or treatment with a superoxide-specific SOD mimic caused significant decreases in PDA cell invasive capacity. Conclusions These results support the hypothesis that loss of EcSOD leads to increased reactions of superoxide with nitric oxide which contributes to the invasive phenotype. These results allow for the speculation that superoxide dismutase mimetics might inhibit PDA progression in human clinical disease. PMID:25634994

  1. Antigenotoxicity of probiotics and prebiotics on faecal water-induced DNA damage in human colon adenocarcinoma cells.

    PubMed

    Burns, Anthony J; Rowland, Ian R

    2004-07-13

    Six strains of lactic acid producing bacteria (LAB) were incubated (1 x 10(8)cfu/ml) with genotoxic faecal water from a human subject. HT29 human adenocarcinoma cells were then challenged with the resultant samples and DNA damage measured using the single cell gel electrophoresis (comet) assay. The LAB strains investigated were Bifidobacterium sp. 420, Bifidobacterium Bb12, Lactobacillus plantarum, Streptococcus thermophilus, Lactobacillus bulgaricus and Enterococcus faecium. DNA damage was significantly decreased by all bacteria used with the exception of Strep. thermophilus. Bif. Bb12 and Lact. plantarum showed the greatest protective effect against DNA damage. Incubation of faecal water with different concentrations of Bif. Bb12 and Lact. plantarum revealed that the decrease in genotoxicity was related to cell density. Non-viable (heat treated) probiotic cells had no effect on faecal water genotoxicity. In a second study, HT29 cells were cultured in the presence of supernatants of incubations of probiotics with various carbohydrates including known prebiotics; the HT29 cells were then exposed to faecal water. Overall, incubations involving Lact. plantarum with the fructooligosaccharide (FOS)-based prebiotics Inulin, Raftiline, Raftilose and Actilight were the most effective in increasing the cellular resistance to faecal water genotoxicity, whereas fermentations with Elixor (a galactooligosaccharide) and Fibersol (a maltodextrin) were less effective. Substantial reductions in faecal water-induced DNA damage were also seen with supernatants from incubation of prebiotics with Bif. Bb12. The supernatant of fermentations involving Ent. faecium and Bif. sp. 420 generally had less potent effects on genotoxicity although some reductions with Raftiline and Elixor fermentations were apparent.

  2. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors.

    PubMed

    Politi, Katerina; Zakowski, Maureen F; Fan, Pang-Dian; Schonfeld, Emily A; Pao, William; Varmus, Harold E

    2006-06-01

    Somatic mutations in exons encoding the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are found in human lung adenocarcinomas and are associated with sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib. Nearly 90% of the EGFR mutations are either short, in-frame deletions in exon 19 or point mutations that result in substitution of arginine for leucine at amino acid 858 (L858R). To study further the role of these mutations in the initiation and maintenance of lung cancer, we have developed transgenic mice that express an exon 19 deletion mutant (EGFR(DeltaL747-S752)) or the L858R mutant (EGFR(L858R)) in type II pneumocytes under the control of doxycycline. Expression of either EGFR mutant leads to the development of lung adenocarcinomas. Two weeks after induction with doxycycline, mice that express the EGFR(L858R) allele show diffuse lung cancer highly reminiscent of human bronchioloalveolar carcinoma and later develop interspersed multifocal adenocarcinomas. In contrast, mice expressing EGFR(DeltaL747-S752) develop multifocal tumors embedded in normal lung parenchyma with a longer latency. With mice carrying either EGFR allele, withdrawal of doxycycline (to reduce expression of the transgene) or treatment with erlotinib (to inhibit kinase activity) causes rapid tumor regression, as assessed by magnetic resonance imaging and histopathology, demonstrating that mutant EGFR is required for tumor maintenance. These models may be useful for developing improved therapies for patients with lung cancers bearing EGFR mutations.

  3. Frequency and spectrum of c-Ki-ras mutations in human sporadic colon carcinoma, carcinomas arising in ulcerative colitis, and pancreatic adenocarcinoma

    SciTech Connect

    Burmer, G.C.; Rabinovitch, P.S.; Loeb, L.A. )

    1991-06-01

    Sporadic colon carcinomas, carcinomas arising in chronic ulcerative colitis, and pancreatic adenocarcinomas have been analyzed for the presence of c-Ki-ras mutations by a combination of histological enrichment, cell sorting, polymerase chain reaction, and direct sequencing. Although 60% (37/61) of sporadic colon carcinomas contained mutations in codon 12, only 1 of 17 specimens of dysplasia or carcinoma from ulcerative colitis patients contained c-Ki-ras mutations, despite a high frequency of aneuploid tumors. In contrast, a higher percentage (16/20 = 80%) of pancreatic adenocarcinomas contained mutations in c-Ki-ras 2, despite a lower frequency of DNA aneuploidy in these neoplasms. Moreover, the spectrum of mutations differed between sporadic colon carcinoma, where the predominant mutation was a G to A transition, and pancreatic carcinomas, which predominantly contained G to C or T transversions. These results suggest that the etiology of ras mutations is different in these three human neoplasms.

  4. Lipase member H is a novel secreted protein selectively upregulated in human lung adenocarcinomas and bronchioloalveolar carcinomas

    SciTech Connect

    Seki, Yasuhiro; Yoshida, Yukihiro; Ishimine, Hisako; Shinozaki-Ushiku, Aya; Ito, Yoshimasa; Sumitomo, Kenya; Nakajima, Jun; Fukayama, Masashi; Michiue, Tatsuo; Asashima, Makoto; Kurisaki, Akira

    2014-01-24

    Highlights: • Most of the adenocarcinomas and bronchioloalveolar carcinomas were LIPH-positive. • LIPH is necessary for the proliferation of lung cancer cells in vitro. • A high level of LIPH in serum is correlated with better survival in early phase lung-cancer patients after surgery. - Abstract: Lung cancer is one of the most frequent causes of cancer-related death worldwide. However, molecular markers for lung cancer have not been well established. To identify novel genes related to lung cancer development, we surveyed publicly available DNA microarray data on lung cancer tissues. We identified lipase member H (LIPH, also known as mPA-PLA1) as one of the significantly upregulated genes in lung adenocarcinoma. LIPH was expressed in several adenocarcinoma cell lines when they were analyzed by quantitative real-time polymerase chain reaction (qPCR), western blotting, and sandwich enzyme-linked immunosorbent assay (ELISA). Immunohistochemical analysis detected LIPH expression in most of the adenocarcinomas and bronchioloalveolar carcinomas tissue sections obtained from lung cancer patients. LIPH expression was also observed less frequently in the squamous lung cancer tissue samples. Furthermore, LIPH protein was upregulated in the serum of early- and late-phase lung cancer patients when they were analyzed by ELISA. Interestingly, high serum level of LIPH was correlated with better survival in early phase lung cancer patients after surgery. Thus, LIPH may be a novel molecular biomarker for lung cancer, especially for adenocarcinoma and bronchioloalveolar carcinoma.

  5. Targeting AKT with the Pro-apoptotic Peptide, TAT-CTMP: a Novel Strategy for the Treatment of Human Pancreatic Adenocarcinoma

    PubMed Central

    Simon, Peter O.; McDunn, Jonathan E.; Kashiwagi, Hiroyuki; Chang, Katherine; Goedegebuure, Peter S.; Hotchkiss, Richard S.; Hawkins, William G.

    2009-01-01

    Pancreatic adenocarcinoma carries an ominous prognosis and has little effective treatment. Several studies have demonstrated that the potently anti-apoptotic phosphatidyl inositol 3’-kinase (PI3K) - protein kinase B/AKT pathway is active in pancreas cancer. A recent study identified an endogenous AKT antagonist, carboxyl terminal modular protein (CTMP). CTMP inhibits the phosphorylation of AKT, preventing full activation of the kinase. We screened several cell permeable peptides from the N-terminal domain of CTMP (termed TAT-CTMP1 - 4) in vitro and found one that caused significant apoptosis in pancreatic adenocarcinoma cell lines. An inactive variant of this peptide was synthesized and used as a negative control. In all cell lines tested, TAT-CTMP4 induced a dose-dependent increase in apoptosis as detected by %-TUNEL positive cells and %-active caspase-3 (% active caspase-3 ranged from 31.2 to 61.9 at the highest dose tested (10µM)). A screening of various cell and tissue types revealed that the pro-apoptotic activity was highest in pancreatic adenocarcinoma. TAT-CTMP induced similar levels of active caspase-3 as several other known inducers of apoptosis: gemcitabine, radiation therapy, wortmannin, and recombinant tumor necrosis factor (TNF)-α. No apoptosis was observed in donor human peripheral blood mononuclear cells (PBMC, P<0.01). We further showed that TAT-CTMP4 could augment either gemcitabine chemotherapy or radiation therapy, standard therapies for pancreas cancer. Pancreatic adenocarcinoma xenografts, treated with a single dose of TAT-CTMP4 demonstrated a marked increase in caspase-3 positive tumor cells when compared to untreated controls. Additionally, pancreatic adenocarcinoma allografts treated with intratumoral TAT-CTMP and systemic gemcitabine displayed a significantly smaller tumor burden while undergoing treatment than mice in control groups (P<0.001). These data indicate that inhibiting AKT with CTMP may be of therapeutic benefit in the

  6. Multiple forms of the human gene-specific transcription factor USF. II. DNA binding properties and transcriptional activity of the purified HeLa USF.

    PubMed

    Sawadogo, M

    1988-08-25

    The gene-specific upstream stimulatory transcription factor (USF) is required for maximal expression of the adenovirus major late promoter in vivo as well as in vitro. We have examined the DNA binding and transcriptional properties of USF purified to near-homogeneity from HeLa cell nuclei (Sawadogo, M., Van Dyke, M. W., Gregor, P. D., and Roeder, R. G. (1988) J. Biol. Chem. 263, 11985-11993). The 44-and 43,000-dalton forms of USF displayed identical affinities for the major late promoter upstream sequence. Specific binding parameters were greatly influenced by neighboring sequences, but not by the topological state of the DNA. The dissociation rate was highly dependent upon the concentration of competitor DNA, indicating that USF can efficiently transfer from one binding site to another by passing through a doubly bound intermediate state (direct transfer mechanism). Transcription stimulation by purified USF showed titration curves identical to those observed with cruder preparations of the transcription factor. However, the overall stimulation observed at saturating USF concentration was significantly lower with the purified protein. By contrast, interaction with TATA box-binding RNA polymerase II transcription factor D was observed with both USF-containing fractions. This could suggest the existence of two different mechanisms for upstream sequence-dependent transcription stimulation, where one critical component (or some necessary modification of the upstream factor itself) may be missing in reactions reconstituted with purified USF.

  7. Zac1, an Sp1-like protein, regulates human p21{sup WAF1/Cip1} gene expression in HeLa cells

    SciTech Connect

    Liu, Pei-Yao; Hsieh, Tsai-Yuan; Liu, Shu-Ting; Chang, Yung-Lung; Lin, Wei-Shiang; Wang, Wei-Ming; Huang, Shih-Ming

    2011-12-10

    Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21{sup WAF1/Cip1} gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity by interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein-protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21{sup WAF1/Cip1} gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.

  8. Effects of fatty acids on benzo[a]pyrene uptake and metabolism in human lung adenocarcinoma A549 cells.

    PubMed

    Barhoumi, Rola; Mouneimne, Youssef; Chapkin, Robert S; Burghardt, Robert C

    2014-01-01

    Dietary supplementation with natural chemoprotective agents is receiving considerable attention because of health benefits and lack of toxicity. In recent in vivo and in vitro experimental studies, diets rich in n-3 polyunsaturated fatty acids have been shown to provide significant anti-tumor action. In this investigation, the effects of control fatty acids (oleic acid (OA), linoleic acid (LA)) and n-3 PUFA, e.g., docosahexaenoic acid (DHA) on the uptake and metabolism of the carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) was investigated in A549 cells, a human adenocarcinoma alveolar basal epithelial cell line. A549 cells activate BaP through the cytochrome P450 enzyme system to form reactive metabolites, a few of which covalently bind to DNA and proteins. Therefore, multiphoton microscopy spectral analysis combined with linear unmixing was used to identify the parent compound and BaP metabolites formed in cells, in the presence and absence of fatty acids. The relative abundance of select metabolites was associated with altered P450 activity as determined using ethoxyresorufin-O-deethylase activity in cells cultured in the presence of BSA-conjugated fatty acids. In addition, the parent compound within cellular membranes increases significantly in the presence of each of the fatty acids, with the greatest accumulation observed following DHA treatment. DHA treated cells exhibit significantly lower pyrene-like metabolites indicative of lower adducts including DNA adducts compared to control BSA, OA or LA treated cells. Further, DHA reduced the abundance of the proximate carcinogen BaP 7,8-dihydrodiol and the 3-hydroxybenzo[a]pyrene metabolites compared to other treatments. The significant changes in BaP metabolites in DHA treated cells may be mediated by the effects on the physicochemical properties of the membrane known to affect enzyme activity related to phase I and phase II metabolism. In summary, DHA is a highly bioactive chemo

  9. Therapeutic efficacy evaluation of 111in-VNB-liposome on human colorectal adenocarcinoma HT-29/ luc mouse xenografts

    NASA Astrophysics Data System (ADS)

    Lee, Wan-Chi; Hwang, Jeng-Jong; Tseng, Yun-Long; Wang, Hsin-Ell; Chang, Ya-Fang; Lu, Yi-Ching; Ting, Gann; Whang-Peng, Jaqueline; Wang, Shyh-Jen

    2006-12-01

    The purpose of this study is to evaluate the therapeutic efficacy of the liposome encaged with vinorelbine (VNB) and 111In-oxine on human colorectal adenocarcinoma (HT-29) using HT-29/ luc mouse xenografts. HT-29 cells stably transfected with plasmid vectors containing luciferase gene ( luc) were transplanted subcutaneously into the male NOD/SCID mice. Biodistribution of the drug was performed when tumor size reached 500-600 mm 3. The uptakes of 111In-VNB-liposome in tumor and normal tissues/organs at various time points postinjection were assayed. Multimodalities, including gamma scintigraphy, bioluminescence imaging (BLI) and whole-body autoradiography (WBAR), were applied for evaluating the therapeutic efficacy when tumor size was about 100 mm 3. The tumor/blood ratios of 111In-VNB-liposome were 0.044, 0.058, 2.690, 20.628 and 24.327, respectively, at 1, 4, 24, 48 and 72 h postinjection. Gamma scinitigraphy showed that the tumor/muscle ratios were 2.04, 2.25 and 4.39, respectively, at 0, 5 and 10 mg/kg VNB. BLI showed that significant tumor control was achieved in the group of 10 mg/kg VNB ( 111In-VNB-liposome). WBAR also confirmed this result. In this study, we have demonstrated a non-invasive imaging technique with a luciferase reporter gene and BLI for evaluation of tumor treatment efficacy in vivo. The SCID mice bearing HT-29/ luc xenografts treated with 111In-VNB-liposome were shown with tumor reduction by this technique.

  10. DNA damage response induced by exposure of human lung adenocarcinoma cells to smoke from tobacco- and nicotine-free cigarettes.

    PubMed

    Jorgensen, Ellen D; Zhao, Hong; Traganos, Frank; Albino, Anthony P; Darzynkiewicz, Zbigniew

    2010-06-01

    Cigarette smoke (CS) is the major cause of lung cancer and contributes to the development of other malignancies. Attempts have been made to construct reduced toxicity cigarettes, presumed to have diminished genotoxic potential. One such product on the market is the tobacco and nicotine free (T&N-free) cigarette type made from lettuce and herbal extracts. We have recently developed a sensitive assay of the genotoxicity of CS based on cytometric analysis of induction of the DNA damage response (DDR) in normal human pulmonary endothelial or A549 pulmonary adenocarcinoma cells. In the present study, we observed that exposure of A549 cells to CS from T/N-free cigarettes induced a smoke-dose dependent DDR as evidenced by phosphorylation (activation) of the Ataxia telangiectasia mutated (ATM) protein kinase and of the histone H2AX (γH2AX). The extent of DDR induced by T&N-free smoke was distinctly greater than that induced by comparable doses of CS from reference cigarettes (2R4F) containing tobacco and nicotine. The pattern of DDR induced by T&N-free smoke was similar to that of 2R4F cigarettes in terms of the cell cycle phase specificity and involvement of reactive oxygen species (ROS). The data also imply that similar to 2R4F exposure of cells to T/N-free smoke leads to formation of double-strand DNA breaks (DSBs) resulting from collapse of replication forks upon collision with the primary ssDNA lesions induced by smoke. Since DSBs are potentially carcinogenic our data indicate that smoking tobacco and nicotine-free cigarettes is at least as hazardous as smoking cigarettes containing tobacco and nicotine. PMID:20404482

  11. Inhibitory effects of tetrandrine on epidermal growth factor-induced invasion and migration in HT29 human colorectal adenocarcinoma cells.

    PubMed

    Horng, Chi-Ting; Yang, Jai-Sing; Chiang, Jo-Hua; Lu, Chi-Cheng; Lee, Chiu-Fang; Chiang, Ni-Na; Chen, Fu-An

    2016-01-01

    Tetrandrine has been shown to reduce cancer cell proliferation and to inhibit metastatic effects in multiple cancer models in vitro and in vivo. However, the effects of tetrandrine on the underlying mechanism of HT29 human colorectal adenocarcinoma cell metastasis remain to be fully elucidated. The aim of the present study was focused on tetrandrine‑treated HT29 cells following epidermal growth factor (EGF) treatment, and Transwell, gelatin zymography, gene expression and immunoblotting assays were performed to investigate metastatic effects in vitro. Tetrandrine was observed to dose‑dependently inhibit EGF‑induced HT29 cell invasion and migration, however, no effect on cell viability occurred following exposure to tetradrine between 0.5 and 2 µM. Tetrandrine treatment inhibited the enzymatic activity of matrix metalloprotease (MMP)‑2 and MMP‑9 in a concentration‑dependent manner. The present study also found a reduction in the mRNA expression levels of MMP‑2 and MMP‑9 in the tetrandrine‑treated HT29 cells. Tetrandrine also suppressed the phosphorylation of EGF receptor (EGFR) and its downstream pathway, including phosphoinositide‑dependent kinase 1, phosphatidylinositol 3‑kinase and phosphorylated AKT, suppressing the gene expression of MMP‑2 and MMP‑9. Furthermore, tetrandrine triggered mitogen‑activated protein kinase signaling through the suppressing the activation of phosphorylated extracellular signal‑regulated protein kinase. These data suggested that targeting EGFR signaling and its downstream molecules contributed to the inhibition of EGF‑induced HT29 cell metastasis caused by tetrandrine, eventually leading to a reduction in the mRNA and gelatinase activities of MMP-2 and MMP-9, respectively. PMID:26648313

  12. In vitro anti-cancer activities of Job's tears (Coix lachryma-jobi Linn.) extracts on human colon adenocarcinoma.

    PubMed

    Manosroi, Aranya; Sainakham, Mathukorn; Chankhampan, Charinya; Manosroi, Worapaka; Manosroi, Jiradej

    2016-03-01

    The whole seed (W), endosperm (E) and hull (H) of five cultivars of Job's tears (Coix lachryma-jobi Linn. var. ma-yuen Stapf) including Thai Black Phayao, Thai Black Loei, Laos Black Loei, Laos White Loei and Laos Black Luang Phra Bang were processed before solvent extraction by non-cooking, roasting, boiling and steaming Each part of the Job's tears was extracted by the cold and hot process by refluxing with methanol and hexane. The total of 330 extracts included 150 methanol extracts and 180 hexane extracts were investigated for anti-proliferative activity on human colon adenocarcinoma cell line (HT-29) by the sulforhodamine B (SRB) assay. The extracts which gave high anti-proliferative activity were tested for apoptotic activity by acridine orange and ethidium bromide double staining and anti-oxidative activities including free radical scavenging and lipid peroxidation inhibition activities. The extract from the hull of Thai Black Loei roasted before extracting by hot methanol (M-HTBL-R2) showed the highest anti-proliferative activity on HT-29 with the IC50 values of 11.61 ± 0.95 μg/ml, while the extract from the non-cooked hull of Thai Black Loei by cold methanol extraction (M-HTBL-N1) gave the highest apoptosis (8.17 ± 1.18%) with no necrosis. In addition, M-HTBL-R2 and M-HTBL-N1 indicated free radical scavenging activity at the SC50 values of 0.48 ± 0.12 and 2.47 ± 1.15 mg/ml, respectively. This study has demonstrated the anti-colorectal cancer potential of the M-HTBL-R2 and M-HTBL-N1 extracts. PMID:26981007

  13. Trans- and cis-2-phenylindole platinum(II) complexes as cytotoxic agents against human breast adenocarcinoma cell lines

    NASA Astrophysics Data System (ADS)

    Tomé, Maria; López, Concepción; González, Asensio; Ozay, Bahadir; Quirante, Josefina; Font-Bardía, Mercè; Calvet, Teresa; Calvis, Carme; Messeguer, Ramon; Baldomá, Laura; Badía, Josefa

    2013-09-01

    The synthesis and characterization of the new 2-phenylindole derivative: C8H3N-2-C6H5-3NOMe-5OMe (3c) and the trans- and cis-isomers of [Pt(3c)Cl2(DMSO)] complexes (4c and 5c, respectively) are described. The crystal structures of 4c·CH2Cl2 and 5c confirm: (a) the existence of a Pt-Nindole bond, (b) the relative arrangement of the Cl- ligands [trans- (in 4c) or cis- (in 5c)] and (c) the anti-(E) configuration of the oxime. The cytotoxic assessment of C8H3N-2-(C6H4-4‧R1)-3NOMe-5R2 [with R1 = R2 = H (3a); R1 = Cl, R2 = H (3b) and R1 = H, R2 = OMe (3c)] and the geometrical isomers of [Pt(L)Cl2(DMSO)] with L = 3a-3c [trans- (4a-4c) and cis- (5a-5c), respectively] against human breast adenocarcinoma cell lines (MDA-MB231 and MCF-7) is also reported and reveals that all the platinum(II) complexes (except 4a) are more cytotoxic than cisplatin in front of the MCF7 cell line. Electrophoretic DNA migration studies of the synthesized compounds in the absence and in the presence of topoisomerase-I have been performed, in order to get further insights into their mechanism of action.

  14. Dual Anti-Metastatic and Anti-Proliferative Activity Assessment of Two Probiotics on HeLa and HT-29 Cell Lines

    PubMed Central

    Nouri, Zahra; Karami, Fatemeh; Neyazi, Nadia; Modarressi, Mohammad Hossein; Karimi, Roya; Khorramizadeh, Mohammad Reza; Taheri, Behrooz; Motevaseli, Elahe

    2016-01-01

    Objective Lactobacilli are a group of probiotics with beneficial effects on prevention of cancer. However, there is scant data in relation with the impacts of probiotics in late-stage cancer progration, especially metastasis. The present original work was aimed to evaluate the anti-metastatic and anti-proliferative activity of lactobacillus rhamnosus supernatant (LRS) and lactobacillus crispatus supernatant (LCS) on the human cervical and colon adenocarcinoma cell lines (HeLa and HT-29, respectively). Materials and Methods In this experimental study, the anti-proliferative activities of LRS and LCS were determined through MTT assay. MRC-5 was used as a normal cell line. Expression analysis of CASP3, MMP2, MMP9, TIMP1 and TIMP2 genes was performed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), following the cell synchronization. Results Supernatants of these two lactobacilli had cytotoxic effect on HeLa, however LRS treatment was only effective on HT-29 cell line. In addition, LRS had no side-effect on normal cells. It was shown that CASP3 gene expression has been reduced after treatment with supernatants of two studied lactobacilli. According to our study, LRS and LCS are efficacious in the prevention of metastasis potency in HeLa cells with decreased expression of MMP2, MMP9 and increased expression of their inhibitors. In the case of HT-29 cells, only LRS showed this effect. Conclusion Herein, we have demonstrated two probiotics which have anti-metastatic effects on malignant cells and they can be administrated to postpone late-stage of cancer disease. LRS and LCS are effective on HeLa cell lines while only the effect of LRS is significant on HT-29, through cytotoxic and anti-metastatic mechanisms. Further assessments are required to evaluate our results on the other cancer cell lines, in advance to use these probiotics in other extensive trial studies. PMID:27551673

  15. The genomic and transcriptomic landscape of a HeLa cell line.

    PubMed

    Landry, Jonathan J M; Pyl, Paul Theodor; Rausch, Tobias; Zichner, Thomas; Tekkedil, Manu M; Stütz, Adrian M; Jauch, Anna; Aiyar, Raeka S; Pau, Gregoire; Delhomme, Nicolas; Gagneur, Julien; Korbel, Jan O; Huber, Wolfgang; Steinmetz, Lars M

    2013-08-07

    HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology.

  16. Inhibitory and Cytotoxic Activities of Chrysin on Human Breast Adenocarcinoma Cells by Induction of Apoptosis

    PubMed Central

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Hasanzadeh, Malihe; Jabbari, Farahzad; Farkhondeh, Tahereh; Samini, Mohammad

    2016-01-01

    Objectives: Chrysin, an active natural bioflavonoid found in honey and many plant extracts, was first known for its antioxidant and anti-inflammatory effects. The fact that antioxidants have several inhibitory effects against different diseases, such as cancer, led to search for food rich in antioxidants. In this study, we investigated the antiproliferative and apoptotic effects of chrysin on the cultured human breast cancer cells (MCF-7). Materials and Methods: Cells were cultured in Roswell Park Memorial Institute medium and treated with different chrysin concentrations for three consecutive days. Cell viability was quantitated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The percentage of apoptotic cells was determined by flow cytometry using Annexin V-fluorescein isothiocyanate. Results: The MTT assay showed that chrysin had an antiproliferative effect on MCF-7 cells in a dose- and time-dependent manner. The 50% cell growth inhibition values for chrysin against MCF-7 cells were 19.5 and 9.2 μM after 48 and 72 h, respectively. Chrysin induced apoptosis in MCF-7 cells as determined by flow cytometry. Chrysin inhibits the growth of the breast cancer cells by inducing cancer cell apoptosis which may, in part, explain its anticancer activity. Conclusion: This study shows that chrysin could also be considered as a promising chemotherapeutic agent and anticancer activity in treatment of the breast cancer cells in future. SUMMARY Chrysin had an antiproliferative effect on human breast cancer cells (MCF-7) cells in a dose- and time-dependent mannerChrysin induced apoptosis in MCF-7 cells, as determined by flow cytometryChrysin inhibits the growth of the breast cancer cells by inducing cancer cell apoptosisChrysin may have anticancer activity. Abbreviations used: Human breast cancer cells (MCF-7), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), phosphate-buffered saline (PBS), normal fibroblast mouse (L929). PMID

  17. [A case of non-acquired immunodeficiency syndrome-defining lung adenocarcinoma in a multidrug-resistant human immunodeficiency virus-positive patient].

    PubMed

    Mori, Naoyoshi; Maeda, Hikaru; Fujiwara, Kentarou; Taniguchi, Haruki

    2013-10-01

    We report a case of non-acquired immunodeficiency syndrome-defining lung adenocarcinoma in a multidrug-resistant human immunodeficiency virus (HIV)-positive patient. The patient was a 47-year-old Japanese woman who received salvage combination anti-retroviral therapy with darunavir plus ritonavir plus raltegravir plus tenofovir/emtricitabine in May 2009. She was diagnosed with lung adenocarcinoma (T3N3M1, stage IV) in November 2010 and was not found to possess any activating mutations in the epidermal growth factor receptor gene. Therefore, 6 courses of carboplatin plus pemetrexed and 3 courses of gemcitabine followed by erlotinib were administrated, and therapy was changed to home medical care. The only drug-related adverse event was grade 1 neutropenia, and drug interaction between the simultaneously administered anti-retroviral and chemotherapeutic agents was not confirmed. The patient battled lung adenocarcinoma for 1 year after the diagnosis and died of cancer progression in October 2011. Her performance status was stable and the CD4 (+) lymphocyte count and HIV load were well controlled throughout the course of treatment. In conclusion, the agents used for this patient show high tolerability and can be used as an effective treatment strategy for lung cancer occurring in HIV-positive patients.

  18. Confocal microscopy as a tool to reveal the tridimensional organization of intracellular lumens and intercellular cysts in a human colon adenocarcinoma cell line.

    PubMed

    Remy, L; Gorvel, J P; Jacquier, M F; Rigal, A; Davoust, J

    1990-01-01

    Adenocarcinoma cells often form intracellular lumens and intercellular cysts. In order to study the structural relationships between these lumens and the apical domain of normal enterocytes, we have applied electron microscopy and confocal microscopy to a cloned cell line derived from the human colon adenocarcinoma cell line LoVo which express a high number of intracellular lumens and intercellular cysts. Microvilli reminiscent of those detected in the brush border of small intestinal cells are formed in the two types of compartments. By immunofluorescence, we found that a 135 kDa membrane glycoprotein characterized by a monoclonal Ab and normally associated with the brush-border of enterocytes is expressed at the surface of the intracellular lumens and intercellular cysts present in the adenocarcinoma cells. Comparison of fluorescence and reflection contrast micrographs obtained by confocal microscopy demonstrate the presence of spherical intracellular lumens in the juxtanuclear region of single cells, and of more complex shaped intercellular cysts located within clusters of cells. The later cells form junctional complexes limiting an apical plasma membrane domain in contact with the intercellular cyst. It is suggested that the intracellular lumens may represent the abortive form of an apical plasma membrane due to the lack of components required to establish epithelial cell contacts. As opposed to conventional fluorescence microscopy, confocal microscopy allows rapid inspection of the tridimensional organization of intracellular lumens and intercellular cysts even when they are located in cell multilayers.

  19. Epirubicin loaded to pre-polymerized poly(butyl cyanoacrylate) nanoparticles: preparation and in vitro evaluation in human lung adenocarcinoma cells.

    PubMed

    Yordanov, Georgi; Evangelatov, Alexander; Skrobanska, Ralica

    2013-07-01

    This article describes the preparation of epirubicin-loaded nanoparticles, prepared by loading of the drug in pre-polymerized poly(butyl cyanoacrylate) nanoparticles, their physicochemical characterization and in vitro evaluation on human lung adenocarcinoma (A549) cells. Nanoparticles were also coated in aqueous dispersions with two different non-ionic surfactants (Pluronic F68 and Polysorbate 80). All particles were spherical in shape, with monomodal size distributions. The zeta-potentials at pH 7.4 increased with augmentation of the particle drug content. The increased drug content was found to correlate with the initial concentration of the drug, used for the particle preparation. In vitro studies on A549 cells showed that the drug-loaded nanoparticles, as well as the combinations of free drug and empty nanoparticles, exhibited higher cytotoxicity than the free drug alone. The presence of surfactants also resulted in increased cytotoxicity. Fluorescent imaging of epirubicin internalization by the adenocarcinoma cells revealed that the free drug was predominantly localized in the cell nucleus, while a cytoplasmic localization was observed for the nanoparticle-bound drug formulations, suggesting the probability of nanoparticle endocytosis. Thus the hereby presented results could be useful for development of nanoparticle-based anthracycline formulations for treatment of lung adenocarcinoma. PMID:23466549

  20. Extracts of Opuntia humifusa Fruits Inhibit the Growth of AGS Human Gastric Adenocarcinoma Cells

    PubMed Central

    Hahm, Sahng-Wook; Park, Jieun; Park, Kun-Young; Son, Yong-Suk; Han, Hyungchul

    2016-01-01

    Opuntia humifusa (OHF) has been used as a nutraceutical source for the prevention of chronic diseases. In the present study, the inhibitory effects of ethyl acetate extracts of OHF on the proliferation of AGS human gastric cancer cells and the mode of action were investigated. To elucidate the antiproliferative mechanisms of OHF in cancer cells, the expression of genes related to apoptosis and cell cycle arrest were determined with real-time PCR and western blot. The cytotoxic effect of OHF on AGS cells was observed in a dose-dependent manner. Exposure to OHF (100 μg/mL) significantly induced (P<0.05) the G1 phase cell cycle arrest. Additionally, the apoptotic cell population was greater (P<0.05) in OHF (200 μg/mL) treated AGS cells when compared to the control. The expression of genes associated with cell cycle progression (Cdk4, Cdk2, and cyclin E) was significantly downregulated (P<0.05) by the OHF treatment. Moreover, the expression of Bax and caspase-3 in OHF treated cells was higher (P<0.05) than in the control. These findings suggest that OHF induces the G1 phase cell cycle arrest and activation of mitochondria-mediated apoptosis pathway in AGS human gastric cancer cells. PMID:27069903

  1. Bax translocation into mitochondria during dihydroartemisinin(DHA)-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Lu, Ying-ying; Chen, Tong-sheng; Qu, Jun-Le

    2009-02-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, isolated from the traditional Chinese herb Artemisia annua, has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathways. However, the molecular mechanisms are not well understood. This study was investigated in human lung adenocarconoma ASTC-a-1 cell line and aimed to determine whether the apoptotic process was mediated by Bax activation and translocation during DHA-induced apoptosis. In this study, DHA induced a time-dependent apoptotic cell death, which was assayed by Cell Counting Kit (CCK-8) and Hoechst 33258 staining. Detection of Bax aggregation and translocation to mitochondria was observed in living cells which were co-transfected with GFP-Bax and Dsred-mito plasmid using confocal fluorescence microscope technique. Overall, these results demonstrated that Bax activation and translocation to mitochondria occurred during DHA-induced apoptosis.

  2. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells.

    PubMed

    Alwarsamy, Madhavarani; Gooneratne, Ravi; Ravichandran, Ramanibai

    2016-11-01

    Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells.

  3. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells.

    PubMed

    Alwarsamy, Madhavarani; Gooneratne, Ravi; Ravichandran, Ramanibai

    2016-11-01

    Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells. PMID:27516266

  4. Targeting Cellular Metabolism Chemosensitizes the Doxorubicin-Resistant Human Breast Adenocarcinoma Cells.

    PubMed

    Ma, Shulan; Jia, Rongfei; Li, Dongju; Shen, Bo

    2015-01-01

    Metabolic energy preferentially produced by glycolysis was an advantageous metabolic phenotype of cancer cells. It is also an essential contributor to the progression of multidrug resistance in cancer cells. By developing human breast cancer MCF-7 cells resistant to doxorubicin (DOX) (MCF-7/MDR cells), the effects and mechanisms of 2-deoxy-D-glucose (2DG), a glucose analogue, on reversing multidrug resistance were investigated. 2DG significantly inhibited the viability of MCF-7/MDR cells and enhanced DOX-induced apoptosis by upregulating protein expression of AMPKα, P53, and caspase-3. The study demonstrated that energy restriction induced by 2DG was relevant to the synergistic effect of 2DG and DOX. The proteins of multidrug gene (the MDR-related protein, MRP1) and P-glycoprotein (P-gp) in MCF-7/MDR cells were downregulated after exposure to 2DG, accompanied with the suppression of the activity of ATP-dependent drug-efflux pump and transmembrane transporter, increasing the intracellular accumulation of DOX to reverse the chemoresistance in multidrug cancer cells. PMID:26558272

  5. 3-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-1,2,5-selenadiazole (G-1103), a novel combretastatin A-4 analog, induces G2/M arrest and apoptosis by disrupting tubulin polymerization in human cervical HeLa cells and fibrosarcoma HT-1080 cells.

    PubMed

    Zuo, Daiying; Guo, Dandan; Jiang, Xuewei; Guan, Qi; Qi, Huan; Xu, Jingwen; Li, Zengqiang; Yang, Fushan; Zhang, Weige; Wu, Yingliang

    2015-02-01

    Microtubule is a popular target for anticancer drugs. In this study, we describe the effect 3-(3-hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-1,2,5-selenadiazole (G-1103), a newly synthesized analog of combretastatin A-4 (CA-4), showing a strong time- and dose-dependent anti-proliferative effect on human cervical cancer HeLa cells and human fibrosarcoma HT-1080 cells. We demonstrated that the growth inhibitory effects of G-1103 in HeLa and HT-1080 cells were associated with microtubule depolymerization and proved that G-1103 acted as microtubule destabilizing agent. Furthermore, cell cycle analysis revealed that G-1103 treatment resulted in cell cycle arrest at the G2/M phase in a time-dependent manner with subsequent apoptosis induction. Western blot analysis revealed that down-regulation of cdc25c and up-regulation of cyclin B1 was related with G2/M arrest in HeLa and HT-1080 cells treatment with G-1103. In addition, G-1103 induced HeLa cell apoptosis by up-regulating cleaved caspase-3, Fas, cleaved caspase-8 expression, which indicated that G-1103 induced HeLa cell apoptosis was mainly associated with death receptor pathway. However, G-1103 induced HT-1080 cell apoptosis by up-regulating cleaved caspase-3, Fas, cleaved caspase-8, Bax and cleaved caspase-9 expression and down-regulating anti-apoptotic protein Bcl-2 expression, which indicated that G-1103 induced HT-1080 cell apoptosis was associated with both mitochondrial and death receptor pathway. Taken together, all the data demonstrated that G-1103 exhibited its antitumor activity through disrupting the microtubule assembly, causing cell cycle arrest and consequently inducing apoptosis in HeLa and HT-1080 cells. Therefore, the novel compound G-1103 is a promising microtubule inhibitor that has great potentials for therapeutic treatment of various malignancies.

  6. Co-expression of autophagic markers following photodynamic therapy in SW620 human colon adenocarcinoma cells

    PubMed Central

    Ziółkowska, Barbara; Woźniak, Marta; Ziółkowski, Piotr

    2016-01-01

    Photodynamic therapy (PDT) is a minimally invasive cancer treatment. It involves the combination of a photosensitizer and light of a specific wavelength to generate singlet oxygen and other reactive oxygen species that lead to tumor cell death. Autophagy is one of the pathways that tumor cells undergo during photodamage and it is common in photodynamic therapy. The aim of this study was to examine the effect of in vitro PDT on the expression of autophagy-related proteins, autophagy related 7 (Atg7), light chain 3 (LC3) and Beclin-1. Human SW620 colon carcinoma cells were treated with 5-aminolevulinic acid (ALA)-based PDT at a dose of 3 mM. The irradiation was performed using 4.5 J/cm2 total light and a fluence rate of 60 mW/cm2. Autophagy was evaluated by immunocytochemistry using specific antibodies to Atg7, Beclin-1 and LC3. The evaluation was repeated at several time points (0, 4, 8 and 24 h) following irradiation. The induction of autophagy was observed directly following the 5-ALA-mediated PDT procedure with the strongest expression of autophagy-related proteins at 4 and 8 h after irradiation as demonstrated using immunocytochemistry. It was characterized by significantly increased expression of Beclin-1, Atg7 and LC3. To the best of our knowledge this is the first study to analyze Beclin-1, Atg7 and LC3 expression in a PDT-related experiment. This study enhances the understanding of the role of autophagy in PDT, which may contribute to better and more effective tumor responses to this therapy. PMID:27485939

  7. Procyanidin b2 cytotoxicity to mcf-7 human breast adenocarcinoma cells.

    PubMed

    Avelar, Monalisa M; Gouvêa, Cibele M C P

    2012-07-01

    Procyanidins have attracted some attention due to their demonstrated chemopreventive action, a relatively new and promising strategy to prevent cancer. Breast cancer is one of the leading causes of death in women worldwide and its treatment needs improvements. The aim of this work was to verify the procyanidin dimmer B2 cytotoxic effect to MCF-7 human breast cancer cells. MCF-7 cells were cultured in RPMI medium, containing 20% fetal bovine serum and antibiotics in a CO2 chamber. The cells were treated with different concentrations of B2 and its cytotoxic potential was assessed by the sulforhodamine B assay, morphologically through haematoxylin-eosin staining and by DNA fragmentation analysis. The significance of differences between experimental conditions was determined using the ANOVA test, followed by the Tukey test when P<0.05. Cell proliferation decreased in a concentration and time-dependent manner upon procyanidin dimmer B2 treatment, being 19.20 μM the IC50. Procyanidin dimmer B2 treatment displayed concentration and time-dependent decline in MCF-7 cells compared to control and also induced morphological alterations compatible with cell-death induction. Cell condensation and cell diameter decreased (3.5 folds compared to control cells), after 48 h cell-exposure to 50 μM procyanidin dimmer B2, but the DNA ladder formation was not observed. In conclusion, our results demonstrated that procyanidin dimmer B2 exhibits cytotoxic activity to MCF-7 cells and it could be a potential antineoplastic agent. Further studies are necessary to clarify the procyanidin dimmer B2 mechanism of action. The evaluation of biological efficacy of individual components is an important step towards drug discovery and development.

  8. β, β-Dimethylacrylshikonin induces mitochondria-dependent apoptosis of human lung adenocarcinoma cells in vitro via p38 pathway activation

    PubMed Central

    Wang, Hai-bing; Ma, Xiao-qiong

    2015-01-01

    Aim: β, β-Dimethylacrylshikonin (DMAS) is an anticancer compound extracted from the roots of Lithospermum erythrorhizon. In the present study, we investigated the effects of DMAS on human lung adenocarcinoma cells in vitro and explored the mechanisms of its anti-cancer action. Methods: Human lung adenocarcinoma A549 cells were tested. Cell viability was assessed using an MTT assay, and cell apoptosis was evaluated with flow cytometry and DAPI staining. The expression of the related proteins was detected using Western blotting. The mitochondrial membrane potential was measured using a JC-1 kit, and subcellular distribution of cytochrome c was analyzed using immunofluorescence staining. Results: Treatment of A549 cells with DMAS suppressed the cell viability in dose- and time-dependent manners (the IC50 value was 14.22 and 10.61 μmol/L, respectively, at 24 and 48 h). DMAS (7.5, 10, and 15 μmol/L) dose-dependently induced apoptosis, down-regulated cIAP-2 and XIAP expression, and up-regulated Bax and Bak expression in the cells. Furthermore, DMAS resulted in loss of mitochondrial membrane potential and release of cytochrome c in the cells, and activated caspase-9, caspase-8, and caspase-3, and subsequently cleaved PARP, which was abolished by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor. DMAS induced sustained p38 phosphorylation in the cells, while pretreatment with SB203580, a specific p38 inhibitor, blocked DMAS-induced p38 activation and apoptosis. Conclusion: DMAS inhibits the growth of human lung adenocarcinoma A549 cells in vitro via activation of p38 signaling pathway. PMID:25434989

  9. Simian virus 40 (SV40) large T antigen-dependent amplification of an Epstein-Barr virus-SV40 hybrid shuttle vector integrated into the human HeLa cell genome.

    PubMed

    Stary, A; Sarasin, A

    1992-07-01

    We analysed the DNA rearrangements that occurred during the integration and amplification of an Epstein-Barr virus (EBV)-simian virus 40 (SV40) hybrid shuttle vector in human cells. The human HeLa cell line was episomally transformed with the EBV-SV40 p205-GTI plasmid. After a 2 month culture in a selective medium, a HeLa cell-derived population (H-G1 cells) was obtained in which the p205-GTI vector was integrated as a single intact copy deleted in the EBV latent origin of replication (OriP). Sequencing data showed that the endpoints of the plasmid sequences, at the plasmid-cell DNA junctions, are located within the two essential elements of EBV OriP, which may form several secondary structures. This result suggests that a specific DNA sequence (OriP) or palindromic structures could play a role in this integration process. This represents the first fully characterized site of integration of an EBV vector in human cells. The transient expression of the SV40 large T antigen in H-G1 cells leads to the appearance of episomal molecules with an extremely heterogeneous size pattern. Individual analysis of these episomes after rescue in bacteria indicated that they retained sequences of both the p205-GTI plasmid and cellular DNA. Comparison of the structure of these circular DNAs with those of the integrated p205-GTI copy indicated that large T antigen expression in human cells leads to the amplification of the integrated shuttle vector according to the 'onion skin' model developed for transformed rodent cells. Indeed, amplified sequences were colinear with the integrated p205-GTI copy and its surrounding cellular sequences, distributed almost equally around the SV40 replication origin, and circularized by illegitimate recombination which did not involve specific nucleotide sequences. This system is of interest in that it enables easy recovery of individual recombined molecules in host bacteria. Each isolated clone contains a unique recombination junction which is easily

  10. The in vitro photodynamic effect of laser activated gallium, indium and iron phthalocyanine chlorides on human lung adenocarcinoma cells.

    PubMed

    Maduray, K; Odhav, B

    2013-11-01

    Metal-based phthalocyanines currently are utilized as a colorant for industrial applications but their unique properties also make them prospective photosensitizers. Photosensitizers are non-toxic drugs, which are commonly used in photodynamic therapy (PDT), for the treatment of various cancers. PDT is based on the principle that, exposure to light shortly after photosensitizer administration predominately leads to the production of reactive oxygen species for the eradication of cancerous cells and tissue. This in vitro study investigated the photodynamic effect of gallium (GaPcCl), indium (InPcCl) and iron (FePcCl) phthalocyanine chlorides on human lung adenocarcinoma cells (A549). Experimentally, 2 × 10(4)cells/ml were seeded in 24-well tissue culture plates and allowed to attach overnight, after which cells were treated with different concentrations of GaPcCl, InPcCl and FePcCl ranging from 2 μg/ml to 100 μg/ml. After 2h, cells were irradiated with constant light doses of 2.5 J/cm(2), 4.5 J/cm(2) and 8.5 J/cm(2) delivered from a diode laser (λ = 661 nm). Post-irradiated cells were incubated for 24h before cell viability was measured using the MTT Assay. At 24h after PDT, irradiation with a light dose of 2.5 J/cm(2) for each photosensitizing concentration of GaPcCl, InPcCl and FePcCl produced a significant decrease in cell viability, but when the treatment light dose was further increased to 4.5 J/cm(2) and 8.5 J/cm(2) the cell survival was less than 40%. Results also showed that photoactivated FePcCl decreased cell survival of A549 cells to 0% with photosensitizing concentrations of 40 μg/ml and treatment light dose of 2.5 J/cm(2). A 20 μg/ml photosensitizing concentration of FePcCl in combination with an increased treatment light dose of either 4.5 J/cm(2) or 8.5 J/cm(2) also resulted in 0% cell survival. This PDT study concludes that low concentrations on GaPcCl, InPcCl and FePcCl activated with low level light doses can be used for the effective in

  11. Comparison of the Effects of Carbon Ion and Photon Irradiation on the Angiogenic Response in Human Lung Adenocarcinoma Cells

    SciTech Connect

    Kamlah, Florentine; Haenze, Joerg; Arenz, Andrea; Seay, Ulrike; Hasan, Diya; Gottschald, Oana R.; Seeger, Werner; Rose, Frank

    2011-08-01

    Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/{mu}m; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug, allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 {+-} 1.55; X-ray, 36.44 {+-} 3.44; carbon ion, 16.33 {+-} 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 {+-} 3.44; X-ray and ISCK03, 4.33 {+-} 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells, a

  12. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    SciTech Connect

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  13. Acoustic Cluster Therapy (ACT) enhances the therapeutic efficacy of paclitaxel and Abraxane® for treatment of human prostate adenocarcinoma in mice.

    PubMed

    van Wamel, Annemieke; Sontum, Per Christian; Healey, Andrew; Kvåle, Svein; Bush, Nigel; Bamber, Jeffrey; de Lange Davies, Catharina

    2016-08-28

    Acoustic cluster therapy (ACT) is a novel approach for ultrasound mediated, targeted drug delivery. In the current study, we have investigated ACT in combination with paclitaxel and Abraxane® for treatment of a subcutaneous human prostate adenocarcinoma (PC3) in mice. In combination with paclitaxel (12mg/kg given i.p.), ACT induced a strong increase in therapeutic efficacy; 120days after study start, 42% of the animals were in stable, complete remission vs. 0% for the paclitaxel only group and the median survival was increased by 86%. In combination with Abraxane® (12mg paclitaxel/kg given i.v.), ACT induced a strong increase in the therapeutic efficacy; 60days after study start 100% of the animals were in stable, remission vs. 0% for the Abraxane® only group, 120days after study start 67% of the animals were in stable, complete remission vs. 0% for the Abraxane® only group. For the ACT+Abraxane group 100% of the animals were alive after 120days vs. 0% for the Abraxane® only group. Proof of concept for Acoustic Cluster Therapy has been demonstrated; ACT markedly increases the therapeutic efficacy of both paclitaxel and Abraxane® for treatment of human prostate adenocarcinoma in mice. PMID:27297780

  14. Differential screening of a human pancreatic adenocarcinoma lambda gt11 expression library has identified increased transcription of elongation factor EF-1 alpha in tumour cells.

    PubMed

    Grant, A G; Flomen, R M; Tizard, M L; Grant, D A

    1992-03-12

    A human pancreatic adenocarcinoma lambda gt11 expression library was differentially screened with mRNA derived from normal and cancerous pancreatic tissues. Five clones preferentially hybridized with pancreatic adenocarcinoma mRNA. cDNA inserts from 4 of these clones were amplified by PCR, labelled with alpha 32P and used in Northern blot analysis against mRNA prepared from a variety of tumour and normal tissues. lambda GER-4 identified a pancreas-associated mRNA (greater than 10 kb) with no homology with known sequences at either the nucleic or amino-acid level. lambda GER-2 identified a 1.7-kb mRNA transcript that was over-expressed in mRNA prepared from pancreas, colon, breast, lung and gastric tumours relative to normal tissues. Sequence analysis and restriction-enzyme mapping showed that this clone was completely homologous with the active form of human elongation factor EF-1 alpha. This high level of EF-1 alpha-mRNA expression in tumour tissues lends support to the increasing evidence that EF-1 alpha is an important regulator of the cell cycle. PMID:1544708

  15. Distinct expression pattern of the full set of secreted phospholipases A2 in human colorectal adenocarcinomas: sPLA2-III as a biomarker candidate

    PubMed Central

    Mounier, C M; Wendum, D; Greenspan, E; Fléjou, J-F; Rosenberg, D W; Lambeau, G

    2008-01-01

    Recent studies suggest that secreted phospholipases A2 (sPLA2s) represent attractive potential tumour biomarkers and therapeutic targets for various cancers. As a first step to address this issue in human colorectal cancer, we examined the expression of the full set of sPLA2s in sporadic adenocarcinomas and normal matched mucosa from 21 patients by quantitative PCR and immunohistochemistry. In normal colon, PLA2G2A and PLA2G12A were expressed at high levels, PLA2G2D, PLA2G5, PLA2G10 and PLA2G12B at moderate levels, and PLA2G1B, PLA2G2F and PLA2G3 at low levels. In adenocarcinomas from left and right colon, the expression of PLA2G3 was increased by up to 40-fold, while that of PLA2G2D and PLA2G5 was decreased by up to 23- and 14-fold. The variations of expression for sPLA2-IID, sPLA2-III and sPLA2-V were confirmed at the protein level. The expression pattern of these sPLA2s appeared to be linked respectively to the overexpression of interleukin-8, defensin α6, survivin and matrilysin, and downregulation of SFRP-1 and RLPA-1, all these genes being associated to colon cancer. This original sPLA2 profile observed in adenocarcinomas highlights the potential role of certain sPLA2s in colon cancer and suggests that sPLA2-III might be a good candidate as a novel biomarker for both left and right colon cancers. PMID:18212756

  16. FOREWORD: HELAS II International Conference

    NASA Astrophysics Data System (ADS)

    Gizon, Laurent; Roth, Markus

    2008-07-01

    Volume 118 (2008) of Journal of Physics: Conference Series provides a written record of the talks and posters presented at the HELAS II International Conference `Helioseismology, Asteroseismology and MHD Connections'. The conference was held during the week 20-24 August 2007 in Göttingen, Germany, jointly hosted by the Max Planck Institute for Solar System Research and the Faculty of Physics of the University of Göttingen. A total of 140 scientists from all over the world attended. The Scientific Organizing Committee consisted of Conny Aerts, Annie Baglin, Jørgen Christensen-Dalsgaard, Thierry Corbard, Jadwiga Daszyńska-Daszkiewicz, Stefan Dreizler, Yvonne Elsworth, Laurent Gizon (Chairman), Wolfgang Glatzel, Frank Hill, Donald Kurtz, Oskar von der Lühe, Maria Pia Di Mauro, Mário Monteiro, Pere Pallé, Markus Roth, Philip Scherrer, Manfred Schüssler, and Michael Thompson. HELAS stands for the European Helio- and Asteroseismology Network, a Coordination Action supported by the sixth Framework Programme of the European Union. It aims to bring together researchers in the fields of solar and stellar oscillations. This volume consists of 91 articles organized into sections that reflect the scientific programme of the conference: 012001-07 Wave diagnostics in physics, geophysics and astrophysics 012008-09 Perspectives on helio- and asteroseismology 012010-17 Asteroseismology: Observations 012018-25 Asteroseismology: Theory 012026-32 Global helioseismology and solar models 012033-38 Local helioseismology and magnetic activity 012039-44 Future observational projects in helio- and asteroseismology 012045-91 Poster papers. The overwhelming majority of papers discuss the seismology of the Sun and stars. Papers in the first section provide a broader perspective on wave phenomena and techniques for probing other physical systems, from living beings to the universe as a whole. We were extremely fortunate to have particularly distinguished experts to cover these topics

  17. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET

    PubMed Central

    Tang, Xiali; Chen, Jun; Mou, Hao; Lu, Wei

    2016-01-01

    MicroRNAs (miRNAs) play a critical role in drug resistance and epithelial-mesenchymal transition (EMT). The aims of this study were to explore the potential role of miR-206 in governing cisplatin resistance and EMT in lung cancer cells. We found that both lung adenocarcinoma A549 cisplatin-resistant cells (A549/DDP) and H1299 cisplatin-resistant cells (H1299/DDP) acquired mesenchymal features and were along with low expression of miR-206 and high migration and invasion abilities. Ectopic expression of miR-206 mimics inhibited cisplatin resistance, reversed the EMT phenotype, decreased the migration and invasion in these DDP-resistant cells. In contrast, miR-206 inhibitors increased cisplatin resistance, EMT, cell migration and invasion in non-DDP-resistant cells. Furthermore, we found that MET is the direct target of miR-206 in lung cancer cells. Knockdown of MET exhibited an EMT and DDP resistant inhibitory effect on DDP-resistant cells. Conversely, overexpression of MET in non-DDP- resistant cells produced a promoting effect on cell EMT and DDP resistance. In lung adenocarcinoma tissues, we demonstrated that low expression of miR-206 were also correlated with increased cisplatin resistance and MET expression. In addition, we revealed that miR-206 overexpression reduced cisplatin resistance and EMT in DDP-resistant cells, partly due to inactivation of MET/PI3K/AKT/mTOR signaling pathway, and subsequent downregulation of MDR1, ZEB1 and Snail expression. Finally, we found that miR-206 could also sensitize A549/DDP cells to cisplatin in mice model. Taken together, our study implied that activation of miR-206 or inactivation of its target gene pathway could serve as a novel approach to reverse cisplatin resistance in lung adenocarcinomas cells. PMID:27014910

  18. Carcinoembryonic antigen-related cell adhesion molecules as surrogate markers for EGFR inhibitor sensitivity in human lung adenocarcinoma

    PubMed Central

    Kobayashi, M; Miki, Y; Ebina, M; Abe, K; Mori, K; Narumi, S; Suzuki, T; Sato, I; Maemondo, M; Endo, C; Inoue, A; Kumamoto, H; Kondo, T; Yamada-Okabe, H; Nukiwa, T; Sasano, H

    2012-01-01

    Background: Lung adenocarcinoma (LADCA) patients with epidermal growth factor receptor (EGFR) mutations are in general associated with relatively high clinical response rate to EGFR-tyrosine kinase inhibitors (TKIs) but not all responded to TKI. It has therefore become important to identify the additional surrogate markers regarding EGFR-TKI sensitivity. Methods: We first examined the effects of EGFR-TKIs, gefitinib and erlotinib, upon cell proliferation of lung adenocarcinoma cell lines. We then evaluated the gene profiles related to EGFR-TKI sensitivity using a microarray analysis. Results of microarray analysis led us to focus on carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, CEACAM 3, 5, 6, 7, and 19, as potential further surrogate markers of EGFR-TKI sensitivity. We then examined the correlation between the status of CEACAM 3, 5, 6, 7, and 19 immunoreactivity in LADCA and clinicopathological parameters of individual cases. Results: In the cases with EGFR mutations, the status of all CEACAMs examined was significantly higher than that in EGFR wild-type patients, but there were no significant differences in the status of CEACAMs between TKI responder and nonresponder among 22 patients who received gefitinib therapy. However, among 115 EGFR mutation-negative LADCA patients, both CEACAM6 and CEACAM3 were significantly associated with adverse clinical outcome (CEACAM6) and better clinical outcome (CEACAM3). Conclusion: CEACAMs examined in this study could be related to the presence of EGFR mutation in adenocarcinoma cells but not represent the effective surrogate marker of EGFR-TKI in LADCA patients. However, immunohistochemical evaluation of CEACAM3/6 in LADCA patients could provide important information on their clinical outcome. PMID:23099808

  19. Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma DLD1 cells

    SciTech Connect

    Zhang Zhuo; Wang Xin; Cheng Senping; Sun Lijuan; Son, Young-Ok; Yao Hua; Li Wenqi; Budhraja, Amit; Li Li; Shelton, Brent J.; Tucker, Thomas; Arnold, Susanne M.; Shi Xianglin

    2011-10-15

    Long term exposure to arsenic can increase incidence of human cancers, such as skin, lung, and colon rectum. The mechanism of arsenic induced carcinogenesis is still unclear. It is generally believed that reactive oxygen species (ROS) may play an important role in this process. In the present study, we investigate the possible linkage between ROS, {beta}-catenin and arsenic induced transformation and tumorigenesis in human colorectal adenocarcinoma cell line, DLD1 cells. Our results show that arsenic was able to activate p47{sup phox} and p67{sup phox}, two key proteins for activation of NADPH oxidase. Arsenic was also able to generate ROS in DLD1 cells. Arsenic increased {beta}-catenin expression level and its promoter activity. ROS played a major role in arsenic-induced {beta}-catenin activation. Treatment of DLD1 cells by arsenic enhanced both transformation and tumorigenesis of these cells. The tumor volumes of arsenic treated group were much larger than those without arsenic treatment. Addition of either superoxide dismutase (SOD) or catalase reduced arsenic induced cell transformation and tumor formation. The results indicate that ROS are involved in arsenic induced cell transformation and tumor formation possible through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma cell line DLD1 cells. - Highlights: > Arsenic activates NADPH oxidase and increases reactive oxygen species generation in DLD1 cells. > Arsenic increases {beta}-catenin expression. > Inhibition of ROS induced by arsenic reduce {beta}-catenin expression. > Arsenic increases cell transformation in DLD1 cells and tumorigenesis in nude mice. > Blockage of ROS decrease cell transformation and tumorigenesis induced by arsenic.

  20. In vitro and in vivo studies on the inhibitory effects of myocardial cell culture medium on growth of a human lung adenocarcinoma cell line, A549

    PubMed Central

    Zheng, Y.; Zhou, J.; Fu, S.Z.; Fan, J.; Wu, J.B.

    2016-01-01

    Background Although the heart is one of the body’s vital organs, with an abundant blood supply, metastasis to the heart is considered rare. In a previous study, we found that the myocardial microenvironment might contain a low molecular weight natural tumour suppressor. The present study was designed to investigate the inhibitory effect of cardiac myocyte–conditioned medium (cmcm) on the growth of A549 human lung adenocarcinoma cells in vitro and in vivo. Methods An mtt assay was used to detect the inhibition ratio with respect to A549 proliferation. Human lung adenocarcinoma cells (A549 cell strain) were transplanted subcutaneously into nude mice to produce tumours. The xenograft tumour growth in mice was observed after selected drug administration. Results After treatment with cmcm and cisplatin (Cis), A549 cell viability significantly declined (p < 0.001). The cell viability in the cmcm and Cis groups were 53.42% ± 3.45% and 58.45% ± 6.39% respectively. Growth of implanted tumour cells in vivo was significantly inhibited in the cmcm group, the group treated with recombinant human adenovirus–p53, and the Cis-treated group compared with a control group. The inhibition rates were 41.44% in the cmcm group, 41.34% in the p53 group, and 64.50% in the Cis group. Lung metastasis capacity was significantly reduced in the presence of cmcm (p < 0.05). Lung metastasis inhibition rates in mice were 56.52% in the cmcm group, 47.83% in the p53 group, and 82.61% in the Cis group. With cmcm, the lives of A549-tumour-bearing mice could be significantly prolonged without any effect on weight loss. Conclusions Use of cmcm has the effect of reducing A549 cell viability, tumour volume, and lung metastasis rate, while prolonging survival duration without severe toxicity. PMID:26966411

  1. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors.

    PubMed Central

    Bertran, J; Miller, J L; Yang, Y; Fenimore-Justman, A; Rueda, F; Vanin, E F; Nienhuis, A W

    1996-01-01

    Adeno-associated virus has a broad host range, is nonpathogenic, and integrates into a preferred location on chromosome 19, features that have fostered development of recombinant adeno-associated viruses (rAAV) as gene transfer vectors for therapeutic applications. We have used an rAAV to transfer and express the murine cationic amino acid transporter which functions as the ecotropic retroviral receptor, thereby rendering human cells conditionally susceptible to infection by an ecotropic retroviral vector. The proportion of human HeLa cells expressing the receptor at 60 h varied as a function of the multiplicity of infection (MOI) with the rAAV. Cells expressing the ecotropic receptor were efficiently transduced with an ecotropic retroviral vector encoding a nucleus-localized form of beta-galactosidase. Cells coexpressing the ecotropic receptor and nucleus-localized beta-galactosidase were isolated by fluorescence-activated cell sorting, and cell lines were recovered by cloning at limiting dilution. After growth in culture, all clones contained the retroviral vector genome, but fewer than 10% (3 of 47) contained the rAAV genome and continued to express the ecotropic receptor. The ecotropic receptor coding sequences in the rAAV genome were under the control of a tetracycline-modulated promoter. In the presence of tetracycline, receptor expression was low and the proportion of cells transduced by the ecotropic retroviral vector was decreased. Modulation of receptor expression was achieved with both an episomal and an integrated form of the rAAV genome. These data establish that functional gene expression from an rAAV genome can occur transiently without genome integration. PMID:8794313

  2. Cytotoxicity of Cyclodipeptides from Pseudomonas aeruginosa PAO1 Leads to Apoptosis in Human Cancer Cell Lines

    PubMed Central

    Vázquez-Rivera, Dolores; González, Omar; Guzmán-Rodríguez, Jaquelina; Díaz-Pérez, Alma L.; Ochoa-Zarzosa, Alejandra; López-Bucio, José; Meza-Carmen, Víctor; Campos-García, Jesús

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen of plants and animals, which produces virulence factors in order to infect or colonize its eukaryotic hosts. Cyclodipeptides (CDPs) produced by P. aeruginosa exhibit cytotoxic properties toward human tumor cells. In this study, we evaluated the effect of a CDP mix, comprised of cyclo(L-Pro-L-Tyr), cyclo(L-Pro-L-Val), and cyclo(L-Pro-L-Phe) that were isolated from P. aeruginosa, on two human cancer cell lines. Our results demonstrated that the CDP mix promoted cell death in cultures of the HeLa cervical adenocarcinoma and Caco-2 colorectal adenocarcinoma cell lines in a dose-dependent manner, with a 50% inhibitory concentration (IC50) of 0.53 and 0.66 mg/mL, for HeLa and Caco-2 cells, respectively. Flow cytometric analysis, using annexin V and propidium iodide as apoptosis and necrosis indicators, respectively, clearly showed that HeLa and Caco-2 cells exhibited apoptotic characteristics when treated with the CDP mix at a concentration <0.001 mg/mL. IC50 values for apoptotic cells in HeLa and Caco-2 cells were 6.5 × 10−5 and 1.8 × 10−4 mg/mL, respectively. Our results indicate that an apoptotic pathway is involved in the inhibition of cell proliferation caused by the P. aeruginosa CDP mix. PMID:25821788

  3. Human SLURP-1 and SLURP-2 Proteins Acting on Nicotinic Acetylcholine Receptors Reduce Proliferation of Human Colorectal Adenocarcinoma HT-29 Cells.

    PubMed

    Lyukmanova, E N; Shulepko, M A; Bychkov, M L; Shenkarev, Z O; Paramonov, A S; Chugunov, A O; Arseniev, A S; Dolgikh, D A; Kirpichnikov, M P

    2014-10-01

    Human secreted Ly-6/uPAR related proteins (SLURP-1 and SLURP-2) are produced by various cells, including the epithelium and immune system. These proteins act as autocrine/paracrine hormones regulating the growth and differentiation of keratinocytes and are also involved in the control of inflammation and malignant cell transformation. These effects are assumed to be mediated by the interactions of SLURP-1 and SLURP-2 with the α7 and α3β2 subtypes of nicotinic acetylcholine receptors (nAChRs), respectively. Available knowledge about the molecular mechanism underling the SLURP-1 and SLURP-2 effects is very limited. SLURP-2 remains one of the most poorly studied proteins of the Ly-6/uPAR family. In this study, we designed for the first time a bacterial system for SLURP-2 expression and a protocol for refolding of the protein from cytoplasmic inclusion bodies. Milligram quantities of recombinant SLURP-2 and its 13C-15N-labeled analog were obtained. The recombinant protein was characterized by NMR spectroscopy, and a structural model was developed. A comparative study of the SLURP-1 and SLURP-2 effects on the epithelial cell growth was conducted using human colorectal adenocarcinoma HT-29 cells, which express only α7-nAChRs. A pronounced antiproliferative effect of both proteins was observed. Incubation of cells with 1 μM SLURP-1 and 1 μM SLURP-2 during 48 h led to a reduction in the cell number down to ~ 54 and 63% relative to the control, respectively. Fluorescent microscopy did not reveal either apoptotic or necrotic cell death. An analysis of the dose-response curve revealed the concentration-dependent mode of the SLURP-1 and SLURP-2 action with EC50 ~ 0.1 and 0.2 nM, respectively. These findings suggest that the α7-nAChR is the main receptor responsible for the antiproliferative effect of SLURP proteins in epithelial cells. PMID:25558396

  4. Chicken egg yolk anti-asialoGM1 immunoglobulin (IgY): an inexpensive glycohistochemical probe for localization of T-antigen in human colorectal adenocarcinomas.

    PubMed

    Sriram, V; Jebaraj, C E; Yogeeswaran, G

    1999-07-01

    A egg yolk polyclonal IgY has been prepared by immunization of white leghorn chickens with small unilamellar liposomal asialoGM1. The newly prepared anti-asialoGM1 IgY has been characterized to be specific toward the terminal carbohydrate moiety of asialoGM1, and has no cross reactivity to its sialylated counterpart (ganglioside, GM1) as evidenced by immunochromatographic studies. General glycohistochemical methods along with antigen specific lectin and immunohistochemical staining using anti-asialoGM1 IgY were used to study the expression of Thomsen-Friedenreich (T-) disaccharide antigen in human colorectal adenocarcinoma tissues. The expression of T-antigen in colon cancer tissue was detected by two T-disaccharide specific probes, chicken anti-T-yolk antibody (IgY) and Artocarpus integrifolia lectin (AIL) and was found to be more pronounced in both the secreted mucin as well as the cytoplasmic mucin deposits. These immunochemical detection methods for T-antigen showed a weaker correlation with other glycostaining methods using, alcian-blue/periodic acid-Schiff (AB-PAS) and high iron diamine (HID). However, a general enzymatic staining for galactose and galactosamine containing glycoconjugates, by galactose oxidase-Schiff method, showed a good correlation with T-antigen detection. While the T-beta specific anti-asialoGM1 could localize T-antigen in 11 of 13 (84%) human colorectal adenocarcinoma tissue sections tested, the T-alpha specific AIL could localize the T-antigen in only 6 of the tissues (46%). These observations confirm previously reported findings, of the prevalence of T-beta conformation in colon cancer, that binds significantly more with the anti-asialoGM1 IgY than with the T-alpha specific AIL. Hence, both anti-T IgY and the AIL immunohistochemical probes may have useful diagnostic value because of the ease of preparation and cost effectiveness, but the T-beta specific anti-asialoGM1 probe (IgY) would have a better prognostic value in colon

  5. Monitoring of TGF-β 1-Induced Human Lung Adenocarcinoma A549 Cells Epithelial-Mesenchymal Transformation Process by Measuring Cell Adhesion Force with a Microfluidic Device.

    PubMed

    Li, Yuan; Gao, AnXiu; Yu, Ling

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties. It is believed that EMT is associated with initiation and completion of the invasion-metastasis cascade. In this study, an economic approach was developed to fabricate a microfluidic device with less instrumentation requirement for the investigation of EMT by quantifying cell adhesion force. Fluid shear force was precisely controlled by a homemade microfluidic perfusion apparatus and interface. The adhesion capability of the human lung adenocarcinoma cell line A549 on different types of extracellular matrix protein was studied. In addition, effects of transforming growth factor-β (TGF-β) on EMT in A549 cells were investigated by characterizing the adhesion force changes and on-chip fluorescent staining. The results demonstrate that the microfluidic device is a potential tool to characterize the epithelial-mesenchymal transition process by measuring cell adhesion force.

  6. Cinnamomum verum component 2-methoxycinnamaldehyde: a novel antiproliferative drug inducing cell death through targeting both topoisomerase I and II in human colorectal adenocarcinoma COLO 205 cells

    PubMed Central

    Tsai, Kuen-daw; Cherng, Jonathan; Liu, Yi-Heng; Chen, Ta-Wei; Wong, Ho-Yiu; Yang, Shu-mei; Chou, Kuo-Shen; Cherng, Jaw-Ming

    2016-01-01

    Background Cinnamomum verum is used to manufacture the spice cinnamon. In addition, the plant has been used as a Chinese herbal medication. Methods We investigated the antiproliferative effect of 2-methoxycinnamaldehyde (2-MCA), a constituent of the cortex of the plant, and the molecular biomarkers associated with tumorigenesis in human colorectal adenocarcinoma COLO 205 cells. Specifically, cell viability was evaluated by colorimetric assay; apoptosis was determined by flow cytometry and morphological analysis with bright field, acridine orange, and neutral red stainings, as well as comet assay; topoisomerase I activity was determined by assay based upon DNA relaxation and topoisomerase II by DNA relaxation plus decatentation of kinetoplast DNA; lysosomal vacuolation and volume of acidic compartments (VACs) were determined by neutral red staining. Results The results demonstrate that 2-MCA inhibited proliferation and induced apoptosis as implicated by mitochondrial membrane potential (ΔΨm) loss, activation of both caspase-3 and -9, increase of annexin V+PI+ cells, as well as morphological characteristics of apoptosis. Furthermore, 2-MCA also induced lysosomal vacuolation with elevated VAC, cytotoxicity, and inhibitions of topoisomerase I as well as II activities. Additional study demonstrated the antiproliferative effect of 2-MCA found in a nude mice model. Conclusions Our data implicate that the antiproliferative activity of 2-MCA in vitro involved downregulation of cell growth markers, both topoisomerase I and II, and upregulation of pro-apoptotic molecules, associated with increased lysosomal vacuolation. In vivo 2-MCA reduced the tumor burden that could have significant clinical impact. Indeed, similar effects were found in other tested cell lines, including human hepatocellular carcinoma SK-Hep-1 and Hep 3B, lung adenocarcinoma A549 and squamous cell carcinoma NCI-H520, and T-lymphoblastic MOLT-3 (results not shown). Our data implicate that 2-MCA could be a

  7. Endothelial-mesenchymal transition in normal human esophageal endothelial cells cocultured with esophageal adenocarcinoma cells: role of IL-1β and TGF-β2.

    PubMed

    Nie, Linghui; Lyros, Orestis; Medda, Rituparna; Jovanovic, Nebojsa; Schmidt, Jamie L; Otterson, Mary F; Johnson, Christopher P; Behmaram, Behnaz; Shaker, Reza; Rafiee, Parvaneh

    2014-11-01

    Endothelial-mesenchymal transition (EndoMT) has been recognized as a key determinant of tumor microenvironment in cancer progression and metastasis. Endothelial cells undergoing EndoMT lose their endothelial markers, acquire the mesenchymal phenotype, and become more invasive with increased migratory abilities. Early stages of esophageal adenocarcinoma (EAC) are characterized by strong microvasculature whose impact in tumor progression remains undefined. Our aim was to determine the role of EndoMT in EAC by investigating the impact of tumor cells on normal primary human esophageal microvascular endothelial cells (HEMEC). HEMEC were either cocultured with OE33 adenocarcinoma cells or treated with IL-1β and transforming growth factor-β2 (TGF-β2) for indicated periods and analyzed for EndoMT-associated changes by real-time PCR, Western blotting, immunofluorescence staining, and functional assays. Additionally, human EAC tissues were investigated for detection of EndoMT-like cells. Our results demonstrate an increased expression of mesenchymal markers [fibroblast-specific protein 1 (FSP1), collagen1α2, vimentin, α-smooth muscle actin (α-SMA), and Snail], decreased expression of endothelial markers [CD31, von Willebrand factor VIII (vWF), and VE-cadherin], and elevated migration ability in HEMEC following coculture with OE33 cells. The EndoMT-related changes were inhibited by IL-1β and TGF-β2 gene silencing in OE33 cells. Recombinant IL-1β and TGF-β2 induced EndoMT in HEMEC. Although the level of VEGF expression was elevated in EndoMT cells, the angiogenic property of these cells was diminished. In vivo, by immunostaining EndoMT-like cells were detected at the invasive front of EAC. Our findings underscore a significant role for EndoMT in EAC and provide new insights into the mechanisms and significance of EndoMT in the context of tumor progression.

  8. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression

    SciTech Connect

    Kao, Shang-Jyh; Su, Jen-Liang; Chen, Chi-Kuan; Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua; Bien, Mauo-Ying; Yang, Shun-Fa; Chien, Ming-Hsien

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole

  9. High variability of genomic instability and gene expression profiling in different HeLa clones

    PubMed Central

    Frattini, Annalisa; Fabbri, Marco; Valli, Roberto; De Paoli, Elena; Montalbano, Giuseppe; Gribaldo, Laura; Pasquali, Francesco; Maserati, Emanuela

    2015-01-01

    The HeLa cell line is one of the most popular cell lines in biomedical research, despite its well-known chromosomal instability. We compared the genomic and transcriptomic profiles of 4 different HeLa batches and showed that the gain and loss of genomic material varies widely between batches, drastically affecting basal gene expression. Moreover, different pathways were activated in response to a hypoxic stimulus. Our study emphasizes the large genomic and transcriptomic variability among different batches, to the point that the same experiment performed with different batches can lead to distinct conclusions and irreproducible results. The HeLa cell line is thought to be a unique cell line but it is clear that substantial differences between the primary tumour and the human genome exist and that an indeterminate number of HeLa cell lines may exist, each with a unique genomic profile. PMID:26483214

  10. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion.

    PubMed

    Guo, Fengjie; Li, Yalin; Liu, Yan; Wang, Jiajia; Li, Yuehui; Li, Guancheng

    2010-03-15

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is suggested to be a long (~7 kb) non-coding RNA. MALAT1 is overexpressed in many human carcinomas, but its function remains unknown. To investigate the role of MALAT1 in human cervical cancer progression, we designed and used short hairpin RNA to inhibit MALAT1 expression in CaSki cells and validated its effect on cell proliferation and invasion. Changes in gene expression were analyzed by reverse transcriptase- polymerase chain reaction. Our data demonstrated that MALAT1 was involved in cervical cancer cell growth, cell cycle progression, and invasion through the regulation of gene expression, such as caspase-3, -8, Bax, Bcl-2, and BclxL, suggesting that MALAT1 could have important implications in cervical cancer biology. Our findings illustrate the biological significance of MALAT1 in cervical cancer progression and provide novel evidence that MALAT1 may serve as a therapeutic target in the prevention of human cervical cancer.

  11. Fourier transform infrared (FTIR) spectromicroscopic characterization of stem-like cell populations in human esophageal normal and adenocarcinoma cell lines.

    PubMed

    Zhao, R; Quaroni, L; Casson, A G

    2010-01-01

    We have tested an approach to identify putative cancer stem cells that involves measurement of the infrared absorption spectrum of individual cells in an aqueous environment, and their subsequent classification using multivariate data analysis techniques. Two primary esophageal cell lines were characterized: the immortalized normal esophageal epithelial cell line, Het-1A, and the esophageal adenocarcinoma cell line, OE33. In addition, we also evaluated spheroids, reflecting stem-like cell populations, which were derived from each parent cell line when grown in serum-free media. As differences in cell size appeared to be a strong discriminating factor, a correction needs to be performed to allow a reliable classification based on infrared absorption spectra. We demonstrated that stem-like cells derived from Het-1A could easily be discriminated on the basis of absorbance differences in the 1000-1200 cm(-1) spectral interval, whereas this was not possible for OE33. Furthermore, we found that changes due to aging of OE33 cells in culture dominated the infrared absorption spectra and somewhat limited the potential of this approach to identify stem-like cell populations using this in vitro model system.

  12. Scaffold-Free Coculture Spheroids of Human Colonic Adenocarcinoma Cells and Normal Colonic Fibroblasts Promote Tumorigenicity in Nude Mice123

    PubMed Central

    Park, Jong-il; Lee, Jisu; Kwon, Ju-Lee; Park, Hong-Bum; Lee, Su-Yel; Kim, Ji-Yeon; Sung, Jaekye; Kim, Jin Man; Song, Kyu Sang; Kim, Kyung-Hee

    2016-01-01

    The aim of this study was to form a scaffold-free coculture spheroid model of colonic adenocarcinoma cells (CACs) and normal colonic fibroblasts (NCFs) and to use the spheroids to investigate the role of NCFs in the tumorigenicity of CACs in nude mice. We analysed three-dimensional (3D) scaffold-free coculture spheroids of CACs and NCFs. CAC Matrigel invasion assays and tumorigenicity assays in nude mice were performed to examine the effect of NCFs on CAC invasive behaviour and tumorigenicity in 3D spheroids. We investigated the expression pattern of fibroblast activation protein-α (FAP-α) by immunohistochemical staining. CAC monocultures did not form densely-packed 3D spheroids, whereas cocultured CACs and NCFs formed 3D spheroids. The 3D coculture spheroids seeded on a Matrigel extracellular matrix showed higher CAC invasiveness compared to CACs alone or CACs and NCFs in suspension. 3D spheroids injected into nude mice generated more and faster-growing tumors compared to CACs alone or mixed suspensions consisting of CACs and NCFs. FAP-α was expressed in NCFs-CACs cocultures and xenograft tumors, whereas monocultures of NCFs or CACs were negative for FAP-α expression. Our findings provide evidence that the interaction between CACs and NCFs is essential for the tumorigenicity of cancer cells as well as for tumor propagation. PMID:26947885

  13. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells

    PubMed Central

    Cao, Weibiao

    2016-01-01

    Mechanisms of the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA. PMID:26901778

  14. A double-negative feedback loop between E2F3b and miR- 200b regulates docetaxel chemosensitivity of human lung adenocarcinoma cells

    PubMed Central

    Gao, Yanping; Chen, Longbang; Song, Haizhu; Chen, Yitian; Wang, Rui; Feng, Bing

    2016-01-01

    MicroRNAs (miRNAs) are non-coding small RNAs which negatively regulate gene expressions mainly through 3′-untranslated region (3′-UTR) binding of target mRNAs. Recent studies have highlighted the feedback loops between miRNAs and their target genes in physiological and pathological processes including chemoresistance of cancers. Our previous study identified miR-200b/E2F3 axis as a chemosensitivity restorer of human lung adenocarcinoma (LAD) cells. Moreover, E2F3b was bioinformatically proved to be a potential transcriptional regulator of pre-miR-200b gene promoter. The existance of this double-negative feedback minicircuitry comprising E2F3b and miR-200b was confirmed by chromatin immunoprecipitation (ChIP) assay, site-specific mutation and luciferase reporter assay. And the underlying regulatory mechanisms of this feedback loop on docetaxel resistance of LAD cells were further investigated by applying in vitro chemosensitivity assay, colony formation assay, flow cytometric analysis of cell cycle and apoptosis, as well as mice xenograft model. In conclusion, our results suggest that the double-negative feedback loop between E2F3b and miR-200b regulates docetaxel chemosensitivity of human LAD cells mainly through cell proliferation, cell cycle distribution and apoptosis. PMID:27027446

  15. Proteinase-activated receptors differentially modulate in vitro invasion of human pancreatic adenocarcinoma PANC-1 cells in correlation with changes in the expression of CDC42 protein

    PubMed Central

    Segal, Liora; Katz, Liora S.; Lupu-Meiri, Monica; Shapira, Hagit; Sandbank, Judith; Gershengorn, Marvin C.; Oron, Yoram

    2013-01-01

    Objectives Proteinase-activated receptors (PARs) -1 and -2 have been associated with increased invasiveness and metastasis in human malignancies. The role of PAR-3 has been less investigated. We examined the role of PARs in a human pancreatic adenocarcinoma PANC-1 cell line phenotype in vitro. Methods We knocked down PAR-1, -2, or -3, while empty vector-infected cells served as controls. Specific peptide PARs agonists were used to stimulate the receptors. In vitro assays of colony formation, migration and invasion were used to characterize the phenotypes and Western analysis to follow CDC42 expression. Results PAR-1 and PAR-2 KDs were markedly less, while PAR-3 KDs were robustly more migratory and invasive than controls. Stimulation of PAR-1 or -2 by their peptide agonists increased, while PAR-3 agonist reduced the invasion of control cells. All three PARs knockdowns exhibited changes in the expression of CDC42, which correlated with the changes in their invasion. Conversely, stimulation of vector-control cells with PAR-1 or PAR-2 agonists enhanced, while PAR-3 agonist reduced the expression of CDC42. In the respective knock-down cells, the effects of agonists were abrogated. Conclusion The expression and/or activation of PARs is linked to PANC-1 cells invasiveness in vitro, probably via modulation of the expression of CDC42. PMID:23921961

  16. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway.

  17. Dealcoholized Korean Rice Wine (Makgeolli) Exerts Potent Anti-Tumor Effect in AGS Human Gastric Adenocarcinoma Cells and Tumor Xenograft Mice.

    PubMed

    Shin, Eun Ju; Kim, Sung Hee; Kim, Jae Ho; Ha, Jaeho; Hwang, Jin-Taek

    2015-09-01

    Makgeolli is a traditional wine in Korea and has been traditionally believed to exhibit health benefits. However, the inhibitory effect of dealcoholized makgeolli (MK) on cancer has never been investigated scientifically. In this study, MK exhibited an anti-angiogenic effect by inhibiting tube formation in human umbilical vein endothelial cells, without cytotoxicity. Treatment with MK reduced the proliferation of AGS human gastric adenocarcinoma cells in a dose-dependent manner and increased the sub-G1 population. Next, we evaluated whether MK could induce apoptosis in AGS cells by using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay or Annexin V method. Treatment with MK at 500 and 1,000 μg/ml increased the number of TUNEL-positive AGS cells. Under the same conditions, MK-treated (500 and 1,000 μg/ml) cells showed significant induction of early or late apoptosis, compared with untreated cells (no induction). In addition, MK also induced phosphatase and tensin homolog (PTEN) expression in AGS cells. However, p53 expression in AGS cells was not changed by MK treatment. Furthermore, MK at 500 mg/kg·d reduced the tumor size and volume in AGS tumor xenografts. Taken together, MK may be useful for the prevention of cancer cell growth.

  18. Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines

    SciTech Connect

    Gestl, Erin E.; Anne Boettger, S.

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated with p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53

  19. Quercetin suppresses HeLa cells by blocking PI3K/Akt pathway.

    PubMed

    Xiang, Tao; Fang, Yong; Wang, Shi-Xuan

    2014-10-01

    To explore the effect of quercetin on the proliferation and apoptosis of HeLa cells, HeLa cells were incubated with quercetin at different concentrations. Cell viability was evaluated by MTT assay, cell apoptosis was detected by Annexin-V/PI double labeled cytometry and DNA ladder assay. Cell cycle was flow cytometrically determined and the morphological changes of the cells were observed under a fluorescence microscope after Hoechst 33258 staining and the apoptosis-related proteins in the HeLa cells were assessed by Western blotting. The results showed that quercetin significantly inhibited the growth of HeLa cells and induced obvious apoptosis in vitro in a time- and dose-dependent manner. Moreover, quercetin induced apoptosis of HeLa cells in cell cycle-dependent manner because quercetin could induce arrest of HeLa cells at G0/G1 phase. Quercetin treatment down-regulated the expression of the PI3K and p-Akt. In addition, quercetin could down-regulate expression of bcl-2, up-regulate Bax, but exerted no effect on the overall expression of Akt. We are led to conclude that quercetin induces apoptosis via PI3k/Akt pathways, and quercetin has potential to be used as an anti-tumor agent against human cervix cancer.

  20. Inhibitory effects of prostaglandin E2 on collagen synthesis and cell proliferation in human stellate cells from pancreatic head adenocarcinoma

    PubMed Central

    2014-01-01

    Background Several studies have described an increased cyclooxygenase-2 (COX-2) expression in pancreatic cancer, but the role of COX-2 in tumour development and progression is not clear. The aim of the present study was to examine expression of COX-2 in cancer cells and stromal cells in pancreatic cancer specimens, and to explore the role of PGE2 in pancreatic stellate cell proliferation and collagen synthesis. Methods Immunohistochemistry and immunofluorescence was performed on slides from whole sections of tissue blocks using antibodies against COX-2 and α-smooth muscle actin (αSMA). Pancreatic stellate cells (PSC) were isolated from surgically resected tumour tissue by the outgrowth method. Cells were used between passages 4 and 8. Collagen synthesis was determined by [3H]-proline incorporation, or by enzyme immunoassay measurement of collagen C-peptide. DNA synthesis was measured by incorporation of [3H]-thymidine in DNA. Cyclic AMP (cAMP) was determined by radioimmunoassay. Collagen 1A1 mRNA was determined by RT-qPCR. Results Immunohistochemistry staining showed COX-2 in pancreatic carcinoma cells, but not in stromal cells. All tumours showed positive staining for αSMA in the fibrotic stroma. Cultured PSC expressed COX-2, which could be further induced by interleukin-1β (IL-1β), epidermal growth factor (EGF), thrombin, and PGE2, but not by transforming growth factor-β1 (TGFβ). Indirect coculture with the adenocarcinoma cell line BxPC-3, but not HPAFII or Panc-1, induced COX-2 expression in PSC. Treatment of PSC with PGE2 strongly stimulated cAMP accumulation, mediated by EP2 receptors, and also stimulated phosphorylation of extracellular signal-regulated kinase (ERK). Treatment of PSC with PGE2 or forskolin suppressed both TGFβ-stimulated collagen synthesis and PDGF-stimulated DNA synthesis. Conclusions The present results show that COX-2 is mainly produced in carcinoma cells and suggest that the cancer cells are the main source of PGE2 in pancreatic

  1. Resistance to butyrate impairs bile acid-induced apoptosis in human colon adenocarcinoma cells via up-regulation of Bcl-2 and inactivation of Bax.

    PubMed

    Barrasa, Juan I; Santiago-Gómez, Angélica; Olmo, Nieves; Lizarbe, María Antonia; Turnay, Javier

    2012-12-01

    A critical risk factor in colorectal carcinogenesis and tumor therapy is the resistance to the apoptotic effects of different compounds from the intestinal lumen, among them butyrate (main regulator of colonic epithelium homeostasis). Insensitivity to butyrate-induced apoptosis yields resistance to other agents, as bile acids or chemotherapy drugs, allowing the selective growth of malignant cell subpopulations. Here we analyze bile acid-induced apoptosis in a butyrate-resistant human colon adenocarcinoma cell line (BCS-TC2.BR2) to determine the mechanisms that underlay the resistance to these agents in comparison with their parental butyrate-sensitive BCS-TC2 cells. This study demonstrates that DCA and CDCA still induce apoptosis in butyrate-resistant cells through increased ROS production by activation of membrane-associated enzymes and subsequent triggering of the intrinsic mitochondrial apoptotic pathway. Although this mechanism is similar to that described in butyrate-sensitive cells, cell viability is significantly higher in resistant cells. Moreover, butyrate-resistant cells show higher Bcl-2 levels that confer resistance to bile acid-induced apoptosis sequestering Bax and avoiding Bax-dependent pore formation in the mitochondria. We have confirmed that this resistance is reverted using the Bcl-2 inhibitor ABT-263, thus demonstrating that the lower sensitivity of butyrate-resistant cells to the apoptotic effects of bile acids is mainly due to increased Bcl-2 levels.

  2. Scopadulciol, Isolated from Scoparia dulcis, Induces β-Catenin Degradation and Overcomes Tumor Necrosis Factor-Related Apoptosis Ligand Resistance in AGS Human Gastric Adenocarcinoma Cells.

    PubMed

    Fuentes, Rolly G; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2015-04-24

    Scopadulciol (1), a scopadulan-type diterpenoid, was isolated from Scoparia dulcis along with three other compounds (2-4) by an activity-guided approach using the TCF reporter (TOP) luciferase-based assay system. A fluorometric microculture cytotoxicity assay (FMCA) revealed that compound 1 was cytotoxic to AGS human gastric adenocarcinoma cells. The treatment of AGS cells with 1 decreased β-catenin levels and also inhibited its nuclear localization. The pretreatment of AGS cells with a proteasome inhibitor, either MG132 or epoxomicin, protected against the degradation of β-catenin induced by 1. The 1-induced degradation of β-catenin was also abrogated in the presence of pifithrin-α, an inhibitor of p53 transcriptional activity. Compound 1 inhibited TOP activity in AGS cells and downregulated the protein levels of cyclin D1, c-myc, and survivin. Compound 1 also sensitized AGS cells to tumor necrosis factor-related apoptosis ligand (TRAIL)-induced apoptosis by increasing the levels of the death receptors, DR4 and DR5, and decreasing the level of the antiapoptotic protein Bcl-2. Collectively, our results demonstrated that 1 induced the p53- and proteasome-dependent degradation of β-catenin, which resulted in the inhibition of TCF/β-catenin transcription in AGS cells. Furthermore, 1 enhanced apoptosis in TRAIL-resistant AGS when combined with TRAIL. PMID:25793965

  3. Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells.

    PubMed

    Klenow, S; Glei, M; Haber, B; Owen, R; Pool-Zobel, B L

    2008-04-01

    An extract of the Mediterranean carob (Ceratonia siliqua L.) pod (carob fibre extract), products formed after its fermentation by the gut flora and the major phenolic ingredient gallic acid (GA), were comparatively investigated for their influence on survival and growth parameters of colon adenocarcinoma HT29 cells and adenoma LT97 cells. Hydrogen peroxide (H2O2) formation in the cell culture media was quantified. After 1h 97+/-4 microM or 70+/-15 microM were found in HT29 medium and 6+/-1 microM or 3+/-3 microM in LT97 medium for carob fibre extract or GA, respectively. After 72 h carob fibre extract reduced survival of rapidly proliferating HT29 cells (by 76.4+/-12.9%) whereas metabolic activity and DNA-synthesis were only transiently impaired. Survival of slower growing LT97 cells was less decreased (by 21.5+/-12.9%), but there were marked effects on DNA-synthesis (reduction by 95.6+/-7%, 72 h). GA and fermented carob fibre did not have comparable effects. Thus, carob fibre extract resulted in H2O2 formation, which, however, could not explain impairment of cell growth. The differently modulated growth of human colon cell lines was more related to proliferation rates and impairment of DNA-synthesis than to H2O2 formation.

  4. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells.

    PubMed

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance. PMID:25461681

  5. Effects of methanolic extract form Fuzhuan brick-tea on hydrogen peroxide-induced oxidative stress in human intestinal epithelial adenocarcinoma Caco-2 cells.

    PubMed

    Song, Jia-Le; Gao, Yang

    2014-03-01

    The present study investigated the protective effect of methanolic extract from Fuzhuan brick‑tea (FME) on hydrogen peroxide (H2O2)‑induced oxidative stress in the human intestinal epithelial adenocarcinoma cell line Caco‑2. Caco‑2 cells were pretreated with different concentrations (50, 100 and 200 µg/ml) of FME for 2 h and then exposed to H2O2 (1 mM) for 6 h. FME did not exhibit a significant cytotoxic effect and increased the cell viability following H2O2 treatment by decreasing lipid peroxidation in Caco‑2 cells. To investigate the protective effect of FME on H2O2‑induced oxidative stress in Caco‑2 cells, the levels of intracellular glutathione (GSH) and the activity of the endogenous antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH‑px) and glutathione S‑transferase (GST), were determined. FME significantly increased the level of GSH and the activity of antioxidant enzymes. The results from the present study demonstrated that FME has a protective effect on H2O2‑induced oxidative damage in Caco‑2 cells through the inhibition of lipid peroxidation and the increase in the activity of antioxidant enzymes. In addition, FME reduced the H2O2‑induced expression of interleukin‑8 at both the mRNA and protein levels in Caco‑2 cells.

  6. Daucus carota Pentane-Based Fractions Suppress Proliferation and Induce Apoptosis in Human Colon Adenocarcinoma HT-29 Cells by Inhibiting the MAPK and PI3K Pathways.

    PubMed

    Shebaby, Wassim N; Bodman-Smith, K B; Mansour, Anthony; Mroueh, Mohamad; Taleb, Robin I; El-Sibai, Mirvat; Daher, Costantine F

    2015-07-01

    Daucus carota L. ssp. carota (Apiacea, wild carrot, Queen Anne's lace) has been used in folk medicine throughout the world and recently was shown to possess anticancer and antioxidant activities. This study aims to determine the anticancer activity of the pentane fraction (F1) and the 1:1 pentane:diethyl ether fraction (F2) of the Daucus Carota oil extract (DCOE) against human colon adenocarcinoma cell lines (HT-29 and Caco-2). Treatment of cells with various concentrations of F1 or F2 fractions produced a dose-dependent inhibition of cell proliferation. Flow cytometric analysis indicated that both fractions induced sub-G1 phase accumulation and increased apoptotic cell death. Western blot revealed the activation of caspase-3, PARP cleavage, and a considerable increase in Bax and p53 levels, and a decrease in Bcl-2 level. Treatment of HT-29 cells with either fraction markedly decreased the levels of both phosphorylated Erk and Akt. Furthermore, the combined treatment of F1 or F2 with wortmannin showed no added inhibition of cell survival suggesting an effect of F1 or F2 through the phosphatidyl inositol 3-kinase (PI3K) pathway. This study proposes that DCOE fractions (F1 and F2) inhibit cell proliferation by inducing cell cycle arrest and apoptosis in HT-29 cells through the suppression of mitogen-activated protein kinase (MAPK)/Erk and PI3K/Akt pathways.

  7. The bioactive potential of red raspberry (Rubus idaeus L.) leaves in exhibiting cytotoxic and cytoprotective activity on human laryngeal carcinoma and colon adenocarcinoma.

    PubMed

    Durgo, Ksenija; Belščak-Cvitanović, Ana; Stančić, Angela; Franekić, Jasna; Komes, Draženka

    2012-03-01

    In this article, the bioactive potential of red raspberry leaves, a by-product of this widely spread plant, mostly valued for its antioxidant-rich fruits, was determined. The polyphenolic profile and antioxidative properties of red raspberry leaf extract were determined and examined for potential biological activity. Cytotoxic effect, antioxidative/prooxidative effect, and effect on total glutathione concentration were determined in human laryngeal carcinoma (HEp2) and colon adenocarcinoma (SW 480) cell lines. SW 480 cells are more susceptible to raspberry leaf extract in comparison with HEp2 cells. The antioxidative nature of raspberry leaf extract was detected in HEp2 cells treated with hydrogen peroxide, as opposed to SW 480 cells, where raspberry leaf extract induced reactive oxygen species formation. Raspberry leaf extract increased total glutathione level in HEp2 cells. This effect was reinforced after 24 hours of recovery, indicating that induction was caused by products formed during cellular metabolism of compounds present in the extract. Comparison of the results obtained on these two cell lines indicates that cellular response to raspberry extract will depend on the type of the cells that are exposed to it. The results obtained confirmed the biological activity of red raspberry leaf polyphenols and showed that this traditional plant can supplement the daily intake of valuable natural antioxidants, which exhibit beneficial health effects.

  8. Artemisinin induces caspase-8/9-mediated and Bax/Bak-independent apoptosis in human lung adenocarcinoma (ASTC-a-1) cells.

    PubMed

    Xiao, Feng-Lian; Gao, Wei-Jie; Liu, Cheng-Yi; Wang, Xiao-Ping; Chen, Tong-Sheng

    2011-01-01

    Artemisinin (ARTE), an antimalarial phytochemical component from the sweet wormwood plant, has been shown a potential anticancer activity by inducing cell apoptosis. The aim of this report is to explore the mechanism of ARTE-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. Cell counting kit (CCK-8) assay showed that ARTE induced cytotoxcity in a dose- and time-dependent manner. Confocal microscopy fluorescence imaging of cells stained with Hoechst 33258 and flow cytometry (FCM) analysis of cells stained with Annexin V-FITC/propidium iodide (PI) showed that ARTE induced reactive oxygen species (ROS)-dependent apoptosis. Confocal fluorescence resonance energy transfer (FRET) imaging of single living cells expressing SCAT3, SCAT9 or CFP-Bid-YFP and fluorometic substrate assay showed that ARTE induced the activation of caspase-3, -8 and -9. Moreover, inhibition of caspase-8 or -9 completely blocked ARTE-induced apoptosis which was only partially attenuated by caspase-3 inhibitor. Interestingly, silencing Bax and Bak by RNA interference (RNAi) did not attenuate ARTE-induced apoptosis. Collectively, ARTE induces caspase-dependent but Bax/Bak-independent apoptosis in ASTC-a-1 cells. PMID:25214386

  9. Octapeptide somatostatin analog SMS 201-995 induces translocation of intracellular PTP1C to membranes in MCF-7 human breast adenocarcinoma cells.

    PubMed

    Srikant, C B; Shen, S H

    1996-08-01

    Somatostatin (SST) analogs exert direct antiproliferative actions in pancreatic, pituitary, and mammary tumor cells in vitro. SST receptor (SSTR)-mediated induction of membrane-associated protein tyrosine phosphatase (PTP) activity has been implicated in its anti-proliferative signaling by virtue of its ability to dephosphorylate and inactivate growth factor receptor kinases. Recently, a PTP-containing Src homology 2 domain, identified as PTP1C/SHPTP1/SHP/HCP, was found to be associated with SSTR in rat pancreatic acinar cell membranes. In the present study we investigated the antiproliferative action of the octapeptide SST analog SMS 201-995 (OCT) and its effect on PTP activity in MCF-7 human breast adenocarcinoma cells. We report here that OCT does not directly stimulate membrane-associated PTP activity, but induces translocation of intracellular PTP to the membrane in MCF-7 cells preincubated with the peptide in a time- and concentration-dependent manner. We demonstrate that this is due at least in part to OCT-induced recruitment of cytosolic PTP1C. OCT-induced recruitment of PTP1C to the cell surface as well as its ability to inhibit the growth of MCF-7 cells was G protein dependent and inhibited by orthovanadate. These findings suggest that translocation of cytosolic PTP1C by SST analogs to the cell surface is an early event in its antiproliferative signaling in tumor cells.

  10. Cytotoxic Activities of Physalis minima L. Chloroform Extract on Human Lung Adenocarcinoma NCI-H23 Cell Lines by Induction of Apoptosis

    PubMed Central

    Leong, Ooi Kheng; Muhammad, Tengku Sifzizul Tengku; Sulaiman, Shaida Fariza

    2011-01-01

    Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72 h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53 mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug. PMID:19541726

  11. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    SciTech Connect

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  12. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells.

    PubMed

    Kim, Jiyeon; Kim, Tae Yeon; Lee, Myung Shin; Mun, Ji Young; Ihm, Chunhwa; Kim, Soon Ae

    2016-09-16

    It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling. PMID:27492069

  13. Artemisinin induces caspase-8/9-mediated and Bax/Bak-independent apoptosis in human lung adenocarcinoma (ASTC-a-1) cells.

    PubMed

    Xiao, Feng-Lian; Gao, Wei-Jie; Liu, Cheng-Yi; Wang, Xiao-Ping; Chen, Tong-Sheng

    2011-01-01

    Artemisinin (ARTE), an antimalarial phytochemical component from the sweet wormwood plant, has been shown a potential anticancer activity by inducing cell apoptosis. The aim of this report is to explore the mechanism of ARTE-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. Cell counting kit (CCK-8) assay showed that ARTE induced cytotoxcity in a dose- and time-dependent manner. Confocal microscopy fluorescence imaging of cells stained with Hoechst 33258 and flow cytometry (FCM) analysis of cells stained with Annexin V-FITC/propidium iodide (PI) showed that ARTE induced reactive oxygen species (ROS)-dependent apoptosis. Confocal fluorescence resonance energy transfer (FRET) imaging of single living cells expressing SCAT3, SCAT9 or CFP-Bid-YFP and fluorometic substrate assay showed that ARTE induced the activation of caspase-3, -8 and -9. Moreover, inhibition of caspase-8 or -9 completely blocked ARTE-induced apoptosis which was only partially attenuated by caspase-3 inhibitor. Interestingly, silencing Bax and Bak by RNA interference (RNAi) did not attenuate ARTE-induced apoptosis. Collectively, ARTE induces caspase-dependent but Bax/Bak-independent apoptosis in ASTC-a-1 cells.

  14. 5'-Nucleotidases of chicken gizzard and human pancreatic adenocarcinoma cells are anchored to the plasma membrane via a phosphatidylinositol-glycan.

    PubMed Central

    Stochaj, U; Flocke, K; Mathes, W; Mannherz, H G

    1989-01-01

    We have analysed the membrane anchorage of plasma-membrane 5'-nucleotidase, an ectoenzyme which can mediate binding to components of the extracellular matrix. We demonstrated that the purified enzyme obtained from chicken gizzard and a human pancreatic adenocarcinoma cell line were both completely transformed into a hydrophilic form by treatment with phospholipases C and D, cleaving glycosylphosphatidylinositol (GPI). These data indicate the presence of a glycolipid linker employed for membrane anchoring of the 5'-nucleotidase obtained from both sources. Incubation of plasma membranes under identical conditions revealed that about half of the AMPase activity was resistant to GPI-hydrolysing phospholipases. Investigation of the enzymic properties of purified chicken gizzard 5'-nucleotidase revealed only minor changes after removal of the phosphatidylinositol linker. However, cleavage of the membrane anchor resulted in an increased sensitivity towards inhibition by concanavalin A. After tissue fractionation, chicken gizzard 5'-nucleotidase could be obtained as either a membrane-bound or a soluble protein; the latter is suspected to be released from the plasma membrane by endogenous phospholipases. Higher-molecular-mass proteins immuno-cross-reactive with the purified chicken gizzard 5'-nucleotidase were detected as both soluble and membrane-bound forms. Images Fig. 1. Fig. 3. Fig. 4. PMID:2554891

  15. Cytotoxicity and intracellular fate of PLGA and chitosan-coated PLGA nanoparticles in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells.

    PubMed

    Trif, Mihaela; Florian, Paula E; Roseanu, Anca; Moisei, Magdalena; Craciunescu, Oana; Astete, Carlos E; Sabliov, Cristina M

    2015-11-01

    Polymeric nanoparticles (NPs) are known to facilitate intracellular uptake of drugs to improve their efficacy, with minimum bioreactivity. The goal of this study was to assess cellular uptake and trafficking of PLGA NPs and chitosan (Chi)-covered PLGA NPs in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells. Both PLGA and Chi-PLGA NPs were not cytotoxic to the studied cells at concentrations up to 2500 μg/mL. The positive charge conferred by the chitosan deposition on the PLGA NPs improved NPs uptake by MDBK cells. In this cell line, Chi-PLGA NPs colocalized partially with early endosomes compartment and showed a more consistent perinuclear localization than PLGA NPs. Kinetic uptake of PLGA NPs by Colo 205 was slower than that by MDBK cells, detected only at 24 h, exceeding that of Chi-PLGA NPs. This study offers new insights on NP interaction with target cells supporting the use of NPs as novel nutraceuticals/drug delivery systems in metabolic disorders or cancer therapy. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3599-3611, 2015.

  16. Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells

    SciTech Connect

    Yi, Ho-Keun; Kim, Sun-Young; Hwang, Pyoung-Han; Kim, Chan-Young; Yang, Doo-Hyun; Oh, Youngman; Lee, Dae-Yeol . E-mail: leedy@chonbuk.ac.kr

    2005-05-13

    PTEN is a tumor suppressor gene that is frequently mutated or deleted in a variety of human cancers including human gastric cancer. PTEN functions primarily as a lipid phosphatase and plays a key role in the regulation of the PI3 kinase/Akt pathway, thereby modulating cell proliferation and cell survival. On the other hand, the IGF system plays an important role in cell proliferation and cell survival via the PI3 kinase/Akt and MAP kinase pathways in many cancer cells. To characterize the impact of PTEN on the IGF-IGFR-IGFBP axis in gastric cancer, we overexpressed PTEN using an adenovirus gene transfer system in human gastric adenocarcinoma cells, SNU-484 and SNU-663, which lack PTEN. Overexpression of PTEN inhibited serum-induced as well as IGF-I-induced cell proliferation as compared to control cells. PTEN overexpression resulted in a significant decrease in the expression of IGF-I, -II, and IGF-IR. Interestingly, amongst the six IGFBPs, only IGFBP-3 was upregulated by PTEN, whereas IGFBP-4 and -6 were reduced. The IGFBP-3 promoter activity assay and Western immunoblotting demonstrate that PTEN regulates IGFBP-3 at the transcriptional level. In addition, the PI3 kinase inhibitor, LY294002, upregulates IGFBP-3 expression but downregulates IGF-I and IGF-II, indicating that PTEN controls IGFBP-3 and IGFs by an Akt-dependent pathway. These findings suggest that PTEN may inhibit antiapoptotic IGF actions not only by blocking the IGF-IGFR-induced Akt activity, but also by regulating expression of components of the IGF system, in particular, upregulation of IGFBP-3, which is known to exert antiproliferative effects through IGF-dependent and IGF-independent mechanisms in cancer cells.

  17. Induction of cytochromes P450 1A1 and 1B1 in human lung adenocarcinoma CL5 cells by frying-meat emission particulate.

    PubMed

    Wang, H-W; Chen, T-L; Yang, P-C; Ma, Y-C; Yu, C-C; Ueng, T-H

    2002-05-01

    The effect of airborne frying-meat emission particulate (FMEP) on cytochrome P450 (P450)-dependent monooxygenase was determined using human lung adenocarcinoma cell line CL5 treated with organic extract of FMEP prepared from beef, fish or pork. Treatment with fish FMEP extract caused greater increases of intracellular peroxide production and glutathione content than did beef and pork FMEP extracts. Treatment with 200 microg/ml beef, fish or pork FMEP extract for 6 h increased benzo[a]pyrene hydroxylase, 7-ethoxyresorufin and methoxyresorufin O-dealkylases activities in S9. Immunoblot analysis of S9 proteins from control cells and cells treated with FMEP extracts revealed that the airborne particulates increased proteins immunorelated to CYP1A1 and CYP1B1. Northern blot analysis of total cellular RNA from controls and cells treated with FMEP extracts showed that the cooking by-products increased the levels of CYP1A1 and CYP1B1 mRNA. Treatment with 1 microM dibenzo[a,h]anthracene for 6 h increased monooxygenase activities, CYP1A1 and CYP1B1 protein and mRNA levels in CL5 cells. Beef FMEP extract and dibenzo[a,h]anthracene also induced CYP1A1 and CYP1B1 in human lung carcinoma NCI-H322 cells. The present finding demonstrates that airborne particulates generated during the frying of beef, fish and pork can induce carcinogen-metabolizing CYP1A1 and CYP1B1 in the human lung-derived cell line CL5.

  18. Immuno-detection of OCTN1 (SLC22A4) in HeLa cells and characterization of transport function.

    PubMed

    Pochini, Lorena; Scalise, Mariafrancesca; Indiveri, Cesare

    2015-11-01

    OCTN1 was immuno-detected in the cervical cancer cell HeLa, in which the complete pattern of acetylcholine metabolizing enzymes is expressed. Comparison of immuno-staining intensity of HeLa OCTN1 with the purified recombinant human OCTN1 allowed measuring the specific OCTN1 concentration in the HeLa cell extract and, hence calculating the HeLa OCTN1 specific transport activity that was about 10 nmol×min(-1)×mg protein(-1), measured as uptake of [(3)H]acetylcholine in proteoliposomes reconstituted with HeLa extract. This value was very similar to the specific activity of the recombinant protein. Acetylcholine transport was suppressed by incubation of the protein or proteoliposomes with the anti-OCTN1 antibody and was strongly inhibited by PLP and MTSEA, known inhibitors of OCTN1. The absence of ATP in the internal side of proteoliposomes strongly impaired transport function of both the HeLa and, as expected, the recombinant OCTN1. HeLa OCTN1 was inhibited by spermine, NaCl (Na(+)), TEA, γ-butyrobetaine, choline, acetylcarnitine and ipratropium but not by neostigmine. Besides acetylcholine, choline was taken up by HeLa OCTN1 proteoliposomes. The transporter catalyzed also acetylcholine and choline efflux which, differently from uptake, was not inhibited by MTSEA. Time course of [(3)H]acetylcholine uptake in intact HeLa cells was measured. As in proteoliposomes, acetylcholine transport in intact cells was inhibited by TEA and NaCl. Efflux of [(3)H]acetylcholine occurred in intact cells, as well. The experimental data concur in demonstrating a role of OCTN1 in transporting acetylcholine and choline in HeLa cells.

  19. Detection of a long non-coding RNA (CCAT1) in living cells and human adenocarcinoma of colon tissues using FIT-PNA molecular beacons.

    PubMed

    Kam, Yossi; Rubinstein, Abraham; Naik, Shankar; Djavsarov, Irena; Halle, David; Ariel, Ilana; Gure, Ali O; Stojadinovic, Alexander; Pan, HongGuang; Tsivin, Victoria; Nissan, Aviram; Yavin, Eylon

    2014-09-28

    Although the function and mechanism of action of long non-coding RNAs (lncRNA) is still not completely known, studies have shown their potential role in the control of gene expression and regulation, in cellular proliferation and invasiveness at the transcriptional level via multiple mechanisms. Recently, colon cancer associated transcript 1 (CCAT1) lncRNA was found to be expressed in colorectal cancer (CRC) tumors but not in normal tissue. This study aimed to study the ability of a CCAT1-specific peptide nucleic acid (PNA) based molecular beacons (TO-PNA-MB) to serve as a diagnostic probe for in vitro, ex vivo, and in situ (human colon biopsies) detection of CRC. The data showed enhanced fluorescence upon in vitro hybridization to RNA extracted from CCAT1 expressing cells (HT-29, SW-480) compared to control cells (SK-Mel-2). Uptake of TO-PNA-MBs into cells was achieved by covalently attaching cell penetrating peptides (CPPs) to the TO-PNA-MB probes. In situ hybridization of selected TO-PNA-MB in human CRC specimens was shown to detect CCAT1 expression in all (4/4) subjects with pre-cancerous adenomas, and in all (8/8) patients with invasive adenocarcinoma (penetrating the bowel wall) tumors. The results showed that CCAT1 TO-PNA-MB is a powerful diagnostic tool for the specific identification of CRC, suggesting that with the aid of an appropriate pharmaceutical vehicle, real time in vivo imaging is feasible. TO-PNA-MB may enable identifying occult metastatic disease during surgery, or differentiating in real time in vivo imaging, between benign and malignant lesions. PMID:23416875

  20. A Bowman–Birk inhibitor induces apoptosis in human breast adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition

    PubMed Central

    Mehdad, A; Brumana, G; Souza, AA; Barbosa, JARG; Ventura, MM; de Freitas, SM

    2016-01-01

    Proteasome inhibitors are emerging as a new class of chemopreventive agents and have gained huge importance as potential pharmacological tools in breast cancer treatment. Improved understanding of the role played by proteases and their specific inhibitors in humans offers novel and challenging opportunities for preventive and therapeutic intervention. In this study, we demonstrated that the Bowman–Birk protease inhibitor from Vigna unguiculata seeds, named black-eyed pea trypsin/chymotrypsin Inhibitor (BTCI), potently suppresses human breast adenocarcinoma cell viability by inhibiting the activity of proteasome 20S. BTCI induced a negative growth effect against a panel of breast cancer cells, with a concomitant cytostatic effect at the G2/M phase of the cell cycle and an increase in apoptosis, as observed by an augmented number of cells at the sub-G1 phase and annexin V-fluorescin isothiocyanate (FITC)/propidium iodide (PI) staining. In contrast, BTCI exhibited no cytotoxic effect on normal mammary epithelial cells. Moreover, the increased levels of intracellular reactive oxygen species (ROS) and changes in the mitochondrial membrane potential in cells treated with BTCI indicated mitochondrial damage as a crucial cellular event responsible for the apoptotic process. The higher activity of caspase in tumoral cells treated with BTCI in comparison with untreated cells suggests that BTCI induces apoptosis in a caspase-dependent manner. BTCI affected NF-kB target gene expression in both non invasive and invasive breast cancer cell lines, with the effect highly pronounced in the invasive cells. An increased expression of interleukin-8 (IL-8) in both cell lines was also observed. Taken together, these results suggest that BTCI promotes apoptosis through ROS-induced mitochondrial damage following proteasome inhibition. These findings highlight the pharmacological potential and benefit of BTCI in breast cancer treatment. PMID:27551492

  1. Detection of a long non-coding RNA (CCAT1) in living cells and human adenocarcinoma of colon tissues using FIT-PNA molecular beacons.

    PubMed

    Kam, Yossi; Rubinstein, Abraham; Naik, Shankar; Djavsarov, Irena; Halle, David; Ariel, Ilana; Gure, Ali O; Stojadinovic, Alexander; Pan, HongGuang; Tsivin, Victoria; Nissan, Aviram; Yavin, Eylon

    2014-09-28

    Although the function and mechanism of action of long non-coding RNAs (lncRNA) is still not completely known, studies have shown their potential role in the control of gene expression and regulation, in cellular proliferation and invasiveness at the transcriptional level via multiple mechanisms. Recently, colon cancer associated transcript 1 (CCAT1) lncRNA was found to be expressed in colorectal cancer (CRC) tumors but not in normal tissue. This study aimed to study the ability of a CCAT1-specific peptide nucleic acid (PNA) based molecular beacons (TO-PNA-MB) to serve as a diagnostic probe for in vitro, ex vivo, and in situ (human colon biopsies) detection of CRC. The data showed enhanced fluorescence upon in vitro hybridization to RNA extracted from CCAT1 expressing cells (HT-29, SW-480) compared to control cells (SK-Mel-2). Uptake of TO-PNA-MBs into cells was achieved by covalently attaching cell penetrating peptides (CPPs) to the TO-PNA-MB probes. In situ hybridization of selected TO-PNA-MB in human CRC specimens was shown to detect CCAT1 expression in all (4/4) subjects with pre-cancerous adenomas, and in all (8/8) patients with invasive adenocarcinoma (penetrating the bowel wall) tumors. The results showed that CCAT1 TO-PNA-MB is a powerful diagnostic tool for the specific identification of CRC, suggesting that with the aid of an appropriate pharmaceutical vehicle, real time in vivo imaging is feasible. TO-PNA-MB may enable identifying occult metastatic disease during surgery, or differentiating in real time in vivo imaging, between benign and malignant lesions.

  2. Micropallet arrays for the capture, isolation and culture of circulating tumor cells from whole blood of mice engrafted with primary human pancreatic adenocarcinoma.

    PubMed

    Gach, Philip C; Attayek, Peter J; Whittlesey, Rebecca L; Yeh, Jen Jen; Allbritton, Nancy L

    2014-04-15

    Circulating tumor cells (CTCs) are important biomarkers of cancer progression and metastatic potential. The rarity of CTCs in peripheral blood has driven the development of technologies to isolate these tumor cells with high specificity; however, there are limited techniques available for isolating target CTCs following enumeration. A strategy is described to capture and isolate viable tumor cells from whole blood using an array of releasable microstructures termed micropallets. Specific capture of nucleated cells or cells expressing epithelial cell adhesion molecules (EpCAM) was achieved by functionalizing micropallet surfaces with either fibronectin, Matrigel or anti-EpCAM antibody. Surface grafting of poly(acrylic acid) followed by covalent binding of protein A/G enabled efficient capture of EpCAM antibody on the micropallet surface. MCF-7 cells, a human breast adenocarcinoma, were retained on the array surface with 90±8% efficiency when using an anti-EpCAM-coated array. To demonstrate the efficiency of tumor cell retention on micropallet arrays in the presence of blood, MCF-7 cells were mixed into whole blood and added to small arrays (71 mm(2)) coated with fibronectin, Matrigel or anti-EpCAM. These approaches achieved MCF-7 cell capture from ≤10 µL of whole blood with efficiencies greater than 85%. Furthermore, MCF-7 cells intermixed with 1 mL blood and loaded onto large arrays (7171 mm(2)) were captured with high efficiencies (≥97%), could be isolated from the array by a laser-based approach and were demonstrated to yield a high rate of colony formation (≥85%) after removal from the array. Clinical utility of this technology was shown through the capture, isolation and successful culture of CTCs from the blood of mice engrafted with primary human pancreatic tumors. Direct capture and isolation of living tumor cells from blood followed by analysis or culture will be a valuable tool for cancer cell characterization.

  3. A Bowman-Birk inhibitor induces apoptosis in human breast adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition.

    PubMed

    Mehdad, A; Brumana, G; Souza, A A; Barbosa, Jarg; Ventura, M M; de Freitas, S M

    2016-01-01

    Proteasome inhibitors are emerging as a new class of chemopreventive agents and have gained huge importance as potential pharmacological tools in breast cancer treatment. Improved understanding of the role played by proteases and their specific inhibitors in humans offers novel and challenging opportunities for preventive and therapeutic intervention. In this study, we demonstrated that the Bowman-Birk protease inhibitor from Vigna unguiculata seeds, named black-eyed pea trypsin/chymotrypsin Inhibitor (BTCI), potently suppresses human breast adenocarcinoma cell viability by inhibiting the activity of proteasome 20S. BTCI induced a negative growth effect against a panel of breast cancer cells, with a concomitant cytostatic effect at the G2/M phase of the cell cycle and an increase in apoptosis, as observed by an augmented number of cells at the sub-G1 phase and annexin V-fluorescin isothiocyanate (FITC)/propidium iodide (PI) staining. In contrast, BTCI exhibited no cytotoxic effect on normal mammary epithelial cells. Moreover, the increased levels of intracellular reactive oxygen species (ROS) and changes in the mitochondrial membrane potential in cells treated with BTCI indicated mitochondrial damage as a crucial cellular event responsible for the apoptotic process. The higher activity of caspase in tumoral cells treated with BTCI in comparison with untreated cells suggests that BTCI induces apoptosis in a caspase-dependent manner. BTCI affected NF-kB target gene expression in both non invasive and invasive breast cancer cell lines, with the effect highly pronounced in the invasive cells. An increased expression of interleukin-8 (IL-8) in both cell lines was also observed. Taken together, these results suggest that BTCI promotes apoptosis through ROS-induced mitochondrial damage following proteasome inhibition. These findings highlight the pharmacological potential and benefit of BTCI in breast cancer treatment. PMID:27551492

  4. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Pujari, Geetanjali; Semwal, Manoj K.; Sarma, Asitikantha; Avasthi, Devesh Kumar

    2013-04-01

    Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The γ-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells.

  5. Hop proanthocyanidins induce apoptosis, protein carbonylation, and cytoskeleton disorganization in human colorectal adenocarcinoma cells via reactive oxygen species

    PubMed Central

    Chung, Woon-Gye; Miranda, Cristobal L.; Stevens, Jan F.; Maier, Claudia S.

    2009-01-01

    Proanthocyanidins (PCs) have been shown to suppress the growth of diverse human cancer cells and are considered as promising additions to the arsenal of chemopreventive phytochemicals. An oligomeric mixture of PCs from hops (Humulus lupulus) significantly decreased cell viability of human colon cancer HT-29 cells in a dose-dependent manner. Hop PCs, at 50 or 100 μg/ml, exhibited apoptosis-inducing properties as shown by the increase in caspase-3 activity. Increased levels of intracellular reactive oxygen species (ROS) was accompanied by an augmented accumulation of protein carbonyls. Mass spectrometry-based proteomic analysis in combination with 2-alkenal-specific immunochemical detection identified β-actin and protein disulfide isomerase as major putative targets of acrolein adduction. Incubation of HT-29 cells with hop PCs resulted in morphological changes that indicated disruption of the actin cytoskeleton. PC-mediated hydrogen peroxide (H2O2) formation in the cell culture media was also quantified; but, the measured H2O2 levels would not explain the observed changes in the oxidative modifications of actin. These findings suggest new modes of action for proanthocyandins as antitumorgenic agents in human colon cancer cells, namely, promotion of protein oxidative modifications and cytoskeleton derangement. PMID:19271284

  6. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line.

    PubMed

    Adey, Andrew; Burton, Joshua N; Kitzman, Jacob O; Hiatt, Joseph B; Lewis, Alexandra P; Martin, Beth K; Qiu, Ruolan; Lee, Choli; Shendure, Jay

    2013-08-01

    The HeLa cell line was established in 1951 from cervical cancer cells taken from a patient, Henrietta Lacks. This was the first successful attempt to immortalize human-derived cells in vitro. The robust growth and unrestricted distribution of HeLa cells resulted in its broad adoption--both intentionally and through widespread cross-contamination--and for the past 60 years it has served a role analogous to that of a model organism. The cumulative impact of the HeLa cell line on research is demonstrated by its occurrence in more than 74,000 PubMed abstracts (approximately 0.3%). The genomic architecture of HeLa remains largely unexplored beyond its karyotype, partly because like many cancers, its extensive aneuploidy renders such analyses challenging. We carried out haplotype-resolved whole-genome sequencing of the HeLa CCL-2 strain, examined point- and indel-mutation variations, mapped copy-number variations and loss of heterozygosity regions, and phased variants across full chromosome arms. We also investigated variation and copy-number profiles for HeLa S3 and eight additional strains. We find that HeLa is relatively stable in terms of point variation, with few new mutations accumulating after early passaging. Haplotype resolution facilitated reconstruction of an amplified, highly rearranged region of chromosome 8q24.21 at which integration of the human papilloma virus type 18 (HPV-18) genome occurred and that is likely to be the event that initiated tumorigenesis. We combined these maps with RNA-seq and ENCODE Project data sets to phase the HeLa epigenome. This revealed strong, haplotype-specific activation of the proto-oncogene MYC by the integrated HPV-18 genome approximately 500 kilobases upstream, and enabled global analyses of the relationship between gene dosage and expression. These data provide an extensively phased, high-quality reference genome for past and future experiments relying on HeLa, and demonstrate the value of haplotype resolution for

  7. Histone Deacetylase 1/Sp1/MicroRNA-200b Signaling Accounts for Maintenance of Cancer Stem-Like Cells in Human Lung Adenocarcinoma

    PubMed Central

    Pan, Ban-Zhou; De, Wei; Wang, Rui; Chen, Long-Bang

    2014-01-01

    The presence of cancer stem-like cells (CSCs) is one of the mechanisms responsible for chemoresistance that has been a major hindrance towards lung adenocarcinoma (LAD) treatment. Recently, we have identified microRNA (miR)-200b as a key regulator of chemoresistance in human docetaxel-resistant LAD cells. However, whether miR-200b has effects on regulating CSCs remains largely unclear and needs to be further elucidated. Here, we showed that miR-200b was significantly downregulated in CD133+/CD326+ cells that exhibited properties of CSCs derived from docetaxel-resistant LAD cells. Also, restoration of miR-200b could inhibit maintenance and reverse chemoresistance of CSCs. Furthermore, suppressor of zeste-12 (Suz-12) was identified as a direct and functional target of miR-200b, and silencing of Suz-12 phenocopied the effects of miR-200b on CSCs. Additionally, overexpression of histone deacetylase (HDAC) 1 was identified as a pivotal mechanism responsible for miR-200b repression in CSCs through a specificity protein (Sp) 1-dependent mechanism, and restoration of miR-200b by HDAC1 repression significantly suppressed CSCs formation and reversed chemoresistance of CSCs by regulating Suz-12-E-cadherin signaling. Also, downregulation of HDAC1 or upregulation of miR-200b reduced the in vivo tumorigenicity of CSCs. Finally, Suz-12 was inversely correlated with miR-200b, positively correlated with HDAC1 and up-regulated in docetaxel-resistant LAD tissues compared with docetaxel-sensitive tissues. Taken together, the HDAC1/miR-200b/Suz-12-E-cadherin signaling might account for maintenance of CSCs and formation of chemoresistant phenotype in docetaxel-resistant LAD cells. PMID:25279705

  8. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell.

    PubMed

    Chen, Ni; Wu, Lijun; Yuan, Hang; Wang, Jun

    2015-01-01

    Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549.

  9. Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest

    PubMed Central

    Khan, Fazal; Ahmed, Farid; Pushparaj, Peter Natesan; Abuzenadah, Adel; Kumosani, Taha; Barbour, Elie; AlQahtani, Mohammed; Gauthaman, Kalamegam

    2016-01-01

    Introduction Phoenix dactylifera L (Date palm) is a native plant of the Kingdom of Saudi Arabia (KSA) and other Middle Eastern countries. Ajwa date has been described in the traditional and alternative medicine to provide several health benefits including anticholesteremic, antioxidant, hepatoprotective and anticancer effects, but most remains to be scientifically validated. Herein, we evaluated the anticancer effects of the Methanolic Extract of Ajwa Date (MEAD) on human breast adenocarcinoma (MCF7) cells in vitro. Methods MCF7 cells were treated with various concentrations (5, 10, 15, 20 and 25 mg/ml) of MEAD for 24, 48 and 72 h and changes in cell morphology, cell cycle, apoptosis related protein and gene expression were studied. Results Phase contrast microscopy showed various morphological changes such as cell shrinkage, vacuolation, blebbing and fragmentation. MTT (2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay demonstrated statistically significant dose-dependent inhibitions of MCF7 cell proliferation from 35% to 95%. Annexin V-FITC and TUNEL assays showed positive staining for apoptosis of MCF7 cells treated with MEAD (15 mg and 25 mg for 48 h). Flow cytometric analyses of MCF7 cells with MEAD (15 mg/ml and 20 mg/ml) for 24 h demonstrated cell cycle arrest at 'S' phase; increased p53, Bax protein expression; caspase 3activation and decreased the mitochondrial membrane potential (MMP). Quantitative real time PCR (qRT-PCR) analysis showed up-regulation of p53, Bax, Fas, and FasL and down-regulation of Bcl-2. Conclusions MEAD inhibited MCF7 cells in vitro by the inducing cell cycle arrest and apoptosis. Our results indicate the anticancer effects of Ajwa dates, which therefore may be used as an adjunct therapy with conventional chemotherapeutics to achieve a synergistic effect against breast cancer. PMID:27441372

  10. Combination of Nimbolide and TNF-α-Increases Human Colon Adenocarcinoma Cell Death through JNK-mediated DR5 Up- regulation.

    PubMed

    Chantana, Chantana; Yenjai, Chavi; Reubroycharoen, Prasert; Waiwut, Pornthip

    2016-01-01

    Tumor necrosis factor (TNF-α), an inflammatory cytokine that plays an important role in the control of cell proliferation, differentiation, and apoptosis, has previously been used in anti-cancer therapy. However, the therapeutic applications of TNF-α are largely limited due to its general toxicity and anti-apoptotic influence. To overcome this problem, the present study focused on the effect of active constituents isolated from a medicinal plant on TNF-α-induced apoptosis in human colon adenocarcinoma (HT-29) cells. Nimbolide from Azadirachta indica was evaluated for cytotoxicity by methyl tetrazolium 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and phase contrast microscopy. Effects on apoptotic signaling proteins were investigated using Western blot analysis. Nimbolide showed cytotoxicity against HT-29 cells that was significantly different from the control group (<0.01), a concentration of 10 μM significantly inducing cell death (<0.01). In combination with TNF-α, nimbolide significantly enhanced-induced cell death. In apoptotic pathway, nimbolide activated c-Jun N-terminal kinase (JNK) phosphorylation, BH3 interacting-domain death agonist (Bid) and up-regulated the death receptor 5 (DR5) level. In the combination group, nimbolide markedly sensitized TNF-α-induced JNK, Bid, caspase-3 activation and the up-regulation of DR5. Our findings overall indicate that nimbolide may enhance TNF-α-mediated cellular proliferation inhibition through increasing cell apoptosis of HT-29 cells by up-reglation of DR5 expression via the JNK pathway. PMID:27268643

  11. Anticancer Activity of Cobra Venom Polypeptide, Cytotoxin-II, against Human Breast Adenocarcinoma Cell Line (MCF-7) via the Induction of Apoptosis

    PubMed Central

    Shirazi, Farshad H.; Vatanpour, Hosein; zare, Abas; Kobarfard, Farzad; Rabiei, Hadi

    2014-01-01

    Purpose Breast cancer is a significant health problem worldwide, accounting for a quarter of all cancer diagnoses in women. Current strategies for breast cancer treatment are not fully effective, and there is substantial interest in the identification of novel anticancer agents especially from natural products including toxins. Cytotoxins are polypeptides found in the venom of cobras and have various physiological effects. In the present study, the anticancer potential of cytotoxin-II against the human breast adenocarcinoma cell line (MCF-7) was investigated. Methods The cytotoxic effects of cytotoxin-II were determined by morphological analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The mode and mechanism of cell death were investigated via acridine orange/ethidium bromide (AO/EtBr) double staining, flow cytometric analysis of cell death, detection of mitochondrial membrane potential, measurement of intracellular reactive oxygen species (ROS), annexin V/propidium iodide staining, and caspase-9 activity assays. Results The half maximal inhibitory concentration (IC50) of cytotoxin-II in MCF-7 cells was 4.18±1.23 µg/mL, while the value for cisplatin was approximately 28.02±1.87 µg/mL. Morphological analysis and AO/EtBr double staining showed typical manifestations of apoptotic cell death (in doses lower than 8 µg/mL). Dose- and time-dependent ROS generation, loss of mitochondrial membrane potential, caspase-9 activation, and cell cycle arrest were observed in their respective tests. Conclusion In conclusion, cytotoxin-II has potent anticancer effects in the MCF-7 cell line, which are induced via the intrinsic pathways of apoptosis. Based on these findings, cytotoxin-II is a suitable choice for breast cancer treatment. PMID:25548578

  12. HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells

    SciTech Connect

    Liu, Junye; Zhang, Jing; Wang, Xiaowu; Li, Yan; Chen, Yongbin; Li, Kangchu; Zhang, Jian; Yao, Libo; Guo, Guozhen

    2010-07-15

    Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.

  13. Dimethylarginine dimethylaminohydrolase 2 promotes tumor angiogenesis in lung adenocarcinoma.

    PubMed

    Shiozawa, Toshihiro; Iyama, Shinji; Toshima, Shotaro; Sakata, Akiko; Usui, Shingo; Minami, Yuko; Sato, Yukio; Hizawa, Nobuyuki; Noguchi, Masayuki

    2016-02-01

    Although embryonal proteins have been used as tumor marker, most are not useful for detection of early malignancy. In the present study, we developed mouse monoclonal antibodies against fetal lung of miniature swine, and screened them to find an embryonal protein that is produced at the early stage of malignancy, focusing on lung adenocarcinoma. We found an antibody clone that specifically stained stroma of lung adenocarcinoma. LC-MS/MS identified the protein recognized by this clone as dimethylarginine dimethylaminohydrolase 2 (DDAH2), an enzyme known for antiatherosclerotic activity. DDAH2 was found to be expressed in fibroblasts of stroma of malignancies, with higher expression in minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma than in adenocarcinoma in situ (AIS). Moreover, tumors with high stromal expression of DDAH2 had a poorer prognosis than those without. In vitro analysis showed that DDAH2 increases expression of endothelial nitric oxide synthase (eNOS), inducing proliferation and capillary-like tube formation of vascular endothelial cells. In resected human tissues, eNOS also showed higher expression in invasive adenocarcinoma than in AIS and normal lung, similarly to DDAH2. Our data indicate that expression of DDAH2 is associated with invasiveness of lung adenocarcinoma via tumor angiogenesis. DDAH2 expression might be a prognostic factor in lung adenocarcinoma.

  14. Effect of rapeseed peptide on DNA damage and apoptosis in Hela cells.

    PubMed

    Xue, Zhaohui; Liu, Zhiwei; Wu, Moucheng; Zhuang, Shiwen; Yu, Wancong

    2010-09-01

    Rapeseed peptide (RSP), obtained by hydrolyzing rapeseed protein, has anticancer activity. In this study, the effects of RSP on proliferation rate, morphological changes, DNA damage, cell cycle distribution and apoptosis in human cervical carcinoma (Hela) cells were investigated. RSP treatment at a concentration of 640 mg/L for 4 days inhibited Hela cell proliferation significantly, as determined by the MTT assay. We observed a dose-dependent increase in cytotoxicity induced by RSP at 20-640 mg/L. After 4 days of 320 mg/L RSP treatment, typical apoptotic changes were observed by transmission electron microscopy (TEM). Using the comet assay, we found dramatic comet tails, indicating DNA damage by RSP (20-640 mg/L). Moreover, RSP treatment caused inhibition of Hela cell growth, with cycle arrest in the S phase and apoptosis induction. Taken together, the results suggested that rapeseed peptide could be a potential antitumor compound with an apoptotic mode of action.

  15. Inhibition of neutrophil elastase and metalloprotease-9 of human adenocarcinoma gastric cells by chamomile (Matricaria recutita L.) infusion.

    PubMed

    Bulgari, Michela; Sangiovanni, Enrico; Colombo, Elisa; Maschi, Omar; Caruso, Donatella; Bosisio, Enrica; Dell'Agli, Mario

    2012-12-01

    This study investigated whether the antiinflammatory effect of chamomile infusion at gastric level could be ascribed to the inhibition of metalloproteinase-9 and elastase. The infusions from capitula and sifted flowers (250-1500 µg/mL) and individual flavonoids (10 µM) were tested on phorbol 12-myristate 13-acetate-stimulated AGS cells and human neutrophil elastase. The results indicate that the antiinflammatory activity associated with chamomile infusions from both the capitula and sifted flowers is most likely due to the inhibition of neutrophil elastase and gastric metalloproteinase-9 activity and secretion; the inhibition occurring in a concentration dependent manner. The promoter activity was inhibited as well and the decrease of metalloproteinase-9 expression was found to be associated with the inhibition of NF-kB driven transcription. The results further indicate that the flavonoid-7-glycosides, major constituents of chamomile flowers, may be responsible for the antiinflammatory action of the chamomile infusion observed here. PMID:22407864

  16. Adenocarcinoma of the prostrate

    SciTech Connect

    Bruce, A.W.; Trachtenberg, J.

    1987-01-01

    This books contains 13 chapters. Some of the chapter titles are: Imaging Techniques in the Diagnosis and Pelvic Staging of Prostatic Cancer; Interstitial Radiotherapy; The Case for External Beam Radiotherapy of Certain Adenocarcinomas of the Prostate; and Chemotherapy of Prostatic Cancer.

  17. Regulation of human cytosolic sulfotransferases 1C2 and 1C3 by nuclear signaling pathways in LS180 colorectal adenocarcinoma cells.

    PubMed

    Rondini, Elizabeth A; Fang, Hailin; Runge-Morris, Melissa; Kocarek, Thomas A

    2014-03-01

    Cytosolic sulfotransferases (SULTs) catalyze the sulfate conjugation of a myriad of endogenous and xenobiotic substrates. Among the 13 human SULTs, little is known regarding regulation of the SULT1C subfamily. We evaluated the effects of a panel of transcription factor activators on levels of SULT1C mRNA (1C2 and 1C3) and protein (1C2) in LS180 colorectal adenocarcinoma cells. Treatment with 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)amino]propyloxy]phenylacetic acid hydrochloride [GW3965, liver X receptor (LXR) activator], 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole [GW4064, farnesoid X receptor (FXR)], or rifampicin [pregnane X receptor (PXR)] moderately (≤2-fold) increased both SULT1C2 and SULT1C3 mRNA levels. 1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3, vitamin D receptor (VDR)] selectively upregulated SULT1C2, whereas ciprofibrate [peroxisome proliferator-activated receptor α (PPARα)], rosiglitazone (PPARγ), and 2,3,7,8-tetrachlorodibenzo-p-dioxin [aryl hydrocarbon receptor (AhR)] selectively increased SULT1C3 mRNA levels. SULT1C2 protein content was strongly increased by 1,25(OH)2D3 treatment and moderately increased by GW3965, GW4064, and rifampicin. To evaluate SULT1C2 transcriptional regulation, treatment effects were determined on reporter activity from transfected constructs containing ∼10 kb of the SULT1C2 gene. Treatment with GW3965, GW4064, or 1,25(OH)2D3 increased reporter activity ∼2-, 5-, and 5.5-fold, respectively, from a construct containing mostly intron 1 of the SULT1C2 gene. Expression of AhR, LXRα, LXRβ, PPARα, PPARγ, PXR, and VDR was confirmed in LS180 cells using quantitative reverse-transcription polymerase chain reaction; however, FXR expression was negligible, suggesting that GW4064 increased SULT1C expression through an FXR-independent mechanism. Collectively, our findings are the first to characterize the regulation of human SULT1C2 and SULT1C3 expression by

  18. Differential DNA sequence deletions from chromosomes 3, 11, 13, and 17 in squamous-cell carcinoma, large-cell carcinoma, and adenocarcinoma of the human lung

    SciTech Connect

    Weston, A.; Willey, J.C.; Modali, R.; Sugimura, H.; McDowell, E.M.; Resau, J.; Light, B.; Haugen, A.; Mann, D.L.; Trump, B.F.; Harris, C.C. )

    1989-07-01

    Activation of protooncogens and inactivation of putative tumor suppressor genes are genetic lesions considered to be important in lung carcinogenesis. Fifty-four cases of non-small-cell lung cancer (23 adenocarcinomas, 23 squamous-cell carcinomas, and 8 large-cell carcinomas) were examined for loss of DNA sequences at 13 polymorphic genetic loci. Loss of heterozygosity was seen more frequently in squamous-cell carcinoma than in adenocarcinoma. The loss of DNA sequences from the short arm of chromosome 17 (D17S1 locus) was detected in 8 of 9 heterozygous cases of squamous-cell carcinoma and in only 2 of 11 heterozygous cases of adenocarcinomas. Loss of DNA sequences from chromosome 3 was seen in 16 of 31 cases where the constitutive DNA was heterozygous-i.e., informative. Loss of heterozygosity at the chromosome 13q locus, D13S3, was seen in 9 of 21 informative cases, and in 2 cases, both adenocarcinomas, duplication of the intact DNA sequences suggested the possibility that mitotic recombination had occurred. Frequent DNA sequence deletions, including those from chromosome 17, in squamous-cell carcinomas may reflect the extensive mutagenic and clastogenic effects of tobacco smoke that may lead to inactivation of putative tumor-suppressor genes.

  19. Cellular stress induced by photodynamic reaction with CoTPPS and MnTMPyPCl5 in combination with electroporation in human colon adenocarcinoma cell lines (LoVo and LoVoDX).

    PubMed

    Kulbacka, J; Kotulska, M; Rembiałkowska, N; Choromańska, A; Kamińska, I; Garbiec, A; Rossowska, J; Daczewska, M; Jachimska, B; Saczko, J

    2013-11-01

    Two porphyrins, CoTPPS and MnTMPyPCl5, were tested for their photodynamic activity and potential novel use in a therapy of human cancers. We investigated an effect of photodynamic reaction (PDR), electroporation (EP) and their combination (electro-photodynamic reaction [EP-PDR]) on human colon adenocarcinoma cell lines (LoVo and resistant to doxorubicin LoVoDX), human breast adenocarcinoma (wild type MCF-7/WT and resistant to doxorubicin MCF-7/DOX), and human melanoma (Me45). The efficiency of macromolecules transport was examined with cytofluorymetry by assessing the degree of propidium iodide (PI) penetration. Additionally, cellular ultrastructure after EP was evaluated. We determined cyto- and photo-cytotoxic effect on the cells viability (MTT assay) after standard PDR and PDR combined with EP. Intracellular distribution and mitochondrial colocalization of both porphyrins was also performed. The experiments proved that both complexes exhibit desirable photodynamic properties on LoVo LoVoDX cells, and EP effectively supports photodynamic method in this type of cancer. The application of EP provided shorter time of incubation (only 10 min) and enhanced effect of applied therapy. The porphyrins did not affect the MCF-7 and Me45 cell lines.

  20. Knockdown of eukaryotic translation initiation factor 4E suppresses cell growth and invasion, and induces apoptosis and cell cycle arrest in a human lung adenocarcinoma cell line.

    PubMed

    Chen, Baofu; Zhang, Bo; Xia, Lilong; Zhang, Jian; Chen, Yu; Hu, Quanteng; Zhu, Chengchu

    2015-12-01

    Eukaryotic translation initiation factor 4E (eIF4E) was shown to be upregulated in malignant human tumors. To assess the effect of downregulation of eIF4E on the proliferation and invasiveness of a human lung adenocarcinoma cell line, a short hairpin (sh)RNA targeting eIF4E was constructed and transfected into A549 human lung adenocarcinoma cells. The expression of eIF4E was determined by reverse transcription‑quantitative polymerase chain reaction and western blotting. Cell viability was assessed using a Cell Counting kit‑8, and apoptosis levels and cell cycle distribution were assessed by flow cytometry. Invasiveness was assessed using Transwell chambers. Transfection of the A549 cells with eIF4E targeting shRNA reduced the mRNA and protein expression levels of eIF4E by >70% 48 and 72 h following transfection, and eIF4E targeting shRNA‑transfected cells were significantly less viable compared with the cells transfected with scrambled shRNA. The rate of apoptosis was also significantly increased, significantly more cells were in the G0/G1 phase and fewer were in the S phase, indicating cell cycle arrest. The fraction of transfected cells migrating across Transwell inserts were also reduced. In conclusion, inhibition of eIF4E suppressed cell growth and invasion, induced apoptosis and cell cycle arrest, suggesting that eIF4E may be a potential therapeutic target in lung adenocarcinoma.

  1. Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells.

    PubMed

    Canonico, B; Campana, R; Luchetti, F; Arcangeletti, M; Betti, M; Cesarini, E; Ciacci, C; Vittoria, E; Galli, L; Papa, S; Baffone, W

    2014-08-01

    Campylobacter jejuni is the most common cause of bacterial gastroenteritis in humans. The synthesis of cytolethal distending toxin appears essential in the infection process. In this work we evaluated the sequence of lethal events in HeLa cells exposed to cell lysates of two distinct strains, C. jejuni ATCC 33291 and C. jejuni ISS3. C. jejuni cell lysates (CCLys) were added to HeLa cell monolayers which were analysed to detect DNA content, death features, bcl-2 and p53 status, mitochondria/lysosomes network and finally, CD54 and CD59 alterations, compared to cell lysates of C. jejuni 11168H cdtA mutant. We found mitochondria and lysosomes differently targeted by these bacterial lysates. Death, consistent with apoptosis for C. jejuni ATCC 33291 lysate, occurred in a slow way (>48 h); concomitantly HeLa cells increase their endolysosomal compartment, as a consequence of toxin internalization besides a simultaneous and partial lysosomal destabilization. C. jejuni CCLys induces death in HeLa cells mainly via a caspase-dependent mechanism although a p53 lysosomal pathway (also caspase-independent) seems to appear in addition. In C. jejuni ISS3-treated cells, the p53-mediated oxidative degradation of mitochondrial components seems to be lost, inducing the deepest lysosomal alterations. Furthermore, CD59 considerably decreases, suggesting both a degradation or internalisation pathway. CCLys-treated HeLa cells increase CD54 expression on their surface, because of the action of lysate as its double feature of toxin and bacterial peptide. In conclusion, we revealed that C. jejuni CCLys-treated HeLa cells displayed different features, depending on the particular strain.

  2. Effect of a bispidinone analog on mitochondria‑mediated apoptosis in HeLa cells.

    PubMed

    Yi, Myeongjin; Parthiban, Paramasivam; Hwang, Jiyoung; Zhang, Xin; Jeong, Hyunjin; Park, Dong Ho; Kim, Dong-Kyoo

    2014-01-01

    The present study was carried out to investigate the effect of 2,4,6,8-tetraaryl-3,7-diazabicyclo[3.3.1]nonan-9-one (bispidinone) analogs on the in vitro growth of human cervical carcinoma (HeLa) cells. A series of 11 bispidinone analogs was synthesized with substituents, e.g., fluoro/methyl/ethyl/isopropyl/thiomethyl/methoxy groups, at various positions. These compounds were synthesized to identify which substituent and position induced the strongest cytotoxic effect in cancer cells. Among these synthetics, analog 9, which contains methoxy groups, had the most significant cytotoxic effect on HeLa cells, and its IC50 value was less than 13 µM. A WST-8 assay also showed that analog 9 inhibited the proliferation of HeLa cells. By using DNA content analysis, we found that analog 9 induced sub-G1 and G1 phase arrest in a time-dependent manner. A [3H]-thymidine incorporation assay suggested that analog 9 inhibited DNA replication in HeLa cells. On performing light microscopy, morphological changes such as cellular shrinkage and disruption, which are apoptotic features, were observed in HeLa cells. Annexin V/propidium iodide double staining and rhodamine-123 staining showed that analog 9 induced apoptosis and disrupted the intracellular mitochondrial membrane potential in HeLa cells. The western blot analysis results suggested that analog 9 induced mitochondria-mediated apoptosis. In addition, we have shown that analog 9 may play a role in the Fas signaling apoptotic pathway.

  3. Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2siRNA3 enhances the sensitivity to cisplatin

    SciTech Connect

    Yu Yan . E-mail: gyfyuyan@hotmail.com; Sun Ping . E-mail: sunny19750502@hotmail.com; Sun Lichun; Liu Guoyi; Chen Guohua . E-mail: olivebranch_82@hotmail.com; Shang Lihua . E-mail: leval1000@sina.com; Wu Hongbo . E-mail: whpwl@sina.com; Hu Jing; Li Yue; Mao Yinling; Sui Guangjie; Sun Xiwen

    2006-01-06

    To investigate the biological effect of mdm2 in human colorectal adenocarcinoma LoVo cells, three mdm2siRNA constructions were recombinated and transient transfected into human colorectal adenocarcinoma LoVo cells with low differentiation character in vitro. The results showed that mdm2siRNA3 reduced mRNA level of mdm2 and protein level of mdm2, leading to proliferation inhibition on LoVo cells, and reduced tumor growth in nude mice. It was found that depletion of MDM2 in this pattern promoted apoptosis of LoVo cells and Cisplatin (DDP) treated in the mdm2siRNA3 transfected cell population would result in a substantial decrease by MTT colorimetry. Decreasing the MDM2 protein level in LoVo cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, which indicated that mdm2 gene played a definite role in the development and aggressiveness of human colon carcinoma. It also could be a therapeutic target in colorectal carcinoma. The synergistic activation of RNAi and cell toxicity agents indicated that the combination of chemotherapy and gene therapy will be a promising approach in the future.

  4. Establishment of HeLa Cell Mutants Deficient in Sphingolipid-Related Genes Using TALENs

    PubMed Central

    Yamaji, Toshiyuki; Hanada, Kentaro

    2014-01-01

    Sphingolipids are essential components in eukaryotes and have various cellular functions. Recent developments in genome-editing technologies have facilitated gene disruption in various organisms and cell lines. We here show the disruption of various sphingolipid metabolic genes in human cervical carcinoma HeLa cells by using transcription activator-like effector nucleases (TALENs). A TALEN pair targeting the human CERT gene (alternative name COL4A3BP) encoding a ceramide transport protein induced a loss-of-function phenotype in more than 60% of HeLa cells even though the cell line has a pseudo-triploid karyotype. We have isolated several loss-of-function mutant clones for CERT, UGCG (encoding glucosylceramide synthase), and B4GalT5 (encoding the major lactosylceramide synthase), and also a CERT/UGCG double-deficient clone. Characterization of these clones supported previous proposals that CERT primarily contributes to the synthesis of SM but not GlcCer, and that B4GalT5 is the major LacCer synthase. These newly established sphingolipid-deficient HeLa cell mutants together with our previously established stable transfectants provide a ‘sphingolipid-modified HeLa cell panel,’ which will be useful to elucidate the functions of various sphingolipid species against essentially the same genomic background. PMID:24498430

  5. A Novel Metabolite from Aspergillus ochraceus JGI 25 Showing Cytotoxicity to Hela Cells

    PubMed Central

    Nadumane, Varalakshmi K.; Venkat, Prerana; Pal, Anamika; Dharod, H.; Shukla, Megha; Prashanthi, K.

    2013-01-01

    This study aims at the isolation of filamentous fungi, extraction of metabolites, and evaluation of the cytotoxic properties on HeLa cells and normal human lymphocytes. We isolated fungi from the soil by serial dilution method. One of the isolates was chosen and identified as Aspergillus ochraceus Wilhelm (Trichocomaceae) by standard techniques. The metabolites were extracted using methanol. Different concentrations of the extract were evaluated for their potential anticancer activity on HeLa cells by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide assay and the safety of the extract was checked on normal human lymphocytes. The extract was purified by chromatographic techniques like thin-layer chromatography and high-performance liquid chromatography, and subjected to mass spectrometric analysis. The extract showed significant cytotoxic potential on HeLa cells at low concentrations with a half maximal inhibitory concentration value of <50 μg/ml. The extract gave 10 fractions by thin layer chromatography, and fraction B had higher toxicity than the rest. This fraction gave a single peak by high-performance liquid chromatography and had a mass-to-charge ratio of 905.65, which did not match any of the earlier known fungal metabolites or metabolites from other strains of A. ochraceus. The metabolite from A. ochraceus is alkaloid in nature, cytotoxic to HeLa cells, and appears to be a novel with anticancer potentials, which could be explored further for characterization of the active component. PMID:24403650

  6. [Low grade sinonasal adenocarcinoma].

    PubMed

    Sayilgan, Ayşe Tülay; Kamali, Gülçin; Ozcan, Deniz; Emre, Funda; Hatıpoğlu, Ayşe

    2012-01-01

    Sinonasal adenocarcinoma is a rare neoplasm which is classified as 'intestinal' or 'nonintestinal' type, depending on its resemblance to gastrointestinal mucosa. These tumors are associated with occupational and environmental carcinogens. In this study, a fifty-year-old oil-painter male patient with a low-grade nonintestinal type sinonasal adenocarcinoma originating from the left middle concha and ethmoid sinus is presented. Microscopical examination revealed many infiltrative glandular structures, most of which were cystically dilated and some of which were smaller in diameter, arranged back to back in loose fibrous stroma as well as intraglandular papillary and micropapillary structures forming complex branches or a cribriform pattern. The glands were lined by epithelial cells that were faintly eosinophilic and relatively abundant cubical/ cylinderical cytoplasms and mildly pleomorphic round/oval nuclei, with rare mitotic figures. Intraluminal and focally intracytoplasmic mucin was demonstrated with Alcian Blue, mucicarmin and PAS stains. Immunohistochemically, tumor cells were strongly and diffusely positive with CK7; focally and weakly positive with CK20 and negative with CDX2 in accordance with the nonintestinal type. S-100, Actin and p63, applied for investigating the myoepithelial and salivary glandular origins, were all negative. Prognostic markers, TTF-1 and p53 were negative; while the Ki-67 index was 2%. The fact that intestinal type sinonasal adenocarcinomas are generally high grade, while nonintestinal tumors are histologically low grade makes this morphological and immunohistochemical-based classification valuable in predicting the prognosis of the disease. In addition to the morphological and immunohistochemical findings, clinical information stands out in the differentiation of the tumor from benign or malignant primary lesions or metastatic adenocarcinoma.

  7. TFAP2B overexpression contributes to tumor growth and a poor prognosis of human lung adenocarcinoma through modulation of ERK and VEGF/PEDF signaling

    PubMed Central

    2014-01-01

    Background TFAP2B is a member of the AP2 transcription factor family, which orchestrates a variety of cell processes. However, the roles of TFAP2B in regulating carcinogenesis remain largely unknown. Here, we investigated the regulatory effects of TFAP2B on lung adenocarcinomas growth and identified the underlying mechanisms of actions in non-small cell lung cancer (NSCLC) cells. Methods We first examined the expression of TFAP2B in lung cancer cell lines and tumor tissues. We also analyzed the prognostic predicting value of TFAP2B in lung adenocarcinomas. Then we investigated the molecular mechanisms by which TFAP2B knockdown or overexpression regulated lung cancer cell growth, angiogenesis and apoptosis, and further confirmed the role of TFAP2B in tumor growth in a lung cancer xenograft mouse model. Results TFAP2B was highly expressed in NSCLC cell lines and tumor tissues. Strong TFAP2B expression showed a positive correlation with the poor prognoses of patients with lung adenocarcinomas (P < 0.001). TFAP2B knockdown by siRNA significantly inhibited cell growth and induced apoptosis in NSCLC cells in vitro and in a lung cancer subcutaneous xenograft model, whereas TFAP2B overexpression promoted cell growth. The observed regulation of cell growth was accompanied by the TFAP2B-mediated modulation of the ERK/p38, caspase/cytochrome-c and VEGF/PEDF-dependent signaling pathways in NSCLC cells. Conclusions These results indicate that TFAP2B plays a critical role in regulating lung adenocarcinomas growth and could serve as a promising therapeutic target for lung cancer treatment. PMID:24766673

  8. Single-walled carbon nanotube interactions with HeLa cells

    PubMed Central

    Yehia, Hadi N; Draper, Rockford K; Mikoryak, Carole; Walker, Erin Kate; Bajaj, Pooja; Musselman, Inga H; Daigrepont, Meredith C; Dieckmann, Gregg R; Pantano, Paul

    2007-01-01

    This work concerns exposing cultured human epithelial-like HeLa cells to single-walled carbon nanotubes (SWNTs) dispersed in cell culture media supplemented with serum. First, the as-received CoMoCAT SWNT-containing powder was characterized using scanning electron microscopy and thermal gravimetric analyses. Characterizations of the purified dispersions, termed DM-SWNTs, involved atomic force microscopy, inductively coupled plasma – mass spectrometry, and absorption and Raman spectroscopies. Confocal microRaman spectroscopy was used to demonstrate that DM-SWNTs were taken up by HeLa cells in a time- and temperature-dependent fashion. Transmission electron microscopy revealed SWNT-like material in intracellular vacuoles. The morphologies and growth rates of HeLa cells exposed to DM-SWNTs were statistically similar to control cells over the course of 4 d. Finally, flow cytometry was used to show that the fluorescence from MitoSOX™ Red, a selective indicator of superoxide in mitochondria, was statistically similar in both control cells and cells incubated in DM-SWNTs. The combined results indicate that under our sample preparation protocols and assay conditions, CoMoCAT DM-SWNT dispersions are not inherently cytotoxic to HeLa cells. We conclude with recommendations for improving the accuracy and comparability of carbon nanotube (CNT) cytotoxicity reports. PMID:17956629

  9. Angiogenesis in cervical cancer is mediated by HeLa metabolites through endothelial cell tissue kallikrein.

    PubMed

    Naidoo, Strinivasen; Raidoo, Deshandra Munsamy

    2009-08-01

    High vascularity correlates with poor clinical outcome in cancer of the uterine cervix. We investigated whether human cervical cancer cell (HeLa) metabolites influenced endothelial cell proliferation through the serine protease, tissue kallikrein. The angiogenic potential of tissue kallikrein is proposed due to its proteolytic, mitogenic and invasive properties. Under pre-defined conditions, we examined the regulation of tissue kallikrein simultaneously in both endothelial and HeLa cells using immunochemistry, ELISA, cell proliferation assays and in situ RT-PCR. In an endothelial-cervical carcinoma conditioned-medium model, HeLa metabolites caused a dramatic decrease in endothelial cellular tissue kallikrein and a concomitant proliferation of endothelial cells. ELISA on the conditioned media showed a dose-dependent increase of tissue kallikrein, while in situ RT-PCR demonstrated no change in tissue kallikrein mRNA in both endothelial and HeLa cells when challenged with each other's metabolites. This demonstration of the ability of cervical cancer to simultaneously manipulate both tissue kallikrein processing within endothelial cells and angiogenesis is novel. Should this occur in vivo, the tissue kallikrein released from the endothelial cells into the microenvironment may simultaneously degrade the matrix and elicit a mitogenic effect by promoting angiogenesis. Pre-treatment with TK inhibitors and/or anti-angiogenic therapies may prove to benefit future cervical cancer patients. PMID:19578768

  10. Modification of some biological properties of HeLa cells containing adeno-associated virus DNA integrated into chromosome 17.

    PubMed Central

    Walz, C; Schlehofer, J R

    1992-01-01

    Parvoviruses are known to interfere with cellular transformation and carcinogenesis. Since infecting adeno-associated virus (AAV) frequently integrates its DNA into the cellular genome, we analyzed whether this integration influences the transformed phenotype of the human tumor cell line HeLa. Analysis of three independent HeLa cell clones with integrated AAV DNA (HA-3x, HA-16, and HA-28) revealed the following phenotypic changes of these cells: (i) reduced growth rate, (ii) increased serum requirement, (iii) reduced capacity for colony formation in soft agar, (iv) reduced cloning efficiency on plastic, (v) elevated sensitivity to genotoxic agents (N-methyl-N'-nitro-N-nitrosoguanidine, 7,12-dimethylbenz[a]anthracene, human tumor necrosis factor alpha, UV irradiation [256 nm], and heat [42 degrees C]), and (vi) reduced sensitivity to the cytolytic effect of parvovirus H-1. Reduced growth rate and enhanced sensitivity to gamma irradiation were also observed in vivo when tumors from AAV DNA-containing HeLa cells were transplanted into nude mice. This alteration of the biological properties of HeLa cells was independent of the number of AAV genomes integrated, the physical structure of integrated AAV DNA, and the transcription of AAV genes. Integration of AAV DNA was found to occur preferentially on the long arm of chromosome 17 in the three HeLa cell clones analyzed. These findings demonstrate that genomic integration of AAV DNA can alter the biological properties of human tumor cells. Images PMID:1313913

  11. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  12. Oxidative modification induced by photodynamic therapy with Photofrin®II and 2-methoxyestradiol in human ovarian clear carcinoma (OvBH-1) and human breast adenocarcinoma (MCF-7) cells.

    PubMed

    Saczko, Jolanta; Choromańska, Anna; Rembiałkowska, Nina; Dubińska-Magiera, Magda; Bednarz-Misa, Iwona; Bar, Julia; Marcinkowska, Anna; Kulbacka, Julita

    2015-04-01

    Ovarian cancer is among the most lethal cancers in women. The successful anticancer treatment depends on the effectiveness of cytotoxic effect of applied therapeutic procedures either alone or in combination with other treatments. Photodynamic therapy (PDT) is a relatively new method of anticancer therapy. Its dominant mechanism of action is the over-production of reactive oxygen species induced by oxidative stress in malignant cells, which attack lipid membranes, proteins and nucleic acids. One of the important mechanisms is induction of unfolded protein response, ubiquitin-proteasome pathway of protein degradation. The aim of this study was to evaluate the cytotoxic effect of various protective enzymes in ovarian carcinoma clear cell line in comparison to the model breast cell line after photodynamic reaction and photodynamic reaction with 2-methoxyestradiol (2-Me). Human malignant ovarian cell line (OvBH-1) was used and human breast adenocarcinoma cells (MCF-7) were used as a control. Photodynamic reaction (PDR) with Photofrin(®)II and Ph(®)II with 2-Me was performed. The expression of protective proteins by immunocytochemistry (HSP70 and iNOS) and western blot (Hsp27 and Hsp70) methods was evaluated directly, 3 and 6 h after PDR. The changes in cells' cytoskeleton were evaluated using immunofluorescence by confocal microscopy. The expression of iNOS was observed for both experiments with differential intensity and quantity. A higher expression of Hsp70 in MCF-7 cells was observed than in OvBh-1 cells. The reorganization of cytoskeleton and nucleus was observed after 3 and 6 h after exposition to light.

  13. Pancreatic adenocarcinoma: Outstanding problems

    PubMed Central

    Zakharova, Olga P; Karmazanovsky, Grigory G; Egorov, Viacheslav I

    2012-01-01

    Pancreatic adenocarcinoma remains the fourth leading cause of cancer-related death and is one of the most aggressive malignant tumors with an overall 5-year survival rate of less than 4%. Surgical resection remains the only potentially curative treatment but is only possible for 15%-20% of patients with pancreatic adenocarcinoma. About 40% of patients have locally advanced nonresectable disease. In the past, determination of pancreatic cancer resectability was made at surgical exploration. The development of modern imaging techniques has allowed preoperative staging of patients. Institutions disagree about the criteria used to classify patients. Vascular invasion in pancreatic cancers plays a very important role in determining treatment and prognosis. There is no evidence-based consensus on the optimal preoperative imaging assessment of patients with suspected pancreatic cancer and a unified definition of borderline resectable pancreatic cancer is also lacking. Thus, there is much room for improvement in all aspects of treatment for pancreatic cancer. Multi-detector computed tomography has been widely accepted as the imaging technique of choice for diagnosing and staging pancreatic cancer. With improved surgical techniques and advanced perioperative management, vascular resection and reconstruction are performed more frequently; patients thought once to be unresectable are undergoing radical surgery. However, when attempting heroic surgery, a realistic approach concerning the patient’s age and health status, probability of recovery after surgery, perioperative morbidity and mortality and life quality after tumor resection is necessary. PMID:22655124

  14. Glyco-centric lectin magnetic bead array (LeMBA) - proteomics dataset of human serum samples from healthy, Barrett׳s esophagus and esophageal adenocarcinoma individuals.

    PubMed

    Shah, Alok K; Lê Cao, Kim-Anh; Choi, Eunju; Chen, David; Gautier, Benoît; Nancarrow, Derek; Whiteman, David C; Baker, Peter R; Clauser, Karl R; Chalkley, Robert J; Saunders, Nicholas A; Barbour, Andrew P; Joshi, Virendra; Hill, Michelle M

    2016-06-01

    This data article describes serum glycoprotein biomarker discovery and qualification datasets generated using lectin magnetic bead array (LeMBA) - mass spectrometry techniques, "Serum glycoprotein biomarker discovery and qualification pipeline reveals novel diagnostic biomarker candidates for esophageal adenocarcinoma" [1]. Serum samples collected from healthy, metaplastic Barrett׳s esophagus (BE) and esophageal adenocarcinoma (EAC) individuals were profiled for glycoprotein subsets via differential lectin binding. The biomarker discovery proteomics dataset consisting of 20 individual lectin pull-downs for 29 serum samples with a spiked-in internal standard chicken ovalbumin protein has been deposited in the PRIDE partner repository of the ProteomeXchange Consortium with the data set identifier PRIDE: PXD002442. Annotated MS/MS spectra for the peptide identifications can be viewed using MS-Viewer (〈http://prospector2.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msviewer〉) using search key "jn7qafftux". The qualification dataset contained 6-lectin pulldown-coupled multiple reaction monitoring-mass spectrometry (MRM-MS) data for 41 protein candidates, from 60 serum samples. This dataset is available as a supplemental files with the original publication [1].

  15. Glyco-centric lectin magnetic bead array (LeMBA) - proteomics dataset of human serum samples from healthy, Barrett׳s esophagus and esophageal adenocarcinoma individuals.

    PubMed

    Shah, Alok K; Lê Cao, Kim-Anh; Choi, Eunju; Chen, David; Gautier, Benoît; Nancarrow, Derek; Whiteman, David C; Baker, Peter R; Clauser, Karl R; Chalkley, Robert J; Saunders, Nicholas A; Barbour, Andrew P; Joshi, Virendra; Hill, Michelle M

    2016-06-01

    This data article describes serum glycoprotein biomarker discovery and qualification datasets generated using lectin magnetic bead array (LeMBA) - mass spectrometry techniques, "Serum glycoprotein biomarker discovery and qualification pipeline reveals novel diagnostic biomarker candidates for esophageal adenocarcinoma" [1]. Serum samples collected from healthy, metaplastic Barrett׳s esophagus (BE) and esophageal adenocarcinoma (EAC) individuals were profiled for glycoprotein subsets via differential lectin binding. The biomarker discovery proteomics dataset consisting of 20 individual lectin pull-downs for 29 serum samples with a spiked-in internal standard chicken ovalbumin protein has been deposited in the PRIDE partner repository of the ProteomeXchange Consortium with the data set identifier PRIDE: PXD002442. Annotated MS/MS spectra for the peptide identifications can be viewed using MS-Viewer (〈http://prospector2.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msviewer〉) using search key "jn7qafftux". The qualification dataset contained 6-lectin pulldown-coupled multiple reaction monitoring-mass spectrometry (MRM-MS) data for 41 protein candidates, from 60 serum samples. This dataset is available as a supplemental files with the original publication [1]. PMID:27408916

  16. Coxsackievirus B5 induced apoptosis of HeLa cells: Effects on p53 and SUMO

    SciTech Connect

    Gomes, Rogerio; Guerra-Sa, Renata; Arruda, Eurico

    2010-01-20

    Coxsackievirus B5 (CVB5), a human enterovirus of the family Picornaviridae, is a frequent cause of acute and chronic human diseases. The pathogenesis of enteroviral infections is not completely understood, and the fate of the CVB5-infected cell has a pivotal role in this process. We have investigated the CVB5-induced apoptosis of HeLa cells and found that it happens by the intrinsic pathway by a mechanism dependent on the ubiquitin-proteasome system, associated with nuclear aggregation of p53. Striking redistribution of both SUMO and UBC9 was noted at 4 h post-infection, simultaneously with a reduction in the levels of the ubiquitin-ligase HDM2. Taken together, these results suggest that CVB5 infection of HeLa cells elicit the intrinsic pathway of apoptosis by MDM2 degradation and p53 activation, destabilizing protein sumoylation, by a mechanism that is dependent on a functional ubiquitin-proteasome system.

  17. Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells

    NASA Astrophysics Data System (ADS)

    Dhas, T. Stalin; Kumar, V. Ganesh; Karthick, V.; Govindaraju, K.; Shankara Narayana, T.

    2014-12-01

    In this investigation, biological synthesis of gold nanoparticles (AuNPs) using Sargassum swartzii and its cytotoxicity against human cervical carcinoma (HeLa) cells is reported. The biological synthesis involved the reduction of chloroauric acid led to the formation of AuNPs within 5 min at 60 °C and the formation of AuNPs was confirmed using UV-vis spectrophotometer. The AuNPs were stable; spherical in shape with well-defined dimensions, and the average size of the particle is 35 nm. A zeta potential value of -27.6 mV revealed synthesized AuNPs were highly stable. The synthesized AuNPs exhibited a dose-dependent cytotoxicity against human cervical carcinoma (HeLa) cells. Furthermore, induction of apoptosis was measured by DAPI (4‧,6-Diamidino-2-phenylindole dihydrochloride) staining.

  18. PAX8 expression in uterine adenocarcinomas and mesonephric proliferations.

    PubMed

    Yemelyanova, Anna; Gown, Allen M; Wu, Lee-Shu-Fune; Holmes, Brittany J; Ronnett, Brigitte M; Vang, Russell

    2014-09-01

    PAX8 is a useful immunohistochemical marker for the diagnosis of gynecologic tract malignancies. Several studies have described PAX8 expression in a wide variety of epithelial neoplasms, including ovarian and endometrial carcinomas. The goal of this study was to evaluate PAX8 expression in various types of uterine adenocarcinomas and mesonephric proliferations. Ninety-four cases of uterine adenocarcinomas (52 endometrial endometrioid carcinomas, 21 endometrial serous carcinomas, and 21 human papillomavirus-related endocervical carcinomas), 11 cases of benign mesonephric proliferations (remnants/hyperplasia), and normal endometrial and endocervical glandular epithelium in 58 cases were studied. Immunohistochemical staining was performed with the rabbit polyclonal anti-PAX8 antibody. All adenocarcinoma groups demonstrated a high frequency of PAX8 expression but with relatively high variability in the extent of staining among different subtypes. Both serous carcinomas and endometrioid carcinomas were positive in most cases (95% and 96%, respectively), but serous carcinomas displayed a significantly higher level of expression (immunohistochemical composite scores based on combined extent and intensity of expression) compared with endometrioid carcinomas (mean immunohistochemical composite scores: 8.3 vs. 5.3, respectively; P<0.006). Endocervical adenocarcinomas also had a high frequency of PAX8 expression (86% of cases), but the level of expression was significantly less than that of endometrial adenocarcinomas (mean immunohistochemical composite scores: 2.9 vs. 5.3-8.3, respectively; P<0.004). Among benign glandular epithelia, normal endocervical glands exhibited a significantly lower level of expression compared with either normal endometrial glands or benign mesonephric proliferations (mean immunohistochemical composite scores: 2.6 vs. 6.6-11.2, respectively; P<0.0006). We conclude that PAX8 is expressed in the vast majority of uterine adenocarcinomas, including

  19. The role of additional chemotherapy with oral UFT in intravenous combination chemotherapy with cisplatin and 5-fluorouracil for human gastric cancer xenograft lines of well- and poorly- differentiated adenocarcinomas transplanted in nude mice.

    PubMed

    Tseng, C C; Nio, Y; Tsubono, M; Kawabata, K; Masai, Y; Hayashi, H; Fukumoto, M; Tobe, T

    1992-01-01

    In order to assess the role of maintenance chemotherapy with the oral anticancer agent UFT, a mixture of uracil and futraful, in the intensive intravenous chemotherapy for gastric cancer, nude mice transplanted with human gastric cancer xenografts were treated with intravenous 5-fluorouracil (5-FU) and cisplatin (CDDP), alone or in combination, with or without the oral anticancer agent UFT. UFT was given at its maximal clinical dose of 10 mg/kg of body weight daily for 2 weeks, while 5-FU and/or CDDP was intravenously administered at the dose of 20 mg/kg and 1.8 mg/kg of body weight respectively once a week, alone or in combination, for two weeks. The results revealed that 5-FU or CDDP alone were ineffective for both GC-YN, a well differentiated adenocarcinoma line, and GC-SF, a poorly differentiated adenocarcinoma line; however, UFT was effective for GC-SF. In combinations, only the three-agent combination 5-FU + CDDP + UFT (FPU) was effective for GC-YN; however, all the two-agent combinations and FPU were effective for GC-SF. FPU significantly suppressed the growth of GC-YN much more than all the other treatment groups. In contrast, although all combinations as well as UFT alone were effective for GC-SF, there was no significant difference among these effective groups. Moreover, no side effects were noted in combined use of UFT. This study suggests that oral UFT as a maintenance treatment may be beneficial in the combination chemotherapy for human gastric cancer.

  20. Inhibitory Effects and Underlying Mechanism of 7-Hydroxyflavone Phosphate Ester in HeLa Cells

    PubMed Central

    Liu, Liguo; Chen, Xiaolan; Yang, Fang; Jin, Qi

    2012-01-01

    Chrysin and its phosphate ester have previously been shown to inhibit cell proliferation and induce apoptosis in Hela cells; however, the underlying mechanism remains to be characterized. In the present study, we therefore synthesized diethyl flavon-7-yl phosphate (FP, C19H19O6P) by a simplified Atheron-Todd reaction, and explored its anti-tumor characteristics and mechanisms. Cell proliferation, cell cycle progression and apoptosis were measured by MTS, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling techniques, respectively in human cervical cancer HeLa cells treated with 7-hydroxyflavone (HF) and FP. p21, proliferating cell nuclear antigen (PCNA) and cAMP levels in Hela cells were analyzed by western blot and radioimmunoassay. Both HF and FP inhibited proliferation and induced apoptosis in HeLa cells via induction of PCNA/p21 expression, cleaved caspase-3/poly (ADP-ribose) polymerase (PARP)-1, elevation of cAMP levels, and cell cycle arrest with accumulation of cells in the G0/G1 fraction. The effects of FP were more potent than those of HF. The interactions of FP with Ca2+-calmodulin (CaM) and Ca2+-CaM-phosphodiesterase (PDE)1 were explored by electrospray ionization-mass spectrometry and fluorescence spectra. FP, but not HF, formed non-covalent complexes with Ca2+-CaM-PDE1, indicating that FP is an inhibitor of PDE1, and resulting in elevated cellular cAMP levels. It is possible that the elevated cAMP levels inhibit growth and induce apoptosis in Hela cells through induction of p21 and cleaved caspase-3/PARP-1 expression, and causing down-regulation of PCNA and cell cycle arrest with accumulation of cells in the G0/G1 and G2/M fractions. In conclusion, FP was shown to be a Ca2+-CaM-PDE inhibitor, which might account for its underlying anti-cancer mechanism in HeLa cells. These observations clearly demonstrate the special roles of phosphorylated flavonoids in biological processes, and suggest that FP might represent a potential

  1. Specific RNA-cleaving activities from HeLa cells.

    PubMed Central

    Ferrari, S; Yehle, C O; Robertson, H D; Dickson, E

    1980-01-01

    Subcellular fractionation of HeLa cells was carried out under gentle conditions to isolate enzymes that cleave RNA precursors in a specific manner. Four separate activities--cleavage of HeLa cell heterogeneous nuclear RNA, the HeLa cell 45S rRNA precursor, RNA . DNA hybrids (RNase H), and the Escherichia coli tRNATyr precursor (RNase P)--were revealed by these studies. The specificity and limited nature of these cleavages suggest that they are due to eukaryotic RNA-processing enzymes. The virtual absence of random nucleases from these enzymes was demonstrated by their inability to cleave the 8000-base early mRNA precursor of bacteriophage T7, E. coli 30S rRNA precursor, or HeLa cytoplasmic poly(A)-containing RNA. Images PMID:6930639

  2. Expression and diagnostic value of HE4 in pancreatic adenocarcinoma.

    PubMed

    Huang, Tianhe; Jiang, Shi-Wen; Qin, Liangyi; Senkowski, Christopher; Lyle, Christian; Terry, Karen; Brower, Steven; Chen, Haibin; Glasgow, Wayne; Wei, Yongchang; Li, Jinping

    2015-01-29

    Human epididymis protein 4 (HE4) is a recognized biomarker in ovarian and endometrial cancer and over-expressed in pancreatic adenocarcinoma. The diagnostic value of HE4 in pancreatic adenocarcinoma remains unknown. Here we elucidate mRNA, protein and serum level of HE4 in pancreatic adenocarcinoma. HE4 mRNA level in tumor adjacent tissues and pancreatic adenocarcinoma tissues were tested by real time-PCR. Tissue microarray containing normal, adenocarcinoma, and adjacent pancreatic tissue was tested by immunohistochemistry (IHC). Serum level of HE4, carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 15-3 (CA15-3) and carbohydrate antigen 125 (CA125) were detected by ELISA assay in control and tumor patients. Further we compared the sensitivity and specificity of determining HE4, CA19-9, CA15-3, and CA125 for diagnosis of pancreatic adenocarcinoma and assessed the complementary diagnostic value of HE4, CA19-9, CA15-3 and CA125. Real time PCR showed significantly increased HE4 mRNA level in pancreatic adenocarcinoma compared with control. Result of IHC showed that HE4 significantly higher expressed in the human pancreatic carcinoma tissues than in both normal and adjacent non-tumorous pancreatic tissues, and the staining intensity is inversely correlated with the clinical stage. HE4 was highly expressed in early stage of pancreatic adenocarcinoma. Serum HE4 level is higher in cases with pancreatic adenocarcinoma than in the controls. Serum HE4 levels could research to a sensitivity of 45.83% and specificity of 93.75% when the Cutoff was set at 4.59 ng/mL. The Combined HE4 and CA19-9 increased the sensitivity to 83.33%; and interestingly, the combination of HE4 with CA15-3 led to the most powerful sensitivity of 87.5%. Combined with CA19-9 and CA15-3, HE4 could be a potential biomarker to improve the diagnostic power for pancreatic adenocarcinoma.

  3. Molecular crosstalk between apoptosis and autophagy induced by a novel 2-methoxyestradiol analogue in cervical adenocarcinoma cells

    PubMed Central

    2013-01-01

    Background 2-Methoxyestradiol has been shown to induce both autophagy and apoptosis in various carcinogenic cell lines. Although a promising anti-cancer agent, it has poor bioavailability and rapid in vivo metabolism which decreases its efficiency. In order to improve 2-methoxyestradiol’s anti-proliferative properties, a novel 2-methoxyestradiol analogue, 2-ethyl-3-O-sulphamoyl-estra-1,3,5 (10)16-tetraene (ESE-16), was previously in silico-designed in our laboratory. This study investigated ESE-16 for its anti-proliferative potential on a cervical adenocarcinoma cell (HeLa) cell line. Additionally, the possible intracellular crosstalk mechanisms between the two types of cell death were investigated. Methods and results HeLa cells exposed to 0.5 μM ESE-16 for 24 hours showed morphological evidence of both apoptotic and autophagic death pathways as assessed by polarization-optical transmitted light differential interference contrast microscopy, fluorescent microscopy and transmission electron microscopy. Flow cytometric cyclin B1 quantification revealed induction of programmed cell death after halting cell cycle progression in metaphase. Confocal microscopy demonstrated that ESE-16 caused microtubule fragmentation. Flow cytometric analysis of cell cycle progression and phosphatidylserine flip determination confirmed induction of apoptosis. Moreover, an increase in aggresome formation and microtubule-associated protein light chain, LC3, was demonstrated indicative of autophagy. Both caspase 8 and 3 were upregulated in a spectrophotometric analysis, indicating the involvement of the extrinsic pathway of apoptotic induction. Conclusions We conclude that the novel in silico-designed compound, ESE-16, exerts its anti-proliferative effect on the tumorigenic human epithelial cervical (HeLa) cells by sequentially targeting microtubule integrity, resulting in a metaphase block, causing induction of both autophagic and apoptotic cell death via a crosstalk mechanism that

  4. Neoadjuvant therapy for gastroesophageal adenocarcinoma

    PubMed Central

    Samalin, Emmanuelle; Ychou, Marc

    2016-01-01

    Gastric and esophageal adenocarcinomas are one of the main causes of cancer-related death worldwide. While the incidence of gastric adenocarcinoma is decreasing, the incidence of gastroesophageal junction adenocarcinoma is rising rapidly in Western countries. Considering that surgical resection is currently the major curative treatment, and that the 5-year survival rate highly depends on the pTNM stage at diagnosis, gastroesophageal adenocarcinoma management is very challenging for oncologists. Several treatment strategies are being evaluated, and among them systemic chemotherapy, to decrease recurrences and improve overall survival. The MAGIC and FNCLCC-FFCD trials showed a survival benefit of perioperative chemotherapy in patients with operable gastric and lower esophageal cancer, and these results had an impact on the European clinical practice. New strategies, including induction chemotherapy followed by preoperative chemoradiotherapy, targeted therapies in combination with perioperative chemotherapy and the new cytotoxic regimens, are currently assessed to improve current standards and help developing patient-tailored therapeutic interventions. PMID:27298768

  5. Adenocarcinoma of the cervical stump

    SciTech Connect

    Goodman, H.M.; Niloff, J.M.; Buttlar, C.A.; Welch, W.R.; Marck, A.; Feuer, E.J.; Lahman, E.A.; Jenison, E.; Knapp, R.C. )

    1989-11-01

    Sixteen women with adenocarcinoma of the cervical stump were treated over a 15-year period. The median survivals of 40 months for stage IB and 17 months for stages II and III were significantly worse compared with those for patients treated for cervical adenocarcinoma of the intact uterus or squamous carcinoma of the cervical stump. The poor results were due to both local and distant failure. Implications regarding tumor radiosensitivity and adjuvant therapy in these high-risk patients are discussed.

  6. Adenocarcinoma arising in a gastrocystoplasty

    PubMed Central

    Balachandra, B; Swanson, P E; Upton, M P; Yeh, M M

    2007-01-01

    Gastrocystoplasty is a form of surgical bladder augmentation or neobladder used to restore bladder capacity and compliance in children and in patients with neurogenic bladder. Other forms of bladder augmentation include ileocystoplasty and colocystoplasty. Reported complications of gastrocystoplasty include post‐operative bleeding, haematuria, stricture, metabolic alkalosis and rupture of the gastric segment. There are reports of adenocarcinomas arising in the setting of ileocystoplasty and colocystoplasty. However, the first case of adenocarcinoma arising in the setting of a gastrocystoplasty is reported. PMID:17213351

  7. Adenocarcinoma arising in a gastrocystoplasty.

    PubMed

    Balachandra, B; Swanson, P E; Upton, M P; Yeh, M M

    2007-01-01

    Gastrocystoplasty is a form of surgical bladder augmentation or neobladder used to restore bladder capacity and compliance in children and in patients with neurogenic bladder. Other forms of bladder augmentation include ileocystoplasty and colocystoplasty. Reported complications of gastrocystoplasty include post-operative bleeding, haematuria, stricture, metabolic alkalosis and rupture of the gastric segment. There are reports of adenocarcinomas arising in the setting of ileocystoplasty and colocystoplasty. However, the first case of adenocarcinoma arising in the setting of a gastrocystoplasty is reported.

  8. RNF4-mediated SUMOylation is essential for NDRG2 suppression of lung adenocarcinoma

    PubMed Central

    Tantai, Jicheng; Pan, Xufeng; Hu, Dingzhong

    2016-01-01

    N-Myc downstream-regulated gene 2 (NDRG2) protein is a tumor suppressor that inhibits cancer growth, metastasis and invasion. The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin through its selective recognition and ubiquitination of SUMO-modified proteins. We evaluated NDRG2 SUMOylation in lung adenocarcinoma cells and its underlying molecular mechanism. The results showed that NDRG2 is covalently modified by SUMO1 at K333, which suppressed anchorage independent adenocarcinoma cell proliferation and tumor growth. In human lung adenocarcinomas cells, RNF4 targeted NDRG2 to proteasomal degradation by stimulating its SUMOylation. Endogenous RNF4 expression was increased in human lung adenocarcinomas cells, and there was a concomitant upregulation of SUMO. These findings indicate that SUMOylation of NDRG2 is necessary for its tumor suppressor function in lung adenocarcinoma and that RNF4 increases the efficiency of this process. PMID:27072586

  9. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    PubMed

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8. PMID:27497983

  10. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    PubMed

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8.

  11. Alpha-chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-kappaB in human lung adenocarcinoma A549 cells.

    PubMed

    Shih, Yuan-Wei; Chen, Pin-Shern; Wu, Cheng-Hsun; Jeng, Ya-Fang; Wang, Chau-Jong

    2007-12-26

    Alpha-chaconine, isolated from Solanum tuberosum Linn., is a naturally occurring steroidal glycoalkaloid in potato sprouts. Some reports demonstrated that alpha-chaconine had various anticarcinogenic properties. The aim of this study is to investigate the inhibitory effect of alpha-chaconine on lung adenocarcinoma cell metastasis in vitro. We chose the highly metastatic A549 cells, which were treated with various concentrations of alpha-chaconine to clarify the potential of inhibiting A549 cells invasion and migration. Data showed that alpha-chaconine inhibited A549 cell invasion/migration according to wound healing assay and Boyden chamber assay. Our results also showed that alpha-chaconine could inhibit phosphorylation of c-Jun N-terminal kinase (JNK) and Akt, whereas it did not affected phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly decreased the nuclear level of nuclear factor kappa B (NF-kappaB) and the binding ability of NF-kappaB. These results suggested that alpha-chaconine inhibited A549 cell metastasis by a reduction of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities involving suppression of phosphoinositide 3-kinase/Akt/NF-kappaB (PI3K/Akt/NF-kappaB) signaling pathway. Inhibiting metastasis by alpha-chaconine might offer a pivotal mechanism for its effective chemotherapeutic action.

  12. Drug exposure in a metastatic human lung adenocarcinoma cell line gives rise to cells with differing adhesion, proliferation, and gene expression: Implications for cancer chemotherapy.

    PubMed

    Li, Huiling; He, Jianxing; Zhong, Nanshan; Hoffman, Robert M

    2015-09-01

    The Am1010 cell line was previously established from a metastatic deposit in an arm muscle from a patient with lung adenocarcinoma who had undergone four cycles of chemotherapy with cisplatin and taxol. Am1010 cells were labeled with red fluorescent protein or green fluorescent protein. A total of eight sublines were isolated following in vitro exposure to cisplatin or taxol. The sublines differed with regard to their adhesion and proliferation properties, with certain sublines exhibiting an increased proliferation rate and/or decreased surface adhesion. Gene expression assays demonstrated that tenascin C; cyclin D1; collagen, type 1, α2; integrin α1; related RAS viral (r‑ras) oncogene homolog 2; platelet‑derived growth factor C; and Src homolog 2 domain containing in the focal adhesion pathway, and intercellular adhesion molecule 1, F11 receptor, claudin 7 and cadherin 1 in the cell adhesion pathway, varied in expression among the sublines. The results of the present study suggested that drug exposure may alter the aggressiveness and metastatic potential of cancer cells, which has important implications for cancer chemotherapy.

  13. Absence of an essential regulatory influence of the adenovirus E1B 19-kilodalton protein on viral growth and early gene expression in human diploid WI38, HeLa, and A549 cells.

    PubMed Central

    Telling, G C; Perera, S; Szatkowski-Ozers, M; Williams, J

    1994-01-01

    Mutations in the gene encoding the adenovirus (Ad) early region 1B 19-kDa protein (the 19K gene) result in multiple phenotypic effects upon infection of permissive human cells. It has been reported, for example, that Ad type 2 (Ad2) and Ad5 with mutations in the 19K gene (19K-defective mutants) have a marked growth advantage compared with wild-type virus in human diploid WI38 cells (E. White, B. Faha, and B. Stillman, Mol. Cell. Biol. 6:3763-3773, 1986), and it was proposed that this host range phenotype stems from the large increase in viral early gene expression reported to occur in the mutant-infected cells. These observations gave rise to the hypothesis that the 19-kDa protein (the 19K protein) normally functions as a negative regulator of Ad early gene expression and growth. We have tested this hypothesis and find that Ad5 and Ad12 wild-type viruses grow as efficiently as their respective 19K-defective mutants, in1 and dl337 and pm700 and in700, in WI38 and other human cell types. Neither the accumulation of E1A cytoplasmic mRNAs nor the synthesis of E1A and other viral early proteins in these cells is altered as a result of these mutations in the 19K gene, and we conclude that the 19K protein does not play an essential role in regulating viral early gene expression or viral growth in human cells. Images PMID:8254769

  14. Effects of depsidones from Hypogymnia physodes on HeLa cell viability and growth.

    PubMed

    Stojanović, I Z; Najman, S; Jovanović, O; Petrović, G; Najdanović, J; Vasiljević, P; Smelcerović, A

    2014-01-01

    The anti-proliferative activitiy of Hypogymnia physodes methanol extracts (ME) and its main constituents, physodalic acid (P1), physodic acid (P2), and 3-hydroxy physodic acid (P3), was tested on human cancer HeLa cell lines. Three lichen depsidones, P1, P2 and P3, were isolated from H. physodes ME using column chromatography and their structures were determined by UV, ESI TOF MS, 1H and 13C NMR. The content of P1, P2 and P3 in ME was determined using reversed-phase highperformance liquid chromatography with photodiode array detection. P1-3 represented even 70 % of the studied extract. The HeLa cells were incubated during 24 and 72 h in the presence of ME and depsidones P1, P2 and P3, at concentrations of 10-1000 μg/ml. Compounds P2 and P3 showed higher activity than compound P1. Half maximal inhibitory concentrations (IC50, μg/ml) of P1, P2, P3 and ME for 24-h incubation were 964, 171, 97 and 254 μg/ml, respectively, while for 72-h incubation they were 283, 66, 63 and 68 μg/ml. As far as we know, this is the first report on the effect of H. physodes ME and their depsidones on HeLa cells. PMID:24785112

  15. Coordinate up-regulation of low-density lipoprotein receptor and cyclo-oxygenase-2 gene expression in human colorectal cells and in colorectal adenocarcinoma biopsies

    NASA Technical Reports Server (NTRS)

    Lum, D. F.; McQuaid, K. R.; Gilbertson, V. L.; Hughes-Fulford, M.

    1999-01-01

    Many colorectal cancers have high levels of cyclo-oxygenase 2 (COX-2), an enzyme that metabolizes the essential fatty acids into prostaglandins. Since the low-density lipoprotein receptor (LDLr) is involved in the uptake of essential fatty acids, we studied the effect of LDL on growth and gene regulation in colorectal cancer cells. DiFi cells grown in lipoprotein-deficient sera (LPDS) grew more slowly than cells with LDL. LDLr antibody caused significant inhibition of tumor cell growth but did not affect controls. In addition, LDL uptake did not change in the presence of excess LDL, suggesting that ldlr mRNA lacks normal feedback regulation in some colorectal cancers. Analysis of the ldlr mRNA showed that excess LDL in the medium did not cause down-regulation of the message even after 24 hr. The second portion of the study examined the mRNA expression of ldlr and its co-regulation with cox-2 in normal and tumor specimens from patients with colorectal adenocarcinomas. The ratio of tumor:paired normal mucosa of mRNA expression of ldlr and of cox-2 was measured in specimens taken during colonoscopy. ldlr and cox-2 transcripts were apparent in 11 of 11 carcinomas. There was significant coordinate up-regulation both of ldlr and of cox-2 in 6 of 11 (55%) tumors compared with normal colonic mucosa. There was no up-regulation of cox-2 without concomitant up-regulation of ldlr. These data suggest that the LDLr is abnormally regulated in some colorectal tumors and may play a role in the up-regulation of cox-2. Copyright 1999 Wiley-Liss, Inc.

  16. Nutritional and metabolic requirements for the infection of HeLa cells by Salmonella enterica serovar Typhimurium.

    PubMed

    Bowden, Steven D; Hopper-Chidlaw, Amanda C; Rice, Christopher J; Ramachandran, Vinoy K; Kelly, David J; Thompson, Arthur

    2014-01-01

    Salmonella is the causative agent of a spectrum of human and animal diseases ranging from gastroenteritis to typhoid fever. It is a food--and water--borne pathogen and infects via ingestion followed by invasion of intestinal epithelial cells and phagocytic cells. In this study we employed a mutational approach to define the nutrients and metabolic pathways required by Salmonella enterica serovar Typhimurium during infection of a human epithelial cell line (HeLa). We deleted the key glycolytic genes, pfkA and pfkB to show that S. Typhimurium utilizes glycolysis for replication within HeLa cells; however, glycolysis was not absolutely essential for intracellular replication. Using S. Typhimurium strains deleted for genes encoding components of the phosphotransferase system and glucose transport, we show that glucose is a major substrate required for the intracellular replication of S. Typhimurium in HeLa cells. We also deleted genes encoding enzymes involved in the utilization of gluconeogenic substrates and the glyoxylate shunt and show that neither of these pathways were required for intracellular replication of S. Typhimurium within HeLa cells.

  17. Anticancer Activity of Certain Herbs and Spices on the Cervical Epithelial Carcinoma (HeLa) Cell Line.

    PubMed

    Berrington, Danielle; Lall, Namrita

    2012-01-01

    Acetone extracts of selected plant species were evaluated for their in vitro cytotoxicity against a noncancerous African green monkey kidney (Vero) cell line and an adenocarcinoma cervical cancer (HeLa) cell line. The plants studied were Origanum vulgare L. (Oregano), Rosmarinus officinalis L. (Upright and ground cove rosemary), Lavandula spica L. (Lavender), Laurus nobilis L. (Bay leaf), Thymus vulgaris L. (Thyme), Lavandula x intermedia L. (Margaret Roberts Lavender), Petroselinum crispum Mill. (Curly leaved parsley), Foeniculum vulgare Mill. (Fennel), and Capsicum annuum L. (Paprika). Antioxidant activity was determined using a quantitative DPPH (1,1-diphenyl-2-picryl hydrazyl) assay. The rosemary species exhibited effective radical scavenging capacity with 50% inhibitory concentration (IC(50)) of 3.48 ± 0.218 μg/mL and 10.84 ± 0.125 μg/mL and vitamin C equivalents of 0.351 g and 1.09 g for McConnell's Blue and Tuscan Blue, respectively. Cytotoxicity was measured using XTT (Sodium 3'-[1-(phenyl amino-carbonyl)-3,4-tetrazolium]-bis-[4-methoxy-6-nitro] benzene sulfonic acid hydrate) colorimetric assay. Only L. nobilis and O. vulgare exhibited pronounced effects on the HeLa cell line. Dose-dependent studies revealed IC(50) of 34.46 ± 0.48 μg/mL and 126.3 ± 1.00 μg/mL on the HeLa cells and on the Vero cells 124.1 μg/mL ± 18.26 and 163.8 μg/mL ± 2.95 for L. nobilis and O. vulgare, respectively. Light (eosin and haematoxylin staining) and confocal microscopy (Hoechst 33342, acridine orange, and propidium iodide staining) were used to evaluate the cytotoxic mechanism of action for L. nobilis and O. vulgare. PMID:22649474

  18. Trefoil factor 3 as a novel biomarker to distinguish between adenocarcinoma and squamous cell carcinoma.

    PubMed

    Wang, Xiao-Nan; Wang, Shu-Jing; Pandey, Vijay; Chen, Ping; Li, Qing; Wu, Zheng-Sheng; Wu, Qiang; Lobie, Peter E

    2015-05-01

    In carcinoma, such as of the lung, the histological subtype is important to select an appropriate therapeutic strategy for patients. However, carcinomas with poor differentiation cannot always be distinguished on the basis of morphology alone nor on clinical findings. Hence, delineation of poorly differentiated adenocarcinoma and squamous cell carcinoma, the 2 most common epithelial-origin carcinomas, is pivotal for selection of optimum therapy. Herein, we explored the potential utility of trefoil factor 3 (TFF3) as a biomarker for primary lung adenocarcinoma and extrapulmonary adenocarcinomas derived from different organs. We observed that 90.9% of lung adenocarcinomas were TFF3-positive, whereas no expression of TFF3 was observed in squamous cell carcinomas. The subtype of lung carcinoma was confirmed by four established biomarkers, cytokeratin 7 and thyroid transcription factor 1 for adenocarcinoma and P63 and cytokeratin 5/6 for squamous cell carcinoma. Furthermore, expression of TFF3 mRNA was observed by quantitative PCR in all of 11 human lung adenocarcinoma cell lines and highly correlated with markers of the adenocarcinomatous lineage. In contrast, little or no expression of TFF3 was observed in 4 lung squamous cell carcinoma cell lines. By use of forced expression, or siRNA-mediated depletion of TFF3, we determined that TFF3 appeared to maintain rather than promote glandular differentiation of lung carcinoma cells. In addition, TFF3 expression was also determined in adenocarcinomas from colorectum, stomach, cervix, esophagus, and larynx. Among all these extrapulmonary carcinomas, 93.7% of adenocarcinomas exhibited TFF3 positivity, whereas only 2.9% of squamous cell carcinomas were TFF3-positive. Totally, 92.9% of both pulmonary and extrapulmonary adenocarcinomas exhibited TFF3 positivity, whereas only 1.5% of squamous cell carcinomas were TFF3-positive. In conclusion, TFF3 is preferentially expressed in adenocarcinoma and may function as an additional

  19. Trefoil Factor 3 as a Novel Biomarker to Distinguish Between Adenocarcinoma and Squamous Cell Carcinoma

    PubMed Central

    Wang, Xiao-Nan; Wang, Shu-Jing; Pandey, Vijay; Chen, Ping; Li, Qing; Wu, Zheng-Sheng; Wu, Qiang; Lobie, Peter E.

    2015-01-01

    Abstract In carcinoma, such as of the lung, the histological subtype is important to select an appropriate therapeutic strategy for patients. However, carcinomas with poor differentiation cannot always be distinguished on the basis of morphology alone nor on clinical findings. Hence, delineation of poorly differentiated adenocarcinoma and squamous cell carcinoma, the 2 most common epithelial-origin carcinomas, is pivotal for selection of optimum therapy. Herein, we explored the potential utility of trefoil factor 3 (TFF3) as a biomarker for primary lung adenocarcinoma and extrapulmonary adenocarcinomas derived from different organs. We observed that 90.9% of lung adenocarcinomas were TFF3-positive, whereas no expression of TFF3 was observed in squamous cell carcinomas. The subtype of lung carcinoma was confirmed by four established biomarkers, cytokeratin 7 and thyroid transcription factor 1 for adenocarcinoma and P63 and cytokeratin 5/6 for squamous cell carcinoma. Furthermore, expression of TFF3 mRNA was observed by quantitative PCR in all of 11 human lung adenocarcinoma cell lines and highly correlated with markers of the adenocarcinomatous lineage. In contrast, little or no expression of TFF3 was observed in 4 lung squamous cell carcinoma cell lines. By use of forced expression, or siRNA-mediated depletion of TFF3, we determined that TFF3 appeared to maintain rather than promote glandular differentiation of lung carcinoma cells. In addition, TFF3 expression was also determined in adenocarcinomas from colorectum, stomach, cervix, esophagus, and larynx. Among all these extrapulmonary carcinomas, 93.7% of adenocarcinomas exhibited TFF3 positivity, whereas only 2.9% of squamous cell carcinomas were TFF3-positive. Totally, 92.9% of both pulmonary and extrapulmonary adenocarcinomas exhibited TFF3 positivity, whereas only 1.5% of squamous cell carcinomas were TFF3-positive. In conclusion, TFF3 is preferentially expressed in adenocarcinoma and may function as an

  20. Autophagy facilitates Salmonella replication in HeLa cells.

    PubMed

    Yu, Hong B; Croxen, Matthew A; Marchiando, Amanda M; Ferreira, Rosana B R; Cadwell, Ken; Foster, Leonard J; Finlay, B Brett

    2014-03-11

    Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. IMPORTANCE As a host defense system, autophagy is known to target a population of Salmonella for degradation and hence restricting Salmonella replication. In contrast to this concept, a recent report showed that knockdown of Rab1, a GTPase required for autophagy of Salmonella, decreases Salmonella replication in HeLa cells. Here, we have reexamined the fate of Salmonella targeted by autophagy by various cell biology-based assays. We found that the association of autophagy components with cytosolic Salmonella increases shortly after initiation of intracellular bacterial replication. Furthermore, through a live-cell imaging method, a subset of cytosolic Salmonella was found to be extensively associated with autophagy components p62 and/or LC3, and they replicated quickly. Most importantly, depletion of autophagy components significantly reduced the replication of cytosolic Salmonella in HeLa cells. Hence, in contrast to previous reports, we propose

  1. p53, Bcl-2 and cox-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells.

    PubMed

    Wang, Hai-Yan; Yu, Hai-Zhong; Huang, Sheng-Mou; Zheng, Yu-Lan

    2016-10-01

    The present study aimed to investigate the effects of berberine hydrochloride on the proliferation and apoptosis of HeLa229 human cervical cancer cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine the cytotoxicity of berberine hydrochloride against HeLa229 cells. The effects of berberine hydrochloride on the apoptosis of HeLa229 cells was detected by immunofluorescence and flow cytometry, and the mRNA expression levels of p53, B‑cell lymphoma 2 (Bcl‑2) and cyclooxygenase‑2 (cox‑2) were analyzed by reverse transcription-quantitative polymerase chain reaction. Berberine hydrochloride inhibited the proliferation of HeLa229 cells in a dose‑dependent manner; minimum cell viability (3.61%) was detected following treatment with 215.164 µmol/l berberine hydrochloride and the half maximal inhibitory concentration value was 42.93 µmol/l following treatment for 72 h. In addition, berberine hydrochloride induced apoptosis in HeLa229 cells in a dose‑ and time‑dependent manner. Berberine hydrochloride upregulated the mRNA expression levels of p53, and downregulated mRNA expression levels of Bcl‑2 and cox‑2, in a dose‑dependent manner. In conclusion, berberine hydrochloride inhibited the proliferation and induced apoptosis of HeLa229 cells, potentially via the upregulation of p53 and the downregulation of Bcl‑2 and cox‑2 mRNA expression levels. PMID:27601129

  2. Gastric adenocarcinoma with prostatic metastasis.

    PubMed

    Roshni, S; Anoop, Tm; Preethi, Tr; Shubanshu, G; Lijeesh, Al

    2014-06-01

    Metastasis of gastric adenocarcinoma to the prostate gland is extremely rare. Herein, we report a case of gastric adenocarcinoma in a 56-year-old man with prostatic metastasis diagnosed through the analysis of biopsy specimens from representative lesions in the stomach and prostate gland. Immunohistochemistry of the prostatic tissue showed positive staining for cytokeratin 7 and negative staining for prostate-specific antigen (PSA), whereas the serum PSA level was normal, confirming the diagnosis of prostatic metastasis from carcinoma of the stomach. PMID:25061542

  3. Gastric Adenocarcinoma with Prostatic Metastasis

    PubMed Central

    Roshni, S; Preethi, TR; Shubanshu, G; Lijeesh, AL

    2014-01-01

    Metastasis of gastric adenocarcinoma to the prostate gland is extremely rare. Herein, we report a case of gastric adenocarcinoma in a 56-year-old man with prostatic metastasis diagnosed through the analysis of biopsy specimens from representative lesions in the stomach and prostate gland. Immunohistochemistry of the prostatic tissue showed positive staining for cytokeratin 7 and negative staining for prostate-specific antigen (PSA), whereas the serum PSA level was normal, confirming the diagnosis of prostatic metastasis from carcinoma of the stomach. PMID:25061542

  4. Down-regulation of microRNA-9 leads to activation of IL-6/Jak/STAT3 pathway through directly targeting IL-6 in HeLa cell.

    PubMed

    Zhang, Jiangbo; Jia, Junqiao; Zhao, Lijun; Li, Xiaojun; Xie, Qing; Chen, Xiangmei; Wang, Jianliu; Lu, Fengmin

    2016-05-01

    MicroRNA-9 (miR-9) presents to exert distinct and even opposite functions in different kinds of tumors through targeting different cellular genes. However, its role in cervical adenocarcinoma remains uncertain. Here, we report that miR-9 is down-regulated in cervical adenocarcinoma due to its frequent promoter-hypermethylation and exerts its tumor suppressor role through inhibiting several novel target genes, including interleukin-6 (IL-6). The promoters of miR-9 precursors (mir-9-1, -2, and -3) were hypermethylated in cervical adenocarcinoma tissues. Demethylation treatment of HeLa dramatically increased the expression of mature miR-9. Both in vitro and in vivo functional experiments confirmed that miR-9 can inhibit the proliferation, migration, and malignant transformation abilities of HeLa cells. Bioinformatics methods and array-based RNA expression profiles were used to screen the downstream target genes of miR-9. Dual-luciferase reporting assay, real-time qPCR, and ELISA or Western blot confirmed four genes (CKAP2, HSPC159, IL-6, and TC10) to be novel direct target genes of miR-9. Pathway annotation analysis of the differently expressed genes (DEGs) induced by ectopic miR-9 expression revealed the enrichment in Jak/STAT3 pathway, which is one of the downstream pathways of IL-6. Ectopic expression of miR-9 in HeLa inhibited Jak/STAT3 signaling activity. Moreover, such effect could be partially reversed by the addition of exogenous IL-6. In conclusion, our results here present a tumor suppressor potential of miR-9 in cervical adenocarcinoma for the first time and suggest that miR-9 could repress tumorigenesis through inhibiting the activity of IL-6/Jak/STAT3 pathway.

  5. [Effects of CPUY013, a novel Topo I inhibitor, on human gastric adenocarcinoma BGC823 cells in vitro and in vivo].

    PubMed

    Ji, Yu-Bin; Zhou, Jian-Hua; Zuo, Ming-Xin; You, Qi-Dong

    2008-08-01

    Antitumor activity and the mechanism of CPUY013, a novel Topo I inhibitor, on gastric adenocarcinoma BGC823 cells were studied in vitro and in vivo. The proliferation was investigated by MTT assay and colony formation assay. Apoptosis was determined by both dual fluorescence staining with AO and EB and DNA agarose gel electrophoresis analysis methods. Nude mice model of BGC823 xenograft tumor was established by subcutaneous inoculation. The suppression activity of the CPUY013 by intragastric administration on xenograft mice model was detected. The change of cell cycle was studied by flow cytometry assay. The expressions of Topo I, widetype p53, active caspase-3, bcl-2 and bax proteins were analyzed by Western blotting assay. Results showed that CPUY013 could inhibit BGC823 cell proliferation at a certain range of dose. The flow cytometry analysis showed that CPUY013 and topoecan (TPT) led to a decrease in the proportion of G1 phase cells and an increase in the proportion of S phase cells, suggesting that they arrested the transition of tumor cells from S phase to G2 phase. The sub-G1 group was analyzed by flow cytometry. Compared with control, after 48 h treatment with CPUY013 or TPT, the sub-G1 group significantly increased in a dose-dependent manner. CPUY013 and TPT induced apoptosis in tumor cells. Cells treated with CPUY013 for 48 h were stained with AO/EB mixture. Then the cells were observed under fluorescence microscope. And it was found that early and late apoptosis cells were identified by perinuclear condensation of chromatin stained by AO/EB, respectively. Necrotic cells were identified by uniform labeling with EB. With the increase of concentration of CPUY013 and TPT, these morphological changes under the fluorescence microscope become clearer, indicating that the proportion of apoptosis cells increased gradually. By using JC-1 kit, loss of deltapsim was also detected in BGC823 cells treated with CPUY013 and TPT, which represent mitochondria function

  6. Inhibition of Prostaglandin Reductase 2, a Putative Oncogene Overexpressed in Human Pancreatic Adenocarcinoma, Induces Oxidative Stress-Mediated Cell Death Involving xCT and CTH Gene Expressions through 15-Keto-PGE2.

    PubMed

    Chang, Emily Yun-Chia; Chang, Yi-Cheng; Shun, Chia-Tung; Tien, Yu-Wen; Tsai, Shu-Huei; Hee, Siow-Wey; Chen, Ing-Jung; Chuang, Lee-Ming

    2016-01-01

    Prostaglandin reductase 2 (PTGR2) is the enzyme that catalyzes 15-keto-PGE2, an endogenous PPARγ ligand, into 13,14-dihydro-15-keto-PGE2. Previously, we have reported a novel oncogenic role of PTGR2 in gastric cancer, where PTGR2 was discovered to modulate ROS-mediated cell death and tumor transformation. In the present study, we demonstrated the oncogenic potency of PTGR2 in pancreatic cancer. First, we observed that the majority of the human pancreatic ductal adenocarcinoma tissues was stained positive for PTGR2 expression but not in the adjacent normal parts. In vitro analyses showed that silencing of PTGR2 expression enhanced ROS production, suppressed pancreatic cell proliferation, and promoted cell death through increasing 15-keto-PGE2. Mechanistically, silencing of PTGR2 or addition of 15-keto-PGE2 suppressed the expressions of solute carrier family 7 member 11 (xCT) and cystathionine gamma-lyase (CTH), two important providers of intracellular cysteine for the generation of glutathione (GSH), which is widely accepted as the first-line antioxidative defense. The oxidative stress-mediated cell death after silencing of PTGR2 or addition of 15-keto-PGE2 was further abolished after restoring intracellular GSH concentrations and cysteine supply by N-acetyl-L-cysteine and 2-Mercaptomethanol. Our data highlight the therapeutic potential of targeting PTGR2/15-keto-PGE2 for pancreatic cancer.

  7. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    PubMed

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra.

  8. Cinnamomum verum Component 2-Methoxycinnamaldehyde: A Novel Anticancer Agent with Both Anti-Topoisomerase I and II Activities in Human Lung Adenocarcinoma A549 Cells In Vitro and In Vivo.

    PubMed

    Wong, Ho-Yiu; Tsai, Kuen-daw; Liu, Yi-Heng; Yang, Shu-mei; Chen, Ta-Wei; Cherng, Jonathan; Chou, Kuo-Shen; Chang, Chen-Mei; Yao, Belen T; Cherng, Jaw-Ming

    2016-02-01

    Cinnamomum verum is used to make the spice cinnamon and has been used as a traditional Chinese herbal medicine. We evaluated the anticancer effect of 2-methoxycinnamaldehyde (2-MCA), a constituent of the bark of the plant, and its underlying molecular biomarkers associated with carcinogenesis in human lung adenocarcinoma A549 cells. The results show that 2-MCA suppressed proliferation and induced apoptosis as indicated by an upregulation of pro-apoptotic Bax and Bak genes and downregulation of anti-apoptotic Bcl-2 and Bcl-XL genes, mitochondrial membrane potential loss, cytochrome c release, activation of caspase-3 and -9, and morphological characteristics of apoptosis, including plasma membrane blebbing and long comet tail. In addition, 2-MCA also induced lysosomal vacuolation with increased volume of acidic compartment (VAC) and suppressions of nuclear transcription factors nuclear factor-κB (NF-κB) and both topoisomerase I and II activities. Further study reveals that the growth-inhibitory effect of 2-MCA was also evident in a nude mice model. Taken together, the data suggest that the growth-inhibitory effect of 2-MCA against A549 cells is accompanied by downregulations of NF-κB binding activity and proliferative control involving apoptosis and both topoisomerase I and II activities, together with an upregulation of lysosomal vacuolation and VAC. Our data suggest that 2-MCA could be a potential agent for anticancer therapy.

  9. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    PubMed

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra. PMID:25779384

  10. The cytotoxic effect of α-tomatine in MCF-7 human adenocarcinoma breast cancer cells depends on its interaction with cholesterol in incubation media and does not involve apoptosis induction

    PubMed Central

    SUCHA, LENKA; HROCH, MILOS; REZACOVA, MARTINA; RUDOLF, EMIL; HAVELEK, RADIM; SISPERA, LUDEK; CMIELOVA, JANA; KOHLEROVA, RENATA; BEZROUK, ALES; TOMSIK, PAVEL

    2013-01-01

    In recent years, α-tomatine has been studied for its anticancer activity. In the present study, we focused on the cytotoxic effect of α-tomatine in the MCF-7 human breast adenocarcinoma cell line, its mechanism of action, biotransformation and stability in the culture medium. We observed an inhibition of cell proliferation and viability at concentrations of 6 and 9 μM but then a recovery of cells occurred. The recovery was not caused by the biotransformation of α-tomatine in MCF-7 cells, but by a substantial decrease in the concentration of α-tomatine in the culture medium due to its binding with cholesterol. Regarding the mechanism of action of α-tomatine, we observed no DNA damage, no changes in the levels of the proteins p53 and p21WAF1/Cip1, and no apoptosis (neither activated caspase-8 and -9, nor sub-G1 peak, or morphological signs). We found a loss of ATP in α-tomatine-treated cells. These results support the conclusion that α-tomatine does not induce apoptosis in the MCF-7 cell line. PMID:24100733

  11. Inhibition of Prostaglandin Reductase 2, a Putative Oncogene Overexpressed in Human Pancreatic Adenocarcinoma, Induces Oxidative Stress-Mediated Cell Death Involving xCT and CTH Gene Expressions through 15-Keto-PGE2

    PubMed Central

    Chang, Emily Yun-Chia; Chang, Yi-Cheng; Shun, Chia-Tung; Tien, Yu-Wen; Tsai, Shu-Huei; Hee, Siow-Wey; Chen, Ing-Jung; Chuang, Lee-Ming

    2016-01-01

    Prostaglandin reductase 2 (PTGR2) is the enzyme that catalyzes 15-keto-PGE2, an endogenous PPARγ ligand, into 13,14-dihydro-15-keto-PGE2. Previously, we have reported a novel oncogenic role of PTGR2 in gastric cancer, where PTGR2 was discovered to modulate ROS-mediated cell death and tumor transformation. In the present study, we demonstrated the oncogenic potency of PTGR2 in pancreatic cancer. First, we observed that the majority of the human pancreatic ductal adenocarcinoma tissues was stained positive for PTGR2 expression but not in the adjacent normal parts. In vitro analyses showed that silencing of PTGR2 expression enhanced ROS production, suppressed pancreatic cell proliferation, and promoted cell death through increasing 15-keto-PGE2. Mechanistically, silencing of PTGR2 or addition of 15-keto-PGE2 suppressed the expressions of solute carrier family 7 member 11 (xCT) and cystathionine gamma-lyase (CTH), two important providers of intracellular cysteine for the generation of glutathione (GSH), which is widely accepted as the first-line antioxidative defense. The oxidative stress-mediated cell death after silencing of PTGR2 or addition of 15-keto-PGE2 was further abolished after restoring intracellular GSH concentrations and cysteine supply by N-acetyl-L-cysteine and 2-Mercaptomethanol. Our data highlight the therapeutic potential of targeting PTGR2/15-keto-PGE2 for pancreatic cancer. PMID:26820738

  12. Cytocompatibility of HeLa Cells to Nano-Sized Ceramics Particles.

    PubMed

    Seitoku, Eri; Abe, Shigeaki; Kusaka, Teruo; Nakamura, Mariko; Inoue, Satoshi; Yoshida, Yasuhiro; Sano, Hidehiko

    2016-04-01

    In this study, we investigated the behaviors and cytocompatibility response of human cervical carcinoma (HeLa) cells expose to nano-sized particles. Cultivated cells exposed to titanium oxide and indium oxide nanoparticles remained highly viable. In the presence of copper oxide (CuO); however, the cells became seriously inflamed. To understand the mechanism by which CuO causes cell death, we evaluated cell death and apoptosis cytometry. CuO induced cells apoptosis more strongly than exposure to titania nanoparticles. Confocal fluorescence microscopy revealed that the nano-sized particles penetrate the cells.

  13. Cytocompatibility of HeLa Cells to Nano-Sized Ceramics Particles.

    PubMed

    Seitoku, Eri; Abe, Shigeaki; Kusaka, Teruo; Nakamura, Mariko; Inoue, Satoshi; Yoshida, Yasuhiro; Sano, Hidehiko

    2016-04-01

    In this study, we investigated the behaviors and cytocompatibility response of human cervical carcinoma (HeLa) cells expose to nano-sized particles. Cultivated cells exposed to titanium oxide and indium oxide nanoparticles remained highly viable. In the presence of copper oxide (CuO); however, the cells became seriously inflamed. To understand the mechanism by which CuO causes cell death, we evaluated cell death and apoptosis cytometry. CuO induced cells apoptosis more strongly than exposure to titania nanoparticles. Confocal fluorescence microscopy revealed that the nano-sized particles penetrate the cells. PMID:27451635

  14. Cutaneous Metastases From Esophageal Adenocarcinoma

    PubMed Central

    Triantafyllou, Stamatina; Georgia, Doulami; Gavriella-Zoi, Vrakopoulou; Dimitrios, Mpistarakis; Stulianos, Katsaragakis; Theodoros, Liakakos; Georgios, Zografos; Dimitrios, Theodorou

    2015-01-01

    The aim of this study is to present 2 rare cases of cutaneous metastases originated from adenocarcinoma of the gastro-esophageal junction, thus, underline the need for early diagnosis and possible treatment of suspicious skin lesions among patients with esophageal malignancy. Metastatic cancer to the skin originated from internal malignancies, mostly lung cancer, breast cancer, and colorectal cancer, constitute 0.5 to 9% of all metastatic cancers.5,8,15 Skin metastases, mainly from squamous cell carcinomas of the esophagus, are rarely reported. Cutaneous metastasis is a finding indicating progressiveness of the disease.17 More precisely, median survival is estimated approximately 4.7 months.2,14 This study is a retrospective review of 2 cases of patients with adenocarcinoma of the esophagus and a review of the literature. Two patients aged 60 and 32 years old, respectively, underwent esophagectomy. Both pathologic reports disclosed adenocarcinoma of the gastro-esophageal junction staged T3 N2 M0 (stage IIIB). During follow-up time, the 2 patients were diagnosed with cutaneous metastases originated from the primary esophageal tumor 11 and 4 months after surgery, respectively. The first patient is alive 37 months after diagnosis, while the second one died 16 months after surgery. Cutaneous metastasis caused by esophageal adenocarcinoma is possible. Therefore, follow-up of patients who were diagnosed with esophageal malignancy and underwent esophagectomy is mandatory in order to reveal early surgical stages. PMID:25785344

  15. [Endolymphatic sac adenocarcinoma: case report].

    PubMed

    Silveira, Roberto Leal; Gusmão, Sebastião Silva; Pittella, José Eymard H; Santos, Sinval Pereira

    2002-09-01

    A case of endolymphatic sac adenocarcinoma is reported and the literature is reviewed. The clinical picture was presented by vertigo and progressive hearing loss caused by a tumor of the endolymphatic sac. The surgical removal was complete, via a retro and translabyrinthine approach. Endolymphatic sac tumors are locally invasive, involve the petrous bone and the mastoid. The radical surgery presents good outcome.

  16. DAG/PKCδ and IP3/Ca²⁺/CaMK IIβ Operate in Parallel to Each Other in PLCγ1-Driven Cell Proliferation and Migration of Human Gastric Adenocarcinoma Cells, through Akt/mTOR/S6 Pathway.

    PubMed

    Dai, Lianzhi; Zhuang, Luhua; Zhang, Bingchang; Wang, Fen; Chen, Xiaolei; Xia, Chun; Zhang, Bing

    2015-12-01

    Phosphoinositide specific phospholipase Cγ (PLCγ) activates diacylglycerol (DAG)/protein kinase C (PKC) and inositol 1,4,5-trisphosphate (IP3)/Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) axes to regulate import events in some cancer cells, including gastric adenocarcinoma cells. However, whether DAG/PKCδ and IP3/Ca(2+)/CaMK IIβ axes are simultaneously involved in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells and the underlying mechanism are not elucidated. Here, we investigated the role of DAG/PKCδ or CaMK IIβ in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells, using the BGC-823 cell line. The results indicated that the inhibition of PKCδ and CaMK IIβ could block cell proliferation and migration of BGC-823 cells as well as the effect of inhibiting PLCγ1, including the decrease of cell viability, the increase of apoptotic index, the down-regulation of matrix metalloproteinase (MMP) 9 expression level, and the decrease of cell migration rate. Both DAG/PKCδ and CaMK IIβ triggered protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/S6 pathway to regulate protein synthesis. The data indicate that DAG/PKCδ and IP3/Ca(2+)/CaMK IIβ operate in parallel to each other in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells through Akt/mTOR/S6 pathway, with important implication for validating PLCγ1 as a molecular biomarker in early gastric cancer diagnosis and disease surveillance.

  17. Persistent Infection of Cells in Culture by Measles Virus II. Effect of Measles Antibody on Persistently Infected HeLa Sublines and Recovery of a HeLa Clonal Line Persistently Infected with Incomplete Virus

    PubMed Central

    Rustigian, Robert

    1966-01-01

    Rustigian, Robert (Tufts University School of Medicine, Boston, Mass.). Persistent infection of cells in culture by measles virus. II. Effect of measles antibody on persistently infected HeLa clonal line persistently infected with incomplete virus. J. Bacteriol. 92:1805–1811. 1966.—The effect of viral antibody on persistent infection of HeLa cells by the Edmonston strain of measles virus was investigated by culturing cells from three persistently infected clones in medium supplemented with human immune globulin. The three infected HeLa clones were isolated from a persistently infected parent line. Two sublines which were grown in the presence of measles antibody developed a nonyielder state, wherein there is no detectable virus infectious for normal HeLa cultures. There is, however, continued synthesis of intracellular viral antigen and formation of viral intracytoplasmic inclusion bodies. The development of a nonyielder state was associated with a marked decrease in the degree of hemadsorption in cultures of both sublines. Further studies of the viral properties of non-yielder HeLa cell populations were made with a clone obtained from one of these sublines by plating under antibody. Persistent infection in this line was characterized by synthesis of incomplete virus even when the cells were cultured thereafter in anti-body-free medium. This was evidenced by (i) failure to recover infectious virus from the clonal population despite continued formation of intracellular viral antigen and viral intracytoplasmic inclusion bodies in a majority of the cells, (ii) the presence of only a few cells with surface viral antigen(s) including hemagglutinin, and (iii) the relatively weak antibody response to viral envelope antigen(s) after injection of cells into guinea pigs. PMID:5334769

  18. Pseudolaric acid B exerts antitumor activity via suppression of the Akt signaling pathway in HeLa cervical cancer cells.

    PubMed

    Li, Mingqun; Hong, Li

    2015-08-01

    Pseudolaric acid B (PAB) is a diterpene acid isolated from the bark of the root and trunk of Pseudolarix kaempferi Gordon (Pinaceae), which has demonstrated cytotoxic effects against various types of cancer. However, the mechanisms underlying the anticancer effects of PAB have remained to be elucidated. In the present study, the effects of PAB on the viability and apoptosis of HeLa cells were investigated by MTT assay, flow cytometric analysis of Annexin V-fluorescein isothiocyanate/propidium iodide staining, Rhodamine 123 staining and western blot analysis. The results demonstrated that PAB had antiproliferative and apoptosis-inducing effects on HeLa cells. PAB markedly inhibited HeLa cell viability in a time- and concentration-dependent manner. Flow cytometric analysis indicated that PAB induced apoptosis in HeLa cells in a dose-dependent manner. Treatment with PAB suppressed the expression of anti-apoptotic factor B cell lymphoma-2, and promoted the expression of pro-apoptotic factor Bcl-2-associated X protein. In addition, PAB induced an increase in Caspase-3 activity and loss of mitochondrial membrane potential, suggesting that this apoptosis may be mediated by mitochondrial pathways. Furthermore, the results of western blot analysis indicated that PAB was able to reduce Akt phosphorylation, thereby inhibiting the Akt pathway. These results suggested that PAB inhibited cell proliferation and induced apoptosis in HeLa cells, and that the anti-tumor effects of PAB were associated with inhibition of the Akt pathway. In conclusion, the results of the present study suggested that PAB may represent a novel therapeutic strategy for the treatment of human cervical cancer. However, additional studies are required to investigate the underlying apoptotic mechanisms.

  19. Anticancer effects of brominated indole alkaloid Eudistomin H from marine ascidian Eudistoma viride against cervical cancer cells (HeLa).

    PubMed

    Rajesh, Rajaian Pushpabai; Annappan, Murugan

    2015-01-01

    Marine invertebrates called ascidians are prolific producers of bioactive substances. The ascidian Eudistoma viride, distributed along the Southeast coast of India, was investigated for its in vitro cytotoxic activity against human cervical carcinoma (HeLa) cells by the MTT assay. The crude methanolic extract of E. viride, with an IC50 of 53 μg/ml, was dose-dependently cytotoxic. It was more potent at 100 μg/ml than cyclohexamide (1 μg/ml), reducing cell viability to 9.2%. Among nine fractions separated by chromatography, ECF-8 exhibited prominent cytoxic activity at 10 μg/ml. The HPLC fraction EHF-21 of ECF-8 was remarkably dose- and time-dependently cytotoxic, with 39.8% viable cells at 1 μg/ml compared to 51% in cyclohexamide-treated cells at the same concentration; the IC50 was 0.49 μg/ml. Hoechst staining of HeLa cells treated with EHF-21 at 0.5 μg/ml revealed apoptotic events such an cell shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies. Cell size and granularity study showed changes in light scatter, indicating the characteristic feature of cells dying by apoptosis. The cell-cycle analysis of HeLa cells treated with fraction EHF-21 at 1 μg/ml showed the marked arrest of cells in G0/G1, S and G2/M phases and an increase in the sub G0/G1 population indicated an increase in the apoptotic cell population. The statistical analysis of the sub-G1 region showed a dose-dependent induction of apoptosis. DNA fragmentation was also observed in HeLa cells treated with EHF-21. The active EHF-21 fraction, a brominated indole alkaloid Eudistomin H, led to apoptotic death of HeLa cells.

  20. Anticancer effects of brominated indole alkaloid Eudistomin H from marine ascidian Eudistoma viride against cervical cancer cells (HeLa).

    PubMed

    Rajesh, Rajaian Pushpabai; Annappan, Murugan

    2015-01-01

    Marine invertebrates called ascidians are prolific producers of bioactive substances. The ascidian Eudistoma viride, distributed along the Southeast coast of India, was investigated for its in vitro cytotoxic activity against human cervical carcinoma (HeLa) cells by the MTT assay. The crude methanolic extract of E. viride, with an IC50 of 53 μg/ml, was dose-dependently cytotoxic. It was more potent at 100 μg/ml than cyclohexamide (1 μg/ml), reducing cell viability to 9.2%. Among nine fractions separated by chromatography, ECF-8 exhibited prominent cytoxic activity at 10 μg/ml. The HPLC fraction EHF-21 of ECF-8 was remarkably dose- and time-dependently cytotoxic, with 39.8% viable cells at 1 μg/ml compared to 51% in cyclohexamide-treated cells at the same concentration; the IC50 was 0.49 μg/ml. Hoechst staining of HeLa cells treated with EHF-21 at 0.5 μg/ml revealed apoptotic events such an cell shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies. Cell size and granularity study showed changes in light scatter, indicating the characteristic feature of cells dying by apoptosis. The cell-cycle analysis of HeLa cells treated with fraction EHF-21 at 1 μg/ml showed the marked arrest of cells in G0/G1, S and G2/M phases and an increase in the sub G0/G1 population indicated an increase in the apoptotic cell population. The statistical analysis of the sub-G1 region showed a dose-dependent induction of apoptosis. DNA fragmentation was also observed in HeLa cells treated with EHF-21. The active EHF-21 fraction, a brominated indole alkaloid Eudistomin H, led to apoptotic death of HeLa cells. PMID:25550562

  1. LIV-1 suppression inhibits HeLa cell invasion by targeting ERK1/2-Snail/Slug pathway

    SciTech Connect

    Zhao Le; Chen Wei; Taylor, Kathryn M.; Cai Bin; Li Xu

    2007-11-09

    It was reported that expression of the estrogen-regulated zinc transporter LIV-1 was particularly high in human cervical cancer cell line HeLa. This result prompted us to study the role that LIV-1 played in human cervical cancer. The results of real-time PCR showed that LIV-1 mRNA was significantly higher in cervical cancer in situ than in normal tissues. RNAi mediated suppression of LIV-1 in HeLa cells significantly inhibited cell proliferation, colony formation, migration, and invasive ability, but had no effect on cell apoptosis. Furthermore, LIV-1 suppression is accompanied by down-regulation of p44/42 MAPK, phospho-p44/42 MAPK, Snail and Slug expression levels. Hence, our data provide the first evidence that LIV-1 mRNA is overexpressed in cervical cancer in situ and is involved in invasion of cervical cancer cells through targeting MAPK-mediated Snail and Slug expression.

  2. Suppression of NYVAC Infection in HeLa Cells Requires RNase L but Is Independent of Protein Kinase R Activity.

    PubMed

    Fernández-Escobar, Mercedes; Nájera, José Luis; Baldanta, Sara; Rodriguez, Dolores; Way, Michael; Esteban, Mariano; Guerra, Susana

    2015-12-09

    Protein kinase R (PKR) and RNase L are host cell components that function to contain viral spread after infections. In this study, we analyzed the role of both proteins in the abortive infection of human HeLa cells with the poxvirus strain NYVAC, for which an inhibition of viral A27L and B5R gene expression is described. Specifically, the translation of these viral genes is independent of PKR activation, but their expression is dependent on the RNase L activity.

  3. Hepatoid Adenocarcinoma of the Urachus

    PubMed Central

    Jimenez, Carlos Andrés; Carrascal, Edwin

    2016-01-01

    Hepatoid adenocarcinoma of the urachus is a rare condition. We present the case of a 51-year-old female who developed abdominal pain and hematuria. Pelvic magnetic resonance imaging (MRI) reported an urachal mass with invasion to the bladder that was resected by partial cystectomy. On light microscopy the tumor resembled liver architecture, with polygonal atypical cells in nest formation and trabecular structures. Immunochemistry was positive for alfa-fetoprotein (AFP) and serum AFP was elevated. Hepatoid adenocarcinomas have been reported in multiple organs, being most commonly found in the stomach and the ovaries. Bladder compromise has been rarely described in the literature, and it has been associated with poor prognosis, low remission rates, and early metastasis. PMID:27803830

  4. αTAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells.

    PubMed

    Chien, J-Y; Tsen, S-D; Chien, C-C; Liu, H-W; Tung, C-Y; Lin, C-H

    2016-01-01

    α-Tubulin acetyltransferase 1 (αTAT1) controls reversible acetylation on Lys40 of α-tubulin and modulates multiple cellular functions. αTAT1 depletion induced morphological defects of touch receptor neurons in Caenorhabditis elegans and impaired cell adhesion and contact inhibition in mouse embryonic fibroblasts, however, no morphological or proliferation defects in human RPE-hTERT cells were found after αTAT1-specific siRNA treatment. Here, we compared the effect of three αTAT1-specific shRNAs on proliferation and morphology in two human cell lines, HeLa and A549. The more efficient two shRNAs induced mitotic catastrophe in both cell lines and the most efficient one also decreased F-actin and focal adhesions. Further analysis revealed that αTAT1 downregulation increased γ-H2AX, but not other DNA damage markers p-CHK1 and p-CHK2, along with marginal change in microtubule outgrowth speed and inter-kinetochore distance. Overexpression of αTAT1 could not precisely mimic the distribution and concentration of endogenous acetylated α-tubulin (Ac-Tu), although no overt phenotype change was observed, meanwhile, this could not completely prevent αTAT1 downregulation-induced deficiencies. We therefore conclude that efficient αTAT1 downregulation could impair actin architecture and induce mitotic catastrophe in HeLa and A549 cells through mechanisms partly independent of Ac-Tu. PMID:27551500

  5. Paclitaxel-resistant HeLa cells have up-regulated levels of reactive oxygen species and increased expression of taxol resistance gene 1.

    PubMed

    Bi, Wenxiang; Wang, Yuxia; Sun, Gaoying; Zhang, Xiaojin; Wei, Yongqing; Li, Lu; Wang, Xiaoyuan

    2014-07-01

    This study is to establish a paclitaxel (PTX)-resistant human cervical carcinoma HeLa cell line (HeLa/PTX) and to investigate its redox characteristics and the expression of taxol resistance gene 1 (Txr1). HeLa cells were treated with PTX and effects of PTX on cell proliferation were detected through cell counting and the MTT assay. Levels of cellular reactive oxygen species (ROS), reduced glutathione (GSH), and oxidized glutathione (GSSG) as well as the ratio of GSH to GSSG were measured by the 2,7-difluorescein diacetate (DCFH-DA) method and the 5,5'dithiobis(2-nitrobenzoic acid) (DTNB) method. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined by the nitrite formation method, the molybdate colorimetric method, and the DTNB colorimetric method, respectively. The level of Txr1 mRNA was determined by real-time PCR. Compared with the regular HeLa cells, HeLa/PTX cells were larger in size and had more cytoplasmic granules. The population doubling time for HeLa/PTX cells was 1.32 times of that of HeLa cells (P<0.01). HeLa/PTX cells showed stronger resistance to PTX than HeLa cells with a resistance index of 122.69. HeLa/PTX cells had higher levels of ROS (P<0.01) and Txr1 mRNA (P<0.01), lower level of GSH (P < 0.05), and lower activities of SOD (P<0.01) and GPx (P < 0.05) than HeLa cells. HeLa/PTX cells, with higher levels of ROS and Txr1 mRNA expression, are more resistant to PTX than HeLa cells.

  6. Suppressive Effect of Constructed shRNAs against Apollon Induces Apoptosis and Growth Inhibition in the HeLa Cell Line

    PubMed Central

    Milani, Saeideh; Bandehpour, Mojgan; Sharifi, Zohreh; Kazemi, Bahram

    2016-01-01

    Background: Cervical cancer is the second most common female cancer worldwide. Inhibitors of apoptosis proteins (IAPs) block apoptosis; therefore, therapeutic strategies targeting IAPs have attracted the interest of researchers in recent years. Apollon, a member of IAPs, inhibits apoptosis and cell death. RNA interference is a pathway in which small interfering RNA (siRNA) or shRNA (short hairpin RNA) inactivates the expression of target genes. The purpose of this study was to determine the effect of constructed shRNAs on apoptosis and growth inhibition through the suppression of apollon mRNA in HeLa cell line. Methods: Three shRNAs with binding ability to three different target sites of the first region of apollon gene were designed and cloned in pRNAin-H1.2/Neo vector. shRNA plasmids were then transfected in HeLa cells using electroporation. Down-regulation effects of apollon and the viability of HeLa cells were analyzed by RT-PCR, lactate dehydrogenase assay, and MTT assay, respectively. Also, the induction and morphological markers of apoptosis were evaluated by caspase assay and immunocytochemistry method. Results: The expression of shRNA in HeLa cells caused a significant decrease in the level of apollon mRNA1. In addition, shRNA1 effectively increased the mRNA level of Smac (as the antagonist of apollon), reduced the viability of HeLa cells and exhibited immunocytochemical apoptotic markers in this cell line. Conclusion: Apollon gene silencing can induce apoptosis and growth impairment in HeLa cells. In this regard, apollon can be considered a candidate therapeutic target in HeLa cells as a positive human papillomavirus cancer cell line. PMID:26748613

  7. β-Elemonic acid inhibits the cell proliferation of human lung adenocarcinoma A549 cells: The role of MAPK, ROS activation and glutathione depletion.

    PubMed

    Wu, Tsu-Tuan; Lu, Chien-Lin; Lin, Hen-I; Chen, Bing-Fang; Jow, Guey-Mei

    2016-01-01

    β-elemonic acid, a known triterpene, exhibits anti-inflammatory effects, yet research on the pharmacological effects of β-elemonic acid is rare. We investigated the anticancer effects and the related molecular mechanisms of β-elemonic acid on human non-small cell lung cancer (NSCLC) A549 cells. The effects of β-elemonic acid on the growth of A549 cells were studied using a 3-(4,5)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected using Annexin V staining. The effect of β-elemonic acid on the cell cycle of A549 cells was assessed using the propidium iodide method. The change in reactive oxygen species (ROS) was detected using a dichlorodihydrofluorescein diacetate (DCFH-DA) assay with microscopic examination. The expression levels of Bcl-2 family proteins, mitogen-activated protein kinase (MAPK) family proteins and cyclooxygenase 2 (COX-2) were detected using western blot analysis. Our data revealed that β-elemonic acid strongly induced human A549 lung cancer cell death in a dose- and time-dependent manner as determined by the MTT assay. β-elemonic acid-induced cell death was considered to be apoptotic when the phosphatidylserine exposure was observed using Annexin V staining. The death of human A549 lung cancer cells was caused by apoptosis induced by activation of ROS activity, increase in the sub-G1 proportion, downregulation of Bcl-2 expression, upregulation of Bax expression and inhibition of the MAPK signaling pathways. These results clearly demonstrated that β-elemonic acid inhibits proliferation by inducing hypoploid cells and cell apoptosis. Moreover, the anticancer effects of β-elemonic acid were related to the MAPK signaling pathway, ROS activation and glutathione depletion in human A549 lung cancer cells.

  8. Monoolein-based cubosomes affect lipid profile in HeLa cells.

    PubMed

    Rosa, Antonella; Murgia, Sergio; Putzu, Danilo; Meli, Valeria; Falchi, Angela Maria

    2015-10-01

    Monoolein-based cubosomes are promising drug delivery nanocarriers for theranostic purposes. Nevertheless, a small amount of research has been undertaken to investigate the impact of these biocompatible nanoparticles on cell lipid profile. The purpose of the present investigation was to explore changes in lipid components occurring in human carcinoma HeLa cells when exposed to short-term treatments (2 and 4h) with monoolein-based cubosomes stabilized by Pluronic F108 (MO/PF108). A combination of TLC and reversed-phase HPLC with DAD and ELSD detection was performed to analyze cell total fatty acid profile and levels of phospholipids, free cholesterol, triacylglycerols, and cholesteryl esters. The treatments with MO/PF108 cubosomes, at non-cytotoxic concentration (83μg/mL of MO), affected HeLa fatty acid profile, and a significant increase in the level of oleic acid 18:1 n-9 was observed in treated cells after lipid component saponification. Nanoparticle uptake modulated HeLa cell lipid composition, inducing a remarkable incorporation of oleic acid in the phospholipid and triacylglycerol fractions, whereas no changes were observed in the cellular levels of free cholesterol and cholesteryl oleate. Moreover, cell-based fluorescent measurements of intracellular membranes and lipid droplet content were assessed on cubosome-treated cells with an alternative technique using Nile red staining. A significant increase in the amount of the intracellular membranes and mostly in the cytoplasmic lipid droplets was detected, confirming that monoolein-based cubosome treatment influences the synthesis of intracellular membranes and accumulation of lipid droplets.

  9. Amphiregulin: A bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7

    SciTech Connect

    Shoyab, M.; McDonald, V.L.; Bradley, G.; Todaro, G.J. )

    1988-09-01

    A glycoprotein, termed amphiregulin (AR), inhibits growth of several human carcinoma cells in culture and stimulates proliferation of human fibroblasts and certain other tumor cells. It has been purified to apparent homogeneity from serum-free conditioned medium of MCF-7 human breast carcinoma cells that had been treated with phorbol 12-myristate 13-acetate. AR is a single-chain extremely hydrophilic glycoprotein containing cysteines in disulfide linkage(s) that are essential for biological activity; it is stable between pH2 and pH12 and after heating for 30 min at 56{degree}C but unstable at 100{degree}C. The apparent molecular weights of AR and N-Glycanase-treated AR are 14,000 and 15,000, respectively, as assessed by gel chromatography, and {approx}22,500 and {approx}14,000, respectively, as determined by polyacrylamide gel electrophoresis. A growth modulatory assay was performed with {sup 125}I-labeled deoxyuridine incorporation into DNA. The amino-terminal amino acid sequence of AR has been determined, and no significant sequence homology between AR and other proteins was found. The molecule thus appears to be a distinct growth regulatory protein.

  10. Targeting Pancreatic Ductal Adenocarcinoma Acidic Microenvironment

    NASA Astrophysics Data System (ADS)

    Cruz-Monserrate, Zobeida; Roland, Christina L.; Deng, Defeng; Arumugam, Thiruvengadam; Moshnikova, Anna; Andreev, Oleg A.; Reshetnyak, Yana K.; Logsdon, Craig D.

    2014-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA, accounting for ~40,000 deaths annually. The dismal prognosis for PDAC is largely due to its late diagnosis. Currently, the most sensitive diagnosis of PDAC requires invasive procedures, such as endoscopic ultrasonography, which has inherent risks and accuracy that is highly operator dependent. Here we took advantage of a general characteristic of solid tumors, the acidic microenvironment that is generated as a by-product of metabolism, to develop a novel approach of using pH (Low) Insertion Peptides (pHLIPs) for imaging of PDAC. We show that fluorescently labeled pHLIPs can localize and specifically detect PDAC in human xenografts as well as PDAC and PanIN lesions in genetically engineered mouse models. This novel approach may improve detection, differential diagnosis and staging of PDAC.

  11. 1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) Ethanone-Induced Cell Cycle Arrest in G1/G0 in HT-29 Cells Human Colon Adenocarcinoma Cells

    PubMed Central

    Lay, Ma Ma; Karsani, Saiful Anuar; Abd Malek, Sri Nurestri

    2014-01-01

    1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone (DMHE) was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry) and NMR (nuclear magnetic resonance) analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational) cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide) staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed. PMID:24451128

  12. 1-(2,6-dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone-induced cell cycle arrest in G₁/G₀ in HT-29 cells human colon adenocarcinoma cells.

    PubMed

    Lay, Ma Ma; Karsani, Saiful Anuar; Malek, Sri Nurestri Abd

    2014-01-01

    1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone (DMHE) was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry) and NMR (nuclear magnetic resonance) analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational) cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide) staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed. PMID:24451128

  13. Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action.

    PubMed

    Tamayo, Lenka V; Gouvea, Ligiane R; Sousa, Anna C; Albuquerque, Ronniel M; Teixeira, Sarah Fernandes; de Azevedo, Ricardo Alexandre; Louro, Sonia R W; Ferreira, Adilson Kleber; Beraldo, Heloisa

    2016-02-01

    Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.

  14. Trop-2 overexpression in poorly differentiated endometrial endometrioid adenocarcinoma: Implications for immunotherapy with hRS7, a humanized anti-Trop-2 monoclonal antibody

    PubMed Central

    Bignotti, Eliana; Ravaggi, Antonella; Romani, Chiara; Falchetti, Marcella; Lonardi, Silvia; Facchetti, Fabio; Pecorelli, Sergio; Varughese, Joyce; Cocco, Emiliano; Bellone, Stefania; Schwartz, Peter E.; Rutherford, Thomas J.; Santin, Alessandro D.

    2011-01-01

    Objective We evaluated the expression of human trophoblast cell-surface marker (Trop-2) in endometrial endometrioid carcinoma (EEC) and the potential application of hRS7, a humanized monoclonal anti-Trop-2 antibody, as a therapeutic agent against poorly-differentiated EEC. Methods Trop-2 expression was evaluated by immunohistochemistry in 131 EEC with different degrees of differentiation and 32 normal endometrial controls (NEC). Trop-2 expression was also evaluated by real-time polymerase-chain-reaction (qRT-PCR) and flow cytometry in 3 primary EEC cell lines derived from patients harboring poorly-differentiated EEC. Finally, sensitivity of G3 EEC cell lines to hRS7 antibody-dependent cellular-cytotoxicity (ADCC) was tested in standard 5-hours 51Cr-release assays. Results Trop-2 expression was detected in 126 of 131 (96.2%) EEC samples. Tumor tissues showed markedly increased Trop-2 positivity as compared to NEC (p=0.001). Trop-2 expression was significantly higher in all grades of EEC vs. NEC. G3 tumors displayed significantly stronger Trop-2 immunostaining compared to G1 EEC (p=0.01). High Trop-2 expression by qRT-PCR and flow cytometry was found in one G3 EEC primary cell line (EEC-ARK-1). Unlike Trop-2-negative EEC cell lines, EEC-ARK-1 was found highly sensitive to hRS7-mediated ADCC in vitro (range of killing: 33.9% to 50.6%) (p=0.004). Human serum did not significantly inhibit hRS7-mediated-cytotoxicity against EEC-ARK-1 (p= 0.773). Conclusions Trop-2 is highly expressed in EEC and its expression is significantly higher in poorly-differentiated EEC when compared to well-differentiated EEC. Primary G3 EEC overexpressing Trop-2 are highly sensitive to hRS7-mediated cytotoxicity in vitro. hRS7 may represent a novel therapeutic agent for the treatment of high-grade EEC refractory to standard treatment modalities. PMID:21892093

  15. Antiproliferative and Apoptosis Inducing Effects of Non-Polar Fractions from Lawsonia inermis L. in Cervical (HeLa) Cancer Cells.

    PubMed

    Kumar, Manish; Kaur, Paramjeet; Kumar, Subodh; Kaur, Satwinderjeet

    2015-04-01

    Two non-polar fractions viz. hexane (Hex-LI) and chloroform fraction (CHCl3-LI) of Lawsonia inermis were studied for their antiproliferative potential in various cancer cell lines viz. HeLa, MCF-7, A549 and C6 glioma cells. Both the fractions showed more than 60 % of growth inhibition in all the tested cell lines at highest tested concentration. In clonogenic assay, different concentrations of Hex-LI and CHCl3-LI decreased the number and size of colonies as compared to control in HeLa cells. The apoptotic effects as nuclear condensation, fragmentation were visualized with Hoechst-33342 staining of HeLa cells using confocal microscope. Both fractions induced apoptotic cell death in human cervical carcinoma (HeLa) cells as evident from flow cytometric analysis carried out using Annexin V-FITC and propidium iodide dyes. CHCl3-LI treated cells significantly induced apoptosis (25.43 %) in comparison to control. Results from Neutral Comet assay demonstrated that both fractions induced double stranded breaks (DSB's) in HeLa cells. Our data indicated that Hex-LI and CHCl3-LI treated cells showed significant increase of 32.2 and 18.56 % reactive oxygen species (ROS) levels in DCFH-DA assay respectively. Further, experimental studies to decipher exact pathway via which these fractions induce cell death are in progress.

  16. Constitutive hypophosphorylation of extracellular signal-regulated kinases-1/2 and down-regulation of c-Jun in human gastric adenocarcinoma

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Joe Yiu; Yu Le; Li Zhijie; Chu, Kent Man; Cho, C.H.

    2008-08-22

    Hyperphosphorylation of extracellular signal-regulated protein kinases-1/2 (ERK1/2) is known to promote cancer cell proliferation. We therefore investigated the constitutive phosphorylation levels of ERK1/2 and the expression of its downstream targets c-Fos, c-Jun, and cyclooxygenase-2 (COX-2) in biopsied human gastric cancer tissues. Results showed that ERK1/2 phosphorylation and c-Jun expression were significantly lowered in gastric cancer compared with the non-cancer adjacent tissues. The expression of c-Fos, however, was not altered while COX-2 was significantly up-regulated. To conclude, we demonstrate that hypophosphorylation of ERK1/2 may occur in gastric cancer. Such discovery may have implication in the application of pathway-directed therapy for this malignant disease.

  17. Comparative in vitro and in vivo evaluation of two 64Cu-labeled bombesin analogs in a mouse model of human prostate adenocarcinoma.

    PubMed

    Yang, Yi-Shan; Zhang, Xianzhong; Xiong, Zhengming; Chen, Xiaoyuan

    2006-04-01

    Bombesin (BBN), an analog of human gastrin-releasing peptide (GRP), binds to the GRP receptor (GRPR) with high affinity and specificity. Overexpression of GRPR has been discovered in mostly androgen-independent human prostate tissues and, thus, provides a potential target for prostate cancer diagnosis and therapy. We have previously demonstrated the feasibility of the positron emission tomography (PET) imaging using 64Cu-1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA)-[Lys3]BBN to detect GRPR-positive prostate cancer. In this study, we compared the receptor affinity, metabolic stability, tumor-targeting efficacy, and pharmacokinetics of a truncated BBN analog 64Cu-DOTA-Aca-BBN(7-14) with 64Cu-DOTA-[Lys3]BBN. Binding of each DOTA conjugate to GRPR on PC-3 and 22Rv1 prostate cancer cells was evaluated with competitive binding assay using 125I-[Tyr4]BBN as radioligand. In vivo pharmacokinetics was determined on male nude mice subcutaneously implanted with PC-3 cells. Dynamic microPET imaging was performed to evaluate the systemic distribution of the tracers. Metabolic stability of the tracers in blood, urine, tumor, liver and kidney was studied using high-performance liquid chromatography. The results showed that 125I-[Tyr4]BBN has a K(d) of 14.8+/-0.4 nM against PC-3 cells, and the receptor concentration on PC-3 cell surface is approximately 2.7+/-0.1 x 10(6) receptors per cell. The 50% inhibitory concentration value for DOTA-Aca-BBN(7-14) is 18.4 +/- 0.2 nM, and that for DOTA-[Lys3]BBN is 2.2 +/- 0.5 nM. DOTA-[Lys3]BBN shows a better tumor contrast and absolute tumor activity accumulation compared to DOTA-Aca-BBN(7-14). Studies on metabolic stability for both tracers on organ homogenates showed that 64Cu-DOTA-[Lys3]BBN is relatively stable. This study demonstrated that both tracers are suitable for targeted PET imaging to detect the expression of GRPR in prostate cancer, while 64Cu-DOTA-[Lys3]BBN may have a better potential for clinical translation.

  18. Effect of epidermal growth factor in HLA class I and class II transcription and protein expression in human breast adenocarcinoma cell lines.

    PubMed Central

    Bernard, D. J.; Courjal, F.; Maurizis, J. C.; Bignon, Y. J.; Chollet, P.; Plagne, R.

    1992-01-01

    The spontaneous expression of HLA class I and class II molecules in two human breast carcinoma cell lines (MCF7, T47D) and their modulation during epidermal growth factor treatment are reported. Transcription was analysed by Northern blot and hybridisation with HLA class II and class I cDNA specific probes. The expression of cell surface determinants was examined by internal protein labelling with 35s-methionine, immunoprecipitation with monoclonal antibodies specific for HLA class I or class II, followed by isolation of the immune complex on protein A-Sepharose; at least a quantification of glycoprotein was performed by chromatofocusing. Glycoprotein quantification showed a significant increase of HLA class I and class II (DR) antigen expression after stimulation by epidermal growth factor (0.02 microgram ml-1) in the two cell lines, when compared with untreated cell controls. However, with epidermal growth factor treatment of MCF7 and T47D cells, low increases in the amounts of HLA class I and class II RNA were obtained. These differences between expressed antigens and correspondent RNA amounts would be explained by the fact that EGF in these two cell lines acts more in post-transcription for HLA class I and class II antigens. Images Figure 1 PMID:1637682

  19. Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1α and caspase-3 mechanisms.

    PubMed

    Ye, Ming-Xiang; Zhao, Yi-Lin; Li, Yan; Miao, Qing; Li, Zhi-Kui; Ren, Xin-Ling; Song, Li-Qiang; Yin, Hong; Zhang, Jian

    2012-06-15

    Curcumin, a yellow pigment derived from Curcuma longa Linn, has been favored by the Eastern as dietary ingredients for centuries. During the past decade, extensive investigations have revealed curcumin sensitized various chemotherapeutic agents in human breast, colon, pancreas, gastric, liver, brain and hematological malignant disorders in vivo and in vitro. Several pathways and specific targets including NF-κB, STAT3, COX-2, Akt and multidrug resistant protein have been identified to facilitate curcumin as a chemosensitizer. Recent studies suggest HIF-1α participated in the development of drug resistance in cancer cells and targeting HIF-1α either by RNAi or siRNA successfully overcame chemotherapeutic resistance. To investigate the mechanism basis of curcumin as a chemosensitizer in lung cancer, we examined curcumin's effects on HIF-1α in cis-platin (DDP) sensitive A549 and resistant A549/DDP cell lines by RT-PCR and Western blot. HIF-1α in A549/DDP cells was found to be overexpressed at both mRNA and protein levels together with a poor response to DDP. Results from transient transfection and flow cytometry showed the HIF-1α abnormality contributed to DDP resistance in A549/DDP lung cancer cells. Combined curcumin and DDP treatment markedly inhibited A549/DDP cells proliferation, reversed DDP resistance and triggered apoptotic death by promoting HIF-1α degradation and activating caspase-3, respectively. Expression of HIF-1α-dependent P-gp also seemed to decrease as response to curcumin in a dose-dependent manner. Our findings shed light on drug resistant reversing effect of curcumin in lung cancer cells by inhibiting HIF-1α expression and activating caspase-3. PMID:22483553

  20. Comparison of oxycodone and morphine on the proliferation, apoptosis and expression of related molecules in the A549 human lung adenocarcinoma cell line

    PubMed Central

    Tian, Mi; Jin, Li; Li, Renqi; Zhu, Sihai; Ji, Muhuo; Li, Weiyan

    2016-01-01

    The present study aimed to compare the effects of oxycodone and morphine hydrochloride on the proliferation, apoptosis and migration of A549 lung cancer cells. A549 human lung cancer cells were cultured in vitro and treated with oxycodone or morphine at various concentrations (10, 20 and 40 µg/ml). Cell migration was determined using a wound healing assay, whereas apoptosis was detected using flow cytometry. Reverse transcription quantitative-polymerase chain reaction was performed in order to assess the apoptosis-related gene expression levels, including p53, B-cell lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax). The levels of vascular endothelial growth factor (VEGF) and urokinase-type plasminogen activator (uPA) were detected using enzyme-linked immunosorbent assays. The expression levels of intercellular cell adhesion molecule (ICAM)-1 were determined by immunofluorescence. In the present study, oxycodone and morphine induced apoptosis in A549 lung cancer cells with similar potency; however, >20 µg/ml oxycodone was more effective at inhibiting cell proliferation (P<0.05) and migration (P<0.05), as compared with morphine at the same concentration. Oxycodone induced a dose-dependent increase in the expression levels of p53 and Bax apoptosis-related genes, whereas it decreased the gene expression levels of Bcl-2. Furthermore, oxycodone decreased, whereas morphine increased, the expression levels of ICAM-1 in a concentration-dependent manner. In addition, at 40 µg/ml, the expression levels of VEGF and uPA in the morphine group were significantly higher than those demonstrated in the oxycodone group (P<0.05). In conclusion, oxycodone was more effective in inhibiting the proliferation and migration of A549 lung cancer cells, as compared with morphine. PMID:27446244

  1. Monitoring microRNAs using a molecular beacon in CD133+/ CD338+ human lung adenocarcinoma-initiating A549 cells.

    PubMed

    Yao, Quan; Sun, Jian-Guo; Ma, Hu; Zhang, An-Mei; Lin, Sheng; Zhu, Cong-Hui; Zhang, Tao; Chen, Zheng-Tang

    2014-01-01

    Lung cancer is the most common causes of cancer-related deaths worldwide, and a lack of effective methods for early diagnosis has greatly impacted the prognosis and survival rates of the affected patients. Tumor-initiating cells (TICs) are considered to be largely responsible for tumor genesis, resistance to tumor therapy, metastasis, and recurrence. In addition to representing a good potential treatment target, TICs can provide clues for the early diagnosis of cancer. MicroRNA (miRNA) alterations are known to be involved in the initiation and progression of human cancer, and the detection of related miRNAs in TICs is an important strategy for lung cancer early diagnosis. As Hsa-miR-155 (miR-155) can be used as a diagnostic marker for non-small cell lung cancer (NSCLC), a smart molecular beacon of miR-155 was designed to image the expression of miR-155 in NSCLC cases. TICs expressing CD133 and CD338 were obtained from A549 cells by applying an immune magnetic bead isolation system, and miR-155 was detected using laser-scanning confocal microscopy. We found that intracellular miR- 155 could be successfully detected using smart miR-155 molecular beacons. Expression was higher in TICs than in A549 cells, indicating that miR-155 may play an important role in regulating bio-behavior of TICs. As a non-invasive approach, molecular beacons could be implemented with molecular imaging to diagnose lung cancer at early stages.

  2. Spontaneous colonic adenocarcinoma in marmosets.

    PubMed

    Lushbaugh, C C; Humason, G L; Swartzendruber, D C; Richter, C B; Gengozian, N

    1978-01-01

    We find that colonic adenocarcinoma, which is an extremely rare neoplasm of all animals except man and carcinogen-treated rodents, occurs spontaneously in some marmosets. The cotton-topped Saguinus oedipus oedipus is particularly prone to develop it, but we have found it also at necropsy in Callimico goeldii (Goeldi's marmoset). Numerous metastases to regional lymph nodes develop. The cancers arise de novo in the mucosa and early invade the submucosa and lymphatic apparatus and paracolonic lymph nodes. These findings and the continuing occurrence of this cancer in our colony suggests that the marmoset may be the long-sought primate model for experimental intestinal carcinogenesis.

  3. Novel Therapeutics for Pancreatic Adenocarcinoma.

    PubMed

    Lowery, Maeve A; O'Reilly, Eileen M

    2015-08-01

    The last decade has seen significant developments in the use of combination systemic therapy for advanced pancreatic ductal adenocarcinoma (PDAC), with median survival approaching 1 year for select patients treated with FOLFIRINOX in the metastatic setting. However, it is sobering that these developments have been achieved with the use of traditional cytotoxics rather than from successes in the more modern fields of molecularly targeted therapies or immunotherapy. This article highlights several promising therapeutic approaches to PDAC currently under clinical evaluation, including immune therapies, molecularly targeted therapies, strategies for stromal depletion, and targeted therapy for genetically selected patients.

  4. Oncocytic adenocarcinoma of salivary glands.

    PubMed

    Goode, R K; Corio, R L

    1988-01-01

    Oncocytic adenocarcinoma of salivary gland origin is an extremely rare neoplasm. The diagnosis is established on the basis of oncocytic cellular features in conjunction with dysplastic change. These dysplastic changes may occur in benign oncocytomas or arise de novo. The tumor occurs most commonly in the parotid glands of persons over 60 years of age. Tumors that measure less than 2 cm at the initial surgical procedure appear to have a better prognosis than larger tumors. Aggressive surgical intervention at the initial presentation of the neoplasm, compared to simple enucleation, seems to offer a more favorable prognosis. Recurrence is an ominous feature. Metastasis, when it occurs, is widespread.

  5. Duodenal Adenocarcinoma Metastatic to the Breast

    PubMed Central

    Yu, Haibo; Song, Hongliang; Jiang, Yi

    2016-01-01

    Abstract Duodenal adenocarcinoma, a very rare malignant gastrointestinal tumor, mainly metastasizes via the lymphatic system. Metastases from duodenal adenocarcinomas to the breast are very uncommon. A 31-year-old woman presented at our department with a left breast tumor. She had a past medical history of duodenal adenocarcinoma. Physical examination on admission confirmed a 2.5-cm-diameter tumor in the outer lower quadrant of the left breast. Computed tomography (CT) examination showed a soft lesion with tissue-like density and enlarged axillary lymph nodes. Local excision was performed to remove the breast lesion. The findings of cytologic, histologic, and immunohistochemistry examination indicated a breast metastasis from the previous duodenal adenocarcinoma. The patient was treated with palliative chemotherapy. Metastases from duodenal adenocarcinoma to the breast are rare. The diagnosis depends on medical history, imaging, and pathologic examination including immunohistochemistry. An accurate diagnosis is important to avoid unnecessary surgery. PMID:26986146

  6. Advanced mucinous adenocarcinoma in pregnancy.

    PubMed

    Angioli, R; Yasin, S; Estape, R; Janicek, M; Adra, A; Sopo, C; Minhaj, M; Penalver, M

    1997-01-01

    The incidence of masses in pregnancy is estimated to occur in 1/81 to 1/2,500 pregnancies. The development of colorectal carcinoma during pregnancy is a more rare event, with less than 30 cases above the peritoneal reflection reported in the last 70 years. The differential diagnosis of mucinous adenocarcinoma of ovarian vs. gastrointestinal origin is often difficult. We report a pregnant patient affected by advanced colorectal cancer, who presented with an asymptomatic unilateral adnexal mass on ultrasound. A 28-year old woman was referred to our hospital after a routine ultrasound examination at 26 weeks gestation showing a right adnexal mass. At elective exploratory laparotomy, the patient was found to have metastatic mucinous adenocarcinoma. Diagnostic and treatment choices of such a cancer in a pregnant patient were explored. The final diagnosis of colorectal cancer was made only at the time of a subsequent emergency laparotomy. The goal of an obstetrician/gynecologist and other care givers of pregnant patients, is to achieve a healthy mother and child. Unfortunately, physicians may unwillingly sacrifice the health of the mother by denying or delaying her procedures or treatments simply because she is pregnant. It is especially important in the case of adnexal masses and their related pathology, due to the difficulty in detection and management of such cases during pregnancy, that doctors actively assume the responsibility of assuring that pregnant patients receive the proper care they need.

  7. Reovirus type 3 synthesizes proteins in interferon-treated HeLa cells without reversing the antiviral state.

    PubMed

    Feduchi, E; Esteban, M; Carrasco, L

    1988-06-01

    Treatment of HeLa cells with human lymphoblastoid interferon (IFN-alpha) does not inhibit reovirus type 3 protein synthesis during virus infection. In contrast, reovirus translation is blocked by treatment of L cells with mouse IFN-alpha. The (2'-5')A synthetase activity is induced in HeLa cells by IFN-alpha treatment and is activated after reovirus infection, since cell lysates from these cells synthesize in vitro (2'-5')A oligonucleotides. The IFN-induced protein kinase activity is also triggered in those lysates upon dsRNA addition. Thus, contrary to DNA-containing viruses, such as vaccinia virus or adenovirus, reovirus infection does not destroy or reverse the IFN-induced antiviral state. In support of this conclusion, superinfection with poliovirus or vesicular stomatitis virus of reovirus-infected HeLa cells treated with IFN leads only to a blockade of translation of the former viruses. These results provide a remarkable example where in the same cells doubly infected with two different viruses, the antiviral state induced by IFN-alpha is manifested by selectively inhibiting translation of one kind of virus (poliovirus or vesicular stomatitis virus) without affecting the translation of reovirus type 3. In addition, these results indicate that the resistance of reovirus translation to inhibition by IFN is different from the mechanism of resistance induced by DNA-containing viruses.

  8. Formation of Nup98-containing nuclear bodies in HeLa sublines is linked to genomic rearrangements affecting chromosome 11.

    PubMed

    Romana, Serge; Radford-Weiss, Isabelle; Lapierre, Jean-Michel; Doye, Valérie; Geoffroy, Marie-Claude

    2016-09-01

    Nup98 is an important component of the nuclear pore complex (NPC) and also a rare but recurrent target for chromosomal translocation in leukaemogenesis. Nup98 contains multiple cohesive Gly-Leu-Phe-Gly (GLFG) repeats that are critical notably for the formation of intranuclear GLFG bodies. Previous studies have reported the existence of GLFG bodies in cells overexpressing exogenous Nup98 or in a HeLa subline (HeLa-C) expressing an unusual elevated amount of endogenous Nup98. Here, we have analysed the presence of Nup98-containing bodies in several human cell lines. We found that HEp-2, another HeLa subline, contains GLFG bodies that are distinct from those identified in HeLa-C. Rapid amplification of cDNA ends (RACE) revealed that HEp-2 cells express additional truncated forms of Nup98 fused to a non-coding region of chromosome 11q22.1. Cytogenetic analyses using FISH and array-CGH further revealed chromosomal rearrangements that were distinct from those observed in leukaemic cells. Indeed, HEp-2 cells feature a massive amplification of juxtaposed NUP98 and 11q22.1 loci on a chromosome marker derived from chromosome 3. Unexpectedly, minor co-amplifications of NUP98 and 11q22.1 loci were also observed in other HeLa sublines, but on rearranged chromosomes 11. Altogether, this study reveals that distinct genomic rearrangements affecting NUP98 are associated with the formation of GLFG bodies in specific HeLa sublines.

  9. A Detailed Immunohistochemical Analysis of a Large Series of Cervical and Vaginal Gastric-type Adenocarcinomas.

    PubMed

    Carleton, Claire; Hoang, Lien; Sah, Shatrughan; Kiyokawa, Takako; Karamurzin, Yevgeniy S; Talia, Karen L; Park, Kay J; McCluggage, W Glenn

    2016-05-01

    Adenocarcinomas exhibiting gastric differentiation represent a recently described and uncommon subtype of non-human papillomavirus (HPV)-related cervical adenocarcinoma. They comprise a spectrum from a well-differentiated variant (adenoma malignum/mucinous variant of minimal deviation adenocarcinoma) to a more poorly differentiated overtly malignant form, generally referred to as gastric-type adenocarcinoma. Rarely, such tumors have also been described as primary vaginal neoplasms. Gastric-type adenocarcinomas exhibit considerable morphologic overlap with adenocarcinomas originating outside the female genital tract, especially mucinous adenocarcinomas arising in the pancreas and biliary tract. Moreover, they often metastasize to unusual sites, such as the ovary and peritoneum/omentum, where they can be mistaken for metastatic adenocarcinomas from other, nongynecologic sites. There is little information regarding the immunophenotype of gastric-type adenocarcinomas, and knowledge of this is important to aid in the distinction from other adenocarcinomas. In this study, we undertook a detailed immunohistochemical analysis of a large series of cervical (n=45) and vaginal (n=2) gastric-type adenocarcinomas. Markers included were cytokeratin (CK)7, CK20, CDX2, carcinoembryonic antigen, CA125, CA19.9, p16, estrogen receptor, progesterone receptor, MUC6, PAX8, PAX2, p53, hepatocyte nuclear factor 1 beta, carbonic anhydrase IX, human epidermal receptor 2 (HER2), and mismatch repair (MMR) proteins. All markers were classified as negative, focal (<50% of tumor cells positive), or diffuse (≥50% tumor cells positive) except for p53 (classified as "wild-type" or "mutation-type"), HER2 (scored using the College of American Pathologists guidelines for gastric carcinomas), and MMR proteins (categorized as retained or lost). There was positive staining with CK7 (47/47-45 diffuse, 2 focal), MUC6 (17/21-6 diffuse, 11 focal), carcinoembryonic antigen (25/31-12 diffuse, 13 focal

  10. Lessons from HeLa Cells: The Ethics and Policy of Biospecimens.

    PubMed

    Beskow, Laura M

    2016-08-31

    Human biospecimens have played a crucial role in scientific and medical advances. Although the ethical and policy issues associated with biospecimen research have long been the subject of scholarly debate, the story of Henrietta Lacks, her family, and the creation of HeLa cells captured the attention of a much broader audience. The story has been a catalyst for policy change, including major regulatory changes proposed in the United States surrounding informed consent. These proposals are premised in part on public opinion data, necessitating a closer look at what such data tell us. The development of biospecimen policy should be informed by many considerations-one of which is public input, robustly gathered, on acceptable approaches that optimize shared interests, including access for all to the benefits of research. There is a need for consent approaches that are guided by realistic aspirations and a balanced view of autonomy within an expanded ethical framework. PMID:26979405

  11. Identification of Differentiation-Related Proteins in Gastric Adenocarcinoma Tissues by Proteomics.

    PubMed

    Zhou, Xin; Yao, Kun; Zhang, Lang; Zhang, Ying; Han, Yin; Liu, Hui-Ling; Liu, Xiang-Wen; Su, Gang; Yuan, Wen-Zhen; Wei, Xiao-Dong; Guan, Quan-Lin; Zhu, Bing-Dong

    2016-10-01

    There is a significant correlation between the degree of tumor differentiation and the survival of patients with gastric cancers. In this report, we compared proteomic differences between poorly differentiated gastric adenocarcinoma tissues and well-differentiated gastric adenocarcinoma tissues in order to identify differentiation-related proteins that may be closely correlated with differentiation of gastric cancer pathogenesis. We identified 7 proteins, of which calreticulin precursor, tapasinERP57 heterodimer, pyruvate kinase isozymes M1/M2 isoform M2, class Pi glutathione S-transferase, and chain A crystal structure of human enolase 1 were upregulated in poorly differentiated gastric adenocarcinoma compared with well-differentiated gastric adenocarcinoma, while myosin-11 isoform SM2A and actin alpha cardiac were downregulated. Two of them, pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 are enzymes involved in glycolytic pathway. The upregulation of pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 in poorly differentiated gastric adenocarcinoma was confirmed by Western blotting and immunohistochemistry. Furthermore, we observed 107 cases with gastric adenocarcinoma and found that the high expression of pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 correlates with tumor size (P = .0001 and P = .0017, respectively), depth of invasion (P = .0024 and P = .0261, respectively), and poor prognosis of patients. In conclusion, with this proteomic analysis, pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 were identified upregulated in poorly differentiated gastric adenocarcinoma comparing with well-differentiated gastric adenocarcinoma. The expression level of pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 was significantly correlated with overall survival. Some of them would be differentiation-related cancer biomarkers and are associated with tumor metastasis, invasion, and prognosis. PMID:27624754

  12. MLN0264 in Previously Treated Asian Patients With Advanced Gastrointestinal Carcinoma or Metastatic or Recurrent Gastric or Gastroesophageal Junction Adenocarcinoma Expressing Guanylyl Cyclase C

    ClinicalTrials.gov

    2016-06-03

    Advanced Gastrointestinal Carcinoma; Gastroesophageal Junction Adenocarcinoma; Recurrent Gastric Adenocarcinoma; Recurrent Gastroesophageal Junction Adenocarcinoma; Metastatic Gastric Adenocarcinoma; Metastatic Gastroesophageal Junction Adenocarcinoma; Recurrent Gastrointestinal Carcinoma

  13. Representing life as opposed to being: the bio-objectification process of the HeLa cells and its relation to personalized medicine

    PubMed Central

    Svalastog, Anna Lydia; Martinelli, Lucia

    2013-01-01

    The immortal HeLa cells case is an intriguing example of bio-objectification processes with great scientific, social, and symbolic impacts. These cells generate questions about representation, significance, and value of the exceptional, variety, individuality, and property. Of frightening (a lethal cancer) and emarginated (a black, poor woman) origins, with their ability to “contaminate” cultures and to “spread” into spaces for becoming of extraordinary value for human knowledge, well-being, and economy advancements, HeLa cells have represented humanity, and emphasized the importance of individual as a core concept of the personalized medicine. Starting from the process leading from HeLa “cells” to HeLa “bio-objects,” we focus on their importance as high quality bio-specimen. We discuss the tension between phenomenological characteristic of fundamental biological research and the variety of material and methodologies in epidemiology and personalized medicine. The emerging methodologies and societal changes reflect present EU policies and lead toward a new paradigm of science. PMID:23986283

  14. [Alpha Fetoprotein-producing Lung Adenocarcinoma].

    PubMed

    Komori, Kazuyuki; Tabata, Toshiharu; Sato, Kimiaki; Katsumata, Hiroshi; Minowa, Muneo; Kondo, Takashi

    2015-11-01

    We report a case of alpha fetoprotein (AFP) -producing lung adenocarcinoma. A 53-year-old man was referred to our hospital due to right pneumothorax. Computed tomography showed right moderate pneumothorax, a solid tumor in the upper lobe (S3) and mediastinal lymph node swelling. The serum AFP level was as high as 223.0 ng/ml. Frozen examination revealed a low-differentiated adenocarcinoma. Based on the pathological and immunohistochemical findings, the tumor was diagnosed as AFP-producing lung adenocarcinoma.

  15. Colorectal adenocarcinoma in Crohn's disease.

    PubMed Central

    Ribeiro, M B; Greenstein, A J; Sachar, D B; Barth, J; Balasubramanian, S; Harpaz, N; Heimann, T M; Aufses, A H

    1996-01-01

    OBJECTIVE: The authors' aim was to review the clinical features and estimate the long-term survival of patients with colorectal carcinoma complicating Crohn's disease. SUMMARY BACKGROUND DATA: Recent studies have demonstrated a significantly increased risk of colorectal carcinoma in patients with Crohns disease. METHODS: The authors reviewed retrospectively the medical records of 30 patients with Crohn's disease admitted to The Mount Sinai Hospital between 1960 and 1989 in whom colorectal adenocarcinoma developed. All patients were operated on and follow-up was complete for all patients to 10 years after operation, to the time of death, or to the closing date of the study in December 1989. RESULTS: The 30 patients in the series had 33 colorectal adenocarcinomas; three patients (10%) presented with two synchronous cancers. The patients were relatively young (mean age, 53 years) and had long-standing Crohn's disease (duration >20 years in 87%). The 5-year actuarial survival was 44% for the overall series: 100% for stage A, 86% for stage B, 60% for stage C. All five patients with excluded bowel tumor died of large bowel cancer within 2.4 years; by contrast, the actuarial 5-year survival for patients with in-continuity tumors was 56%. CONCLUSIONS: The incidence, characteristics, and prognosis of colorectal carcinoma complicating Crohn's disease are similar to the features of cancer in ulcerative colitis, including young age, multiple neoplasms, long duration of disease, and greater than a 50% 5-year survival rate (without excluded loops). These observations suggest the advisability of surveillance programs for Crohn's disease of the colon similar to those for ulcerative colitis of comparable duration and extent. PMID:8597513

  16. Current status of novel agents in advanced gastroesophageal adenocarcinoma

    PubMed Central

    Kothari, Nishi

    2015-01-01

    Gastroesophageal (GE) adenocarcinomas are highly lethal malignancies and despite multiple chemotherapy options, 5-year survival rates remain dismal. Chemotherapy is the mainstay of treatment but patients are often limited by toxicity and poor performance status. Because of molecular heterogeneity, it is essential to classify tumors based on the underlying oncogenic pathways and develop targeted therapies that act on individual tumors. Trastuzumab, a human epidermal growth factor receptor type 2 (HER2) monoclonal antibody, was the first such agent shown to improve response rate, progression free survival (PFS), and overall survival (OS) when added to cisplatin based chemotherapy in patients with HER2 over-expressing GE junction (GEJ) and gastric adenocarcinomas. However, HER2 over expressing GE tumors are in the minority and the need for additional targeted agents is urgent. Though many agents are in development, incorporating targeted therapy in the treatment of GE cancers comes with a unique set of challenges. In this review, we outline oncogenic pathways relevant to GE adenocarcinomas, including HER2, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), hepatocyte growth factor (HGF), and c-Met, and discuss recent trials with agents targeting these pathways. PMID:25642339

  17. From reflux esophagitis to Barrett's esophagus and esophageal adenocarcinoma.

    PubMed

    Wang, Rui-Hua

    2015-05-01

    The occurrence of gastroesophageal reflux disease is common in the human population. Almost all cases of esophageal adenocarcinoma are derived from Barrett's esophagus, which is a complication of esophageal adenocarcinoma precancerous lesions. Chronic exposure of the esophagus to gastroduodenal intestinal fluid is an important determinant factor in the development of Barrett's esophagus. The replacement of normal squamous epithelium with specific columnar epithelium in the lower esophagus induced by the chronic exposure to gastroduodenal fluid could lead to intestinal metaplasia, which is closely associated with the development of esophageal adenocarcinoma. However, the exact mechanism of injury is not completely understood. Various animal models of the developmental mechanisms of disease, and theoretical and clinical effects of drug treatment have been widely used in research. Recently, animal models employed in studies on gastroesophageal reflux injury have allowed significant progress. The advantage of using animal models lies in the ability to accurately control the experimental conditions for better evaluation of results. In this article, various modeling methods are reviewed, with discussion of the major findings on the developmental mechanism of Barrett's esophagus, which should help to develop better prevention and treatment strategies for Barrett's esophagus.

  18. Catumaxomab for Treatment of Peritoneal Carcinomatosis in Patients With Gastric Adenocarcinomas

    ClinicalTrials.gov

    2016-10-13

    Gastric Adenocarcinoma With Peritoneal Carcinomatosis; Siewert Type II Adenocarcinoma of Esophagogastric Junction With Peritoneal Carcinomatosis; Siewert Type III Adenocarcinoma of Esophagogastric Junction With Peritoneal Carcinomatosis

  19. Stable tRNA precursors in HeLa cells.

    PubMed Central

    Harada, F; Matsubara, M; Kato, N

    1984-01-01

    Two tRNA precursors were isolated from 32P-labeled or unlabeled HeLa cells by two dimensional polyacrylamide gel electrophoresis, and were sequenced. These were the precursors of tRNAMet and tRNALeu, and both contained four extra nucleotides including 5'-triphosphates at their 5'-end and nine extra nucleotides including oligo U at their 3'-end. These RNAs are the first naturally occurring tRNA precursors from higher eukaryotes whose sequences have been determined. In these molecules, several modified nucleosides such as m2G, t6A and ac4C in mature tRNAs were undermodified. Two additional hydrogen bonds were formed in the clover leaf structures of these tRNA precursors. These extra hydrogen bonds may be responsible for the stabilities of these tRNA precursors. Images PMID:6514577

  20. Heparin-mediated inhibition of Chlamydia psittaci adherence to HeLa cells.

    PubMed

    Gutiérrez-Martín, C B; Ojcius, D M; Hsia, R; Hellio, R; Bavoil, P M; Dautry-Varsat, A

    1997-01-01

    The adherence of human strains of Chlamydia trachomatis has been recently shown to be inhibitable by heparin and heparitinase, leading to the proposal that Chlamydia binding to host cells may be mediated by a glycosaminoglycan (GAG)-dependent mechanism. We here describe the adherence of the guinea-pig pathogen, Chlamydia psittaci GPIC, to HeLa cells, which was measured by cytofluorometry with chlamydiae whose DNA was fluorescently labelled. Adherence could be inhibited by heat or trypsin pretreatment of the bacteria, and binding was much faster at 37 degrees C (reaching a plateau within 1 h) than 4 degrees C. Little binding remained when host cells were pre-fixed with paraformaldehyde, suggesting that host cell receptor mobility may be required for effective adherence. Visualization by confocal microscopy confirmed that the bacteria were at or near the host cell surface during the entire time-course of these experiments. Adherence increased as a function of pH between pH 6 and pH 8.0-8.5. Both adherence and infection of HeLa cells could be inhibited with heparin when the adherence step was performed at 4 degrees C, but only infection was inhibited when the adherence step was performed at 37 degrees C, even though heparitinase could block adherence at either 4 degrees C or 37 degrees C. Even at 4 degrees C, heparin-mediated inhibition was significantly lower at pH 8 than pH 7.4, suggesting that GAG-independent mechanisms may play a role in the higher adherence observed at basic pH. These results therefore demonstrate that a GAG-dependent adherence step may be operative in C. psittaci, and raise the possibility that other adherence mechanisms may also contribute to binding by this chlamydial strain. Furthermore, they suggest that there may not be a strict correlation between C. psittaci adherence and the ability to cause productive infections.

  1. Effects of Yeast and Bacterial Commensals and Pathogens of the Female Genital Tract on the Transepithelial Electrical Resistance of HeLa Cells.

    PubMed

    Tsata, Vassiliki; Velegraki, Aristea; Ioannidis, Anastasios; Poulopoulou, Cornelia; Bagos, Pantelis; Magana, Maria; Chatzipanagiotou, Stylianos

    2016-01-01

    Commensals of the human body can shift to a pathogenic phase when the host immune system is impaired. This study aims to investigate the effect of seven yeast and two bacterial commensals and opportunistic pathogens isolated from blood and the female genital tract on the transepithelial electrical resistance (TER) of human cervical epithelial cell cultures (HeLa). The pathogens Candida tropicalis, C. parapsilosis, C. glabrata, C. krusei, C. albicans and Saccharomyces cerevisiae, caused a significant decrease in TER as compared to the controls; Lactobacillus spp caused a significant increase in TER versus the controls and Escherichia coli had no effect on the TER of the cell monolayers. The above data show that Candida spp., S. cerevisiae and Lactobacillus spp. have a non-selective effect on the TER of HeLa cell monolayers. These results are consistent with the in vivo non-selective action of these microorganisms on the various human mucosal epithelia. PMID:27335621

  2. Juglans mandshurica Maxim extracts exhibit antitumor activity on HeLa cells in vitro.

    PubMed

    Xin, Nian; Hasan, Murtaza; Li, Wei; Li, Yan

    2014-04-01

    The present study examined the potential application of Juglans mandshurica Maxim extracts (HT) for cancer therapy by assessing their anti‑proliferative activity, reduction of telomerase activity, induction of apoptosis and cell cycle arrest in S phase in HeLa cells. From the perspective of using HT as a herbal medicine, photomicroscopy and florescent microscopy techniques were utilized to characterize the effect of the extracts on telomerase activity and cell morphology. Flow cytometry was employed to study apoptosis and cell cycle of HeLa cells, and DNA laddering was performed. The results showed that HT inhibited cell proliferation and telomerase activity, induced apoptosis and caused S phase arrest of HeLa cells in vitro. HT inhibited HeLa cell proliferation significantly, and the highest inhibition rate was 83.7%. A trap‑silver staining assay showed that HT was capable of markedly decreasing telomerase activity of HeLa cells and this inhibition was enhanced in a time‑ and dose‑dependent manner. Results of a Hoechst 33258 staining assay showed that HeLa cells treated by HT induced cell death. Through DNA agarose gel electrophoresis, DNA ladders of HeLa cells treated with HT were observed, indicating apoptosis. In conclusion, the present study demonstrated that HT exhibited anti‑tumor effects comprising the inhibition of growth and telomerase activity as well as apoptosis and cell cycle arrest in HeLa cells.

  3. pH changes during in vitro adherence of Escherichia coli to HeLa cells.

    PubMed Central

    McCabe, K; Mann, M D; Bowie, M D

    1994-01-01

    Escherichia coli-induced acidic pH conditions were observed during the in vitro adherence of E. coli to HeLa cells. No pH changes occurred in the absence of adherence. This suggests that adherence affects the function or interaction of HeLa cells and E. coli. PMID:7927801

  4. From HeLa cell division to infectious diarrhoea

    SciTech Connect

    Stephen, J.; Osborne, M.P.; Spencer, A.J.; Warley, A. )

    1990-09-01

    Hela S3 cells were grown in suspension both randomly and, synchronously using hydroxyurea which blocks cells at the G1/S interface. Cryosections were prepared, freeze-dried and analyzed by X-ray microanalysis. As cells moved into S and through M phases (Na) and (Cl) increased; both returned to normal levels upon re-entering G1 phase. The Na/K ratio was 1:1 in G1 phase. Infection of HeLa S3 cells in G1 phase with vaccinia virus resulted in no change in intracellular (Na). Infection of neonatal mice with murine rotavirus was localized to villus tip enterocytes and gave rise to diarrhoea which was maximal at 72h post-infection (p.i.). Diarrhoea was preceded by ischemia of villi (18-42h p.i.) and villus shortening (maximal at 42h p.i.), and was also coincident with a dramatic regrowth of villi. At 48h p.i. a proliferative zone of electron lucent cells was observed in villus base regions. Cryosections of infected gut, taken before, during, and after infection, together with corresponding age-matched controls, were freeze-dried and analysed by X-ray microanalysis. At 48h p.i. electron lucent villus base cells were shown to be more hydrated, and, to contain higher levels of both Na and Cl and lower levels of P, S, K and Mg than corresponding control cells. These studies increase confidence in the use of X-ray microanalysis in studying biological systems, provide some insight into the process of cell division, and constitute the basis of a new concept of diarrhoeal secretion.27 references.

  5. Two new neolignans from Patrinia scabra with potent cytotoxic activity against HeLa and MNK-45 cells.

    PubMed

    Di, Lei; Yan, Guo-Qing; Wang, Ling-Yu; Ma, Wei; Wang, Kai-Jin; Li, Ning

    2013-10-01

    Two new neolignans, patrineolignan A (1) and patrineolignan B (2), together with seven known lignans, were isolated from the 90 % aqueous EtOH extract of the roots of Patrinia scabra. Their structures were elucidated on the basis of spectroscopic data (HRESIMS, IR, 1D and 2D NMR) and comparison with literature data. The two new neolignans were evaluated in vitro for cytotoxic properties against human cervical carcinoma HeLa cell line and gastric carcinoma MNK-45 cell line using the microculture tetrazolium assay, and both 1 and 2 exhibited strongly cytotoxic activity against the two tumor cell lines. PMID:23737105

  6. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 (2.).

    PubMed

    Lin, Yue; Yang, Linlin; Yue, Guiyin; Chen, Lifen; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-10-01

    Telomerase is one of the most common markers of human malignant tumors, such as uterine, stomach, esophageal, breast, colorectal, laryngeal squamous cell, thyroid, bladder, and so on. It is necessary to develop some sensitive but convenient detection methods for telomerase activity determination. In this study, a label-free and ultrasensitive electrochemiluminescence (ECL) biosensor has been fabricated to detect the activity of telomerase extracted from HeLa cells. Thiolated telomerase substrate (TS) primer was immobilized on the gold electrode surface through gold-sulfur (Au-S) interaction and then elongated by telomerase specifically. Then, it was hybridized with complementary DNA to form double-stranded DNA (dsDNA) fragments on the electrode surface, and Ru(phen)3 (2+) has been intercalated into the dsDNA grooves to act as the ECL probe. The enhanced ECL intensity has a linear relationship with the number of HeLa cells in the range of 5∼5000 and with a detection limit of 2 HeLa cells. The proposed ECL biosensor has high specificity to telomerase in the presence of common interferents. The relative standard deviations (RSDs) were <5 % at 100 HeLa cells. The proposed method provides a convenient approach for telomerase-related cancer screening or diagnosis.

  7. Protein profiling of alpha-fetoprotein producing gastric adenocarcinoma

    PubMed Central

    He, Liang; Ye, Fei; Qu, Linlin; Wang, Daguang; Cui, Miao; Wei, Chengguo; Xing, Yanpeng; Lee, Peng; Suo, Jian; Zhang, David Y.

    2016-01-01

    Alpha-fetoprotein (AFP) producing gastric adenocarcinoma is considered as a rare subtype of gastric adenocarcinoma. Compared with AFP non-producing gastric adenocarcinoma, our study and other previous studies showed that AFP producing gastric adenocarcinoma is more aggressive and prone to liver metastasis. Using the Protein Pathway Array, 11 of out of 286 proteins tested were found to be differentially expressed between AFP producing (n=32) and AFP non-producing (n=45) gastric adenocarcinoma tissues. In addition, the high level expression of XIAP and IGF-Irβ in gastric adenocarcinoma tissues was independent factors for poor prognosis in AFP producing gastric adenocarcinoma patients. A risk model based on the XIAP and IGF-Irβ expression levels can separate AFP producing gastric adenocarcinoma patients into 2 subgroups and each subgroup had a distinct set of signaling pathways involved. In conclusion, AFP producing gastric adenocarcinoma is a heterogeneous cancer with different clinical outcomes, biological behaviors and underlying molecular alterations. PMID:27057629

  8. Hepatoma-derived growth factor upregulation is correlated with prognostic factors of early-stage cervical adenocarcinoma.

    PubMed

    Tsai, Ching-Chou; Huang, Shun-Chen; Tai, Ming Hong; Chien, Chan-Chao Chang; Huang, Chao-Cheng; Hsu, Yi-Chiang

    2014-11-21

    Hepatoma-derived growth factor (HDGF) is a unique nuclear/growth factor that plays an important role in the progression of different types of cancer. A total of 63 patients with early-stage cervical adenocarcinoma (Cx) were enrolled in this retrospective study. The expression of HDGF was significantly increased compared with adjacent non-tumor tissue samples (p < 0.001). Moreover, elevated nuclear HDGF levels were correlated with lymph-vascular space invasion (LVSI; p < 0.05), lymph node metastasis (LNM; p < 0.001), recurrence (p < 0.001) and advanced grade (AG; p < 0.001). The growth of cervical cancer cells (Hela cells) was enhanced by HDGF treatment. The HDGF mRNA and protein level were significantly higher in malignant cervical cancer cells compared with primary ones. By adenovirus gene delivery, HDGF overexpression enhanced, whereas HDGF knockdown perturbed the tumorigenic behaviors of cervical cancer cells. HDGF overexpression is common in early-stage cervical adenocarcinoma and is involved in the carcinogenesis of cervical adenocarcinoma. Cytoplasmic HDGF expression is strongly correlated with pelvic lymph node metastasis and recurrence, indicating that HDGF may serve as a novel prognostic marker for patients with Cx.

  9. Oncogenic role of epithelial cell transforming sequence 2 in lung adenocarcinoma cells

    PubMed Central

    Tan, Hongyi; Wang, Xiaoshan; Yang, Xiaogang; Li, Haitao; Liu, Ben; Pan, Pinhua

    2016-01-01

    Lung adenocarcinoma, which is the most common non-small cell lung cancer, is the leading cause of death from cancer worldwide. Epithelial cell transforming sequence 2 (ECT2) is frequently upregulated and acts as an oncogene in various human cancers. In addition, ECT2 was reported to be upregulated in early stage lung adenocarcinoma. However, the detailed role of ECT2 in mediating the malignant phenotypes of lung adenocarcinoma cells has not previously been elucidated. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to examine ECT2 mRNA and protein expression levels, respectively. MTT, wound healing and Transwell assays were conducted to determine cell proliferation, migration and invasion abilities, respectively. In the present study, ECT2 was significantly upregulated in lung adenocarcinoma cell lines (H650, EKVX, HCC4006, HCC827, HCC2935, Hop62 and A549), as compared with a normal lung epithelial cell line (BEAS-2B). Moreover, knockdown of ECT2, induced by transfection with ECT2 siRNA, significantly inhibited the proliferation of lung adenocarcinoma A549 cells, whereas overexpression of ECT2 enhanced A549 cell proliferation. Furthermore, knockdown of ECT2 expression suppressed the migration and invasion of A549 cells, whereas overexpression of ECT2 enhanced the migration and invasion abilities of A549 cells. Notably, inhibition of ECT2 also suppressed the expression levels of N-cadherin and vimentin, whereas it enhanced the expression level of E-cadherin, indicating that ECT2 is associated with the epithelial-mesenchymal transition in A549 cells. On the contrary, overexpression of ECT2 enhanced the expression levels of N-cadherin and vimentin, whereas it reduced the expression level of E-cadherin in A549 cells. In conclusion, the results of the present study suggest that ECT2 has an oncogenic role in lung adenocarcinoma cells. Therefore, ECT2 may be a potential novel target for the treatment of lung adenocarcinoma.

  10. CDX-2 Expression in Primary Lung Adenocarcinoma.

    PubMed

    Cowan, Morgan L; Li, Qing K; Illei, Peter B

    2016-01-01

    Adenocarcinoma with enteric differentiation is a rare subtype of lung adenocarcinoma that is recognized as a variant type of primary adenocarcinoma in the 2015 World Health Organization classification of lung tumors. Published immunohistochemistry studies show variable staining pattern for CDX-2 ranging from positivity in 71% of the cases to no staining. As little is known about CDX-2 expression in lung adenocarcinomas lacking histologic features of enteric differentiation, our aim was to determine the rate of CDX-2 positivity in non-enteric-type lung adenocarcinomas. We performed immunohistochemistry for CDX-2, CK7, CK20, TTF-1, napsin A, and p40 using 4-μm sections of a previously constructed tissue microarray containing 93 primary lung adenocarcinomas that lack morphologic evidence of enteric differentiation. The cohort included 22 well, 54 moderately, and 17 poorly differentiated tumors (55 female, 38 male; age range: 42 to 86, median: 64.5). All 93 tumors were strongly CK7 positive, whereas variable CK20 staining was seen in 4 tumors (1 strong, 1 moderate, and 2 focal). Both TTF-1 and napsin A were positive in 81 of 93 (87%) tumors with only 6 of 93 (6.5%) tumors negative for both the markers. Eleven tumors were CDX-2 positive (5 strong, 3 moderate, and 3 weak), all of which were also TTF-1 and napsin A positive and p40 negative. One CDX-2-positive tumor showed focal CK20 staining. Mutation studies for EGFR/K-ras/ALK were performed in four CDX-2-positive tumors and detected a K-ras mutation in one of them. CDX-2 positivity can be seen in a subset (12%) of lung adenocarcinoma. These tumors are CK7, TTF-1, and napsin A positive and p40 negative. Focal CK20 staining is only seen in rare cases. CDX-2 positivity should not be used as the only criteria to exclude lung origin. PMID:26469326

  11. CDX-2 Expression in Primary Lung Adenocarcinoma.

    PubMed

    Cowan, Morgan L; Li, Qing K; Illei, Peter B

    2016-01-01

    Adenocarcinoma with enteric differentiation is a rare subtype of lung adenocarcinoma that is recognized as a variant type of primary adenocarcinoma in the 2015 World Health Organization classification of lung tumors. Published immunohistochemistry studies show variable staining pattern for CDX-2 ranging from positivity in 71% of the cases to no staining. As little is known about CDX-2 expression in lung adenocarcinomas lacking histologic features of enteric differentiation, our aim was to determine the rate of CDX-2 positivity in non-enteric-type lung adenocarcinomas. We performed immunohistochemistry for CDX-2, CK7, CK20, TTF-1, napsin A, and p40 using 4-μm sections of a previously constructed tissue microarray containing 93 primary lung adenocarcinomas that lack morphologic evidence of enteric differentiation. The cohort included 22 well, 54 moderately, and 17 poorly differentiated tumors (55 female, 38 male; age range: 42 to 86, median: 64.5). All 93 tumors were strongly CK7 positive, whereas variable CK20 staining was seen in 4 tumors (1 strong, 1 moderate, and 2 focal). Both TTF-1 and napsin A were positive in 81 of 93 (87%) tumors with only 6 of 93 (6.5%) tumors negative for both the markers. Eleven tumors were CDX-2 positive (5 strong, 3 moderate, and 3 weak), all of which were also TTF-1 and napsin A positive and p40 negative. One CDX-2-positive tumor showed focal CK20 staining. Mutation studies for EGFR/K-ras/ALK were performed in four CDX-2-positive tumors and detected a K-ras mutation in one of them. CDX-2 positivity can be seen in a subset (12%) of lung adenocarcinoma. These tumors are CK7, TTF-1, and napsin A positive and p40 negative. Focal CK20 staining is only seen in rare cases. CDX-2 positivity should not be used as the only criteria to exclude lung origin.

  12. Irinotecan, Cisplatin, and Bevacizumab in Treating Patients With Unresectable or Metastatic Gastric or Gastroesophageal Junction Adenocarcinoma

    ClinicalTrials.gov

    2013-06-03

    Adenocarcinoma of the Gastroesophageal Junction; Diffuse Adenocarcinoma of the Stomach; Intestinal Adenocarcinoma of the Stomach; Mixed Adenocarcinoma of the Stomach; Recurrent Gastric Cancer; Stage IIIA Gastric Cancer; Stage IIIB Gastric Cancer; Stage IIIC Gastric Cancer; Stage IV Gastric Cancer

  13. Ramucirumab as second-line treatment for patients with metastatic esophagogastric adenocarcinoma.

    PubMed

    Hofheinz, Ralf-Dieter; Lorenzen, Sylvie

    2015-06-01

    Ramucirumab is a fully humanized monoclonal antibody targeting the extracellular domain of the VEGF receptor 2. It prevents ligand binding to VEGF receptor 2 and receptor-mediated pathway activation in endothelial cells. After promising Phase I trial results in a variety of tumor types, two pivotal placebo-controlled Phase III trials conducted in patients with pretreated metastatic esophagogastric adenocarcinoma demonstrated significant clinical activity regarding the prolongation of overall survival both as monotherapy (REGARD study) and in combination with paclitaxel (RAINBOW study). Currently, ramucirumab is being investigated in the first-line treatment of esophagogastric adenocarcinoma in combination with capecitabine and cisplatin in a Phase III trial (RAINFALL).

  14. Axitinib affects cell viability and migration of a primary foetal lung adenocarcinoma culture.

    PubMed

    Menna, Cecilia; De Falco, Elena; Pacini, Luca; Scafetta, Gaia; Ruggieri, Paola; Puca, Rosa; Petrozza, Vincenzo; Ciccone, Anna Maria; Rendina, Erino Angelo; Calogero, Antonella; Ibrahim, Mohsen

    2014-01-01

    Fetal lung adenocarcinoma (FLAC) is a rare variant of lung adenocarcinoma. Studies regarding FLAC have been based only on histopathological observations, thus representative in vitro models of FLAC cultures are unavailable. We have established and characterized a human primary FLAC cell culture, exploring its biology, chemosensitivity, and migration. FLAC cells and specimen showed significant upregulation of VEGF165 and HIF-1α mRNA levels. This observation was confirmed by in vitro chemosensitivity and migration assay, showing that only Axitinib was comparable to Cisplatin treatment. We provide a suitable in vitro model to further investigate the nature of this rare type of cancer. PMID:24380379

  15. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    PubMed

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  16. Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry.

    PubMed

    Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ashraf, Sumara; Ahmad, Shakil; Ikram, Masroor

    2015-05-01

    Mueller matrix polarimetry along with polar decomposition algorithm was employed for the characterization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral range (425-725 nm). Six derived polarization metrics [total diattenuation (DT ), retardance (RT ), depolarization(ΔT ), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adenocarcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma samples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polarization properties spectra (ΔT , ΔL, RT ,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DTa nd DL showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination of polarization analysis and given classification methods provides a framework to distinguish the normal and cancerous tissues. PMID:26021717

  17. Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ashraf, Sumara; Ahmad, Shakil; Ikram, Masroor

    2015-05-01

    Mueller matrix polarimetry along with polar decomposition algorithm was employed for the characterization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral range (425-725 nm). Six derived polarization metrics [total diattenuation (DT), retardance (RT), depolarization (ΔT), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adenocarcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma samples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polarization properties spectra (ΔT, ΔL, RT,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DT and D showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination of polarization analysis and given classification methods provides a framework to distinguish the normal and cancerous tissues.

  18. The Trk tyrosine kinase inhibitor K252a regulates growth of lung adenocarcinomas.

    PubMed

    Perez-Pinera, P; Hernandez, T; García-Suárez, O; de Carlos, F; Germana, A; Del Valle, M; Astudillo, A; Vega, J A

    2007-01-01

    The neurotrophin family of growth factors and their receptors support the survival of several neuronal and non-neuronal cell populations during embryonic development and adult life. Neurotrophins are also involved in malignant transformation. To seek the role of neurotrophin signaling in human lung cancer we studied the expression of neurotrophin receptors in human lung adenocarcinomas and investigated the effect of the neurotrophin receptor inhibitor K252a in A549 cell survival and colony formation ability in soft agar. We showed that human lung adenocarcinomas express TrkA and TrkB, but not TrkC; A549 cells, derived from a human lung adenocarcinoma, express mRNA transcripts encoding nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), TrkA, TrkB, and p75, and high protein levels of TrkA and TrkB. Stimulation of cells using NGF or BDNF activates the anti-apoptotic protein Akt. Interestingly, inhibition of neurotrophin receptor signaling using K252a prevents Akt activation in response to NGF or BDNF, induces apoptotic cell death, and diminishes the ability of A549 cells to growth in soft agar. The data suggest that neurotrophin signaling inhibition using k252a may be a valid therapy to treat patients with lung adenocarcinomas.

  19. Co-encapsulation of chrysophsin-1 and epirubicin in PEGylated liposomes circumvents multidrug resistance in HeLa cells.

    PubMed

    Lo, Yu-Li; Tu, Wei-Chen

    2015-12-01

    Chrysophsin-1, an amphipathic alpha-helical antimicrobial peptide, is isolated from the gills of the red sea bream and possesses different structure and mechanism(s) in comparison with traditional multidrug resistance (MDR) modulators. For the purpose of reducing off-target normal cell toxicity, it is rational to incorporate chrysophsin-1 and epirubicin in a PEGylated liposomal formulation. In the present study, we report a multifunctional liposomes with epirubicin as an antineoplastic agent and an apoptosis inducer, as well as chrysophsin-1 as a MDR transporter inhibitor and an apoptosis modulator in human cervical cancer HeLa cells. Co-incubation of HeLa cells with PEGylated liposomal formulation of epirubicin and chrysophsin-1 resulted in a significant increase in the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or chrysophsin-1 were shown to considerably improve the intracellular H2O2 and O2(-) levels of HeLa cells. Furthermore, these treatments were found to extensively reduce mRNA expression levels of MDR1, MRP1, and MRP2. The addition of chrysophsin-1 in liposomes was demonstrated to substantially enhance the intracellular accumulation of epirubicin in HeLa cells. Moreover, the PEGylated liposomes of epirubicin and chrysophsin-1 were also found to significantly increase the mRNA expressions of p53, Bax, and Bcl-2. The ratio of Bax to Bcl-2 was noticeably amplified in the presence of these formulations. Apoptosis induction was also validated by chromatin condensation, a reduction in mitochondrial membrane potential, the increased sub-G1 phase of cell cycle, and more populations of apoptosis using annexin V/PI assay. These formulations were verified to increase the activity and mRNA expression levels of caspase-9 and caspases-3. Collectively, our findings provide the first evidence that cotreatment with free or liposomal chrysophsin-1 and epirubicin leads to cell death in human cervical cancer cells through the ROS

  20. High LET radiation enhances nocodazole Induced cell death in HeLa cells through mitotic catastrophe and apoptosis.

    PubMed

    Li, Ping; Zhou, Libin; Dai, Zhongying; Jin, Xiaodong; Liu, Xinguo; Matsumoto, Yoshitaka; Furusawa, Yoshiya; Li, Qiang

    2011-01-01

    To understand how human tumor cells respond to the combined treatment with nocodazole and high LET radiation, alterations in cell cycle, mitotic disturbances and cell death were investigated in the present study. Human cervix carcinoma HeLa cells were exposed to nocodazole for 18 h immediately followed by high LET iron ion irradiation and displayed a sequence of events leading to DNA damages, mitotic aberrations, interphase restitution and endocycle as well as cell death. A prolonged mitotic arrest more than 10 h was observed following nocodazole exposure, no matter the irradiation was present or not. The occurrence of mitotic slippage following the mitotic arrest was only drug-dependent and the irradiation did not accelerate it. The amount of polyploidy cells was increased following mitotic slippage. No detectable G(2) or G(1) arrest was observed in cells upon the combined treatment and the cells reentered the cell cycle still harboring unrepaired cellular damages. This premature entry caused an increase of multipolar mitotic spindles and amplification of centrosomes, which gave rise to lagging chromosomal material, failure of cytokinesis and polyploidization. These mitotic disturbances and their outcomes confirmed the incidence of mitotic catastrophe and delayed apoptotic features displayed by TUNEL method after the combined treatment. These results suggest that the addition of high-LET iron ion irradiation to nocodazole enhanced mitotic catastrophe and delayed apoptosis in HeLa cells. These might be important cell death mechanisms involved in tumor cells in response to the treatment of antimitotic drug combined with high LET radiation.

  1. Anticancer effects of the engineered stem cells transduced with therapeutic genes via a selective tumor tropism caused by vascular endothelial growth factor toward HeLa cervical cancer cells.

    PubMed

    Kim, Hye-Sun; Yi, Bo-Rim; Hwang, Kyung-A; Kim, Seung U; Choi, Kyung-Chul

    2013-10-01

    The aim of the present study was to investigate the therapeutic efficacy of genetically engineered stem cells (GESTECs) expressing bacterial cytosine deaminase (CD) and/or human interferon-beta (IFN-β) gene against HeLa cervical cancer and the migration factors of the GESTECs toward the cancer cells. Anticancer effect of GESTECs was examined in a co-culture with HeLa cells using MTT assay to measure cell viability. A transwell migration assay was performed so as to assess the migration capability of the stem cells to cervical cancer cells. Next, several chemoattractant ligands and their receptors related to a selective migration of the stem cells toward HeLa cells were determined by real-time PCR. The cell viability of HeLa cells was decreased in response to 5-fluorocytosine (5-FC), a prodrug, indicating that 5-fluorouracil (5-FU), a toxic metabolite, was converted from 5-FC by CD gene and it caused the cell death in a co-culture system. When IFN-β was additionally expressed with CD gene by these GESTECs, the anticancer activity was significantly increased. In the migration assay, the GESTECs selectively migrated to HeLa cervical cancer cells. As results of real-time PCR, chemoattractant ligands such as MCP-1, SCF, and VEGF were expressed in HeLa cells, and several receptors such as uPAR, VEGFR2, and c-kit were produced by the GESTECs. These GESTECs transduced with CD gene and IFN-β may provide a potential of a novel gene therapy for anticervical cancer treatments via their selective tumor tropism derived from VEGF and VEGFR2 expressions between HeLa cells and the GESTECs.

  2. Bcl-xL Silencing Induces Alterations in hsa-miR-608 Expression and Subsequent Cell Death in A549 and SK-LU1 Human Lung Adenocarcinoma Cells

    PubMed Central

    Othman, Norahayu; In, Lionel L. A.; Harikrishna, Jennifer A.; Hasima, Noor

    2013-01-01

    Bcl-xL is an anti-apoptotic protein that is frequently found to be overexpressed in non-small cell lung cancer leading to an inhibition of apoptosis and poor prognosis. Recently, the role of miRNAs in regulating apoptosis and cell survival during tumorigenesis has become evident, with cancer cells showing perturbed expression of various miRNAs. In this study, we utilized miRNA microarrays to determine if miRNA dysregulation in bcl-xL silenced lung adenocarcinoma cells could be involved in regulating cell death. Short interfering RNA-based transfection of A549 and SK-LU1 lung adenocarcinoma cells was successful in inducing a reduction in bcl-xL expression levels, resulting in a decrease in cell viability. A total of 10 miRNAs were found to be significantly differentially expressed when compared between siRNA-transfected and non-transfected cells including hsa-miR-181a, hsa-miR-769-5p, hsa-miR-361-5p, hsa-miR-1304 and hsa-miR-608. When overexpression studies on hsa-miR-608 was performed via transfection of miRNA mimics, cell death was found to be induced in A549 and SK-LU1 cells in comparison to untreated cells. This effect was reversed when knockdown studies involving anti-sense inhibitors were introduced. Combination of siRNA based silencing of bcl-xL (siBcl-xL) followed by anti-sense inhibitor transfection led to a decrease in the apoptotic population of A549 and SK-LU1 cells in comparison to cells only treated with siBcl-xL, illustrating the connection between bcl-xL, hsa-miR-608 and cell death. Gene target prediction analysis implicated the PI3K/AKT, WNT, TGF-β, and ERK signaling pathways as targets of bcl-xL induced miRNA alterations. We have demonstrated that bcl-xL silencing in A549 and SK-LU1 cells leads to the occurrence of cell death through the dysregulation of specific miRNAs. This study also provides a platform for anti-sense gene therapy whereby miRNA expression can be exploited to increase the apoptotic properties in lung adenocarcinoma cells. PMID

  3. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression.

    PubMed

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy.

  4. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  5. FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells.

    PubMed

    Zheng, Yanhong; Tang, Yunlan; Bao, Zhirong; Wang, Hui; Ren, Feng; Guo, Mingxiong; Quan, Hong; Jiang, Changzhong

    2015-01-01

    Nanomaterials have an advantage in "personalized" therapy, which is the ultimate goal of tumor treatment. In order to investigate the potential ability of FePt nanoparticles (NPs) in the diagnosis and chemoradiotherapy treatment of malignant tumors, superparamagnetic, monodispersed FePt (~3 nm) alloy NPs were synthesized, using cysteamine as a capping agent. The NPs were characterized by means of X-ray diffraction; transmission electron microscopy, Physical Property Measurement System, and Fourier transform infrared spectroscopy. The cytotoxicity of FePt NPs on Vero cells was assessed using an MTT assay, and tumor cell proliferation inhibited by individual FePt NPs and FePt NPs combined with X-ray beams were also collected using MTT assays; HeLa human cancer cell lines were used as in vitro models. Further confirmation of the combined effect of FePt NPs and X-rays was verified using HeLa cells, after which, the cellular uptake of FePt NPs was captured by transmission electron microscopy. The results indicated that the growth of HeLa cells was significantly inhibited by FePt NPs in a concentration-dependent manner, and the growth was significantly more inhibited by FePt NPs combined with a series of X-ray beam doses; the individual NPs did not display any remarkable cytotoxicity on Vero cells at a concentration <250 μg/mL. Meanwhile, the FePt NPs showed negative/positive contrast enhancement for MRI/CT molecule imaging at the end of the study. Therefore, the combined results implied that FePt NPs might potentially serve as a promising nanoprobe for the integration of tumor diagnosis and chemoradiotherapy.

  6. Purification and characterization of the glycoprotein hormone. cap alpha. -subunit-like material secreted by HeLa cells

    SciTech Connect

    Cox, G.S.; Rimerman, R.A.

    1988-08-23

    The protein secreted by HeLa cells that cross-reacts with antiserum developed against the ..cap alpha..-subunit of human chorionic gonadotropin (hCG) has been purified approximately 30,000-fold from concentrated culture medium by organic solvent fractionation followed by ion exchange, gel filtration, and lectin affinity chromatography. The final preparation had a specific activity (by RIA) of 6.8 x 10/sup 5/ ng of ..cap alpha../mg of protein and appeared homogeneous by electrophoresis on reducing/denaturing polyacrylamide gels (SDS-PAGE). Amino acid analysis indicated that HeLa-..cap alpha.. had a composition very similar to that of the urinary hCG ..cap alpha..-subunit. However, comparison of hCG-..cap alpha.. and HeLa-..cap alpha.. demonstrated that the tumor-associated subunit was not identical with its normal counterpart. The purified tumor protein had an apparent molecular weight greater than that of the urinary ..cap alpha..-subunit when analyzed by SDS-PAGE, and this difference was even greater when a partially purified preparation was examined by an immunoblot technique (Western). Isoelectric focusing of the HeLa and hCG subunits demonstrated that the tumor protein had a lower pI. Immunoprecipitation and electrophoresis of ..cap alpha..-subunit from HeLa cultures labeled with (/sup 3/H)fucose indicated that the tumor subunit was fucosylated, whereas analysis of hCG-..cap alpha.. hydrosylates by HPLC confirmed previous reports that the placental subunit does not contain fucose. The results indicate that, regardless of whether or not a single ..cap alpha..-subunit gene is being expressed in both normal and neoplastic tissues, posttranslational modifications lead to a highly altered subunit in the tumor. The differences observed may be useful in diagnosing neoplastic vs hyperplastic conditions and may lend insight into the mechanism of ectopic hormone production by tumors.

  7. FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells

    PubMed Central

    Zheng, Yanhong; Tang, Yunlan; Bao, Zhirong; Wang, Hui; Ren, Feng; Guo, Mingxiong; Quan, Hong; Jiang, Changzhong

    2015-01-01

    Nanomaterials have an advantage in “personalized” therapy, which is the ultimate goal of tumor treatment. In order to investigate the potential ability of FePt nanoparticles (NPs) in the diagnosis and chemoradiotherapy treatment of malignant tumors, superparamagnetic, monodispersed FePt (~3 nm) alloy NPs were synthesized, using cysteamine as a capping agent. The NPs were characterized by means of X-ray diffraction; transmission electron microscopy, Physical Property Measurement System, and Fourier transform infrared spectroscopy. The cytotoxicity of FePt NPs on Vero cells was assessed using an MTT assay, and tumor cell proliferation inhibited by individual FePt NPs and FePt NPs combined with X-ray beams were also collected using MTT assays; HeLa human cancer cell lines were used as in vitro models. Further confirmation of the combined effect of FePt NPs and X-rays was verified using HeLa cells, after which, the cellular uptake of FePt NPs was captured by transmission electron microscopy. The results indicated that the growth of HeLa cells was significantly inhibited by FePt NPs in a concentration-dependent manner, and the growth was significantly more inhibited by FePt NPs combined with a series of X-ray beam doses; the individual NPs did not display any remarkable cytotoxicity on Vero cells at a concentration <250 μg/mL. Meanwhile, the FePt NPs showed negative/positive contrast enhancement for MRI/CT molecule imaging at the end of the study. Therefore, the combined results implied that FePt NPs might potentially serve as a promising nanoprobe for the integration of tumor diagnosis and chemoradiotherapy. PMID:26604740

  8. FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells.

    PubMed

    Zheng, Yanhong; Tang, Yunlan; Bao, Zhirong; Wang, Hui; Ren, Feng; Guo, Mingxiong; Quan, Hong; Jiang, Changzhong

    2015-01-01

    Nanomaterials have an advantage in "personalized" therapy, which is the ultimate goal of tumor treatment. In order to investigate the potential ability of FePt nanoparticles (NPs) in the diagnosis and chemoradiotherapy treatment of malignant tumors, superparamagnetic, monodispersed FePt (~3 nm) alloy NPs were synthesized, using cysteamine as a capping agent. The NPs were characterized by means of X-ray diffraction; transmission electron microscopy, Physical Property Measurement System, and Fourier transform infrared spectroscopy. The cytotoxicity of FePt NPs on Vero cells was assessed using an MTT assay, and tumor cell proliferation inhibited by individual FePt NPs and FePt NPs combined with X-ray beams were also collected using MTT assays; HeLa human cancer cell lines were used as in vitro models. Further confirmation of the combined effect of FePt NPs and X-rays was verified using HeLa cells, after which, the cellular uptake of FePt NPs was captured by transmission electron microscopy. The results indicated that the growth of HeLa cells was significantly inhibited by FePt NPs in a concentration-dependent manner, and the growth was significantly more inhibited by FePt NPs combined with a series of X-ray beam doses; the individual NPs did not display any remarkable cytotoxicity on Vero cells at a concentration <250 μg/mL. Meanwhile, the FePt NPs showed negative/positive contrast enhancement for MRI/CT molecule imaging at the end of the study. Therefore, the combined results implied that FePt NPs might potentially serve as a promising nanoprobe for the integration of tumor diagnosis and chemoradiotherapy. PMID:26604740

  9. Tumoricidal effects of nanomaterials in HeLa cell line

    NASA Astrophysics Data System (ADS)

    Fakhar-E-Alam, M.; Kishwar, S.; Khan, Y.; Siddique, M.; Atif, M.; Nur, O.; Willander, M.

    2011-11-01

    The current study exhibits the cellular response of HeLa (cervical cancer) cells to metal oxides ultrafine nanomaterials e.g. manganese dioxide nanowires (MnO2 NRs), iron oxide nanoparticles (Fe2O3 NPs) and zinc oxide nanorods (ZnO NRs) as bare and as conjugated with photosensitizers. For cytotoxic evaluations, the cellular morphology, (MTT) assay, reactive oxygen species (ROS) production were used for cases with and without photo sensitizer as well illuminated with UV-visible laser exposed conditions. Three different photosensitizers were tested. These are 5-aminolevulinic acid (5-ALA), Photofrin® and protopor phyrin dimethyl ester (PPDME). Significant loss in cell viability was noted with 100-500 μg/ml in bare and conjugated forms of the metal oxides used. The effect was insignificant with lower concentrations (0.05-50 μg/ml). While notable anticancer effect of 5-ALA under 30 J/cm2 of diode laser irradiation was noted as compared to other photo sensitizer. By increasing the UV irradiation time of labeled cells, generation of ROS was observed, indicating the possibility of achieving efficient photodynamic therapy (PDT).

  10. ELECTRON MICROSCOPY OF HELA CELLS INFECTED WITH ADENOVIRUSES

    PubMed Central

    Harford, Carl G.; Hamlin, Alice; Parker, Esther; van Ravenswaay, Theodore

    1956-01-01

    HeLa cells were infected with adenoviruses (types 1–4) and sectioned for electron microscopy after intervals of 20 to 48 hours. Clusters of virus-like particles were found within the nuclei of infected cultures but not in those of uninfected controls. The particles were often arranged in rows as if in crystalline formation. Maximal diameter of particles was approximately 65 mµ, and internal bodies were demonstrated. Lesions of infected cells included target-like structures of the nuclear membrane, large nuclear vacuoles (type 2), and increased numbers of large irregular electron-dense granules in the cytoplasm 48 hours after infection. Examination of infected cultures by light microscopy, using the Feulgen reaction, showed intranuclear inclusion bodies and a cytopathogenic effect consisting of clumping of cells without pyknosis of nuclei. A lipide stain showed numerous cytoplasmic granules that were not identical with the large, irregular, electron-dense granules of the cytoplasm. Practically all the cells showed the viral cytopathogenic effect, but only a minority of cells were found to contain virus-like particles or intranuclear inclusion bodies. PMID:13357696

  11. Real-time sonoporation through HeLa cells

    NASA Astrophysics Data System (ADS)

    Kotopoulis, Spiros; Delalande, Anthony; Pichon, Chantal; Postema, Michiel

    2012-09-01

    The purpose of this study was to investigate the physical mechanisms of sonoporation, to understand and ameliorate ultrasound-assisted drug and gene delivery. Sonoporation is the transient permeabilisation of a cell membrane with help of ultrasound and/or an ultrasound contrast agent, allowing for the trans-membrane delivery and cellular uptake of macromolecules between 10 kDa and 3 MDa. We studied the behaviour of ultrasound contrast agent microbubbles near cancer cells at low acoustic amplitudes. After administering an ultrasound contrast agent, HeLa cells were subjected to 6.6-MHz ultrasound with a mechanical index of 0.2 and observed with a highspeed camera. Microbubbles were seen to enter cells and rapidly dissolve. The quick dissolution after entering suggests that the microbubbles lose (part of) their shell whilst entering. We have demonstrated that lipid-shelled microbubbles can be forced to enter cells at a low mechanical index. Hence, if a therapeutic load is added to the bubble, ultrasound-guided delivery could be facilitated at diagnostic settings. However, these results may have implications for the safety regulations on the use of ultrasound contrast agents for diagnostic imaging.

  12. From Reflux Esophagitis to Esophageal Adenocarcinoma.

    PubMed

    Souza, Rhonda F

    2016-01-01

    Reflux esophagitis causes Barrett's metaplasia, an abnormal esophageal mucosa predisposed to adenocarcinoma. Medical therapy for reflux esophagitis focuses on decreasing gastric acid production with proton pump inhibitors. We have reported that reflux esophagitis in a rat model develops from a cytokine-mediated inflammatory injury, not from a caustic chemical (acid) injury. In this model, refluxed acid and bile stimulate the release of inflammatory cytokines from esophageal squamous cells, recruiting lymphocytes first to the submucosa and later to the luminal surface. Emerging studies on acute reflux esophagitis in humans support this new concept, suggesting that reflux-induced cytokine release may be a future target for medical therapies. Sometimes, reflux esophagitis heals with Barrett's metaplasia, a process facilitated by reflux-related nitric oxide (NO) production and Sonic Hedgehog (Hh) secretion by squamous cells. We have shown that NO reduces expression of genes that promote a squamous cell phenotype, while Hh signaling induces genes that mediate the development of the columnar cell phenotypes of Barrett's metaplasia. Agents targeting esophageal NO production or Hh signaling conceivably could prevent the development of Barrett's esophagus. Persistent reflux promotes cancer in Barrett's metaplasia. We have reported that acid and bile salts induce DNA damage in Barrett's cells. Bile salts also cause NF-x03BA;B activation in Barrett's cells, enabling them to resist apoptosis in the setting of DNA damage and likely contributing to carcinogenesis. Oral treatment with ursodeoxycholic acid prevents the esophageal DNA damage and NF-x03BA;B activation induced by toxic bile acids. Altering bile acid composition might be another approach to cancer prevention. PMID:27331918

  13. Discriminating between Terminal- and Non-Terminal Respiratory Unit-Type Lung Adenocarcinoma Based on MicroRNA Profiles

    PubMed Central

    Kim, Mi-Hyun; Cho, Jeong Su; Kim, Yeongdae; Lee, Chang Hun; Lee, Min Ki; Shin, Dong Hoon

    2016-01-01

    Lung adenocarcinomas can be classified into terminal respiratory unit (TRU) and non-TRU types. We previously reported that non-TRU-type adenocarcinoma has unique clinical and morphological features as compared to the TRU type. Here we investigated whether micro (mi)RNA expression profiles can be used to distinguish between these two subtypes of lung adenocarcinoma. The expression of 1205 human and 144 human viral miRNAs was analyzed in TRU- and non-TRU-type lung adenocarcinoma samples (n = 4 each) by microarray. Results were validated by quantitative real-time (qRT-)PCR and in situ hybridization. A comparison of miRNA profiles revealed 29 miRNAs that were differentially expressed between TRU- and non-TRU adenocarcinoma types. Specifically, hsa-miR-494 and ebv-miR-BART19 were up regulated by > 5-fold, whereas hsa-miR-551b was down regulated by > 5-fold in the non-TRU relative to the TRU type. The miRNA signature was confirmed by qRT-PCR analysis using an independent set of paired adenocarcinoma (non-TRU-type, n = 21 and TRU-type, n = 12) and normal tissue samples. Non-TRU samples showed increased expression of miR-494 (p = 0.033) and ebv-miR-BART19 (p = 0.001) as compared to TRU-type samples. Both miRNAs were weakly expressed in the TRU type but strongly expressed in the non-TRU type. Neither subtype showed miR-551b expression. TRU- and non-TRU-type adenocarcinomas have distinct miRNA expression profiles, suggesting that tumorigenesis in lung adenocarcinoma occur via different pathways. PMID:27575252

  14. Sodium Kinetics of Na,K-ATPase α Isoforms in Intact Transfected HeLa Cells

    PubMed Central

    Zahler, Raphael; Zhang, Zhong-Ting; Manor, Mira; Boron, Walter F.

    1997-01-01

    By participating in the regulation of ion and voltage gradients, the Na-K pump (i.e., Na,K-ATPase) influences many aspects of cellular physiology. Of the four α isoforms of the pump, α1 is ubiquitous, α2 is predominant in skeletal muscle, and α3 is found in neurons and the cardiac conduction system. To determine whether the isoforms have different intracellular Na+ affinities, we used the Na+-sensitive dye sodium-binding benzofuran isophthalate (SBFI) to measure pump-mediated Na+ efflux as a function of [Na+]i in human HeLa cells stably transfected with rat Na-K pump isoforms. We Na+-loaded the cells, and then monitored the time course of the decrease in [Na+]i after removing external Na+. All transfected rat α subunits were highly ouabain resistant: the α1 isoform is naturally resistant, whereas the α2 and α3 isoforms had been mutagenized to render them resistant. Thus, the Na+ efflux mediated by endogenous and transfected pumps could be separated by studying the cells at low (1 μM) and high (4 mM) ouabain concentrations. We found that the apparent Km for Na+ efflux attributable to the native human α1 isoform was 12 mM, which was similar to the Km of rat α1. The α2 and α3 isoforms had apparent Km's of 22 and 33 mM, respectively. The cells expressing α3 had a high resting [Na+]i. The maximal activity of native α1 in the α3-transfected cells was only ∼56% of native α1 activity in untransfected HeLa cells, suggesting that transfection with α3 led to a compensatory decrease in endogenous α1 pumps. We conclude that the apparent Km(Na+) for rat Na-K pump isoforms increases in the sequence α1 < α2 < α3. The α3 isoform may be suited for handling large Na+ loads in electrically active cells. PMID:9236212

  15. Spinal cord compression due to ethmoid adenocarcinoma.

    PubMed

    Johns, D R; Sweriduk, S T

    1987-10-15

    Adenocarcinoma of the ethmoid sinus is a rare tumor which has been epidemiologically linked to woodworking in the furniture industry. It has a low propensity to metastasize and has not been previously reported to cause spinal cord compression. A symptomatic epidural spinal cord compression was confirmed on magnetic resonance imaging (MRI) scan in a former furniture worker with widely disseminated metastases. The clinical features of ethmoid sinus adenocarcinoma and neoplastic spinal cord compression, and the comparative value of MRI scanning in the neuroradiologic diagnosis of spinal cord compression are reviewed.

  16. Comprehensive High-Throughput RNA Sequencing Analysis Reveals Contamination of Multiple Nasopharyngeal Carcinoma Cell Lines with HeLa Cell Genomes

    PubMed Central

    Strong, Michael J.; Baddoo, Melody; Nanbo, Asuka; Xu, Miao; Puetter, Adriane

    2014-01-01

    ABSTRACT In an attempt to explore infectious agents associated with nasopharyngeal carcinomas (NPCs), we employed our high-throughput RNA sequencing (RNA-seq) analysis pipeline, RNA CoMPASS, to investigate the presence of ectopic organisms within a number of NPC cell lines commonly used by NPC and Epstein-Barr virus (EBV) researchers. Sequencing data sets from both CNE1 and HONE1 were found to contain reads for human papillomavirus 18 (HPV-18). Subsequent real-time reverse transcription-PCR (RT-PCR) analysis on a panel of NPC cell lines identified HPV-18 in CNE1 and HONE1 as well as three additional NPC cell lines (CNE2, AdAH, and NPC-KT). Further analysis of the chromosomal integration arrangement of HPV-18 in NPCs revealed patterns identical to those observed in HeLa cells. Clustering based on human single nucleotide variation (SNV) analysis of two separate HeLa cell lines and several NPC cell lines demonstrated two distinct clusters with CNE1, as well as HONE1 clustering with the two HeLa cell lines. In addition, duplex-PCR-based genotyping showed that CNE1, CNE2, and HONE1 do not have a HeLa cell-specific L1 retrotransposon insertion, suggesting that these three HPV-18+ NPC lines are likely products of a somatic hybridization with HeLa cells, which is also consistent with our RNA-seq-based gene level SNV analysis. Taking all of these findings together, we conclude that a widespread HeLa contamination may exist in many NPC cell lines, and authentication of these cell lines is recommended. Finally, we provide a proof of concept for the utility of an RNA-seq-based approach for cell authentication. IMPORTANCE Nasopharyngeal carcinoma (NPC) cell lines are important model systems for analyzing the complex life cycle and pathogenesis of Epstein-Barr virus (EBV). Using an RNA-seq-based approach, we found HeLa cell contamination in several NPC cell lines that are commonly used in the EBV and related fields. Our data support the notion that contamination resulted from

  17. Overexpression of DEK is an indicator of poor prognosis in patients with gastric adenocarcinoma

    PubMed Central

    OU, YINGFU; XIA, RONGJUN; KONG, FANYONG; ZHANG, XIAOKANG; YU, SHENGJIN; JIANG, LILI; ZHENG, LINLIN; LIN, LIJUAN

    2016-01-01

    Increased expression of the human DEK proto-oncogene (DEK) gene has been associated with numerous human malignancies. The DEK protein is associated with chromatin reconstruction and gene transcription, and is important in cell apoptosis. The present study aimed to elucidate the role of DEK with regard to gastric adenocarcinoma tumor progression and patient prognosis. DEK protein expression was analyzed using immunohistochemistry in 192 tumors paired with adjacent non-cancerous gastric mucosa that had been surgically resected from patients with primary gastric adenocarcinoma. The association between DEK expression and the clinicopathological characteristics of the patients was evaluated using the χ2 test and Fisher's exact test. The survival rates of the patients were calculated using the Kaplan-Meier method. Cox analysis evaluated the association between the expression of DEK and the survival rate of the patients. The DEK protein was expressed in 84 patients with gastric adenocarcinoma (43.8%) and in 20 of the paired normal gastric mucosa tissues (11.5%). The DEK expression rate was found to be associated with tumor size (P=0.006), tumor grade (P=0.023), lymph node metastasis (P=0.018), serous invasion (P=0.026), tumor stage (P=0.001) and Ki-67 expression (P=0.003). Furthermore, patients with gastric adenocarcinoma that expressed DEK had decreased disease-free (log-rank, 16.785; P<0.0001) and overall (log-rank, 15.759; P<0.0001) survival rates compared with patients without DEK expression. Patients with late-stage gastric adenocarcinoma that expressed DEK exhibited a lower overall survival rate compared with patients without DEK expression (P=0.002). Additional analysis revealed that DEK expression was an independent prognostic factor for the prognosis of gastric adenocarcinoma (hazard ratio, 0.556; 95% confidence interval, 0.337–0.918; P=0.022). From the results of the present study, it can be concluded that the detection of DEK protein expression in gastric

  18. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    SciTech Connect

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  19. The deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth.

    PubMed

    Liu, Ying-Li; Zheng, Jie; Tang, Li-Juan; Han, Wei; Wang, Jian-Min; Liu, Dian-Wu; Tian, Qing-Bao

    2015-11-01

    Ubiquitin-specific protease 22 (USP22) can regulate the cell cycle and apoptosis in many cancer cell types, while it is still unclear whether the deubiquitinating enzyme activity of USP22 is necessary for these processes. As little is known about the impact of USP22 on the growth of HeLa cell, we observed whether USP22 can effectively regulate HeLa cell growth as well as the necessity of deubiquitinating enzyme activity for these processes in HeLa cell. In this study, we demonstrate that USP22 can regulate cell cycle but not apoptosis in HeLa cell. The deubiquitinating enzyme activity of USP22 is necessary for this process as confirmed by an activity-deleted mutant (C185S) and an activity-decreased mutant (Y513C). In addition, the deubiquitinating enzyme activity of USP22 is related to the levels of BMI-1, c-Myc, cyclin D2 and p53. Our findings indicate that the deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth, and it promotes cell proliferation via the c-Myc/cyclin D2, BMI-1 and p53 pathways in HeLa cell.

  20. The critical role of quercetin in autophagy and apoptosis in HeLa cells.

    PubMed

    Wang, Yijun; Zhang, Wei; Lv, Qiongying; Zhang, Juan; Zhu, Dingjun

    2016-01-01

    In recent years, the effects of quercetin on autophagy and apoptosis of cancer cells have been widely reported, while effects on HeLa cells are still unclear. Here, HeLa cells were subjected to quercetin treatment, and then proliferation, apoptosis, and autophagy were evaluated using MTT, flow cytometry, and MDC staining, respectively. The LC3-I/II, Beclin 1, active caspase-3, and S6K1 phosphorylation were detected using Western blot assay. The ultrastructure of HeLa was observed via transmission electron microscope (TEM). Our findings showed that quercetin can dose-dependently inhibit the growth of HeLa cells. The MDC fluorescence was enhanced with increased concentration of quercetin and hit a plateau at 50 μmol/l. Western blot assay revealed that LC3-I/II ratio, Beclin 1, and active caspase-3 protein were enforced in a dose-dependent method. However, the phosphorylation of S6K1 gradually decreased, concomitant with an increase of autophagy. In addition, TEM revealed that the number of autophagic vacuoles was peaked at 50 μmol/l of quercetin. Besides, interference of autophagy with 3-MA led to proliferation inhibition and increased apoptosis in HeLa cells, accompanied by the decreased LC3-I/II conversion and the increased active caspase-3. In conclusion, quercetin can inhibit HeLa cell proliferation and induce protective autophagy at low concentrations; thus, 3-MA plus quercetin would suppress autophagy and effectively increased apoptosis.

  1. miR-143 is associated with proliferation and apoptosis involving ERK5 in HeLa cells

    PubMed Central

    Zheng, Fang; Zhang, Jiahe; Luo, Siyu; Yi, Jing; Wang, Ping; Zheng, Quanqing; Wen, Yurong

    2016-01-01

    Inappropriate expression of microRNA (miR) is strongly associated with carcinogenesis. miR-143 was reported to be one of the most prominent miRs implicated in the genesis and progression of human cancer. However, its correlation with cell proliferation and apoptosis in cervical cancer remains to be fully elucidated. In the present study, it was demonstrated that miR-143 is able to suppress the proliferation of cervical cancer HeLa cells and induce cell apoptosis in a time- and dose-dependent manner. The present study also investigated the potential targets of miR-143, extracellular-signal-regulated kinase 5 (ERK5) and its downstream substrate oncoprotein c-Fos, both of which are involved in cell proliferation and apoptosis. Upon increasing the miR-143 level, the ERK5 and c-Fos protein expression was significantly decreased without the effect of ERK5 transcription. Therefore, miR-143 is able to suppress cell proliferation and induce apoptosis in HeLa cells, potentially through negative regulation of ERK5 at its post-transcriptional stage. PMID:27698893

  2. miR-143 is associated with proliferation and apoptosis involving ERK5 in HeLa cells

    PubMed Central

    Zheng, Fang; Zhang, Jiahe; Luo, Siyu; Yi, Jing; Wang, Ping; Zheng, Quanqing; Wen, Yurong

    2016-01-01

    Inappropriate expression of microRNA (miR) is strongly associated with carcinogenesis. miR-143 was reported to be one of the most prominent miRs implicated in the genesis and progression of human cancer. However, its correlation with cell proliferation and apoptosis in cervical cancer remains to be fully elucidated. In the present study, it was demonstrated that miR-143 is able to suppress the proliferation of cervical cancer HeLa cells and induce cell apoptosis in a time- and dose-dependent manner. The present study also investigated the potential targets of miR-143, extracellular-signal-regulated kinase 5 (ERK5) and its downstream substrate oncoprotein c-Fos, both of which are involved in cell proliferation and apoptosis. Upon increasing the miR-143 level, the ERK5 and c-Fos protein expression was significantly decreased without the effect of ERK5 transcription. Therefore, miR-143 is able to suppress cell proliferation and induce apoptosis in HeLa cells, potentially through negative regulation of ERK5 at its post-transcriptional stage.

  3. tRNA Modifying Enzymes, NSUN2 and METTL1, Determine Sensitivity to 5-Fluorouracil in HeLa Cells

    PubMed Central

    Hori, Masato; Okada, Kaoru; Yazama, Futoshi; Konishi, Hiroaki; Xiao, Yegui; Qi, Guangying; Shimamoto, Fumio; Ota, Takahide; Temme, Achim; Tatsuka, Masaaki

    2014-01-01

    Nonessential tRNA modifications by methyltransferases are evolutionarily conserved and have been reported to stabilize mature tRNA molecules and prevent rapid tRNA decay (RTD). The tRNA modifying enzymes, NSUN2 and METTL1, are mammalian orthologs of yeast Trm4 and Trm8, which are required for protecting tRNA against RTD. A simultaneous overexpression of NSUN2 and METTL1 is widely observed among human cancers suggesting that targeting of both proteins provides a novel powerful strategy for cancer chemotherapy. Here, we show that combined knockdown of NSUN2 and METTL1 in HeLa cells drastically potentiate sensitivity of cells to 5-fluorouracil (5-FU) whereas heat stress of cells revealed no effects. Since NSUN2 and METTL1 are phosphorylated by Aurora-B and Akt, respectively, and their tRNA modifying activities are suppressed by phosphorylation, overexpression of constitutively dephosphorylated forms of both methyltransferases is able to suppress 5-FU sensitivity. Thus, NSUN2 and METTL1 are implicated in 5-FU sensitivity in HeLa cells. Interfering with methylation of tRNAs might provide a promising rationale to improve 5-FU chemotherapy of cancer. PMID:25233213

  4. Cytoskeletal rearrangements and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells

    PubMed Central

    1995-01-01

    Shigella flexneri is an enteroinvasive bacterium which causes bacillary dysentery in humans. A major feature of its pathogenic potential is the capacity to invade epithelial cells. Shigella entry into epithelial cells is considered a parasite-induced internalization process requiring polymerization of actin. Here we describe the cytoskeletal rearrangements during S. flexneri invasion of HeLa cells. After an initial contact of the bacterium with the cell surface, distinct nucleation zones of heavy chain actin polymerization appear in close proximity to the contact site underneath the parasite with long filaments being polymerized. These structures then push cellular protrusions that rise beside the entering bacterium, being sustained by tightly bundled long actin filaments organized in parallel orientation with their positive ends pointing to the cytoplasmic membrane. Finally, the cellular projections coalesce above the bacterial body, leading to its internalization. In addition, we found the actin-bundling protein plastin to be concentrated in these protrusions. Since plastin is known to bundle actin filaments in parallel orientation, colocalization of parallel actin filaments and plastin in the cellular protrusions strongly suggested a functional role of this protein in the architecture of parasite-induced cellular projections. Using transfection experiments, we show the differential recruitment of the two plastin isoforms (T- and L-) into Shigella entry zones. By transient expression of a truncated T-plastin which is deprived of one of its actin-binding sites, we also demonstrate the functional role of T-plastin in Shigella entry into HeLa cells. PMID:7721941

  5. Intramedullary conus medullaris metastasis of periurethral adenocarcinoma.

    PubMed

    Ramakonar, H H; Thomas, A; Lind, C R P

    2011-04-01

    Intramedullary spinal cord metastasis to the conus medullaris is very rare. We report a 44-year-old woman with an intra-axial conus medullaris metastasis from periurethral adenocarcinoma. To our knowledge, this is the first report in the literature. We also discuss the clinical features, possible pathophysiological mechanisms and treatment options for intramedullary spinal cord metastasis to the conus medullaris.

  6. Adenocarcinoma - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows adenocarcinoma of the lung. There is a rounded light spot in the right upper lung (left side ... density. Diseases that may cause this type of x-ray result would be tuberculous or fungal granuloma, and ...

  7. Global gene expression profiling of HeLa and HepG2 cells in response to simulated microgravity

    NASA Astrophysics Data System (ADS)

    Clement, J.; Lacy, S.; Wilson, B.

    Microgravity is considered a major environmental factor that affects cells and tissues causing adverse effects to human health during space flight Ground-based gravity simulation experiments at the cellular and molecular levels have given much insight into the underlying molecular and cellular alterations induced by microgravity stress In the present study we investigated microgravity effects on human cell lines such as HeLa cells and HepG2 cells under simulated microgravity conditions using the Rotating Wall Vessel Bioreactor Gene expression profiles of time course microgravity treated cells were displayed through DNA microarray analysis Some of the microgravity-responsive genes were further validated using Northern and RT-PCR techniques The identified set of genes that are preferentially altered in microgravity conditions may constitute part of the major space genes that together play a major check-and-balance role ultimately determining the outcome of a cell or an organism in response to microgravity conditions

  8. Expression of tumoral FOXP3 in gastric adenocarcinoma is associated with favorable clinicopathological variables and related with Hippo pathway

    PubMed Central

    Suh, Jung-Ho; Won, Kyu Yeoun; Kim, Gou Young; Bae, Go Eun; Lim, Sung-Jig; Sung, Ji-Youn; Park, Yong-Koo; Kim, Youn Wha; Lee, Juhie

    2015-01-01

    FOXP3 is a transcription factor and well-known hallmark of immune suppressive T regulatory cells (Tregs). Recent studies indicate that, in addition to its association with Treg function in the immune system, FOXP3 plays an important role in tumor development. And important tumor suppressor relay between the FOXP3 and Hippo pathways was found in human cancer. Thus, we investigated tumoral FOXP3, infiltrated Tregs count, Lats2, and YAP expression in gastric adenocarcinoma, and the relationships between expression of these three proteins and p53, Ki67, and other clinicopathological variables. We used 118 gastric adenocarcinoma tissues via immunohistochemical analysis, using a tissue microarray, in relation to survival and other clinicopathological factors. We report the several novel observations about the relationship between tumoral FOXP3 and Hippo pathway components in gastric adenocarcinoma. Positive tumoral FOXP3 expression was significantly related with smaller tumor size, tubular tumor type, lower histological grade, lower T stage, lower recurrence rate, less lymphatic invasion, and less neural invasion. Furthermore, patients with positive tumoral FOXP3 experienced significantly better disease-free and overall survival compared to patients with negative tumoral FOXP3. These findings show that tumoral FOXP3 expression is associated with favorable clinicopathological variables in gastric adenocarcinoma. And we report the novel observation of a relationship between tumoral FOXP3 and Hippo pathway components in gastric adenocarcinoma. Tumoral FOXP3 expression, infiltrated Tregs count, and Lats2 expression were all positively correlated with YAP expression. These findings suggest that the Hippo pathway in gastric adenocarcinoma might be influenced by both tumoral FOXP3 and infiltrated Tregs. In conclusion, the loss of FOXP3 expression in cancer cells is thought to contribute to tumorigenesis and progression of gastric adenocarcinoma. The expression of FOXP3 in

  9. Effect of Lon protease knockdown on mitochondrial function in HeLa cells.

    PubMed

    Bayot, Aurélien; Gareil, Monique; Chavatte, Laurent; Hamon, Marie-Paule; L'Hermitte-Stead, Caroline; Beaumatin, Florian; Priault, Muriel; Rustin, Pierre; Lombès, Anne; Friguet, Bertrand; Bulteau, Anne-Laure

    2014-05-01

    ATP-dependent proteases are currently emerging as key regulators of mitochondrial functions. Among these proteolytic systems, Lon protease is involved in the control of selective protein turnover in the mitochondrial matrix. In the absence of Lon, yeast cells have been shown to accumulate electron-dense inclusion bodies in the matrix space, to loose integrity of mitochondrial genome and to be respiratory deficient. In order to address the role of Lon in mitochondrial functionality in human cells, we have set up a HeLa cell line stably transfected with a vector expressing a shRNA under the control of a promoter which is inducible with doxycycline. We have demonstrated that reduction of Lon protease results in a mild phenotype in this cell line in contrast with what have been observed in other cell types such as WI-38 fibroblasts. Nevertheless, deficiency in Lon protease led to an increase in ROS production and to an accumulation of carbonylated protein in the mitochondria. Our study suggests that Lon protease has a wide variety of targets and is likely to play different roles depending of the cell type.

  10. An in vitro evaluation of Candida tropicalis infectivity using human cell monolayers.

    PubMed

    Negri, Melyssa; Botelho, Cláudia; Silva, Sónia; Lopes, Luís Miguel Reis Henriques; Henriques, Mariana; Azeredo, Joana; Oliveira, Rosário

    2011-09-01

    The aim of this study was to investigate the interaction of Candida tropicalis with three different human cell lines: TCC-SUP (epithelial cells from urinary bladder), HeLa (epithelial cells from cervical carcinoma) and Caco-2 (epithelial cells from colorectal adenocarcinoma). In particular we sought to assess the degree of cell damage and activity reduction induced by C. tropicalis adhesion and the role of secreted aspartyl proteinase (SAP) gene expression in this process. Two C. tropicalis strains were used: the reference strain ATCC 750 and a clinical isolate from urine (U69). The ability of C. tropicalis to adhere to a confluent layer of human cells was determined using an adaptation of the crystal violet staining method; cell damage and cell activity inhibition induced by the adhesion of C. tropicalis were assessed by measuring lactate dehydrogenase and tetrazolium salt (MTS) reduction, respectively. C. tropicalis SAP gene expression was determined by real-time PCR. Both C. tropicalis strains were able to adhere to the different human cells, although in a strain- and cell-line-dependent manner. Concerning the cellular response to C. tropicalis, the highest inhibition of cell activity was obtained for Caco-2, followed by TCC-SUP and HeLa cells. The highest percentage of cell damage (around 14 %) was observed for TCC-SUP cells in contact with the U69 isolate and for Caco-2 in contact with the reference strain. Real-time PCR analysis revealed a wide range of expression profiles of SAP genes for both C. tropicalis strains in contact with the different types of epithelial cells. SAPT3 was the gene expressed at the highest level for both C. tropicalis strains in contact with the three human epithelial cell lines. The results highlight that the response of human cells to C. tropicalis adhesion, as well as production of SAPs, is dependent on both the strain and the epithelial cell line.

  11. Peripheral blood mononuclear cells inhibit proliferation and promote apoptosis of HeLa cells following stimulation with Bacillus Calmette-Guerin.

    PubMed

    Lu, Xiaoqing; Wu, Lingjiao; Liu, Zhuo; Xie, Liping; Wang, Shuo

    2013-02-01

    Bacillus Calmette-Guerin (BCG) immunotherapy is established as an effective adjuvant intravesical treatment for non-muscle invasive bladder cancer. BCG is also effective in the treatment of Condylomata acuminata caused by low-risk human papilloma virus (HPV). The aim of this study was to determine the efficacy of BCG for the treatment of cervical cancer or HPV high-risk infections. BCG-activated killer (BAK) cells were incubated with a high-risk HPV18-infected cervical cancer cell line, HeLa. The cell cycle distribution and apoptotic index of the HeLa cells were analyzed by flow cytometry. The alterations of HPV-E7, retinoblastoma (RB) and E2F1 levels were detected at the transcriptional and translational levels. The BAK cell cytotoxicity to HeLa cells was 24.08, 14.74 and 6.8% and the natural killer (NK) cell cytotoxicity was 17.62, 10.78 and 5.8% at the E/T ratios of 40:1, 20:1 and 10:1, respectively. The BAK cells significantly induced the apoptosis of HeLa cells to result in an apoptosis level of 24.2% compared with 13.45% by the NK cell treatment at the ratio of 20:1. BAK cells inhibit the proliferation of HeLa cells by G(1)/S cell cycle arrest and this may be associated with the RB/E2F1 pathway. However, G(1)/S arrest and the alteration of RB protein (pRB) and E2F1 levels in the HeLa cells did not show significant differences between the BAK cell- and NK cell-treated groups. HPV-E7 appeared not to be associated with the alteration in cell cycle progression. This study showed that immunotherapy may be a potential treatment for cervical cancer and that BCG immunotherapy may be an alternative and effective method, but further experiments and clinical trials are required to verify this effect.

  12. Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis.

    PubMed

    Sinkevicius, Kerstin W; Kriegel, Christina; Bellaria, Kelly J; Lee, Jaewon; Lau, Allison N; Leeman, Kristen T; Zhou, Pengcheng; Beede, Alexander M; Fillmore, Christine M; Caswell, Deborah; Barrios, Juliana; Wong, Kwok-Kin; Sholl, Lynette M; Schlaeger, Thorsten M; Bronson, Roderick T; Chirieac, Lucian R; Winslow, Monte M; Haigis, Marcia C; Kim, Carla F

    2014-07-15

    Lung cancer is notorious for its ability to metastasize, but the pathways regulating lung cancer metastasis are largely unknown. An in vitro system designed to discover factors critical for lung cancer cell migration identified brain-derived neurotrophic factor, which stimulates cell migration through activation of tropomyosin-related kinase B (TrkB; also called NTRK2). Knockdown of TrkB in human lung cancer cell lines significantly decreased their migratory and metastatic ability in vitro and in vivo. In an autochthonous lung adenocarcinoma model driven by activated oncogenic Kras and p53 loss, TrkB deficiency significantly reduced metastasis. Hypoxia-inducible factor-1 directly regulated TrkB expression, and, in turn, TrkB activated Akt signaling in metastatic lung cancer cells. Finally, TrkB expression was correlated with metastasis in patient samples, and TrkB was detected more often in tumors that did not have Kras or epidermal growth factor receptor mutations. These studies demonstrate that TrkB is an important therapeutic target in metastatic lung adenocarcinoma. PMID:24982195

  13. HER2 testing in gastric and gastroesophageal adenocarcinomas.

    PubMed

    Vakiani, Efsevia

    2015-05-01

    The human epidermal growth factor receptor 2 (HER2) is overexpressed in 10% to 35% of gastric and gastroesophageal junction (GEJ) adenocarcinomas. In 2010, the phase III Trastuzumab for Gastric Cancer (ToGA) trial showed that addition of the anti-HER2 monoclonal antibody trastuzumab to chemotherapy significantly improved survival of patients with advanced or metastatic tumors that were positive for HER2 overexpression. As a result, HER2 testing is now recommended for all patients with advanced or metastatic disease, although there is still some debate as to the optimal methods of assessment. HER2 expression in gastric and GEJ tumors shows several differences compared with breast tumors and, for this reason, the proposed criteria for scoring HER2 expression in biopsies and resections of gastric and GEJ carcinomas differ from those used in breast carcinomas. This review discusses what is currently known about the patterns of HER2 expression in gastric and GEJ adenocarcinomas, summarizes the findings of the ToGA trial and its clinical implications, and provides an overview of the recommended guidelines for the most accurate evaluation of HER2 status in gastric and GEJ cancer.

  14. [GIPC: a new target for therapy in pancreatic adenocarcinoma?].

    PubMed

    Muders, M H; Baretton, G B; Aust, D E; Dutta, S K; Wang, E; Ikeda, Y; Spaller, M R; Datta, K; Mukhopadhyay, D

    2007-01-01

    GIPC is highly expressed in human pancreatic adenocarcinoma and is a central protein for the stability of IGF-1R in pancreatic adenocarcinoma cell lines (15). The goal of this study was to prove the importance of GIPC in vivo and to evaluate possible therapeutic strategies that target this protein and its PDZ domain. In vivo effects of GIPC knockout were studied after lentiviral transduction of luciferase-expressing MiaPaCa2 pancreatic cancer cells with shRNA against GIPC; growth characteristics were monitored with bioluminiscence. Knockdown of GIPC led to a significant inhibition of pancreatic tumor cell growth in vivo in different mouse models. To test a possible therapeutic approach, the PDZ domain of GIPC was targeted by a short peptide composed of the amino acid sequence PSQSSSEA. This octapeptide was designed based on the C-terminal binding motif of GAIP. Targeting GIPC with this peptide inhibited the association between IGF-1R and GIPC. The subsequent downregulation of IGF-1R decreased proliferation in vitro and in vivo. In conclusion, our findings suggest that targeting GIPC and its PDZ domain-mediated interaction with the tyrosine kinase receptor IGF-1R could be a promising new treatment option for pancreatic cancer.

  15. HeLa cell heterogeneity and coxsackievirus B3 cytopathic effect: implications for inter-laboratory reproducibility of results.

    PubMed

    Carson, Steven D; Pirruccello, Samuel J

    2013-04-01

    Concerns over cell line identities and contamination have led investigators to acquire fresh stocks of HeLa CCL-2 cells, but results with the HeLa CCL-2 cells do not always reproduce results with HeLa cells that have long history in the laboratory. When used for TCID(50) assays of Coxsackievirus B3/28 (CVB3/28), HeLa CCL-2 cells returned titers for CVB3/28 that were more than ten-fold lower than titers obtained using laboratory HeLa cells. The viral cytopathic effect was less distinct in the HeLa CCL-2 cultures, suggestive of a mixed population of cells with varied susceptibility to viral cytopathic effect. Analysis of short tandem repeat markers confirmed the identities of the cell lines as HeLa. Subpopulations in the HeLa CCL-2 culture, separated easily based on the speed with which they were released by trypsin-EDTA, differed in their susceptibilities to CVB3/28 cytopathic effect, and in their expression of the Coxsackievirus and adenovirus receptor (CAR). The distinctions between Lab HeLa and HeLa CCL-2 cells were less obvious when infected with CVB3/RD, a strain selected for growth in RD cells. Results that differ among laboratories may be due to the use of HeLa cell strains with different histories, and experiments using HeLa CCL-2 available from the American Type Culture Collection are probably incapable of reproducing many of the published studies of Coxsackievirus that have used HeLa cells with laboratory-dependent histories.

  16. MicroRNA expression profiles associated with pancreatic adenocarcinoma and ampullary adenocarcinoma.

    PubMed

    Schultz, Nicolai A; Werner, Jens; Willenbrock, Hanni; Roslind, Anne; Giese, Nathalia; Horn, Thomas; Wøjdemann, Morten; Johansen, Julia S

    2012-12-01

    MicroRNAs have potential as diagnostic cancer biomarkers. The aim of this study was (1) to define microRNA expression patterns in formalin-fixed parafin-embedded tissue from pancreatic ductal adenocarcinoma, ampullary adenocarcinoma, normal pancreas and chronic pancreatitis without using micro-dissection and (2) to discover new diagnostic microRNAs and combinations of microRNAs in cancer tissue. The expression of 664 microRNAs in tissue from 170 pancreatic adenocarcinomas and 107 ampullary adenocarcinomas were analyzed using a commercial microRNA assay. Results were compared with chronic pancreatitis, normal pancreas and duodenal adenocarcinoma. In all, 43 microRNAs had higher and 41 microRNAs reduced expression in pancreatic cancer compared with normal pancreas. In all, 32 microRNAs were differently expressed in pancreatic adenocarcinoma compared with chronic pancreatitis (17 higher; 15 reduced). Several of these microRNAs have not before been related to diagnosis of pancreatic cancer (eg, miR-492, miR-614, miR-622). MiR-614, miR-492, miR-622, miR-135b and miR-196 were most differently expressed. MicroRNA profiles of pancreatic and ampullary adenocarcinomas were correlated (0.990). MicroRNA expression profiles for pancreatic cancer described in the literature were consistent with our findings, and the microRNA profile for pancreatic adenocarcinoma (miR-196b-miR-217) was validated. We identified a more significant expression profile, the difference between miR-411 and miR-198 (P=2.06 × 10(-54)) and a diagnostic LASSO classifier using 19 microRNAs (sensitivity 98.5%; positive predictive value 97.8%; accuracy 97.0%). We also identified microRNA profiles to subclassify ampullary adenocarcinomas into pancreatobiliary or intestinal type. In conclusion, we found that combinations of two microRNAs could roughly separate neoplastic from non-neoplastic samples. A diagnostic 19 microRNA classifier was constructed which without micro-dissection could discriminate pancreatic

  17. Organic anion transporting polypeptides expressed in pancreatic cancer may serve as potential diagnostic markers and therapeutic targets for early stage adenocarcinomas

    PubMed Central

    Hays, Amanda; Apte, Udayan; Hagenbuch, Bruno

    2013-01-01

    Purpose Organic Anion Transporting Polypeptides (OATPs) are expressed in various epithelial tissues in the body. Because they can be expressed in cancers and because they can transport anticancer drugs, OATPs could be potential targets for cancer therapy. Therefore we examined their expression in human pancreatic ductal adenocarcinomas. Methods Expression of all eleven human OATPs was measured at the mRNA level and OATPs with highest expression were characterized at the protein level. Results Transcripts of SLCO1B3, SLCO2A1, SLCO3A1 and SLCO4A1 were detected in all the tested pancreatic tissues. OATP1B3, OATP2A1, OATP3A1 and OATP4A1 protein expression was confirmed in these tissues and expression of all four transporters increased in pancreatic adenocarcinoma compared to normal pancreas. OATP1B3 expression was highest in pancreatic hyperplasia and stage one adenocarcinomas compared to stage two and three adenocarcinomas. Conclusion OATP1B3, OATP2A1, OATP3A1 and OATP4A1 are up-regulated in pancreatic adenocarcinoma and could potentially be used to target anticancer drugs to pancreatic cancer. Additionally, because expression of OATP1B3 is highest in pancreatitis and stage one adenocarcinoma, which leads to pancreatic cancer, OATP1B3 is a potential marker to diagnose patients with early stage pancreatic adenocarcinomas. PMID:23307416

  18. Identification of Up- and Down-Regulated Proteins in Pemetrexed-Resistant Human Lung Adenocarcinoma: Flavin Reductase and Calreticulin Play Key Roles in the Development of Pemetrexed-Associated Resistance.

    PubMed

    Chou, Hsiu-Chuan; Chen, Jing-Yi; Lin, Dai-Ying; Wen, Yueh-Feng; Lin, Chi-Chen; Lin, Sheng-Hao; Lin, Ching-Hsiung; Chung, Ting-Wen; Liao, En-Chi; Chen, Ying-Jen; Wei, Yu-Shan; Tsai, Yi-Ting; Chan, Hong-Lin

    2015-11-01

    Drug resistance is one of the major causes of cancer chemotherapy failure. In the current study, we used a pair of lung adenocarcinoma cell lines, A549 and the pemetrexed-resistant A549/PEM cells, as a model to monitor resistance-dependent cellular responses and identify potential therapeutic targets. By means of 2D differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), we investigated the global protein expression alterations induced by pemetrexed treatment and resistance. The proteomic result revealed that pemetrexed exposure obviously altered the expression of 81 proteins in the A549 cells, whereas no significant response was observed in the similarly treated A549/PEM cells, hence implying an association between these proteins and the drug-specific response. Moreover, 72 proteins including flavin reductase and calreticulin demonstrated differential expression between the A549 and A549/PEM cells, indicating baseline resistance. Additional tests employed siRNA silencing, protein overexpression, cell viability analysis, and analysis of apoptosis to examine and confirm the potency of flavin reductase and calreticulin proteins in the development of pemetrexed resistance. In summary, by using a proteomic approach, we identified numerous proteins, including flavin reductase and calreticulin, involved in pemetrexed drug resistance-developing mechanisms. Our results provide useful diagnostic markers and therapeutic candidates for pemetrexed-resistant lung cancer treatment.

  19. PX-12-induced HeLa cell death is associated with oxidative stress and GSH depletion.

    PubMed

    Shin, Hye Rim; You, Bo Ra; Park, Woo Hyun

    2013-12-01

    PX-12, as an inhibitor of thioredoxin (Trx), has antitumor activity. However, little is known about the toxicological effect of PX-12 on cervical cancer cells. In the present study, the growth inhibitory effects of PX-12 on HeLa cervical cancer cells in association with reactive oxygen species (ROS) and glutathione (GSH) levels were investigated. Based on MTT assays, PX-12 inhibited the growth of HeLa cells with an IC50 value of ~7 μM at 72 h. DNA flow cytometry analysis indicated that 5 and 10 μM PX-12 significantly induced a G2/M phase arrest of the cell cycle. PX-12 also increased the number of dead cells and annexin V-fluorescein isothiocyanate-positive cells, which was accompanied by the loss of mitochondrial membrane potential. All the investigated caspase inhibitors significantly rescued certain cells from PX-12-induced HeLa cell death. With respect to ROS and GSH levels, PX-12 increased ROS levels (including O2(•-)) in HeLa cells and induced GSH depletion. N-acetyl cysteine markedly reduced the levels of O2(•-) in PX-12-treated HeLa cells, and prevented apoptotic cell death and GSH depletion in these cells. By contrast, L-buthionine sulfoximine intensified cell death and GSH depletion in PX-12-treated HeLa cells. To conclude, this is the first study to demonstrate that PX-12 inhibits the growth of HeLa cells via G2/M phase arrest, as well as inhibiting apoptosis; the effect was associated with intracellular increases in ROS levels and GSH depletion.

  20. Optimizing A Lipocomplex-Based Gene Transfer Method into HeLa Cell Line.

    PubMed

    Asgharian, Alimohammad; Banan, Mehdi; Najmabadi, Hossein

    2014-01-01

    One of the most significant steps in gene expression studies is transferring genes into cell cultures. Despite there are different methods for gene delivery such as viral and non-viral producers, some cationic lipid reagents have recently developed to transfect into mam- malian cell lines. The main aim of this study was optimizing and improving lipocomplex based transient transfection procedures into HeLa cell line which is being used widely as a typical cell in biological studies. This study was an experimental research. In this work, pCMV β-Gal DNA plasmid was used as a reporter DNA for determining the rate of gene transfection into HeLa cells. To accomplish the highest gene delivery into HeLa cells, optimizing experiments were car- ried out in different volumes of FuGENE-HD, Lipofectamine(TM)2000 and X-tremeGENE. Also, we investigated tranasfection efficiency in presence of various cell densities of HeLa cells. Then, transfection efficiency and cell toxicity were measured by beta gal staining and trypan blue methods, respectively. Using FuGENE-HD in volume of 4µl along with 10(5) HeLa cells, transfection efficiency was higher (43.66 ± 1.52%) in comparison with the cationic lipids Lipofectamine(TM)2000 and X-tremeGENE. In addition, the rate of cell toxicity in presence of FuGENE-HD was less than 5%. In summary, the cationic lipid FuGENE-HD indicates a suitable potential to transfer DNA into HeLa cells and it can be an efficient reagent for gene delivery for HeLa cells in vitro. Moreover, it is worth designing and optimizing gene transfer experiments for other cell lines with FuGENE-HD due to its low toxicity and high efficiency.

  1. Apoptosis and necrosis in vaccinia virus-infected HeLa G and BSC-40 cells.

    PubMed

    Liskova, Jana; Knitlova, Jarmila; Honner, Richard; Melkova, Zora

    2011-09-01

    In most cells, vaccinia virus (VACV) infection is considered to cause a lytic cell death, an equivalent of necrosis. However, upon infection of the epithelial cell lines HeLa G and BSC-40 with VACV strain Western Reserve (WR), we have previously observed an increased activation of and activity attributable to caspases, a typical sign of apoptosis. In this paper, we have further analyzed the type of cell death in VACV-infected cells HeLa G and BSC-40. In a cell-based flow cytometric assay, we showed a specific activation of caspase-2 and 4 in HeLa G and BSC-40 cells infected with VACV, strain WR, while we did not find any effects of inhibitors of calpain and cathepsin D and E. The actual activity of the two caspases, but also of caspase-3, was then confirmed in lysates of infected HeLa G, but not in BSC-40 cells. Accordingly, poly(ADP)-ribose polymerase (PARP) cleavage was found increased only in infected HeLa G cells. Consequently, we have determined morphological features of apoptosis and/or activity of the executioner caspase-3 in infected HeLa G cells in situ, while only a background apoptosis was observed in infected BSC-40 cells. Finally, vaccination strains Dryvax and Praha were found to induce apoptosis in both HeLa G and BSC-40 cells, as characterized morphologically and by PARP cleavage. These findings may be important for understanding the differences in VACV-host interactions and post-vaccination complications in different individuals.

  2. FOLFOX-6 Induction Chemotherapy Followed by Esophagectomy and Post-operative Chemoradiotherapy in Patients With Esophageal Adenocarcinoma

    ClinicalTrials.gov

    2016-09-15

    Adenocarcinoma of the Esophagus; Adenocarcinoma of the Gastroesophageal Junction; Adenocarcinoma of the Gastric Cardia; Stage IIIA Esophageal Cancer; Stage IIIB Esophageal Cancer; Stage IIIC Esophageal Cancer

  3. Saffold virus type 3 (SAFV-3) persists in HeLa cells.

    PubMed

    Himeda, Toshiki; Hosomi, Takushi; Okuwa, Takako; Muraki, Yasushi; Ohara, Yoshiro

    2013-01-01

    Saffold virus (SAFV) was identified as a human cardiovirus in 2007. Although several epidemiological studies have been reported, they have failed to provide a clear picture of the relationship between SAFV and human diseases. SAFV genotype 3 has been isolated from the cerebrospinal fluid specimen of patient with aseptic meningitis. This finding is of interest since Theiler's murine encephalomyelitis virus (TMEV), which is the closely related virus, is known to cause a multiple sclerosis-like syndrome in mice. TMEV persistently infects in mouse macrophage cells in vivo and in vitro, and the viral persistence is essential in TMEV-induced demyelinating disease. The precise mechanism(s) of SAFV infection still remain unclear. In order to clarify the SAFV pathogenicity, in the present study, we studied the possibilities of the in vitro persistent infection of SAFV. The two distinct phenotypes of HeLa cells, HeLa-N and HeLa-R, were identified. In these cells, the type of SAFV-3 infection was clearly different. HeLa-N cells were lyticly infected with SAFV-3 and the host suitable for the efficient growth. On the other hand, HeLa-R cells were persistently infected with SAFV-3. In addition, the SAFV persistence in HeLa-R cells is independent of type I IFN response of host cells although the TMEV persistence in mouse macrophage cells depends on the response. Furthermore, it was suggested that SAFV persistence may be influenced by the expression of receptor(s) for SAFV infection on the host cells. The present findings on SAFV persistence will provide the important information to encourage the research of SAFV pathogenicity.

  4. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells.

    PubMed

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar

    2013-09-15

    The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC₅₀ value was found to be 4 μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells.

  5. Gall bladder Adenocarcinoma in a Young Girl.

    PubMed

    Date, Shivprasad V; Rizvi, S J

    2015-04-01

    A 16-year-old girl presented with abdominal discomfort, weakness, and jaundice. General examination revealed deep icterus with hard lymph nodes in left supraclavicular region. On gastrointestinal examination, we appreciated a hard intra-abdominal lump in the right hypochondrium. Biochemical evaluation showed features of obstructive jaundice. Imaging confirmed the presence of gall bladder lump with multiple intra-abdominal lymph nodes. Fine needle aspiration cytology of neck nodes demonstrated metastatic adenocarcinoma. Fine needle aspiration cytology of the gall bladder lump (done under sonographic guidance) confirmed poorly differentiated adenocarcinoma. To the best of our knowledge, malignancy of the gall bladder has not been reported in individuals less than 18 years in India, and only three cases have been reported worldwide in English literature. PMID:26139973

  6. Gall bladder Adenocarcinoma in a Young Girl.

    PubMed

    Date, Shivprasad V; Rizvi, S J

    2015-04-01

    A 16-year-old girl presented with abdominal discomfort, weakness, and jaundice. General examination revealed deep icterus with hard lymph nodes in left supraclavicular region. On gastrointestinal examination, we appreciated a hard intra-abdominal lump in the right hypochondrium. Biochemical evaluation showed features of obstructive jaundice. Imaging confirmed the presence of gall bladder lump with multiple intra-abdominal lymph nodes. Fine needle aspiration cytology of neck nodes demonstrated metastatic adenocarcinoma. Fine needle aspiration cytology of the gall bladder lump (done under sonographic guidance) confirmed poorly differentiated adenocarcinoma. To the best of our knowledge, malignancy of the gall bladder has not been reported in individuals less than 18 years in India, and only three cases have been reported worldwide in English literature.

  7. Treatment of primary adenocarcinoma of the cervix.

    PubMed

    Weiner, S; Wizenberg, M J

    1975-06-01

    Between 1956 and 1971, a total of 74 cases of adenocarcinoma of the cervix was treatedin the Division of Radiation Therapy of the University of Maryland Hospital. Radical radiation therapy was followed by routine surgery early in the study;after 1967, surgery was used only for radiation failure. The likelihood of local control and 5-year survival was not improved by the routine addition of surgery to radical radiation, although the incidence of serious complications was markedly elevated. The results of treatment of adenocarcinoma of the cervix by radiation therapy alone are not significantly different from those achieved with squamous cell carcinoma. Surgery should be used as a salvage procedure in case of failure, rather than on a routine basis. PMID:1148986

  8. Primary Vaginal Adenocarcinoma Arising in Vaginal Adenosis After CO2 Laser Vaporization and 5-Fluorouracil Therapy

    PubMed Central

    Paczos, Tamera A.; Ackers, Stacey; Odunsi, Kunle; Lele, Shashikant; Mhawech-Fauceglia, Paulette

    2016-01-01

    Summary We present a case of a 45-year-old woman with a long-standing history of persistent cervical dysplasia that resulted in a hysterectomy. Subsequent vaginal smears revealed high-grade vaginal intraepithelial neoplasia (VAIN III) on Pap smear with positive human papilloma virus (HPV) testing. Over the course of 2 years, the patient underwent 2 CO2 laser vaporization procedures of the upper vagina and intermittent 5-fluorouracil therapy. A biopsy performed at the time of the second laser procedure revealed endocervical-type well-differentiated adenocarcinoma, associated with VAIN III. HPV in situ hybridization for HPV types 16 and 18 was positive in both the glandular and squamous mucosa. The patient has no known history of intrauterine diethylstilbestrol exposure or mullerian developmental abnormalities. Subsequently, the patient underwent a radical upper vaginetcomy with bilateral pelvic lymph nodes dissection and bilateral salpingo-oophorectomy. The vaginectomy specimen showed residual adenocarcinoma associated with VAIN-III and extensive vaginal adenosis with free resection margins. This is the second reported case in the literature of adenocarcinoma arising in vaginal adenosis after 5-fluorouracil. Herein, we highlight these important findings and shed some light on the pathogenesis of vaginal adenosis and the subsequent development of vaginal adenocarcinoma. PMID:20173507

  9. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    SciTech Connect

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  10. Genetics and Biology of Pancreatic Ductal Adenocarcinoma.

    PubMed

    Dunne, Richard F; Hezel, Aram F

    2015-08-01

    Pancreatic ductal adenocarcinoma remains a clinical challenge. Thus far, enlightenment on the downstream activities of Kras, the tumor's unique metabolic needs, and how the stroma and immune system affect it have remained untranslated to the clinical practice. Given the numbers of diverse therapies in development and a growing knowledge about how to evaluate these systems preclinically and clinically, this is expected to change significantly and for the better over the next 5 years. PMID:26226899

  11. Labeling of HeLa cells using ZrO2:Yb3+-Er3+ nanoparticles with upconversion emission

    NASA Astrophysics Data System (ADS)

    Ceja-Fdez, Andrea; López-Luke, Tzarara; Oliva, Jorge; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana Lilia; Rojas, Ruben A. Rodriguez; Martínez-Pérez, Andrea; de la Rosa, Elder

    2015-04-01

    This work reports the synthesis, structural characterization, and optical properties of ZrO2:Yb3+-Er3+ (2-1 mol%) nanocrystals. The nanoparticles were coated with 3-aminopropyl triethoxysilane (APTES) and further modified with biomolecules, such as Biotin-Anti-rabbit (mouse IgG) and rabbit antibody-AntiKi-67, through a conjugation method. The conjugation was successfully confirmed by Fourier transform infrared, zeta potential, and dynamic light scattering. The internalization of the conjugated nanoparticles in human cervical cancer (HeLa) cells was followed by two-photon confocal microscopy. The ZrO2:Yb3+-Er3+ nanocrystals exhibited strong red emission under 970-nm excitation. Moreover, the luminescence change due to the addition of APTES molecules and biomolecules on the nanocrystals was also studied. These results demonstrate that ZrO2:Yb3+-Er3+ nanocrystals can be successfully functionalized with biomolecules to develop platforms for biolabeling and bioimaging.

  12. Does St. John's Wort cause regression in gastrointestinal system adenocarcinomas?

    PubMed

    Karaarslan, Serap; Cokmert, Suna; Cokmez, Atilla

    2015-11-15

    St. John's Wort (SJW) is an old herb which has long been consumed widely for its anti-inflammatory, antiviral, and anti-depressive properties. Here we present a detailed clinical evaluation of three cases (two colon and one duodenal adenocarcinoma) with remarkable and intensive lymphoplasmocytic host reaction, at the basal part of tumor, intensive fibrosis, giant cells, plasma cell increase in lymph nodes and few giant cells in germinal centers in resection specimens. The observation of similar host reaction in those tumors having otherwise usual appearance was interesting. None of the cases received neoadjuvant chemoradiotherapy or additional treatment before surgery but only SJW. These cases are presented to increase the awareness about such cases. Further research is needed to reveal the possible effect of SJW, which has long been consumed for different treatment purposes, on human tumors.

  13. Predictors of Survival in Sinonasal Adenocarcinoma

    PubMed Central

    Chen, Michelle M.; Roman, Sanziana A.; Sosa, Julie A.; Judson, Benjamin L.

    2015-01-01

    Objectives To identify factors associated with disease-specific survival (DSS) in intestinal and nonintestinal sinonasal adenocarcinoma. Design Retrospective review. Setting Surveillance Epidemiology and End Results database. Participants Adult patients with sinonasal adenocarcinoma. Main Outcome Measures DSS. Results We identified 325 patients; of these, 300 had the nonintestinal type and 25 had intestinal type histologies. The 5-year DSS rates for patients who had no treatment, radiation (RT), surgery, and surgery and postoperative RT were 42.5, 46.1, 85.6, and 72.6%, respectively (log-rank test; p < 0.001). Black race, age ≥ 75 years, paranasal sinus involvement, and high grade were independently associated with decreased DSS. Compared with RT, surgery (hazard ratio [HR]: 0.34; 95% confidence interval [CI]: 0.15–0.77), and adjuvant RT (HR: 0.47; 95% CI, 0.26–0.86) were associated with improved DSS. Conclusions There is no difference in prognosis between intestinal and nonintestinal subtypes of sinonasal adenocarcinoma. Treatment with surgery alone or adjuvant RT is associated with a more favorable prognosis. PMID:26225303

  14. Comprehensive molecular profiling of lung adenocarcinoma

    PubMed Central

    2014-01-01

    Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically significantly mutated, including RIT1 activating mutations and newly described loss-of-function MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations were more frequent in female patients, whereas mutations in RBM10 were more common in males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway activation. These data establish a foundation for classification and further investigations of lung adenocarcinoma molecular pathogenesis. PMID:25079552

  15. Predictors of Survival in Sinonasal Adenocarcinoma.

    PubMed

    Chen, Michelle M; Roman, Sanziana A; Sosa, Julie A; Judson, Benjamin L

    2015-06-01

    Objectives To identify factors associated with disease-specific survival (DSS) in intestinal and nonintestinal sinonasal adenocarcinoma. Design Retrospective review. Setting Surveillance Epidemiology and End Results database. Participants Adult patients with sinonasal adenocarcinoma. Main Outcome Measures DSS. Results We identified 325 patients; of these, 300 had the nonintestinal type and 25 had intestinal type histologies. The 5-year DSS rates for patients who had no treatment, radiation (RT), surgery, and surgery and postoperative RT were 42.5, 46.1, 85.6, and 72.6%, respectively (log-rank test; p < 0.001). Black race, age ≥ 75 years, paranasal sinus involvement, and high grade were independently associated with decreased DSS. Compared with RT, surgery (hazard ratio [HR]: 0.34; 95% confidence interval [CI]: 0.15-0.77), and adjuvant RT (HR: 0.47; 95% CI, 0.26-0.86) were associated with improved DSS. Conclusions There is no difference in prognosis between intestinal and nonintestinal subtypes of sinonasal adenocarcinoma. Treatment with surgery alone or adjuvant RT is associated with a more favorable prognosis. PMID:26225303

  16. Metastatic lung adenocarcinoma to the bladder: A case report

    PubMed Central

    YE, HAI-JUN; MA, JIAN; LIU, YING-JIE; YE, XIAO-FEI; ZHANG, LI-WANG; LI, JIN-GE

    2015-01-01

    Urothelial cancer is the most frequently diagnosed type of malignant tumor in the bladder, of which primary adenocarcinoma accounts for a small percentage. Secondary malignancies, in particular metastatic adenocarcinoma from the lung, are exceedingly rare, with only six cases previously reported in the literature. The present study describes the case of a 71-year-old Chinese male patient with known lung cancer for >2 years, who was diagnosed with metastatic adenocarcinoma to the bladder. The histopathological characteristics and immunohistochemical features of the patient are reported. It was proposed that pathologists should consider the possibility of metastatic adenocarcinoma from the lung, rather than assume a diagnosis of primary adenocarcinoma of the bladder or direct invasion of adenocarcinoma from the surrounding organs. Furthermore, it is essential to determine the medical history of each patient and observe the immunohistochemical features of all tumors prior to diagnosis. PMID:26622730

  17. Chromosomal changes in high- and low-invasive mouse lung adenocarcinoma cell strains derived from early passage mouse lung adenocarcinoma cell strains

    SciTech Connect

    Sargent, Linda M. Ensell, Mang X.; Ostvold, Anne-Carine; Baldwin, Kimberly T.; Kashon, Michael L.; Lowry, David T.; Senft, Jamie R.; Jefferson, Amy M.; Johnson, Robert C.; Li Zhi; Tyson, Frederick L.; Reynolds, Steven H.

    2008-11-15

    The incidence of adenocarcinoma of the lung is increasing in the United States, however, the difficulties in obtaining lung cancer families and representative samples of early to late stages of the disease have lead to the study of mouse models for lung cancer. We used Spectral Karyotyping (SKY), mapping with fluorescently labeled genomic clones (FISH), comparative genomic hybridization (CGH) arrays, gene expression arrays, Western immunoblot and real time polymerase chain reaction (PCR) to analyze nine pairs of high-invasive and low-invasive tumor cell strains derived from early passage mouse lung adenocarcinoma cells to detect molecular changes associated with tumor invasion. The duplication of chromosomes 1 and 15 and deletion of chromosome 8 were significantly associated with a high-invasive phenotype. The duplication of chromosome 1 at band C4 and E1/2-H1 were the most significant chromosomal changes in the high-invasive cell strains. Mapping with FISH and CGH array further narrowed the minimum region of duplication of chromosome 1 to 71-82 centimorgans (cM). Expression array analysis and confirmation by real time PCR demonstrated increased expression of COX-2, Translin (TB-RBP), DYRK3, NUCKS and Tubulin-{alpha}4 genes in the high-invasive cell strains. Elevated expression and copy number of these genes, which are involved in inflammation, cell movement, proliferation, inhibition of apoptosis and telomere elongation, were associated with an invasive phenotype. Similar linkage groups are altered in invasive human lung adenocarcinoma, implying that the mouse is a valid genetic model for the study of the progression of human lung adenocarcinoma.

  18. Long Noncoding RNA RGMB-AS1 Indicates a Poor Prognosis and Modulates Cell Proliferation, Migration and Invasion in Lung Adenocarcinoma

    PubMed Central

    Li, Ping; Zhang, Guojun; Li, Juan; Yang, Rui; Chen, Shanshan; Wu, Shujun; Zhang, Furui; Bai, Yong; Zhao, Huasi; Wang, Yuanyuan; Dun, Shaozhi; Chen, Xiaonan; Sun, Qianqian; Zhao, Guoqiang

    2016-01-01

    Lung cancer is the most common cause of cancer-related mortality worldwide. It is a complex disease involving multiple genetic and epigenetic alterations. The development of transcriptomics revealed the important role of long non-coding RNAs (lncRNAs) in lung cancer occurrence and development. Here, microarray analysis of lung adenocarcinoma tissues showed the abnormal expression of lncRNA RGMB-AS1. However, the role of lncRNA RGMB-AS1 in lung adenocarcinoma remains largely unknown. We showed that upregulation of lncRNA RGMB-AS1 was significantly correlated with differentiation, TNM stage, and lymph node metastasis. In lung adenocarcinoma cells, downregulation of lncRNA RGMB-AS1 inhibited cell proliferation, migration, invasion, and caused cell cycle arrest at the G1/G0 phase. In vivo experiments showed that lncRNA RGMB-AS1 downregulation significantly suppressed the growth of lung adenocarcinoma. The expression of lncRNA RGMB-AS1 was inversely correlated with that of repulsive guidance molecule b (RGMB) in lung adenocarcinoma tissues, and UCSC analysis and fluorescence detection assay indicated that lncRNA RGMB-AS1 may be involved in the development of human lung adenocarcinoma by regulating RGMB expression though exon2 of RGMB. In summary, our findings indicate that lncRNA RGMB-AS1 may play an important role in lung adenocarcinoma and may serve as a potential therapeutic target. PMID:26950071

  19. MicroRNA-33b inhibits lung adenocarcinoma cell growth, invasion, and epithelial-mesenchymal transition by suppressing Wnt/β-catenin/ZEB1 signaling.

    PubMed

    Qu, Jingjing; Li, Min; An, Jian; Zhao, Bingrong; Zhong, Wen; Gu, Qihua; Cao, Liming; Yang, Huaping; Hu, Chengping

    2015-12-01

    Altered expression of microRNA (miRNA) is associated with lung carcinogenesis and metastasis. Our previous study of lung cancer miRNAs using the gene chip assay demonstrated altered miR-33b expression in lung adenocarcinoma. The present study further investigated miR-33b expression, function, and gene regulation in lung cancer cells in vitro and in nude mouse xenografts. Our data showed that the level of miR-33b expression was dramatically decreased in lung adenocarcinoma cell lines and tissues and that the reduced miR-33b expression was associated with tumor lymph node metastasis. Furthermore, restoration of miR-33b expression inhibited lung adenocarcinoma cell proliferation, migration, and invasion and tumor cell epithelial-mesenchymal transition (EMT) in vitro. Luciferase assay revealed that miR-33b bound to ZEB1 3'-UTR region and inhibited ZEB1 expression, while expression of ZEB1 mRNA and miR-33b was inversely associated with lung adenocarcinoma cell lines and tissues. Subsequently, we found that miR-33b suppressed the activity of WNT/β-catenin signaling in lung adenocarcinoma cells and in turn suppressed tumor cell growth and EMT in vitro and in vivo nude mouse xenografts. In conclusion, the present study provided novel insight into the molecular mechanism of lung adenocarcinoma progression. MicroRNA-33b should be further investigated as a potential therapeutic target in human lung adenocarcinoma.