Science.gov

Sample records for adenosine 2b receptor

  1. Adenosine receptors and diabetes: Focus on the A(2B) adenosine receptor subtype.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Gessi, Stefania

    2015-09-01

    Over the last two decades, diabetes mellitus has become one of the most challenging health problems worldwide. Diabetes mellitus, classified as type I and II, is a pathology concerning blood glucose level in the body. The nucleoside adenosine has long been known to affect insulin secretion, glucose homeostasis and lipid metabolism, through activation of four G protein coupled adenosine receptors (ARs), named A1, A2A, A2B and A3. Currently, the novel promising subtype to develop new drugs for diabetes treatment is the A2BAR subtype. The use of selective agonists and antagonists for A2BAR subtype in various diabetic animal models allowed us to identify several effects of A2BAR signaling in cell metabolism. In particular, the focus of this review is to summarize the studies on purinergic signaling associated with diabetes through A2BARs modulation.

  2. Role of adenosine A2b receptor overexpression in tumor progression.

    PubMed

    Sepúlveda, Cesar; Palomo, Iván; Fuentes, Eduardo

    2016-12-01

    The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells. Therefore, adenosine A2b receptor appears as an interesting therapeutic target for cancer treatment.

  3. Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity.

    PubMed

    Sun, Kaiqi; Zhang, Yujin; Bogdanov, Mikhail V; Wu, Hongyu; Song, Anren; Li, Jessica; Dowhan, William; Idowu, Modupe; Juneja, Harinder S; Molina, Jose G; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-03-05

    Erythrocyte possesses high sphingosine kinase 1 (SphK1) activity and is the major cell type supplying plasma sphingosine-1-phosphate, a signaling lipid regulating multiple physiological and pathological functions. Recent studies revealed that erythrocyte SphK1 activity is upregulated in sickle cell disease (SCD) and contributes to sickling and disease progression. However, how erythrocyte SphK1 activity is regulated remains unknown. Here we report that adenosine induces SphK1 activity in human and mouse sickle and normal erythrocytes in vitro. Next, using 4 adenosine receptor-deficient mice and pharmacological approaches, we determined that the A2B adenosine receptor (ADORA2B) is essential for adenosine-induced SphK1 activity in human and mouse normal and sickle erythrocytes in vitro. Subsequently, we provide in vivo genetic evidence that adenosine deaminase (ADA) deficiency leads to excess plasma adenosine and elevated erythrocyte SphK1 activity. Lowering adenosine by ADA enzyme therapy or genetic deletion of ADORA2B significantly reduced excess adenosine-induced erythrocyte SphK1 activity in ADA-deficient mice. Finally, we revealed that protein kinase A-mediated extracellular signal-regulated kinase 1/2 activation functioning downstream of ADORA2B underlies adenosine-induced erythrocyte SphK1 activity. Overall, our findings reveal a novel signaling network regulating erythrocyte SphK1 and highlight innovative mechanisms regulating SphK1 activity in normal and SCD.

  4. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells.

    PubMed

    Wilson, Jeffrey M; Ross, William G; Agbai, Oma N; Frazier, Renea; Figler, Robert A; Rieger, Jayson; Linden, Joel; Ernst, Peter B

    2009-04-15

    The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.

  5. Adenosine Signaling Increases Proinflammatory and Profibrotic Mediators through Activation of a Functional Adenosine 2B Receptor in Renal Fibroblasts.

    PubMed

    Wilkinson, Patrick F; Farrell, Francis X; Morel, Diane; Law, William; Murphy, Suzanne

    2016-07-01

    Interstitial renal fibrosis is a major pathophysiological manifestation of patients diagnosed with Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN) and other inflammatory diseases. Adenosine signaling is an innate autocrine and paracrine cellular signaling pathway involving several key mediators that are elevated in the blood and kidneys of patients with DN. In these studies, we hypothesized that extracellular adenosine signals through one or more functional adenosine GPCRs on renal fibroblasts which increases profibrotic and proinflammatory mediators by inducing an activated fibroblast phenotype. Utilizing the renal fibroblast cell line NRK-49F, the presence and relative abundance of adenosine receptors (AR) A1, A2A, A2B, and A3 were quantified by RT-PCR. Under normal homeostatic conditions, only AR1 and AR2B were detected. The functionality of each receptor was then assessed by receptor specific pharmacological agonism and antagonism and assessed for modulation of the GPCR associated secondary messenger molecule, cyclic adenosine monophosphate (cAMP). Agonism of the AR2B receptor resulted in increased intracellular cAMP while agonism of the AR1 receptor inhibited cAMP modulation. Upon direct agonism of the AR2B receptor, transcripts for profibrotic and inflammatory mediators including SMA-α, IL-6, TGF-β, CTGF, and fibronectin were elevated between 2-4 fold. These data indicate that renal fibroblasts express a functional AR1 receptor that inhibits cAMP upon stimulation, leading to a functional AR2B receptor that increases cAMP upon stimulation and also induces an activated fibroblast phenotype resulting in increased fibrotic and inflammatory mediators.

  6. The Macrophage A2b Adenosine Receptor Regulates Tissue Insulin Sensitivity

    PubMed Central

    Koupenova, Milka; Carroll, Shannon; Ravid, Katya

    2014-01-01

    High fat diet (HFD)-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR), an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice. PMID:24892847

  7. The impact of adenosine and A(2B) receptors on glucose homoeostasis.

    PubMed

    Rüsing, D; Müller, C E; Verspohl, E J

    2006-12-01

    Adenosine and adenosine receptor antagonists are involved in glucose homoeostasis. The participating receptors are not known, mainly due to a lack of specific agonists and antagonists, but are reasonable targets for anti-diabetic therapy. The stable, albeit nonselective, adenosine analogue NECA (5'-N-ethylcarboxamidoadenosine) (10 microM) reduced glucose-stimulated insulin release from INS-1 cells. This was mimicked by A(1)-(CHA), A(2A)-(CGS-21680) and A(3)-receptor agonists (Cl-IB-MECA). Two newly synthesized A(2B)-receptor antagonists, PSB-53 and PSB-1115, counteracted the inhibitory effect of NECA. These in-vitro effects were mirrored by in-vivo data with respect to CHA, CGS and Cl-IB-MECA. Distinct concentrations of either PSB-53 or PSB-1115 reversed the decrease in plasma insulin induced by NECA. This was not mimicked by a corresponding change in blood glucose. The effect of PSB-1115 was also obvious in diabetic GotoKakizaki rats: plasma insulin was increased whereas blood glucose was unchanged. During most experiments the effects on blood glucose were not impressive probably because of the physiologically necessary homoeostasis. The adenosine levels were not different in normal Wistar rats and in diabetic GotoKakzaki rats. Altogether the A(2B)-receptor antagonists showed an anti-diabetic potential mainly by increasing plasma insulin levels under conditions when the adenosine tonus was elevated in-vivo and increased insulin release in-vitro.

  8. Adenosine A2B Receptor: From Cell Biology to Human Diseases

    PubMed Central

    Sun, Ying; Huang, Pingbo

    2016-01-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR's functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases, and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases. PMID:27606311

  9. Adenosine A2B receptor: from cell biology to human diseases

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Huang, Pingbo

    2016-08-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR’s functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases.

  10. Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes.

    PubMed Central

    Peakman, M. C.; Hill, S. J.

    1994-01-01

    1. The effects of adenosine receptor agonists and antagonists on the accumulation of cyclic AMP have been investigated in primary cultures of rat astrocytes. 2. Adenosine A2-receptor stimulation caused a concentration-dependent increase in the accumulation of [3H]-cyclic AMP in cells prelabelled with [3H]-adenine. The rank order of agonist potencies was 5'-N-ethylcarboxamidoadenosine (NECA; EC50 = 1 microM) > adenosine (EC50 = 5 microM) > 2-chloroadenosine (EC50 = 20 microM) >> CGS 21680 (EC50 > 10 microM). The presence of 0.5 microM dipyridamole, an adenosine uptake blocker, had no effect on the potency of adenosine. 3. The response to 10 microM NECA was antagonized in a concentration-dependent manner by the non-selective adenosine receptor antagonists, xanthine amine congener (apparent KD = 12 nM), PD 115,199 (apparent KD = 134 nM) and 8-phenyltheophylline (apparent KD = 126 nM). However, the A1-receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, had no significant effect on the responses to NECA or 2-chloroadenosine at concentrations up to 1 microM. 4. Stimulation of A1-receptors with the selective agonist, N6-cyclopentyladenosine, did not alter the basal accumulation of [3H]-cyclic AMP but inhibited a forskolin-mediated elevation of [3H]-cyclic AMP accumulation by a maximal value of 42%. This inhibition was fully reversed in the presence of 0.1 microM, 8-cyclopentyl-1,3-dipropylxanthine. 5. The time course for NECA-mediated [3H]-cyclic AMP accumulation was investigated. The results suggest that there is a substantial efflux of cyclic AMP from the cells in addition to the rapid and sustained elevation of intracellular cyclic AMP (5 fold over basal) which was also observed. 6. These data indicate that rat astrocytes in primary culture express an A2B-adenosine receptor coupled positively to adenylyl cyclase. Furthermore, the presence of A1-receptors negatively coupled to adenylyl cyclase appears to have no significant effect on the A2B-receptor

  11. The A2B adenosine receptor promotes Th17 differentiation via stimulation of dendritic cell IL-6.

    PubMed

    Wilson, Jeffrey M; Kurtz, Courtney C; Black, Steven G; Ross, William G; Alam, Mohammed S; Linden, Joel; Ernst, Peter B

    2011-06-15

    Adenosine is an endogenous metabolite produced during hypoxia or inflammation. Previously implicated as an anti-inflammatory mediator in CD4(+) T cell regulation, we report that adenosine acts via dendritic cell (DC) A(2B) adenosine receptor (A(2B)AR) to promote the development of Th17 cells. Mouse naive CD4(+) T cells cocultured with DCs in the presence of adenosine or the stable adenosine mimetic 5'-(N-ethylcarboximado) adenosine resulted in the differentiation of IL-17- and IL-22-secreting cells and elevation of mRNA that encode signature Th17-associated molecules, such as IL-23R and RORγt. The observed response was similar when DCs were generated from bone marrow or isolated from small intestine lamina propria. Experiments using adenosine receptor antagonists and cells from A(2B)AR(-/-) or A(2A)AR(-/-)/A(2B)AR(-/-) mice indicated that the DC A(2B)AR promoted the effect. IL-6, stimulated in a cAMP-independent manner, is an important mediator in this pathway. Hence, in addition to previously noted direct effects of adenosine receptors on regulatory T cell development and function, these data indicated that adenosine also acts indirectly to modulate CD4(+) T cell differentiation and suggested a mechanism for putative proinflammatory effects of A(2B)AR.

  12. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease.

    PubMed

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K; Blackwell, Timothy S; Xia, Yang; Johnston, Richard A; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R

    2012-06-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A(2B)R) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A(2B)R or treatment with the A(2B)R antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A(2B)R attenuated vascular remodeling and hypertension in our model. Furthermore, direct A(2B)R activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A(2B)R antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.

  13. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease

    PubMed Central

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D.; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K.; Blackwell, Timothy S.; Xia, Yang; Johnston, Richard A.; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R.

    2012-01-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A2BR) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A2BR or treatment with the A2BR antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A2BR attenuated vascular remodeling and hypertension in our model. Furthermore, direct A2BR activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A2BR antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.—Karmouty-Quintana, H., Zhong, H., Acero, L., Weng, T., Melicoff, E., West, J. D., Hemnes, A., Grenz, A., Eltzschig, H. K., Blackwell, T. S., Xia, Y., Johnston, R. A., Zeng, D., Belardinelli, L., Blackburn, M. R. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. PMID:22415303

  14. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion

    PubMed Central

    Yang, Dan; Zhang, Ying; Nguyen, Hao G.; Koupenova, Milka; Chauhan, Anil K.; Makitalo, Maria; Jones, Matthew R.; Hilaire, Cynthia St.; Seldin, David C.; Toselli, Paul; Lamperti, Edward; Schreiber, Barbara M.; Gavras, Haralambos; Wagner, Denisa D.; Ravid, Katya

    2006-01-01

    Adenosine has been described as playing a role in the control of inflammation, but it has not been certain which of its receptors mediate this effect. Here, we generated an A2B adenosine receptor–knockout/reporter gene–knock-in (A2BAR-knockout/reporter gene–knock-in) mouse model and showed receptor gene expression in the vasculature and macrophages, the ablation of which causes low-grade inflammation compared with age-, sex-, and strain-matched control mice. Augmentation of proinflammatory cytokines, such as TNF-α, and a consequent downregulation of IκB-α are the underlying mechanisms for an observed upregulation of adhesion molecules in the vasculature of these A2BAR-null mice. Intriguingly, leukocyte adhesion to the vasculature is significantly increased in the A2BAR-knockout mice. Exposure to an endotoxin results in augmented proinflammatory cytokine levels in A2BAR-null mice compared with control mice. Bone marrow transplantations indicated that bone marrow (and to a lesser extent vascular) A2BARs regulate these processes. Hence, we identify the A2BAR as a new critical regulator of inflammation and vascular adhesion primarily via signals from hematopoietic cells to the vasculature, focusing attention on the receptor as a therapeutic target. PMID:16823489

  15. Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system.

    PubMed

    Popoli, Patrizia; Pepponi, Rita

    2012-09-01

    Adenosine A2B and, much more importantly, adenosine A2A receptors modulate many physiological and pathological processes in the brain. In this review, the most recent evidence concerning the role of such receptors and their potential therapeutic relevance is discussed. The low affinity of A2B receptors for adenosine implies that they might represent a good therapeutic target, since they are activated only under pathological conditions (when adenosine levels raise up to micromolar concentrations). The availability of selective ligands for A2B receptors would allow exploration of such an hypothesis. Since adenosine A2A receptors mediate both potentially neuroprotective and potentially neurotoxic effects, their role in neurodegenerative diseases is highly controversial. Nevertheless, A2A receptor antagonists have shown clear antiparkinsonian effects, and a great interest exists on the role of A2A receptors in Alzheimer's disease, brain ischaemia, spinal cord injury, drug addiction and other conditions. In order to establish whether such receptors represent a target for CNS diseases, at least two conditions are needed: the full comprehension of A2A-dependent mechanisms and the availability of ligands capable of discriminating among the different receptor populations.

  16. Modulation of murine dendritic cell function by adenine nucleotides and adenosine: involvement of the A(2B) receptor.

    PubMed

    Ben Addi, Abduelhakem; Lefort, Anne; Hua, Xiaoyang; Libert, Frédérick; Communi, Didier; Ledent, Catherine; Macours, Pascale; Tilley, Stephen L; Boeynaems, Jean-Marie; Robaye, Bernard

    2008-06-01

    Adenosine triphosphate has previously been shown to induce semi-mature human monocyte-derived dendritic cells (DC). These are characterized by the up-regulation of co-stimulatory molecules, the inhibition of IL-12 and the up-regulation of some genes involved in immune tolerance, such as thrombospondin-1 and indoleamine 2,3-dioxygenase. The actions of adenosine triphosphate are mediated by the P2Y(11) receptor; since there is no functional P2Y(11) gene in the murine genome, we investigated the action of adenine nucleotides on murine DC. Adenosine 5'-(3-thiotriphosphate) and adenosine inhibited the production of IL-12p70 by bone marrow-derived DC (BMDC). These inhibitions were relieved by 8-p-sulfophenyltheophylline, an adenosine receptor antagonist. The use of selective ligands and A(2B) (-/-) BMDC indicated the involvement of the A(2B) receptor. A microarray experiment, confirmed by quantitative PCR, showed that, in presence of LPS, 5'-(N-ethylcarboxamido) adenosine (NECA, the most potent A(2B) receptor agonist) regulated the expression of several genes: arginase I and II, thrombospondin-1 and vascular endothelial growth factor were up-regulated whereas CCL2 and CCL12 were down-regulated. We further showed that NECA, in combination with LPS, increased the arginase I enzymatic activity. In conclusion, the described actions of adenine nucleotides on BMDC are mediated by their degradation product, adenosine, acting on the A(2B) receptor, and will possibly lead to an impairment of Th1 response or tolerance.

  17. Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis

    PubMed Central

    Aherne, CM; Saeedi, B; Collins, CB; Masterson, JC; McNamee, EN; Perrenoud, L; Rapp, CR; Curtis, VF; Bayless, A; Fletcher, A; Glover, LE; Evans, CM; Jedlicka, P; Furuta, GT; de Zoeten, EF; Colgan, SP; Eltzschig, HK

    2015-01-01

    Central to inflammatory bowel disease (IBD) pathogenesis is loss of mucosal barrier function. Emerging evidence implicates extracellular adenosine signaling in attenuating mucosal inflammation. We hypothesized that adenosine-mediated protection from intestinal barrier dysfunction involves tissue-specific signaling through the A2B adenosine receptor (Adora2b) at the intestinal mucosal surface. To address this hypothesis, we combined pharmacologic studies and studies in mice with global or tissue-specific deletion of the Adora2b receptor. Adora2b−/− mice experienced a significantly heightened severity of colitis, associated with a more acute onset of disease and loss of intestinal epithelial barrier function. Comparison of mice with Adora2b deletion on vascular endothelial cells (Adora2bfl/flVeCadCre+) or intestinal epithelia (Adora2bfl/flVillinCre+) revealed a selective role for epithelial Adora2b signaling in attenuating colonic inflammation. In vitro studies with Adora2b knockdown in intestinal epithelial cultures or pharmacologic studies highlighted Adora2b-driven phosphorylation of vasodilator-stimulated phosphoprotein (VASP) as a specific barrier repair response. Similarly, in vivo studies in genetic mouse models or treatment studies with an Adora2b agonist (BAY 60-6583) recapitulate these findings. Taken together, our results suggest that intestinal epithelial Adora2b signaling provides protection during intestinal inflammation via enhancing mucosal barrier responses. PMID:25850656

  18. IFN-γ prevents adenosine receptor (A2bR) upregulation to sustain the macrophage activation response

    PubMed Central

    Cohen, Heather B.; Ward, Amanda; Hamidzadeh, Kajal; Ravid, Katya; Mosser, David M.

    2015-01-01

    The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. Here, we demonstrate that following TLR stimulation, macrophages up regulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This up-regulation of A2bR leads to the induction of a macrophage with an immunoregulatory phenotype and the down regulation of inflammation. IFN-γ priming of macrophages, selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNFα and IL-12 in response to TLR ligation. The pharmacological inhibition or the genetic deletion of the A2bR results in a hyper-inflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense, by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the anti-microbial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated. PMID:26355158

  19. A2a and a2b adenosine receptors affect HIF-1α signaling in activated primary microglial cells.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Stefanelli, Angela; Bencivenni, Serena; Castillo, Carlos Alberto; Varani, Katia; Gessi, Stefania

    2015-05-15

    Microglia are central nervous system (CNS)-resident immune cells, that play a crucial role in neuroinflammation. Hypoxia-inducible factor-1 (HIF-1), the main transcription factor of hypoxia-inducible genes, is also involved in the immune response, being regulated in normoxia by inflammatory mediators. Adenosine is an ubiquitous nucleoside that has an influence on many immune properties of microglia through interaction with four receptor subtypes. The aim of this study was to investigate whether adenosine may affect microglia functions by acting on HIF-1α modulation. Primary murine microglia were activated with lipopolysaccharide (LPS) with or without adenosine, adenosine receptor agonists and antagonists and HIF-1α accumulation and downstream genes regulation were determined. Adenosine increased LPS-induced HIF-1α accumulation leading to an increase in HIF-1α target genes involved in cell metabolism [glucose transporter-1 (GLUT-1)] and pathogens killing [inducible nitric-oxide synthase (iNOS)] but did not induce HIF-1α dependent genes related to angiogenesis [vascular endothelial growth factor (VEGF)] and inflammation [tumor necrosis factor-α (TNF-α)]. The stimulatory effect of adenosine on HIF-1α and its target genes was essentially exerted by activation of A2A through p44/42 and A2B subtypes via p38 mitogen-activated protein kinases (MAPKs) and Akt phosphorylation. Furthermore the nucleoside raised VEGF and decreased TNF-α levels, by activating A2B subtypes. In conclusion adenosine increases GLUT-1 and iNOS gene expression in a HIF-1α-dependent way, through A2A and A2B receptors, suggesting their role in the regulation of microglial cells function following injury. However, inhibition of TNF-α adds an important anti-inflammatory effect only for the A2B subtype. GLIA 2015.

  20. Inhibitory effects of benzodiazepines on the adenosine A(2B) receptor mediated secretion of interleukin-8 in human mast cells.

    PubMed

    Hoffmann, Kristina; Xifró, Rosa Altarcheh; Hartweg, Julia Lisa; Spitzlei, Petra; Meis, Kirsten; Molderings, Gerhard J; von Kügelgen, Ivar

    2013-01-30

    The activation of adenosine A(2B) receptors in human mast cells causes pro-inflammatory responses such as the secretion of interleukin-8. There is evidence for an inhibitory effect of benzodiazepines on mast cell mediated symptoms in patients with systemic mast cell activation disease. Therefore, we investigated the effects of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast cell leukaemia (HMC1) cells by an enzyme linked immunosorbent assay. The adenosine analogue N-ethylcarboxamidoadenosine (NECA, 0.3-3 μM) increased interleukin-8 production about 5-fold above baseline. This effect was attenuated by the adenosine A(2B) receptor antagonist MRS1754 (N-(4-cyanophenyl)-2-{4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy}-acetamide) 1 μM. In addition, diazepam, 4'-chlorodiazepam and flunitrazepam (1-30 μM) markedly reduced NECA-induced interleukin-8 production in that order of potency, whereas clonazepam showed only a modest inhibition. The inhibitory effect of diazepam was not altered by flumazenil 10 μM or PK11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide) 10 μM. Diazepam attenuated the NECA-induced expression of mRNA encoding for interleukin-8. Moreover, diazepam and flunitrazepam reduced the increasing effects of NECA on cAMP-response element- and nuclear factor of activated t-cells-driven luciferase reporter gene activities in HMC1 cells. Neither diazepam nor flunitrazepam affected NECA-induced increases in cellular cAMP levels in CHO Flp-In cells stably expressing recombinant human adenosine A(2B) receptors, excluding a direct action of benzodiazepines on human adenosine A(2B) receptors. In conclusion, this is the first study showing an inhibitory action of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast (HMC1) cells. The rank order of potency indicates the involvement of an atypical benzodiazepine binding site.

  1. Discovery and optimization of potent and selective functional antagonists of the human adenosine A2B receptor.

    PubMed

    Bedford, Simon T; Benwell, Karen R; Brooks, Teresa; Chen, Ijen; Comer, Mike; Dugdale, Sarah; Haymes, Tim; Jordan, Allan M; Kennett, Guy A; Knight, Anthony R; Klenke, Burkhard; LeStrat, Loic; Merrett, Angela; Misra, Anil; Lightowler, Sean; Padfield, Anthony; Poullennec, Karine; Reece, Mark; Simmonite, Heather; Wong, Melanie; Yule, Ian A

    2009-10-15

    We herein report the discovery of a novel class of antagonists of the human adenosine A2B receptor. This low molecular weight scaffold has been optimized to offer derivatives with potential utility for the alleviation of conditions associated with this receptor subtype, such as nociception, diabetes, asthma and COPD. Furthermore, preliminary pharmacokinetic analysis has revealed compounds with profiles suitable for either inhaled or systemic routes of administration.

  2. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions

    PubMed Central

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Background: Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. Methods: C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). Results and conclusions: The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions. PMID:24966910

  3. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor

    PubMed Central

    Watson, Michael J.; Lee, Shernita L.; Marklew, Abigail J.; Gilmore, Rodney C.; Gentzsch, Martina; Sassano, Maria F.; Gray, Michael A.; Tarran, Robert

    2016-01-01

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR’s function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR’s PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs. PMID:27278076

  4. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor.

    PubMed

    Watson, Michael J; Lee, Shernita L; Marklew, Abigail J; Gilmore, Rodney C; Gentzsch, Martina; Sassano, Maria F; Gray, Michael A; Tarran, Robert

    2016-06-09

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.

  5. A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice.

    PubMed

    Belikoff, Bryan G; Hatfield, Stephen; Georgiev, Peter; Ohta, Akio; Lukashev, Dmitriy; Buras, Jon A; Remick, Daniel G; Sitkovsky, Michail

    2011-02-15

    Antimicrobial treatment strategies must improve to reduce the high mortality rates in septic patients. In noninfectious models of acute inflammation, activation of A2B adenosine receptors (A2BR) in extracellular adenosine-rich microenvironments causes immunosuppression. We examined A2BR in antibacterial responses in the cecal ligation and puncture (CLP) model of sepsis. Antagonism of A2BR significantly increased survival, enhanced bacterial phagocytosis, and decreased IL-6 and MIP-2 (a CXC chemokine) levels after CLP in outbred (ICR/CD-1) mice. During the CLP-induced septic response in A2BR knockout mice, hemodynamic parameters were improved compared with wild-type mice in addition to better survival and decreased plasma IL-6 levels. A2BR deficiency resulted in a dramatic 4-log reduction in peritoneal bacteria. The mechanism of these improvements was due to enhanced macrophage phagocytic activity without augmenting neutrophil phagocytosis of bacteria. Following ex vivo LPS stimulation, septic macrophages from A2BR knockout mice had increased IL-6 and TNF-α secretion compared with wild-type mice. A therapeutic intervention with A2BR blockade was studied by using a plasma biomarker to direct therapy to those mice predicted to die. Pharmacological blockade of A2BR even 32 h after the onset of sepsis increased survival by 65% in those mice predicted to die. Thus, even the late treatment with an A2BR antagonist significantly improved survival of mice (ICR/CD-1) that were otherwise determined to die according to plasma IL-6 levels. Our findings of enhanced bacterial clearance and host survival suggest that antagonism of A2BRs offers a therapeutic target to improve macrophage function in a late treatment protocol that improves sepsis survival.

  6. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression.

    PubMed

    Ning, Chen; Wen, Jiaming; Zhang, Yujin; Dai, Yingbo; Wang, Wei; Zhang, Weiru; Qi, Lin; Grenz, Almut; Eltzschig, Holger K; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2014-06-01

    Priapism is featured with prolonged and painful penile erection and is prevalent among males with sickle cell disease (SCD). The disorder is a dangerous urological and hematological emergency since it is associated with ischemic tissue damage and erectile disability. Here we report that phosphodiesterase-5 (PDE5) gene expression and PDE activity is significantly reduced in penile tissues of two independent priapic models: SCD mice and adenosine deaminase (ADA)-deficient mice. Moreover, using ADA enzyme therapy to reduce adenosine or a specific antagonist to block A(2B) adenosine receptor (ADORA2B) signaling, we successfully attenuated priapism in both ADA(-/-) and SCD mice by restoring penile PDE5 gene expression to normal levels. This finding led us to further discover that excess adenosine signaling via ADORA2B activation directly reduces PDE5 gene expression in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. Overall, we reveal that excess adenosine-mediated ADORA2B signaling underlies reduced penile PDE activity by decreasing PDE5 gene expression in a HIF-1α-dependent manner and provide new insight for the pathogenesis of priapism and novel therapies for the disease.

  7. The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropathy.

    PubMed

    Patel, Leena; Thaker, Aswin

    2014-07-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. The pathophysiologic mechanisms of diabetic nephropathy are incompletely understood but include overproduction of various growth factors and cytokines. Upregulation of vascular endothelial growth factor (VEGF) is a pathogenic event occurring in most forms of podocytopathy; however, the mechanisms that regulate this growth factor induction are not clearly identified. A2B receptors have been found to regulate VEGF expression under hypoxic environment in different tissues. One proposed hypothesis in mediating diabetic nephropathy is the modulation of VEGF-NO balance in renal tissue. We determined the role of adenosine A2B receptor in mediating VEGF overproduction and nitrite in diabetic nephropathy. The renal content of A2B receptors and VEGF was increased after 8 weeks of diabetes induction. The renal and plasma nitrite levels were also reduced in these animals. In vivo administration of A2B adenosine receptor antagonist (MRS1754) inhibited the renal over expression of VEGF and adverse renal function parameters. The antagonist administration also improved the kidney tissue nitrite levels. In conclusion, we demonstrated that VEGF induction via adenosine signaling might be the critical event in regulating VEGF-NO axis in diabetic nephropathy.

  8. A2B and A3 Adenosine Receptors Modulate Vascular Endothelial Growth Factor and Interleukin-8 Expression in Human Melanoma Cells Treated with Etoposide and Doxorubicin

    PubMed Central

    Merighi, Stefania; Simioni, Carolina; Gessi, Stefania; Varani, Katia; Mirandola, Prisco; Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni; Borea, Pier Andrea

    2009-01-01

    Cancer patients undergoing treatment with systemic cancer chemotherapy drugs often have abnormal growth factor and cytokine profiles. Thus, serum levels of interleukin-8 (IL-8) are elevated in patients with malignant melanoma. In addition to IL-8, aggressive melanoma cells secrete, through its transcriptional regulator hypoxia-inducible factor 1 (HIF-1), vascular endothelial growth factor (VEGF), which promotes angiogenesis and metastasis of human cancerous cells. Whether these responses are related to adenosine, a ubiquitous mediator expressed at high concentrations in cancer and implicated in numerous inflammatory processes, is not known and is the focus of this study. We have examined whether the DNA-damaging agents etoposide (VP-16) and doxorubicin can affect IL-8, VEGF, and HIF-1 expressions in human melanoma cancer cells. In particular, we have investigated whether these responses are related to the modulation of the adenosine receptor subtypes, namely, A1, A2A, A2B, and A3. We have demonstrated that A2B receptor blockade can impair IL-8 production, whereas blocking A3 receptors, it is possible to further decrease VEGF secretion in melanoma cells treated with VP-16 and doxorubicin. This understanding may present the possibility of using adenosine antagonists to reduce chemotherapy-induced inflammatory cytokine production and to improve the ability of chemotherapeutic drugs to block angiogenesis. Consequently, we conclude that adenosine receptor modulation may be useful for refining the use of chemotherapeutic drugs to treat human cancer more effectively. PMID:19794965

  9. A2B adenosine receptors stimulate IL-6 production in primary murine microglia through p38 MAPK kinase pathway.

    PubMed

    Merighi, Stefania; Bencivenni, Serena; Vincenzi, Fabrizio; Varani, Katia; Borea, Pier Andrea; Gessi, Stefania

    2017-03-01

    The hallmark of neuroinflammation is the activation of microglia, the immunocompetent cells of the CNS, releasing a number of proinflammatory mediators implicated in the pathogenesis of neuronal diseases. Adenosine is an ubiquitous autacoid regulating several microglia functions through four receptor subtypes named A1, A2A, A2B and A3 (ARs), that represent good targets to suppress inflammation occurring in CNS. Here we investigated the potential role of ARs in the modulation of IL-6 secretion and cell proliferation in primary microglial cells. The A2BAR agonist 2-[[6-Amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (BAY60-6583) stimulated IL-6 increase under normoxia and hypoxia, in a dose- and time-dependent way. In cells incubated with the blockers of phospholipase C (PLC), protein kinase C epsilon (PKC-ε) and PKC delta (PKC-δ) the IL-6 increase due to A2BAR activation was strongly reduced, whilst it was not affected by the inhibitor of adenylyl cyclase (AC). Investigation of cellular signalling involved in the A2BAR effect revealed that only the inhibitor of p38 mitogen activated protein kinase (MAPK) was able to block the agonist's effect on IL-6 secretion, whilst inhibitors of pERK1/2, JNK1/2 MAPKs and Akt were not. Stimulation of p38 by BAY60-6583 was A2BAR-dependent, through a pathway affecting PLC, PKC-ε and PKC-δ but not AC, in both normoxia and hypoxia. Finally, BAY60-6583 increased microglial cell proliferation involving A2BAR, PLC, PKC-ε, PKC-δ and p38 signalling. In conclusion, A2BARs activation increased IL-6 secretion and cell proliferation in murine primary microglial cells, through PLC, PKC-ε, PKC-δ and p38 pathways, thus suggesting their involvement in microglial activation and neuroinflammation.

  10. Adora2b adenosine receptor signaling protects during acute kidney injury via inhibition of neutrophil-dependent TNF-α release1

    PubMed Central

    Grenz, Almut; Kim, Jae-Hwan; Bauerle, Jessica D.; Tak, Eunyoung; Eltzschig, Holger K.; Clambey, Eric T.

    2012-01-01

    Renal ischemia is among the leading causes of acute kidney injury (AKI). Previous studies have shown that extracellular adenosine is a prominent tissue-protective cue elicited during ischemia, including signaling events through the A2B adenosine receptor (Adora2b). To investigate the functional role of Adora2b signaling in cytokine-mediated inflammatory pathways, we screened wild-type and Adora2b-deficient mice undergoing renal ischemia for expression of a range of inflammatory cytokines. These studies demonstrated a selective and robust increase of TNF-α levels in Adora2b-deficient mice following renal ischemia and reperfusion. Based on these findings, we next sought to understand the contribution of TNF-α on ischemic AKI through a combination of loss- and gain-of-function studies. Loss of TNF-α, either through antibody blockade or study of TNF-α deficient animals resulted in significantly attenuated tissue injury and improved kidney function following renal ischemia. Conversely, transgenic mice with over-expression of TNF-α had significantly pronounced susceptibility to AKI. Furthermore, neutrophil depletion or reconstitution of Adora2b−/− mice with TNF-α deficient neutrophils rescued their phenotype. In total, these data demonstrate a critical role of adenosine signaling in constraining neutrophil-dependent production of TNF-α, and implicate therapies targeting TNF-α in the treatment of ischemic AKI. PMID:23028059

  11. Downregulation of A(1) and A(2B) adenosine receptors in human trisomy 21 mesenchymal cells from first-trimester chorionic villi.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Stefanelli, Angela; Mirandola, Prisco; Bonfatti, Alessandra; Fini, Sergio; Sensi, Alberto; Marci, Roberto; Varani, Katia; Borea, Pier Andrea; Vesce, Fortunato

    2012-11-01

    Human reproduction is complex and prone to failure. Though causes of miscarriage remain unclear, adenosine, a proangiogenic nucleoside, may help determine pregnancy outcome. Although adenosine receptor (AR) expression has been characterized in euploid pregnancies, no information is available for aneuploidies, which, as prone to spontaneous abortion (SA), are a potential model for shedding light on the mechanism regulating this event. AR expression was investigated in 71 first-trimester chorionic villi (CV) samples and cultured mesenchymal cells (MC) from euploid and TR21 pregnancies, one of the most frequent autosomal aneuploidy, with a view to elucidating their potential role in the modulation of vascular endothelial growth factor (VEGF) and nitric oxide (NO). Compared to euploid cells, reduced A(1) and A(2B) expression was revealed in TR21 CV and MCs. The non-selective adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased NO, by activating, predominantly, A(1)AR and A(2A)AR through a molecular pathway involving hypoxia-inducible-factor-1 (HIF-1α), and increased VEGF, mainly through A(2B). In conclusion the adenosine transduction cascade appears to be disturbed in TR21 through reduced expression of A(2B) and A(1)ARs. These anomalies may be implicated in complications such as fetal growth restriction, malformation and/or SA, well known features of aneuploid pregnancies. Therefore A(1) and A(2B)ARs could be potential biomarkers able to provide an early indication of SA risk and their stimulation may turn out to improve fetoplacental perfusion by increasing NO and VEGF.

  12. The Stimulatory Adenosine Receptor ADORA2B Regulates Serotonin (5-HT) Synthesis and Release in Oxygen-Depleted EC Cells in Inflammatory Bowel Disease

    PubMed Central

    Svejda, Bernhard; Alaimo, Daniele; Brenna, Oystein; Pfragner, Roswitha; Gustafsson, Bjorn I.; Kidd, Mark

    2013-01-01

    Objective We recently demonstrated that hypoxia, a key feature of IBD, increases enterochromaffin (EC) cell 5-HT secretion, which is also physiologically regulated by the ADORA2B mechanoreceptor. Since hypoxia is associated with increased extracellular adenosine, we wanted to examine whether this nucleotide amplifies HIF-1α-mediated 5-HT secretion. Design The effects of hypoxia were studied on IBD mucosa, isolated IBD-EC cells, isolated normal EC cells and the EC cell tumor derived cell line KRJ-1. Hypoxia (0.5% O2) was compared to NECA (adenosine agonist), MRS1754 (ADORA2B receptor antagonist) and SCH442146 (ADORA2A antagonist) on HIF signaling and 5-HT secretion. Antisense approaches were used to mechanistically evaluate EC cells in vitro. PCR and western blot were used to analyze transcript and protein levels of HIF-1α signaling and neuroendocrine cell function. An animal model of colitis was evaluated to confirm hypoxia:adenosine signaling in vivo. Results HIF-1α is upregulated in IBD mucosa and IBD-EC cells, the majority (∼90%) of which express an activated phenotype in situ. Hypoxia stimulated 5-HT release maximally at 30 mins, an effect amplified by NECA and selectively inhibited by MRS1754, through phosphorylation of TPH-1 and activation of VMAT-1. Transient transfection with Renilla luciferase under hypoxia transcriptional response element (HRE) control identified that ADORA2B activated HIF-1α signaling under hypoxic conditions. Additional signaling pathways associated with hypoxia:adenosine included MAP kinase and CREB. Antisense approaches mechanistically confirmed that ADORA2B signaling was linked to these pathways and 5-HT release under hypoxic conditions. Hypoxia:adenosine activation which could be reversed by 5′-ASA treatment was confirmed in a TNBS-model. Conclusion Hypoxia induced 5-HT synthesis and secretion is amplified by ADORA2B signaling via MAPK/CREB and TPH-1 activation. Targeting ADORA2s may decrease EC cell 5-HT production and

  13. TNF-{alpha} upregulates the A{sub 2B} adenosine receptor gene: The role of NAD(P)H oxidase 4

    SciTech Connect

    St Hilaire, Cynthia; Koupenova, Milka; Carroll, Shannon H.; Smith, Barbara D.; Ravid, Katya

    2008-10-24

    Proliferation of vascular smooth muscle cells (VSMC), oxidative stress, and elevated inflammatory cytokines are some of the components that contribute to plaque formation in the vasculature. The cytokine tumor necrosis factor-alpha (TNF-{alpha}) is released during vascular injury, and contributes to lesion formation also by affecting VSMC proliferation. Recently, an A{sub 2B} adenosine receptor (A{sub 2B}AR) knockout mouse illustrated that this receptor is a tissue protector, in that it inhibits VSMC proliferation and attenuates the inflammatory response following injury, including the release of TNF-{alpha}. Here, we show a regulatory loop by which TNF-{alpha} upregulates the A{sub 2B}AR in VSMC in vitro and in vivo. The effect of this cytokine is mimicked by its known downstream target, NAD(P)H oxidase 4 (Nox4). Nox4 upregulates the A{sub 2B}AR, and Nox inhibitors dampen the effect of TNF-{alpha}. Hence, our study is the first to show that signaling associated with Nox4 is also able to upregulate the tissue protecting A{sub 2B}AR.

  14. Remifentanil-induced preconditioning has cross-talk with A1 and A2B adenosine receptors in ischemic-reperfused rat heart.

    PubMed

    Lee, Yong-Cheol; Jung, Jiyoon; Park, Sang-Jin

    2016-01-01

    The purpose of this study was to determine whether there is a cross-talk between opioid receptors (OPRs) and adenosine receptors (ADRs) in remifentanil preconditioning (R-Pre) and, if so, to investigate the types of ADRs involved in the cross-talk. Isolated rat hearts received 30 min of regional ischemia followed by 2 hr of reperfusion. OPR and ADR antagonists were perfused from 10 min before R-Pre until the end of R-Pre. The heart rate, left ventricular developed pressure (LVDP),velocity of contraction (+dP/dtmax), and coronary flow (CF) were recorded. The area at risk and area of necrosis were measured. After reperfusion, the LVDP, +dP/dtmax,and CF showed a significant increase in the R-Pre group compared with the control group (no intervention before or after regional ischemia). These increases in the R-Pre group were blocked by naloxone, a nonspecific ADR antagonist, an A1 ADR antagonist, and an A2B ADR antagonist. The infarct size was reduced significantly in the R-Pre group compared with the control group. The infarct-reducing effect in the R-Pre group was blocked by naloxone, the nonspecific ADR antagonist, the A1 ADR antagonist, and the A2B ADR antagonist. The results of this study demonstrate that there is cross-talk between ADRs and OPRs in R-Pre and that A1 ADR and A2B ADR appear to be involved in the cross-talk.

  15. Adenosine receptor neurobiology: overview.

    PubMed

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases.

  16. Adenosine A₂A receptors permit mGluR5-evoked tyrosine phosphorylation of NR2B (Tyr1472) in rat hippocampus: a possible key mechanism in NMDA receptor modulation.

    PubMed

    Sarantis, Konstantinos; Tsiamaki, Eirini; Kouvaros, Stylianos; Papatheodoropoulos, Costas; Angelatou, Fevronia

    2015-11-01

    A great body of evidence points toward a functional interaction between metabotropic glutamate 5 receptors (mGluR5) and NMDA receptors (NMDAR) that enhances synaptic plasticity and cognition. However, the molecular mechanism underlying this interaction remains unclear. Here, we show that co-activation of mGluR5 and NMDAR in hippocampal slices synergistically leads to a robust phosphorylation of NR2B (Tyr1472), which is Src kinase dependent and is enabled by endogenous adenosine acting on A2A receptors. As it is well known, NR2B (Tyr1472) phosphorylation anchors NR2B-containing NMDARs to the surface of post-synaptic membranes, preventing their internalization. This is supported by our electrophysiological experiments showing that co-activation of mGluR5 and NMDARs robustly enhances NMDAR-dependent neuronal excitability recorded in CA1 hippocampal region, which temporally coincides with the robust increase in NR2B (Tyr1472) phosphorylation, depends on Src kinases and is also permitted by A2A receptors. Thus, we strongly suggest that NR2B (Tyr1472) phosphorylation constitutes, at least to some extent, the molecular mechanism underlying the mGluR5-mediated enhancement of NMDAR-dependent responses, which is modulated by A2A receptors. A better understanding of the molecular basis of mGluR5/NMDAR interaction would elucidate their role in synaptic plasticity processes as well as in pathological conditions. We propose the following molecular mechanism by which metabotropic Glutamate Receptor 5 (mGluR5) potentiate ionotropic Glutamate N-Methyl-D-Aspartate Receptor (NMDAR) responses in rat hippocampus. Co-activation of mGLUR5/NMDAR activates Src kinases, leading to NR2B(Tyr1472) phosphorylation, which anchors NR2B-containing NMDAR to the plasma membrane, thus inducing a robust increase in the NMDA-dependent excitability. Interestingly, adenosine A2A receptors license the mGluR5-induced NR2B(Tyr1472) phosphorylation.

  17. Activation of the A2B adenosine receptor in B16 melanomas induces CXCL12 expression in FAP-positive tumor stromal cells, enhancing tumor progression

    PubMed Central

    Sorrentino, Claudia; Miele, Lucio; Porta, Amalia; Pinto, Aldo; Morello, Silvana

    2016-01-01

    The A2B receptor (A2BR) can mediate adenosine-induced tumor proliferation, immunosuppression and angiogenesis. Targeting the A2BR has proved to be therapeutically effective in some murine tumor models, but the mechanisms of these effects are still incompletely understood. Here, we report that pharmacologic inhibition of A2BR with PSB1115, which inhibits tumor growth, decreased the number of fibroblast activation protein (FAP)-expressing cells in tumors in a mouse model of melanoma. This effect was associated with reduced expression of fibroblast growth factor (FGF)-2. Treatment of melanoma-associated fibroblasts with the A2BR agonist Bay60-6583 enhanced CXCL12 and FGF2 expression. This effect was abrogated by PSB1115. The A2AR agonist CGS21680 did not induce CXCL12 or FGF2 expression in tumor associated fibroblasts. Similar results were obtained under hypoxic conditions in skin-derived fibroblasts, which responded to Bay60-6583 in an A2BR-dependent manner, by stimulating pERK1/2. FGF2 produced by Bay60-6583-treated fibroblasts directly enhanced the proliferation of melanoma cells. This effect could be reversed by PSB1115 or an anti-FGF2 antibody. Interestingly, melanoma growth in mice receiving Bay60-6583 was attenuated by inhibition of the CXCL12/CXCR4 pathway with AMD3100. CXCL12 and its receptor CXCR4 are involved in angiogenesis and immune-suppression. Treatment of mice with AMD3100 reduced the number of CD31+ cells induced by Bay60-6583. Conversely, CXCR4 blockade did not affect the accumulation of tumor-infiltrating MDSCs or Tregs. Together, our data reveal an important role for A2BR in stimulating FGF2 and CXCL12 expression in melanoma-associated fibroblasts. These factors contribute to create a tumor-promoting microenvironment. Our findings support the therapeutic potential of PSB1115 for melanoma. PMID:27590504

  18. CD73-Dependent Generation of Adenosine and Endothelial Adora2b Signaling Attenuate Diabetic Nephropathy

    PubMed Central

    Tak, Eunyoung; Ridyard, Douglas; Kim, Jae-Hwan; Zimmerman, Michael; Werner, Tilmann; Wang, Xiaoxin X.; Shabeka, Uladzimir; Seo, Seong-Wook; Christians, Uwe; Klawitter, Jost; Moldovan, Radu; Garcia, Gabriela; Levi, Moshe; Haase, Volker; Ravid, Katya; Eltzschig, Holger K.

    2014-01-01

    Nucleotide phosphohydrolysis by the ecto-5′-nucleotidase (CD73) is the main source for extracellular generation of adenosine. Extracellular adenosine subsequently signals through four distinct adenosine A receptors (Adora1, Adora2a, Adora2b, or Adora3). Here, we hypothesized a functional role for CD73-dependent generation and concomitant signaling of extracellular adenosine during diabetic nephropathy. CD73 transcript and protein levels were elevated in the kidneys of diabetic mice. Genetic deletion of CD73 was associated with more severe diabetic nephropathy, whereas treatment with soluble nucleotidase was therapeutic. Transcript levels of renal adenosine receptors showed a selective induction of Adora2b during diabetic nephropathy. In a transgenic reporter mouse, Adora2b expression localized to the vasculature and increased after treatment with streptozotocin. Adora2b−/− mice experienced more severe diabetic nephropathy, and studies in mice with tissue-specific deletion of Adora2b in tubular epithelia or vascular endothelia implicated endothelial Adora2b signaling in protection from diabetic nephropathy. Finally, treatment with a selective Adora2b agonist (BAY 60–6583) conveyed potent protection from diabetes-associated kidney disease. Taken together, these findings implicate CD73-dependent production of extracellular adenosine and endothelial Adora2b signaling in kidney protection during diabetic nephropathy. PMID:24262796

  19. Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors.

    PubMed

    Panjehpour, Mojtaba; Karami-Tehrani, Fatemeh

    2007-01-01

    Adenosine modulates the proliferation, survival, and apoptosis of many different cell types. The present study was performed to investigate the role of adenosine receptors in the human breast cancer cell lines MCF-7 and MDA-MB468. The biological effects of adenosine on the cells were analyzed by adenylyl cyclase and cell viability assay as well as RT-PCR of adenosine receptors. RT-PCR results show the expression of the transcript of all adenosine receptors in both cell lines. By using adenosine and selective adenosine receptor agonists or antagonists, we found that A3 stimulation reduced cell viability, which was abolished by pretreatment with A3 receptor antagonist. Moreover, we demonstrated that adenosine (natural agonist) triggers a cytotoxic signal via A3 receptor activation that was not seen for other subclasses of adenosine receptors. Intracellular cAMP concentration was changed significantly only for A3 and A2B receptor-selective agonists, which indicates the functional form of these receptors on the cell surface. In conclusion, our findings revealed the role of adenosine receptors in breast cancer cell lines on growth modulation role of A3 and functional form of A2B, although its involvement in cell growth modulation was not seen. Theses findings as well as data by others may provide a possible application of adenosine receptor agonists/antagonists in breast malignancies.

  20. Concurrent agonism of adenosine A2B and glucocorticoid receptors in human airway epithelial cells cooperatively induces genes with anti-inflammatory potential: a novel approach to treat chronic obstructive pulmonary disease.

    PubMed

    Greer, Stephanie; Page, Cara W; Joshi, Taruna; Yan, Dong; Newton, Robert; Giembycz, Mark A

    2013-09-01

    Chronic obstructive pulmonary disease (COPD) is a neutrophilic inflammatory disorder that is weakly responsive to glucocorticoids. Identification of ways to enhance the anti-inflammatory activity of glucocorticoids is, therefore, a major research objective. Adenosine receptor agonists that target the A2B-receptor subtype are efficacious in several cell-based assays and preclinical models of inflammation. Accordingly, the present study was designed to determine if a selective A2B-receptor agonist, 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulphanyl]acetamide (Bay 60-6583), and a glucocorticoid, dexamethasone, in combination display putative anti-inflammatory activity that is superior to either drug alone. In BEAS-2B human airway epithelial cells stably transfected with cAMP-response element (CRE) and glucocorticoid response element (GRE) reporter constructs, Bay 60-6583 promoted CRE-dependent transcription and enhanced GRE-dependent transcription by an adenosine A2B-receptor-mediated mechanism that was associated with cAMP formation and abolished by an inhibitor of cAMP-dependent protein kinase. Analysis of the concentration-response relationship that described the enhancement of GRE-dependent transcription showed that Bay 60-6583 increased the magnitude of response without affecting the potency of dexamethasone. Bay 60-6583 and dexamethasone also induced a panel of genes that, collectively, could have benefit in COPD. These were categorized into genes that were induced in a positive cooperative manner (RGS2, p57(kip2)), an additive manner (TTP, BRL-1), or by Bay 60-6583 (CD200, CRISPLD2, SOCS3) or dexamethasone (GILZ) only. Thus, the gene induction "fingerprints" produced by Bay 60-6583 and dexamethasone, alone and in combination, were distinct. Collectively, through their actions on gene expression, an adenosine A2B-receptor agonist and a glucocorticoid administered together may have utility in the treatment of inflammatory disorders that

  1. A Novel Method for Screening Adenosine Receptor Specific Agonists for Use in Adenosine Drug Development

    PubMed Central

    Jones, Karlie R.; Choi, Uimook; Gao, Ji-Liang; Thompson, Robert D.; Rodman, Larry E.; Malech, Harry L.; Kang, Elizabeth M.

    2017-01-01

    Agonists that target the A1, A2A, A2B and A3 adenosine receptors have potential to be potent treatment options for a number of diseases, including autoimmune diseases, cardiovascular disease and cancer. Because each of these adenosine receptors plays a distinct role throughout the body, obtaining highly specific receptor agonists is essential. Of these receptors, the adenosine A2AR and A2BR share many sequence and structural similarities but highly differ in their responses to inflammatory stimuli. Our laboratory, using a combination of specially developed cell lines and calcium release analysis hardware, has created a new and faster method for determining specificity of synthetic adenosine agonist compounds for the A2A and A2B receptors in human cells. A2A receptor expression was effectively removed from K562 cells, resulting in the development of a distinct null line. Using HIV-lentivector and plasmid DNA transfection, we also developed A2A and A2B receptor over-expressing lines. As adenosine is known to cause changes in intracellular calcium levels upon addition to cell culture, calcium release can be determined in these cell lines upon compound addition, providing a functional readout of receptor activation and allowing us to isolate the most specific adenosine agonist compounds. PMID:28317879

  2. Adenosine receptor targets for pain.

    PubMed

    Sawynok, J

    2016-12-03

    The main focus for the development of adenosine targets as analgesics to date has been A1Rs due to its antinociceptive profile in various preclinical pain models. The usefulness of systemic A1R agonists may be limited by other effects (cardiovascular, motor), but enhanced selectivity for pain might occur with partial agonists, potent and highly selective agonists, or allosteric modulators. A2AR agonists exhibit some peripheral pronociceptive effects, but also act on immune cells to suppress inflammation and on spinal glia to suppress pain signaling and may be useful for inflammatory and neuropathic pain. A2BR agonists exhibit peripheral proinflammatory effects on immune cells, but also spinal antinociceptive effects similar to A2AR agonists. A3Rs are now demonstrated to produce antinociception in several preclinical neuropathic pain models, with mechanistic actions on glial cells, and may be useful for neuropathic pain. Endogenous adenosine levels can be augmented by inhibition of metabolism (via adenosine kinase) or increased generation (via nucleotidases), and these approaches have implications for pain. Endogenous adenosine contributes to antinociception by several pharmacological agents, herbal remedies, acupuncture, transcutaneous electrical nerve stimulation, exercise, joint mobilization, and water immersion via spinal and/or peripheral effects, such that this system appears to constitute a major pain regulatory system. Finally, caffeine inhibits A1-, A2A- and A3Rs with similar potency, and dietary caffeine intake will need attention in trials of: (a) agonists and/or modulators acting at these receptors, (b) some pharmacological and herbal analgesics, and (c) manipulations that enhance endogenous adenosine levels, all of which are inhibited by caffeine and/or A1R antagonists in preclinical studies. All adenosine receptors have effects on spinal glial cells in regulating nociception, and gender differences in the involvement of such cells in chronic

  3. Deregulation of Adenosine Receptors in Psoriatic Epidermis: An Option for Therapeutic Treatment.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Varani, Katia; Gessi, Stefania

    2017-01-01

    Purinergic signaling is involved in psoriasis, a chronic skin disease characterized by increased epidermis cell growth. In particular, Andrés et al. focus on the keratinocyte biology modulated by adenosine receptors providing evidence that the A2B subtype plays a prominent role in the reduction of keratinocyte proliferation whereas A2A and A2B agonists have antiinflammatory effects independent of adenosine receptors. The authors report that psoriatic epidermis presents a deregulated adenosine receptor expression profile with reduced A2B and increased A2A.

  4. Targeting adenosine receptors to prevent inflammatory skin diseases.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Borea, Pier Andrea

    2014-08-01

    Adenosine mediates its effects through activation of a family of four G-protein-coupled receptors, named A1 , A2A , A2B and A3 . This nucleoside plays an important role in immunity and inflammation, and the A2A adenosine receptor subtype has a key role in the inhibition of inflammatory processes besides promoting wound healing. In this issue of Experimental Dermatology, Arasa et al. show that the topical application of a selective A2A agonist, CGS 21680, to mouse skin reduced epidermal hyperplasia as well as skin inflammation, similarly to topical corticoids, without side effects like skin atrophy. Rigorously following up this work is important for the development of novel treatment strategies for chronic hyperproliferative inflammatory dermatoses, such as targeting the A2A adenosine receptor family.

  5. The A3 adenosine receptor: history and perspectives.

    PubMed

    Borea, Pier Andrea; Varani, Katia; Vincenzi, Fabrizio; Baraldi, Pier Giovanni; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania

    2015-01-01

    By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.

  6. Role of adenosine receptors in caffeine tolerance

    SciTech Connect

    Holtzman, S.G.; Mante, S.; Minneman, K.P. )

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  7. Caffeine, adenosine receptors, and synaptic plasticity.

    PubMed

    Costenla, Ana Rita; Cunha, Rodrigo A; de Mendonça, Alexandre

    2010-01-01

    Few studies to date have looked at the effects of caffeine on synaptic plasticity, and those that did used very high concentrations of caffeine, whereas the brain concentrations attained by regular coffee consumption in humans should be in the low micromolar range, where caffeine exerts pharmacological actions mainly by antagonizing adenosine receptors. Accordingly, rats drinking caffeine (1 g/L) for 3 weeks, displayed a concentration of caffeine of circa 22 microM in the hippocampus. It is known that selective adenosine A1 receptor antagonists facilitate, whereas selective adenosine A2A receptor antagonists attenuate, long term potentiation (LTP) in the hippocampus. Although caffeine is a non-selective antagonist of adenosine receptors, it attenuates frequency-induced LTP in hippocampal slices in a manner similar to selective adenosine A2A receptor antagonists. These effects of low micromolar concentration of caffeine (30 microM) are maintained in aged animals, which is important when a possible beneficial effect for caffeine in age-related cognitive decline is proposed. Future studies will still be required to confirm and detail the involvement of A1 and A2A receptors in the effects of caffeine on hippocampal synaptic plasticity, using both pharmacological and genetic approaches.

  8. Adenosine receptors as drug targets — what are the challenges?

    PubMed Central

    Chen, Jiang-Fan; Eltzschig, Holger K.; Fredholm, Bertil B.

    2014-01-01

    Adenosine signalling has long been a target for drug development, with adenosine itself or its derivatives being used clinically since the 1940s. In addition, methylxanthines such as caffeine have profound biological effects as antagonists at adenosine receptors. Moreover, drugs such as dipyridamole and methotrexate act by enhancing the activation of adenosine receptors. There is strong evidence that adenosine has a functional role in many diseases, and several pharmacological compounds specifically targeting individual adenosine receptors — either directly or indirectly — have now entered the clinic. However, only one adenosine receptor-specific agent — the adenosine A2A receptor agonist regadenoson (Lexiscan; Astellas Pharma) — has so far gained approval from the US Food and Drug Administration (FDA). Here, we focus on the biology of adenosine signalling to identify hurdles in the development of additional pharmacological compounds targeting adenosine receptors and discuss strategies to overcome these challenges. PMID:23535933

  9. MOLECULAR PROBES FOR EXTRACELLULAR ADENOSINE RECEPTORS

    PubMed Central

    Jacobson, Kenneth A.; Ukena, Dieter; Padgett, William; Kirk, Kenneth L.; Daly, John W.

    2012-01-01

    Derivatives of adenosine receptor agonists (N6-phenyladenosines) and antagonists (1,3-dialkyl-8-phenylxanthines) bearing functionalized chains suitable for attachment to other molecules have been reported [Jacobson et al., J. med. Chem. 28, 1334 and 1341 (1985)]. The “functionalized congener” approach has been extended to the synthesis of spectroscopic and other probes for adenosine receptors that retain high affinity (Ki ~ 10−9 −10−8 M) in A1-receptor binding. The probes have been synthesized from an antagonist xanthine amine congener (XAC) and an adenosine amine congener (ADAC). [3H]ADAC has been synthesized and found to bind highly specifically to A1-adenosine receptors of rat and calf cerebral cortical membranes with KD values of 1.4 and 0.34 nM respectively. The higher affinity in the bovine brain, seen also with many of the probes derived from ADAC and XAC, is associated with phenyl substituents. The spectroscopic probes contain a reporter group attached at a distal site of the functionalized chain. These bifunctional ligands may contain a spin label (e.g. the nitroxyl radical TEMPO) for electron spin resonance spectroscopy, or a fluorescent dye, including fluorescein and 4-nitrobenz-2-oxa-1,3-diazole (NBD), or labels for 19F nuclear magnetic resonance spectroscopy. Potential applications of the spectroscopic probes in characterization of adenosine receptors are discussed. PMID:3036153

  10. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  11. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    PubMed Central

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A1 receptors with 2-chloro-N6-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A1 receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis. PMID:22552934

  12. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    PubMed Central

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  13. Adenosine receptors and the central nervous system.

    PubMed

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.

  14. Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells.

    PubMed

    Marquardt, D L; Walker, L L; Heinemann, S

    1994-05-01

    Adenosine potentiates the stimulated release of mast cell mediators. Pharmacologic studies suggest the presence of two adenosine receptors, one positively coupled to adenylate cyclase and the other coupled to phospholipase C activation. To identify mast cell adenosine receptor subtypes, cDNAs for the A1 and A2a adenosine receptors were obtained by screening a mouse brain cDNA library with the use of PCR-derived probes. Mouse bone marrow-derived mast cell cDNA libraries were constructed and screened with the use of A1 and A2a cDNA probes, which revealed the presence of A2a, but not A1, receptor clones. A putative A2b receptor was identified by using low stringency mast cell library screening. Northern blotting of mast cell poly(A)+ RNA with the use of receptor subtype probes labeled single mRNA bands of 2.4 kb and 1.8 kb for the A2a and A2b receptors, respectively. In situ cells. An A2a receptor-specific agonist failed to enhance mast cell mediator release, which suggests that the secretory process is modulated through the A2b and/or another receptor subtype. By using RNase protection assays, we found that mast cells that had been cultured in the presence of N-ethylcarboxamidoadenosine for 24 h exhibited a decrease in both A2a and A2b receptor RNA levels. Cells that had been cultured for 1 to 2 days in the presence of dexamethasone demonstrated increased amounts of A2a receptor mRNA, but no identifiable change in A2b receptor mRNA. Mast cells possess at least two adenosine receptor subtypes that may be differentially regulated.

  15. In vivo assessment of coronary flow and cardiac function after bolus adenosine injection in adenosine receptor knockout mice.

    PubMed

    Teng, Bunyen; Tilley, Stephen L; Ledent, Catherine; Mustafa, S Jamal

    2016-06-01

    Bolus injections of adenosine and the A2A adenosine receptor (AR) selective agonist (regadenoson) are used clinically as a substitute for a stress test in people who cannot exercise. Using isolated tissue preparations, our lab has shown that coronary flow and cardiac effects of adenosine are mostly regulated by the AR subtypes A1, A2A, and A2B In this study, we used ultrasound imaging to measure the in vivo effects of adenosine on coronary blood flow (left coronary artery) and cardiac function in anesthetized wild-type, A1 knockout (KO), A2AKO, A2BKO, A3KO, A1, and A3 double KO (A1/3 DKO) and A2A and A2B double KO (A2A/2B DKO) mice in real time. Echocardiographic and Doppler studies were performed using a Visualsonic Vevo 2100 ultrasound system. Coronary blood flow (CBF) baseline data were obtained when animals were anesthetized with 1% isoflourane. Diameter (D) and velocity time integral (VTI) were measured on the left coronary arteries (CBF = ((π/4) × D(2) × VTI × HR)/1000). CBF changes were the highest within 2 min of injection (about 10 mg/kg). Heart rate, cardiac output, and stroke volume were measured by tracing the left ventricle long axis. Our data support a role for the A2 AR in CBF and further support our conclusions of previous studies from isolated tissues. Adenosine-mediated decreases in cardiac output and stroke volume may be A2B and/or A3 AR-mediated; however, the A1 and A2 ARs also play roles in overall cardiac function. These data further provide a powerful translational tool in studying the cardiovascular effects of adenosine in disease states.

  16. Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina

    SciTech Connect

    Braas, K.M.; Zarbin, M.A.; Snyder, S.H.

    1987-06-01

    Using specific sensitive antisera against adenosine, we have immunocytochemically localized endogenous adenosine to specific layers of rat, guinea pig, monkey, and human retina. Highest adenosine immunoreactivity was observed in ganglion cells and their processes in the optic nerve fiber layer. Substantial staining was also found throughout the inner plexiform layer and in select cells in the inner nuclear layer. Adenosine A1 receptors, labeled with the agonists L-(/sup 3/H)phenylisopropyladenosine and /sup 125/I-labeled hydroxy-phenylisopropyladenosine, were autoradiographically localized. The highest levels of binding sites occurred in the nerve fiber, ganglion cell, and inner plexiform layers of the retina in all the species examined. The distribution of adenosine A1 receptor sites closely parallels that of retinal neurons and fibers containing immunoreactive adenosine. These results suggest a role for endogenous adenosine as a coneurotransmitter in ganglion cells and their fibers in the optic nerve.

  17. Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line

    PubMed Central

    Merighi, Stefania; Varani, Katia; Gessi, Stefania; Cattabriga, Elena; Iannotta, Valeria; Ulouglu, Canan; Leung, Edward; Borea, Pier Andrea

    2001-01-01

    The present work characterizes, from a pharmacological and biochemical point of view, adenosine receptors in the human malignant melanoma A375 cell line. Adenosine receptors were detected by RT – PCR experiments. A1 receptors were characterized using [3H]-DPCPX binding with a KD of 1.9±0.2 nM and Bmax of 23±7 fmol mg−1 of protein. A2A receptors were studied with [3H]-SCH 58261 binding and revealed a KD of 5.1±0.2 nM and a Bmax of 220±7 fmol mg−1 of protein. A3 receptors were studied with the new A3 adenosine receptor antagonist [3H]-MRE 3008F20, the only A3 selective radioligand currently available. Saturation experiments revealed a single high affinity binding site with KD of 3.3±0.7 nM and Bmax of 291±50 fmol mg−1 of protein. The pharmacological profile of radioligand binding on A375 cells was established using typical adenosine ligands which displayed a rank order of potency typical of the different adenosine receptor subtype. Thermodynamic data indicated that radioligand binding to adenosine receptor subtypes in A375 cells was entropy- and enthalpy-driven. In functional assays the high affinity A2A agonists HE-NECA, CGS 21680 and A2A – A2B agonist NECA were able to increase cyclic AMP accumulation in A375 cells whereas A3 agonists Cl-IB-MECA, IB-MECA and NECA were able to stimulate Ca2+ mobilization. In conclusion, all these data indicate, for the first time, that adenosine receptors with a pharmacological and biochemical profile typical of the A1, A2A, A2B and A3 receptor subtype are present on A375 melanoma cell line. PMID:11704641

  18. Adenosine receptors and dyskinesia in pathophysiology.

    PubMed

    Tomiyama, Masahiko

    2014-01-01

    First, the recent progress in the pathogenesis of levodopa-induced dyskinesia was described. Serotonin neurons play an important role in conversion from levodopa to dopamine and in the release of converted dopamine into the striatum in the Parkinsonian state. Since serotonin neurons lack buffering effects on synaptic dopamine concentration, the synaptic dopamine markedly fluctuates depending on the fluctuating levodopa concentration in the serum after taking levodopa. The resultant pulsatile stimulation makes the striatal direct-pathway neurons get potential that releases excessive GABA into the output nuclei of the basal ganglia. When levodopa is administered, the stored GABA is released, the output nuclei become hypoactive, and then dyskinesias emerge. Second, effects of adenosine A2A receptor antagonists on dyskinesia were described. It has been demonstrated that the expression of adenosine A2A receptors is increased in Parkinson's disease (PD) patients with dyskinesias, suggesting that blockade of A2A receptors is beneficial for dyskinesias. Preclinical studies have shown that A2A receptor antagonists reduce liability of dyskinesias in PD models. Clinical trials have demonstrated that A2A antagonists increase functional ON-time (ON without troublesome dyskinesia) in PD patients suffering from wearing-off phenomenon, although they may increase dyskinesia in patients with advanced PD.

  19. Adenosine receptors and asthma in humans.

    PubMed

    Wilson, C N

    2008-10-01

    According to an executive summary of the GINA dissemination committee report, it is now estimated that approximately 300 million people (5% of the global population or 1 in 20 persons) have asthma. Despite the scientific progress made over the past several decades toward improving our understanding of the pathophysiology of asthma, there is still a great need for improved therapies, particularly oral therapies that enhance patient compliance and that target new mechanisms of action. Adenosine is an important signalling molecule in human asthma. By acting on extracellular G-protein-coupled ARs on a number of different cell types important in the pathophysiology of human asthma, adenosine affects bronchial reactivity, inflammation and airway remodelling. Four AR subtypes (A(1), A(2a), A(2b) and A(3)) have been cloned in humans, are expressed in the lung, and are all targets for drug development for human asthma. This review summarizes what is known about these AR subtypes and their function in human asthma as well as the pros and cons of therapeutic approaches to these AR targets. A number of molecules with high affinity and high selectivity for the human AR subtypes have entered clinical trials or are poised to enter clinical trials as anti-asthma treatments. With the availability of these molecules for testing in humans, the function of ARs in human asthma, as well as the safety and efficacy of approaches to the different AR targets, can now be determined.

  20. Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats.

    PubMed

    Zou, A P; Wu, F; Li, P L; Cowley, A W

    1999-01-01

    Previous studies have shown that chronic salt loading increased renal interstitial adenosine concentrations and desensitized renal effects of adenosine, a phenomenon that could facilitate sodium excretion. However, the mechanisms responsible for the increased adenosine production and decreased adenosine response are poorly understood. This study examined the effects of the dietary high salt intake on adenosine metabolism and receptor expression in the renal cortex and medulla in Sprague Dawley rats. Fluorescent high-performance liquid chromatography analyses were performed to determine adenosine levels in snap-frozen kidney tissues. Comparing rats fed a normal (1% NaCl) versus high salt (4% NaCl) diet, renal adenosine concentrations in rats fed a high salt diet were significantly higher (cortex: 43+/-3 versus 85+/-4, P<0.05; medulla: 183+/-4 versus 302+/-8 nmol/g wet tissue, P<0.05). Increased adenosine concentrations were not associated with changes in the 5'-nucleotidase or adenosine deaminase activity, as determined by quantitative isoelectric focusing and gel electrophoresis. Western blot analyses showed that a high salt diet (4% NaCl for 3 weeks) downregulated A1 receptors (antinatriuretic type), did not alter A2A and A2B receptors (natriuretic type), and upregulated A3 receptors (function unknown) in both renal cortex and medulla. The data show that stimulation of adenosine production and downregulation of A1 receptors with salt loading may play an important role in adaptation in the kidney to promote sodium excretion.

  1. Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine.

    PubMed

    Chen, Yunjia; Liu, Yin; Cottingham, Christopher; McMahon, Lori; Jiao, Kai; Greengard, Paul; Wang, Qin

    2012-02-22

    Endogenous adenosine is an essential protective agent against neural damage by various insults to the brain. However, the therapeutic potential of adenosine receptor-directed ligands for neuroprotection is offset by side effects in peripheral tissues and organs. An increase in adenosine receptor responsiveness to endogenous adenosine would enhance neuroprotection while avoiding the confounding effects of exogenous ligands. Here we report novel regulation of adenosine-evoked responses by a neural tissue-specific protein, neurabin. Neurabin attenuated adenosine A(1) receptor (A1R) signaling by assembling a complex between the A1R and the regulator of G-protein signaling 4 (RGS4), a protein known to turn off G-protein signaling. Inactivation of the neurabin gene enhanced A1R signaling and promoted the protective effect of adenosine against excitotoxic seizure and neuronal death in mice. Furthermore, administration of a small molecule inhibitor of RGS4 significantly attenuated seizure severity in mice. Notably, the dose of kainate capable of inducing an ∼50% rate of death in wild-type (WT) mice did not affect neurabin-null mice or WT mice cotreated with an RGS4 inhibitor. The enhanced anti-seizure and neuroprotective effect achieved by disruption of the A1R/neurabin/RGS4 complex is elicited by the on-site and on-demand release of endogenous adenosine, and does not require administration of A1R ligands. These data identify neurabin-RGS4 as a novel tissue-selective regulatory mechanism for fine-tuning adenosine receptor function in the nervous system. Moreover, these findings implicate the A1R/neurabin/RGS4 complex as a valid therapeutic target for specifically manipulating the neuroprotective effects of endogenous adenosine.

  2. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    PubMed Central

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  3. The Effect of Adenosine A2A and A2B Antagonists on Tracheal Responsiveness, Serum Levels of Cytokines and Lung Inflammation in Guinea Pig Model of Asthma

    PubMed Central

    Pejman, Laleh; Omrani, Hasan; Mirzamohammadi, Zahra; Shahbazfar, Amir Ali; Khalili, Majid; Keyhanmanesh, Rana

    2014-01-01

    Purpose: Nowadays adenosine is specified as an important factor in the pathophysiology of asthma. For determining the effect of different A2 receptors, in this investigation the effect of single dose of selective adenosine A2A and A2B antagonists (ZM241385 and MRS1706) on different inflammatory parameters; tracheal responsiveness to methacholine and ovalbumin, total and differential cell count in bronchoalveolar lavage (BAL), blood levels of IL-4 and IFN-γ and lung pathology of guinea pig model of asthma were assessed. Methods: All mentioned parameters were evaluated in two sensitized groups of guinea pigs pretreated with A2A and A2B antagonists (S+Anta A2A, S+Anta A2B) compared with sensitized (S) and control (C) groups. Results: The tracheal responsiveness to methacholine and OA, total cell and eosinophil and basophil count in BAL, blood IL-4 level and pathological changes in pre-treated group with MRS1706 (S+Anta A2B) was significantly lower than those of sensitized group (p<0.01 to p<0.05). In pretreated group with Anta A2A(S+Anta A2A), all the above changes were reversed. Conclusion: These results showed a preventive effect of A2B antagonist (MRS1706) on tracheal responsiveness to methacholine and OA, total and differential cell count in bronchoalveolar lavage, blood cytokines and pathological changes. Administration of ZM241385, selective A2A antagonist, deteriorated the induction effect of ovalbumin. PMID:24511476

  4. Expression of adenosine receptors in monocytes from patients with bronchial asthma

    PubMed Central

    Yuryeva, Ksenia; Saltykova, Irina; Ogorodova, Ludmila; Kirillova, Natalya; Kulikov, Evgeny; Korotkaya, Elena; Iakovleva, Yulia; Feoktistov, Igor; Sazonov, Alexey; Ryzhov, Sergey

    2015-01-01

    Adenosine is generated from adenosine triphosphate, which is released by stressed and damaged cells. Adenosine levels are significantly increased in patients with bronchial asthma (BA) and mediate mast cell degranulation and bronchoconstriction. Over the last decade, increasing evidence has shown that adenosine can modulate the innate immune response during monocytes differentiation towards mature myeloid cells. These adenosine-differentiated myeloid cells, characterized by co-expression of monocytes/macrophages and dendritic cell markers such as CD14 and CD209, produce high levels of pro-inflammatory cytokines, thus contributing to the pathogenesis of BA and chronic obstructive pulmonary disease. We found that expression of ADORA2A and ADORA2B are increased in monocytes obtained from patients with BA, and are associated with the generation of CD14posCD209pos pro-inflammatory cells. A positive correlation between expression of ADORA2B and IL-6 was identified in human monocytes and may explain the increased expression of IL-6 mRNA in asthmatics. Taken together, our results suggest that monocyte-specific expression of A2 adenosine receptors plays an important role in pro-inflammatory activation of human monocytes, thus contributing to the progression of asthma. PMID:26232643

  5. Adenosine A1 and A3 receptors protect astrocytes from hypoxic damage.

    PubMed

    Björklund, Olga; Shang, Mingmei; Tonazzini, Ilaria; Daré, Elisabetta; Fredholm, Bertil B

    2008-10-31

    Brain levels of adenosine are elevated during hypoxia. Through effects on adenosine receptors (A(1), A(2A), A(2B) and A(3)) on astrocytes, adenosine can influence functions such as glutamate uptake, reactive gliosis, swelling, as well as release of neurotrophic and neurotoxic factors having an impact on the outcome of metabolic stress. We have studied the roles of these receptors in astrocytes by evaluating their susceptibility to damage induced by oxygen deprivation or exposure to the hypoxia mimic cobalt chloride (CoCl(2)). Hypoxia caused ATP breakdown and purine release, whereas CoCl(2) (0.8 mM) mainly reduced ATP by causing cell death in human D384 astrocytoma cells. Further experiments were conducted in primary astrocytes prepared from specific adenosine receptor knock-out (KO) and wild type (WT) mice. In WT cells purine release following CoCl(2) exposure was mainly due to nucleotide release, whereas hypoxia-induced intracellular ATP breakdown followed by nucleoside efflux. N-ethylcarboxamidoadenosine (NECA), an unselective adenosine receptor agonist, protected from cell death following hypoxia. Cytotoxicity was more pronounced in A(1)R KO astrocytes and tended to be higher in WT cells in the presence of the A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Genetic deletion of A(2A) receptor resulted in less prominent effects. A(3)R KO glial cells were more affected by hypoxia than WT cells. Accordingly, the A(3) receptor agonist 2-chloro-N(6)-(3-iodobenzyl)-N-methyl-5'-carbamoyladenosine (CL-IB-MECA) reduced ATP depletion caused by hypoxic conditions. It also reduced apoptosis in human astroglioma D384 cells after oxygen deprivation. In conclusion, the data point to a cytoprotective role of adenosine mediated by both A(1) and A(3) receptors in primary mouse astrocytes.

  6. A new class of adenosine receptors in brain: Characterization by 2-chloro( sup 3 H)adenosine binding

    SciTech Connect

    Chin, Jerome Hsicheng.

    1988-01-01

    Considerable evidence has accumulated in recent years to support a role for adenosine as an important physiological modulator in many mammalian tissues. In brain, adenosine is a potent depressant of neuronal firing and synaptic transmission. The exact mechanisms by which adenosine analogs depress nerve cell activity in the brain are not clear. Despite considerable investigation, neither the A1 nor the A2 adenosine receptors associated with adenylate cyclase have been able to account adequately for the actions of adenosine in brain. It has been proposed that additional adenosine receptors, possibly linked to calcium channels, are present in the central nervous system and are responsible for the physiological actions of adenosine. In this thesis, evidence is provided for the existence of a novel class of adenosine receptors in rat brain. The methods used to identify this new class of receptors involved radioligand binding techniques which have been successfully employed to characterize the properties of many neurotransmitter and drug receptors. 2-Chloro({sup 3}H)adenosine (Cl({sup 3}H)Ado) was selected as the ligand for these experiments since is a water-soluble, metabolically-stable analog of adenosine and a potent depressant of synaptic transmission in brain. The results demonstrate the presence of a distinct class of 2-chloro({sup 3}H)adenosine binding sites in rat forebrain membranes with an apparent K{sub D} of about 10 {mu}M and a B{sub max} of about 60 pmol per mg of protein. Specific 2-chloro ({sup 3}H)adenosine binding is highly specific for adenosine agonists and antagonists. Inhibition of binding by adenosine agonists exhibits an order of potency 2-chloroadenosine > 5{prime}-N-ethylcarboxamide adenosine > ({minus})-N{sup 6}-(R-phenylisopropyl)adenosine, which differs from that of both A1 and A2 adenosine receptors.

  7. Adenosine 2A receptors in acute kidney injury.

    PubMed

    Vincent, I S; Okusa, M D

    2015-07-01

    Acute kidney injury (AKI) is an important clinical problem that may lead to death and for those who survive, the sequelae of AKI include loss of quality of life, chronic kidney disease and end-stage renal disease. The incidence of AKI continues to rise without clear successes in humans for the pharmacological prevention of AKI or treatment of established AKI. Dendritic cells and macrophages are critical early initiators of innate immunity in the kidney and orchestrate inflammation subsequent to ischaemia-reperfusion injury. These innate cells are the most abundant leucocytes present in the kidney, and they represent a heterogeneous population of cells that are capable of responding to cues from the microenvironment derived from pathogens or endogenous inflammatory mediators such as cytokines or anti-inflammatory mediators such as adenosine. Lymphocyte subsets such as natural killer T cells and Tregs also play roles in regulating ischaemic injury by promoting and suppressing inflammation respectively. Adenosine, produced in response to IR, is generally considered as a protective signalling molecule and elicits its physiological responses through four distinct adenosine receptors. However, its short half-life, lack of specificity and rapid metabolism limit the use of adenosine as a therapeutic agent. These adenosine receptors play various roles in regulating the activity of the aforementioned hematopoietic cells in elevated levels of adenosine such as during hypoxia. This review focuses on the importance of one receptor, the adenosine 2A subtype, in blocking inflammation associated with AKI.

  8. Role of A3 adenosine receptor in diabetic neuropathy.

    PubMed

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc.

  9. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors.

    PubMed

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  10. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    PubMed Central

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  11. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  12. Adenosine Receptor Regulation of Coronary Blood Flow in Ossabaw Miniature SwineS⃞

    PubMed Central

    Long, Xin; Mokelke, Eric A.; Neeb, Zachary P.; Alloosh, Mouhamad; Edwards, Jason M.

    2010-01-01

    Adenosine clearly regulates coronary blood flow (CBF); however, contributions of specific adenosine receptor (AR) subtypes (A1, A2A, A2B, A3) to CBF in swine have not been determined. ARs generally decrease (A1, A3) or increase (A2A, A2B) cyclic adenosine monophosphate, a major mediator of vasodilation. We hypothesized that A1 antagonism potentiates coronary vasodilation and coronary stent deployment in dyslipidemic Ossabaw swine elicits impaired vasodilation to adenosine that is associated with increased A1/A2A expression. The left main coronary artery was accessed with a guiding catheter allowing intracoronary infusions. After placement of a flow wire into the left circumflex coronary artery the responses to bolus infusions of adenosine were obtained. Steady-state infusion of AR-specific agents was achieved by using a small catheter fed over the flow wire in control pigs. CBF was increased by the A2-nonselective agonist 2-phenylaminoadenosine (CV1808) in a dose-dependent manner. Baseline CBF was increased by the highly A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), but not changed by other AR-specific agents. The nonselective A2 antagonist 3,7-dimethyl-1-propargylxanthine and A2A-selective antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385) abolished adenosine-induced CBF, whereas A2B and A3 antagonism had no effect. Dyslipidemia and stenting decreased adenosine-induced CBF ∼70%, whereas A1, A2A, and A2B mRNA were up-regulated in dyslipidemic versus control >5-fold and there was no change in the ratio of A1/A2A protein in microvessels distal to the stent. In control Ossabaw swine A1 antagonism by DPCPX positively regulated basal CBF. Impaired adenosine-induced CBF after stenting in dyslipidemia is most likely caused by the altered balance between A1 and A2A signaling, not receptor expression. PMID:20855445

  13. Adenosine A1 receptor: Functional receptor-receptor interactions in the brain

    PubMed Central

    Sichardt, Kathrin

    2007-01-01

    Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders. PMID:18404442

  14. Characterization of [125I]ZM 241385 binding to adenosine A2A receptors in the pineal of sheep brain.

    PubMed

    Yan, X; Koos, B J; Kruger, L; Linden, J; Murray, T F

    2006-06-22

    Adenosine is a ubiquitous neuromodulator and homeostatic regulator that exerts its physiologic actions through activation of A(1), A(2A), A(2B) and A(3) adenosine receptor subtypes. In the central nervous system, adenosine's action in neurons is manifested in its modulation of tonic inhibitory control. Adenosine released in the brain during hypoxia has critical depressant effects on breathing in fetal and newborn mammals, an action suggested to be mediated by A(2A) receptors in the posteromedial thalamus. In an effort to more accurately define the spatial distribution of adenosine A(2A) receptors in fetal sheep diencephalon, we have used a receptor autoradiographic technique utilizing an iodinated radioligand [(125)I]ZM 241385, which has greater sensitivity and resolution than the tritiated compound. The distribution of ligand binding sites in the fetal sheep diencephalon indicated that the highest levels of binding were in select thalamic nuclei, including those implicated in hypoxic depression of fetal breathing, and the pineal. Given the high density of labeled A(2A) receptors in the pineal, these sites were characterized more fully in homogenate radioligand binding assays. These data indicate that [(125)I]ZM 241385 binding sites display a pharmacological signature consistent with that of adenosine A(2A) receptors and are expressed at similar levels in fetal, lamb and adult ovine brain. The adenosine A(2A) receptor pharmacologic signature of the [(125)I]ZM 241385 binding site in pineal cell membranes generalized to the site characterized in membranes derived from other portions of the lamb thalamus, including the sector involved in hypoxic inhibition of fetal breathing. These results have important implications for the functional roles of adenosine A(2A) receptors in the thalamus and pineal of sheep brain.

  15. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension

    PubMed Central

    Schroer, Alison K.; Chen, Peter; Ryzhova, Larisa M.; Gladson, Santhi; Shay, Sheila; Hutcheson, Joshua D.; Merryman, W. David

    2016-01-01

    Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice. PMID:26863209

  16. Bench-to-bedside review: Adenosine receptors – promising targets in acute lung injury?

    PubMed Central

    Schepp, Carsten P; Reutershan, Jörg

    2008-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening disorders that have substantial adverse effects on outcomes in critically ill patients. ALI/ARDS develops in response to pulmonary or extrapulmonary injury and is characterized by increased leakage from the pulmonary microvasculature and excessive infiltration of polymorphonuclear cells into the lung. Currently, no therapeutic strategies are available to control these fundamental pathophysiological processes in human ALI/ARDS. In a variety of animal models and experimental settings, the purine nucleoside adenosine has been demonstrated to regulate both endothelial barrier integrity and polymorphonuclear cell trafficking in the lung. Adenosine exerts its effects through four G-protein-coupled receptors (A1, A2A, A2B, and A3) that are expressed on leukocytes and nonhematopoietic cells, including endothelial and epithelial cells. Each type of adenosine receptor (AR) is characterized by a unique pharmacological and physiological profile. The development of selective AR agonists and antagonists, as well as the generation of gene-deficient mice, has contributed to a growing understanding of the cellular and molecular processes that are critically involved in the development of ALI/ARDS. Adenosine-dependent pathways are involved in both protective and proinflammatory effects, highlighting the need for a detailed characterization of the distinct pathways. This review summarizes current experimental observations on the role of adenosine signaling in the development of acute lung injury and illustrates that adenosine and ARs are promising targets that may be exploited in the development of innovative therapeutic strategies. PMID:18828873

  17. Spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors, are involved in antinociception by systemically administered amitriptyline.

    PubMed

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-01-05

    The present study explored a link between spinal 5-HT(7) and adenosine A(1) receptors in antinociception by systemic amitriptyline in normal and adenosine A(1) receptor knock-out mice using the 2% formalin test. In normal mice, antinociception by systemic amitriptyline 3mg/kg was blocked by intrathecal administration of the selective adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) 10 nmol. Blockade was also seen in adenosine A(1) receptor +/+ mice, but not in -/- mice lacking these receptors. In both normal and adenosine A(1) receptor +/+ mice, the selective 5-HT(7) receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB269970) 3 μg blocked antinociception by systemic amitriptyline, but it did not prevent antinociception in adenosine A(1) receptor -/- mice. In normal mice, flinching was unaltered when the selective 5-HT(7) receptor agonist (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino)tetralin (AS-19) 20 μg was administered alone, but increased when co-administered intrathecally with DPCPX 10 nmol or SB269970 3 μg. Intrathecal AS-19 decreased flinching in adenosine A(1) receptor +/+ mice compared to -/- mice. Systemic amitriptyline appears to reduce nociception by activating spinal adenosine A(1) receptors secondarily to 5-HT(7) receptors. Spinal actions constitute only one aspect of antinociception by amitriptyline, as intraplantar DPCPX 10 nmol blocked antinociception by systemic amitriptyline in normal and adenosine A(1) receptor +/+, but not -/- mice. Adenosine A(1) receptor interactions are worthy of attention, as chronic oral caffeine (0.1, 0.3g/L, doses considered relevant to human intake levels) blocked antinociception by systemic amitriptyline in normal mice. In conclusion, adenosine A(1) receptors contribute to antinociception by systemic amitriptyline in both spinal and peripheral compartments.

  18. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  19. KW-3902, a selective high affinity antagonist for adenosine A1 receptors.

    PubMed Central

    Nonaka, H.; Ichimura, M.; Takeda, M.; Kanda, T.; Shimada, J.; Suzuki, F.; Kase, H.

    1996-01-01

    1. We demonstrate that 8-(noradamantan-3-yl)-1,3-dipropylxanthine (KW-3902) is a very potent and selective adenosine A1 receptor antagonist, assessed by radioligand binding and cyclic AMP response in cells. 2. In rat forebrain adenosine A1 receptors labelled with [3H]-cyclohexyladenosine (CHA), KW-3902 had a Ki value of 0.19 nM, whereas it showed a Ki value of 170 nM in rat striatal A2A receptors labelled with [3H]-2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoad enosine (CGS21680), indicating 890 fold A1 receptor selectivity versus the A2A receptor. KW-3902 at 10 microM showed no effect on recombinant rat A3 receptors expressed on CHO cells. 3. Saturation studies with [3H]-KW-3902 revealed that it bound with high affinity (Kd = 77 pM) and limited capacity (Bmax = 470 fmol mg-1 of protein) to a single class of recognition sites. A high positive correlation was observed between the pharmacological profile of adenosine ligands inhibiting the binding of [3H]-KW-3902 and that of [3H]-CHA. 4. KW-3902 showed potent A1 antagonism against the inhibition of forskolin-induced cyclic AMP accumulation in DDT1 MF-2 cells by the A1-selective agonist, cyclopentyladenosine with a dissociation constant (KB value) of 0.34 nM. KW-3902 antagonized 5'-N-ethylcarboxamidoadenosine-elicited cyclic AMP accumulation via A2B receptors with a KB value of 52 nM. 5. KW-3902 exhibited marked species-dependent differences in the binding affinities. The highest affinity was for the rat A1 receptor (ki = 0.19 nM) and these values for guinea-pig and dog A1 receptors were 1.3 and 10 nM, respectively. PMID:8732272

  20. Molecular characterization of an. alpha. sub 2B -adrenergic receptor

    SciTech Connect

    Harrison, J.K.; Dewan Zeng; D'Angelo, D.D.; Tucker, A.L.; Zhihong Lu; Barber, C.M.; Lynch, K.R. )

    1990-02-26

    {alpha}{sub 2}-Adrenergic receptors comprise a heterogeneous population based on pharmacologic and molecular evidence. The authors have isolated a cDNA clone (pRNG{alpha}2) encoding a previously undescribed third subtype of an {alpha}{sub 2}-adrenergic receptor from a rat kidney cDNA library. The library was screened with an oligonucleotide encoding a highly conserved region found in all biogenic amine receptors described to date. The deduced amino acid sequence displays many features of G-protein coupled receptors with exception of the absence of the consensus N-linked glycosylation site at the amino terminus. Membranes prepared from COS-1 cells transfected with pRNG{alpha}2 display high affinity and saturable binding to {sup 3}H-rauwolscine (K{sub d}=2 nM).Competition curve data analysis shows that pRNG{alpha}2 protein binds to a variety of adrenergic drugs with the following rank order of potency: yohimbine {ge} cholorpromazine > prazosin {ge} clonidine > norepinephrine {ge} oxymetazoline. pRNG{alpha}2 RNA accumulates in both adult rat kidney and rat neonatal lung (predominant species is 4.0 kb). They conclude that pRNG{alpha}2 likely represents a cDNA for the {alpha}{sub 2B}-adrenergic receptor.

  1. Cooperation of Adenosine with Macrophage Toll-4 Receptor Agonists Leads to Increased Glycolytic Flux through the Enhanced Expression of PFKFB3 Gene*

    PubMed Central

    Ruiz-García, Almudena; Monsalve, Eva; Novellasdemunt, Laura; Navarro-Sabaté, Àurea; Manzano, Anna; Rivero, Samuel; Castrillo, Antonio; Casado, Marta; Laborda, Jorge; Bartrons, Ramón; Díaz-Guerra, María José M.

    2011-01-01

    Macrophages activated through Toll receptor triggering increase the expression of the A2A and A2B adenosine receptors. In this study, we show that adenosine receptor activation enhances LPS-induced pfkfb3 expression, resulting in an increase of the key glycolytic allosteric regulator fructose 2,6-bisphosphate and the glycolytic flux. Using shRNA and differential expression of A2A and A2B receptors, we demonstrate that the A2A receptor mediates, in part, the induction of pfkfb3 by LPS, whereas the A2B receptor, with lower adenosine affinity, cooperates when high adenosine levels are present. pfkfb3 promoter sequence deletion analysis, site-directed mutagenesis, and inhibition by shRNAs demonstrated that HIF1α is a key transcription factor driving pfkfb3 expression following macrophage activation by LPS, whereas synergic induction of pfkfb3 expression observed with the A2 receptor agonists seems to depend on Sp1 activity. Furthermore, levels of phospho-AMP kinase also increase, arguing for increased PFKFB3 activity by phosphorylation in long term LPS-activated macrophages. Taken together, our results show that, in macrophages, endogenously generated adenosine cooperates with bacterial components to increase PFKFB3 isozyme activity, resulting in greater fructose 2,6-bisphosphate accumulation. This process enhances the glycolytic flux and favors ATP generation helping to develop and maintain the long term defensive and reparative functions of the macrophages. PMID:21464136

  2. Antagonistic effects of extracts from Artemisia rupetris L. and Leontopodium leontopodioides to CC chemokine receptor 2b (CCR2b).

    PubMed

    Yu, Qin-Wei; Hu, Jie; Wang, Hao; Chen, Xin; Zhao, Fang; Gao, Peng; Yang, Qiu-Bin; Sun, Dan-Dan; Zhang, Lu-Yong; Yan, Ming

    2016-05-01

    The present study was designed to establish a suitable assay to explore CCR2b receptor antagonists from the natural products of Artemisia rupetris and Leontopodium leontopodioides. An aequorin assay was developed as a cell-based assay suitable for 384-well microplate and used for screening CCR2b receptor antagonists from natural products. Through establishing suitable conditions, the assay was shown to be suitable for screening of CCR2b receptor antagonists. Seven compounds were identified in preliminary screening. Five of them showed evident dose-response relationship in secondary screening. The structure-activity relationship study suggested that 7-position hydroxyl group of flavonoids was necessary, a polar group should be introduced on the 3-position, and the substituents on 2-position benzene ring of flavonoids have little influence on the potentency of the inhibition activity on CCR2b receptor. The ortho-position dihydroxyl structure in quinic acid compounds may be important. In conclusion, Compounds HR-1, 5, 7, and AR-20, 35 showed activity as antagonist of CCR2b receptor, which shed lights on the development of novel drugs as CCR2b receptor antagonists for preventing inflammation related diseases.

  3. Allosteric interactions at adenosine A1 and A3 receptors: new insights into the role of small molecules and receptor dimerization

    PubMed Central

    Hill, Stephen J; May, Lauren T; Kellam, Barrie; Woolard, Jeanette

    2014-01-01

    The purine nucleoside adenosine is present in all cells in tightly regulated concentrations. It is released under a variety of physiological and pathophysiological conditions to facilitate protection and regeneration of tissues. Adenosine acts via specific GPCRs to either stimulate cyclic AMP formation, as exemplified by Gs-protein-coupled adenosine receptors (A2A and A2B), or inhibit AC activity, in the case of Gi/o-coupled adenosine receptors (A1 and A3). Recent advances in our understanding of GPCR structure have provided insights into the conformational changes that occur during receptor activation following binding of agonists to orthosteric (i.e. at the same binding site as an endogenous modulator) and allosteric regulators to allosteric sites (i.e. at a site that is topographically distinct from the endogenous modulator). Binding of drugs to allosteric sites may lead to changes in affinity or efficacy, and affords considerable potential for increased selectivity in new drug development. Herein, we provide an overview of the properties of selective allosteric regulators of the adenosine A1 and A3 receptors, focusing on the impact of receptor dimerization, mechanistic approaches to single-cell ligand-binding kinetics and the effects of A1- and A3-receptor allosteric modulators on in vivo pharmacology. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:24024783

  4. Localization of the A{sub 3} adenosine receptor gene (ADORA3) to human chromosome 1p

    SciTech Connect

    Monitto, C.L.; Levitt, R.C.; Holroyd, K.J.

    1995-04-10

    Adenosine modulates important physiologic functions involving the cardiovascular system, brain, kidneys, lungs, GI tract, and immune system. To date four adenosine receptors have been identified: A{sub 1}, A{sub 2a}, A{sub 2b}, and A{sub 3}. Activation of these receptors results in inhibition (A{sub 1} and A{sub 3}) or stimulation (A{sub 2a} and A{sub 2b}) of intracellular adenyl cyclase activity, stimulation of K{sup +} flux, inhibition of Ca{sup 2+} flux, and modulation of inositol phospholipid turnover. A{sub 3} receptors have been identified and sequenced in the testes, brain, lung, liver, kidney, and heart of various species, including the rat, mouse, and human. A{sub 3} receptor activation is responsible for release of inflammatory mediators from mast cells, which can cause allergic bronchoconstriction. In addition, they can produce systemic vasodilation and locomotor depression via activation of A{sub 3} receptors in the brain. Given the potential importance of A{sub 3} receptor activity in the pathogenesis of pulmonary, cardiovascular, and central nervous system disease states, we set out to localize the human A{sub 3} adenosine receptor gene (ADORA3). 9 refs., 1 fig.

  5. Predictive In Silico Studies of Human 5-hydroxytryptamine Receptor Subtype 2B (5-HT2B) and Valvular Heart Disease

    PubMed Central

    Reid, Terry-Elinor; Kumar, Krishna

    2014-01-01

    Serotonin (5-HT) receptors are neuromodulator neurotransmitter receptors which when activated generate a signal transduction pathway within cells resulting in cell-cell communication. 5-hydroxytryptamine (serotonin) receptor 2B (5-HT2B) is a subtype of the seven members of 5-hydroxytrytamine (5-HT) family of receptors which is the largest member of the super family of 7-transmembrane G-protein coupled receptors (GPCRs). Not only do 5-HT receptors play physiological roles in the cardiovascular system, gastrointestinal and endocrine function and the central nervous, but they also play a role in behavioral functions. In particular 5-HT2B receptor is wide spread with regards to its distribution throughout bodily tissues and is expressed at high levels in the lungs, peripheral tissues, liver, kidney and prostate just to name a few. Hence 5-HT2B participates in multiple biological functions including CNS regulation, regulation of gastrointestinal motality, cardiovascular regulation and 5-HT transport system regulation. While 5-HT2B is a viable drug target and has therapeutic indications for treating obesity, psychotherapy, Parkinson’s disease etc. there is a growing concern regarding adverse drug reactions, specifically valvulopathy associated with 5-HT2B agonists. Due to the sequence homology experienced by 5-HT2 subtypes there is also a concern regarding the off target effects of 5-HT2A and 5-HT2C agonists. The concept of subtype selectivity is of paramount importance and can be tackled with the aid of in silico studies, specifically cheminformatics, to develop models to predict valvulopathy associated toxicity of drug candidates prior to clinical trials. This review has highlighted three in silico approaches thus far that have been successful in either predicting 5-HT2B toxicity of molecules or identifying important interactions between 5-HT2B and drug molecules that bring about valvulopathy related toxicities. PMID:23675941

  6. Adenosine receptor control of cognition in normal and disease.

    PubMed

    Chen, Jiang-Fan

    2014-01-01

    Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles

  7. Dissecting striatal adenosine-cannabinoid receptor interactions. New clues from rats over-expressing adenosine A2A receptors.

    PubMed

    Ferré, Sergi; Sebastião, Ana Maria

    2016-03-01

    This Editorial highlights a study by Chiodi et al. () showing that the effects mediated by cannabinoid CB1 receptor (CB1R) activation in the striatum are significantly reduced in rats with neuronal over-expression of adenosine A2A receptors (A2AR). Two hypotheses are derived from that study. Hypothesis A: two subpopulations of pre-synaptic CB1R in corticostriatal glutamatergic terminals exist, one forming and another not forming heteromers with A2AR. Hypothesis B: CB1R are predominantly forming heteromers with A2AR. In the case of hypothesis A, the A2AR might be required for CB1R-A2AR heteromeric signaling, whereas non-heteromeric CB1R activity is inhibited by A2ARs. In the case of hypothesis B, up-regulation of A2ARs may perturb heteromeric stoichiometry, thus reducing CB1R functioning. In any case, pre-synaptic striatal A2AR-CB1R heteromers emerge as important targets of the effects of cannabinoids demonstrated at the neuronal and behavioral level. Read the highlighted article 'Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors' on page 907.

  8. Adenosine receptor expression and function in rat striatal cholinergic interneurons.

    PubMed

    Preston, Z; Lee, K; Widdowson, L; Freeman, T C; Dixon, A K; Richardson, P J

    2000-06-01

    Cholinergic neurons were identified in rat striatal slices by their size, membrane properties, sensitivity to the NK(1) receptor agonist (Sar(9), Met(O(2))(11)) Substance P, and expression of choline acetyltransferase mRNA. A(1) receptor mRNA was detected in 60% of the neurons analysed, and A(2A) receptor mRNA in 67% (n=15). The A(1) receptor agonist R-N(6)-(2-phenylisopropyl)adenosine (R-PIA) hyperpolarized cholinergic neurons in a concentration dependent manner sensitive to the A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX, 100 nM). In dual stimulus experiments, the A(2A) receptor antagonist 8-(3-chlorostyryl)caffeine (CSC, 500 nM) decreased release of [(3)H]-acetylcholine from striatal slices (S2/S1 0.78+/-0.07 versus 0.95+/-0.05 in control), as did adenosine deaminase (S2/S1 ratio 0.69+/-0.05), whereas the A(1) receptor antagonist DPCPX (100 nM) had no effect (S2/S1 1.05+/-0.14). In the presence of adenosine deaminase the adenosine A(2A) receptor agonist 2-p-((carboxyethyl)phenylethylamino)-5'-N-ethylcarboxamidoadeno sin e (CGS21680, 10 nM) increased release (S2/S1 ratio 1.03+/-0.05 versus 0.88+/-0.05 in control), an effect blocked by the antagonist CSC (500 nM, S2/S1 0.68+/-0.05, versus 0.73+/-0.08 with CSC alone). The combined superfusion of bicuculline (10 microM), saclofen (1 microM) and naloxone (10 microM) had no effect on the stimulation by CGS21680 (S2/S1 ratio 0.99+/-0.04). The A(1) receptor agonist R-PIA (100 nM) inhibited the release of [(3)H]-acetylcholine (S2/S1 ratio 0.70+/-0.03), an effect blocked by DPCPX (S2/S1 ratio 1.06+/-0.07). It is concluded that both A(1) and A(2A) receptors are expressed on striatal cholinergic neurons where they are functionally active.

  9. Pharmacological characterisation of the adenosine receptor mediating increased ion transport in the mouse isolated trachea and the effect of allergen challenge

    PubMed Central

    Kornerup, Kristin N; Page, Clive P; Moffatt, James D

    2005-01-01

    The effect of adenosine on transepithelial ion transport was investigated in isolated preparations of murine trachea mounted in Ussing chambers. The possible regulation of adenosine receptors in an established model of allergic airway inflammation was also investigated. Mucosally applied adenosine caused increases in short-circuit current (ISC) that corresponded to approximately 50% of the response to the most efficacious secretogogue, ATP (ΔISC 69.5±6.7 μA cm2). In contrast, submucosally applied adenosine caused only small (<20%) increases in ISC, which were not investigated further. The A1-selective (N6-cyclopentyladenosine, CPA, 1 nM–10 μM), A2A-selective (2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxoamido adenosine; CGS 21680; 0.1–100 μM) and A3-selective (1-deoxy-1-[6-[[(3-iodophenyl)-methyl]amino]-9H-purin-9-yl]-N-methyl-β-D-ribofuranuronamide; IB-MECA; 30 nM–100 μM) adenosine receptor agonists were either equipotent or less potent than adenosine, suggesting that these receptors do not mediate the response to adenosine. The A1 receptor selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 10 nM–1 μM) caused a rightward shift of the adenosine concentration–effect curve only at 1 μM. The mixed A2A/A2B receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) also caused rightward shift of the adenosine concentration–effect curve, again only at micromolar concentrations, suggestive of the involvement of A2B receptors. In preparations from animals sensitised to ovalbumin and challenged over 3 days with aerosol ovalbumin, a decrease in baseline ISC was observed and responses to ATP were diminished. Similarly, the amplitude of responses to adenosine were attenuated although there was no change in potency. These results suggest that the A2B receptor mediates the ISC response to adenosine in the mouse trachea. This receptor does not appear to be

  10. Pharmacological characterisation of the adenosine receptor mediating increased ion transport in the mouse isolated trachea and the effect of allergen challenge.

    PubMed

    Kornerup, Kristin N; Page, Clive P; Moffatt, James D

    2005-04-01

    The effect of adenosine on transepithelial ion transport was investigated in isolated preparations of murine trachea mounted in Ussing chambers. The possible regulation of adenosine receptors in an established model of allergic airway inflammation was also investigated. Mucosally applied adenosine caused increases in short-circuit current (I(SC)) that corresponded to approximately 50% of the response to the most efficacious secretogogue, ATP (delta I(SC) 69.5 +/- 6.7 microA cm2). In contrast, submucosally applied adenosine caused only small (<20%) increases in I(SC), which were not investigated further. The A1-selective (N6-cyclopentyladenosine, CPA, 1 nM-10 microM), A2A-selective (2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxoamido adenosine; CGS 21680; 0.1-100 microM) and A3-selective (1-deoxy-1-[6-[[(3-iodophenyl)-methyl]amino]-9H-purin-9-yl]-N-methyl-beta-D-ribofuranuronamide; IB-MECA; 30 nM-100 microM) adenosine receptor agonists were either equipotent or less potent than adenosine, suggesting that these receptors do not mediate the response to adenosine. The A1 receptor selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 10 nM-1 microM) caused a rightward shift of the adenosine concentration-effect curve only at 1 microM. The mixed A2A/A2B receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) also caused rightward shift of the adenosine concentration-effect curve, again only at micromolar concentrations, suggestive of the involvement of A2B receptors. In preparations from animals sensitised to ovalbumin and challenged over 3 days with aerosol ovalbumin, a decrease in baseline I(SC) was observed and responses to ATP were diminished. Similarly, the amplitude of responses to adenosine were attenuated although there was no change in potency. These results suggest that the A2B receptor mediates the I(SC) response to adenosine in the mouse trachea. This receptor does not appear to be

  11. Adenosine A2 receptors modulate haloperidol-induced catalepsy in rats.

    PubMed

    Mandhane, S N; Chopde, C T; Ghosh, A K

    1997-06-11

    The effect of adenosine A1 and A2 receptor agonists and antagonists was investigated on haloperidol-induced catalepsy in rats. Pretreatment (i.p.) with the non-selective adenosine receptor antagonist, theophylline, or the selective adenosine A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX), significantly reversed haloperidol-induced catalepsy, whereas the selective adenosine A1 receptor antagonists, 8-phenyltheophylline and 8-cyclopentyl-1,3-dipropylxanthine produced no effect. Similar administration of the adenosine A2 receptor agonists, 5'-(N-cyclopropyl)-carboxamidoadenosine and 5'-N-ethylcarboxamidoadenosine (NECA), and the mixed agonists with predominantly A1 site of action, N6-(2-phenylisopropyl) adenosine or 2-chloroadenosine, potentiated haloperidol-induced catalepsy. Higher doses of the adenosine agonists produced catalepsy when given alone. However, N6-cyclopentyladenosine, a highly selective adenosine A1 receptor agonist, was ineffective in these respects. The per se cataleptic effect of adenosine agonists was blocked by DMPX and the centrally acting anticholinergic agent, scopolamine. Scopolamine also attenuated the potentiation of haloperidol-induced catalepsy by adenosine agonists. Further, i.c.v. administration of NECA and DMPX produced a similar effect as that produced after their systemic administration. These findings demonstrate the differential influence of adenosine A1 and A2 receptors on haloperidol-induced catalepsy and support the hypothesis that the functional interaction between adenosine and dopamine mechanisms might occur through adenosine A2 receptors at the level of cholinergic neurons. The results suggest that adenosine A2, but not A1, receptor antagonists may be of potential use in the treatment of Parkinson's disease.

  12. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: A review

    PubMed Central

    Rivera-Oliver, Marla; Díaz-Ríos, Manuel

    2014-01-01

    Caffeine is the most consumed pychostimulant in the world, and it is known to affect basic and fundamental human processes such as sleep, arousal, cognition and learning and memory. It works as a nonselective blocker of adenosine receptors (A1, A2a, A2b and A3) and has been related to the regulation of heart rate, the contraction/relaxation of cardiac and smooth muscles, and the neural signaling in the central nervous system (CNS). Since the late 1990s, studies using adenosine receptor antagonists, such as Caffeine, to block the A1 and A2a adenosine receptor subtypes have shown to reduce the physical, cellular and molecular damages caused by a spinal cord injury (SCI) or a stroke (cerebral infarction) and by other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Interestingly, other studies using adenosine receptor agonists have also shown to provide a neuroprotective effect on various models of neurodegenerative diseases through the reduction of excitatory neurotransmitter release, apoptosis and inflammatory responses, among others. The seemingly paradoxical use of both adenosine receptor agonists and antagonists as neuroprotective agents has been attributed to differences in dosage levels, drug delivery method, extracellular concentration of excitatory neurotransmitters and stage of disease progression. We discuss and compare recent findings using both antagonists and agonists of adenosine receptors in animal models and patients that have suffered spinal cord injuries, brain strokes, and Parkinson's and Alzheimer's diseases. Additionally, we propose alternative interpretations on the seemingly paradoxical use of these drugs as potential pharmacological tools to treat these various types of neurodegenerative diseases. PMID:24530739

  13. A2A adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients.

    PubMed

    Vincenzi, Fabrizio; Corciulo, Carmen; Targa, Martina; Casetta, Ilaria; Gentile, Mauro; Granieri, Enrico; Borea, Pier Andrea; Popoli, Patrizia; Varani, Katia

    2013-09-01

    Adenosine, a purine nucleoside interacting with A1, A2A, A2B and A3 adenosine receptors (ARs), is a potent endogenous modulator of inflammatory and neuronal processes involved in the pathophysiology of several neurodegenerative diseases. In the present study, ARs were investigated in lymphocytes from patients with amyotrophic lateral sclerosis (ALS) and compared with age-matched healthy subjects. In ALS patients A2AARs were analysed by using RT-PCR, Western blotting and saturation binding experiments. The effect of A2AAR stimulation on cyclic AMP levels was evaluated in lymphocytes from ALS patients and healthy subjects. An up-regulation of A2AARs was observed in ALS patients with respect to healthy subjects while A1, A2B and A3AR affinity and density did not change. In ALS patients, the A2AAR density values correlated with the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) scores. Furthermore, the stimulation of A2AARs mediated a significant increase in cyclic AMP levels in lymphocytes from ALS patients, with a higher potency than in lymphocytes from healthy subjects. In conclusion, the positive correlation between A2AAR density and ALSFRS-R scores could indicate a possible protective effect of this receptor subtype, representing an interesting starting point for the study of alternative therapeutic approaches for ALS based on A2AAR modulation.

  14. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

    PubMed

    Casey, Darren P; Madery, Brandon D; Pike, Tasha L; Eisenach, John H; Dietz, Niki M; Joyner, Michael J; Wilkins, Brad W

    2009-10-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans.

  15. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  16. Adenosine acts as an inhibitor of lymphoma cell growth: a major role for the A3 adenosine receptor.

    PubMed

    Fishman, P; Bar-Yehuda, S; Ohana, G; Pathak, S; Wasserman, L; Barer, F; Multani, A S

    2000-07-01

    In this study, we demonstrated several mechanisms exploring the inhibitory effect of low-dose adenosine on lymphoma cell growth. Adenosine, a purine nucleoside present in plasma and other extracellular fluids, acts as a regulatory molecule, by binding to G-protein associated cell-surface receptors, A1, A2 and A3. Recently we showed that low-dose adenosine released by muscle cells, inhibits tumour cell growth and thus attributes to the rarity of muscle metastases. In the present work, a cytostatic effect of adenosine on the proliferation of the Nb2-11C rat lymphoma cell line was demonstrated. This effect was mediated through the induction of cell cycle arrest in the G0/G1 phase and by decreasing the telomeric signal in these cells. Adenosine was found to exert its antiproliferative effect mainly through binding to its A3 receptor. The cytostatic anticancer activity, mediated through the A3 adenosine receptor, turns it into a potential target for the development of anticancer therapies.

  17. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  18. [60]Fullerene derivative modulates adenosine and metabotropic glutamate receptors gene expression: a possible protective effect against hypoxia

    PubMed Central

    2014-01-01

    Background Glutamate, the main excitatory neurotransmitter, is involved in learning and memory processes but at higher concentration results excitotoxic causing degeneration and neuronal death. Adenosine is a nucleoside that exhibit neuroprotective effects by modulating of glutamate release. Hypoxic and related oxidative conditions, in which adenosine and metabotropic glutamate receptors are involved, have been demonstrated to contribute to neurodegenerative processes occurring in certain human pathologies. Results Human neuroblastoma cells (SH-SY5Y) were used to evaluate the long time (24, 48 and 72 hours) effects of a [60]fullerene hydrosoluble derivative (t3ss) as potential inhibitor of hypoxic insult. Low oxygen concentration (5% O2) caused cell death, which was avoided by t3ss exposure in a concentration dependent manner. In addition, gene expression analysis by real time PCR of adenosine A1, A2A and A2B and metabotropic glutamate 1 and 5 receptors revealed that t3ss significantly increased A1 and mGlu1 expression in hypoxic conditions. Moreover, t3ss prevented the hypoxia-induced increase in A2A mRNA expression. Conclusions As t3ss causes overexpression of adenosine A1 and metabotropic glutamate receptors which have been shown to be neuroprotective, our results point to a radical scavenger protective effect of t3ss through the enhancement of these neuroprotective receptors expression. Therefore, the utility of these nanoparticles as therapeutic target to avoid degeneration and cell death of neurodegenerative diseases is suggested. PMID:25123848

  19. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors.

    PubMed

    Ross, Ashley E; Venton, B Jill

    2015-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate-putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 μM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2 s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7%, similar to the 54 ± 6% decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 min. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. Here, transient adenosine was shown to modulate phasic dopamine release on the order of seconds by acting at the A1 receptor. However, sustained increases in adenosine did not regulate phasic dopamine release. This study demonstrates for the first time a transient, neuromodulatory function of rapid adenosine to regulate rapid neurotransmitter release.

  20. Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides.

    PubMed Central

    Cunha, R. A.; Correia-de-Sá, P.; Sebastião, A. M.; Ribeiro, J. A.

    1996-01-01

    1. In the present work, we investigated the action of adenosine originating from extracellular catabolism of adenine nucleotides, in two preparations where synaptic transmission is modulated by both inhibitory A1 and excitatory A(2a)-adenosine receptors, the rat hippocampal Schaffer fibres/CA1 pyramid synapses and the rat innervated hemidiaphragm. 2. Endogenous adenosine tonically inhibited synaptic transmission, since 0.5-2 u ml-1 of adenosine deaminase increased both the population spike amplitude (30 +/- 4%) and field excitatory post-synaptic potential (f.e.p.s.p.) slope (27 +/- 4%) recorded from hippocampal slices and the evoked [3H]-acetylcholine ([3H]-ACh) release from the motor nerve terminals (25 +/- 2%). 3. alpha, beta-Methylene adenosine diphosphate (AOPCP) in concentrations (100-200 microM) that almost completely inhibited the formation of adenosine from the extracellular catabolism of AMP, decreased population spike amplitude by 39 +/- 5% and f.e.p.s.p. slope by 32 +/- 3% in hippocampal slices and [3H]-ACh release from motor nerve terminals by 27 +/- 3%. 4. Addition of exogenous 5'-nucleotidase (5 u ml-1) prevented the inhibitory effect of AOPCP on population spike amplitude and f.e.p.s.p. slope by 43-57%, whereas the P2 antagonist, suramin (100 microM), did not modify the effect of AOPCP. 5. In both preparations, the effect of AOPCP resulted from prevention of adenosine formation since it was no longer evident when accumulation of extracellular adenosine was hindered by adenosine deaminase (0.5-2 u ml-1). The inhibitory effect of AOPCP was still evident when A1 receptors were blocked by 1,3-dipropyl-8-cyclopentylxanthine (2.5-5 nM), but was abolished by the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (10 microM). 6. These results suggest that adenosine originating from catabolism of released adenine nucleotides preferentially activates excitatory A2 receptors in hippocampal CAI pyramid synapses and in phrenic motor nerve endings. PMID:8886406

  1. Serotonin 2B Receptor (5-HT2B R) Signals through Prostacyclin and PPAR-ß/δ in Osteoblasts

    PubMed Central

    Chabbi-Achengli, Yasmine; Launay, Jean-Marie; Maroteaux, Luc; de Vernejoul, Marie Christine; Collet, Corinne

    2013-01-01

    Osteoporosis is due to an imbalance between decreased bone formation by osteoblasts and increased resorption by osteoclasts. Deciphering factors controlling bone formation is therefore of utmost importance for the understanding and the treatment of osteoporosis. Our previous in vivo results showed that bone formation is reduced in the absence of the serotonin receptor 5-HT2B, causing impaired osteoblast proliferation, recruitment, and matrix mineralization. In this study, we investigated the signaling pathways responsible for the osteoblast defect in 5-HT2BR−/− mice. Notably, we investigated the phospholipase A2 pathway and synthesis of eicosanoids in 5-HT2BR−/− compared to wild type (WT) osteoblasts. Compared to control osteoblasts, the lack of 5-HT2B receptors was only associated with a 10-fold over-production of prostacyclin (PGI2). Also, a specific prostacyclin synthase inhibitor (U51605) rescued totally osteoblast aggregation and matrix mineralization in the 5-HT2BR−/− osteoblasts without having any effect on WT osteoblasts. Prostacyclin is the endogenous ligand of the nuclear peroxisome proliferator activated receptor ß/δ (PPAR-ß/δ), and its inhibition in 5-HT2BR−/− cells rescued totally the alkaline phosphatase and osteopontin mRNA levels, cell-cell adhesion, and matrix mineralization. We conclude that the absence of 5-HT2B receptors leads to the overproduction of prostacyclin, inducing reduced osteoblast differentiation due to PPAR-ß/δ -dependent target regulation and defective cell-cell adhesion and matrix mineralization. This study thus reveals a previously unrecognized cell autonomous osteoblast defect in the absence of 5-HT2BR and highlights a new pathway linking 5-HT2B receptors and nuclear PPAR- ß/δ via prostacyclin. PMID:24069449

  2. Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes

    PubMed Central

    Bolcato, Chiara; Cusan, Claudia; Pastorin, Giorgia; Cacciari, Barbara; Klotz, Karl Norbert; Morizzo, Erika

    2007-01-01

    In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach. PMID:18368532

  3. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Menezes, Fabiano Peres; Nazario, Luiza Reali; Pohlmann, Julhana Bianchini; de Oliveira, Giovanna M T; Fazenda, Lidiane; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2011-01-01

    Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase.

  4. Evidence for an A1-adenosine receptor in the guinea-pig atrium.

    PubMed Central

    Collis, M. G.

    1983-01-01

    1 The purpose of this study was to determine whether the adenosine receptor that mediates a decrease in the force of contraction of the guinea-pig atrium is of the A1- or A2-sub-type. 2 Concentration-response curves to adenosine and a number of 5'- and N6-substituted analogues were constructed and the order of potency of the purines was: 5'-N-cyclopropylcarboxamide adenosine (NCPCA) = 5'-N-ethylcarboxamide adenosine (NECA) greater than N6cyclohexyladenosine (CHA) greater than L-N6-phenylisopropyl adenosine (L-PIA) = 2-chloroadenosine- greater than adenosine greater than D-N6-phenylisopropyl adenosine (D-PIA). 3 The difference in potency between the stereoisomers D- and L-PIA was over 100 fold. 4 The adenosine transport inhibitor, dipyridamole, potentiated submaximal responses to adenosine but had no significant effect on those evoked by the other purines. 5 Theophylline antagonized responses evoked by all purines, and with D-PIA revealed a positive inotropic effect that was abolished by atenolol. 6 The results indicate the existence of an adenosine A1-receptor in the guinea-pig atrium. PMID:6297647

  5. GABAergic involvement in motor effects of an adenosine A(2A) receptor agonist in mice.

    PubMed

    Khisti, R T; Chopde, C T; Abraham, E

    2000-04-03

    Adenosine A(2A) agonists are known to induce catalepsy and inhibit dopamine mediated motor hyperactivity. An antagonistic interaction between adenosine A(2A) and dopamine D(2) receptors is known to regulate GABA-mediated neurotransmission in striatopallidal neurons. Stimulation of adenosine A(2A) and dopamine D(2) receptors has been shown to increase and inhibit GABA release respectively in pallidal GABAergic neurons. However, the role of GABAergic neurotransmission in the motor effects of adenosine A(2A) receptors is not yet known. Therefore in the present study the effect of GABAergic agents on adenosine A(2A) receptor agonist (NECA- or CGS 21680) induced catalepsy and inhibition of amphetamine elicited motor hyperactivity was examined. Pretreatment with GABA, the GABA(A) agonist muscimol or the GABA(B) agonist baclofen potentiated whereas the GABA(A) antagonist bicuculline attenuated NECA- or CGS 21680-induced catalepsy. However, the GABA(B) antagonists phaclophen and delta-aminovaleric acid had no effect. Administration of NECA or CGS 21680 not only reduced spontaneous locomotor activity but also antagonized amphetamine elicited motor hyperactivity. These effects of NECA and CGS 21680 were potentiated by GABA or muscimol and antagonized by bicuculline. These findings provide behavioral evidence for the role of GABA in the motor effects of adenosine A(2A) receptor agonists. Activation of adenosine A(2A) receptors increases GABA release which could reduce dopaminergic tone and induce catalepsy or inhibit amphetamine mediated motor hyperactivity.

  6. Cardiovascular selectivity of adenosine receptor agonists in anaesthetized dogs.

    PubMed Central

    Gerencer, R. Z.; Finegan, B. A.; Clanachan, A. S.

    1992-01-01

    1. In order to determine the relevance of adenosine (Ado) receptor classification obtained from in vitro methods to the cardiovascular actions of Ado agonists in vivo, the cardiovascular effects of adenosine 5'-monophosphate (AMP), N6-cyclohexyladenosine (CHA, 400 fold A1-selective), 5'-N-ethyl-carboxamidoadenosine (NECA, A1 approximately A2) and 2-phenylaminoadenosine (PAA, 5 fold A2-selective) were compared in open-chest, fentanyl-pentobarbitone anaesthetized dogs. 2. Graded doses of CHA (10 to 1000 micrograms kg-1), NECA (0.5 to 100 micrograms kg-1) or PAA (0.1 to 20 micrograms kg-1) were administered intravenously and changes in haemodynamics and myocardial contractility were assessed 10 min following each dose. The effects of graded infusions of AMP (200 to 1000 micrograms kg-1 min-1) were also evaluated. 3. AMP and each of the Ado analogues (NECA > PAA > CHA) increased the systemic vascular conductance index (SVCI) in a dose-dependent manner and reduced mean arterial pressure (MAP). At doses causing similar increases in SVCI, these agonists caused (i) similar reflex increases in heart rate (HR) and cardiac index (CI) and decreases in AV conduction interval (AVi) and (ii) similar increases in coronary vascular conductance (CVC). 4. After cardiac autonomic blockade with atropine (0.2 mg kg-1) and propranolol (1 mg kg-1), AMP, CHA and PAA still increased SVCI and CVC and decreased MAP. CHA and PAA had no marked effects on HR, CI or AVi. As in the absence of cardiac autonomic blockade, equieffective vasodilator doses of CHA and PAA had identical effects on CVC, CI and AVi.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1467827

  7. Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by adenosine receptors in the rat hippocampus.

    PubMed Central

    Morton, R A; Davies, C H

    1997-01-01

    1. Intracellular current clamp recordings were made from CA1 pyramidal neurones in rat hippocampal slices. Experiments were performed in the presence of ionotropic glutamate receptor antagonists and gamma-aminobutyric acid (GABA) receptor antagonists to block all fast excitatory and inhibitory synaptic transmission. A single stimulus, delivered extracellularly in the stratum oriens, caused a reduction in spike frequency adaptation in response to a depolarizing current step delivered 2 s after the stimulus. A 2- to 10-fold increase in stimulus intensity evoked a slow excitatory postsynaptic potential (EPSP) which was associated with a small increase in input resistance. The peak amplitude of the EPSP occurred approximately 2.5 s after the stimulus and its magnitude (up to 30 mV) and duration (10-50 s) increased with increasing stimulus intensity. 2. The slow EPSP was unaffected by the metabotropic glutamate receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG; 1000 microM) but was greatly enhanced by the acetylcholinesterase inhibitor physostigmine (1-5 microM). Both the slow EPSP and the stimulus-evoked reduction in spike frequency adaptation were inhibited by the muscarinic acetylcholine receptor (mAChR) antagonist atropine (1-5 microM). These results are consistent with these effects being mediated by mAChRs. 3. Both the mAChR-mediated EPSP (EPSPm) and the associated reduction in spike frequency adaptation were reversibly depressed (up to 97%) by either adenosine (100 microM) or its non-hydrolysable analogue 2-chloroadenosine (CADO; 0.1-5.0 microM). These effects were often accompanied by postsynaptic hyperpolarization (up to 8 mV) and a reduction in input resistance (up to 11%). The selective adenosine A1 receptor agonists 2-chloro-N6-cyclopentyladenosine (CCPA; 0.1-0.4 microM) and R(-)N6-(2-phenylisopropyl)-adenosine (R-PIA; 1 microM) both depressed the EPSPm. In contrast, the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5

  8. 5-HT(2B) receptors are required for serotonin-selective antidepressant actions.

    PubMed

    Diaz, S L; Doly, S; Narboux-Nême, N; Fernández, S; Mazot, P; Banas, S M; Boutourlinsky, K; Moutkine, I; Belmer, A; Roumier, A; Maroteaux, L

    2012-02-01

    The therapeutic effects induced by serotonin-selective reuptake inhibitor (SSRI) antidepressants are initially triggered by blocking the serotonin transporter and rely on long-term adaptations of pre- and post-synaptic receptors. We show here that long-term behavioral and neurogenic SSRI effects are abolished after either genetic or pharmacological inactivation of 5-HT(2B) receptors. Conversely, direct agonist stimulation of 5-HT(2B) receptors induces an SSRI-like response in behavioral and neurogenic assays. Moreover, the observation that (i) this receptor is expressed by raphe serotonergic neurons, (ii) the SSRI-induced increase in hippocampal extracellular serotonin concentration is strongly reduced in the absence of functional 5-HT(2B) receptors and (iii) a selective 5-HT(2B) agonist mimics SSRI responses, supports a positive regulation of serotonergic neurons by 5-HT(2B) receptors. The 5-HT(2B) receptor appears, therefore, to positively modulate serotonergic activity and to be required for the therapeutic actions of SSRIs. Consequently, the 5-HT(2B) receptor should be considered as a new tractable target in the combat against depression.

  9. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea

    PubMed Central

    Brown, C.M.; Collis, M.G.

    1982-01-01

    1 An attempt was made to determine whether the extracellular adenosine receptor that mediates relaxation in the guinea-pig trachea is of the A1/Ri or A2/Ra subtype. 2 Dose-response curves to adenosine and a number of 5′- and N6-substituted analogues were constructed for the isolated guinea-pig trachea, contracted with carbachol. 3 The 5′-substituted analogues of adenosine were the most potent compounds tested, the order of potency being 5′-N-cyclopropylcarboxamide adenosine (NCPCA) > 5′-N-ethylcarboxamide adenosine (NECA) > 2-chloroadenosine > L-N6-phenylisopropyladenosine (L-PIA) > adenosine > D-N6-phenylisopropyladenosine (D-PIA). 4 The difference in potency between the stereoisomers D- and L-PIA on the isolated trachea was at the most five fold. 5 Responses to low doses of adenosine and its analogues were attenuated after treatment with either theophylline or 8-phenyltheophylline. The responses to 2-chloroadenosine were affected to a lesser extent than were those to the other purines. 6 Adenosine transport inhibitors, dipyridamole and dilazep, potentiated responses to adenosine, did not affect those to NCPCA, NECA, L-PIA and D-PIA but significantly reduced the responses to high doses of 2-chloroadenosine. 7 Relaxations evoked by 9-β-D-xylofuranosyladenosine which can activate intracellular but not extracellular adenosine receptors, were attenuated by dipyridamole but unaffected by 8-phenyltheophylline. 8 The results support the existence of an extracellular A2/Ra subtype of adenosine receptor and an intracellular purine-sensitive site, both of which mediate relaxation. PMID:6286021

  10. Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo.

    PubMed

    Erdmann, Andreas A; Gao, Zhan-Guo; Jung, Unsu; Foley, Jason; Borenstein, Todd; Jacobson, Kenneth A; Fowler, Daniel H

    2005-06-15

    To evaluate the direct effect of adenosine on cytokine-polarized effector T cells, murine type 1 helper T cells (Th1) and type 1 cytotoxic T lymphocytes (Tc1) and Th2/Tc2 cells were generated using an antigen-presenting cell (APC)-free method. Tc1 and Tc2 cells had similar adenosine signaling, as measured by intracellular cyclic AMP (cAMP) increase upon adenosine A(2A) receptor agonism by CGS21680 (CGS). CGS greatly reduced Tc1 and Tc2 cell interleukin 2 (IL-2) and tumor necrosis factor alpha (TNF-alpha) secretion, with nominal effect on interferon gamma (IFN-gamma) secretion. Tc2 cell IL-4 and IL-5 secretion was not reduced by CGS, and IL-10 secretion was moderately reduced. Agonist-mediated inhibition of IL-2 and TNF-alpha secretion occurred via A(2A) receptors, with no involvement of A(1), A(2B), or A(3) receptors. Adenosine agonist concentrations that abrogated cytokine secretion did not inhibit Tc1 or Tc2 cell cytolytic function. Adenosine modulated effector T cells in vivo, as CGS administration reduced CD4(+)Th1 and CD8(+)Tc1 cell expansion to alloantigen and, in a separate model, reduced antigen-specific CD4(+) Th1 cell numbers. Remarkably, agonist-mediated T-cell inhibition was abrogated by in vivo IL-2 therapy. Adenosine receptor activation therefore preferentially inhibits type I cytokine secretion, most notably IL-2. Modulation of adenosine receptors may thus represent a suitable target primarily for inflammatory conditions mediated by Th1 and Tc1 cells.

  11. [Protective effect of adenosine receptor agonists in a model of spinal cord injury in rats].

    PubMed

    Sufianova, G Z; Usov, L A; Sufianov, A A; Perelomov, Iu P; Raevskaia, L Iu; Shapkin, A G

    2002-01-01

    Possibilities of the neuroprotector therapy using adenosine and cyclopentyladenosine (CPA), an adenosine receptor agonist, were studied on a model of spinal cord injury by compression in rats (most closely reproducing the analogous clinical pathological process in humans). The model was induced by slow, graded compression of the spinal cord at the thoracic level. Adenosine and CPA were introduced 60 min before injury by subcutaneous injections in a dose of 300 and 2.5 micrograms/kg, respectively. The protective effect was judged by comparing the neurological, electromyographic, and histopathological changes in animals with the model injury and in the control group (adenosine and CPA background). The A1-agonist CPA injections produced a pronounced, statistically significant neuroprotector effect on the given spinal cord injury model in rats. The neuroprotective effect of adenosine was significant but not as strong. It is concluded that it is expedient to use A-agonists in clinics.

  12. Adenosine: Tipping the balance towards hepatic steatosis and fibrosis

    PubMed Central

    Robson, Simon C.; Schuppan, Detlef

    2010-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the histochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:20395005

  13. Multiple sclerosis lymphocytes upregulate A2A adenosine receptors that are antiinflammatory when stimulated.

    PubMed

    Vincenzi, Fabrizio; Corciulo, Carmen; Targa, Martina; Merighi, Stefania; Gessi, Stefania; Casetta, Ilaria; Gentile, Mauro; Granieri, Enrico; Borea, Pier Andrea; Varani, Katia

    2013-08-01

    Multiple sclerosis (MS) is an autoimmune-mediated inflammatory disease characterized by multifocal areas of demyelination. Experimental evidence indicates that A2A adenosine receptors (ARs) play a pivotal role in the inhibition of inflammatory processes. The aim of this study was to investigate the contribution of A2A ARs in the inhibition of key pro-inflammatory mediators for the pathogenesis of MS. In lymphocytes from MS patients, A1, A2A, A2B, and A3 ARs were analyzed by using RT-PCR, Western blotting, immunofluorescence, and binding assays. Moreover the effect of A2A AR stimulation on proinflammatory cytokine release such as TNF-α, IFN-γ, IL-6, IL-1β, IL-17, and on lymphocyte proliferation was evaluated. The capability of an A2A AR agonist on the modulation of very late antigen (VLA)-4 expression and NF-κB was also explored. A2A AR upregulation was observed in lymphocytes from MS patients in comparison with healthy subjects. The stimulation of these receptors mediated a significant inhibition of TNF-α, IFN-γ, IL-6, IL-1β, IL-17, and cell proliferation as well as VLA-4 expression and NF-κB activation. This new evidence highlights that A2A AR agonists could represent a novel therapeutic tool for MS treatment as suggested by the antiinflammatory role of A2A ARs in lymphocytes from MS patients.

  14. Evidence that the positive inotropic effects of the alkylxanthines are not due to adenosine receptor blockade.

    PubMed Central

    Collis, M. G.; Keddie, J. R.; Torr, S. R.

    1984-01-01

    We investigated the possibility that the positive inotropic effects of the alkylxanthines are due to adenosine receptor blockade. The potency of 8-phenyltheophylline, theophylline and enprofylline as adenosine antagonists was assessed in vitro, using the guinea-pig isolated atrium, and in vivo, using the anaesthetized dog. The order of potency of the alkylxanthines as antagonists of the negative inotropic response to 2-chloroadenosine in vitro, and of the hypotensive response to adenosine in vivo was 8-phenyltheophylline greater than theophylline greater than enprofylline. The order of potency of the alkylxanthines as positive inotropic and chronotropic agents in the anaesthetized dog was enprofylline greater than theophylline greater than 8-phenyltheophylline. The results of this study indicate that the inotropic effects of the alkylxanthines in the anaesthetized dog are not due to adenosine receptor blockade. PMID:6322898

  15. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies (Addendum)

    DTIC Science & Technology

    2016-03-01

    diabetic retinopathy. Life Sci. 2013 Jul 30;93(2-3):78-88. doi: 10.1016/j.lfs.2013.05.024. Epub 2013 Jun 12.PMID:23770229 7 AIMS: This study was...undertaken to determine the effect of an adenosine kinase inhibitor (AKI) in diabetic retinopathy (DR). We have shown previously that adenosine signaling...via A2A receptors (A2AAR) is involved in retinal protection from diabetes -induced inflammation. Here we demonstrate that AKI-enhanced adenosine

  16. Serotonin Receptors and Heart Valve Disease – it was meant 2B

    PubMed Central

    Hutcheson, Joshua D.; Setola, Vincent; Roth, Bryan L.; Merryman, W. David

    2011-01-01

    Carcinoid heart disease was one of the first valvular pathologies studied in molecular detail, and early research identified serotonin produced by oncogenic enterochromaffin cells as the likely culprit in causing changes in heart valve tissue. Researchers and physicians in the mid-1960s noted a connection between the use of several ergot-derived medications with structures similar to serotonin and the development of heart valve pathologies similar to those observed in carcinoid patients. The exact serotonergic target that mediated valvular pathogenesis remained a mystery for many years until similar cases were reported in patients using the popular diet drug Fen-Phen in the late 1990s. The Fen-Phen episode sparked renewed interest in serotonin-mediated valve disease, and studies led to the identification of the 5-HT2B receptor as the likely molecular target leading to heart valve tissue fibrosis. Subsequent studies have identified numerous other activators of the 5-HT2B receptor, and consequently, the use of many of these molecules has been linked to heart valve disease. Herein, we: review the molecular properties of the 5-HT2B receptor including factors that differentiate the 5-HT2B receptor from other 5-HT receptor subtypes, discuss the studies that led to the identification of the 5-HT2B receptor as the mediator of heart valve disease, present current efforts to identify potential valvulopathogens by screening for 5-HT2B receptor activity, and speculate on potential therapeutic benefits of 5-HT2B receptor targeting. PMID:21440001

  17. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.

    PubMed

    Ferreira, Joana S; Schmidt, Jeannette; Rio, Pedro; Águas, Rodolfo; Rooyakkers, Amanda; Li, Ka Wan; Smit, August B; Craig, Ann Marie; Carvalho, Ana Luisa

    2015-06-03

    NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular and physiological properties to NMDA receptors. The contribution of each subunit to the synaptic traffic of NMDA receptors and therefore to their role during development and in synaptic plasticity is still controversial. We report a critical role for the GluN2B subunit in regulating NMDA receptor synaptic targeting. In the absence of GluN2B, the synaptic levels of AMPA receptors are increased and accompanied by decreased constitutive endocytosis of GluA1-AMPA receptor. We used quantitative proteomic analysis to identify changes in the composition of postsynaptic densities from GluN2B(-/-) mouse primary neuronal cultures and found altered levels of several ubiquitin proteasome system components, in particular decreased levels of proteasome subunits. Enhancing the proteasome activity with a novel proteasome activator restored the synaptic levels of AMPA receptors in GluN2B(-/-) neurons and their endocytosis, revealing that GluN2B-mediated anchoring of the synaptic proteasome is responsible for fine tuning AMPA receptor synaptic levels under basal conditions.

  18. Molecular and functional characterization of the first tick CAP2b (periviscerokinin) receptor from Rhipicephalus (Boophilus) microplus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cDNA of the receptor for CAP2b/periviscerokinin (PVK) neuropeptides, designated Rhimi-CAP2b-R, was cloned from synganglia of tick Rhipicephalus (Boophilus) microplus. This receptor is the ortholog of the insect CAP2b/PVK receptor, as concluded from analyses of the predicted protein sequence, ph...

  19. 8-(2-Furyl)adenine derivatives as A₂A adenosine receptor ligands.

    PubMed

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Thomas, Ajiroghene; Klotz, Karl-Norbert; Federico, Stephanie; Cacciari, Barbara; Spalluto, Giampiero; Volpini, Rosaria

    2013-01-01

    Selective adenosine receptor modulators are potential tools for numerous therapeutic applications, including cardiovascular, inflammatory, and neurodegenerative diseases. In this work, the synthesis and biological evaluation at the four human adenosine receptor subtypes of a series of 9-substituted 8-(2-furyl)adenine derivatives are reported. Results show that 8-(2-furyl)-9-methyladenine is endowed with high affinity at the A₂A subtype. Further modification of this compound with introduction of arylacetyl or arylcarbamoyl groups in N(6)-position takes to different effects on the A₂A affinity and in particular on the selectivity versus the other three adenosine receptor subtypes. A molecular modelling analysis at three different A₂A receptor crystal structures provides an interpretation of the obtained biological results.

  20. Autoradiographic localization of adenosine receptors in rat brain using (/sup 3/H)cyclohexyladenosine

    SciTech Connect

    Goodman, R.R.; Synder, S.H.

    1982-09-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of (/sup 3/H)N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.

  1. Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket

    PubMed Central

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A.; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K.

    2017-01-01

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl d-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease. PMID:28167788

  2. Cloning and expression of an A1 adenosine receptor from rat brain

    SciTech Connect

    Mahan, L.C.; McVittie, L.D.; Smyk-Randall, E.M.; Nakata, H.; Monsma, F.J. Jr.; Gerfen, C.R.; Sibley, D.R. )

    1991-07-01

    The authors have used the polymerase chain reaction technique to selectively amplify guanine nucleotide-binding regulatory protein (G protein)-coupled receptor cDNA sequences from rat striatal mRNA, using sets of highly degenerate primers derived from transmembrane sequences of previously cloned G protein-coupled receptors. A novel cDNA fragment was identified, which exhibits considerable homology to various members of the G protein-coupled receptor family. This fragment was used to isolate a full-length cDNA from a rat striatal library. A 2.2-kilobase clone was obtained that encodes a protein of 326 amino acids with seven transmembrane domains, as predicted by hydropathy analysis. Stably transfected mouse A9-L cells and Chinese hamster ovary cells that expressed mRNA for this clone were screened with putative receptor ligands. Saturable and specific binding sites for the A1 adenosine antagonist (3H)-1,3-dipropyl-8-cyclopentylxanthine were identified on membranes from transfected cells. The rank order of potency and affinities of various adenosine agonist and antagonist ligands confirmed the identity of this cDNA clone as an A1 adenosine receptor. The high affinity binding of A1 adenosine agonists was shown to be sensitive to the nonhydrolyzable GTP analog guanylyl-5{prime}-imidodiphosphate. In adenylyl cyclase assays, adenosine agonists inhibited forskolin-stimulated cAMP production by greater than 50%, in a pharmacologically specific fashion. Northern blot and in situ hybridization analyses of receptor mRNA in brain tissues revealed two transcripts of 5.6 and 3.1 kilobases, both of which were abundant in cortex, cerebellum, hippocampus, and thalamus, with lower levels in olfactory bulb, striatum, mesencephalon, and retina. These regional distribution data are in good agreement with previous receptor autoradiographic studies involving the A1 adenosine receptor.

  3. Sulfur-Containing 1,3-Dialkylxanthine Derivatives as Selective Antagonists at A1-Adenosine Receptors

    PubMed Central

    Kiriasis, Leonidas; Barone, Suzanne; Bradbury, Barton J.; Kammula, Udai; Campagne, Jean Michel; Secunda, Sherrie; Daly, John W.; Neumeyer, John L.; Pfleiderer, Wolfgang

    2012-01-01

    Sulfur-containing analogues of 8-substituted xanthines were prepared in an effort to increase selectivity or potency as antagonists at adenosine receptors. Either cyclopentyl or various aryl substituents were utilized at the 8-position, because of the association of these groups with high potency at A1-adenosine receptors. Sulfur was incorporated on the purine ring at positions 2 and/or 6, in the 8-position substituent in the form of 2- or 3-thienyl groups, or via thienyl groups separated from an 8-aryl substituent through an amide-containing chain. The feasibility of using the thienyl group as a prosthetic group for selective iodination via its Hg2+ derivative was explored. Receptor selectivity was determined in binding assays using membrane homogenates from rat cortex [[3H]-N6-(phenylisopropyl) adenosine as radioligand] or striatum [[3H]-5′-(N-ethylcarbamoyl)adenosine as radioligand] for A1- and A2-adenosine receptors, respectively. Generally, 2-thio-8-cycloalkylxanthines were at least as A1 selective as the corresponding oxygen analogue. 2-Thio-8-aryl derivatives tended to be more potent at A2 receptors than the oxygen analogue. 8-[4-[(Carboxymethyl)oxy]phenyl]-1,3-dipropyl-2-thioxanthine ethyl ester was >740-fold A1 selective. PMID:2754711

  4. Regulation of α2B-Adrenerigc Receptor Export Trafficking by Specific Motifs.

    PubMed

    Wu, Guangyu; Davis, Jason E; Zhang, Maoxiang

    2015-01-01

    Intracellular trafficking and precise targeting to specific locations of G protein-coupled receptors (GPCRs) control the physiological functions of the receptors. Compared to the extensive efforts dedicated to understanding the events involved in the endocytic and recycling pathways, the molecular mechanisms underlying the transport of the GPCR superfamily from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane are relatively less well defined. Over the past years, we have used α(2B)-adrenergic receptor (α(2B)-AR) as a model to define the factors that control GPCR export trafficking. In this chapter, we will review specific motifs identified to mediate the export of nascent α(2B)-AR from the ER and the Golgi and discuss the possible underlying mechanisms. As these motifs are highly conserved among GPCRs, they may provide common mechanisms for export trafficking of these receptors.

  5. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure

    PubMed Central

    Janssen, Wiebke; Schymura, Yves; Novoyatleva, Tatyana; Luitel, Himal; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Weissmann, Norbert; Seeger, Werner; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo

    2015-01-01

    Objective. The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid) or SB204741 (5 mg/kg day). Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF. PMID:25667920

  6. Caffeine and propranolol block the increase in rat pineal melatonin production produced by stimulation of adenosine receptors.

    PubMed

    Babey, A M; Palmour, R M; Young, S N

    1994-07-18

    The adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA) injected i.p. during the light period increased rat pineal melatonin levels and this increase was blocked by simultaneous administration of the non-selective adenosine receptor antagonist caffeine. A single dose of the adenosine A1 agonist cyclopentyladenosine had no effect on nocturnal melatonin production. The NECA-stimulated increase was also blocked by the beta-adrenergic receptor antagonist propranolol. Given alone, neither caffeine nor propranolol had any effect on melatonin levels. The results point to an intermediate role for beta-adrenergic receptors in the adenosine-stimulated increase of melatonin production.

  7. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA.

    PubMed

    Ruiz-Medina, Jessica; Ledent, Catherine; Carretón, Olga; Valverde, Olga

    2011-04-01

    Adenosine is an endogenous purine nucleoside that plays a neuromodulatory role in the central nervous system. A2a adenosine receptors have been involved in reward-related processes, inflammatory phenomena and neurotoxicity reactions. In the present study, we investigated the role of A2a adenosine receptors on the acute pharmacological effects, reinforcement and neuroinflammation induced by MDMA administration. First, the acute effects of MDMA on body temperature, locomotor activity and anxiety-like responses were measured in A2a knockout mice and wild-type littermates. Second, MDMA reinforcing properties were evaluated using the intravenous self-administration paradigm. Finally, we assessed striatal astrogliosis and microgliosis as markers of MDMA neurotoxicity. Our results showed that acute MDMA produced a biphasic effect on body temperature and increased locomotor activity and anxiogenic-like responses in both genotypes. However, MDMA reinforcing properties were dramatically affected by the lack of A2a adenosine receptors. Thus, wild-type mice maintained MDMA self-administration under a fixed ratio 1 reinforcement schedule, whereas the operant response appeared completely abolished in A2a knockout mice. In addition, the MDMA neurotoxic regime produced an enhanced inflammatory response in striatum of wild-type mice, revealed by a significant increase in glial expression, whereas such activation was attenuated in mutant mice. This is the first report indicating that A2a adenosine receptors play a key role in reinforcement and neuroinflammation induced by the widely used psychostimulant.

  8. Influence of CGS 21680, a selective adenosine A(2A) receptor agonist, on NMDA receptor function and expression in the brain of Huntington's disease mice.

    PubMed

    Ferrante, Antonella; Martire, Alberto; Armida, Monica; Chiodi, Valentina; Pézzola, Antonella; Potenza, Rosa Luisa; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-04-06

    The effect of chronic treatment with the selective adenosine A(2A) receptor agonist CGS 21680 on N-Methyl-d-Aspartate (NMDA) receptor function and expression has been studied in the striatum and cortex of R6/2 mice, a genetic mouse model of Huntington's disease (HD). Starting from 8weeks of age, R6/2 and wild type (WT) mice were treated daily with CGS 21680 (0.5mg/kg i.p.) for 3weeks and the expression levels of NMDA receptor subunits were then evaluated. In addition, to study CGS 21680-induced changes in NMDA receptor function, NMDA-induced toxicity in corticostriatal slices from both R6/2 and WT mice was investigated. We found that CGS 21680 increased NR2A subunit expression and the NR2A/NR2B ratio in the cortex of R6/2 mice, having no effect in WT mice. In the striatum, CGS 21680 reduced NR1 expression in both R6/2 and WT mice while the effect on NR2A and NR2/NR2B expression was genotype-dependent, reducing and increasing their expression in WT and R6/2 mice, respectively. On the contrary, NMDA-induced toxicity in corticostriatal slices was not modified by the treatment in WT or HD mice. These results demonstrate that in vivo activation of A(2A) receptors modulates the subunit composition of NMDA receptors in the brain of HD mice.

  9. Heterologous expression of the adenosine A1 receptor in transgenic mouse retina.

    PubMed

    Li, Ning; Salom, David; Zhang, Li; Harris, Tim; Ballesteros, Juan A; Golczak, Marcin; Jastrzebska, Beata; Palczewski, Krzysztof; Kurahara, Carole; Juan, Todd; Jordan, Steven; Salon, John A

    2007-07-17

    Traditional cell-based systems used to express integral membrane receptors have yet to produce protein samples of sufficient quality for structural study. Herein we report an in vivo method that harnesses the photoreceptor system of the retina to heterologously express G protein-coupled receptors in a biochemically homogeneous and pharmacologically functional conformation. As an example we show that the adenosine A1 receptor, when placed under the influence of the mouse opsin promoter and rhodopsin rod outer segment targeting sequence, localized to the photoreceptor cells of transgenic retina. The resulting receptor protein was uniformly glycosylated and pharmacologically well behaved. By comparison, we demonstrated in a control experiment that opsin, when expressed in the liver, had a complex pattern of glycosylation. Upon solubilization, the retinal adenosine A1 receptor retained binding characteristics similar to its starting material. This expression method may prove generally useful for generating high-quality G protein-coupled receptors for structural studies.

  10. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    PubMed Central

    Pedata, Felicita; Pugliese, Anna Maria; Coppi, Elisabetta; Dettori, Ilaria; Maraula, Giovanna; Cellai, Lucrezia; Melani, Alessia

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke. PMID:25165414

  11. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control.

    PubMed

    El-Mas, Mahmoud M; El-Gowilly, Sahar M; Fouda, Mohamed A; Saad, Evan I

    2011-08-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100μg/kg i.v.) dose-dependently reduced BRS(SNP) in contrast to no effect on BRS(PE). BRS(SNP) was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS(SNP) were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS(SNP) was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A(2A) antagonist), or VUF5574 (A(3) antagonist). In contrast, BRS(SNP) was preserved after blockade of A(1) (DPCPX) or A(2B) (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS(SNP) depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A(2A) receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms.

  12. Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors.

    PubMed

    Liu, Shui-bing; Zhao, Ming-gao

    2013-04-01

    Excessive activation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in the pathophysiology of chronic neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Some studies reported that NR2A and NR2B play different roles in the central nervous system (CNS). The NR2A subunit is primarily found in the synapses and is required for glutamate-mediated neuronal survival. On the other hand, the NR2B subunit is primarily found in the extrasynaptic sites and is required for glutamate-mediated neuronal death in both in vitro and in vivo experiments. Estrogen is a steroid hormone well known for its widespread effects such as neuroprotection in the brain. Classically, estrogen can bind to two kinds of nuclear receptors, namely, estrogen receptor α (ERα) and estrogen receptor β (ERβ), and produce physiological and neuroprotective effects. Aside from nuclear receptors, estrogen has one membrane receptor, which can either be G-protein-coupled receptor 30 (GPR30), Gq-mER, or ER-X. NMDA exposure clearly promotes NR2B subunit phosphorylation at Ser-1303 and causes neuronal cell death. GPR30 mediates rapid non-genomic effects to protect neurons against injury by inhibiting p-DAPK1 dephosphorylation, which inhibits NR2B subunit phosphorylation at Ser-1303. In addition, NMDA exposure and global ischemia activate the autophagy pathway and induce cell death, which are markedly blocked by the NR2B antagonist Ro 25-6981. Thus, NR2B signaling, autophagy induction and cell death may be closely related. Ro 25-6981 inhibits the dissociation of the NR2B-Beclin-1 signaling complex and delays autophagy in vivo, thus confirming the link between NR2B signaling and autophagy. In short, ERα, ERβ, and GPR30 are involved in the neuroprotection of estrogen in the CNS. Additional research must be conducted to reveal the mechanism of estrogen action fully and to identify better targets for the development of more effective drugs. This

  13. Voltage-dependent gating of NR1/2B NMDA receptors

    PubMed Central

    Clarke, Richard J; Johnson, Jon W

    2008-01-01

    Ligand-gated ion channels are activated by agonist binding, but may also be modulated by membrane voltage. N-Methyl-d-aspartate receptors (NMDARs) exhibit especially strong voltage dependence due to channel block by external Mg2+ (Mgo2+). Here we demonstrate that activity of NMDARs composed of NR1 and NR2B subunits (NR1/2B receptors) is enhanced by depolarization even in 0 Mgo2+, causing slow current relaxations in response to rapid voltage changes. We present a kinetic model of receptor activation that incorporates voltage-dependent gating-associated NR2B subunit conformational changes. The model accurately reproduces current relaxations during depolarizations and subsequent repolarizations in 0 Mgo2+. Model simulations in physiological Mgo2+ concentrations show that voltage-dependent receptor gating also underlies the slow component of Mgo2+ unblock, a phenomenon that previously was shown to influence Mgo2+ unblock kinetics during dendritic spikes. We propose that voltage-dependent gating of NR1/2B receptors confers enhanced voltage and time dependence on NMDAR-mediated signalling. PMID:18936081

  14. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    SciTech Connect

    Florio, C.; Rosati, A.M.; Traversa, U.; Vertua, R. )

    1991-01-01

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-({sup 3}H)adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system.

  15. Molecular Determinants of CGS21680 Binding to the Human Adenosine A2A Receptor.

    PubMed

    Lebon, Guillaume; Edwards, Patricia C; Leslie, Andrew G W; Tate, Christopher G

    2015-06-01

    The adenosine A2A receptor (A(2A)R) plays a key role in transmembrane signaling mediated by the endogenous agonist adenosine. Here, we describe the crystal structure of human A2AR thermostabilized in an active-like conformation bound to the selective agonist 2-[p-(2-carboxyethyl)phenylethyl-amino]-5'-N-ethylcarboxamido adenosine (CGS21680) at a resolution of 2.6 Å. Comparison of A(2A)R structures bound to either CGS21680, 5'-N-ethylcarboxamido adenosine (NECA), UK432097 [6-(2,2-diphenylethylamino)-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-tetrahydrofuran-2-yl]-N-[2-[[1-(2-pyridyl)-4-piperidyl]carbamoylamino]ethyl]purine-2-carboxamide], or adenosine shows that the adenosine moiety of the ligands binds to the receptor in an identical fashion. However, an extension in CGS21680 compared with adenosine, the (2-carboxyethyl)phenylethylamino group, binds in an extended vestibule formed from transmembrane regions 2 and 7 (TM2 and TM7) and extracellular loops 2 and 3 (EL2 and EL3). The (2-carboxyethyl)phenylethylamino group makes van der Waals contacts with side chains of amino acid residues Glu169(EL2), His264(EL3), Leu267(7.32), and Ile274(7.39), and the amine group forms a hydrogen bond with the side chain of Ser67(2.65). Of these residues, only Ile274(7.39) is absolutely conserved across the human adenosine receptor subfamily. The major difference between the structures of A(2A)R bound to either adenosine or CGS21680 is that the binding pocket narrows at the extracellular surface when CGS21680 is bound, due to an inward tilt of TM2 in that region. This conformation is stabilized by hydrogen bonds formed by the side chain of Ser67(2.65) to CGS21680, either directly or via an ordered water molecule. Mutation of amino acid residues Ser67(2.65), Glu169(EL2), and His264(EL3), and analysis of receptor activation either in the presence or absence of ligands implicates this region in modulating the level of basal activity of A(2A)R.

  16. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers.

    PubMed

    Brozmanova, M; Mazurova, L; Ru, F; Tatar, M; Hu, Y; Yu, S; Kollarik, M

    2016-02-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10-60 mmHg) in a concentration-dependent fashion (1-100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1.

  17. Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats

    PubMed Central

    Fernández-Dueñas, Víctor; Taura, Jaume J.; Cottet, Martin; Gómez-Soler, Maricel; López-Cano, Marc; Ledent, Catherine; Watanabe, Masahiko; Trinquet, Eric; Pin, Jean-Philippe; Luján, Rafael; Durroux, Thierry; Ciruela, Francisco

    2015-01-01

    Parkinson’s disease (PD) is a dopaminergic-related pathology in which functioning of the basal ganglia is altered. It has been postulated that a direct receptor-receptor interaction – i.e. of dopamine D2 receptor (D2R) with adenosine A2A receptor (A2AR) (forming D2R-A2AR oligomers) – finely regulates this brain area. Accordingly, elucidating whether the pathology prompts changes to these complexes could provide valuable information for the design of new PD therapies. Here, we first resolved a long-standing question concerning whether D2R-A2AR assembly occurs in native tissue: by means of different complementary experimental approaches (i.e. immunoelectron microscopy, proximity ligation assay and TR-FRET), we unambiguously identified native D2R-A2AR oligomers in rat striatum. Subsequently, we determined that, under pathological conditions (i.e. in a rat PD model), D2R-A2AR interaction was impaired. Collectively, these results provide definitive evidence for alteration of native D2R-A2AR oligomers in experimental parkinsonism, thus conferring the rationale for appropriate oligomer-based PD treatments. PMID:25398851

  18. A critical evaluation of adenosine A2A receptors as potentially "druggable" targets in Huntington's disease.

    PubMed

    Popoli, Patrizia; Blum, David; Domenici, Maria Rosaria; Burnouf, Sylvie; Chern, Yijuang

    2008-01-01

    Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by the expansion of a polymorphic CAG trinucleotide repeat encoding a poly-glutamine tract within the Huntingtin protein. GABAergic enkephalin neurons of the basal ganglia, which show the highest levels of expression of adenosine A(2A) receptors, are the most vulnerable in HD. Such a selective neuronal vulnerability, which occurs despite ubiquitous expression of mutant and normal Huntingtin, has suggested that adenosine A(2A) receptors might play a pathogenetic role in HD. In agreement, changes in A(2A) receptor expression and signaling have been reported in various experimental models of HD. The interpretation of the functional significance of the aberrant A(2A) receptor phenotype in HD mice is however complicated by the conflicting data so far reported on the potential neuroprotective and neurodegenerative effects of these receptors in the brain, with some data suggesting a potential pathogenetic role and some other data suggesting activation of trophic or protective pathways in neurons. The same complex profile has emerged in experimental models of HD, in which both A(2A) receptor agonists and antagonists have shown beneficial effects. The main aim of this review is to critically evaluate whether adenosine A(2A) receptors may represent a suitable target to develop drugs against HD.

  19. Suppression of adenosine 2a receptor (A2aR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Ng, Seng Kah; Higashimori, Haruki; Tolman, Michaela; Yang, Yongjie

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease in which the majority of upper and lower motor neurons are degenerated. Despite intensive efforts to identify drug targets and develop neuroprotective strategies, effective therapeutics for ALS remains unavailable. The identification and characterization of novel targets and pathways remain crucial in the development of ALS therapeutics. Adenosine is a major neuromodulator that actively regulates synaptic transmission. Interestingly, adenosine levels are significantly elevated in the cerebrospinal fluid (CSF) of progressing human ALS patients. In the current study, we showed that adenosine 2a receptor (A2aR), but not adenosine 1 receptor (A1R), is highly enriched in spinal (motor) neurons. A2aR expression is also selectively increased at the symptomatic onset in the spinal cords of SOD1G93A mice and end-stage human ALS spinal cords. Interestingly, we found that direct adenosine treatment is sufficient to induce embryonic stem cell-derived motor neuron (ESMN) cell death in cultures. Subsequent pharmacological inhibition and partial genetic ablation of A2aR (A2aR(+/-)) significantly protect ESMN from SOD1G93A(+) astrocyte-induced cell death and delay disease progression of SOD1G93A mice. Taken together, our results provide compelling novel evidence that A2aR-mediated adenosine signaling contributes to the selective spinal motor neuron degeneration observed in the SOD1G93A mouse model of ALS.

  20. Suppression of adenosine 2a receptor (A2aR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis

    PubMed Central

    Ng, Seng kah; Higashimori, Haruki; Tolman, Michaela; Yang, Yongjie

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease in which the majority of upper and lower motor neurons are degenerated. Despite intensive efforts to identify drug targets and develop neuroprotective strategies, effective therapeutics for ALS remains unavailable. The identification and characterization of novel targets and pathways remain crucial in the development of ALS therapeutics. Adenosine is a major neuromodulator that actively regulates synaptic transmission. Interestingly, adenosine levels are significantly elevated in the cerebrospinal fluid (CSF) of progressing human ALS patients. In the current study, we showed that adenosine 2a receptor (A2aR), but not adenosine 1 receptor (A1R), is highly enriched in spinal (motor) neurons. A2aR expression is also selectively increased at the symptomatic onset in the spinal cords of SOD1G93A mice and end-stage human ALS spinal cords. Interestingly, we found that direct adenosine treatment is sufficient to induce embryonic stem cell-derived motor neuron (ESMN) cell death in cultures. Subsequent pharmacological inhibition and partial genetic ablation of A2aR (A2aR+/−) significantly protect ESMN from SOD1G93A+ astrocyte-induced cell death and delay disease progression of SOD1G93A mice. Taken together, our results provide compelling novel evidence that A2aR-mediated adenosine signaling contributes to the selective spinal motor neuron degeneration observed in the SOD1G93A mouse model of ALS. PMID:25779930

  1. The SH2B1 adaptor protein associates with a proximal region of the erythropoietin receptor.

    PubMed

    Javadi, Mojib; Hofstätter, Edda; Stickle, Natalie; Beattie, Bryan K; Jaster, Robert; Carter-Su, Christin; Barber, Dwayne L

    2012-07-27

    Gene targeting experiments have shown that the cytokine erythropoietin (EPO), its cognate erythropoietin receptor (EPO-R), and associated Janus tyrosine kinase, JAK2, are all essential for erythropoiesis. Structural-functional and murine knock-in experiments have suggested that EPO-R Tyr-343 is important in EPO-mediated mitogenesis. Although Stat5 binds to EPO-R phosphotyrosine 343, the initial Stat5-deficient mice did not have profound erythroid abnormalities suggesting that additional Src homology 2 (SH2) domain-containing effectors may bind to EPO-R Tyr-343 and couple to downstream signaling pathways. We have utilized cloning of ligand target (COLT) screening to demonstrate that EPO-R Tyr(P)-343 and Tyr(P)-401 bind to the SH2 domain-containing adaptor protein SH2B1β. Immunoprecipitation and in vitro mixing experiments reveal that EPO-R binds to SH2B1 in an SH2 domain-dependent manner and that the sequence that confers SH2B1 binding to the EPO-R is pYXXL. Previous studies have shown that SH2B1 binds directly to JAK2, but we show that in hematopoietic cells, SH2B1β preferentially associates with the EPO-R. SH2B1 is capable of constitutive association with EPO-R, which is necessary for its optimal SH2-dependent recruitment to EPO-R-Tyr(P)-343/Tyr(P)-401. We also demonstrate that SH2B1 is responsive to EPO stimulation and becomes phosphorylated, most likely on serines/threonines, in an EPO dose- and time-dependent manner. In the absence of SH2B1, we observe enhanced activation of signaling pathways downstream of the EPO-R, indicating that SH2B1 is a negative regulator of EPO signaling.

  2. NR2B subunit of the NMDA glutamate receptor regulates appetite in the parabrachial nucleus.

    PubMed

    Wu, Qi; Zheng, Ruimao; Srisai, Dollada; McKnight, G Stanley; Palmiter, Richard D

    2013-09-03

    Diphtheria toxin-mediated, acute ablation of hypothalamic neurons expressing agouti-related protein (AgRP) in adult mice leads to anorexia and starvation within 7 d that is caused by hyperactivity of neurons within the parabrachial nucleus (PBN). Because NMDA glutamate receptors are involved in various synaptic plasticity-based behavioral modifications, we hypothesized that modulation of the NR2A and NR2B subunits of the NMDA receptor in PBN neurons could contribute to the anorexia phenotype. We observed by Western blot analyses that ablation of AgRP neurons results in enhanced expression of NR2B along with a modest suppression of NR2A. Interestingly, systemic administration of LiCl in a critical time window before AgRP neuron ablation abolished the anorectic response. LiCl treatment suppressed NR2B levels in the PBN and ameliorated the local Fos induction that is associated with anorexia. This protective role of LiCl on feeding was blunted in vagotomized mice. Chronic infusion of RO25-6981, a selective NR2B inhibitor, into the PBN recapitulated the role of LiCl in maintaining feeding after AgRP neuron ablation. We suggest that the accumulation of NR2B subunits in the PBN contributes to aphagia in response to AgRP neuron ablation and may be involved in other forms of anorexia.

  3. NR2B receptor blockade inhibits pain-related sensitization of amygdala neurons.

    PubMed

    Ji, Guangchen; Horváth, Csilla; Neugebauer, Volker

    2009-04-28

    Pain-related sensitization and synaptic plasticity in the central nucleus of the amygdala (CeA) depend on the endogenous activation of NMDA receptors and phosphorylation of the NR1 subunit through a PKA-dependent mechanism. Functional NMDA receptors are heteromeric assemblies of NR1 with NR2A-D or NR3A, B subunits. NMDA receptors composed of NR1 and NR2B subunits have been implicated in neuroplasticity and are present in the CeA. Here we used a selective NR2B antagonist (Ro-256981) to determine the contribution of NR2B-containing NMDA receptors to pain-related sensitization of CeA neurons. Extracellular single-unit recordings were made from CeA neurons in anesthetized adult male rats before and during the development of an acute arthritis. Arthritis was induced in one knee joint by intraarticular injections of kaolin and carrageenan. Brief (15 s) mechanical stimuli of innocuous (100-500 g/30 mm2) and noxious (1000-2000 g/30 mm2) intensity were applied to the knee and other parts of the body. In agreement with our previous studies, all CeA neurons developed increased background and evoked activity after arthritis induction. Ro-256981 (1, 10 and 100 muM; 15 min each) was administered into the CeA by microdialysis 5-6 h postinduction of arthritis. Ro-256981 concentration-dependently decreased evoked responses, but not background activity. This pattern of effect is different from that of an NMDA receptor antagonist (AP5) in our previous studies. AP5 (100 microM - 5 mM) inhibited background activity and evoked responses. The differential effects of AP5 and Ro-256981 may suggest that NMDA receptors containing the NR2B subunit are important but not sole contributors to pain-related changes of CeA neurons.

  4. New QSAR combined strategy for the design of A1 adenosine receptor agonists.

    PubMed

    González, Maykel Pérez; Besada, Pedro; González Moa, Maria José; Teijeira, Marta; Terán, Carmen

    2008-02-15

    Combined discriminant and regression analysis was carried out on a series of 167 A1 adenosine receptor agonists to identify the best linear and nonlinear models for the design of new compounds with a better biological profile. On the basis of the best linear discriminant analysis and both linear and nonlinear Multi Layer Perceptron neural networks regression, we have designed and synthesized 14 carbonucleoside analogues of adenosine. Their biological activities were predicted and experimentally measured to demonstrate the capability of our model to avoid the prediction of false positives. A good agreement was found between the calculated and observed biological activity.

  5. The A1 adenosine receptor as a new player in microglia physiology.

    PubMed

    Luongo, L; Guida, F; Imperatore, R; Napolitano, F; Gatta, L; Cristino, L; Giordano, C; Siniscalco, D; Di Marzo, V; Bellini, G; Petrelli, R; Cappellacci, L; Usiello, A; de Novellis, V; Rossi, F; Maione, S

    2014-01-01

    The purinergic system is highly involved in the regulation of microglial physiological processes. In addition to the accepted roles for the P2 X4,7 and P2 Y12 receptors activated by adenosine triphosphate (ATP) and adenosine diphosphate, respectively, recent evidence suggests a role for the adenosine A2A receptor in microglial cytoskeletal rearrangements. However, the expression and function of adenosine A1 receptor (A1AR) in microglia is still unclear. Several reports have demonstrated possible expression of A1AR in microglia, but a new study has refuted such evidence. In this study, we investigated the presence and function of A1AR in microglia using biomolecular techniques, live microscopy, live calcium imaging, and in vivo electrophysiological approaches. The aim of this study was to clarify the expression of A1AR in microglia and to highlight its possible roles. We found that microglia express A1AR and that it is highly upregulated upon ATP treatment. Moreover, we observed that selective stimulation of A1AR inhibits the morphological activation of microglia, possibly by suppressing the Ca(2+) influx induced by ATP treatment. Finally, we recorded the spontaneous and evoked activity of spinal nociceptive-specific neuron before and after application of resting or ATP-treated microglia, with or without preincubation with a selective A1AR agonist. We found that the microglial cells, pretreated with the A1AR agonist, exhibit lower capability to facilitate the nociceptive neurons, as compared with the cells treated with ATP alone.

  6. Cardiac myocyte–secreted cAMP exerts paracrine action via adenosine receptor activation

    PubMed Central

    Sassi, Yassine; Ahles, Andrea; Truong, Dong-Jiunn Jeffery; Baqi, Younis; Lee, Sang-Yong; Husse, Britta; Hulot, Jean-Sébastien; Foinquinos, Ariana; Thum, Thomas; Müller, Christa E.; Dendorfer, Andreas; Laggerbauer, Bernhard; Engelhardt, Stefan

    2014-01-01

    Acute stimulation of cardiac β-adrenoceptors is crucial to increasing cardiac function under stress; however, sustained β-adrenergic stimulation has been implicated in pathological myocardial remodeling and heart failure. Here, we have demonstrated that export of cAMP from cardiac myocytes is an intrinsic cardioprotective mechanism in response to cardiac stress. We report that infusion of cAMP into mice averted myocardial hypertrophy and fibrosis in a disease model of cardiac pressure overload. The protective effect of exogenous cAMP required adenosine receptor signaling. This observation led to the identification of a potent paracrine mechanism that is dependent on secreted cAMP. Specifically, FRET-based imaging of cAMP formation in primary cells and in myocardial tissue from murine hearts revealed that cardiomyocytes depend on the transporter ABCC4 to export cAMP as an extracellular signal. Extracellular cAMP, through its metabolite adenosine, reduced cardiomyocyte cAMP formation and hypertrophy by activating A1 adenosine receptors while delivering an antifibrotic signal to cardiac fibroblasts by A2 adenosine receptor activation. Together, our data reveal a paracrine role for secreted cAMP in intercellular signaling in the myocardium, and we postulate that secreted cAMP may also constitute an important signal in other tissues. PMID:25401477

  7. Histone H2B as a functionally important plasminogen receptor on macrophages

    PubMed Central

    Das, Riku; Burke, Tim

    2007-01-01

    Plasminogen (Plg) facilitates inflammatory cell recruitment, a function that depends upon its binding to Plg receptors (Plg-Rs). However, the Plg-Rs that are critical for cell migration are not well defined. Three previously characterized Plg-Rs (α-enolase, annexin 2, and p11) and a recently identified Plg-R (histone H2B [H2B]) were assessed for their contribution to Plg binding and function on macrophages. Two murine macrophage cell lines (RAW 264.7 and J774A.1) and mouse peritoneal macrophages induced by thioglycollate were analyzed. All 4 Plg-Rs were present on the surface of these cells and showed enhanced expression on the thioglycollate-induced macrophages compared with peripheral blood monocytes. Using blocking Fab fragments to each Plg-R, H2B supported approximately 50% of the Plg binding capacity, whereas the other Plg-Rs contributed less than 25%. Anti-H2B Fab also demonstrated a major role of this Plg-R in plasmin generation and matrix invasion. When mice were treated intravenously with anti-H2B Fab, peritoneal macrophage recruitment in response to thioglycollate was reduced by approximately 45% at 24, 48, and 72 hours, with no effect on blood monocyte levels. Taken together, these data suggest that multiple Plg-Rs do contribute to Plg binding to macrophages, and among these, H2B plays a very prominent and functionally important role. PMID:17690254

  8. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells.

    PubMed

    Zhang, Mei; Hu, Huiling; Zhang, Xiulan; Lu, Wennan; Lim, Jason; Eysteinsson, Thor; Jacobson, Kenneth A; Laties, Alan M; Mitchell, Claire H

    2010-01-01

    The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of glutamate or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both glutamate and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.

  9. Dual Effect of Adenosine A1 Receptor Activation on Renal O2 Consumption.

    PubMed

    Babich, Victor; Vadnagara, Komal; Di Sole, Francesca

    2015-12-01

    The high requirement of O2 in the renal proximal tubule stems from a high rate of Na(+) transport. Adenosine A1 receptor (A1R) activation regulates Na(+) transport in this nephron segment. Thus, the effect of the acute activation and the mechanisms of A1R on the rate of O2 consumption were evaluated. The A1R-antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPX) and adenosine deaminase (ADA), which metabolize endogenous adenosine, reduced O2 consumption (40-50%). Replacing Na(+) in the buffer reversed the ADA- or CPX-mediated reduction of O2 consumption. Blocking the Na/H-exchanger activity, which decreases O2 usage per se, did not enhance the ADA- or CPX-induced inhibition of O2 consumption. These data indicate that endogenous adenosine increases O2 usage via the activation of Na(+) transport. In the presence of endogenous adenosine, A1R was further activated by the A1R-agonist N(6)-cyclopentyladenosine (CPA); CPA inhibited O2 usage (30%) and this effect also depended on Na(+) transport. Moreover, a low concentration of CPA activated O2 usage in tissue pretreated with ADA, whereas a high concentration of CPA inhibited O2 usage; both effects depended on Na(+). Protein kinase C signaling mediated the inhibitory effect of A1R, while adenylyl cyclase mediated its stimulatory effect on O2 consumption. In summary, increasing the local concentrations of adenosine can either activate or inhibit O2 consumption via A1R, and this mechanism depends on Na(+) transport. The inhibition of O2 usage by A1R activation might restore the compromised balance between energy supply and demand under pathophysiological conditions, such as renal ischemia, which results in high adenosine production.

  10. Adenosine induces a cholinergic tracheal reflex contraction in guinea pigs in vivo via an adenosine A1 receptor-dependent mechanism.

    PubMed

    Reynolds, Sandra M; Docherty, Reginald; Robbins, Jon; Spina, Domenico; Page, Clive P

    2008-07-01

    Adenosine induces dyspnea, cough, and airways obstruction in asthma, a phenomenon that also occurs in various sensitized animal models in which a neuronal involvement has been implicated. Although adenosine has been suggested to activate cholinergic nerves, the precise mechanism has not been established. In the present study, the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) induced a cholinergic reflex, causing tracheal smooth muscle contraction that was significantly inhibited by the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 100 microg/kg) (P < 0.05) in anesthetized animals. Furthermore, the adenosine A(2) agonist 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680) induced a small reflex, whereas the A(3) selective agonist N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyladenosine (IB-MECA) was without effect. The tracheal reflex induced by CPA was also inhibited by recurrent nerve ligation or muscarinic receptor blockade (P < 0.001), indicating that a cholinergic neuronal mechanism of action accounted for this response. The cholinergic reflex in response to aerosolized CPA was significantly greater in passively sensitized compared with naive guinea pigs (P < 0.01). Chronic capsaicin treatment, which inhibited sensory nerve function, failed to inhibit CPA-induced reflex tracheal contractions in passively sensitized guinea pigs, although the local anesthetic lidocaine inhibited CPA-induced tracheal contractions. The effects of CPA on the reflex response was not dependent on the release of histamine from tissue mast cells or endogenous prostaglandins as shown by the lack of effect of the histamine H(1) receptor antagonist pyrilamine (1 mg/kg) or the cyclooxygenase inhibitor meclofenamic acid (3 mg/kg), respectively. In conclusion, activation of pulmonary adenosine A(1) receptors can stimulate cholinergic reflexes, and these reflexes are increased in allergic guinea pigs.

  11. Adenosine A1 receptors mediate inhibition of tachykinin release from perifused enteric nerve endings.

    PubMed

    Broad, R M; McDonald, T J; Brodin, E; Cook, M A

    1992-03-01

    A perifused preparation of guinea pig myenteric nerve varicosities (synaptosomes) was used to determine the characteristics of evoked tachykinin release and the inhibition of such release by adenosine analogues. Release of substance P-like immunoreactivity (SP-LI) and neurokinin A-like immunoreactivity (NKA-LI) was evoked by elevated extracellular [K+] in a reversible and repeatable manner. This release was completely abolished in the absence of extracellular Ca2+. Perifusion in the presence of 5'-N-ethylcarboxamidoadenosine (NECA), a nonselective A1/A2 adenosine receptor agonist, decreased K(+)-evoked release of SP-LI and NKA-LI compared with that in the absence of the nucleoside. Similar decrements in peptide release were obtained with N6-cyclopentyl adenosine (CPA), a selective A1 agonist, and 2-[p-(2-carboxyethyl)]phenethylamino-5'-N-ethyl-carboxamidoadenosi ne (CGS 21680), a selective A2 agonist. Response to all nucleosides was graded. Potency order of adenosine analogues was CPA greater than NECA much greater than CGS 21680. Inhibition due to the nucleosides was diminished in the presence of the highly selective A1-receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) while perifusion in the presence of DPCPX alone did not alter evoked release of either peptide. These findings provide direct measurements of inhibitory effects of adenine nucleosides on the release, from enteric nerve endings, of endogenous neuromediators SP and NKA. The findings also directly demonstrate the presence of functional adenosine receptors of the A1 subtype on enteric nerve endings coupled negatively to release of tachykinins. The presence of A2 receptors on enteric nerve endings is neither supported nor excluded.

  12. The ability of denbufylline to inhibit cyclic nucleotide phosphodiesterase and its affinity for adenosine receptors and the adenosine re-uptake site.

    PubMed Central

    Nicholson, C. D.; Jackman, S. A.; Wilke, R.

    1989-01-01

    1. Denbufylline has been examined for its ability to inhibit cyclic nucleotide phosphodiesterase isoenzymes from rat cardiac ventricle and cerebrum, as well as for its affinity for adenosine A1 and A2 receptors and the re-uptake site. For comparison, SK&F 94120, theophylline and 3-isobutyl-1-methyl-xanthine (IBMX) were examined as phosphodiesterase inhibitors whilst N6-cyclohexyladenosine, R(-)-N6-(2-phenylisopropyl)-adenosine, 5'-N-ethylcarboxamido-adenosine, 2-nitrobenzylthioinosine, theophylline and IBMX were examined for their affinity for adenosine binding sites. 2. This investigation confirmed the presence of four phosphodiesterase activities in rat cardiac ventricle; in rat cerebrum only three were present. 3. Denbufylline selective inhibited one form of Ca2+-independent, low Km cyclic AMP phosphodiesterase. The form inhibited was one of two present in cardiac ventricle and the sole one in cerebrum. This form was not inhibited by cyclic GMP. The inotropic agent SK&F 94120 selectively inhibited the form of cyclic AMP phosphodiesterase which was inhibited by cyclic GMP present in cardiac ventricle. Theophylline and IBMX were relatively non-selective phosphodiesterase inhibitors. 4. Denbufylline was a less potent inhibitor of ligand binding to adenosine receptors than of cyclic AMP phosphodiesterase. This contrasted with theophylline, which had a higher affinity for adenosine receptors, and IBMX which showed no marked selectivity. Denbufylline, theophylline and IBMX all had a low affinity for the adenosine re-uptake site. 5. Denbufylline is being developed as an agent for the therapy of multi-infarct dementia. The selective inhibition of a particular low Km cyclic AMP phosphodiesterase may account for the activity of this compound. PMID:2474352

  13. A(1) and A(3) adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Stefanelli, Angela; Fazzi, Debora; Varani, Katia; Borea, Pier Andrea

    2013-10-01

    Adenosine (Ado) exerts neuroprotective and anti-inflammatory functions by acting through four receptor subtypes A1, A2A, A2B and A3. Astrocytes are one of its targets in the central nervous system. Hypoxia-inducible factor-1 (HIF-1), a master regulator of oxygen homeostasis, is induced after hypoxia, ischemia and inflammation and plays an important role in brain injury. HIF-1 is expressed by astrocytes, however the regulatory role played by Ado on HIF-1α modulation induced by inflammatory and hypoxic conditions has not been investigated. Primary murine astrocytes were activated with lipopolysaccharide (LPS) with or without Ado, Ado receptor agonists, antagonists and receptor silencing, before exposure to normoxia or hypoxia. HIF-1α accumulation and downstream genes regulation were determined. Ado inhibited LPS-increased HIF-1α accumulation under both normoxic and hypoxic conditions, through activation of A1 and A3 receptors. In cells incubated with the blockers of p44/42 MAPK and Akt, LPS-induced HIF-1α accumulation was significantly decreased in normoxia and hypoxia, suggesting the involvement of p44/42 MAPK and Akt in this effect and Ado inhibited kinases phosphorylation. A series of angiogenesis and metabolism related genes were modulated by hypoxia in an HIF-1 dependent way, but not further increased by LPS, with the exception of GLUT-1 and hexochinase II that were elevated by LPS only in normoxia and inhibited by Ado receptors. Instead, genes involved in inflammation, like inducible nitric-oxide synthase (iNOS) and A2B receptors, were increased by LPS in normoxia, strongly stimulated by LPS in concert with hypoxia and inhibited by Ado, through A1 and A3 receptor subtypes. In conclusion A1 and A3 receptors reduce the LPS-mediated HIF-1α accumulation in murine astrocytes, resulting in a downregulation of genes involved in inflammation and hypoxic injury, like iNOS and A2B receptors, in both normoxic and hypoxic conditions.

  14. Binary Drugs: Conjugates of Purines and a Peptide That Bind to Both Adenosine and Substance P Receptors

    PubMed Central

    Jacobson, Kenneth A.; Lipkowski, Andrzej W.; Moody, Terry W.; Padgett, William; Pijl, Evelyn; Kirk, Kenneth L.; Daly, John W.

    2012-01-01

    A “functionalized congener” approach to adenosine receptor antagonists has provided a means to synthesize highly potent peptide conjugates of 1,3-dialkylxanthines. The antagonist XAC, such a functionalized xanthine amine congener, has been attached to a segment derived from the neurotransmitter peptide substance P (SP) to form a binary drug that binds to both receptors with Ki values of 35 nM (central A1-adenosine) and 300 nM (striatal SP). Coupling of the functionalized adenosine agonist N6-[p-(carboxymethyl)phenyl]adenosine to an SP C-terminal peptide also resulted in a binary drug that binds to both receptors. The demonstration that the biochemical properties of two unrelated drugs, both of which act through binding at extracellular receptors, may be combined in the same molecule suggests a novel strategy for drug design. In principle, a combined effect of the two different substances that produce the same final effect (e.g., hypotension by adenosine agonists and by SP analogues) might occur in vivo. Adenosine analogues have analgesic properties, and the binary drug derived from substance P and adenosine agonists or antagonists might provide useful tools for probing interrelationships of SP pathways and sites for the antinociceptive action of adenosine. PMID:2441057

  15. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders.

    PubMed

    Cunha, Rodrigo A; Ferré, Sergi; Vaugeois, Jean-Marie; Chen, Jiang-Fan

    2008-01-01

    The interest on targeting adenosine A(2A) receptors in the realm of psychiatric diseases first arose based on their tight physical and functional interaction with dopamine D(2) receptors. However, the role of central A(2A) receptors is now viewed as much broader than just controlling D(2) receptor function. Thus, there is currently a major interest in the ability of A(2A) receptors to control synaptic plasticity at glutamatergic synapses. This is due to a combined ability of A(2A) receptors to facilitate the release of glutamate and the activation of NMDA receptors. Therefore, A(2A) receptors are now conceived as a normalizing device promoting adequate adaptive responses in neuronal circuits, a role similar to that fulfilled, in essence, by dopamine. This makes A(2A) receptors particularly attractive targets to manage psychiatric disorders since adenosine may act as go-between glutamate and dopamine, two of the key players in mood processing. Furthermore, A(2A) receptors also control glia function and brain metabolic adaptation, two other emerging mechanisms to understand abnormal processing of mood, and A(2A) receptors are important players in controlling the demise of neurodegeneration, considered an amplificatory loop in psychiatric disorders. Current data only provide an indirect confirmation of this putative role of A(2A) receptors, based on the effects of caffeine (an antagonist of both A(1) and A(2A) receptors) in psychiatric disorders. However, the introduction of A(2A) receptors antagonists in clinics as anti-parkinsonian agents is hoped to bolster our knowledge on the role of A(2A) receptors in mood disorders in the near future.

  16. Adenosine A1 Receptor Suppresses Tonic GABAA Receptor Currents in Hippocampal Pyramidal Cells and in a Defined Subpopulation of Interneurons.

    PubMed

    Rombo, Diogo M; Dias, Raquel B; Duarte, Sofia T; Ribeiro, Joaquim A; Lamsa, Karri P; Sebastião, Ana M

    2016-03-01

    Adenosine is an endogenous neuromodulator that decreases excitability of hippocampal circuits activating membrane-bound metabotropic A1 receptor (A1R). The presynaptic inhibitory action of adenosine A1R in glutamatergic synapses is well documented, but its influence on inhibitory GABAergic transmission is poorly known. We report that GABAA receptor (GABAAR)-mediated tonic, but not phasic, transmission is suppressed by A1R in hippocampal neurons. Adenosine A1R activation strongly inhibits GABAAR agonist (muscimol)-evoked currents in Cornu Ammonis 1 (CA1) pyramidal neurons and in a specific subpopulation of interneurons expressing axonal cannabinoid receptor type 1. In addition, A1R suppresses tonic GABAAR currents measured in the presence of elevated ambient GABA as well as in naïve slices. The inhibition of GABAergic currents involves both protein kinase A (PKA) and protein kinase C (PKC) signaling pathways and decreases GABAAR δ-subunit expression. On the contrary, no A1R-mediated modulation was detected in phasic inhibitory postsynaptic currents evoked either by afferent electrical stimulation or by spontaneous quantal release. The results show that A1R modulates extrasynaptic rather than synaptic GABAAR-mediated signaling, and that this modulation selectively occurs in hippocampal pyramidal neurons and in a specific subpopulation of inhibitory interneurons. We conclude that modulation of tonic GABAAR signaling by adenosine A1R in specific neuron types may regulate neuronal gain and excitability in the hippocampus.

  17. Adenosine signaling contributes to ethanol-induced fatty liver in mice

    PubMed Central

    Peng, Zhongsheng; Borea, Pier Andrea; Wilder, Tuere; Yee, Herman; Chiriboga, Luis; Blackburn, Michael R.; Azzena, Gianfranco; Resta, Giuseppe; Cronstein, Bruce N.

    2009-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the biochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5′-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:19221436

  18. Switching of adenosine diphosphate receptor inhibitor after hospital discharge among myocardial infarction patients: Insights from the Treatment with Adenosine Diphosphate Receptor Inhibitors: Longitudinal Assessment of Treatment Patterns and Events after Acute Coronary Syndrome (TRANSLATE-ACS) observational study.

    PubMed

    Zettler, Marjorie E; Peterson, Eric D; McCoy, Lisa A; Effron, Mark B; Anstrom, Kevin J; Henry, Timothy D; Baker, Brian A; Messenger, John C; Cohen, David J; Wang, Tracy Y

    2017-01-01

    The reasons for postdischarge adenosine diphosphate receptor inhibitor (ADPri) switching among patients with myocardial infarction (MI) are unclear. We sought to describe the incidence and patterns of postdischarge ADPri switching among patients with acute MI treated with percutaneous coronary intervention.

  19. Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism.

    PubMed Central

    Ledent, C; Dumont, J E; Vassart, G; Parmentier, M

    1992-01-01

    Cyclic AMP (cAMP) is the major intracellular second messenger of thyrotropin (TSH) action on thyroid cells. It stimulates growth as well as the function and differentiation of cultured thyrocytes. The adenosine A2 receptor, which activates adenylyl cyclase via coupling to the stimulating G protein (Gs), has been shown to promote constitutive activation of the cAMP cascade when transfected into various cell types. In order to test whether the A2 receptor was able to function similarly in vivo and to investigate the possible consequences of permanent adenylyl cyclase activation in thyroid cells, lines of transgenic mice were generated expressing the canine A2 adenosine receptor under control of the bovine thyroglobulin gene promoter. Thyroid-specific expression of the A2 adenosine receptor transgene promoted gland hyperplasia and severe hyperthyroidism causing premature death of the animals. The resulting goitre represents a model of hyperfunctioning adenomas: it demonstrates that constitutive activation of the cAMP cascade in such differentiated epithelial cells is sufficient to stimulate autonomous and uncontrolled function and growth. Images PMID:1371462

  20. Mice Lacking the Serotonin Htr2B Receptor Gene Present an Antipsychotic-Sensitive Schizophrenic-Like Phenotype.

    PubMed

    Pitychoutis, Pothitos M; Belmer, Arnauld; Moutkine, Imane; Adrien, Joëlle; Maroteaux, Luc

    2015-11-01

    Impulsivity and hyperactivity share common ground with numerous mental disorders, including schizophrenia. Recently, a population-specific serotonin 2B (5-HT2B) receptor stop codon (ie, HTR2B Q20*) was reported to segregate with severely impulsive individuals, whereas 5-HT2B mutant (Htr2B(-/-)) mice also showed high impulsivity. Interestingly, in the same cohort, early-onset schizophrenia was more prevalent in HTR2B Q*20 carriers. However, the putative role of 5-HT2B receptor in the neurobiology of schizophrenia has never been investigated. We assessed the effects of the genetic and the pharmacological ablation of 5-HT2B receptors in mice subjected to a comprehensive series of behavioral test screenings for schizophrenic-like symptoms and investigated relevant dopaminergic and glutamatergic neurochemical alterations in the cortex and the striatum. Domains related to the positive, negative, and cognitive symptom clusters of schizophrenia were affected in Htr2B(-/-) mice, as shown by deficits in sensorimotor gating, in selective attention, in social interactions, and in learning and memory processes. In addition, Htr2B(-/-) mice presented with enhanced locomotor response to the psychostimulants dizocilpine and amphetamine, and with robust alterations in sleep architecture. Moreover, ablation of 5-HT2B receptors induced a region-selective decrease of dopamine and glutamate concentrations in the dorsal striatum. Importantly, selected schizophrenic-like phenotypes and endophenotypes were rescued by chronic haloperidol treatment. We report herein that 5-HT2B receptor deficiency confers a wide spectrum of antipsychotic-sensitive schizophrenic-like behavioral and psychopharmacological phenotypes in mice and provide first evidence for a role of 5-HT2B receptors in the neurobiology of psychotic disorders.

  1. Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection

    PubMed Central

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    G protein coupled receptors and tropomyosin-related kinase (Trk) receptors have distinct structure and transducing mechanisms; therefore, cross-talk among them was unexpected. Evidence has, however, accumulated showing that tonic adenosine A2A receptor activity is a required step to allow synaptic actions of neurotrophic factors, namely upon synaptic transmission at both pre- and post-synaptic level as well as upon synaptic plasticity. An enhancement of A2A receptor tonus upon ageing may partially compensate the loss of TrkB receptors, rescuing to certain degree the facilitatory action of brain derived neurotrophic factor in aged animals, which might prove particularly relevant in the prevention of neurodegeneration upon ageing. A2A receptors also trigger synaptic actions of other neurotrophic factors, such as glial derived neurotrophic factor at dopaminergic striatal nerve endings. The growing evidence that tonic adenosine A2A receptor activity is a crucial step to allow actions of neurotrophic factors in neurones will be reviewed and discussed in the light of therapeutic strategies for neurodegenerative diseases. PMID:19508402

  2. 1,3-dialkyl-8-N-substituted benzyloxycarbonylamino-9-deazaxanthines as potent adenosine receptor ligands: Design, synthesis, structure-affinity and structure-selectivity relationships.

    PubMed

    Fernández, Franco; Caamaño, Olga; Isabel Nieto, M; López, Carmen; García-Mera, Xerardo; Stefanachi, Angela; Nicolotti, Orazio; Isabel Loza, M; Brea, Jose; Esteve, Cristina; Segarra, Victor; Vidal, Bernat; Carotti, Angelo

    2009-05-15

    A number of 1,3-dialkyl-9-deazaxanthines (9-dAXs), bearing a variety of N-substituted benzyloxycarbonylamino substituents at position 8, were prepared and evaluated for their binding affinity to the recombinant human adenosine receptors (hARs), chiefly to the hA(2B) and hA(2A) AR subtypes. Several ligands endowed with excellent binding affinity to the hA(2B) receptors, but low selectivity versus hA(2A) and hA(1) were identified. Among these, 1,3-dimethyl-N-3'-thienyl carbamate 15 resulted as the most potent ligand at hA(2B) (K(i)=0.8 nM), with a low selectivity versus hA(2A) (hA(2A)/hA(2B)=12.6) and hA(1) (hA(1)/hA(2B)=12.5) and a higher selectivity versus hA(3) (hA(3)/hA(2B)=454). When tested in functional assays in vitro, compound 15 exhibited high antagonist activities and efficacies versus both the A(2A) and A(2B) receptor subtypes, with pA(2) values close to the corresponding pK(i)s. A comparative analysis of structure-affinity and structure-selectivity relationships of the similar analogues 8-N-substituted benzyloxycarbonylamino- and 8-N-substituted phenoxyacetamido-9-dAXs suggested that their binding modes at the hA(2B) and hA(2A) ARs may strongly differ. Computational studies help to clarify this striking difference arising from a simple, albeit crucial, structural change, from CH(2)OCON to OCH(2)CON, in the para-position of the 8-phenyl ring.

  3. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies

    DTIC Science & Technology

    2012-12-01

    in Traumatic Optic Neuropathies ” PRINCIPAL INVESTIGATOR: Gregory I. Liou, PhD CONTRACTING ORGANIZATION: Georgia Health Sciences...Adenosine Receptor A2A in Traumatic Optic Neuropathies 5b. GRANT NUMBER W81XWH-11-2-0046 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...ABSTRACT Our goal is to develop an early therapeutic intervention before the progression of traumatic optic neuropathy (TON), a vision-threatening

  4. Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2

    PubMed Central

    Aragay, A. M.; Mellado, M.; Frade, J. M. R.; Martin, A. M.; Jimenez-Sainz, M. C.; Martinez-A, C.; Mayor, F.

    1998-01-01

    Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine cytokine family, whose physiological function is mediated by binding to the CCR2 and CCR4 receptors, which are members of the G protein-coupled receptor family. MCP-1 plays a critical role in both activation and migration of leukocytes. Rapid chemokine receptor desensitization is very likely essential for accurate chemotaxis. In this report, we show that MCP-1 binding to the CCR2 receptor in Mono Mac 1 cells promotes the rapid desensitization of MCP-1-induced calcium flux responses. This desensitization correlates with the Ser/Thr phosphorylation of the receptor and with the transient translocation of the G protein-coupled receptor kinase 2 (GRK2, also called β-adrenergic kinase 1 or βARK1) to the membrane. We also demonstrate that GRK2 and the uncoupling protein β-arrestin associate with the receptor, forming a macromolecular complex shortly after MCP-1 binding. Calcium flux responses to MCP-1 in HEK293 cells expressing the CCR2B receptor were also markedly reduced upon cotransfection with GRK2 or the homologous kinase GRK3. Nevertheless, expression of the GRK2 dominant-negative mutant βARK-K220R did not affect the initial calcium response, but favored receptor response to a subsequent challenge by agonists. The modulation of the CCR2B receptor by GRK2 suggests an important role for this kinase in the regulation of monocyte and lymphocyte response to chemokines. PMID:9501202

  5. Valerian extract Ze 911 inhibits postsynaptic potentials by activation of adenosine A1 receptors in rat cortical neurons.

    PubMed

    Vissiennon, Z; Sichardt, K; Koetter, U; Brattström, A; Nieber, K

    2006-06-01

    In this study we evaluated the adenosine A1 receptor-mediated effect of valerian extract (Ze 911) on postsynaptic potentials (PSPs) in pyramidal cells of the rat cingulate cortex in a slice preparation. We first observed that N6-cyclopentyladenosine (CPA, 0.01 - 10 microM), an adenosine A1 receptor agonist, inhibited PSPs in a concentration-dependent manner. The CPA (10 microM)-induced inhibition was antagonized by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.1 microM), an adenosine A1 receptor antagonist. Ze 911 concentration dependently (0.1 - 15 mg/mL) inhibited PSPs in the presence of the adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC, 0.2 microM) and adenosine deaminase (1 U/mL). The maximal inhibition induced by 10 mg/mL was completely antagonised by DPCPX (0.1 microM), an A1 receptor blocker. The data suggest that activation of adenosine A1 receptors is involved in the pharmacological effects of the valerian extract Ze 911.

  6. A3 adenosine receptor inhibition improves the efficacy of hypertonic saline resuscitation

    PubMed Central

    Inoue, Yoshiaki; Tanaka, Hiroshi; Sumi, Yuka; Woehrle, Tobias; Chen, Yu; Hirsh, Mark I.; Junger, Wolfgang G.

    2011-01-01

    We reported previously that hypertonic saline (HS) treatment can prevent or upregulate the function of polymorphonuclear neutrophils (PMN) via A2a adenosine receptors (A2aR) or A3 adenosine receptors (A3R), respectively. A3R translocate to the cell surface upon PMN stimulation and thus HS promotes PMN responses under conditions of delayed HS treatment. Here we investigated if inhibition of A3R improves the protective effects of HS resuscitation in a mouse sepsis model. We found that HS nearly triples extracellular adenosine concentrations in whole blood and that inhibition of A3R with the selective antagonist MRS-1191 dose-dependently improves the inhibitory effect of HS. MRS-1191 at a concentration of 1 nM enhanced the inhibitory effect of HS and reduced stimulatory effects of delayed HS treatment. Using a mouse model of cecal ligation and puncture (CLP)-induced sepsis, we found that MRS-1191 reduces acute lung injury and PMN accumulation in lung tissue. While delayed HS treatment (4 ml/kg of 7.5 % NaCl) of mice 1 h after CLP aggravated PMN accumulation, lung tissue damage, and mortality 24 h after CLP, infusion of MRS-1191 (2 ng/kg body weight) combined with HS reduced these detrimental effects of delayed HS treatment. Our data thus show that A3 receptor antagonists can strengthen the beneficial effects of HS resuscitation by avoiding stimulatory side effects that result from delayed HS administration. PMID:20661181

  7. Action of adenosine receptor antagonists on the cardiovascular response to defence area stimulation in the rat.

    PubMed Central

    St Lambert, J H; Dawid-Milner, M S; Silva-Carvalho, L; Spyer, K M

    1994-01-01

    1. The action of adenosine in the mediation of the cardiovascular changes associated with the defence reaction has been investigated in the rat using two A1 receptor antagonists. 2. Cumulative doses of 1,3 dipropyl-cyclopentylxanthine (DPCPX) (0.3-3 mg kg-1) and ethanol (0.03-0.25 ml) and bolus doses of DPCPX (3 mg kg-1) and 8-sulphophenyltheophylline (8-SPT) (20 mg kg-1) were given into alpha-chloralose, paralysed and artificially ventilated rats. Recordings were made of arterial blood pressure and heart rate. 3. Ethanol, the vehicle for DPCPX, failed to modify the magnitude of the defence response; however, cumulative doses of DPCPX produced a dose-dependent decrease in the HDA (hypothalamic defence area)-evoked increase in arterial blood pressure, accompanied by a similar fall in the magnitude of the evoked heart rate response. 4. The evoked rise in arterial blood pressure was reduced significantly by intravenous injection of DPCPX (3 mg kg-1) but not 8-SPT (20 mg kg-1), a purely peripherally acting adenosine antagonist. 5. These results suggest that adenosine acting at A1 receptors located in the central nervous system, is involved in the HDA-evoked pressor response. Whilst the site of action of the A1 receptors is not known, possible locations are discussed. PMID:7812606

  8. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent

    PubMed Central

    Oh, Eun Ju; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Kim, Su Yeon; Chang, Sung Eun; Hwang, Jae Sung

    2016-01-01

    BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B) agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2) and microphthalmia-associated transcription factor (MITF) in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA) and cAMP response element-binding protein (CREB) activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders. PMID:27077852

  9. Uncoupling Dendrite Growth and Patterning: Single Cell Knockout Analysis of NMDA Receptor 2B

    PubMed Central

    Espinosa, J. Sebastian; Wheeler, Damian G.; Tsien, Richard W.; Luo, Liqun

    2009-01-01

    SUMMARY N-Methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use MADM (Mosaic Analysis with Double Markers) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in dendrite development. NR2B mutant dentate gyrus granule cells (dGCs) and barrel cortex layer 4 spiny stellate cells (bSCs) have similar dendritic growth rates, total length and branch number as control cells. However, mutant dGCs maintain supernumerary primary dendrites resulting from a pruning defect. Furthermore, while control bSCs restrict dendritic growth to a single barrel, mutant bSCs maintain dendritic growth in multiple barrels. Thus, NR2B functions cell-autonomously to regulate dendrite patterning to ensure that sensory information is properly represented in the cortex. Our study also indicates that molecular mechanisms that regulate activity-dependent dendrite patterning can be separated from those that control general dendrite growth and branching. PMID:19409266

  10. Chronic Kappa opioid receptor activation modulates NR2B: Implication in treatment resistant depression

    PubMed Central

    Dogra, Shalini; Kumar, Ajeet; Umrao, Deepmala; Sahasrabuddhe, Amogh A.; Yadav, Prem N.

    2016-01-01

    Psychotomimetic and prodepressive effect by kappa opioid receptor (KOR) activation in rodents and human is widely known. Significantly, recent clinical investigations demonstrated the salutary effects of KOR antagonists in patients with treatment resistant depression, indicating essential role of KOR signaling in refractory depression. This study was undertaken to reveal the molecular determinant of KOR mediated depression and antidepressant response of KOR antagonist. We observed that chronic KOR activation by U50488, a selective KOR agonist, significantly increased depression like symptoms (behavioral despair, anhedonia and sociability) in C57BL/6J mice, which were blocked by KOR antagonist norBNI and antidepressant imipramine, but not by fluoxetine or citalopram. Further, chronic KOR activation increased phosphorylation of NR2B subunit of NMDA at tyrosine 1472 (pNR2B NMDA) in the hippocampus, but not in the cortex. Similar to behavioral effects norBNI and imipramine, but not SSRIs, blocked NR2B phosphorylation. Moreover, KOR induced depression like behaviors were reversed by NR2B selective inhibitor Ro 25-6981. Mechanistic studies in primary cultured neurons and brain tissues using genetic and pharmacological approaches revealed that stimulation of KOR modulates several molecular correlates of depression. Thus, these findings elucidate molecular mechanism of KOR signaling in treatment resistant depression like behaviors in mice. PMID:27634008

  11. Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B.

    PubMed

    Espinosa, J Sebastian; Wheeler, Damian G; Tsien, Richard W; Luo, Liqun

    2009-04-30

    N-methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use mosaic analysis with double markers (MADM) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in dendrite development. NR2B mutant dentate gyrus granule cells (dGCs) and barrel cortex layer 4 spiny stellate cells (bSCs) have similar dendritic growth rates, total length, and branch number as control cells. However, mutant dGCs maintain supernumerary primary dendrites resulting from a pruning defect. Furthermore, while control bSCs restrict dendritic growth to a single barrel, mutant bSCs maintain dendritic growth in multiple barrels. Thus, NR2B functions cell autonomously to regulate dendrite patterning to ensure that sensory information is properly represented in the cortex. Our study also indicates that molecular mechanisms that regulate activity-dependent dendrite patterning can be separated from those that control general dendrite growth and branching.

  12. Adenosine receptor expression in an experimental animal model of myocardial infarction with preserved left ventricular ejection fraction.

    PubMed

    Cabiati, Manuela; Martino, Alessandro; Mattii, Letizia; Caselli, Chiara; Prescimone, Tommaso; Lionetti, Vincenzo; Morales, Maria-Aurora; Del Ry, Silvia

    2014-07-01

    Adenosine, a purine nucleoside and a "retaliatory metabolite" in ischemia, is ubiquitous in the body and increases 100-fold during ischemia. Its biological actions are mediated by four adenosine receptors (ARs): A(1), A(2A), A(2B) and A(3). The aim of this study was to determine possible myocardial alterations in AR expression in an experimental animal model of myocardial infarction (MI) with a preserved left ventricular (LV) ejection fraction. LV tissue was collected from sexually mature male farm pigs with MI (n = 6) induced by permanent surgical ligation of the left anterior descending coronary artery and from five healthy pigs (C). mRNA expression of A(1)R, A(2A)R, A(2B)R, A(3)R and TNF-α was determined by real-time PCR in tissue collected from border (BZ) and remote zones (RZ) of the infarcted area and from LV of C. BZ, RZ and samples of C were stained immunohistochemically to investigate A(3)R immunoreaction. After 4 weeks a different regulation of ARs was observed. A(1)R mRNA expression was significantly lower in the infarct regions than in controls (C = 0.75 ± 0.2, BZ = 0.05 ± 0.2, RZ = 0.07 ± 0.02 p = 0.0025, p = 0.0016, C vs. BZ and RZ, respectively). Conversely A(3)R was higher in infarct areas (C = 0.94 ± 0.2, BZ = 2.85 ± 0.5, RZ = 3.48 ± 1.0, p = 0.048 C vs. RZ). No significant differences were observed for A(2A)R (C = 1.58 ± 0.6, BZ = 0.42 ± 0.1, RZ = 1.37 ± 0.6) and A(2B)R (C = 1.66 ± 0.2, BZ = 1.54 ± 0.5, RZ = 1.25 ± 0.4). A(3)R expression was confirmed by immunohistochemical analysis and was principally localized in cardiomyocytes. TNF-α mRNA results were: C 0.41 ± 0.25; BZ 1.60 ± 0.19; RZ 0.17 ± 0.04. The balance between A(1)R and A(3)R as well as between A(2A)R and A(2B)R was consistent with adaptative retaliatory anti-ischemic adenosinergic changes in the infarcted heart with preserved LV function.

  13. The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors.

    PubMed

    Seibt, Benjamin F; Schiedel, Anke C; Thimm, Dominik; Hinz, Sonja; Sherbiny, Farag F; Müller, Christa E

    2013-05-01

    The second extracellular loop (EL2) of G protein-coupled receptors (GPCRs), which represent important drug targets, may be involved in ligand recognition and receptor activation. We studied the closely related adenosine receptor (AR) subtypes A2A and A2B by exchanging the complete EL2 of the human A2BAR for the EL2 of the A2AAR. Furthermore, single amino acid residues (Asp148(45.27), Ser149(45.28), Thr151(45.30), Glu164(45.43), Ser165(45.44), and Val169(45.48)) in the EL2 of the A2BAR were exchanged for alanine. The single mutations did not lead to any major effects, except for the T151A mutant, at which NECA showed considerably increased efficacy. The loop exchange entailed significant effects: The A2A-selective agonist CGS21680, while being completely inactive at A2BARs, showed high affinity for the mutant A2B(EL2-A2A)AR, and was able to fully activate the receptor. Most strikingly, all agonists investigated (adenosine, NECA, BAY60-6583, CGS21680) showed strongly increased efficacies at the mutant A2B(EL2-A2A) as compared to the wt AR. Thus, the EL2 of the A2BAR appears to have multiple functions: besides its involvement in ligand binding and subtype selectivity it modulates agonist-bound receptor conformations thereby controlling signalling efficacy. This role of the EL2 is likely to extend to other members of the GPCR family, and the EL2 of GPCRs appears to be an attractive target structure for drugs.

  14. Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors.

    PubMed

    Pawlak, Robert; Melchor, Jerry P; Matys, Tomasz; Skrzypiec, Anna E; Strickland, Sidney

    2005-01-11

    Chronic ethanol abuse causes up-regulation of NMDA receptors, which underlies seizures and brain damage upon ethanol withdrawal (EW). Here we show that tissue-plasminogen activator (tPA), a protease implicated in neuronal plasticity and seizures, is induced in the limbic system by chronic ethanol consumption, temporally coinciding with up-regulation of NMDA receptors. tPA interacts with NR2B-containing NMDA receptors and is required for up-regulation of the NR2B subunit in response to ethanol. As a consequence, tPA-deficient mice have reduced NR2B, extracellular signal-regulated kinase 1/2 phosphorylation, and seizures after EW. tPA-mediated facilitation of EW seizures is abolished by NR2B-specific NMDA antagonist ifenprodil. These results indicate that tPA mediates the development of physical dependence on ethanol by regulating NR2B-containing NMDA receptors.

  15. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time

    PubMed Central

    Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H

    2012-01-01

    BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512

  16. Phosphorylation-dependent Changes in Nucleotide Binding, Conformation, and Dynamics of the First Nucleotide Binding Domain (NBD1) of the Sulfonylurea Receptor 2B (SUR2B)*

    PubMed Central

    de Araujo, Elvin D.; Alvarez, Claudia P.; López-Alonso, Jorge P.; Sooklal, Clarissa R.; Stagljar, Marijana; Kanelis, Voula

    2015-01-01

    The sulfonylurea receptor 2B (SUR2B) forms the regulatory subunit of ATP-sensitive potassium (KATP) channels in vascular smooth muscle. Phosphorylation of the SUR2B nucleotide binding domains (NBD1 and NBD2) by protein kinase A results in increased channel open probability. Here, we investigate the effects of phosphorylation on the structure and nucleotide binding properties of NBD1. Phosphorylation sites in SUR2B NBD1 are located in an N-terminal tail that is disordered. Nuclear magnetic resonance (NMR) data indicate that phosphorylation of the N-terminal tail affects multiple residues in NBD1, including residues in the NBD2-binding site, and results in altered conformation and dynamics of NBD1. NMR spectra of NBD1 lacking the N-terminal tail, NBD1-ΔN, suggest that phosphorylation disrupts interactions of the N-terminal tail with the core of NBD1, a model supported by dynamic light scattering. Increased nucleotide binding of phosphorylated NBD1 and NBD1-ΔN, compared with non-phosphorylated NBD1, suggests that by disrupting the interaction of the NBD core with the N-terminal tail, phosphorylation also exposes the MgATP-binding site on NBD1. These data provide insights into the molecular basis by which phosphorylation of SUR2B NBD1 activates KATP channels. PMID:26198630

  17. Adenosine signaling promotes hematopoietic stem and progenitor cell emergence.

    PubMed

    Jing, Lili; Tamplin, Owen J; Chen, Michael J; Deng, Qing; Patterson, Shenia; Kim, Peter G; Durand, Ellen M; McNeil, Ashley; Green, Julie M; Matsuura, Shinobu; Ablain, Julien; Brandt, Margot K; Schlaeger, Thorsten M; Huttenlocher, Anna; Daley, George Q; Ravid, Katya; Zon, Leonard I

    2015-05-04

    Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1(+)/cmyb(+) HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl(+) hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP-protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates.

  18. Expression and Function of Serotonin 2A and 2B Receptors in the Mammalian Respiratory Network

    PubMed Central

    Koch, Uwe R.; Bischoff, Anna-Maria; Kron, Miriam; Bock, Nathalie; Manzke, Till

    2011-01-01

    Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation. PMID:21789169

  19. New adenosine A2A receptor antagonists: actions on Parkinson's disease models.

    PubMed

    Pinna, Annalisa; Volpini, Rosaria; Cristalli, Gloria; Morelli, Micaela

    2005-04-11

    The 8-substituted 9-ethyladenine derivatives: 8-bromo-9-ethyladenine (ANR 82), 8-ethoxy- 9-ethyladenine (ANR 94), and 8-furyl-9-ethyladenine (ANR 152) have been characterized in vitro as adenosine receptor antagonists. Adenosine is deeply involved in the control of motor behaviour and substantial evidences indicate that adenosine A(2A) receptor antagonists improve motor deficits in animal models of Parkinson's disease. On this basis, the efficacy of ANR 82, ANR 94, and ANR 152 in rat models of Parkinson's disease was evaluated. All compounds tested reversed the catalepsy induced by haloperidol. However, in unilaterally 6-hydroxydopamine-lesioned rats, only ANR 94 and ANR 152 potentiated l-dihydroxy-phenylalanine (l-DOPA) effect on turning behaviour and induced contralateral turning behaviour in rats sensitised to l-DOPA. Taken together the results of this study indicate that some 8-substituted 9-ethyladenine derivatives ameliorate motor deficits in rat models of Parkinson's disease, suggesting a potential therapeutic role of these compounds.

  20. Adenosine A(3) receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Vacek, Antonín; Streitová, Denisa

    2007-07-01

    The present study was performed to define the optimum conditions of the stimulatory action of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), on bone marrow hematopoiesis in mice. Effects of 2-day treatment with IB-MECA given at single doses of 200nmol/kg twice daily were investigated in normal mice and in mice whose femoral bone marrow cells were either depleted or regenerating after pretreatment with the cytotoxic drug 5-fluorouracil. Morphological criteria were used to determine the proliferation state of the granulocytic and erythroid cell systems. Significant negative correlation between the control proliferation state and the increase of cell proliferation after IB-MECA treatment irrespective of the cell lineage investigated was found. The results suggest the homeostatic character of the induced stimulatory effects and the need to respect the functional state of the target tissue when investigating effects of adenosine receptor agonists under in vivo conditions.

  1. Adenosine-A1 receptor agonist induced hyperalgesic priming type II.

    PubMed

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-03-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate salt) induces a model of transition to chronic pain that we have termed type II hyperalgesic priming. Similar to type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, type II hyperalgesic priming differs from type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that, as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N-cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced type II hyperalgesic priming. In this study, we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms, as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor.

  2. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  3. The Janus face of adenosine: antiarrhythmic and proarrhythmic actions.

    PubMed

    Szentmiklosi, A József; Galajda, Zoltán; Cseppento, Ágnes; Gesztelyi, Rudolf; Susán, Zsolt; Hegyi, Bence; Nánási, Péter P

    2015-01-01

    Adenosine is a ubiquitous, endogenous purine involved in a variety of physiological and pathophysiological regulatory mechanisms. Adenosine has been proposed as an endogenous antiarrhythmic substance to prevent hypoxia/ischemia-induced arrhythmias. Adenosine (and its precursor, ATP) has been used in the therapy of various cardiac arrhythmias over the past six decades. Its primary indication is treatment of paroxysmal supraventricular tachycardia, but it can be effective in other forms of supraventricular and ventricular arrhythmias, like sinus node reentry based tachycardia, triggered atrial tachycardia, atrioventricular nodal reentry tachycardia, or ventricular tachycardia based on a cAMP-mediated triggered activity. The main advantage is the rapid onset and the short half life (1- 10 sec). Adenosine exerts its antiarrhythmic actions by activation of A1 adenosine receptors located in the sinoatrial and atrioventricular nodes, as well as in activated ventricular myocardium. However, adenosine can also elicit A2A, A2B and A3 adenosine receptor-mediated global side reactions (flushing, dyspnea, chest discomfort), but it may display also proarrhythmic actions mediated by primarily A1 adenosine receptors (e.g. bradyarrhythmia or atrial fibrillation). To avoid the non-specific global adverse reactions, A1 adenosine receptor- selective full agonists (tecadenoson, selodenoson, trabodenoson) have been developed, which agents are currently under clinical trial. During long-term administration with orthosteric agonists, adenosine receptors can be internalized and desensitized. To avoid desensitization, proarrhythmic actions, or global adverse reactions, partial A1 adenosine receptor agonists, like CVT-2759, were developed. In addition, the pharmacologically "silent" site- and event specific adenosinergic drugs, such as adenosine regulating agents and allosteric modulators, might provide attractive opportunity to increase the effectiveness of beneficial actions of adenosine

  4. Adenosine A2A receptors are necessary and sufficient to trigger memory impairment in adult mice

    PubMed Central

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-01-01

    Background and Purpose Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer’s disease, an effect mimicked by adenosine A2A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. Experimental Approach We determined whether A2A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Key Results Scopolamine (1.0 mg·kg−1, i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2A receptor antagonist (SCH 58261, 0.1–1.0 mg·kg−1, i.p.) and by the A1 receptor antagonist (DPCPX, 0.2–5.0 mg·kg−1, i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2A receptors with CGS 21680 (0.1–0.5 mg·kg−1, i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg−1, i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. Conclusions and Implications These results show that A2A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. PMID:25939452

  5. Adenosine A2A receptor antagonism and neuroprotection: mechanisms, lights, and shadows.

    PubMed

    Popoli, Patrizia; Minghetti, Luisa; Tebano, Maria Teresa; Pintor, Annita; Domenici, Maria Rosaria; Massotti, Marino

    2004-01-01

    Adenosine A2A receptor antagonists are regarded as potential neuroprotective drugs, although the mechanisms underlying their effects remain to be elucidated. In this review, quinolinic acid (QA)-induced striatal toxicity was used as a tool to investigate the mechanisms of the neuroprotective effects of A2A receptor antagonists. After having examined the effects of selective A2A receptor antagonists toward different mechanisms of QA toxicity, we conclude that (1) the effect elicited by A2A receptor blockade on QA-induced glutamate outflow may be one of the mechanisms of the neuroprotective activity of A2A receptor antagonists; (2) A2A receptor antagonists have a potentially worsening influence on QA-dependent NMDA receptor activation; and (3) the ability of A2A receptor antagonists to prevent QA-induced lipid peroxidation does not correlate with the neuroprotective effects. These results suggest that A2A receptor antagonists may have either potentially beneficial or detrimental influence in models of neurodegeneration that are mainly due to increased glutamate levels or enhanced sensitivity of NMDA receptors, respectively.

  6. A3 Adenosine Receptors Modulate Hypoxia-Inducible Factor-1α Expression in Human A375 Melanoma Cells

    PubMed Central

    Merighi, Stefania; Benini, Annalisa; Mirandola, Prisco; Gessi, Stefania; Varani, Katia; Leung, Edward; MacLennan, Stephen; Baraldi, Pier Giovanni; Borea, Pier Andrea

    2005-01-01

    Abstract Hypoxia-inducible factor-1 (HIF-1) is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% O2), adenosine upregulates HIF-1α protein expression in a dose-dependent and time-dependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2) protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1α and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells. PMID:16242072

  7. Correlation between tumor histology, steroid receptor status, and adenosine deaminase complexing protein immunoreactivity in ovarian cancer.

    PubMed

    Rao, B R; Slotman, B J; Geldof, A A; Dinjens, W N

    1990-01-01

    Adenosine deaminase complexing protein (ADCP) immunoreactivity was investigated in 40 ovarian tumors and correlated with clinicopathologic parameters, including tumor steroid receptor content. Ten (29%) of 34 common epithelial ovarian carcinomas showed ADCP reactivity. Reactivity for ADCP was seen more frequently in mucinous (100%; p less than 0.001), well-differentiated (73%; p less than 0.001) and Stage I (56%; p less than 0.05) ovarian carcinomas. Furthermore, tumors that contained high levels of androgen receptors and tumors that did not contain estrogen receptors were more frequently ADCP positive (p less than 0.05). However, after stratifying for histologic grade, no correlation between ADCP reactivity and receptor status was found. Determination of ADCP reactivity appears to be of limited value in ovarian cancer.

  8. A1 and A2a receptors mediate inhibitory effects of adenosine on the motor activity of human colon.

    PubMed

    Fornai, M; Antonioli, L; Colucci, R; Ghisu, N; Buccianti, P; Marioni, A; Chiarugi, M; Tuccori, M; Blandizzi, C; Del Tacca, M

    2009-04-01

    Experimental evidence in animal models suggests that adenosine is involved in the regulation of digestive functions. This study examines the influence of adenosine on the contractile activity of human colon. Reverse transcription-polymerase chain reaction revealed A(1) and A(2a) receptor expression in colonic neuromuscular layers. Circular muscle preparations were connected to isotonic transducers to determine the effects of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; A(1) receptor antagonist), ZM 241385 (A(2a) receptor antagonist), CCPA (A(1) receptor agonist) and 2-[(p-2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamide-adenosine (CGS 21680; A(2a) receptor agonist) on motor responses evoked by electrical stimulation or carbachol. Electrically evoked contractions were enhanced by DPCPX and ZM 241385, and reduced by CCPA and CGS 21680. Similar effects were observed when colonic preparations were incubated with guanethidine (noradrenergic blocker), L-732,138, GR-159897 and SB-218795 (NK receptor antagonists). However, in the presence of guanethidine, NK receptor antagonists and N(omega)-propyl-L-arginine (NPA; neuronal nitric oxide synthase inhibitor), the effects of DPCPX and CCPA were still evident, while those of ZM 241385 and CGS 21680 no longer occurred. Carbachol-induced contractions were unaffected by A(2a) receptor ligands, but they were enhanced or reduced by DPCPX and CCPA, respectively. When colonic preparations were incubated with guanethidine, NK antagonists and atropine, electrically induced relaxations were partly reduced by ZM 241385 or NPA, but unaffected by DPCPX. Dipyridamole or application of exogenous adenosine reduced electrically and carbachol-evoked contractions, whereas adenosine deaminase enhanced such motor responses. In conclusion, adenosine exerts an inhibitory control on human colonic motility. A(1) receptors mediate direct modulating actions on smooth muscle, whereas A(2a) receptors operate through inhibitory nitrergic nerve pathways.

  9. Role of Serotonin via 5-HT2B Receptors in the Reinforcing Effects of MDMA in Mice

    PubMed Central

    Doly, Stéphane; Bertran-Gonzalez, Jesus; Callebert, Jacques; Bruneau, Alexandra; Banas, Sophie Marie; Belmer, Arnauld; Boutourlinsky, Katia; Hervé, Denis; Launay, Jean-Marie; Maroteaux, Luc

    2009-01-01

    The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) reverses dopamine and serotonin transporters to produce efflux of dopamine and serotonin, respectively, in regions of the brain that have been implicated in reward. However, the role of serotonin/dopamine interactions in the behavioral effects of MDMA remains unclear. We previously showed that MDMA-induced locomotion, serotonin and dopamine release are 5-HT2B receptor-dependent. The aim of the present study was to determine the contribution of serotonin and 5-HT2B receptors to the reinforcing properties of MDMA. We show here that 5-HT2B−/− mice do not exhibit behavioral sensitization or conditioned place preference following MDMA (10 mg/kg) injections. In addition, MDMA-induced reinstatement of conditioned place preference after extinction and locomotor sensitization development are each abolished by a 5-HT2B receptor antagonist (RS127445) in wild type mice. Accordingly, MDMA-induced dopamine D1 receptor-dependent phosphorylation of extracellular regulated kinase in nucleus accumbens is abolished in mice lacking functional 5-HT2B receptors. Nevertheless, high doses (30 mg/kg) of MDMA induce dopamine-dependent but serotonin and 5-HT2B receptor-independent behavioral effects. These results underpin the importance of 5-HT2B receptors in the reinforcing properties of MDMA and illustrate the importance of dose-dependent effects of MDMA on serotonin/dopamine interactions. PMID:19956756

  10. Clinical/pharmacological aspect of adenosine A2A receptor antagonist for dyskinesia.

    PubMed

    Kanda, Tomoyuki; Uchida, Shin-ichi

    2014-01-01

    Dopamine replacement therapy using the dopamine precursor, l-3,4-dihydroxyphenylalanine (l-DOPA), with a peripheral dopa decarboxylase inhibitor is the most effective treatment currently available for the symptoms of Parkinson's disease (PD). However, the long-term use of dopaminergic therapies for PD is often limited by the development of motor response complications, such as dyskinesia. Adenosine A2A receptors are a promising nondopaminergic target for the treatment of PD. The treatment of motor response complications involves combinations of regular and controlled release L-DOPA, perhaps with the addition of a COMT inhibitor or the use of a longer-acting dopamine agonist. However, when dyskinesia is already established, the increase in dopaminergic load produced by the addition of a dopamine agonist can result in an increase in the severity and duration of dyskinesia. Currently, there are no well-tolerated antidyskinesia agents available. Amantadine, which may exert its effects through the inhibition of N-methyl-D-aspartate (NMDA) receptors, shows some effects on established dyskinesia. Dyskinesia has a negative impact on the quality of life of patients, sometimes being more disabling than PD itself. Although some patients prefer experiencing dyskinesia than being in the OFF state and unable to move, alternative, more effective therapies are still required for severe disabling dyskinesia to afford patients an improved quality of life while in the ON state. The mechanisms causing and maintaining the dyskinesia have not been clarified. The application of a nondopaminergic approach to modify the basal ganglial activity would be helpful to better understand and treat dyskinesia. The use of an adenosine A2A receptor may provide one such approach. In this literature review, we will summarize the current knowledge from both clinical and nonclinical studies on the effects of adenosine A2A receptor blockade on dyskinesia.

  11. Metabolic mapping of A3 adenosine receptor agonist MRS5980

    PubMed Central

    Fang, Zhong-Ze; Tosh, Dilip K.; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W.; O'Connor, Robert; Jacobson, Kenneth A.; Gonzalez, Frank J.

    2015-01-01

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason of drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment group in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation for feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the major involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  12. Metabolic mapping of A3 adenosine receptor agonist MRS5980.

    PubMed

    Fang, Zhong-Ze; Tosh, Dilip K; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W; O'Connor, Robert; Jacobson, Kenneth A; Gonzalez, Frank J

    2015-09-15

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason for drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment groups in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation of feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  13. Regulation of cyclic AMP formation in cultures of human foetal astrocytes by beta 2-adrenergic and adenosine receptors.

    PubMed

    Woods, M D; Freshney, R I; Ball, S G; Vaughan, P F

    1989-09-01

    Two cell cultures, NEP2 and NEM2, isolated from human foetal brain have been maintained through several passages and found to express some properties of astrocytes. Both cell cultures contain adenylate cyclase stimulated by catecholamines with a potency order of isoprenaline greater than adrenaline greater than salbutamol much greater than noradrenaline, which is consistent with the presence of beta 2-adrenergic receptors. This study reports that the beta 2-adrenergic-selective antagonist ICI 118,551 is approximately 1,000 times more potent at inhibiting isoprenaline stimulation of cyclic AMP (cAMP) formation in both NEP2 and NEM2 than the beta 1-adrenergic-selective antagonist practolol. This observation confirms the presence of beta 2-adrenergic receptors in these cell cultures. The formation of cAMP in NEP2 is also stimulated by 5'-(N-ethylcarboxamido)adenosine (NECA) more potently than by either adenosine or N6-(L-phenylisopropyl)adenosine (L-PIA), which suggests that this foetal astrocyte expresses adenosine A2 receptors. Furthermore, L-PIA and NECA inhibit isoprenaline stimulation of cAMP formation, a result suggesting the presence of adenosine A1 receptors on NEP2. The presence of A1 receptors is confirmed by the observation that the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine reverses the inhibition of isoprenaline stimulation of cAMP formation by L-PIA and NECA. Additional evidence that NEP2 expresses adenosine receptors linked to the adenylate cyclase-inhibitory GTP-binding protein is provided by the finding that pretreatment of these cells with pertussis toxin reverses the adenosine inhibition of cAMP formation stimulated by either isoprenaline or forskolin.

  14. The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: the role of adenosine A1 receptors.

    PubMed

    Gonca, Ersöz; Darıcı, Faruk

    2015-01-01

    Cannabidiol (CBD) is a nonpsychoactive phytocannabinoid with anti-inflammatory activity mediated by enhancing adenosine signaling. As the adenosine A1 receptor activation confers protection against ischemia/reperfusion (I/R)-induced ventricular arrhythmias, we hypothesized that CBD may have antiarrhythmic effect through the activation of adenosine A1 receptor. Cannabidiol has recently been shown to suppress ischemia-induced ventricular arrhythmias. We aimed to research the effect of CBD on the incidence and the duration of I/R-induced ventricular arrhythmias and to investigate the role of adenosine A1 receptor activation in the possible antiarrhythmic effect of CBD. Myocardial ischemia and reperfusion was induced in anesthetized male rats by ligating the left anterior descending coronary artery for 6 minutes and by loosening the bond at the coronary artery, respectively. Cannabidiol alone was given in a dose of 50 µg/kg, 10 minutes prior to coronary artery occlusion and coadministrated with adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) in a dose of 100 µg/kg, 15 minutes prior to coronary artery occlusion to investigate whether the antiarrhythmic effect of CBD is modified by the activation of adenosine A1 receptors. The experimental groups were as follows: (1) vehicle control (n = 10), (2) CBD (n = 9), (3) DPCPX (n = 7), and (4) CBD + DPCPX group (n = 7). Cannabidiol treatment significantly decreased the incidence and the duration of ventricular tachycardia, total length of arrhythmias, and the arrhythmia scores compared to control during the reperfusion period. The DPCPX treatment alone did not affect the incidence and the duration of any type of arrhythmias. However, DPCPX aborted the antiarrhythmic effect of CBD when it was combined with it. The present results demonstrated that CBD has an antiarrhythmic effect against I/R-induced arrhythmias, and the antiarrhythmic effect of CBD may be mediated through the activation of adenosine

  15. Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells

    PubMed Central

    Gessi, Stefania; Varani, Katia; Merighi, Stefania; Morelli, Anna; Ferrari, Davide; Leung, Edward; Baraldi, Pier Giovanni; Spalluto, Giampiero; Borea, Pier Andrea

    2001-01-01

    The present work was devoted to the study of A3 adenosine receptors in Jurkat cells, a human leukemia line. The A3 subtype was found by means of RT-PCR experiments and characterized by using the new A3 adenosine receptor antagonist [3H]-MRE 3008F20, the only A3 selective radioligand currently available. Saturation experiments revealed a single high affinity binding site with KD of 1.9±0.2 nM and Bmax of 1.3±0.1 pmol mg−1 of protein. The pharmacological profile of [3H]-MRE 3008F20 binding on Jurkat cells was established using typical adenosine ligands which displayed a rank order of potency typical of the A3 subtype. Thermodynamic data indicated that [3H]-MRE 3008F20 binding to A3 subtype in Jurkat cells was entropy- and enthalpy-driven, according with that found in cells expressing the recombinant human A3 subtype. In functional assays the high affinity A3 agonists Cl-IB-MECA and IB-MECA were able to inhibit cyclic AMP accumulation and stimulate Ca2+ release from intracellular Ca2+ pools followed by Ca2+ influx. The presence of the other adenosine subtypes was investigated in Jurkat cells. A1 receptors were characterized using [3H]-DPCPX binding with a KD of 0.9±0.1 nM and Bmax of 42±3 fmol mg−1 of protein. A2A receptors were studied with [3H]-SCH 58261 binding and revealed a KD of 2.5±0.3 nM and a Bmax of 1.4±0.2 pmol mg−1 of protein. In conclusion, by means of the first antagonist radioligand [3H]-MRE 3008F20 we could demonstrate the existence of functional A3 receptors on Jurkat cells. PMID:11522603

  16. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils

    PubMed Central

    Varani, Katia; Gessi, Stefania; Merighi, Stefania; Iannotta, Valeria; Cattabriga, Elena; Spisani, Susanna; Cadossi, Ruggero; Borea, Pier Andrea

    2002-01-01

    The present study describes the effect of low frequency, low energy, pulsing electromagnetic fields (PEMFs) on A2A adenosine receptors in human neutrophils.Saturation experiments performed using a high affinity adenosine antagonist [3H]-ZM 241385 revealed a single class of binding sites in control and in PEMF-treated human neutrophils with similar affinity (KD=1.05±0.10 and 1.08±0.12 nM, respectively). Furthermore, after 1 h of exposure to PEMFs the receptor density was statistically increased (P<0.01) (Bmax =126±10 and 215±15 fmol mg−1 protein, respectively).The effect of PEMFs was specific to the A2A adenosine receptors. This effect was also intensity, time and temperature dependent.In the adenylyl cyclase assays the A2A receptor agonists, HE-NECA and NECA, increased cyclic AMP accumulation in untreated human neutrophils with an EC50 value of 43 (40 – 47) and 255 (228 – 284) nM, respectively. The capability of HE-NECA and NECA to stimulate cyclic AMP levels in human neutrophils was increased (P<0.01) after exposure to PEMFs with an EC50 value of 10(8 – 13) and 61(52 – 71) nM, respectively.In the superoxide anion (O2−) production assays HE-NECA and NECA inhibited the generation of O2− in untreated human neutrophils, with an EC50 value of 3.6(3.1 – 4.2) and of 23(20 – 27) nM, respectively. Moreover, in PEMF-treated human neutrophils, the same compounds show an EC50 value of 1.6(1.2 – 2.1) and of 6.0(4.7 – 7.5) nM respectively.These results indicate the presence of significant alterations in the expression and in the functionality of adenosine A2A receptors in human neutrophils treated with PEMFs. PMID:11976268

  17. The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats.

    PubMed

    Ma, Yao-Ying; Guo, Chang-Yong; Yu, Peng; Lee, David Yue-Wei; Han, Ji-Sheng; Cui, Cai-Lian

    2006-08-01

    It has been reported that N-methyl-D-aspartate (NMDA) receptor is implicated in drug addiction and antagonists of the NMDA receptor complex can inhibit the development and expression of conditioned place preference (CPP) induced by several addictive drugs, implying that this class of compounds might be considered as candidate for the treatment of substance abuse. To explore this possibility, it is important to evaluate whether the inhibitory effect of NMDA receptor antagonists would be confined to behaviors produced by drugs of abuse only, but not by natural reinforcers. According to the quantitative changes of NMDA receptor subunits, including NR1, NR2A, and NR2B, induced by diverse types of reinforcers, we chose NR2B subunit as the target of research. Experimental results showed that (1) an augmented expression of NR2B subunit was revealed by Western blotting in the nucleus accumbens (NAc) and the hippocampus in rats with CPP induced by morphine, but not by natural rewards such as food, novel environment and social interaction. (2) Ifenprodil, an antagonist highly selective for NR2B subunit of the NMDA receptor, produced a dose-dependent reduction in CPP induced by morphine and novel environment, but not that by food consumption and social interaction. Taking together, these findings suggested that NR2B containing NMDA receptor may be more involved with morphine reward rather than natural rewards, and that antagonism of NR2B may have a potential for the treatment of morphine abuse.

  18. Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine.

    PubMed

    Doré, Andrew S; Robertson, Nathan; Errey, James C; Ng, Irene; Hollenstein, Kaspar; Tehan, Ben; Hurrell, Edward; Bennett, Kirstie; Congreve, Miles; Magnani, Francesca; Tate, Christopher G; Weir, Malcolm; Marshall, Fiona H

    2011-09-07

    Methylxanthines, including caffeine and theophylline, are among the most widely consumed stimulant drugs in the world. These effects are mediated primarily via blockade of adenosine receptors. Xanthine analogs with improved properties have been developed as potential treatments for diseases such as Parkinson's disease. Here we report the structures of a thermostabilized adenosine A(2A) receptor in complex with the xanthines xanthine amine congener and caffeine, as well as the A(2A) selective inverse agonist ZM241385. The receptor is crystallized in the inactive state conformation as defined by the presence of a salt bridge known as the ionic lock. The complete third intracellular loop, responsible for G protein coupling, is visible consisting of extended helices 5 and 6. The structures provide new insight into the features that define the ligand binding pocket of the adenosine receptor for ligands of diverse chemotypes as well as the cytoplasmic regions that interact with signal transduction proteins.

  19. SETDB1 HISTONE METHYLTRANSFERASE REGULATES MOOD-RELATED BEHAVIORS AND EXPRESSION OF THE NMDA RECEPTOR SUBUNIT NR2B

    PubMed Central

    Jiang, Yan; Jakovcevski, Mira; Bharadwaj, Rahul; Connor, Caroline; Schroeder, Frederick A.; Lin, Cong L.; Straubhaar, Juerg; Martin, Gilles; Akbarian, Schahram

    2010-01-01

    Histone methyltransferases specific for the histone H3-lysine 9 (H3K9) residue, including Setdb1 (Set domain, bifurcated 1)/Eset/Kmt1e are associated with repressive chromatin remodeling and expressed in adult brain, but potential effects on neuronal function and behavior remain unexplored. Here, we report that transgenic mice with increased Setdb1 expression in adult forebrain neurons show antidepressant-like phenotypes in behavioral paradigms for anhedonia, despair and learned helplessness. Chromatin immunoprecipitation in conjunction with DNA tiling arrays (ChIP-chip) revealed that genomic occupancies of neuronal Setdb1 are limited to less than 1% of annotated genes, which include the NMDA receptor subunit NR2B/Grin2B and other ionotropic glutamate receptor genes. Chromatin conformation capture (“3C”) and Setdb1-ChIP revealed a loop formation tethering the NR2B/Grin2b promoter to the Setdb1 target site positioned 30Kb downstream of the transcription start site. In hippocampus and ventral striatum, two key structures in the neuronal circuitry regulating mood-related behaviors, Setdb1-mediated repressive histone methylation at NR2B/Grin2b was associated with decreased NR2B expression and EPSP insensitivity to pharmacological blockade of NR2B, and accelerated NMDA receptor desensitization consistent with a shift in NR2A/B subunit ratios. In wildtype mice, systemic treatment with the NR2B antagonist, Ro-256981, and hippocampal siRNA-mediated NR2B/Grin2b knockdown, resulted in behavioral changes similar to those elicited by the Setdb1 transgene. Together, these findings point to a role for neuronal Setdb1 in the regulation of affective and motivational behaviors through repressive chromatin remodeling at a select set of target genes, resulting in altered NMDA receptor subunit composition and other molecular adaptations. PMID:20505083

  20. Adenosine A1 receptors mediate inhibition of cAMP formation in vitro in the pontine, REM sleep induction zone.

    PubMed

    Marks, Gerald A; Birabil, Christian G; Speciale, Samuel G

    2005-11-09

    Microinjection of adenosine A1 receptor agonist or an inhibitor of adenylyl cyclase into the caudal, oral pontine reticular formation (PnOc) of the rat induces a long-lasting increase in REM sleep. Here, we report significant inhibition of forskolin-stimulated cAMP in dissected pontine tissue slices containing the PnOc incubated with the A1 receptor agonist, cyclohexaladenosine (10(-8) M). These data are consistent with adenosine A1 receptor agonist actions on REM sleep mediated through inhibition of cAMP.

  1. Adenosine receptor inhibition with theophylline attenuates the skin blood flow response to local heating in humans.

    PubMed

    Fieger, Sarah M; Wong, Brett J

    2010-09-01

    Mechanisms underlying the robust cutaneous vasodilatation in response to local heating of human skin remain unresolved. Adenosine receptor activation has been shown to induce vasodilatation via nitric oxide, and a substantial portion of the plateau phase to local heating of human skin has been shown to be dependent on nitric oxide. The purpose of this study was to investigate a potential role for adenosine receptor activation in cutaneous thermal hyperaemia in humans. Six subjects were equipped with four microdialysis fibres on the ventral forearm. Sites were randomly assigned to receive one of the following four treatments: (1) lactated Ringer solution to serve as a control; (2) 4 mM theophylline, a competitive, non-selective A(1)/A(2) adenosine receptor antagonist; (3) 10 mM Nomega(-)-nitro-L-arginine methyl ester (L-NAME) to inhibit NO synthase; or (4) combined 4 mm theophylline + 10 mM L-NAME. Following baseline measurements, each site was locally heated from a baseline temperature of 33 degrees C to 42 degrees C at a rate of 1 degrees C (10 s)(-1), and skin blood flow was monitored via laser-Doppler flowmetry (LDF). Cutaneous vascular conductance (CVC) was calculated as LDF divided by mean arterial pressure and normalized to maximal values (CVC(max)) via local heating to 43 degrees C and infusion of 28 mM sodium nitroprusside. The initial peak was significantly reduced in theophylline (68 +/- 2% CVC(max)) and L-NAME sites (54 +/- 5% CVC(max)) compared with control sites (81 +/- 2% CVC(max); P < 0.01 and P < 0.001, respectively). Combined theophylline + L-NAME (52 +/- 5% CVC(max)) reduced the initial peak compared with control and theophylline sites, but was not significantly different compared with L-NAME sites. The secondary plateau was attenuated in theophylline (77 +/- 2% CVC(max)), L-NAME (60 +/- 2% CVC(max)) and theophylline + L-NAME (53 +/- 1% CVC(max)) compared with control sites (94 +/- 2% CVC(max); P < 0.001 for all conditions). The secondary plateau

  2. Adenosine A1 receptor agonist N6-cyclohexyl-adenosine induced phosphorylation of delta opioid receptor and desensitization of its signaling

    PubMed Central

    Cheng, Yun; Tao, Yi-min; Sun, Jian-feng; Wang, Yu-hua; Xu, Xue-jun; Chen, Jie; Chi, Zhi-qiang; Liu, Jing-gen

    2010-01-01

    Aim: To define the effect of adenosine A1 receptor (A1R) on delta opioid receptor (DOR)-mediated signal transduction. Methods: CHO cells stably expressing HA-tagged A1R and DOR-CFP fusion protein were used. The localization of receptors was observed using confocal microscope. DOR-mediated inhibition of adenylyl cyclase was measured using cyclic AMP assay. Western blots were employed to detect the phosphorylation of Akt and the DOR. The effect of A1R agonist N6-cyclohexyladenosine (CHA) on DOR down-regulation was assessed using radioligand binding assay. Results: CHA 1 μmol/L time-dependently attenuated DOR agonist [D-Pen2,5]enkephalin (DPDPE)-induced inhibition of intracellular cAMP accumulation with a t1/2=2.56 (2.09–3.31) h. Pretreatment with 1 μmol/L CHA for 24 h caused a right shift of the dose-response curve of DPDPE-mediated inhibition of cAMP accumulation, with a significant increase in EC50 but no change in Emax. Pretreatment with 1 μmol/L CHA for 1 h also induced a significant attenuation of DPDPE-stimulated phosphorylation of Akt. Moreover, CHA time-dependently phosphorylated DOR (Ser363), and this effect was inhibited by A1R antagonist 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX) but not by DOR antagonist naloxone. However, CHA failed to produce the down-regulation of DOR, as neither receptor affinity (Kd) nor receptor density (Bmax) of DOR showed significant change after chronic CHA exposure. Conclusion: Activation of A1R by its agonist caused heterologous desensitization of DOR-mediated inhibition of intracellular cAMP accumulation and phosphorylation of Akt. Activation of A1R by its agonist also induced heterologous phosphorylation but not down-regulation of DOR. PMID:20562901

  3. Impact on monoclonal antibody production in murine hybridoma cell cultures of adenosine receptor antagonists and phosphodiesterase inhibitors.

    PubMed

    Kelso, Geoffrey F; Kazi, Shahid A; Harris, Simon J; Boysen, Reinhard I; Chowdhury, Jamil; Hearn, Milton T W

    2016-01-15

    The effects of different adenosine receptor antagonists and cyclic nucleotide phosphodiesterase (PDE) inhibitors on monoclonal antibody (mAb) titer and cell viability of murine hybridoma cells in culture were measured as part of our investigations to discover additives that enhance mAb production. Specific adenosine receptor antagonists and PDE inhibitors were found to enhance or decrease the titer of immunoglobulin G1 (IgG1) mAbs relative to negative controls, depending on the specific compound and cell line employed. The observed enhancements or decreases in IgG1 mAb titer appeared to be mainly due to an increase or decrease in specific productivity rates (ngmAb/cell), respectively. The different effects of the selective adenosine antagonists suggest that antagonism at the level of the adenosine A2A and A1 or the adenosine A3 receptors result in either enhancement or suppression of IgG1 mAb production by hybridoma cells. Overall, these studies have identified hitherto unknown activities of specific adenosine antagonists and PDE inhibitors which indicate they may have valuable roles as cell culture additives in industrial biomanufacturing processes designed to enhance the yields of mAbs or other recombinant proteins produced by mammalian cell culture procedures.

  4. Stabilizing effects of G protein on the active conformation of adenosine A1 receptor differ depending on G protein type.

    PubMed

    Tateyama, Michihiro; Kubo, Yoshihiro

    2016-10-05

    G protein coupled receptors (GPCRs) trigger various cellular and physiological responses upon the ligand binding. The ligand binding induces conformational change in GPCRs which allows G protein to interact with the receptor. The interaction of G protein also affects the active conformation of GPCRs. In this study, we have investigated the effects of Gαi1, Gαo and chimeric Gαqi5 on the active conformation of the adenosine A1 receptor, as each Gα showed difference in the interaction with adenosine A1 receptor. The conformational changes in the adenosine A1 receptor were detected as the agonist-induced decreases in efficiency of Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) fused at the two intracellular domains of the adenosine A1 receptor. Amplitudes of the agonist-induced FRET decreases were subtle when the FP-tagged adenosine A1 receptor was expressed alone, whereas they were significantly enhanced when co-expressed with Gαi1Gβ1Gγ22 (Gi1) or Gαqi5Gβ1Gγ22 (Gqi5) but not with GαοGβ1Gγ22 (Go). The enhancement of the agonist-induced FRET decrease in the presence of Gqi5 was significantly larger than that of Gi1. Furthermore, the FRET recovery upon the agonist removal in the presence of Gqi5 was significantly slower than that of Gi1. From these results it was revealed that the agonist-bound active conformation of adenosine A1 receptor is unstable without the binding of G protein and that the stabilizing effects of G protein differ depending on the types of G protein.

  5. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients

    SciTech Connect

    Diamond, I.; Wrubel, B.; Estrin, W.; Gordon, A.

    1987-03-01

    Alcoholism causes serious neurologic disease that may be due, in part, to the ability of ethanol to interact with neural cell membranes and change neuronal function. Adenosine receptors are membrane-bound proteins that appear to mediate some of the effects of ethanol in the brain. Human lymphocytes also have adenosine receptors, and their activation causes increases in cAMP levels. To test the hypothesis that basal and adenosine receptor-stimulated cAMP levels in lymphocytes might be abnormal in alcoholism, the authors studied lymphocytes from 10 alcoholic subjects, 10 age- and sex-matched normal individuals, and 10 patients with nonalcoholic liver disease. Basal and adenosine receptor-stimulated cAMP levels were reduced 75% in lymphocytes from alcoholic subjects. Also, there was a 76% reduction in ethanol stimulation of cAMP accumulation in lymphocytes from alcoholics. Similar results were demonstrable in isolated T cells. Unlike other laboratory tests examined, these measurements appeared to distinguish alcoholics from normal subjects and from patients with nonalcoholic liver disease. Reduced basal and adenosine receptor-stimulated levels of cAMP in lymphocytes from alcoholics may reflect a change in cell membranes due either to chronic alcohol abuse or to a genetic predisposition unique to alcoholic subjects.

  6. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory

    PubMed Central

    Orr, Anna G.; Hsiao, Edward C.; Wang, Max M.; Ho, Kaitlyn; Kim, Daniel H.; Wang, Xin; Guo, Weikun; Kang, Jing; Yu, Gui-Qiu; Adame, Anthony; Devidze, Nino; Dubal, Dena B.; Masliah, Eliezer; Conklin, Bruce R.; Mucke, Lennart

    2014-01-01

    Astrocytes express a variety of G protein-coupled receptors and might influence cognitive functions, such as learning and memory. However, the roles of astrocytic Gs-coupled receptors in cognitive function are not known. We found that humans with Alzheimer’s disease (AD) had increased levels of the Gs-coupled adenosine receptor A2A in astrocytes. Conditional genetic removal of these receptors enhanced long-term memory in young and aging mice, and increased the levels of Arc/Arg3.1, an immediate-early gene required for long-term memory. Chemogenetic activation of astrocytic Gs-coupled signaling reduced long-term memory in mice without affecting learning. Similar to humans with AD, aging mice expressing human amyloid precursor protein (hAPP) showed increased levels of astrocytic A2A receptors. Conditional genetic removal of these receptors enhanced memory in aging hAPP mice. Together, these findings establish a regulatory role for astrocytic Gs-coupled receptors in memory and suggest that AD-linked increases in astrocytic A2A receptor levels contribute to memory loss. PMID:25622143

  7. Parallel Functional Activity Profiling Reveals Valvulopathogens Are Potent 5-Hydroxytryptamine2B Receptor Agonists: Implications for Drug Safety Assessment

    PubMed Central

    Huang, Xi-Ping; Setola, Vincent; Yadav, Prem N.; Allen, John A.; Rogan, Sarah C.; Hanson, Bonnie J.; Revankar, Chetana; Robers, Matt; Doucette, Chris

    2009-01-01

    Drug-induced valvular heart disease (VHD) is a serious side effect of a few medications, including some that are on the market. Pharmacological studies of VHD-associated medications (e.g., fenfluramine, pergolide, methysergide, and cabergoline) have revealed that they and/or their metabolites are potent 5-hydroxytryptamine2B (5-HT2B) receptor agonists. We have shown that activation of 5-HT2B receptors on human heart valve interstitial cells in vitro induces a proliferative response reminiscent of the fibrosis that typifies VHD. To identify current or future drugs that might induce VHD, we screened approximately 2200 U.S. Food and Drug Administration (FDA)-approved or investigational medications to identify 5-HT2B receptor agonists, using calcium-based high-throughput screening. Of these 2200 compounds, 27 were 5-HT2B receptor agonists (hits); 14 of these had previously been identified as 5-HT2B receptor agonists, including seven bona fide valvulopathogens. Six of the hits (guanfacine, quinidine, xylometazoline, oxymetazoline, fenoldopam, and ropinirole) are approved medications. Twenty-three of the hits were then “functionally profiled” (i.e., assayed in parallel for 5-HT2B receptor agonism using multiple readouts to test for functional selectivity). In these assays, the known valvulopathogens were efficacious at concentrations as low as 30 nM, whereas the other compounds were less so. Hierarchical clustering analysis of the pEC50 data revealed that ropinirole (which is not associated with valvulopathy) was clearly segregated from known valvulopathogens. Taken together, our data demonstrate that patterns of 5-HT2B receptor functional selectivity might be useful for identifying compounds likely to induce valvular heart disease. PMID:19570945

  8. Adenosine receptors as markers of brain iron deficiency: Implications for Restless Legs Syndrome.

    PubMed

    Quiroz, César; Gulyani, Seema; Ruiqian, Wan; Bonaventura, Jordi; Cutler, Roy; Pearson, Virginia; Allen, Richard P; Earley, Christopher J; Mattson, Mark P; Ferré, Sergi

    2016-12-01

    Deficits of sensorimotor integration with periodic limb movements during sleep (PLMS) and hyperarousal and sleep disturbances in Restless Legs Syndrome (RLS) constitute two pathophysiologically distinct but interrelated clinical phenomena, which seem to depend mostly on alterations in dopaminergic and glutamatergic neurotransmission, respectively. Brain iron deficiency is considered as a main pathogenetic mechanism in RLS. Rodents with brain iron deficiency represent a valuable pathophysiological model of RLS, although they do not display motor disturbances. Nevertheless, they develop the main neurochemical dopaminergic changes found in RLS, such as decrease in striatal dopamine D2 receptor density. On the other hand, brain iron deficient mice exhibit the characteristic pattern of hyperarousal in RLS, providing a tool to find the link between brain iron deficiency and sleep disturbances in RLS. The present study provides evidence for a role of the endogenous sleep-promoting factor adenosine. Three different experimental preparations, long-term (22 weeks) severe or moderate iron-deficient (ID) diets (3- or 7-ppm iron diet) in mice and short-term (3 weeks) severe ID diet (3-ppm iron diet) in rats, demonstrated a significant downregulation (Western blotting in mouse and radioligand binding saturation experiments in rat brain tissue) of adenosine A1 receptors (A1R) in the cortex and striatum, concomitant to striatal D2R downregulation. On the other hand, the previously reported upregulation of adenosine A2A receptors (A2AR) was only observed with severe ID in both mice and rats. The results suggest a key role for A1R downregulation in the PLMS and hyperarousal in RLS.

  9. Protons trap NR1/NR2B NMDA receptors in a nonconducting state.

    PubMed

    Banke, Tue G; Dravid, Shashank M; Traynelis, Stephen F

    2005-01-05

    NMDA receptors are highly expressed in the CNS and are involved in excitatory synaptic transmission, as well as synaptic plasticity. Given that overstimulation of NMDA receptors can cause cell death, it is not surprising that these channels are under tight control by a series of inhibitory extracellular ions, including zinc, magnesium, and H+. We studied the inhibition by extracellular protons of recombinant NMDA receptor NR1/NR2B single-channel and macroscopic responses in transiently transfected human embryonic kidney HEK 293 cells using patch-clamp techniques. We report that proton inhibition proceeds identically in the absence or presence of agonist, which rules out the possibility that protonation inhibits receptors by altering coagonist binding. The response of macroscopic currents in excised patches to rapid jumps in pH was used to estimate the microscopic association and dissociation rates for protons, which were 1.4 x 10(9) m(-1) sec(-1) and 110-196 sec(-1), respectively (K(d) corresponds to pH 7.2). Protons reduce the open probability without altering the time course of desensitization or deactivation. Protons appear to slow at least one time constant describing the intra-activation shut-time histogram and modestly reduce channel open time, which we interpret to reflect a reduction in the overall channel activation rate and possible proton-induced termination of openings. This is consistent with a modest proton-dependent slowing of the macroscopic response rise time. From these data, we propose a physical model of proton inhibition that can describe macroscopic and single-channel properties of NMDA receptor function over a range of pH values.

  10. Modulation of N-type Ca2+ currents by A1-adenosine receptor activation in male rat pelvic ganglion neurons.

    PubMed

    Park, K S; Jeong, S W; Cha, S K; Lee, B S; Kong, I D; Ikeda, S R; Lee, J W

    2001-11-01

    Modulation of voltage-activated Ca2+ channels by adenosine was investigated in male rat major pelvic ganglion (MPG) neurons by using the whole-cell variant of the patch-clamp technique. Adenosine inhibited high voltage-activated (HVA) Ca2+ currents in a concentration-dependent manner with an EC50 of 313 nM and a maximal inhibition of 36%, respectively. Inhibition of HVA Ca2+ currents in adrenergic and cholinergic MPG neurons was similar. Adenosine did not modulate T-type Ca2+ channels present in adrenergic MPG neurons. Reverse transcription-polymerase chain reaction analysis indicated that MPG neurons express mRNAs encoding A1 and A2a receptors. Ca2+ current inhibition by adenosine was mimicked by N6-cyclopentyladenosine, an A1-selective agonist (EC50 = 63 nM) and prevented by 100 nM 8-cyclopentyl-1,3-dipropylxanthine, an A1-selective antagonist. Conversely, CGS 21680, an A2a-selective agonist, displayed a relatively low potency (EC50 = 2200 nM) for inhibiting Ca2+ currents. The action of adenosine was significantly attenuated by 2 mM guanosine-5'-thiodiphosphate or 500 ng/ml pertussis toxin. The voltage dependence of adenosine-induced current inhibition was evident by 1) a bell-shaped profile between the current inhibition and test potentials, 2) kinetic slowing in the presence of agonist, and 3) relief of the current inhibition by a conditioning prepulse to +80 mV. Finally, 1 microM omega-conotoxin GVIA occluded adenosine-induced current inhibition. Taken together, we concluded that adenosine inhibits N-type Ca2+ currents by activation of A1 receptors via a voltage-dependent and PTX-sensitive pathway in rat MPG neurons. Our data may explain how adenosine acts as an inhibitory modulator of ganglionic and neuromuscular transmission in the pelvic plexus.

  11. Paeoniflorin Promotes Non-rapid Eye Movement Sleep via Adenosine A1 Receptors.

    PubMed

    Chen, Chang-Rui; Sun, Yu; Luo, Yan-Jia; Zhao, Xin; Chen, Jiang-Fan; Yanagawa, Yuchio; Qu, Wei-Min; Huang, Zhi-Li

    2016-01-01

    Paeoniflorin (PF, C23H28O11), one of the principal active ingredients of Paeonia Radix, exerts depressant effects on the central nervous system. We determined whether PF could modulate sleep behaviors and the mechanisms involved. Electroencephalogram and electromyogram recordings in mice showed that intraperitoneal PF administered at a dose of 25 or 50 mg/kg significantly shortened the sleep latency and increased the amount of non-rapid eye movement (NREM). Immunohistochemical study revealed that PF decreased c-fos expression in the histaminergic tuberomammillary nucleus (TMN). The sleep-promoting effects and changes in c-fos induced by PF were reversed by 8-cyclopentyl-1,3-dimethylxanthine (CPT), an adenosine A1 receptor antagonist, and PF-induced sleep was not observed in adenosine A1 receptor knockout mice. Whole-cell patch clamping in mouse brain slices showed that PF significantly decreased the firing frequency of histaminergic neurons in TMN, which could be completely blocked by CPT. These results indicate that PF increased NREM sleep by inhibiting the histaminergic system via A1 receptors.

  12. The Second Extracellular Loop of the Adenosine A1 Receptor Mediates Activity of Allosteric Enhancers

    PubMed Central

    Kennedy, Dylan P.; McRobb, Fiona M.; Leonhardt, Susan A.; Purdy, Michael; Figler, Heidi; Marshall, Melissa A.; Chordia, Mahendra; Figler, Robert; Linden, Joel

    2014-01-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists. PMID:24217444

  13. Calcium currents at motor nerve endings: absence of effects of adenosine receptor agonists in the frog.

    PubMed Central

    Silinsky, E M; Solsona, C S

    1992-01-01

    1. The effects of adenosine (50 microM) and 2-chloroadenosine (1-25 microM) were studied on Ca2+ currents in frog motor nerve endings. 2. Ca2+ currents associated with the synchronous, neurally evoked release of acetylcholine (ACh) were measured using either perineural or patch recording methods. Tetraethylammonium and/or 3,4-diaminopyridine were employed to block K+ currents. 3. Ca2+ currents were depressed by omega-conotoxin (1.5-2.5 microM), Cd2+ (100 microM-2 mM), Co2+ (500 microM-5 mM) or by a reduction of the extracellular calcium concentration. Such currents were also observed when Sr2+ was substituted for Ca2+. Both ACh release and Ca2+ currents at motor nerve endings have been reported to be insensitive to 1,4-dihydropyridine antagonists in this species. 4. Adenosine receptor agonists did not affect Ca2+ currents at concentrations that produced maximal inhibition of ACh release. 5. The effects of adenosine receptor agonists were examined on asynchronous K(+)-dependent ACh release under conditions in which the Ca2+ concentration gradient is likely to be reversed (Ca(2+)-free Ringer solution containing 1 mM EGTA). ACh release was measured by monitoring the frequency of occurrence of miniature endplate potentials (MEPPs). In Ca(2+)-free solutions containing 1 mM EGTA, high K+ depolarization caused a decrease in MEPP frequency, presumably because it elicits the efflux of Ca2+ from the nerve ending via membrane Ca2+ channels in a reverse Ca2+ gradient. 6. The Ca2+ channel blocker Co2+, which blocks the exit of Ca2+ from the nerve ending, increased the frequency of MEPPs in a concentration-dependent manner in a reverse Ca2+ gradient. 7. Adenosine or 2-chloroadenosine inhibited ACh release in a reverse Ca2+ gradient. 8. The results suggest that blockade of Ca2+ entry is not responsible for the inhibitory effects of adenosine at frog motor nerve endings. PMID:1338459

  14. High salt diet exacerbates vascular contraction in the absence of adenosine A2A receptor

    PubMed Central

    Pradhan, Isha; Zeldin, Darryl C.; Ledent, Catherine; Mustafa, S. Jamal; Falck, John R.; Nayeem, Mohammed A

    2014-01-01

    High salt (4%NaCl, HS) diet modulates adenosine-induced vascular response through adenosine A2A-receptor (A2AAR). Evidence suggests A2AAR stimulates cyp450-epoxygenases, leading to epoxyeicosatrienoic acids (EETs) generation. The aim of this study was to understand the vascular reactivity to HS and underlying signaling mechanism in the presence or absence of A2AAR. Therefore, we hypothesized that HS enhances adenosine-induced relaxation through EETs in A2AAR+/+, but exaggerates contraction in A2AAR−/−. Organ-bath and Western-blot experiments were conducted in HS and normal salt (NS, 0.18% NaCl)-fed A2AAR+/+ and A2AAR−/− mice aortae. HS produced concentration-dependent relaxation to non-selective adenosine analog, NECA in A2AAR+/+, whereas contraction was observed in A2AAR−/− mice and this was attenuated by A1AR antagonist (DPCPX). CGS-21680 (selective A2AAR-agonist) enhanced relaxation in HS-A2AAR+/+ vs. NS-A2AAR+/+, that was blocked by EETs antagonist (14,15-EEZE). Compared to NS, HS significantly upregulated expression of vasodilators A2AAR and cyp2c29, while vasoconstrictors A1AR and cyp4a in A2AAR+/+ were downregulated. In A2AAR−/− mice, however, HS significantly downregulated the expression of cyp2c29, while A1AR and cyp4a were upregulated compared to A2AAR+/+ mice. Hence, our data suggest that in A2AAR+/+, HS enhances A2AAR-induced relaxation through increased cyp-expoxygenases-derived EETs and decreased A1AR levels, whereas in A2AAR−/−, HS exaggerates contraction through decreased cyp-epoxygenases and increased A1AR levels. PMID:24390173

  15. Activation of neuronal adenosine A1 receptors suppresses secretory reflexes in the guinea pig colon.

    PubMed

    Cooke, H J; Wang, Y; Liu, C Y; Zhang, H; Christofi, F L

    1999-02-01

    The role of adenosine A1 receptors (A1R) in reflex-evoked short-circuit current (Isc) indicative of chloride secretion was studied in the guinea pig colon. The A1R antagonist 8-cyclopentyltheophylline (CPT) enhanced reflex-evoked Isc. Adenosine deaminase and the nucleoside transport inhibitor S-(4-nitrobenzyl)-6-thioinosine enhanced and reduced reflex-induced Isc, respectively. The A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA) inhibited reflex-evoked Isc at nanomolar concentrations, and its action was antagonized by CPT. In the presence of either N-acetyl-5-hydroxytryptophyl-5-hydroxytryptophan amide to block the 5-hydroxytryptamine (5-HT)-mediated pathway or piroxicam to block the prostaglandin-mediated pathway, CCPA reduced the residual reflex-evoked Isc. CCPA reduced the response to a 5-HT pulse without affecting the tetrodotoxin-insensitive Isc responses to carbachol or forskolin. Immunoreactivity for A1R was detected in the membrane (10% of neurons) and cytoplasm (90% of neurons) of neural protein gene product 9.5-immunoreactive (or S-100-negative) submucosal neurons, in glia, and in the muscularis mucosa. A1R immunoreactivity in a majority of neurons remained elevated in the cytoplasm despite preincubation with adenosine deaminase or CPT. A1R immunoreactivity colocalized in synaptophysin-immunoreactive presynaptic varicose nerve terminals. The results indicate that endogenous adenosine binding to high-affinity A1R on submucosal neurons acts as a physiological brake to suppress reflex-evoked Isc indicative of chloride secretion.

  16. Physical origins of remarkable thermostabilization by an octuple mutation for the adenosine A2a receptor

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yuta; Ogino, Takahiro; Yasuda, Satoshi; Takamuku, Yuuki; Murata, Takeshi; Kinoshita, Masahiro

    2016-07-01

    It was experimentally showed that the thermal stability of a membrane protein, the adenosine A2a receptor, was remarkably enhanced by an octuple mutation. Here we theoretically prove that the energy decrease arising from the formation of protein intramolecular hydrogen bonds and the solvent-entropy gain upon protein folding are made substantially larger by the mutation, leading to the remarkable enhancement. The solvent is formed by hydrocarbon groups constituting nonpolar chains of the lipid bilayer within a membrane. The mutation modifies geometric characteristics of the structure so that the solvent crowding can be reduced to a larger extent when the protein folds.

  17. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury

    PubMed Central

    Gazoni, Leo M.; Walters, Dustin M.; Unger, Eric B.; Linden, Joel; Kron, Irving L.; Laubach, Victor E.

    2010-01-01

    Objective Adenosine and the activation of specific adenosine receptors are implicated in the attenuation of inflammation and organ ischemia-reperfusion (IR) injury. We hypothesized that activation of A1, A2A, or A3 adenosine receptors would provide protection against lung IR injury. Methods Using an isolated, ventilated, blood-perfused rabbit lung model, lungs underwent 18 hours cold ischemia followed by 2 hours reperfusion. Lungs were administered either vehicle, adenosine, or selective A1, A2A, or A3 receptor agonists (CCPA, ATL-313, or IB-MECA, respectively) alone or with their respective antagonists (DPCPX, ZM241385, or MRS1191) during reperfusion. Results Compared to the vehicle-treated control group, treatment with A1, A2A, or A3 agonists significantly improved function (increased lung compliance and oxygenation and decreased pulmonary artery pressure), decreased neutrophil infiltration by myeloperoxidase activity, decreased edema, and reduced TNF-α production. Adenosine treatment was also protective but not to the level of the agonists. When each agonist was paired with its respective antagonist, all protective effects were blocked. The A2A agonist reduced pulmonary artery pressure and myeloperoxidase activity and increased oxygenation to a greater degree than the A1 or A3 agonists. Conclusions Selective activation of A1, A2A, or A3 adenosine receptors provides significant protection against lung IR injury. The decreased elaboration of the potent proinflammatory cytokine, TNF-α, and decreased neutrophil sequestration likely contribute to the overall improvement in pulmonary function. These results provide evidence for the therapeutic potential of specific adenosine receptor agonists in lung transplant recipients. PMID:20398911

  18. Adenosine modulates LPS-induced cytokine production in porcine monocytes.

    PubMed

    Ondrackova, Petra; Kovaru, Hana; Kovaru, Frantisek; Leva, Lenka; Faldyna, Martin

    2013-03-01

    Adenosine plays an important role during inflammation, particularly through modulation of monocyte function. The objective of the present study was to evaluate the effect of synthetic adenosine analogs on cytokine production by porcine monocytes. The LPS-stimulated cytokine production was measured by flow cytometry and quantitative real-time PCR. Adenosine receptor expression was measured by quantitative real-time PCR. The present study demonstrates that adenosine analog N-ethylcarboxyamidoadenosine (NECA) down-regulates TNF-α production and up-regulates IL-8 production by LPS-stimulated porcine monocytes. The effect was more pronounced in CD163(-) subset of monocytes compared to the CD163(+) subset. Although both monocyte subsets express mRNA for A1, A2A, A2B and A3 adenosine receptors, the treatment of monocytes with various adenosine receptor agonists and antagonists proved that the effect of adenosine is mediated preferentially via A2A adenosine receptor. Moreover, the study suggests that the effect of NECA on porcine monocytes alters the levels of the cytokines which could play a role in the differentiation of naive T cells into Th17 cells. The results suggest that adenosine plays an important role in modulation of cytokine production by porcine monocytes.

  19. In Vivo Phenotypic Screening for Treating Chronic Neuropathic Pain: Modification of C2-Arylethynyl Group of Conformationally Constrained A3 Adenosine Receptor Agonists

    PubMed Central

    2015-01-01

    (N)-Methanocarba adenosine 5′-methyluronamides containing 2-arylethynyl groups were synthesized as A3 adenosine receptor (AR) agonists and screened in vivo (po) for reduction of neuropathic pain. A small N6-methyl group maintained binding affinity, with human > mouse A3AR and MW < 500 and other favorable physicochemical properties. Emax (maximal efficacy in a mouse chronic constriction injury pain model) of previously characterized A3AR agonist, 2-(3,4-difluorophenylethynyl)-N6-(3-chlorobenzyl) derivative 6a, MRS5698, was surpassed. More efficacious analogues (in vivo) contained the following C2-arylethynyl groups: pyrazin-2-yl 23 (binding Ki, hA3AR, nM 1.8), fur-2-yl 27 (0.6), thien-2-yl 32 (0.6) and its 5-chloro 33, MRS5980 (0.7) and 5-bromo 34 (0.4) equivalents, and physiologically unstable ferrocene 36, MRS5979 (2.7). 33 and 36 displayed particularly long in vivo duration (>3 h). Selected analogues were docked to an A3AR homology model to explore the environment of receptor-bound C2 and N6 groups. Various analogues bound with μM affinity at off-target biogenic amine (M2, 5HT2A, β3, 5HT2B, 5HT2C, and α2C) or other receptors. Thus, we have expanded the structural range of orally active A3AR agonists for chronic pain treatment. PMID:25422861

  20. Synthesis, biological and modeling studies of 1,3-di-n-propyl-2,4-dioxo-6-methyl-8-(substituted) 1,2,3,4-tetrahydro [1,2,4]-triazolo [3,4-f]-purines as adenosine receptor antagonists.

    PubMed

    Pastorin, G; Bolcato, C; Cacciari, B; Kachler, S; Klotz, K-N; Montopoli, C; Moro, S; Spalluto, G

    2005-08-01

    A new series of potential adenosine receptor antagonists with a [1,2,4]-triazolo-[3,4-f]-purine structure bearing at the 1 and 3 position n-propyl groups have been synthesized, and their affinities at the four human adenosine receptor subtypes (A(1), A(2A), A(2B) and A(3)) have been evaluated. In this case the presence of n-propyl groups seems to induce potency at the A(2A) and A(3) adenosine receptor subtypes as opposed to our previously reported series bearing methyl substituents at the 1 and 3 positions. In particular the non-acylated derivative 17 showed affinity at these two receptor subtypes in the micromolar range. Indeed, preliminary molecular modeling investigations according to the experimental binding data indicate a modest steric and electrostatic antagonist-receptor complementarity.

  1. NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress.

    PubMed

    Zhu, Xinjian; Dong, Jingde; Shen, Kai; Bai, Ying; Zhang, Yuan; Lv, Xuan; Chao, Jie; Yao, Honghong

    2015-05-01

    The N-methyl-d-aspartate (NMDA) receptor plays an important role in the pathophysiology of several neurological diseases, including epilepsy. The present study investigated the effect of NMDA receptor NR2B subunits on pentylenetetrazole (PTZ)-kindling-induced pathological and biochemical events in mice. Our results showed that PTZ-kindling up-regulates the expression of NMDA receptor NR2B subunits in the hippocampus and that kindled mice were characterized by significant astrocytosis and neuron loss in the hippocampus. Oxidative stress, including excessive malondialdehyde (MDA) production and decreased enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were detected in the hippocampus after the mice were fully kindled. Additionally, expression of brain-derived neurotrophic factor (BDNF) in the hippocampus was found to be up-regulated in PTZ-kindled mice. However, selectively blocking NMDA receptor NR2B subunits by ifenprodil significantly suppressed PTZ-kindling-induced hippocampal astrocytosis, oxidative stress and neuron loss. Furthermore, blocking NMDA receptor NR2B subunits also abolished PTZ-kindling-induced BDNF expression. These results indicate that NMDA receptor NR2B subunits contribute to epilepsy-associated pathological and biochemical events, including hippocampal astrocytosis, oxidative stress and neuron loss, and these events might be correlated with up-regulation of BDNF expression.

  2. Diminution of the NMDA receptor NR2B subunit in cortical and subcortical areas of WAG/Rij rats.

    PubMed

    Karimzadeh, Fariba; Soleimani, Mansoureh; Mehdizadeh, Mehdi; Jafarian, Maryam; Mohamadpour, Maliheh; Kazemi, Hadi; Joghataei, Mohammad-Taghi; Gorji, Ali

    2013-12-01

    Modulation of glutamatergic NMDA receptors affects the synchronization of spike discharges in in WAG/Rij rats, a valid genetic animal model of absence epilepsy. In this study, we describe the alteration of NR2B subunit of NMDA receptors expression in WAG/Rij rats in different somatosensory cortical layers and in hippocampal CA1 area. Experimental groups were divided into four groups of six rats of both WAG/Rij and Wistar strains with 2 and 6 months of age. The distribution of NR2B receptors was assessed by immunohistochemical staining in WAG/Rij and compared with age-matched Wistar rats. The expression of NR2B subunit was significantly decreased in different somatosensory cortical layers in 2- and 6-month-old WAG/Rij rats. In addition, the distribution of NR2B in hippocampal CA1 area was lower in 6-month-old WAG/Rij compared with age-matched Wistar rats. The reduction of NR2B receptors in different brain areas points to disturbance of glutamate receptors expression in cortical and subcortical areas in WAG/Rij rats. An altered subunit assembly of NMDA receptors may underlie cortical hyperexcitability in absence epilepsy.

  3. Electroacupuncture-induced neuroprotection against focal cerebral ischemia in the rat is mediated by adenosine A1 receptors

    PubMed Central

    Dai, Qin-xue; Geng, Wu-jun; Zhuang, Xiu-xiu; Wang, Hong-fa; Mo, Yun-chang; Xin, He; Chen, Jiang-fan; Wang, Jun-lu

    2017-01-01

    The activation of adenosine A1 receptors is important for protecting against ischemic brain injury and pretreatment with electroacupuncture has been shown to mitigate ischemic brain insult. The aim of this study was to test whether the adenosine A1 receptor mediates electroacupuncture pretreatment-induced neuroprotection against ischemic brain injury. We first performed 30 minutes of electroacupuncture pretreatment at the Baihui acupoint (GV20), delivered with a current of 1 mA, a frequency of 2/15 Hz, and a depth of 1 mm. High-performance liquid chromatography found that adenosine triphosphate and adenosine levels peaked in the cerebral cortex at 15 minutes and 120 minutes after electroacupuncture pretreatment, respectively. We further examined the effect of 15 or 120 minutes electroacupuncture treatment on ischemic brain injury in a rat middle cerebral artery-occlusion model. We found that at 24 hours reperfusion,120 minutes after electroacupuncture pretreatment, but not for 15 minutes, significantly reduced behavioral deficits and infarct volumes. Last, we demonstrated that the protective effect gained by 120 minutes after electroacupuncture treatment before ischemic injury was abolished by pretreatment with the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (1 mg/kg, intraperitoneally). Our results suggest that pretreatment with electroacupuncture at the Baihui acupoint elicits protection against transient cerebral ischemia via action at adenosine A1 receptors.

  4. Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling.

    PubMed

    Rudich, Noam; Dekel, Ornit; Sagi-Eisenberg, Ronit

    2015-05-01

    Adenosine activated mast cells have been long implicated in allergic asthma and studies in rodent mast cells have assigned the A3 adenosine receptor (A3R) a primary role in mediating adenosine responses. Here we analyzed the functional impact of A3R activation on genes that are implicated in tissue remodeling in severe asthma in the human mast cell line HMC-1 that shares similarities with lung derived human mast cells. Quantitative real time PCR demonstrated upregulation of IL6, IL8, VEGF, amphiregulin and osteopontin. Moreover, further upregulation of these genes was noted upon the addition of dexamethasone. Unexpectedly, activated A3R down regulated its own expression and knockdown of the receptor replicated the pattern of agonist induced gene upregulation. This study therefore identifies the human mast cell A3R as regulator of tissue remodeling gene expression in human mast cells and demonstrates a heretofore-unrecognized mode of feedback regulation that is exerted by this receptor.

  5. Effect of adenosine and adenosine analogues on cyclic AMP accumulation in cultured mesangial cells and isolated glomeruli of the rat.

    PubMed Central

    Olivera, A.; Lopez-Novoa, J. M.

    1992-01-01

    1. Changes in intracellular levels of adenosine 3':5'-cyclic monophosphate (cyclic AMP) were studied in rat isolated glomeruli and cultured glomerular mesangial cells exposed to adenosine and to the preferential A1 receptor agonist N6-R-1-methyl-2-phenylethyl adenosine (R-PIA), or the potent A2 adenosine receptor agonist 5-(N-ethylcarboxamide)adenosine (NECA). 2. Whereas NECA and adenosine triggered a dose-dependent increase in cyclic AMP values with EC50 values of approximately 10(-6) M and 3 x 10(-5) M respectively, R-PIA lowered cyclic AMP levels at concentrations of 10(-6) M or less and increased them at higher concentrations. 3. The time-course of the increase induced by 10(-6) M NECA was slower than that induced by 10(-4) M adenosine. Adenosine produced a maximal stimulation within the first minute, whereas the effect of NECA in both glomeruli and mesangial cells was noticeable only from the second minute of incubation. 4. The effects of the agonists R-PIA and NECA on the cyclic AMP system were blocked respectively by the A1 adenosine receptor antagonist, 8-cyclopentyl-1, 3-dipropylxanthihe (DPCPX) at 10(-6) M and the A2 antagonist N-(2-dimethylaminoethyl)-N-methyl-4-(2, 3, 6, 7-tetrahydro-2,b-dioxo-1, 3-dipropyl-1H-purin-8-yl) benzene sulphonamide (PD115,199) at 10(-6) M. Theophylline, a known antagonist of adenosine receptors, inhibited the action of adenosine on cyclic AMP in mesangial cells. Dipyridamole, an inhibitor of the uptake of adenosine by the cells, enhanced the response to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1330173

  6. A covalent antagonist for the human adenosine A2A receptor.

    PubMed

    Yang, Xue; Dong, Guo; Michiels, Thomas J M; Lenselink, Eelke B; Heitman, Laura; Louvel, Julien; IJzerman, Ad P

    2016-12-03

    The structure of the human A2A adenosine receptor has been elucidated by X-ray crystallography with a high affinity non-xanthine antagonist, ZM241385, bound to it. This template molecule served as a starting point for the incorporation of reactive moieties that cause the ligand to covalently bind to the receptor. In particular, we incorporated a fluorosulfonyl moiety onto ZM241385, which yielded LUF7445 (4-((3-((7-amino-2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a][1, 3, 5]triazin-5-yl)amino)propyl)carbamoyl)benzene sulfonyl fluoride). In a radioligand binding assay, LUF7445 acted as a potent antagonist, with an apparent affinity for the hA2A receptor in the nanomolar range. Its apparent affinity increased with longer incubation time, suggesting an increasing level of covalent binding over time. An in silico A2A-structure-based docking model was used to study the binding mode of LUF7445. This led us to perform site-directed mutagenesis of the A2A receptor to probe and validate the target lysine amino acid K153 for covalent binding. Meanwhile, a functional assay combined with wash-out experiments was set up to investigate the efficacy of covalent binding of LUF7445. All these experiments led us to conclude LUF7445 is a valuable molecular tool for further investigating covalent interactions at this receptor. It may also serve as a prototype for a therapeutic approach in which a covalent antagonist may be needed to counteract prolonged and persistent presence of the endogenous ligand adenosine.

  7. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    PubMed

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  8. The role of the second and third extracellular loops of the adenosine A1 receptor in activation and allosteric modulation.

    PubMed

    Peeters, M C; Wisse, L E; Dinaj, A; Vroling, B; Vriend, G; Ijzerman, A P

    2012-07-01

    The adenosine A1 receptor is a member of the large membrane protein family that signals through G proteins, the G protein-coupled receptors (GPCRs). GPCRs consist of seven transmembrane domains connected by three intracellular and three extracellular loops. Their N-terminus is extracellular, the C-terminal tail is in the cytoplasm. The transmembrane domains in receptor subfamilies that bind the same endogenous ligand, such as dopamine or adenosine, tend to be highly similar. In contrast, the loop regions can vary greatly, both in sequence and in length, and the role these loops have in the activation mechanism of the receptors remains unclear. Here, we investigated the activating role of the second and third extracellular loop of the human adenosine A1 receptor. By means of an (Ala)3 mutagenic scan in which consecutive sets of three amino acids were mutated into alanine residues in EL2 and a classical alanine scan in EL3, we revealed a strong regulatory role for the second extracellular loop (EL2) of the human adenosine A1 receptor. Besides many residues in the second and the third extracellular loops important for adenosine A1 receptor activation, we also identified two residues in EL2, a tryptophan and a glutamate, that affect the influence of the allosteric modulator PD81,723. These results, combined with a comparison of the different receptor loop regions, provide insight in the activation mechanism of this typical class A GPCR and further emphasize the unique pharmacological profile the loops can provide to individual receptors, even within subfamilies of GPCRs.

  9. Postsynaptic Adenosine A2A Receptors Modulate Intrinsic Excitability of Pyramidal Cells in the Rat Basolateral Amygdala

    PubMed Central

    Rau, Andrew R.; Ariwodola, Olusegun J.

    2015-01-01

    Background: The basolateral amygdala plays a critical role in the etiology of anxiety disorders and addiction. Pyramidal neurons, the primary output cells of this region, display increased firing following exposure to stressors, and it is thought that this increase in excitability contributes to stress responsivity and the expression of anxiety-like behaviors. However, much remains unknown about the underlying mechanisms that regulate the intrinsic excitability of basolateral amygdala pyramidal neurons. Methods: Ex vivo gramicidin perforated patch recordings were conducted in current clamp mode where hyper- and depolarizing current steps were applied to basolateral amygdala pyramidal neurons to assess the effects of adenosine A2A receptor modulation on intrinsic excitability. Results: Activation of adenosine A2A receptors with the selective A2A receptor agonist CGS-21680 significantly increased the firing rate of basolateral amygdala pyramidal neurons in rat amygdala brain slices, likely via inhibition of the slow afterhyperpolarization potential. Both of these A2A receptor-mediated effects were blocked by preapplication of a selective A2A receptor antagonist (ZM-241385) or by intra-pipette infusion of a protein kinase A inhibitor, suggesting a postsynaptic locus of A2A receptors on basolateral amygdala pyramidal neurons. Interestingly, bath application of the A2A receptor antagonist alone significantly attenuated basolateral amygdala pyramidal cell firing, consistent with a role for tonic adenosine in the regulation of the intrinsic excitability of these neurons. Conclusions: Collectively, these data suggest that adenosine, via activation of A2A receptors, may directly facilitate basolateral amygdala pyramidal cell output, providing a possible balance for the recently described inhibitory effects of adenosine A1 receptor activation on glutamatergic excitation of basolateral amygdala pyramidal cells. PMID:25716780

  10. Control of cannabinoid CB1 receptor function on glutamate axon terminals by endogenous adenosine acting at A1 receptors.

    PubMed

    Hoffman, Alexander F; Laaris, Nora; Kawamura, Masahito; Masino, Susan A; Lupica, Carl R

    2010-01-13

    Marijuana is a widely used drug that impairs memory through interaction between its psychoactive constituent, Delta-9-tetrahydrocannabinol (Delta(9)-THC), and CB(1) receptors (CB1Rs) in the hippocampus. CB1Rs are located on Schaffer collateral (Sc) axon terminals in the hippocampus, where they inhibit glutamate release onto CA1 pyramidal neurons. This action is shared by adenosine A(1) receptors (A1Rs), which are also located on Sc terminals. Furthermore, A1Rs are tonically activated by endogenous adenosine (eADO), leading to suppressed glutamate release under basal conditions. Colocalization of A1Rs and CB1Rs, and their coupling to shared components of signal transduction, suggest that these receptors may interact. We examined the roles of A1Rs and eADO in regulating CB1R inhibition of glutamatergic synaptic transmission in the rodent hippocampus. We found that A1R activation by basal or experimentally increased levels of eADO reduced or eliminated CB1R inhibition of glutamate release, and that blockade of A1Rs with caffeine or other antagonists reversed this effect. The CB1R-A1R interaction was observed with the agonists WIN55,212-2 and Delta(9)-THC and during endocannabinoid-mediated depolarization-induced suppression of excitation. A1R control of CB1Rs was stronger in the C57BL/6J mouse hippocampus, in which eADO levels were higher than in Sprague Dawley rats, and the eADO modulation of CB1R effects was absent in A1R knock-out mice. Since eADO levels and A1R activation are regulated by homeostatic, metabolic, and pathological factors, these data identify a mechanism in which CB1R function can be controlled by the brain adenosine system. Additionally, our data imply that caffeine may potentiate the effects of marijuana on hippocampal function.

  11. Peripheral Adenosine A3 Receptor Activation Causes Regulated Hypothermia in Mice That Is Dependent on Central Histamine H1 Receptors.

    PubMed

    Carlin, Jesse Lea; Tosh, Dilip K; Xiao, Cuiying; Piñol, Ramón A; Chen, Zhoumou; Salvemini, Daniela; Gavrilova, Oksana; Jacobson, Kenneth A; Reitman, Marc L

    2016-02-01

    Adenosine can induce hypothermia, as previously demonstrated for adenosine A1 receptor (A1AR) agonists. Here we use the potent, specific A3AR agonists MRS5698, MRS5841, and MRS5980 to show that adenosine also induces hypothermia via the A3AR. The hypothermic effect of A3AR agonists is independent of A1AR activation, as the effect was fully intact in mice lacking A1AR but abolished in mice lacking A3AR. A3AR agonist-induced hypothermia was attenuated by mast cell granule depletion, demonstrating that the A3AR hypothermia is mediated, at least in part, via mast cells. Central agonist dosing had no clear hypothermic effect, whereas peripheral dosing of a non-brain-penetrant agonist caused hypothermia, suggesting that peripheral A3AR-expressing cells drive the hypothermia. Mast cells release histamine, and blocking central histamine H1 (but not H2 or H4) receptors prevented the hypothermia. The hypothermia was preceded by hypometabolism and mice with hypothermia preferred a cooler environmental temperature, demonstrating that the hypothermic state is a coordinated physiologic response with a reduced body temperature set point. Importantly, hypothermia is not required for the analgesic effects of A3AR agonists, which occur with lower agonist doses. These results support a mechanistic model for hypothermia in which A3AR agonists act on peripheral mast cells, causing histamine release, which stimulates central histamine H1 receptors to induce hypothermia. This mechanism suggests that A3AR agonists will probably not be useful for clinical induction of hypothermia.

  12. Peripheral Adenosine A3 Receptor Activation Causes Regulated Hypothermia in Mice That Is Dependent on Central Histamine H1 Receptors

    PubMed Central

    Carlin, Jesse Lea; Tosh, Dilip K.; Xiao, Cuiying; Piñol, Ramón A.; Chen, Zhoumou; Salvemini, Daniela; Gavrilova, Oksana; Jacobson, Kenneth A.

    2016-01-01

    Adenosine can induce hypothermia, as previously demonstrated for adenosine A1 receptor (A1AR) agonists. Here we use the potent, specific A3AR agonists MRS5698, MRS5841, and MRS5980 to show that adenosine also induces hypothermia via the A3AR. The hypothermic effect of A3AR agonists is independent of A1AR activation, as the effect was fully intact in mice lacking A1AR but abolished in mice lacking A3AR. A3AR agonist–induced hypothermia was attenuated by mast cell granule depletion, demonstrating that the A3AR hypothermia is mediated, at least in part, via mast cells. Central agonist dosing had no clear hypothermic effect, whereas peripheral dosing of a non–brain-penetrant agonist caused hypothermia, suggesting that peripheral A3AR-expressing cells drive the hypothermia. Mast cells release histamine, and blocking central histamine H1 (but not H2 or H4) receptors prevented the hypothermia. The hypothermia was preceded by hypometabolism and mice with hypothermia preferred a cooler environmental temperature, demonstrating that the hypothermic state is a coordinated physiologic response with a reduced body temperature set point. Importantly, hypothermia is not required for the analgesic effects of A3AR agonists, which occur with lower agonist doses. These results support a mechanistic model for hypothermia in which A3AR agonists act on peripheral mast cells, causing histamine release, which stimulates central histamine H1 receptors to induce hypothermia. This mechanism suggests that A3AR agonists will probably not be useful for clinical induction of hypothermia. PMID:26606937

  13. Influence of adenosine receptors on the development of caerulein-induced acute pancreatitis.

    PubMed

    Szczerbiński, Mariusz; Celiński, Krzysztof; Słomka, Maria; Kasztelan-Szczerbińska, Beata; Cichoz-Lach, Halina

    2002-01-01

    Acute pancreatitis leads to hypoxia caused by vasoconstriction and to activation of lysosomal and digestive enzymes resulting in pancreas autodigestion and damage. This causes activation of leucocytes and increased expression of adhesive molecules enabling margination and adhesion of activated leucocytes to the endothelium. Activated leucocytes are the source of proinflammatory cytokins and oxygen-free radicals which intensify the inflammatory response. The reports indicating that adenosine may prevent activation of the above-mentioned processes in ischaemia prompted us to undertake this study. The study was performed in two stages. The first stage was to evaluate the effects of agonists and antagonists of adenosine receptors on normal pancreas while the second one was to determine the influence of these substances on the development of caerulein-induced acute pancreatitis. During the first stage, the animals were injected intraperitoneally with the substances examined: the A1 receptor antagonist--DPCPX, the A2 receptor agonist--CGS 21680, the A2 receptor antagonist--ZM 241385 and the A3 receptor agonist--IB-MECA and then received intravenous saline. The control animals were subjected only to the 12 h intravenous infusion of 0.15 M NaCl. During the second stage, after the intraperitoneal administration of adenosine receptor agonists and antagonists (as in the first stage), acute pancreatitis was induced with the 12 h intravenous infusion of 5 micrograms/kg/h caerulein. Identical acute pancreatitis was induced in the control animals, however no other substances were administered. The pancreatic tissue samples were collected directly after intravenous infusion. The severity of inflammatory processes in the pancreas was evaluated on the basis of the plasma amylase activity, pancreatic weight and enhancement of histopathological changes observed in this organ. In the animals infused with saline alone, no effects of the substances examined on the pancreatic weight

  14. Regulation of PINK1 by NR2B-containing NMDA receptors in ischemic neuronal injury.

    PubMed

    Shan, Yuexin; Liu, Baosong; Li, Lijun; Chang, Ning; Li, Lei; Wang, Hanbin; Wang, Dianshi; Feng, Hua; Cheung, Carol; Liao, Mingxia; Cui, Tianyuan; Sugita, Shuzo; Wan, Qi

    2009-12-01

    Dysfunction of PTEN-induced kinase-1 (PINK1) is implicated in neurodegeneration. We report here that oxygen-glucose deprivation (OGD), an in vitro insult mimicking ischemic neuron injury, resulted in a significant reduction of PINK1 protein expression in cultured cortical neurons. The decrease of PINK1 expression was blocked by the antagonists of NMDA receptors. We revealed that the overactivation of NR2B-containing NMDA receptors (NR2BRs) was responsible for the OGD-induced PINK1 reduction. The overactivated NR2BRs also inhibited the phosphorylation, but not the protein expression, of the cell survival-promoting kinase Akt after OGD insult, indicating that OGD-induced reduction of PINK1 protein is specific in the injury paradigm. We further showed that enhancing the protein expression of PINK1 antagonized OGD-induced reduction of Akt phosphorylation, suggesting that Akt may be a downstream target of PINK1 in ischemic neuron injury. Importantly, we provided evidence that both NR2BR antagonist and PINK1 over-expression protected against OGD-induced neuronal death. These results suggest that the overactivation of NR2BRs may contribute to ischemic neuron death through suppressing PINK1-dependent survival signaling. Thus, selectively antagonizing NR2BR signal pathway-induced neurotoxicity may be a potential neuroprotection strategy.

  15. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease.

    PubMed

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E; Franco, Rafael

    2011-12-01

    Several selective antagonists for adenosine A(2A) receptors (A(2A)R) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson's disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D₂ and adenosine A(2A) receptors in the basal ganglia. At present it is believed that A(2A)R antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson's patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A(2A)R antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized antiparkinsonian drug therapy, namely the existence of (hetero)dimers/oligomers of G protein-coupled receptors, a topic that is currently the focus of intense debate within the scientific community. Dopamine D₂ receptors (D₂Rs) expressed in the striatum are known to form heteromers with A(2A) adenosine receptors. Thus, the development of heteromer-specific A(2A) receptor antagonists represents a promising strategy for the identification of more selective and safer drugs.

  16. Predicting Subtype Selectivity for Adenosine Receptor Ligands with Three-Dimensional Biologically Relevant Spectrum (BRS-3D)

    PubMed Central

    He, Song-Bing; Ben Hu; Kuang, Zheng-Kun; Wang, Dong; Kong, De-Xin

    2016-01-01

    Adenosine receptors (ARs) are potential therapeutic targets for Parkinson’s disease, diabetes, pain, stroke and cancers. Prediction of subtype selectivity is therefore important from both therapeutic and mechanistic perspectives. In this paper, we introduced a shape similarity profile as molecular descriptor, namely three-dimensional biologically relevant spectrum (BRS-3D), for AR selectivity prediction. Pairwise regression and discrimination models were built with the support vector machine methods. The average determination coefficient (r2) of the regression models was 0.664 (for test sets). The 2B-3 (A2B vs A3) model performed best with q2 = 0.769 for training sets (10-fold cross-validation), and r2 = 0.766, RMSE = 0.828 for test sets. The models’ robustness and stability were validated with 100 times resampling and 500 times Y-randomization. We compared the performance of BRS-3D with 3D descriptors calculated by MOE. BRS-3D performed as good as, or better than, MOE 3D descriptors. The performances of the discrimination models were also encouraging, with average accuracy (ACC) 0.912 and MCC 0.792 (test set). The 2A-3 (A2A vs A3) selectivity discrimination model (ACC = 0.882 and MCC = 0.715 for test set) outperformed an earlier reported one (ACC = 0.784). These results demonstrated that, through multiple conformation encoding, BRS-3D can be used as an effective molecular descriptor for AR subtype selectivity prediction. PMID:27812030

  17. Predicting Subtype Selectivity for Adenosine Receptor Ligands with Three-Dimensional Biologically Relevant Spectrum (BRS-3D)

    NASA Astrophysics Data System (ADS)

    He, Song-Bing; Ben Hu; Kuang, Zheng-Kun; Wang, Dong; Kong, De-Xin

    2016-11-01

    Adenosine receptors (ARs) are potential therapeutic targets for Parkinson’s disease, diabetes, pain, stroke and cancers. Prediction of subtype selectivity is therefore important from both therapeutic and mechanistic perspectives. In this paper, we introduced a shape similarity profile as molecular descriptor, namely three-dimensional biologically relevant spectrum (BRS-3D), for AR selectivity prediction. Pairwise regression and discrimination models were built with the support vector machine methods. The average determination coefficient (r2) of the regression models was 0.664 (for test sets). The 2B-3 (A2B vs A3) model performed best with q2 = 0.769 for training sets (10-fold cross-validation), and r2 = 0.766, RMSE = 0.828 for test sets. The models’ robustness and stability were validated with 100 times resampling and 500 times Y-randomization. We compared the performance of BRS-3D with 3D descriptors calculated by MOE. BRS-3D performed as good as, or better than, MOE 3D descriptors. The performances of the discrimination models were also encouraging, with average accuracy (ACC) 0.912 and MCC 0.792 (test set). The 2A-3 (A2A vs A3) selectivity discrimination model (ACC = 0.882 and MCC = 0.715 for test set) outperformed an earlier reported one (ACC = 0.784). These results demonstrated that, through multiple conformation encoding, BRS-3D can be used as an effective molecular descriptor for AR subtype selectivity prediction.

  18. Selected C8 two-chain linkers enhance the adenosine A1/A2A receptor affinity and selectivity of caffeine.

    PubMed

    van der Walt, M M; Terre'Blanche, G

    2017-01-05

    Recent research exploring C8 substitution on the caffeine core identified 8-(2-phenylethyl)-1,3,7-trimethylxanthine as a non-selective adenosine receptor antagonist. To elaborate further, we included various C8 two-chain-length linkers to enhance adenosine receptor affinity. The results indicated that the unsubstituted benzyloxy linker (1e A1Ki = 1.52 μM) displayed the highest affinity for the A1 adenosine receptor and the para-chloro-substituted phenoxymethyl (1d A2AKi = 1.33 μM) linker the best A2A adenosine receptor affinity. The position of the oxygen revealed that the phenoxymethyl linker favoured A1 adenosine receptor selectivity over the benzyloxy linker and, by introducing a para-chloro substituent, A2A adenosine receptor selectivity was obtained. Selected compounds (1c, 1e) behaved as A1 adenosine receptor antagonists in GTP shift assays and therefore represent selective and non-selective A1 and A2A adenosine receptor antagonists that may have potential for treating neurological disorders.

  19. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction

    PubMed Central

    Hurtado-Alvarado, Gabriela; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier

    2016-01-01

    Chronic sleep restriction induces blood-brain barrier disruption and increases pro-inflammatory mediators in rodents. Those inflammatory mediators may modulate the blood-brain barrier and constitute a link between sleep loss and blood-brain barrier physiology. We propose that adenosine action on its A2A receptor may be modulating the blood-brain barrier dynamics in sleep-restricted rats. We administrated a selective A2A adenosine receptor antagonist (SCH58261) in sleep-restricted rats at the 10th day of sleep restriction and evaluated the blood-brain barrier permeability to dextrans coupled to fluorescein (FITC-dextrans) and Evans blue. In addition, we evaluated by western blot the expression of tight junction proteins (claudin-5, occludin, ZO-1), adherens junction protein (E-cadherin), A2A adenosine receptor, adenosine-synthesizing enzyme (CD73), and neuroinflammatory markers (Iba-1 and GFAP) in the cerebral cortex, hippocampus, basal nuclei and cerebellar vermis. Sleep restriction increased blood-brain barrier permeability to FITC-dextrans and Evans blue, and the effect was reverted by the administration of SCH58261 in almost all brain regions, excluding the cerebellum. Sleep restriction increased the expression of A2A adenosine receptor only in the hippocampus and basal nuclei without changing the expression of CD73 in all brain regions. Sleep restriction reduced the expression of tight junction proteins in all brain regions, except in the cerebellum; and SCH58261 restored the levels of tight junction proteins in the cortex, hippocampus and basal nuclei. Finally, sleep restriction induced GFAP and Iba-1 overexpression that was attenuated with the administration of SCH58261. These data suggest that the action of adenosine on its A2A receptor may have a crucial role in blood-brain barrier dysfunction during sleep loss probably by direct modulation of brain endothelial cell permeability or through a mechanism that involves gliosis with subsequent inflammation and

  20. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases.

    PubMed Central

    Lai, F; Chen, C X; Carter, K C; Nishikura, K

    1997-01-01

    Double-stranded (ds) RNA-specific adenosine deaminase converts adenosine residues into inosines in dsRNA and edits transcripts of certain cellular and viral genes such as glutamate receptor (GluR) subunits and hepatitis delta antigen. The first member of this type of deaminase, DRADA1, has been recently cloned based on the amino acid sequence information derived from biochemically purified proteins. Our search for DRADA1-like genes through expressed sequence tag databases led to the cloning of the second member of this class of enzyme, DRADA2, which has a high degree of sequence homology to DRADA1 yet exhibits a distinctive RNA editing site selectivity. There are four differentially spliced isoforms of human DRADA2. These different isoforms of recombinant DRADA2 proteins, including one which is a human homolog of the recently reported rat RED1, were analyzed in vitro for their GluR B subunit (GluR-B) RNA editing site selectivity. As originally reported for rat RED1, the DRADA2a and -2b isoforms edit GluR-B RNA efficiently at the so-called Q/R site, whereas DRADA1 barely edits this site. In contrast, the R/G site of GluR-B RNA was edited efficiently by the DRADA2a and -2b isoforms as well as DRADA1. Isoforms DRADA2c and -2d, which have a distinctive truncated shorter C-terminal structure, displayed weak adenosine-to-inosine conversion activity but no editing activity tested at three known sites of GluR-B RNA. The possible role of these DRADA2c and -2d isoforms in the regulatory mechanism of RNA editing is discussed. PMID:9111310

  1. GluN2B-containing NMDA receptors promote glutamate synapse development in hippocampal interneurons.

    PubMed

    Kelsch, Wolfgang; Li, Zhijun; Wieland, Sebastian; Senkov, Oleg; Herb, Anne; Göngrich, Christina; Monyer, Hannah

    2014-11-26

    In postnatal development, GluN2B-containing NMDARs are critical for the functional maturation of glutamatergic synapses. GluN2B-containing NMDARs prevail until the second postnatal week when GluN2A subunits are progressively added, conferring mature properties to NMDARs. In cortical principal neurons, deletion of GluN2B results in an increase in functional AMPAR synapses, suggesting that GluN2B-containing NMDARs set a brake on glutamate synapse maturation. The function of GluN2B in the maturation of glutamatergic inputs to cortical interneurons is not known. To examine the function of GluN2B in interneurons, we generated mutant mice with conditional deletion of GluN2B in interneurons (GluN2B(ΔGAD67)). In GluN2B(ΔGAD67) mice interneurons distributed normally in cortical brain regions. After the second postnatal week, GluN2B(ΔGAD67) mice developed hippocampal seizures and died shortly thereafter. Before the onset of seizures, GluN2B-deficient hippocampal interneurons received fewer glutamatergic synaptic inputs than littermate controls, indicating that GluN2B-containing NMDARs positively regulate the maturation of glutamatergic input synapses in interneurons. These findings suggest that GluN2B-containing NMDARs keep the circuit activity under control by promoting the maturation of excitatory synapses in interneurons.

  2. Rab8 Interacts with Distinct Motifs in α2B- and β2-Adrenergic Receptors and Differentially Modulates Their Transport*

    PubMed Central

    Dong, Chunmin; Yang, Lingling; Zhang, Xiaoping; Gu, Hua; Lam, May L.; Claycomb, William C.; Xia, Houhui; Wu, Guangyu

    2010-01-01

    The molecular mechanism underlying the post-Golgi transport of G protein-coupled receptors (GPCRs) remains poorly understood. Here we determine the role of Rab8 GTPase, which modulates vesicular protein transport between the trans-Golgi network (TGN) and the plasma membrane, in the cell surface targeting of α2B- and β2-adrenergic receptors (AR). Transient expression of GDP- and GTP-bound Rab8 mutants and short hairpin RNA-mediated knockdown of Rab8 more potently inhibited the cell surface expression of α2B-AR than β2-AR. The GDP-bound Rab8(T22N) mutant attenuated ERK1/2 activation by α2B-AR, but not β2-AR, and arrested α2B-AR in the TGN compartment. Co-immunoprecipitation revealed that both α2B-AR and β2-AR physically interacted with Rab8 and glutathione S-transferase fusion protein pulldown assays demonstrated that Rab8 interacted with the C termini of both receptors. Interestingly, mutation of the highly conserved membrane-proximal C terminus dileucine motif selectively blocked β2-AR interaction with Rab8, whereas mutation of residues Val431-Phe432-Asn433-Gln434, Pro447-Trp448, Gln450-Thr451, and Trp453 in the C terminus impaired α2B-AR interaction with Rab8. Furthermore, transport inhibition by Rab8(T22N) of a chimeric β2-AR carrying the α2B-AR C terminus was similar to α2B-AR. These data provide strong evidence indicating that Rab8 GTPase interacts with distinct motifs in the C termini of α2B-AR and β2-AR and differentially modulates their traffic from the TGN to the cell surface. PMID:20424170

  3. A2A Adenosine Receptor Antagonism Enhances Synaptic and Motor Effects of Cocaine via CB1 Cannabinoid Receptor Activation

    PubMed Central

    Tozzi, Alessandro; de Iure, Antonio; Marsili, Valentina; Romano, Rosaria; Tantucci, Michela; Di Filippo, Massimiliano; Costa, Cinzia; Napolitano, Francesco; Mercuri, Nicola Biagio; Borsini, Franco; Giampà, Carmen; Fusco, Francesca Romana; Picconi, Barbara; Usiello, Alessandro; Calabresi, Paolo

    2012-01-01

    Background Cocaine increases the level of endogenous dopamine (DA) in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs) have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. Principal Findings Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. Conclusions The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine. PMID:22715379

  4. Association between the NMDA glutamate receptor GRIN2B gene and obsessive–compulsive disorder

    PubMed Central

    Alonso, Pino; Gratacós, Mónica; Segalàs, Cinto; Escaramís, Georgia; Real, Eva; Bayés, Mónica; Labad, Javier; López-Solà, Clara; Estivill, Xavier; Menchón, José M.

    2012-01-01

    Background Recent data from neuroimaging, genetic and clinical trials and animal models suggest a role for altered glutamatergic neurotransmission in the pathogenesis of obsessive–compulsive disorder (OCD). The aim of this study was to investigate whether variants in the GRIN2B gene, the gene encoding the NR2 subunit of the N-methyl-d-aspartate (NMDA) glutamate receptor, may contribute to genetic susceptibility to OCD or to different OCD subphenotypes. Methods Between 2003 and 2008, we performed a case–control association study in which we genotyped 10 tag single-nucleotide polymorphisms (SNPs) in the 3′ untranslated region (3′ UTR) of GRIN2B. We performed SNP association and haplotype analysis considering the OCD diagnosis and different OCD subphenotypes: early-onset OCD, comorbid tic disorders and OCD clinical symptom dimensions. Results We enrolled 225 patients with OCD and 279 controls recruited from the OCD Clinic at Bellvitge Hospital (Barcelona, Spain). No significant difference in the distribution of alleles or genotypes was detected between patients with OCD and controls. Nonetheless, on analyzing OCD subphenotypes, the rs1805476 SNP in male patients (95% confidence interval [CI] 1.37–4.22, p = 0.002) and a 4-SNP haplotype in the whole sample (rs1805476, rs1805501, rs1805502 and rs1805477; odds ratio 1.92, 95% CI 1.22–3.01; permutation p = 0.023) were significantly associated with the presence of contamination obsessions and cleaning compulsions. Limitations Study limitations included the risk of population stratification associated with the case–control design, use of psychiatrically unscreened blood donors as the control group, reduced sample size of participants with certain OCD subphenotypes and tested polymorphisms limited to 3′ UTR and exon 13 of GRIN2B. Conclusion Our results converge with recent data suggesting a possible contribution of glutamatergic variants to the genetic vulnerability to OCD or at least to certain OCD

  5. Identification, functional characterization, and pharmacological profile of a serotonin type-2b receptor in the medically important insect, Rhodnius prolixus

    PubMed Central

    Paluzzi, Jean-Paul V.; Bhatt, Garima; Wang, Chang-Hui J.; Zandawala, Meet; Lange, Angela B.; Orchard, Ian

    2015-01-01

    In the Chagas disease vector, Rhodnius prolixus, two diuretic hormones act synergistically to dramatically increase fluid secretion by the Malpighian tubules (MTs) during the rapid diuresis that is initiated upon engorgement of vertebrate blood. One of these diuretic hormones is the biogenic amine, serotonin (5-hydroxytryptamine, 5-HT), which controls a variety of additional activities including cuticle plasticization, salivary gland secretion, anterior midgut absorption, cardioacceleratory activity, and myotropic activities on a number of visceral tissues. To better understand the regulatory mechanisms linked to these various physiological actions of serotonin, we have isolated and characterized a serotonin type 2b receptor in R. prolixus, Rhopr5HTR2b, which shares sequence similarity to the vertebrate serotonin type 2 receptors. Rhopr5HTR2b transcript is enriched in well-recognized physiological targets of serotonin, including the MTs, salivary glands and dorsal vessel (i.e., insect heart). Notably, Rhopr5HTR2b was not enriched in the anterior midgut where serotonin stimulates absorption and elicits myotropic control. Using a heterologous functional receptor assay, we examined Rhopr5HTR2b activation characteristics and its sensitivity to potential agonists, antagonists, and other biogenic amines. Rhopr5HTR2b is dose-dependently activated by serotonin with an EC50 in the nanomolar range. Rhopr5HTR2b is sensitive to alpha-methyl serotonin and is inhibited by a variety of serotonin receptor antagonists, including propranolol, spiperone, ketanserin, mianserin, and cyproheptadine. In contrast, the cardioacceleratory activity of serotonin revealed a unique pharmacological profile, with no significant response induced by alpha-methyl serotonin and insensitivity to ketanserin and mianserin. This distinct agonist/antagonist profile indicates that a separate serotonin receptor type may mediate cardiomodulatory effects controlled by serotonin in R. prolixus. PMID:26041983

  6. NR2B-NMDA receptor mediated modulation of the tyrosine phosphatase STEP regulates glutamate induced neuronal cell death

    PubMed Central

    Poddar, Ranjana; Deb, Ishani; Mukherjee, Saibal; Paul, Surojit

    2011-01-01

    The present study examines the role of a neuron-specific tyrosine phosphatase (STEP) in excitotoxic cell death. Our findings demonstrate that p38 MAPK, a stress-activated kinase that is known to play a role in the etiology of excitotoxic cell death is a substrate of STEP. Glutamate-mediated NMDA receptor stimulation leads to rapid but transient activation of p38 MAPK, which is primarily dependent on NR2A-NMDA receptor activation. Conversely, activation of NR2B-NMDA receptors leads to dephosphorylation and subsequent activation of STEP, which in turn leads to inactivation of p38 MAPK. Thus during transient NMDA receptor stimulation, increases in STEP activity appears to limit the duration of activation of p38 MAPK and improves neuronal survival. However, if NR2B-NMDA receptor stimulation is sustained, protective effects of STEP activation are lost, as these stimuli cause significant degradation of active STEP, leading to secondary activation of p38 MAP kinase. Consistent with this observation, a cell transducible TAT-STEP peptide that constitutively binds to p38 MAPK attenuated neuronal cell death caused by sustained NMDA receptor stimulation. The findings imply that the activation and levels of STEP are dependent on the duration and magnitude of NR2B-NMDA receptor stimulation and STEP serves as a modulator of NMDA receptor dependent neuronal injury, through its regulation of p38 MAPK. PMID:21029094

  7. Functional evidence for a 5-HT2B receptor mediating contraction of longitudinal muscle in human small intestine.

    PubMed Central

    Borman, R A; Burleigh, D E

    1995-01-01

    Application of 5-hydroxytryptamine induces contraction of longitudinal muscle strips from human terminal ileum. The response was resistant to antagonism by ketanserin, ondansetron or DAU6285, but was non-surmountably antagonized by methysergide. The selective 5-HT2B/2C receptor antagonist, SB 200646A evoked a concentration-dependent, parallel and dextral displacement of the concentration-response curve to 5-HT, yielding a pA2 estimate of 7.17. Application of yohimbine, a 5-HT1 and 5-HT2B receptor antagonist, also induced a rightward shift of the response curve to 5-HT, yielding a pA2 estimate of 8.10. In conclusion, it appears that a 5-HT2B receptor mediates the contractile response of the longitudinal muscle of human small intestine to 5-HT. PMID:7599919

  8. SULT2B1b sulfotransferase: induction by vitamin D receptor and reduced expression in prostate cancer.

    PubMed

    Seo, Young-Kyo; Mirkheshti, Nooshin; Song, Chung S; Kim, Soyoung; Dodds, Sherry; Ahn, Soon C; Christy, Barbara; Mendez-Meza, Rosario; Ittmann, Michael M; Abboud-Werner, Sherry; Chatterjee, Bandana

    2013-06-01

    An elevated tumor tissue androgen level, which reactivates androgen receptor in recurrent prostate cancer, arises from the intratumor synthesis of 5α-dihydrotestosterone through use of the precursor steroid dehydroepiandrosterone (DHEA) and is fueled by the steroidogenic enzymes 3β-hydroxysteroid dehydrogenase (3β-HSD1), aldoketoreductase (AKR1C3), and steroid 5-alpha reductase, type 1 (SRD5A1) present in cancer tissue. Sulfotransferase 2B1b (SULT2B1b) (in short, SULT2B) is a prostate-expressed hydroxysteroid SULT that converts cholesterol, oxysterols, and DHEA to 3β-sulfates. DHEA metabolism involving sulfonation by SULT2B can potentially interfere with intraprostate androgen synthesis due to reduction of free DHEA pool and, thus, conversion of DHEA to androstenedione. Here we report that in prostatectomy specimens from treatment-naive patients, SULT2B expression is markedly reduced in malignant tissue (P < .001, Mann-Whitney U test) compared with robust expression in adjacent nonmalignant glands. SULT2B was detected in formalin-fixed specimens by immunohistochemistry on individual sections and tissue array. Immunoblotting of protein lysates of frozen cancer and matched benign tissue confirmed immunohistochemistry results. An in-house-developed rabbit polyclonal antibody against full-length human SULT2B was validated for specificity and used in the analyses. Ligand-activated vitamin D receptor induced the SULT2B1 promoter in vivo in mouse prostate and increased SULT2B mRNA and protein levels in vitro in prostate cancer cells. A vitamin D receptor/retinoid X receptor-α-bound DNA element (with a DR7 motif) mediated induction of the transfected SULT2B1 promoter in calcitriol-treated cells. SULT2B knockdown caused an increased proliferation rate of prostate cancer cells upon stimulation by DHEA. These results suggest that the tumor tissue SULT2B level may partly control prostate cancer growth, and its induction in a therapeutic setting may inhibit disease

  9. Synthesis and SAR of thieno[3,2-b]pyridinyl urea derivatives as urotensin-II receptor antagonists.

    PubMed

    Lim, Chae Jo; Oh, Seung Ae; Lee, Byung Ho; Oh, Kwang-Seok; Yi, Kyu Yang

    2014-12-15

    The preparation and SAR profile of thieno[3,2-b]pyridinyl urea derivatives as novel and potent urotensin-II receptor antagonists are described. An activity optimization study, probing the effects of substituents on thieno[3,2-b]pyridinyl core and benzyl group of the piperidinyl moiety, led to the identification of p-fluorobenzyl substituted thieno[3,2-b]pyridinyl urea 6n as a highly potent UT antagonist with an IC50 value of 13nM. Although 6n displays good metabolic stability and low hERG binding activity, it has an unacceptable oral bioavailability.

  10. Influences of NR2B-containing NMDA receptors knockdown on neural activity in hippocampal newborn neurons.

    PubMed

    Li, Zhi-jun; Zhang, Hui-wen; Tang, Na

    2013-08-01

    Adult-born neurons undergo a transient period of plasticity during their integration into the neural circuit. This transient plasticity may involve NMDA receptors containing NR2B, the major subunit expressed at early developmental stages. The main objective of the present study was to investigate the effects of NR2B gene knockdown on the functional integration of the adult-born granule cells generated from the subgranule zone (SGZ) in the hippocampus. The small interfering RNA (siRNA) was used to knock down the NR2B gene in the adult-born hippocampal neurons. In the functional integration test, the mice were exposed to a novel environment (open field arena), and the expression of c-fos was immunohistochemically detected in the hippocampus. After exposure to the novel environment, siRNA-NR2B mice were significantly different from control mice in either the number of squares or the number of rears they crossed, showing decreased horizontal and vertical activity (P<0.05). Moreover, the c-fos expression was increased in both control and siRNA-NR2B mice after open field test. But, it was significantly lower in siRNA-NR2B neurons than in control neurons. It was concluded that the neural activity of newborn neurons is regulated by their own NR2B-containing NMDA glutamate receptors during a short, critical period after neuronal birth.

  11. Persistent reduction of cocaine seeking by pharmacological manipulation of adenosine A1 and A2A receptors during extinction training in rats

    PubMed Central

    O’Neill, Casey E.; Hobson, Benjamin D.; Levis, Sophia C.; Bachtell, Ryan K.

    2014-01-01

    Rationale Adenosine receptor stimulation and blockade has been shown to modulate a variety of cocaine related behaviors. Objectives These studies identify the direct effects of adenosine receptor stimulation on cocaine seeking during extinction training and the persistent effects on subsequent reinstatement to cocaine seeking. Methods Rats self-administered cocaine on a fixed-ratio 1 schedule in daily sessions over 3 weeks. Following 1 week withdrawal, the direct effects of adenosine receptor modulation were tested by administering the adenosine A1 receptor agonist, CPA (0.03 mg/kg and 0.1 mg/kg), the adenosine A2A agonist, CGS 21680 (0.03 mg/kg and 0.1 mg/kg), the presynaptic adenosine A2A receptor antagonist, SCH 442416 (0.3 mg/kg, 1 mg/kg, and 3 mg/kg), or vehicle prior to each of 6 daily extinction sessions. The persistent effects of adenosine receptor modulation during extinction training were subsequently tested on reinstatement to cocaine seeking induced by cues, cocaine, and the dopamine D2 receptor agonist, quinpirole. Results All doses of CPA and CGS 21680 impaired initial extinction responding, however only CPA treatment during extinction produced persistent impairment in subsequent cocaine- and quinpirole-induced seeking. Dissociating CPA treatment from extinction did not alter extinction responding or subsequent reinstatement. Administration of SCH 442416 had no direct effects on extinction responding, but produced dose-dependent persistent impairment of cocaine- and quinpirole-induced seeking. Conclusions These findings demonstrate that adenosine A1 or A2A receptor stimulation directly impair extinction responding. Interestingly, adenosine A1 receptor stimulation or presynaptic adenosine A2A receptor blockade during extinction produces lasting changes in relapse susceptibility. PMID:24562064

  12. Altered thermoregulation via sensitization of A1 adenosine receptors in dietary-restricted rats

    PubMed Central

    Jinka, Tulasi R.; Carlson, Zachary A.; Moore, Jeanette T.

    2010-01-01

    Rationale Evidence links longevity to dietary restriction (DR). A decrease in body temperature (Tb) is thought to contribute to enhanced longevity because lower Tb reduces oxidative metabolism and oxidative stress. It is as yet unclear how DR decreases Tb. Objective Here, we test the hypothesis that prolonged DR decreases Tb by sensitizing adenosine A1 receptors (A1AR) and adenosine-induced cooling. Methods and results Sprague–Dawley rats were dietary restricted using an every-other-day feeding protocol. Rats were fed every other day for 27 days and then administered the A1AR agonist, N6-cyclohexyladenosine (CHA; 0.5 mg/kg, i.p.). Respiratory rate (RR) and subcutaneous Tb measured using IPTT-300 transponders were monitored every day and after drug administration. DR animals displayed lower RR on day 20 and lower Tb on day 22 compared to animals fed ad libitum and displayed a larger response to CHA. In all cases, RR declined before Tb. Contrary to previous reports, a higher dose of CHA (5 mg/kg, i.p.) was lethal in both dietary groups. We next tested the hypothesis that sensitization to the effects of CHA was due to increased surface expression of A1AR within the hypothalamus. We report that the abundance of A1AR in the membrane fraction increases in hypothalamus, but not cortex of DR rats. Conclusion These results suggest that every-other-day feeding lowers Tb via sensitization of thermoregulatory effects of endogenous adenosine by increasing surface expression of A1AR. Discussion Evidence that diet can modulate purinergic signaling has implications for the treatment of stroke, brain injury, epilepsy, and aging. PMID:20186398

  13. Regulation of α2B-Adrenergic Receptor Cell Surface Transport by GGA1 and GGA2

    PubMed Central

    Zhang, Maoxiang; Huang, Wei; Gao, Jie; Terry, Alvin V.; Wu, Guangyu

    2016-01-01

    The molecular mechanisms that control the targeting of newly synthesized G protein-coupled receptors (GPCRs) to the functional destinations remain poorly elucidated. Here, we have determined the role of Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding proteins 1 and 2 (GGA1 and GGA2) in the cell surface transport of α2B-adrenergic receptor2B-AR), a prototypic GPCR, and studied the underlying mechanisms. We demonstrated that knockdown of GGA1 and GGA2 by shRNA and siRNA significantly reduced the cell surface expression of inducibly expressed α2B-AR and arrested the receptor in the perinuclear region. Knockdown of each GGA markedly inhibited the dendritic expression of α2B-AR in primary cortical neurons. Consistently, depleting GGA1 and GGA2 attenuated receptor-mediated signal transduction measured as ERK1/2 activation and cAMP inhibition. Although full length α2B-AR associated with GGA2 but not GGA1, its third intracellular loop was found to directly interact with both GGA1 and GGA2. More interestingly, further mapping of interaction domains showed that the GGA1 hinge region and the GGA2 GAE domain bound to multiple subdomains of the loop. These studies have identified an important function and revealed novel mechanisms of the GGA family proteins in the forward trafficking of a cell surface GPCR. PMID:27901063

  14. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors.

    PubMed

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-03-01

    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen.

  15. Reduced striatal adenosine A2A receptor levels define a molecular subgroup in schizophrenia.

    PubMed

    Villar-Menéndez, Izaskun; Díaz-Sánchez, Sara; Blanch, Marta; Albasanz, José Luis; Pereira-Veiga, Thais; Monje, Alfonso; Planchat, Luis Maria; Ferrer, Isidre; Martín, Mairena; Barrachina, Marta

    2014-04-01

    Schizophrenia (SZ) is a mental disorder of unknown origin. Some scientific evidence seems to indicate that SZ is not a single disease entity, since there are patient groups with clear symptomatic, course and biomarker differences. SZ is characterized by a hyperdopaminergic state related to high dopamine D2 receptor activity. It has also been proposed that there is a hypoadenosynergic state. Adenosine is a nucleoside widely distributed in the organism with neuromodulative and neuroprotective activity in the central nervous system. In the brain, the most abundant adenosine receptors are A1R and A2AR. In the present report, we characterize the presence of both receptors in human postmortem putamens of patients suffering SZ with real time TaqMan PCR, western blotting and radioligand binding assay. We show that A1R levels remain unchanged with respect to age-matched controls, whereas nearly fifty percent of patients have reduced A2AR, at the transcriptional and translational levels. Moreover, we describe how DNA methylation plays a role in the pathological A2AR levels with the bisulfite-sequencing technique. In fact, an increase in 5-methylcytosine percentage in the 5' UTR region of ADORA2A was found in those SZ patients with reduced A2AR levels. Interestingly, there was a relationship between the A2A/β-actin ratio and motor disturbances as assessed with some items of the PANSS, AIMS and SAS scales. Therefore, there may be a subgroup of SZ patients with reduced striatal A2AR levels accompanied by an altered motor phenotype.

  16. Synthesis of Novel Analogs of Cabergoline: Improving Cardiovascular Safety by Removing 5-HT2B Receptor Agonism

    PubMed Central

    2013-01-01

    The dopamine agonist cabergoline has been used to treat prolactinomas, Parkinson’s disease, Cushing’s disease, and sexual dysfunction. However, its clinical use was severely curtailed when it was found that patients taking cabergoline had an increased risk of developing cardiac-valve regurgitation. This potentially life-threatening condition has been associated with drugs, such as cabergoline, that are 5-HT2B receptor agonists. We prepared analogs of cabergoline and have identified several that have limited or no agonism at the 5-HT2B receptor. PMID:23606928

  17. Repetitive systemic morphine alters activity-dependent plasticity of Schaffer-collateral-CA1 pyramidal cell synapses: involvement of adenosine A1 receptors and adenosine deaminase.

    PubMed

    Sadegh, Mehdi; Fathollahi, Yaghoub

    2014-10-01

    The effectiveness of O-pulse stimulation (TPS) for the reversal of O-pattern primed bursts (PB)-induced long-term potentiation (LTP) were examined at the Schaffer-collateral-CA1 pyramidal cell synapses of hippocampal slices derived from rats chronically treated with morphine (M-T). The results showed that slices derived from both control and M-T rats had normal field excitatory postsynaptic potential (fEPSP)-LTP, whereas PS-LTP in slices from M-T rats was significantly greater than that from control slices. When morphine was applied in vitro to slices derived from rats chronically treated with morphine, the augmentation of PS-LTP was not seen. TPS given 30 min after LTP induction failed to reverse the fEPSP- or PS-LTP in both groups of slices. However, TPS delivered in the presence of long-term in vitro morphine caused the PS-LTP reversal. This effect was blocked by the adenosine A1 receptor (A1R) antagonist CPX (200 nM) and furthermore was enhanced by the adenosine deaminase (ADA) inhibitor EHNA (10 μM). Interestingly, TPS given 30 min after LTP induction in the presence of EHNA (10 μM) can reverse LTP in morphine-exposed control slices in vitro. These results suggest adaptive changes in the hippocampus area CA1 in particular in adenosine system following repetitive systemic morphine. Chronic in vivo morphine increases A1R and reduces ADA activity in the hippocampus. Consequently, adenosine can accumulate because of a stimulus train-induced activity pattern in CA1 area and takes the opportunity to work as an inhibitory neuromodulator and also to enable CA1 to cope with chronic morphine. In addition, adaptive mechanisms are differentially working in the dendrite layer rather than the somatic layer of hippocampal CA1.

  18. Adenosine A2 receptor activation ameliorates mitochondrial oxidative stress upon reperfusion through the posttranslational modification of NDUFV2 subunit of complex I in the heart.

    PubMed

    Xu, Jingman; Bian, Xiyun; Liu, Yuan; Hong, Lan; Teng, Tianming; Sun, Yuemin; Xu, Zhelong

    2017-05-01

    While it is well known that adenosine receptor activation protects the heart from ischemia/reperfusion injury, the precise mitochondrial mechanism responsible for the action remains unknown. This study probed the mitochondrial events associated with the cardioprotective effect of 5'-(N-ethylcarboxamido) adenosine (NECA), an adenosine A2 receptor agonist. Isolated rat hearts were subjected to 30min ischemia followed by 10min of reperfusion, whereas H9c2 cells experienced 20min ischemia and 10min reperfusion. NECA prevented mitochondrial structural damage, decreases in respiratory control ratio (RCR), and collapse of mitochondrial membrane potential (ΔΨm). Both the adenosine A2A receptor antagonist SCH58261 and A2B receptor antagonist MRS1706 inhibited the action of NECA. NECA reduced mitochondrial proteins carbonylation, H2O2, and superoxide generation at reperfusion, but did not change superoxide dismutase (SOD) activity. In support, the protective effects of NECA and Peg-SOD on ΔΨm upon reperfusion were additive, implying that NECA's protection is attributable to the reduced superoxide generation but not to the enhancement of the superoxide-scavenging capacity. NECA increased the mitochondrial Src tyrosine kinase activity and suppressed complex I activity at reperfusion in a Src-dependent manner. NECA also reduced mitochondrial superoxide through Src tyrosine kinase. Studies with liquid chromatography-mass spectrometer (LC-MS) identified Tyr118 of the NDUFV2 subunit of complex 1 as a likely site of the tyrosine phosphorylation. Furthermore, the complex I activity of cells transfected with the Y118F mutant was increased, suggesting that this site might be a negative regulator of complex I activity. In support, NECA failed to suppress complex I activity at reperfusion in cells transfected with the Y118F mutant of NDUFV2. In conclusion, NECA prevents mitochondrial oxidative stress by decreasing mitochondrial superoxide generation through inhibition of complex I

  19. Mechanisms intrinsic to 5-HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones.

    PubMed

    Holohean, Alice M; Hackman, John C

    2004-10-01

    In the presence of NMDA receptor open-channel blockers [Mg(2+); (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801); 1-amino-3,5-dimethyladamantane (memantine)] and TTX, high concentrations (30-100 microm) of either 5-hydroxytryptamine (5-HT) or alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT) significantly potentiated NMDA-induced depolarizations of frog spinal cord motoneurones. Potentiation was blocked by LY-53,857 (10-30 microm), SB 206553 (10 microm), and SB 204741 (30 microm), but not by spiroxatrine (10 microm), WAY 100,635 (1-30 microm), ketanserin (10 microm), RS 102221 (10 microm), or RS 39604 (10-20 microm). Therefore, alpha-Me-5-HT's facilitatory effects appear to involve 5-HT(2B) receptors. These effects were G-protein dependent as they were prevented by prior treatment with guanylyl-5'-imidodiphosphate (GMP-PNP, 100 microm) and H-Arg-Pro-Lys-Pro-Gln-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH(2) (GP antagonist 2A, 3-6 microm), but not by pertussis toxin (PTX, 3-6 ng ml(-1), 48 h preincubation). This potentiation was not reduced by protein kinase C inhibition with staurosporine (2.0 microm), U73122 (10 microm) or N-(2-aminoethyl)-5-isoquinolinesulfonamide HCl (H9) (77 microm) or by intracellular Ca(2+) depletion with thapsigargin (0.1 microm) (which inhibits Ca(2+)/ATPase). Exposure of the spinal cord to the L-type Ca(2+) channel blockers nifedipine (10 microm), KN-62 (5 microm) or gallopamil (100 microm) eliminated alpha-Me-5-HT's effects. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) (100 microm) diminished the potentiation. However, the calcium/calmodulin-dependent protein kinase II (CaM Kinase II) blocker KN-93 (10 microm) did not block the 5-HT enhancement of the NMDA responses. In summary, activation of 5-HT(2B) receptors by alpha-Me-5-HT facilitates NMDA-depolarizations of frog motoneurones via a G-protein, a rise in [Ca(2+)](i) from the entry of extracellular Ca(2+) through L-type Ca(2

  20. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain

    PubMed Central

    WEISSHAUPT, ANGELA; WEDEKIND, FRANZISKA; KROLL, TINA; MCCARLEY, ROBERT W.

    2015-01-01

    SUMMARY Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day–1 for 5 consecutive days (SR1–SR5), followed by 3 unrestricted recovery sleep days (R1–R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26–31% from SR1 to R1). A decrease in b-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. PMID:25900125

  1. The effects of the adenosine A3 receptor agonist IB-MECA on sodium taurocholate-induced experimental acute pancreatitis.

    PubMed

    Prozorow-Krol, Beata; Korolczuk, Agnieszka; Czechowska, Grazyna; Slomka, Maria; Madro, Agnieszka; Celinski, Krzysztof

    2013-09-01

    The role of adenosine A3 receptors and their distribution in the gastrointestinal tract have been widely investigated. Most of the reports discuss their role in intestinal inflammations. However, the role of adenosine A3 receptor agonist in pancreatitis has not been well established. The aim of this study is [corrected] to evaluate the effects of the adenosine A3 receptor agonist on the course of sodium taurocholate-induced experimental acute pancreatitis (EAP). The experiments were performed on 80 male Wistar rats, 58 of which survived, subdivided into 3 groups: C--control rats, I--EAP group, and II--EAP group treated with the adenosine A3 receptor agonist IB-MECA (1-deoxy-1-6[[(3-iodophenyl) methyl]amino]-9H-purin-9-yl)-N-methyl-B-D-ribofuronamide at a dose of 0.75 mg/kg b.w. i.p. at 48, 24, 12 and 1 h before and 1 h after the injection of 5% sodium taurocholate solution into the biliary-pancreatic duct. Serum for α-amylase and lipase determinations and tissue samples for morphological examinations were collected at 2, 6, and 24 h of the experiment. In the IB-MECA group, α-amylase activity was decreased with statistically high significance compared to group I. The activity of lipase was not significantly different among the experimental groups but higher than in the control group. The administration of IB-MECA attenuated the histological parameters of inflammation as compared to untreated animals. The use of A3 receptor agonist IB-MECA attenuates EAP. Our findings suggest that stimulation of adenosine A3 receptors plays a positive role in the sodium taurocholate-induced EAP in rats.

  2. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain.

    PubMed

    Kim, Youngsoo; Elmenhorst, David; Weisshaupt, Angela; Wedekind, Franziska; Kroll, Tina; Mccarley, Robert W; Strecker, Robert E; Bauer, Andreas

    2015-10-01

    Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction.

  3. Kalirin binds the NR2B subunit of the NMDA receptor, altering its synaptic localization and function

    PubMed Central

    Kiraly, Drew D.; Lemtiri-Chlieh, Fouad; Levine, Eric S.; Mains, Richard E.; Eipper, Betty A.

    2011-01-01

    The ability of dendritic spines to change size and shape rapidly is critical in modulating synaptic strength; these morphological changes are dependent upon rearrangements of the actin cytoskeleton. Kalirin-7 (Kal7), a Rho guanine nucleotide exchange factor (GEF) localized to the postsynaptic density (PSD), modulates dendritic spine morphology in vitro and in vivo. Kal7 activates Rac and interacts with several PSD proteins including PSD-95, DISC-1, AF-6 and Arf6. Mice genetically lacking Kal7 (Kal7KO) exhibit deficient hippocampal LTP as well as behavioral abnormalities in models of addiction and learning. Purified PSDs from Kal7KO mice contain diminished levels of NR2B, an NMDA receptor subunit that plays a critical role in LTP induction. Here we demonstrate that Kal7KO animals have decreased levels of NR2B-dependent NMDA receptor currents in cortical pyramidal neurons as well as a specific deficit in cell-surface expression of NR2B. Additionally, we demonstrate that the genotypic differences in conditioned place preference and passive avoidance learning seen in Kal7KO mice are abrogated when animals are treated with an NR2B-specific antagonist during conditioning. Finally, we identify a stable interaction between the pleckstrin homology domain of Kal7 and the juxtamembrane region of NR2B preceding its cytosolic C-terminal domain. Binding of NR2B to a protein that modulates the actin cytoskeleton is important, as NMDA receptors require actin integrity for synaptic localization and function. These studies demonstrate a novel and functionally important interaction between the NR2B subunit of the NMDA receptor and Kalirin, proteins known to be essential for normal synaptic plasticity. PMID:21880917

  4. Kalirin binds the NR2B subunit of the NMDA receptor, altering its synaptic localization and function.

    PubMed

    Kiraly, Drew D; Lemtiri-Chlieh, Fouad; Levine, Eric S; Mains, Richard E; Eipper, Betty A

    2011-08-31

    The ability of dendritic spines to change size and shape rapidly is critical in modulating synaptic strength; these morphological changes are dependent upon rearrangements of the actin cytoskeleton. Kalirin-7 (Kal7), a Rho guanine nucleotide exchange factor localized to the postsynaptic density (PSD), modulates dendritic spine morphology in vitro and in vivo. Kal7 activates Rac and interacts with several PSD proteins, including PSD-95, DISC-1, AF-6, and Arf6. Mice genetically lacking Kal7 (Kal7(KO)) exhibit deficient hippocampal long-term potentiation (LTP) as well as behavioral abnormalities in models of addiction and learning. Purified PSDs from Kal7(KO) mice contain diminished levels of NR2B, an NMDA receptor subunit that plays a critical role in LTP induction. Here we demonstrate that Kal7(KO) animals have decreased levels of NR2B-dependent NMDA receptor currents in cortical pyramidal neurons as well as a specific deficit in cell surface expression of NR2B. Additionally, we demonstrate that the genotypic differences in conditioned place preference and passive avoidance learning seen in Kal7(KO) mice are abrogated when animals are treated with an NR2B-specific antagonist during conditioning. Finally, we identify a stable interaction between the pleckstrin homology domain of Kal7 and the juxtamembrane region of NR2B preceding its cytosolic C-terminal domain. Binding of NR2B to a protein that modulates the actin cytoskeleton is important, as NMDA receptors require actin integrity for synaptic localization and function. These studies demonstrate a novel and functionally important interaction between the NR2B subunit of the NMDA receptor and Kalirin, proteins known to be essential for normal synaptic plasticity.

  5. High salt diet exacerbates vascular contraction in the absence of adenosine A₂A receptor.

    PubMed

    Pradhan, Isha; Zeldin, Darryl C; Ledent, Catherine; Mustafa, Jamal S; Falck, John R; Nayeem, Mohammed A

    2014-05-01

    High salt (4% NaCl, HS) diet modulates adenosine-induced vascular response through adenosine A(2A) receptor (A(2A)AR). Evidence suggests that A(2A)AR stimulates cyp450-epoxygenases, leading to epoxyeicosatrienoic acids (EETs) generation. The aim of this study was to understand the vascular reactivity to HS and underlying signaling mechanism in the presence or absence of A(2A)AR. Therefore, we hypothesized that HS enhances adenosine-induced relaxation through EETs in A(2A)AR⁺/⁺, but exaggerates contraction in A(2A)AR⁻/⁻. Organ bath and Western blot experiments were conducted in HS and normal salt (NS, 0.18% NaCl)-fed A(2A)AR⁺/⁺ and A(2A)AR⁻/⁻ mice aorta. HS produced concentration-dependent relaxation to non-selective adenosine analog, NECA in A(2A)AR⁺/⁺, whereas contraction was observed in A(2A)AR⁻/⁻ mice and this was attenuated by A₁AR antagonist (DPCPX). CGS 21680 (selective A(2A)AR agonist) enhanced relaxation in HS-A(2A)AR⁺/⁺ versus NS-A(2A)AR⁺/⁺, which was blocked by EETs antagonist (14,15-EEZE). Compared with NS, HS significantly upregulated the expression of vasodilators A(2A)AR and cyp2c29, whereas vasoconstrictors A₁AR and cyp4a in A(2A)AR⁺/⁺ were downregulated. In A(2A)AR⁻/⁻ mice, however, HS significantly downregulated the expression of cyp2c29, whereas A₁AR and cyp4a were upregulated compared with A(2A)AR⁺/⁺ mice. Hence, our data suggest that in A(2A)AR⁺/⁺, HS enhances A(2A)AR-induced relaxation through increased cyp-expoxygenases-derived EETs and decreased A₁AR levels, whereas in A(2A)AR⁻/⁻, HS exaggerates contraction through decreased cyp-epoxygenases and increased A₁AR levels.

  6. Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor

    NASA Astrophysics Data System (ADS)

    Lee, Yoonji; Kim, Songmi; Choi, Sun; Hyeon, Changbong

    2016-09-01

    Water molecules inside G-protein coupled receptor have recently been spotlighted in a series of crystal structures. To decipher the dynamics and functional roles of internal waters in GPCR activity, we studied A$_{\\text{2A}}$ adenosine receptor using $\\mu$sec-molecular dynamics simulations. Our study finds that the amount of water flux across the transmembrane (TM) domain varies depending on the receptor state, and that the water molecules of the TM channel in the active state flow three times slower than those in the inactive state. Depending on the location in solvent-protein interface as well as the receptor state, the average residence time of water in each residue varies from $\\sim\\mathcal{O}(10^2)$ psec to $\\sim\\mathcal{O}(10^2)$ nsec. Especially, water molecules, exhibiting ultraslow relaxation ($\\sim\\mathcal{O}(10^2)$ nsec) in the active state, are found around the microswitch residues that are considered activity hotspots for GPCR function. A continuous allosteric network spanning the TM domain, arising from water-mediated contacts, is unique in the active state, underscoring the importance of slow waters in the GPCR activation.

  7. Role for the NR2B Subunit of the NMDA Receptor in Mediating Light Input to the Circadian System

    PubMed Central

    Wang, LM; Schroeder, A; Loh, D; Smith, D; Lin, K; Han, JH; Michel, S; Hummer, DL; Ehlen, JC; Albers, HE; Colwell, CS

    2008-01-01

    Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells that utilize glutamate as a neurotransmitter. A variety of evidence suggests that the release of glutamate then activates N-methyl-Daspartate (NMDA) receptors within the SCN and triggers a signaling cascade that ultimately leads to phase shifts in the circadian system. In this study, we first sought to explore the role of the NR2B subunit in mediating the effects of light on the circadian system. We found that localized microinjection of the NR2B subunit antagonist ifenprodil into the SCN region inhibits the magnitude of light-induced phase shifts of the circadian rhythm in wheel-running activity. Next, we found that the NR2B message and levels of phospho-NR2B levels vary with time of day in SCN tissue using semi-quantitative real-time PCR and Western blot analysis, respectively. Functionally, we found that blocking the NR2B subunit with ifenprodil significantly reduced the magnitude of NMDA currents recorded in SCN neurons. Ifenprodil also significantly reduced the magnitude of NMDA-induced calcium changes in SCN cells. Together, these results demonstrate that the NR2B subunit is an important component of NMDA receptor mediated responses within SCN neurons and that this subunit contributes to light-induced phase shifts of the mammalian circadian system. PMID:18380671

  8. Early chronic blockade of NR2B subunits and transient activation of NMDA receptors modulate LTP in mouse auditory cortex.

    PubMed

    Mao, Yuting; Zang, Shaoyun; Zhang, Jiping; Sun, Xinde

    2006-02-16

    In the auditory cortex, the properties of NMDA receptors depend primarily on the ratio of NR2A and NR2B subunits. NR2B subunit expression is high at the beginning of critical period and lower in adulthood. Because NMDA receptors are crucial in triggering long-term potentiation (LTP) and long-term depression, developmental or experience-dependent modification of NMDAR subunit composition is likely to influence synaptic plasticity. To examine how NMDA subunit change during postnatal development affect the adult synaptic plasticity, we employed chronic ifenprodil blockade of NR2B subunits and analyzed evoked field potentials in adult C57BL/6 mice auditory cortex (AC). We found that chronic loss of NR2B activity led to a decline in LTP magnitude in the AC of adult mice. Adding NMDA to the artificial cerebrospinal fluid (ACSF) in blocked mice had the opposite effect, producing LTP magnitudes at or exceeding those found in treated or untreated animals. These results suggest that, even in adulthood when NR2B expression is downregulated, these receptor subunits play an important role in experience-dependent plasticity of mouse auditory cortex. Blockade from P60 did not result in any decrease of LTP amplitude, suggesting that chronic block in postnatal period may permanently affect cortical circuits so that they cannot produce significant LTP in adulthood.

  9. Behavioural and neurochemical characterization of the adenosine A2A receptor antagonist ST1535.

    PubMed

    Galluzzo, Mariangela; Pintor, Anita; Pèzzola, Antonella; Grieco, Rosa; Borsini, Franco; Popoli, Patrizia

    2008-01-28

    ST1535 (2-butyl-9-methyl-8-(2H-1,2,3-triazol 2-yl)-9 H-purin-6-ylamine) is a novel compound showing a preferential adenosine A(2A) receptor antagonist profile. To explore the potential neuroprotective profile of this compound, we evaluated whether ST1535 prevented quinolinic acid (QA)-induced glutamate outflow in the rat striatum (a reliable index of neuroprotective activity in vivo). Microdialysis experiments were performed in naive Wistar rats. In these experiments, a behaviourally active and inactive doses of ST1535 were used. Both doses significantly prevented QA-induced glutamate outflow in the striatum. These results show that ST1535 protects towards striatal excitotoxicity, even though its reduced A(2A)/A(1) selectivity might limit its actual neuroprotective potential.

  10. Structure-kinetics relationships of Capadenoson derivatives as adenosine A1 receptor agonists.

    PubMed

    Louvel, Julien; Guo, Dong; Soethoudt, Marjolein; Mocking, Tamara A M; Lenselink, Eelke B; Mulder-Krieger, Thea; Heitman, Laura H; IJzerman, Adriaan P

    2015-08-28

    We report the synthesis and biological evaluation of new derivatives of Capadenoson, a former drug candidate that was previously advanced to phase IIa clinical trials. 19 of the 20 ligands show an affinity below 100 nM at the human adenosine A1 receptor (hA1AR) and display a wide range of residence times at this target (from approx. 5 min (compound 10) up to 132 min (compound 5)). Structure-affinity and structure-kinetics relationships were established, and computational studies of a homology model of the hA1AR revealed crucial interactions for both the affinity and dissociation kinetics of this family of ligands. These results were also combined with global metrics (Ligand Efficiency, cLogP), showing the importance of binding kinetics as an additional way to better select a drug candidate amongst seemingly similar leads.

  11. An Essential Role for Adenosine Signaling in Alcohol Abuse

    PubMed Central

    Ruby, Christina L.; Adams, Chelsea; Knight, Emily J.; Nam, Hyung Wook; Choi, Doo-Sup

    2014-01-01

    In the central nervous system (CNS), adenosine plays an important role in regulating neuronal activity and modulates signaling by other neurotransmitters, including GABA, glutamate, and dopamine. Adenosine suppresses neurotransmitter release, reduces neuronal excitability, and regulates ion channel function through activation of four classes of G protein-coupled receptors, A1, A2A, A2B, and A3. Central adenosine levels are largely controlled by nucleoside transporters, which regulate adenosine levels across the plasma membrane. Adenosine has been shown to modulate cortical glutamate signaling and ventral-tegmental dopaminergic signaling, which are involved in several aspects of alcohol use disorders. Acute ethanol elevates extracellular adenosine levels by selectively inhibiting the type 1 equilibrative nucleoside transporter, ENT1. Raised adenosine levels mediate the ataxic and sedative/hypnotic effects of ethanol through activation of A1 receptors in the cerebellum, striatum, and cerebral cortex. Recently, we have shown that pharmacological inhibition or genetic deletion of ENT1 reduces the expression of excitatory amino acid transporter 2 (EAAT2), the primary regulator of extracellular glutamate, in astrocytes. These lines of evidence support a central role for adenosine-mediated glutamate signaling and the involvement of astrocytes in regulating ethanol intoxication and preference. In this paper, we discuss recent findings on the implication of adenosine signaling in alcohol use disorders. PMID:21054262

  12. Glutamate-induced depression of EPSP-spike coupling in rat hippocampal CA1 neurons and modulation by adenosine receptors.

    PubMed

    Ferguson, Alexandra L; Stone, Trevor W

    2010-04-01

    The presence of high concentrations of glutamate in the extracellular fluid following brain trauma or ischaemia may contribute substantially to subsequent impairments of neuronal function. In this study, glutamate was applied to hippocampal slices for several minutes, producing over-depolarization, which was reflected in an initial loss of evoked population potential size in the CA1 region. Orthodromic population spikes recovered only partially over the following 60 min, whereas antidromic spikes and excitatory postsynaptic potentials (EPSPs) showed greater recovery, implying a change in EPSP-spike coupling (E-S coupling), which was confirmed by intracellular recording from CA1 pyramidal cells. The recovery of EPSPs was enhanced further by dizocilpine, suggesting that the long-lasting glutamate-induced change in E-S coupling involves NMDA receptors. This was supported by experiments showing that when isolated NMDA-receptor-mediated EPSPs were studied in isolation, there was only partial recovery following glutamate, unlike the composite EPSPs. The recovery of orthodromic population spikes and NMDA-receptor-mediated EPSPs following glutamate was enhanced by the adenosine A1 receptor blocker DPCPX, the A2A receptor antagonist SCH58261 or adenosine deaminase, associated with a loss of restoration to normal of the glutamate-induced E-S depression. The results indicate that the long-lasting depression of neuronal excitability following recovery from glutamate is associated with a depression of E-S coupling. This effect is partly dependent on activation of NMDA receptors, which modify adenosine release or the sensitivity of adenosine receptors. The results may have implications for the use of A1 and A2A receptor ligands as cognitive enhancers or neuroprotectants.

  13. Adenosine and dopamine receptors co-regulate photoreceptor coupling via gap junction phosphorylation in mouse retina

    PubMed Central

    Li, Hongyan; Zhang, Zhijing; Blackburn, Michael R.; Wang, Steven W.; Ribelayga, Christophe P.; O’Brien, John

    2013-01-01

    Gap junctions in retinal photoreceptors suppress voltage noise and facilitate input of rod signals into the cone pathway during mesopic vision. These synapses are highly plastic and regulated by light and circadian clocks. Recent studies have revealed an important role for connexin36 (Cx36) phosphorylation by protein kinase A (PKA) in regulating cell-cell coupling. Dopamine is a light-adaptive signal in the retina, causing uncoupling of photoreceptors via D4 receptors (D4R), which inhibits adenylyl cyclase (AC) and reduces PKA activity. We hypothesized that adenosine, with its extracellular levels increasing in darkness, may serve as a dark signal to co-regulate photoreceptor coupling through modulation of gap junction phosphorylation. Both D4R and A2a receptor (A2aR) mRNAs were present in photoreceptors, inner nuclear layer neurons, and ganglion cells in C57BL/6 mouse retina, and showed cyclic expression with partially overlapping rhythms. Pharmacologically activating A2aR or inhibiting D4R in light-adapted daytime retina increased photoreceptor coupling. Cx36 among photoreceptor terminals, representing predominantly rod-cone gap junctions but possibly including some rod-rod and cone-cone gap junctions, was phosphorylated in a PKA-dependent manner by the same treatments. Conversely, inhibiting A2aR or activating D4R in daytime dark-adapted retina decreased Cx36 phosphorylation with similar PKA dependence. A2a-deficient mouse retina showed defective regulation of photoreceptor gap junction phosphorylation, fairly regular dopamine release, and moderately down-regulated expression of D4R and AC type I mRNA. We conclude that adenosine and dopamine co-regulate photoreceptor coupling through opposite action on the PKA pathway and Cx36 phosphorylation. In addition, loss of the A2aR hampered D4R gene expression and function. PMID:23407968

  14. Predicted Structures of Agonist and Antagonist Bound Complexes of Adenosine A3 Receptor

    PubMed Central

    Kim, Soo-Kyung; Riley, Lindsay; Abrol, Ravinder; Jacobson, Kenneth A.; Goddard, William A.

    2011-01-01

    We used the GEnSeMBLE Monte Carlo method to predict ensemble of the 20 best packings (helix rotations and tilts) based on the neutral total energy (E) from a vast number (10 trillion) of potential packings for each of the 4 subtypes of the adenosine G protein-coupled receptors (GPCRs), which are involved in many cytoprotective functions. We then used the DarwinDock Monte Carlo methods to predict the binding pose for the human A3 adenosine receptor (hAA3R) for subtype selective agonists and antagonists. We find that all four A3 agonists stabilize the 15th lowest conformation of apo-hAA3R while also binding strongly to the 1st and 3rd. In contrast the four A3 antagonists stabilize the 2nd or 3rd lowest conformation. These results show that different ligands can stabilize different GPCR conformations, which will likely affect function, complicating the design of functionally unique ligands. Interestingly all agonists lead to a trans χ1 angle for W6.48 that experiments on other GPCRs associate with G-protein activation while all 20 apo-AA3R conformations have a W6.48 gauche+ χ1 angle associated experimentally with inactive GPCRs for other systems. Thus docking calculations have identified critical ligand-GPCR structures involved with activation. We find that the predicted binding site for selective agonist Cl-IB-MECA to the predicted structure of hAA3R shows favorable interactions to three subtype variable residues, I2536.58, V169EL2, and Q167EL2, while the predicted structure for hAA2AR shows weakened to the corresponding amino acids: T2566.58, E169EL2, and L167EL2, explaining the observed subtype selectivity. PMID:21488099

  15. Predicted structures of agonist and antagonist bound complexes of adenosine A3 receptor.

    PubMed

    Kim, Soo-Kyung; Riley, Lindsay; Abrol, Ravinder; Jacobson, Kenneth A; Goddard, William A

    2011-06-01

    We used the GEnSeMBLE Monte Carlo method to predict ensemble of the 20 best packings (helix rotations and tilts) based on the neutral total energy (E) from a vast number (10 trillion) of potential packings for each of the four subtypes of the adenosine G protein-coupled receptors (GPCRs), which are involved in many cytoprotective functions. We then used the DarwinDock Monte Carlo methods to predict the binding pose for the human A(3) adenosine receptor (hAA(3)R) for subtype selective agonists and antagonists. We found that all four A(3) agonists stabilize the 15th lowest conformation of apo-hAA(3)R while also binding strongly to the 1st and 3rd. In contrast the four A(3) antagonists stabilize the 2nd or 3rd lowest conformation. These results show that different ligands can stabilize different GPCR conformations, which will likely affect function, complicating the design of functionally unique ligands. Interestingly all agonists lead to a trans χ1 angle for W6.48 that experiments on other GPCRs associate with G-protein activation while all 20 apo-AA(3)R conformations have a W6.48 gauche+ χ1 angle associated experimentally with inactive GPCRs for other systems. Thus docking calculations have identified critical ligand-GPCR structures involved with activation. We found that the predicted binding site for selective agonist Cl-IB-MECA to the predicted structure of hAA(3)R shows favorable interactions to three subtype variable residues, I253(6.58), V169(EL2), and Q167(EL2), while the predicted structure for hAA(2A)R shows weakened to the corresponding amino acids: T256(6.58), E169(EL2), and L167(EL2), explaining the observed subtype selectivity.

  16. Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury.

    PubMed

    Winerdal, Max; Winerdal, Malin E; Wang, Ying-Qing; Fredholm, Bertil B; Winqvist, Ola; Ådén, Ulrika

    2016-03-01

    Neonatal brain hypoxic ischemia (HI) often results in long-term motor and cognitive impairments. Post-ischemic inflammation greatly effects outcome and adenosine receptor signaling modulates both HI and immune cell function. Here, we investigated the influence of adenosine A1 receptor deficiency (A1R(-/-)) on key immune cell populations in a neonatal brain HI model. Ten-day-old mice were subjected to HI. Functional outcome was assessed by open locomotion and beam walking test and infarction size evaluated. Flow cytometry was performed on brain-infiltrating cells, and semi-automated analysis of flow cytometric data was applied. A1R(-/-) mice displayed larger infarctions (+33%, p < 0.05) and performed worse in beam walking tests (44% more mistakes, p < 0.05) than wild-type (WT) mice. Myeloid cell activation after injury was enhanced in A1R(-/-) versus WT brains. Activated B lymphocytes expressing IL-10 infiltrated the brain after HI in WT, but were less activated and did not increase in relative frequency in A1R(-/-). Also, A1R(-/-) B lymphocytes expressed less IL-10 than their WT counterparts, the A1R antagonist DPCPX decreased IL-10 expression whereas the A1R agonist CPA increased it. CD4(+) T lymphocytes including FoxP3(+) T regulatory cells, were unaffected by genotype, whereas CD8(+) T lymphocyte responses were smaller in A1R(-/-) mice. Using PCA to characterize the immune profile, we could discriminate the A1R(-/-) and WT genotypes as well as sham operated from HI-subjected animals. We conclude that A1R signaling modulates IL-10 expression by immune cells, influences the activation of these cells in vivo, and affects outcome after HI.

  17. Protective Effects of Adenosine Receptor Agonist in a Cirrhotic Liver Resection Model

    PubMed Central

    Iskandarov, Emil; Kadaba Srinivasan, Pramod; Xin, Wang; Bleilevens, Christian; Afify, Mamdouh; Hamza, Astrit; Wei, Lai; Hata, Koichiro; Agayev, Boyukkishi; Tolba, Rene

    2016-01-01

    Objectives To investigate the role of CGS21680, a selective adenosine A2A receptor agonist, on a bile-duct-ligated cirrhotic liver resection model in rats. Methods Male Wistar rats were allotted into 3 groups (n = 7 per time-point): the control group, the bile duct ligation + CGS21680 group (BDL + CGS), and the bile duct ligation group (BDL). Biliary cirrhosis had been previously induced by ligature of the common bile duct in the BDL + CGS and BDL groups. After 2 weeks, the animals underwent partial hepatectomy (50%). The BDL + CGS group received a single dose of CGS21680 15 minutes prior to hepatectomy. Blood samples were collected and analyzed. Results Aspartate transaminase levels were found to be lower in the control vs BDL groups (1, 3, and 24 h) (P < 0.01) and the BDL + CGS (1 and 3 hours) (P < 0.01) and BDL + CGS vs BDL (24 hours) (P < 0.05) groups. Hepatic flow was measured and BDL showed significantly lower values at the 3, 24, and 168 h time-points compared to the control (P < 0.01) and BDL + CGS groups (P < 0.05 at 3 and 168 hours; P < 0.01 at 24 h). O2C velocity was reduced in the BDL compared to the control group (P < 0.001 at 3 hours; P < 0.01 at 24 and 168 hours) and the BDL + CGS group (P < 0.01 at 24 hours). Interleukin-6 levels were abrogated in the BDL + CGS (P < 0.05) and control (P < 0.01) groups versus BDL. Histone-bound low-molecular-weight DNA fragments in the BDL + CGS (P < 0.01) and control (P < 0.05) groups were low compared to the BDL group. Conclusions Administration of CGS21680, an adenosine receptor agonist, after the resection of bile-duct-ligated cirrhotic livers led to improved liver function, regeneration, and microcirculation. PMID:27799962

  18. Impulsive alcohol-related risk-behavior and emotional dysregulation among individuals with a serotonin 2B receptor stop codon

    PubMed Central

    Tikkanen, R; Tiihonen, J; Rautiainen, M R; Paunio, T; Bevilacqua, L; Panarsky, R; Goldman, D; Virkkunen, M

    2015-01-01

    A relatively common stop codon (Q20*) was identified in the serotonin 2B receptor gene (HTR2B) in a Finnish founder population in 2010 and it was associated with impulsivity. Here we examine the phenotype of HTR2B Q20* carriers in a setting comprising 14 heterozygous HTR2B Q20* carriers and 156 healthy controls without the HTR2B Q20*. The tridimensional personality questionnaire, Brown–Goodwin lifetime aggression scale, the Michigan alcoholism screening test and lifetime drinking history were used to measure personality traits, impulsive and aggressive behavior, both while sober and under the influence of alcohol, and alcohol consumption. Regression analyses showed that among the HTR2B Q20* carriers, temperamental traits resembled a passive-dependent personality profile, and the presence of the HTR2B Q20* predicted impulsive and aggressive behaviors particularly under the influence of alcohol. Results present examples of how one gene may contribute to personality structure and behaviors in a founder population and how personality may translate into behavior. PMID:26575222

  19. Role of adenosine A{sub 2A} receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

    SciTech Connect

    El-Mas, Mahmoud M. El-gowilly, Sahar M.; Fouda, Mohamed A.; Saad, Evan I.

    2011-08-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 {mu}g/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 {mu}g/kg i.v.) dose-dependently reduced BRS{sub SNP} in contrast to no effect on BRS{sub PE}. BRS{sub SNP} was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS{sub SNP} were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS{sub SNP} was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A{sub 2A} antagonist), or VUF5574 (A{sub 3} antagonist). In contrast, BRS{sub SNP} was preserved after blockade of A{sub 1} (DPCPX) or A{sub 2B} (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS{sub SNP} depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A{sub 2A} receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms

  20. Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis.

    PubMed

    Speer, Allison L; Al Alam, Denise; Sala, Frederic G; Ford, Henri R; Bellusci, Saverio; Grikscheit, Tracy C

    2012-01-01

    The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10) and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b), in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22) except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis.

  1. Adenosine signaling in normal and sickle erythrocytes and beyond

    PubMed Central

    Zhang, Yujin; Xia, Yang

    2012-01-01

    Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A2B receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O2 release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A2A receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and progression

  2. A novel conjugated agent between dopamine and an A2A adenosine receptor antagonist as a potential anti-Parkinson multitarget approach.

    PubMed

    Dalpiaz, Alessandro; Cacciari, Barbara; Vicentini, Chiara Beatrice; Bortolotti, Fabrizio; Spalluto, Giampiero; Federico, Stephanie; Pavan, Barbara; Vincenzi, Fabrizio; Borea, Pier Andrea; Varani, Katia

    2012-03-05

    We propose a potential antiparkinsonian prodrug DP-L-A(2A)ANT (2) obtained by amidic conjugation of dopamine (1) via a succinic spacer to a new triazolo-triazine A(2A) adenosine receptor (AR) antagonist A(2A)ANT (3). The affinity of 2 and its hydrolysis products-1, 3, dopamine-linker DP-L (4) and A(2A)ANT-linker L-A(2A)ANT (5)-was evaluated for hA(1), hA(2A), hA(2B) and hA(3) ARs and rat striatum A(2A)ARs or D(2) receptors. The hydrolysis patterns of 2, 4 and 5 and the stabilities of 1 and 3 were evaluated by HPLC analysis in human whole blood and rat brain homogenates. High hA(2A) affinity was shown by compounds 2 (K(i) = 7.32 ± 0.65 nM), 3 (K(i) = 35 ± 3 nM) and 5 (K(i) = 72 ± 5 nM), whose affinity values were similar in rat striatum. These compounds were not able to change dopamine affinity for D(2) receptors but counteracted the CGS 21680-induced reduction of dopamine affinity. DP-L (4) was inactive on adenosine and dopaminergic receptors. As for stability studies, compounds 4 and 5 were not degraded in incubation media. In human blood, the prodrug 2 was hydrolyzed (half-life = 2.73 ± 0.23 h) mainly on the amidic bound coupling the A(2A)ANT (3), whereas in rat brain homogenates the prodrug 2 was hydrolyzed (half-life > eight hours) exclusively on the amidic bound coupling dopamine, allowing its controlled release and increasing its poor stability as characterized by half-life = 22.5 ± 1.5 min.

  3. Differential trafficking of adenosine receptors in hippocampal neurons monitored using GFP- and super-ecliptic pHluorin-tagged receptors.

    PubMed

    Baines, A E; Corrêa, S A L; Irving, A J; Frenguelli, B G

    2011-01-01

    Adenosine receptors (ARs) modulate many cellular and systems-level processes in the mammalian CNS. However, little is known about the trafficking of ARs in neurons, despite their importance in controlling seizure activity and in neuroprotection in cerebral ischaemia. To address this we examined the agonist-dependent internalisation of C-terminal GFP-tagged A(1)Rs, A(2A)Rs and A(3)Rs in primary hippocampal neurons. Furthermore, we developed a novel super-ecliptic pHluorin (SEP)-tagged A(1)R which, via the N-terminal SEP tag, reports the cell-surface expression and trafficking of A(1)Rs in real-time. We demonstrate the differential trafficking of ARs in neurons: A(3)Rs internalise more rapidly than A1Rs, with little evidence of appreciable A(2A)R trafficking over the time-course of the experiments. Furthermore, the novel SEP-A(1)R construct revealed the time-course of internalisation and recovery of cell-surface expression to occur within minutes of agonist exposure and removal, respectively. These observations highlight the labile nature of A(1)R and A(3)Rs when expressed at the neuronal plasma membrane. Given the high levels of adenosine in the brain during ischaemia and seizures, internalisation of the inhibitory A(1)R may result in hyperexcitability, increased brain damage and the development of chronic epileptic states.

  4. Adenosine diphosphate receptors on blood platelets: potential new targets for antiplatelet therapy.

    PubMed

    Rozalski, Marcin; Nocun, Marek; Watala, Cezary

    2005-01-01

    Platelets play a key role not only in physiological haemostasis, but also under pathological conditions such as thrombosis. Platelet activation may be initiated by a variety of agonists including thrombin, collagen, thromboxane or adenosine diphosphate (ADP). Although ADP is regarded as a weak agonist of blood platelets, it remains an important mediator of platelet activation evoked by other agonists, which induce massive ADP release from dense granules, where it occurs in molar concentrations. Thus, ADP action underlies a positive feedback that facilitates further platelet aggregation and leads to platelet plug formation. Additionally, ADP acts synergistically to other, even weak, agonists such as serotonin, adrenaline or chemokines. Blood platelets express two types of P2Y ADP receptors: P2Y(1) and P2Y(12). ADP-dependent platelet aggregation is initiated by the P2Y1 receptor, whereas P2Y(12) receptor augments the activating signal and promotes platelet release reaction. Stimulation of P2Y(12) is also essential for ADP-mediated complete activation of GPIIb-IIIa and GPIa-IIa, and further stabilization of platelet aggregates. The crucial role in blood platelet biology makes P2(Y12) an ideal candidate for pharmacological approaches for anti-platelet therapy.

  5. 2-Dialkynyl derivatives of (N)-methanocarba nucleosides: 'Clickable' A(3) adenosine receptor-selective agonists.

    PubMed

    Tosh, Dilip K; Chinn, Moshe; Yoo, Lena S; Kang, Dong Wook; Luecke, Hans; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-01-15

    We modified a series of (N)-methanocarba nucleoside 5'-uronamides to contain dialkyne groups on an extended adenine C2 substituent, as synthetic intermediates leading to potent and selective A(3) adenosine receptor (AR) agonists. The proximal alkyne was intended to promote receptor recognition, and the distal alkyne reacted with azides to form triazole derivatives (click cycloaddition). Click chemistry was utilized to couple an octadiynyl A(3)AR agonist to azido-containing fluorescent, chemically reactive, biotinylated, and other moieties with retention of selective binding to the A(3)AR. A bifunctional thiol-reactive crosslinking reagent was introduced. The most potent and selective novel compound was a 1-adamantyl derivative (K(i) 6.5nM), although some of the click products had K(i) values in the range of 200-400nM. Other potent, selective derivatives (K(i) at A(3)AR innM) were intended as possible receptor affinity labels: 3-nitro-4-fluorophenyl (10.6), alpha-bromophenacyl (9.6), thiol-reactive isothiazolone (102), and arylisothiocyanate (37.5) derivatives. The maximal functional effects in inhibition of forskolin-stimulated cAMP were measured, indicating that this class of click adducts varied from partial to full A(3)AR agonist compared to other widely used agonists. Thus, this strategy provides a general chemical approach to linking potent and selective A(3)AR agonists to reporter groups of diverse structure and to carrier moieties.

  6. Relating Surfactant Properties to Activity and Solubilization of the Human Adenosine A3 Receptor

    PubMed Central

    Berger, Bryan W.; García, Roxana Y.; Lenhoff, Abraham M.; Kaler, Eric W.; Robinson, Clifford R.

    2005-01-01

    The effects of various surfactants on the activity and stability of the human adenosine A3 receptor (A3) were investigated. The receptor was expressed using stably transfected HEK293 cells at a concentration of 44 pmol functional receptor per milligram membrane protein and purified using over 50 different nonionic surfactants. A strong correlation was observed between a surfactant's ability to remove A3 from the membrane and the ability of the surfactant to remove A3 selectively relative to other membrane proteins. The activity of A3 once purified also correlates well with the selectivity of the surfactant used. The effects of varying the surfactant were much stronger than those achieved by including A3 ligands in the purification scheme. Notably, all surfactants that gave high efficiency, selectivity and activity fall within a narrow range of hydrophile-lipophile balance values. This effect may reflect the ability of the surfactant to pack effectively at the hydrophobic transmembrane interface. These findings emphasize the importance of identifying appropriate surfactants for a particular membrane protein, and offer promise for the development of rapid, efficient, and systematic methods to facilitate membrane protein purification. PMID:15849244

  7. Role of melatonin, serotonin 2B, and serotonin 2C receptors in modulating the firing activity of rat dopamine neurons.

    PubMed

    Chenu, Franck; Shim, Stacey; El Mansari, Mostafa; Blier, Pierre

    2014-02-01

    Melatonin has been widely used for the management of insomnia, but is devoid of antidepressant effect in the clinic. In contrast, agomelatine which is a potent melatonin receptor agonist is an effective antidepressant. It is, however, a potent serotonin 2B (5-HT(2B)) and serotonin 2C (5-HT(2C)) receptor antagonist as well. The present study was aimed at investigating the in vivo effects of repeated administration of melatonin (40 mg/kg/day), the 5-HT(2C) receptor antagonist SB 242084 (0.5 mg/kg/day), the selective 5-HT(2B) receptor antagonist LY 266097 (0.6 mg/kg/day) and their combination on ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) serotonin (5-HT) firing activity. Administration of melatonin twice daily increased the number of spontaneously active DA neurons but left the firing of NE neurons unaltered. Long-term administration of melatonin and SB 242084, by themselves, had no effect on the firing rate and burst parameters of 5-HT and DA neurons. Their combination, however, enhanced only the number of spontaneously active DA neurons, while leaving the firing of 5-HT neurons unchanged. The addition of LY 266097, which by itself is devoid of effect, to the previous regimen increased for DA neurons the number of bursts per minute and the percentage of spikes occurring in bursts. In conclusion, the combination of melatonin receptor activation as well as 5-HT(2C) receptor blockade resulted in a disinhibition of DA neurons. When 5-HT(2B) receptors were also blocked, the firing and the bursting activity of DA neurons were both enhanced, thus reproducing the effect of agomelatine.

  8. Chronic Caffeine Alters the Density of Adenosine, Adrenergic, Cholinergic, GABA, and Serotonin Receptors and Calcium Channels in Mouse Brain

    PubMed Central

    Shi, Dan; Nikodijević, Olga; Jacobson, Kenneth A.; Daly, John W.

    2012-01-01

    SUMMARY 1. Chronic ingestion of caffeine by male NIH strain mice alters the density of a variety of central receptors. 2. The density of cortical A1 adenosine receptors is increased by 20%, while the density of striatal A2A adenosine receptors is unaltered. 3. The densities of cortical β1 and cerebellar β2 adrenergic receptors are reduced by ca. 25%, while the densities of cortical α1 and α2 adrenergic receptors are not significantly altered. Densities of striatal D1 and D2 dopaminergic receptors are unaltered. The densities of cortical 5 HT1 and 5 HT2 serotonergic receptors are increased by 26–30%. Densities of cortical muscarinic and nicotinic receptors are increased by 40–50%. The density of cortical benzodiazepine-binding sites associated with GABAA receptors is increased by 65%, and the affinity appears slightly decreased. The density of cortical MK-801 sites associated with NMDA-glutaminergic receptors appear unaltered. 4. The density of cortical nitrendipine-binding sites associated with calcium channels is increased by 18%. 5. The results indicate that chronic ingestion of caffeine equivalent to about 100 mg/kg/day in mice causes a wide range of biochemical alterations in the central nervous system. PMID:8242688

  9. Homeostatic action of adenosine A3 and A1 receptor agonists on proliferation of hematopoietic precursor cells.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Streitová, Denisa; Vacek, Antonín

    2008-07-01

    Two adenosine receptor agonists, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and N6-cyclopentyladenosine (CPA), which selectively activate adenosine A3 and A1 receptors, respectively, were tested for their ability to influence proliferation of granulocytic and erythroid cells in femoral bone marrow of mice using morphological criteria. Agonists were given intraperitoneally to mice in repeated isomolar doses of 200 nmol/kg. Three variants of experiments were performed to investigate the action of the agonists under normal resting state of mice and in phases of cell depletion and subsequent regeneration after treatment with the cytotoxic drug 5-fluorouracil. In the case of granulopoiesis, IB-MECA 1) increased by a moderate but significant level proliferation of cells under normal resting state; 2) strongly increased proliferation of cells in the cell depletion phase; but 3) did not influence cell proliferation in the regeneration phase. CPA did not influence cell proliferation under normal resting state and in the cell depletion phase, but strongly suppressed the overshooting cell proliferation in the regeneration phase. The stimulatory effect of IB-MECA on cell proliferation of erythroid cells was observed only when this agonist was administered during the cell depletion phase. CPA did not modulate erythroid proliferation in any of the functional states investigated, probably due to the lower demand for cell production as compared with granulopoiesis. The results indicate opposite effects of the two adenosine receptor agonists on proliferation of hematopoietic cells and suggest the plasticity and homeostatic role of the adenosine receptor expression.

  10. NR2B-N-Methyl-D-Aspartate Receptors Contribute to Network Asynchrony and Loss of Long-Term Potentiation Following Mild Mechanical Injury In Vitro

    DTIC Science & Technology

    2012-08-30

    REPORT NR2B -N-METHYL-D-ASPARTATE RECEPTORS CONTRIBUTE TO NETWORK ASYNCHRONY AND LOSS OF LONG-TERM POTENTIATION FOLLOWING MILD MECHANICAL INJURY IN...integrate-and-fire model of network activity, 2) simulated an injured network, 3) predicted an important role for the NR2B -NMDA receptor in mediating...ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS synchrony, NR2B -NMDA receptor, network

  11. Hippocampal NR2B-containing NMDA receptors enhance long-term potentiation in rats with chronic visceral pain.

    PubMed

    Chen, Yu; Chen, Ai-qin; Luo, Xiao-qing; Guo, Li-xia; Tang, Ying; Bao, Cheng-jia; Lin, Ling; Lin, Chun

    2014-06-27

    Pain and learning memory have striking similarities in synaptic plasticity. Activation of the N-methyl-D-aspartic acid receptors 2B subunits (NR2B-NMDAs) is responsible for the hippocampal LTP in memory formation. In our previous studies, we found the significant enhancement of CA1 hippocampal long-term potentiation (LTP) induced by high-frequency stimulation (HFS) in rats with chronic visceral pain. However, it is unclear whether the NR2B-NMDAs are required for the LTP in chronic visceral pain. In this study, a rat model with irritable bowel syndrome (IBS) was established by colorectal distention (CRD). The sensitivity of visceral pain and HFS-induced LTP at SC-CA1 synapses were significantly enhanced in IBS-like rats (p<0.05). In addition, hippocampal NR2B protein levels significantly increased in IBS-like rats (p<0.05). To test whether NR2B-NMDAs are responsible for the LTP, effects of Ro 25-6981, a selective antagonist of NR2B-NMDAs, on field potential in CA1 region were investigated in vitro. Our results demonstrated that Ro 25-6981 dose-dependently inhibited the facilitation of CA1 LTP in IBS-like rats. The plausible activation mechanism of hippocampal NR2B-NMDAs in the LTP enhancement was further explored. Western blot data indicated that expression of tyrosine phosphorylated NR2B protein in hippocampus significantly enhanced in IBS-like rats. Accordingly, genistein, a specific inhibitor of tyrosine kinases, dose-dependently blocked the facilitation of hippocampal LTP in IBS-like rats. Furthermore, EMG data revealed that intra-hippocampal injection of Ro 25-6981 dose-dependently attenuated the visceral hypersensitivity. In conclusion, hippocampal NR2B-NMDAs are responsible for the facilitation of CA1 LTP via tyrosine phosphorylation, which leads to visceral hypersensitivity.

  12. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice.

    PubMed

    Dall'Igna, Oscar P; Fett, Paulo; Gomes, Marcio W; Souza, Diogo O; Cunha, Rodrigo A; Lara, Diogo R

    2007-01-01

    Consumption of caffeine, an adenosine receptor antagonist, was found to be inversely associated with the incidence of Alzheimer's disease. Moreover, caffeine protects cultured neurons against beta-amyloid-induced toxicity, an effect mimicked by adenosine A(2A) but not A(1) receptor antagonists. We now tested if caffeine administration would prevent beta-amyloid-induced cognitive impairment in mice and if this was mimicked by A(2A) receptor blockade. One week after icv administration of the 25-35 fragment of beta-amyloid (Abeta, 3 nmol), mice displayed impaired performance in both inhibitory avoidance and spontaneous alternation tests. Prolonged treatment with caffeine (1 mg/ml) had no effect alone but prevented the Abeta-induced cognitive impairment in both tasks when associated with acute caffeine (30 mg/kg) 30 min treatment before Abeta administration. The same protective effect was observed after subchronic (4 days) treatment with daily injections of either caffeine (30 mg/kg) or the selective adenosine A(2A) receptor antagonist SCH58261 (0.5 mg/kg). This provides the first direct in vivo evidence that caffeine and A(2A) receptor antagonists afford a protection against Abeta-induced amnesia, which prompts their interest for managing Alzheimer's disease.

  13. Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist.

    PubMed

    Stoddart, Leigh A; Vernall, Andrea J; Briddon, Stephen J; Kellam, Barrie; Hill, Stephen J

    2015-11-01

    Fluorescence based probes provide a novel way to study the dynamic internalization process of G protein-coupled receptors (GPCRs). Recent advances in the rational design of fluorescent ligands for GPCRs have been used here to generate new fluorescent agonists containing tripeptide linkers for the adenosine A3 receptor. The fluorescent agonist BY630-X-(D)-A-(D)-A-G-ABEA was found to be a highly potent agonist at the adenosine A3 receptor in both reporter gene (pEC50 = 8.48 ± 0.09) and internalization assays (pEC50 = 7.47 ± 0.11). Confocal imaging studies showed that BY630-X-(D)-A-(D)-A-G-ABEA was internalized with A3 linked to yellow fluorescent protein, which was blocked by the competitive antagonist MRS1220. Internalization of untagged adenosine A3 could also be visualized with BY630-X-(D)-A-(D)-A-G-ABEA treatment. Further, BY630-X-(D)-A-(D)-A-G-ABEA stimulated the formation of receptor-arrestin3 complexes and was found to localize with these intracellular complexes. This highly potent agonist with excellent imaging properties should be a valuable tool to study receptor internalization. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.

  14. Prevention of RhoA activation and cofilin-mediated actin polymerization mediates the antihypertrophic effect of adenosine receptor agonists in angiotensin II- and endothelin-1-treated cardiomyocytes.

    PubMed

    Zeidan, Asad; Gan, Xiaohong Tracey; Thomas, Ashley; Karmazyn, Morris

    2014-01-01

    Adenosine receptor activation has been shown to be associated with diminution of cardiac hypertrophy and it has been suggested that endogenously produced adenosine may serve to blunt pro-hypertrophic processes. In the present study, we determined the effects of two pro-hypertrophic stimuli, angiotensin II (Ang II, 100 nM) and endothelin-1 (ET-1, 10 nM) on Ras homolog gene family, member A (RhoA)/Rho-associated, coiled-coil containing protein kinase (ROCK) activation in cultured neonatal rat ventricular myocytes and whether the latter serves as a target for the anti-hypertrophic effect of adenosine receptor activation. Both hypertrophic stimuli potently increased RhoA activity with peak activation occurring 15-30 min following agonist addition. These effects were associated with significantly increased phosphorylation (inactivation) of cofilin, a downstream mediator of RhoA, an increase in actin polymerization, and increased activation and nuclear import of p38 mitogen activated protein kinase. The ability of both Ang II and ET-1 to activate the RhoA pathway was completely prevented by the adenosine A1 receptor agonist N (6)-cyclopentyladenosine, the A2a receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine, the A3 receptor agonist N (6)-(3-iodobenzyl)adenosine-5'-methyluronamide as well as the nonspecific adenosine analog 2-chloro adenosine. All effects of specific receptor agonists were prevented by their respective receptor antagonists. Moreover, all adenosine agonists prevented either Ang II- or ET-1-induced hypertrophy, a property shared by the RhoA inhibitor Clostridium botulinum C3 exoenzyme, the ROCK inhibitor Y-27632 or the actin depolymerizing agent latrunculin B. Our study therefore demonstrates that both Ang II and ET-1 can activate the RhoA pathway and that prevention of the hypertrophic response to both agonists by adenosine receptor activation is mediated by prevention of RhoA stimulation and actin polymerization.

  15. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings.

    PubMed Central

    Correia-de-Sá, P.; Ribeiro, J. A.

    1994-01-01

    1. The effect of calcitonin gene-related peptide (CGRP) on [3H]-acetylcholine ([3H]-ACh) release from motor nerve endings and its interaction with presynaptic facilitatory A2a-adenosine and nicotinic acetylcholine receptors was studied on rat phrenic nerve-hemidiaphragm preparations loaded with [3H]-choline. 2. CGRP (100-400 nM) increased electrically evoked [3H]-ACh release from phrenic nerve endings in a concentration-dependent manner. 3. The magnitude of CGRP excitation increased with the increase of the stimulation pulse duration from 40 microseconds to 1 ms, keeping the frequency, the amplitude and the train length constants. With 1 ms pulses, the evoked [3H]-ACh release was more intense than with 40 microseconds pulse duration. 4. Both the nicotinic acetylcholine receptor agonist, 1,1-dimethyl-4-phenylpiperazinium, and the A2a adenosine receptor agonist, CGS 21680C, increased evoked [3H]-ACh release, but only CGS 21680C potentiated the facilitatory effect of CGRP. This potentiation was prevented by the A2a adenosine receptor antagonist, PD 115,199. 5. Adenosine deaminase prevented the excitatory effect of CGRP (400 nM) on [3H]-ACh release. This effect was reversed by the non-hydrolysable A2a-adenosine receptor agonist, CGS 21680C. 6. The nicotinic antagonist, tubocurarine, did not significantly change, whereas the A2-adenosine receptor antagonist, PD 115,199, blocked the CGRP facilitation. The A1-adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine, potentiated the CGRP excitatory effect. 7. The results suggest that the facilitatory effect of CGRP on evoked [3H]-ACh release from rat phrenic motor nerve endings depends on the presence of endogenous adenosine which tonically activates A2a-adenosine receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004402

  16. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    PubMed

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  17. Effects of tianeptine on onset time of pentylenetetrazole-induced seizures in mice: possible role of adenosine A1 receptors.

    PubMed

    Uzbay, Tayfun I; Kayir, Hakan; Ceyhan, Mert

    2007-02-01

    Depression is a common psychiatric problem in epileptic patients. Thus, it is important that an antidepressant agent has anticonvulsant activity. This study was organized to investigate the effects of tianeptine, an atypical antidepressant, on pentylenetetrazole (PTZ)-induced seizure in mice. A possible contribution of adenosine receptors was also evaluated. Adult male Swiss-Webster mice (25-35 g) were subjects. PTZ (80 mg/kg, i.p.) was injected to mice 30 min after tianeptine (2.5-80 mg/kg, i.p.) or saline administration. The onset times of 'first myoclonic jerk' (FMJ) and 'generalized clonic seizures' (GCS) were recorded. Duration of 600 s was taken as a cutoff time in calculation of the onset time of the seizures. To evaluate the contribution of adenosine receptors in the effect of tianeptine, a nonspecific adenosine receptor antagonist caffeine, a specific A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a specific A2A receptor antagonist 8-(3-chlorostyryl) caffeine (CSC) or their vehicles were administered to the mice 15 min before tianeptine (80 mg/kg) or saline treatments. Tianeptine (40 and 80 mg/kg) pretreatment significantly delayed the onset time of FMJ and GCS. Caffeine (10-60 mg/kg, i.p.) dose-dependently blocked the retarding effect of tianeptine (80 mg/kg) on the onset times of FMJ and GCS. DPCPX (20 mg/kg) but not CSC (1-8 mg/kg) blocked the effect of tianeptine (80 mg/kg) on FMJ. Our results suggest that tianeptine delayed the onset time of PTZ-induced seizures via adenosine A1 receptors in mice. Thus, this drug may be a useful choice for epileptic patients with depression.

  18. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay.

    PubMed

    Kecskés, Miklós; Kumar, T Santhosh; Yoo, Lena; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-08-15

    Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs.

  19. Uridine adenosine tetraphosphate is a novel neurogenic P2Y1 receptor activator in the gut

    PubMed Central

    Durnin, Leonie; Hwang, Sung Jin; Kurahashi, Masaaki; Drumm, Bernard T.; Ward, Sean M.; Sasse, Kent C.; Sanders, Kenton M.; Mutafova-Yambolieva, Violeta N.

    2014-01-01

    Enteric purinergic motor neurotransmission, acting through P2Y1 receptors (P2Y1R), mediates inhibitory neural control of the intestines. Recent studies have shown that NAD+ and ADP ribose better meet criteria for enteric inhibitory neurotransmitters in colon than ATP or ADP. Here we report that human and murine colon muscles also release uridine adenosine tetraphosphate (Up4A) spontaneously and upon stimulation of enteric neurons. Release of Up4A was reduced by tetrodotoxin, suggesting that at least a portion of Up4A is of neural origin. Up4A caused relaxation (human and murine colons) and hyperpolarization (murine colon) that was blocked by the P2Y1R antagonist, MRS 2500, and by apamin, an inhibitor of Ca2+-activated small-conductance K+ (SK) channels. Up4A responses were greatly reduced or absent in colons of P2ry1−/− mice. Up4A induced P2Y1R–SK-channel–mediated hyperpolarization in isolated PDGFRα+ cells, which are postjunctional targets for purinergic neurotransmission. Up4A caused MRS 2500-sensitive Ca2+ transients in human 1321N1 astrocytoma cells expressing human P2Y1R. Up4A was more potent than ATP, ADP, NAD+, or ADP ribose in colonic muscles. In murine distal colon Up4A elicited transient P2Y1R-mediated relaxation followed by a suramin-sensitive contraction. HPLC analysis of Up4A degradation suggests that exogenous Up4A first forms UMP and ATP in the human colon and UDP and ADP in the murine colon. Adenosine then is generated by extracellular catabolism of ATP and ADP. However, the relaxation and hyperpolarization responses to Up4A are not mediated by its metabolites. This study shows that Up4A is a potent native agonist for P2Y1R and SK-channel activation in human and mouse colon. PMID:25341729

  20. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    PubMed Central

    2011-01-01

    Background Permanent functional deficits following spinal cord injury (SCI) arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI), reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK) 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours), these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the neuroprotective effects

  1. Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission.

    PubMed

    Martire, Alberto; Tebano, Maria Teresa; Chiodi, Valentina; Ferreira, Samira G; Cunha, Rodrigo A; Köfalvi, Attila; Popoli, Patrizia

    2011-01-01

    An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.

  2. 2-Aminothienopyridazines as Novel Adenosine A1 Receptor Allosteric Modulators and Antagonists

    PubMed Central

    Ferguson, Gemma N.; Valant, Celine; Horne, James; Figler, Heidi; Flynn, Bernard L.; Linden, Joel; Chalmers, David K.; Sexton, Patrick M.; Christopoulos, Arthur; Scammells, Peter J.

    2008-01-01

    A pharmacophore-based screen identified 32 compounds including ethyl 5-amino-3-(4-tert-butylphenyl)-4-oxo-3,4-dihydrothieno[3,4-d]pyridazine-1-carboxylate (8) as a new allosteric modulator of the adenosine A1 receptor (A1AR). On the basis of this lead, various derivatives were prepared and evaluated for activity at the human A1AR. A number of the test compounds allosterically stabilized agonist-receptor-G protein ternary complexes in dissociation kinetic assays, but were found to be more potent as antagonists in subsequent functional assays of ERK1/2 phosphorylation. Additional experiments on the most potent antagonist, 13b, investigating A1AR-mediated [35S]GTPγS binding and [3H]CCPA equilibrium binding confirmed its antagonistic mode of action and also identified inverse agonism. This study has thus identified a new class of A1AR antagonists that can also recognize the receptor’s allosteric site with lower potency. PMID:18771255

  3. In vitro metabolism studies of new adenosine A 2A receptor antagonists.

    PubMed

    Marucci, Gabriella; Finaurini, Sara; Buccioni, Michela; Lammi, Carmen; Kandhavelu, Meenakshisundaram; Volpini, Rosaria; Ricciutelli, Massimo; Angeli, Piero; Commandeur, Jan N M; Cristalli, Gloria

    2008-12-01

    Evidence, obtained in rodent and primate models of Parkinson's disease (PD) and in preliminary clinical trials, indicates that adenosine A(2A) receptor antagonists might represent a promising non-dopaminergic therapeutic tool for the treatment of PD. Recently, we have reported the biological evaluation of 8-substituted 9-ethyladenines (ANR) as new A(2A) receptor antagonists, three of which (ANR 82, ANR 94, and ANR 152) showed high efficacy in in vivo models for Parkinson's. Understanding the metabolic pathways of new drug candidates is an important aspect of drug discovery. The ANR compounds have been investigated in order to clarify their activity on rat liver microsomes, and more specifically on recombinant human cytochrome P450 2D6 (CYP2D6). The metabolites of all three compounds were detected by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The results indicate that this class of 9-ethyladenines is metabolized only to a fraction of 1.5-5%. These compounds also act as potent mechanism-based inhibitors of CYP450 and in particular of human isoform CYP2D6. Kinetic-analysis of enzyme inactivation was used to describe the effect of these time-dependent inhibitors and to derive the inhibition parameters K(inact) and K(i) defined with respect to the O-demethylation of dextromethorphan.

  4. Suppression of inflammation response by a novel A₃ adenosine receptor agonist thio-Cl-IB-MECA through inhibition of Akt and NF-κB signaling.

    PubMed

    Lee, Hak-Sun; Chung, Hwa-Jin; Lee, Hyuk Woo; Jeong, Lak Shin; Lee, Sang Kook

    2011-09-01

    Adenosine, a purine nucleoside, is released from metabolically active cells into extracellular space and plays an important role in various pathophysiological processes. Adenosine regulates many biological responses including inflammation by the interaction with their receptors such as A₁, A(2A), A(2B), and A₃. Especially, A₃ adenosine receptor (A₃AR) is considered to be expressed in macrophage cells. To the end, A₃AR agonists have been reported to have an anti-inflammatory activity. In our continuous efforts to develop new anti-inflammatory agents, we found a novel adenosine analog, 2-chloro-N⁶-(3-iodobenzyl)-4'-thioadenosine-5'-N-methyluronamide (thio-Cl-IB-MECA), was a potent human A₃AR agonist. The study was designed to investigate whether thio-Cl-IB-MECA has an anti-inflammatory potential in mouse macrophage RAW 264.7 cells and mouse sepsis model in vivo. Thio-Cl-IB-MECA exhibited an effective anti-inflammatory activity. The expression of pro-inflammatory biomarkers including inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor (TNF-α) was suppressed by the treatment of thio-Cl-IB-MECA in the protein and mRNA levels in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW 264.7 cells. Further examination revealed that thio-Cl-IB-MECA inhibited LPS-induced phosphatidylinositol 3-kinase (PI3 kinase)/Akt activation, NF-kB binding activity, and β-catenin expression. In addition, in in vivo LPS-induced mouse endotoxemia model, thio-Cl-IB-MECA exerted the increase of survival rate compared to vehicle-treated mouse. The analysis of the protein levels of iNOS, IL-1β, and TNF-α was also suppressed by the compound-treated groups in lung tissues. These results suggest that thio-Cl-IB-MECA might have an anti-inflammatory activity through the inhibition of pro-inflammatory cytokine expression by modulating PI3K/Akt and NF-κB signaling pathways.

  5. Modulation of ischemia-evoked release of excitatory and inhibitory amino acids by adenosine A1 receptor agonist.

    PubMed

    Goda, H; Ooboshi, H; Nakane, H; Ibayashi, S; Sadoshima, S; Fujishima, M

    1998-09-18

    Adenosine has been reported to have beneficial effects against ischemic brain damage, although the mechanisms are not fully clarified. To examine the role of adenosine on the ischemia-evoked release of neurotransmitters, we applied a highly selective agonist for adenosine A1 receptor, 2-chloro-N6-cyclopentyladenosine (CCPA), into the ischemic brain using in vivo brain dialysis, which directly delivered the agonist to the local brain area. Concentrations of extracellular amino acids (glutamate, aspartate, gamma-aminobutyric acid (GABA) and taurine) and regional blood flow in the striatum of spontaneously hypertensive rats (SHRs) were monitored during cerebral ischemia elicited by bilateral carotid artery occlusion for 40 min and recirculation. Striatal blood flow and basal levels of amino acids were not affected by direct perfusion of CCPA (10 microM or 100 microM). During ischemia, concentrations of glutamate, aspartate, GABA and taurine increased up to 37-, 30-, 96- and 31-fold, respectively, when vehicle alone was administered. Administration of CCPA did not affect the changes in regional blood flow during ischemia and reperfusion. Perfusion of CCPA (100 microM), however, significantly attenuated the ischemia-evoked release of aspartate (by 70%) and glutamate (by 73%). The ischemia-induced increase of GABA tended to be decreased by CCPA, although it was not statistically significant. In contrast, both low and high concentrations of CCPA had little effect on the release of taurine during ischemia. These results suggest that stimulation of adenosine A1 receptors selectively attenuated the ischemia-evoked release of excitatory amino acids, but not of inhibitory amino acids without affecting blood flow. This modulation of the release of amino acids by adenosine A1 receptor agonists may play a protective role against ischemic neuronal damage.

  6. Insulin Restores Gestational Diabetes Mellitus–Reduced Adenosine Transport Involving Differential Expression of Insulin Receptor Isoforms in Human Umbilical Vein Endothelium

    PubMed Central

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-01-01

    OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM. PMID:21515851

  7. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish.

    PubMed

    Bortolotto, Josiane Woutheres; Melo, Gabriela Madalena de; Cognato, Giana de Paula; Vianna, Mônica Ryff Moreira; Bonan, Carla Denise

    2015-02-01

    Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment.

  8. A1 adenosine receptors inhibit chloride transport in the shark rectal gland. Dissociation of inhibition and cyclic AMP.

    PubMed Central

    Kelley, G G; Poeschla, E M; Barron, H V; Forrest, J N

    1990-01-01

    In the in vitro perfused rectal gland of the dogfish shark (Squalus acanthias), the adenosine analogue 2-chloroadenosine (2Clado) completely and reversibly inhibited forskolin-stimulated chloride secretion with an IC50 of 5 nM. Other A1 receptor agonists including cyclohexyladenosine (CHA), N-ethylcarboxamideadenosine (NECA) and R-phenylisopropyl-adenosine (R-PIA) also completely inhibited forskolin stimulated chloride secretion. The "S" stereoisomer of PIA (S-PIA) was a less potent inhibitor of forskolin stimulated chloride secretion, consistent with the affinity profile of PIA stereoisomers for an A1 receptor. The adenosine receptor antagonists 8-phenyltheophylline and 8-cyclopentyltheophylline completely blocked the effect of 2Clado to inhibit forskolin-stimulated chloride secretion. When chloride secretion and tissue cyclic (c)AMP content were determined simultaneously in perfused glands, 2Clado completely inhibited secretion but only inhibited forskolin stimulated cAMP accumulation by 34-40%, indicating that the mechanism of inhibition of secretion by 2Clado is at least partially cAMP independent. Consistent with these results, A1 receptor agonists only modestly inhibited (9-15%) forskolin stimulated adenylate cyclase activity and 2Clado markedly inhibited chloride secretion stimulated by a permeant cAMP analogue, 8-chlorophenylthio cAMP (8CPT cAMP). These findings provide the first evidence for a high affinity A1 adenosine receptor that inhibits hormone stimulated ion transport in a model epithelia. A major portion of this inhibition occurs by a mechanism that is independent of the cAMP messenger system. PMID:1970583

  9. Serotonin Modulates Developmental Microglia via 5-HT2B Receptors: Potential Implication during Synaptic Refinement of Retinogeniculate Projections.

    PubMed

    Kolodziejczak, Marta; Béchade, Catherine; Gervasi, Nicolas; Irinopoulou, Theano; Banas, Sophie M; Cordier, Corinne; Rebsam, Alexandra; Roumier, Anne; Maroteaux, Luc

    2015-07-15

    Maturation of functional neuronal circuits during central nervous system development relies on sophisticated mechanisms. First, axonal and dendritic growth should reach appropriate targets for correct synapse elaboration. Second, pruning and neuronal death are required to eliminate redundant or inappropriate neuronal connections. Serotonin, in addition to its role as a neurotransmitter, actively participates in postnatal establishment and refinement of brain wiring in mammals. Brain resident macrophages, that is, microglia, also play an important role in developmentally regulated neuronal death as well as in synaptic maturation and elimination. Here, we tested the hypothesis of cross-regulation between microglia and serotonin during postnatal brain development in a mouse model of synaptic refinement. We found expression of the serotonin 5-HT2B receptor on postnatal microglia, suggesting that serotonin could participate in temporal and spatial synchronization of microglial functions. Using two-photon microscopy, acute brain slices, and local delivery of serotonin, we observed that microglial processes moved rapidly toward the source of serotonin in Htr2B(+/+) mice, but not in Htr2B(-/-) mice lacking the 5-HT2B receptor. We then investigated whether some developmental steps known to be controlled by serotonin could potentially result from microglia sensitivity to serotonin. Using an in vivo model of synaptic refinement during early brain development, we investigated the maturation of the retinal projections to the thalamus and observed that Htr2B(-/-) mice present anatomical alterations of the ipsilateral projecting area of retinal axons into the thalamus. In addition, activation markers were upregulated in microglia from Htr2B(-/-) compared to control neonates, in the absence of apparent morphological modifications. These results support the hypothesis that serotonin interacts with microglial cells and these interactions participate in brain maturation.

  10. Hypertonic saline up-regulates A3 adenosine receptors expression of activated neutrophils and increases acute lung injury after sepsis

    PubMed Central

    Inoue, Yoshiaki; Chen, Yu; Pauzenberger, Reinhard; Mark, Hirsh I.; Junger, Wolfgang G.

    2008-01-01

    Objective Hypertonic saline resuscitation reduces tissue damage by inhibiting polymorphonuclear neutrophils. Hypertonic saline triggers polymorphonuclear neutrophils to release adenosine triphosphate that is converted to adenosine, inhibiting polymorphonuclear neutrophils through A2a adenosine receptors. polymorphonuclear neutrophils also express A3 adenosine receptors that enhance polymorphonuclear neutrophils functions. Here we investigated whether A3 receptors may diminish the efficacy of hypertonic saline in a mouse model of acute lung injury. Design Randomized animal study and laboratory investigation. Setting University research laboratory. Interventions The effect of A3 receptors on the efficacy of hypertonic saline resuscitation was assessed in A3 receptor knockout and wild-type mice. Animals were treated with hypertonic saline (7.5% NaCl, 4 mL/kg) before or after cecal ligation and puncture, and acute lung injury and mortality were determined. The effect of timing of hypertonic saline exposure on A3 receptor expression and degranulation was studied in vitro with isolated human polymorphonuclear neutrophils. Measurements and main results Treatment of human polymorphonuclear neutrophils with hypertonic saline before stimulation with formyl methionyl-leucyl-phenylalanine inhibited A3 receptor expression and degranulation, whereas hypertonic saline-treatment after formyl methionyl-leucyl-phenylalanine-stimulation augmented A3 receptor expression and degranulation. Acute lung injury in wild-type mice treated with hypertonic saline after cecal ligation and puncture was significantly greater than in wild-type mice pretreated with hypertonic saline. This aggravating effect of delayed hypertonic saline-treatment was absent in A3 receptor knockout mice. Similarly, mortality in wild-type mice with delayed hypertonic saline-treatment was significantly higher (88%) than in animals treated with hypertonic saline before cecal ligation and puncture (50%). Mortality in A3

  11. Key modulatory role of presynaptic adenosine A2A receptors in cortical neurotransmission to the striatal direct pathway.

    PubMed

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N; Borycz, Janusz; Kachroo, Anil; Canas, Paula M; Orru, Marco; Schwarzschild, Michael A; Rosin, Diane L; Kreitzer, Anatol C; Cunha, Rodrigo A; Watanabe, Masahiko; Ferré, Sergi

    2009-11-18

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.

  12. Effects of the 5-HT2B receptor agonist, BW 723C86, on three rat models of anxiety.

    PubMed Central

    Kennett, G. A.; Bright, F.; Trail, B.; Baxter, G. S.; Blackburn, T. P.

    1996-01-01

    1. BW 723C86 (3 and 10 mg kg-1, s.c. 30 min pretest), a 5-HT2B receptor agonist, increased total interaction, but not locomotion in a rat social interaction test, a profile consistent with anxiolysis. 2. The effect of BW 723C86 in the social interaction test is likely to be 5-HT2B receptor-mediated as it was prevented by pretreatment with the 5-HT2C/2B receptor antagonist, SB 200646A, (1 and 2 mg kg-1, p.o., 1 h pretest) which did not affect basal levels of social interaction at the doses used. 3. An anxiolytic-like action was also observed in the rat Geller-Seifter conflict test, where BW 723C86 (0.5-50 mg kg-1, s.c. 30 min pretest) modestly, but significantly increased punished, but not unpublished responding. 4. In a rat 5 min elevated x-maze test, BW 723C86 (1-10 mg kg-1, s.c.) had no significant effect. 5. The maximal anxiolytic-like effect of BW 723C86 approached that of the benzodiazepine anxiolytic, chloradiazepoxide (5 mg kg-1, s.c. 30 min pretest) in the social interaction test, but was markedly less in the Geller-Siefter test. The effect of BW 723C86 was also clearly less than chlordiazepoxide in the elevated x-maze procedure where it had no significant effect. 6. In conclusion, BW 723C86 exerted an appreciable anxiolytic-like profile in a rat social interaction test, but had a weaker effect in the Geller-Siefter and was ineffective in the elevated x-maze test used. These effects are likely to be 5-HT2B receptor-mediated. PMID:8730737

  13. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains.

    PubMed

    Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J

    2016-01-01

    Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains.

  14. Adenosine A2A Receptors and A2A Receptor Heteromers as Key Players in Striatal Function

    PubMed Central

    Ferré, Sergi; Quiroz, César; Orru, Marco; Guitart, Xavier; Navarro, Gemma; Cortés, Antonio; Casadó, Vicent; Canela, Enric I.; Lluis, Carme; Franco, Rafael

    2011-01-01

    A very significant density of adenosine A2A receptors (A2ARs) is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs). In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs). In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striatopallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl cyclase (AC). Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striatopallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs) and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders. PMID:21731559

  15. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    PubMed

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  16. Effects of caffeine on behavioral and inflammatory changes elicited by copper in zebrafish larvae: Role of adenosine receptors.

    PubMed

    Cruz, Fernanda Fernandes; Leite, Carlos Eduardo; Kist, Luiza Wilges; de Oliveira, Giovanna Medeiros; Bogo, Maurício Reis; Bonan, Carla Denise; Campos, Maria Martha; Morrone, Fernanda Bueno

    2017-04-01

    This study investigated the effects of caffeine in the behavioral and inflammatory alterations caused by copper in zebrafish larvae, attempting to correlate these changes with the modulation of adenosine receptors. To perform a survival curve, 7dpf larvae were exposed to 10μM CuSO4, combined to different concentrations of caffeine (100μM, 500μM and 1mM) for up to 24h. The treatment with copper showed lower survival rates only when combined with 500μM and 1mM of caffeine. We selected 4 and 24h as treatment time-points. The behavior evaluation was done by analyzing the traveled distance, the number of entries in the center, and the length of permanence in the center and the periphery of the well. The exposure to 10μM CuSO4 plus 500μM caffeine at 4 and 24h changed the behavioral parameters. To study the inflammatory effects of caffeine, we assessed the PGE2 levels by using UHPLC-MS/MS, and TNF, COX-2, IL-6 and IL-10 gene expression by RT-qPCR. The expression of adenosine receptors was also evaluated with RT-qPCR. When combined to copper, caffeine altered inflammatory markers depending on the time of exposure. Adenosine receptors expression was significantly increased, especially after 4h exposure to copper and caffeine together or separately. Our results demonstrated that caffeine enhances the inflammation induced by copper by decreasing animal survival, altering inflammatory markers and promoting behavioral changes in zebrafish larvae. We also conclude that alterations in adenosine receptors are related to those effects.

  17. Creatine, similarly to ketamine, affords antidepressant-like effects in the tail suspension test via adenosine A₁ and A2A receptor activation.

    PubMed

    Cunha, Mauricio P; Pazini, Francis L; Rosa, Julia M; Ramos-Hryb, Ana B; Oliveira, Ágatha; Kaster, Manuella P; Rodrigues, Ana Lúcia S

    2015-06-01

    The benefits of creatine supplementation have been reported in a broad range of central nervous systems diseases, including depression. A previous study from our group demonstrated that creatine produces an antidepressant-like effect in the tail suspension test (TST), a predictive model of antidepressant activity. Since depression is associated with a dysfunction of the adenosinergic system, we investigated the involvement of adenosine A1 and A2A receptors in the antidepressant-like effect of creatine in the TST. The anti-immobility effect of creatine (1 mg/kg, po) or ketamine (a fast-acting antidepressant, 1 mg/kg, ip) in the TST was prevented by pretreatment of mice with caffeine (3 mg/kg, ip, nonselective adenosine receptor antagonist), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) (2 mg/kg, ip, selective adenosine A1 receptor antagonist), and 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)-phenol (ZM241385) (1 mg/kg, ip, selective adenosine A2A receptor antagonist). In addition, the combined administration of subeffective doses of creatine and adenosine (0.1 mg/kg, ip, nonselective adenosine receptor agonist) or inosine (0.1 mg/kg, ip, nucleoside formed by the breakdown of adenosine) reduced immobility time in the TST. Moreover, the administration of subeffective doses of creatine or ketamine combined with N-6-cyclohexyladenosine (CHA) (0.05 mg/kg, ip, selective adenosine A1 receptor agonist), N-6-[2-(3,5-dimethoxyphenyl)-2-(methylphenyl)ethyl]adenosine (DPMA) (0.1 mg/kg, ip, selective adenosine A2A receptor agonist), or dipyridamole (0.1 μg/mouse, icv, adenosine transporter inhibitor) produced a synergistic antidepressant-like effect in the TST. These results indicate that creatine, similarly to ketamine, exhibits antidepressant-like effect in the TST probably mediated by the activation of both adenosine A1 and A2A receptors, further reinforcing the potential of targeting the purinergic system to the management of mood disorders.

  18. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    SciTech Connect

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.; Gardiner, Catherine S.; Cao Yan; Rose, Randy L.; Wallace, Andrew D.

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 {mu}M. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 {mu}M. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 {mu}M, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 {mu}M and 10 {mu}M, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.

  19. Synthesis and pharmacological evaluation of novel 1- and 8-substituted-3-furfuryl xanthines as adenosine receptor antagonists.

    PubMed

    Balo, María Carmen; Brea, José; Caamaño, Olga; Fernández, Franco; García-Mera, Xerardo; López, Carmen; Loza, María Isabel; Nieto, María Isabel; Rodríguez-Borges, José Enrique

    2009-09-15

    The synthesis of an important set of 3-furfurylxanthine derivatives is described. Binding affinities were determined for rat A(1) and human A(2A), A(2B) and A(3) receptors. Several of the 3-furfuryl-7-methylxanthine derivatives showed moderate-to-high affinity at human A(2B) receptors, the most active compound (10d) having a K(i) of 7.4 nM for hA(2B) receptors, with selectivities over rA(1) and hA(2A) receptors up to 14-fold and 11-fold, respectively. Affinities for hA(3) receptors were very low for all members of the set.

  20. A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats.

    PubMed

    Choi, In-Young; Lee, Jae-Chul; Ju, Chung; Hwang, Sunyoung; Cho, Geum-Sil; Lee, Hyuk Woo; Choi, Won Jun; Jeong, Lak Shin; Kim, Won-Ki

    2011-10-01

    A3 adenosine receptor (A3AR) is recognized as a novel therapeutic target for ischemic injury; however, the mechanism underlying anti-ischemic protection by the A3AR agonist remains unclear. Here, we report that 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyl-4'-thioadenosine (LJ529), a selective A3AR agonist, reduces inflammatory responses that may contribute to ischemic cerebral injury. Postischemic treatment with LJ529 markedly reduced cerebral ischemic injury caused by 1.5-hour middle cerebral artery occlusion, followed by 24-hour reperfusion in rats. This effect was abolished by the simultaneous administration of the A3AR antagonist MRS1523, but not the A2AAR antagonist SCH58261. LJ529 prevented the infiltration/migration of microglia and monocytes occurring after middle cerebral artery occlusion and reperfusion, and also after injection of lipopolysaccharides into the corpus callosum. The reduced migration of microglia by LJ529 could be related with direct inhibition of chemotaxis and down-regulation of spatiotemporal expression of Rho GTPases (including Rac, Cdc42, and Rho), rather than by biologically relevant inhibition of inflammatory cytokine/chemokine release (eg, IL-1β, TNF-α, and MCP-1) or by direct inhibition of excitotoxicity/oxidative stress (not affected by LJ529). The present findings indicate that postischemic activation of A3AR and the resultant reduction of inflammatory response should provide a promising therapeutic strategy for the treatment of ischemic stroke.

  1. A2A adenosine receptor regulates the human blood brain barrier permeability

    PubMed Central

    Kim, Do-Geun; Bynoe, Margaret S.

    2015-01-01

    The blood brain barrier (BBB) symbolically represents the gateway to the central nervous system. It is a single layer of specialized endothelial cells that coats the central nervous system (CNS) vasculature and physically separates the brain environment from the blood constituents, to maintain the homeostasis of the CNS. However, this protective measure is a hindrance to the delivery of therapeutics to treat neurological diseases. Here, we show that activation of A2A adenosine receptor (AR) with an FDA-approved agonist potently permeabilizes an in vitro primary human brain endothelial barrier (hBBB) to the passage of chemotherapeutic drugs and T cells. T cell migration under AR signaling occurs primarily by paracellular transendothelial route. Permeabilization of the hBBB is rapid, time-dependent and reversible and is mediated by morphological changes in actin-cytoskeletal reorganization induced by RhoA signaling and a potent down-regulation of Claudin-5 and VE-Cadherin. Moreover, the kinetics of BBB permeability in mice closely overlaps with the permeability kinetics of the hBBB. These data suggest that activation of A2A AR is an endogenous mechanism that may be used for CNS drug delivery in human. PMID:25262373

  2. Structure-Activity Analysis of Biased Agonism at the Human Adenosine A3 Receptor

    PubMed Central

    Baltos, Jo-Anne; Paoletta, Silvia; Nguyen, Anh T. N.; Gregory, Karen J.; Tosh, Dilip K.; Christopoulos, Arthur; Jacobson, Kenneth A.

    2016-01-01

    Biased agonism at G protein–coupled receptors (GPCRs) has significant implications for current drug discovery, but molecular determinants that govern ligand bias remain largely unknown. The adenosine A3 GPCR (A3AR) is a potential therapeutic target for various conditions, including cancer, inflammation, and ischemia, but for which biased agonism remains largely unexplored. We now report the generation of bias “fingerprints” for prototypical ribose containing A3AR agonists and rigidified (N)-methanocarba 5′-N-methyluronamide nucleoside derivatives with regard to their ability to mediate different signaling pathways. Relative to the reference prototypical agonist IB-MECA, (N)-methanocarba 5′-N-methyluronamide nucleoside derivatives with significant N6 or C2 modifications, including elongated aryl-ethynyl groups, exhibited biased agonism. Significant positive correlation was observed between the C2 substituent length (in Å) and bias toward cell survival. Molecular modeling suggests that extended C2 substituents on (N)-methanocarba 5′-N-methyluronamide nucleosides promote a progressive outward shift of the A3AR transmembrane domain 2, which may contribute to the subset of A3AR conformations stabilized on biased agonist binding. PMID:27136943

  3. Differential regulation of hepatic CYP2B6 and CYP3A4 genes by constitutive androstane receptor but not pregnane X receptor.

    PubMed

    Faucette, Stephanie R; Sueyoshi, Tatsuya; Smith, Cornelia M; Negishi, Masahiko; Lecluyse, Edward L; Wang, Hongbing

    2006-06-01

    Accumulated evidence suggests that cross-talk between the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) results in shared transcriptional activation of CYP2B and CYP3A genes. Although most data imply symmetrical cross-regulation of these genes by rodent PXR and CAR, the actual selectivities of the corresponding human receptors are unknown. The objective of this study was to evaluate the symmetry of human (h) PXR and hCAR cross-talk by comparing the selectivities of these receptors for CYP2B6 and CYP3A4. Human hepatocyte studies revealed nonselective induction of both CYP2B6 and CYP3A4 by hPXR activation but marked preferential induction of CYP2B6 by selective hCAR activation. Gel shift assays demonstrated that hPXR exhibited strong and relatively equal binding to all functional response elements in both CYP2B6 and CYP3A4 genes, whereas hCAR displayed significantly weak binding to the CYP3A4 proximal ER6 motif. In cell-based transfection assays, hCAR displayed greater activation of CYP2B6 reporter gene expression compared with CYP3A4 with constructs containing both proximal and distal regulatory elements. Furthermore, in agreement with binding observations, transfection assays using promoter constructs containing repeats of CYP2B6 DR4 and CYP3A4 ER6 motifs revealed an even greater difference in reporter activation by hCAR. In contrast, hPXR activation resulted in less discernible differences between CYP2B6 and CYP3A4 reporter gene expression. These results suggest asymmetrical cross-regulation of CYP2B6 and CYP3A4 by hCAR but not hPXR in that hCAR exhibits preferential induction of CYP2B6 relative to CYP3A4 because of its weak binding and functional activation of the CYP3A4 ER6.

  4. Metformin represses drug-induced expression of CYP2B6 by modulating the constitutive androstane receptor signaling.

    PubMed

    Yang, Hui; Garzel, Brandy; Heyward, Scott; Moeller, Timothy; Shapiro, Paul; Wang, Hongbing

    2014-02-01

    Metformin is currently the most widely used drug for the treatment of type 2 diabetes. Mechanistically, metformin interacts with many protein kinases and transcription factors that alter the expression of numerous downstream target genes governing lipid metabolism, cell proliferation, and drug metabolism. The constitutive androstane receptor (CAR, NR1i3), a known xenobiotic sensor, has recently been recognized as a novel signaling molecule, in that its activation could be regulated by protein kinases in addition to the traditional ligand binding. We show that metformin could suppress drug-induced expression of CYP2B6 (a typical target gene of CAR) by modulating the phosphorylation status of CAR. In human hepatocytes, metformin robustly suppressed the expression of CYP2B6 induced by both indirect (phenobarbital) and direct CITCO [6-(4-chlorophenyl)imidazo[2,1-b]1,3thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime] activators of human CAR. Mechanistic investigation revealed that metformin specifically enhanced the phosphorylation of threonine-38 of CAR, which blocks CAR nuclear translocation and activation. Moreover, we showed that phosphorylation of CAR by metformin was primarily an AMP-activated protein kinase- and extracellular signal-regulated kinase 1/2-dependent event. Additional two-hybrid and coimmunoprecipitation assays demonstrated that metformin could also disrupt CITCO-mediated interaction between CAR and the steroid receptor coactivator 1 or the glucocorticoid receptor-interacting protein 1. Our results suggest that metformin is a potent repressor of drug-induced CYP2B6 expression through specific inhibition of human CAR activation. Thus, metformin may affect the metabolism and clearance of drugs that are CYP2B6 substrates.

  5. NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism

    PubMed Central

    Kiselycznyk, Carly; Jury, Nicholas; Halladay, Lindsay; Nakazawa, Kazu; Mishina, Masayoshi; Sprengel, Rolf; Grant, Seth G.N.; Svenningsson, Per; Holmes, Andrew

    2015-01-01

    Drugs targeting the glutamate N-methyl-D-aspartate receptor (NMDAR) may be efficacious for treating mood disorders, as exemplified by the rapid antidepressant effects produced by single administration of the NMDAR antagonist ketamine. Though the precise mechanisms underlying the antidepressant-related effects of NMDAR antagonism remain unclear, recent studies implicate specific NMDAR subunits, including GluN2A and GluN2B, as well as the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit glutamate receptor interacting molecule, PSD-95. Here, integrating mutant and pharmacological in mice, we investigated the contribution of these subunits and molecules to antidepressant-related behaviors and the antidepressant-related effects of the GluN2B blocker, Ro 25-6981. We found that global deletion of GluA1 or PSD-95 reduced forced swim test (FST) immobility, mimicking the antidepressant-related effect produced by systemically administered Ro 25-6981 in C57BL/6J mice. Moreover, the FST antidepressant-like effects of systemic Ro 25-6981 were intact in mutants with global GluA1 deletion or GluN1 deletion in forebrain interneurons, but were absent in mutants constitutively lacking GluN2A or PSD-95. Next, we found that microinfusing Ro 25-6981 into the medial prefrontal cortex (mPFC), but not basolateral amygdala, of C57BL/6J mice was sufficient to produce an antidepressant-like effect. Together, these findings extend and refine current understanding of the mechanisms mediating antidepressant-like effects produced by NMDAR-GluN2B antagonists, and may inform the development of a novel class of medications for treating depression that target the GluN2B subtype of NMDAR. PMID:25800971

  6. The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus

    PubMed Central

    Pinto, Isa; Serpa, André; Sebastião, Ana M.; Cascalheira, José F.

    2016-01-01

    Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway. PMID:27148059

  7. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington's disease.

    PubMed

    Popoli, Patrizia; Blum, David; Martire, Alberto; Ledent, Catherine; Ceruti, Stefania; Abbracchio, Maria P

    2007-04-01

    The aim of this review is to summarize and critically discuss the complex role played by adenosine A(2A) receptors (A(2A)Rs) in Huntington's disease (HD). Since A(2A)Rs are mainly localized on the neurons, which degenerate early in HD, and given their ability to stimulate glutamate outflow and inflammatory gliosis, it was hypothesized that they could be involved in the pathogenesis of HD, and that A(2A)R antagonists could be neuroprotective. This was further sustained by the demonstration that A(2A)Rs and underlying signaling systems undergo profound changes in cellular and animal models of HD. More recently, however, the equation A(2A) receptor blockade=neuroprotection has appeared too simplistic. First, it is now definitely clear that, besides mediating 'bad' responses (for example, stimulation of glutamate outflow and excessive glial activation), A(2A)Rs also promote 'good' responses (such as trophic and antinflammatory effects). This implies that A(2A)R blockade results either in pro-toxic or neuroprotective effects according to the mechanisms involved in a given experimental model. Second, since HD is a chronically progressive disease, the multiple mechanisms involving A(2A)Rs may play different relative roles along the degenerative process. Such different mechanisms can be influenced by A(2A)R activation or blockade in different ways, even leading to opposite outcomes depending on the time of agonist/antagonist administration. The number, and the complexity, of the possible scenarios is further increased by the influence of mutant Huntingtin on both the expression and functions of A(2A)Rs, and by the strikingly different effects mediated by A(2A)Rs expressed by different cell populations within the brain.

  8. Adenosine Receptor Stimulation by Polydeoxyribonucleotide Improves Tissue Repair and Symptomology in Experimental Colitis

    PubMed Central

    Pallio, Giovanni; Bitto, Alessandra; Pizzino, Gabriele; Galfo, Federica; Irrera, Natasha; Squadrito, Francesco; Squadrito, Giovanni; Pallio, Socrate; Anastasi, Giuseppe P.; Cutroneo, Giuseppina; Macrì, Antonio; Altavilla, Domenica

    2016-01-01

    Activation of the adenosine receptor pathway has been demonstrated to be effective in improving tissue remodeling and blunting the inflammatory response. Active colitis is characterized by an intense inflammatory reaction resulting in extensive tissue damage. Symptomatic improvement requires both control of the inflammatory process and repair and remodeling of damaged tissues. We investigated the ability of an A2A receptor agonist, polydeoxyribonucleotide (PDRN), to restore tissue structural integrity in two experimental colitis models using male Sprague-Dawley rats. In the first model, colitis was induced with a single intra-colonic instillation of dinitrobenzenesulfonic acid (DNBS), 25 mg diluted in 0.8 ml 50% ethanol. After 6 h, animals were randomized to receive either PDRN (8 mg/kg/i.p.), or PDRN + the A2A antagonist [3,7-dimethyl-1-propargylxanthine (DMPX); 10 mg/kg/i.p.], or vehicle (0.8 ml saline solution) daily. In the second model, dextran sulfate sodium (DSS) was dissolved in drinking water at a concentration of 8%. Control animals received standard drinking water. After 24 h animals were randomized to receive PDRN or PDRN+DMPX as described above. Rats were sacrificed 7 days after receiving DNBS or 5 days after DSS. In both experimental models of colitis, PDRN ameliorated the clinical symptoms and weight loss associated with disease as well as promoted the histological repair of damaged tissues. Moreover, PDRN reduced expression of inflammatory cytokines, myeloperoxidase activity, and malondialdehyde. All these effects were abolished by the concomitant administration of the A2A antagonist DMPX. Our study suggests that PDRN may represent a promising treatment for improving tissue repair during inflammatory bowel diseases. PMID:27601997

  9. Inhibition of experimental auto-immune uveitis by the A3 adenosine receptor agonist CF101.

    PubMed

    Bar-Yehuda, Sara; Luger, Dror; Ochaion, Avivit; Cohen, Shira; Patokaa, Renana; Zozulya, Galina; Silver, Phyllis B; de Morales, Jose Maria Garcia Ruiz; Caspi, Rachel R; Fishman, Pnina

    2011-11-01

    Uveitis is an inflammation of the middle layer of the eye with a high risk of blindness. The Gi protein associated A3 adenosine receptor (A3AR) is highly expressed in inflammatory cells whereas low expression is found in normal cells. CF101 is a highly specific agonist at the A3AR known to induce a robust anti-inflammatory effect in different experimental animal models. The CF101 mechanism of action entails down-regulation of the NF-κB-TNF-α signaling pathway, resulting in inhibition of pro-inflammatory cytokine production and apoptosis of inflammatory cells. In this study the effect of CF101 on the development of retinal antigen interphotoreceptor retinoid-binding protein (IRBP)-induced experimental autoimmune uveitis (EAU) was assessed. Oral treatment with CF101 (10 µg/kg, twice daily), initiated upon disease onset, improved uveitis clinical score measured by fundoscopy and ameliorated the pathological manifestations of the disease. Shortly after treatment with CF101 A3AR expression levels were down-regulated in the lymph node and spleen cells pointing towards receptor activation. Downstream events included a decrease in PI3K and STAT-1 and proliferation inhibition of IRPB auto-reactive T cells ex vivo. Inhibition of interleukin-2, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production and up-regulation of interleukin-10 was found in cultured splenocytes derived from CF101-treated animals. Overall, the present study data point towards a marked anti-inflammatory effect of CF101 in EAU and support further exploration of this small molecule drug for the treatment of uveitis.

  10. Maternal caffeine intake during gestation and lactation down-regulates adenosine A1 receptor in rat brain from mothers and neonates.

    PubMed

    Lorenzo, A M; León, D; Castillo, C A; Ruiz, M A; Albasanz, J L; Martín, M

    2010-05-01

    Even though caffeine can be excreted in breast milk, few studies have analyzed the effect of maternal caffeine consumption during lactation on neonatal brain. In the present work pregnant rats were treated daily with 1 g/L of caffeine in their drinking water during pregnancy and/or lactation and the effect on adenosine A(1) receptor in brains from both lactating mothers and 15 days-old neonates was assayed using radioligand binding and real time PCR assays. Mothers receiving caffeine during gestational period developed motor activation in gestational days 8-10 which was associated with a significant decrease of total adenosine A(1) receptor number (84%). A similar decrease was detected in mothers treated with caffeine during lactation (76%) and throughout gestation and lactation (73%); this was accompanied by a significant decrease in mRNA level coding adenosine A(1) receptor (28%). In male neonates, adenosine A(1) receptor was also decreased after chronic caffeine exposure during gestation (80%), lactation (76%) and gestation plus lactation (80%). In female neonates, adenosine A(1) receptor tended to decrease in response to caffeine exposure although no significant variations were found. No variation in the level of mRNA coding adenosine A(1) receptor was detected in neonates in any case. Concerning adenosine A(2A) receptor, radioligand binding assays revealed that this receptor remains unaltered in maternal and neonatal brain in response to caffeine exposure. However, caffeine consumption during gestation and lactation evoked a significant decrease in mRNA level coding A(2A) receptor (32%) in mothers' brain.

  11. Blockade of NR2B-Containing NMDA Receptors Prevents BDNF Enhancement of Glutamatergic Transmission in Hippocampal Neurons

    PubMed Central

    Crozier, Robert A.; Black, Ira B.; Plummer, Mark R.

    1999-01-01

    Application of brain-derived neurotrophic factor (BDNF) to hippocampal neurons has profound effects on glutamatergic synaptic transmission. Both pre- and postsynaptic actions have been identified that depend on the age and type of preparation. To understand the nature of this diversity, we have begun to examine the mechanisms of BDNF action in cultured dissociated embryonic hippocampal neurons. Whole-cell patch-clamp recording during iontophoretic application of glutamate revealed that BDNF doubled the amplitude of induced inward current. Coexposure to BDNF and the NMDA receptor antagonist AP-5 markedly reduced, but did not entirely prevent, the increase in current. Coexposure to BDNF and ifenprodil, an NR2B subunit antagonist, reproduced the response observed with AP-5, suggesting BDNF primarily enhanced activity of NR2B-containing NMDA receptors with a lesser effect on non-NMDA receptors. Protein kinase involvement was confirmed with the broad spectrum inhibitor staurosporine, which prevented the response to BDNF. PKCI19-31 and H-89, selective antagonists of PKC and PKA, had no effect on the response to BDNF, whereas autocamtide-2-related inhibitory peptide, an antagonist of CaM kinase II, reduced response magnitude by 60%. These results demonstrate the predominant role of a specific NMDA receptor subtype in BDNF modulation of hippocampal synaptic transmission. PMID:10492007

  12. Adenosine A2A receptors enable the synaptic effects of cannabinoid CB1 receptors in the rodent striatum.

    PubMed

    Tebano, Maria Teresa; Martire, Alberto; Chiodi, Valentina; Pepponi, Rita; Ferrante, Antonella; Domenici, Maria Rosaria; Frank, Claudio; Chen, Jiang-Fan; Ledent, Catherine; Popoli, Patrizia

    2009-09-01

    Adenosine A(2A), cannabinoid CB(1) and metabotropic glutamate 5 (mGlu(5)) receptors are all highly expressed in the striatum. The aim of the present work was to investigate whether, and by which mechanisms, the above receptors interact in the regulation of striatal synaptic transmission. By extracellular field potentials (FPs) recordings in corticostriatal slices, we demonstrated that the ability of the selective type 1 cannabinoid receptor (CB(1)R) agonist WIN55,212-2 to depress synaptic transmission was prevented by the pharmacological blockade or the genetic inactivation of A(2A)Rs. Such a permissive effect of A(2A)Rs towards CB(1)Rs does not seem to occur pre-synaptically as the ability of WIN55,212-2 to increase the R2/R1 ratio under a protocol of paired-pulse stimulation was not modified by ZM241385. Furthermore, the effects of WIN55,212-2 were reduced in slices from mice lacking post-synaptic striatal A(2A)Rs. The selective mGlu(5)R agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) potentiated the synaptic effects of WIN55,212-2, and such a potentiation was abolished by A(2A)R blockade. Unlike the synaptic effects, the ability of WIN55,212-2 to prevent NMDA-induced toxicity was not influenced by ZM241385. Altogether, these results show that the state of activation of A(2A)Rs regulates the synaptic effects of CB(1)Rs and that A(2A)Rs may control CB(1) effects also indirectly, namely through mGlu(5)Rs.

  13. Adenosine receptor-dependent signaling is not obligatory for normobaric and hypobaric hypoxia-induced cerebral vasodilation in humans.

    PubMed

    Hoiland, Ryan L; Bain, Anthony R; Tymko, Michael M; Rieger, Mathew G; Howe, Connor A; Willie, Christopher K; Hansen, Alex B; Flück, Daniela; Wildfong, Kevin W; Stembridge, Mike; Subedi, Prajan; Anholm, James; Ainslie, Philip N

    2017-04-01

    Hypoxia increases cerebral blood flow (CBF) with the underlying signaling processes potentially including adenosine. A randomized, double-blinded, and placebo-controlled design, was implemented to determine if adenosine receptor antagonism (theophylline, 3.75 mg/Kg) would reduce the CBF response to normobaric and hypobaric hypoxia. In 12 participants the partial pressures of end-tidal oxygen ([Formula: see text]) and carbon dioxide ([Formula: see text]), ventilation (pneumotachography), blood pressure (finger photoplethysmography), heart rate (electrocardiogram), CBF (duplex ultrasound), and intracranial blood velocities (transcranial Doppler ultrasound) were measured during 5-min stages of isocapnic hypoxia at sea level (98, 90, 80, and 70% [Formula: see text]). Ventilation, [Formula: see text] and [Formula: see text], blood pressure, heart rate, and CBF were also measured upon exposure (128 ± 31 min following arrival) to high altitude (3,800 m) and 6 h following theophylline administration. At sea level, although the CBF response to hypoxia was unaltered pre- and postplacebo, it was reduced following theophylline (P < 0.01), a finding explained by a lower [Formula: see text] (P < 0.01). Upon mathematical correction for [Formula: see text], the CBF response to hypoxia was unaltered following theophylline. Cerebrovascular reactivity to hypoxia (i.e., response slope) was not different between trials, irrespective of [Formula: see text] At high altitude, theophylline (n = 6) had no effect on CBF compared with placebo (n = 6) when end-tidal gases were comparable (P > 0.05). We conclude that adenosine receptor-dependent signaling is not obligatory for cerebral hypoxic vasodilation in humans.NEW & NOTEWORTHY The signaling pathways that regulate human cerebral blood flow in hypoxia remain poorly understood. Using a randomized, double-blinded, and placebo-controlled study design, we determined that adenosine receptor-dependent signaling is not obligatory for the

  14. Alpha-synuclein modulates NR2B-containing NMDA receptors and decreases their levels after rotenone exposure.

    PubMed

    Navarria, Laura; Zaltieri, Michela; Longhena, Francesca; Spillantini, Maria Grazia; Missale, Cristina; Spano, PierFranco; Bellucci, Arianna

    2015-01-01

    Alpha-synuclein (α-syn) is the main protein component of Lewy bodies (LBs), that together with nigrostriatal dopamine neuron loss constitute typical pathological hallmarks of Parkinson's disease (PD). Glutamate N-methyl-d-aspartate receptor (NMDAR) abnormalities, peculiarly involving NR2B-containing NMDAR, have been observed in the brain of PD patients and in several experimental models of the disease. Recent findings, indicating that α-syn can modulate NMDAR trafficking and function, suggest that this protein may be a pivotal regulator of NMDAR activity. Prompted by these evidences, we used fluorescence immunocytochemistry, western blotting and ratiometric Ca(2+) measurements to investigate whether wild type (wt) or C-terminally truncated α-syn can specifically modulate NR2B-containing NMDAR levels, subcellular trafficking and function. In addition, we evaluated whether the exposure of primary cortical neurons to increasing concentrations of rotenone could differentially regulate NR2B levels and cell viability in the presence or in the absence of α-syn. Our results indicate that both wt and C-terminally truncated α-syn negatively modulate NR2B-containing NMDAR levels, membrane translocation and function. Moreover, we found that absence of α-syn abolishes the rotenone-dependent decrease of NR2B levels and reduces neuronal vulnerability in primary cortical neurons. These findings suggest that α-syn can modulate neuronal resilience by regulating NR2B-containing NMDAR, whose specific alterations could connect α-syn pathology to neuronal degeneration in PD.

  15. Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A(2A) receptors.

    PubMed

    Dias, Raquel B; Ribeiro, Joaquim A; Sebastião, Ana M

    2012-02-01

    Phosphorylation of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by Protein Kinase A (PKA) is known to regulate AMPA receptor (AMPAR) trafficking and stabilization at the postsynaptic membrane, which in turn is one of the key mechanisms by which synaptic transmission and plasticity are tuned. However, not much is known as to how Gs-coupled receptors contribute to endogenous PKA-mediated regulation of AMPA receptor function. Here we report that activation of the excitatory A(2A) adenosine receptor by 2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680, 1-30 nM) facilitates AMPA-evoked currents in CA1 pyramidal neurons, by a mechanism dependent on PKA activation, but not on protein synthesis. This modulation of AMPA currents was mimicked by forskolin (1 μM) and did not occur in stratum radiatum interneurons. Superfusion of the A(2A) receptor agonist also caused an increase in the amplitude of miniature excitatory postsynaptic currents (mEPSCs), as well as in the membrane levels of GluR1 subunits phosphorylated at the PKA site (Ser845). The impact of this increase on GluR1-containing AMPA receptor expression was evidenced by the potentiation of LTP at the CA3-CA1 synapse that followed brief activation of A(2A) receptors. We thus propose that in conditions of increased adenosine availability, A(2A) receptor activation is responsible for setting part of the endogenous GluR1 Ser-845 phosphorylation tonus and hence, the availability of the GluR1-containing AMPA receptor extrasynaptic pool for synaptic insertion and reinforcement of synaptic strength.

  16. Differential Expression of Adenosine A1 and A2A Receptors After Upper Cervical (C2) Spinal Cord Hemisection in Adult Rats

    PubMed Central

    Petrov, Theodor; Kreipke, Christian; Alilain, Warren; Nantwi, Kwaku D

    2007-01-01

    Background: In an animal model of spinal cord injury, a latent respiratory motor pathway can be pharmacologically activated via adenosine receptors to restore respiratory function after cervical (C2) spinal cord hemisection that paralyzes the hemidiaphragm ipsilateral to injury. Although spinal phrenic motoneurons immunopositive for adenosine receptors have been demonstrated (C3–C5), it is unclear if adenosine receptor protein levels are altered after C2 hemisection and theophylline administration. Objective: To assess the effects of C2 spinal cord hemisection and theophylline administration on the expression of adenosine receptor proteins. Methods: Adenosine A1 and A2A receptor protein levels were assessed in adult rats classified as (a) noninjured and theophylline treated, (b) C2 hemisected, (c) C2 hemisected and administered theophylline orally (3× daily) for 3 days only, and (d) C2 hemisected and administered theophylline (3× daily for 3 days) and assessed 12 days after drug administration. Assessment of A1 protein levels was carried out via immunohistochemistry and A2A protein levels by densitometry. Results: Adenosine A1 protein levels decreased significantly (both ipsilateral and contralateral to injury) after C2 hemisection; however, the decrease was attenuated in hemisected and theophylline-treated animals. Attenuation in adenosine A1 receptor protein levels persisted when theophylline administration was stopped for 12 days prior to assessment. Adenosine A2A protein levels were unchanged by C2 hemisection; however, theophylline reduced the levels within the phrenic motoneurons. Furthermore, the decrease in A2A levels persisted 12 days after theophylline was withdrawn. Conclusion: Our findings suggest that theophylline mitigates the effects of C2 hemisection by attenuating the C2 hemisection–induced decrease in A1 protein levels. Furthermore, A2A protein levels are unaltered by C2 hemisection but decrease after continuous or interrupted theophylline

  17. Surgical incision-induced nociception causes cognitive impairment and reduction in synaptic NMDA receptor 2B in mice.

    PubMed

    Zhang, Xiaoqin; Xin, Xin; Dong, Yuanlin; Zhang, Yiying; Yu, Buwei; Mao, Jianren; Xie, Zhongcong

    2013-11-06

    Postoperative cognitive dysfunction (POCD) is associated with impairments in daily functioning, and increased morbidity and mortality. However, the causes and neuropathogenesis of POCD remain largely unknown. Uncontrolled pain often occurs postoperatively. We therefore set out to determine the effects of surgical incision-induced nociception on the cognitive function and its underlying mechanisms in 3- and 9-month-old mice. The mice had surgical incision in the hindpaw and then were tested for nociceptive threshold, learning, and memory. Brain levels of NMDA receptor and cyclin-dependent kinase 5 (CDK5) were also assessed. We found that surgical incision-induced nociception in mice led to a decreased freezing time in the tone test (which assesses the hippocampus-independent learning and memory function), but not the context test, of Fear Conditioning System at 3 and 7 d, but not 30 d post incision in 9-month-old, but not 3-month-old mice. Consistently, the surgical incision selectively decreased synaptic NMDA receptor 2B levels in the medial prefrontal cortex, and increased levels of tumor necrosis factor-α and CDK5 in the cortex, but not hippocampus, of the mice. Finally, eutectic mixture of local anesthetics and CDK5 inhibitor, roscovitine, attenuated the surgical incision-induced reduction in the synaptic NMDA receptor 2B levels and learning impairment. These results suggested that surgical incision-induced nociception reduced the synaptic NMDA receptor 2B level in the medial prefrontal cortex of mice, which might lead to hippocampus-independent learning impairment, contributing to POCD. These findings call for further investigation to determine the role of surgical incision-induced nociception in POCD.

  18. The inhibition of release by mGlu7 receptors is independent of the Ca2+ channel type but associated to GABAB and adenosine A1 receptors.

    PubMed

    Martín, Ricardo; Ladera, Carolina; Bartolomé-Martín, David; Torres, Magdalena; Sánchez-Prieto, José

    2008-09-01

    Neurotransmitter release is inhibited by G-protein coupled receptors (GPCRs) through signalling pathways that are negatively coupled to Ca2+ channels and adenylyl cyclase. Through Ca2+ imaging and immunocytochemistry, we have recently shown that adenosine A1, GABAB and the metabotropic glutamate type 7 receptors coexist in a subset of cerebrocortical nerve terminals. As these receptors inhibit glutamate release through common intracellular signalling pathways, their co-activation occluded each other responses. Here we have addressed whether the occlusion of receptor responses is restricted to the glutamate release mediated by N-type Ca2+ channels by analysing this process in nerve terminals from mice lacking the alpha1B subunit (Cav 2.2) of these channels. We found that glutamate release from cerebrocortical nerve terminals without these channels, in which release relies exclusively on P/Q type Ca2+ channels, is not modulated by mGlu7 receptors. Furthermore, there is no occlusion of the release inhibition by GABAB and adenosine A1. Hence, in the cerebrocortical preparation, these three receptors only appear to coexist in N-type channel containing nerve terminals. In contrast, in hippocampal nerve terminals lacking this subunit, where mGlu7 receptors modulate glutamate release via P/Q type channels, the occlusion of inhibitory responses by co-stimulation of adenosine A1, GABAB and mGlu7 receptors was observed. Thus, occlusion of the responses by the three GPCRs is independent of the Ca2+ channel type but rather, it is associated to functional mGlu7 receptors.

  19. NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test.

    PubMed

    Zhang, Lin; Xu, Tianyuan; Wang, Shuang; Yu, Lanqing; Liu, Dexiang; Zhan, Renzhi; Yu, Shu Yan

    2013-01-10

    The antidepressant-like effect of curcumin, a major active component of Curcuma longa, has been previously demonstrated in the forced swimming test. However, the mechanism of this beneficial effect on immobility scores, which is used to evaluate antidepressants, remains largely uncharacterized. The present study attempts to investigate the effects of curcumin on depressive-like behavior with a focus upon the possible contribution of N-methyl-D-aspartate (NMDA) subtype glutamate receptors in this antidepressant-like effect of curcumin. Male mice were pretreated with specific receptor antagonists to different NMDA receptor subtypes such as CPP, NVP-AAM077 and Ro25-6981 as well as to a partial NMDA receptor agonist, D-cycloserine (DCS), prior to administration of curcumin to observe the effects on depressive behavior as measured by immobility scores in the forced swim test. We found that pre-treatment of mice with CPP, a broad-spectrum competitive NMDA receptor antagonist, blocked the anti-immobility effect of curcumin, suggesting the involvement of the glutamate-NMDA receptors. While pretreatment with NVP-AAM077 (the GluN2A-preferring antagonist) did not affect the anti-immobility effect of curcumin, Ro25-6981 (the GluN2B-preferring antagonist) was found to prevent the effect of curcumin in the forced swimming test. Furthermore, pre-treatment with a sub-effective dose of DCS potentiated the anti-immobility effect of a sub-effective dose of curcumin in the forced swimming test. Taken together, these results suggest that curcumin shows antidepressant-like effects in mice and the activation of GluN2B-containing NMDARs is likely to play a predominate role in this beneficial effect. Therefore, the antidepressant-like effect of curcumin in the forced swim test may be mediated, at least in part, by the glutamatergic system.

  20. Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice.

    PubMed

    Moscoso-Castro, Maria; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2016-07-01

    Schizophrenia is a chronic severe mental disorder with a presumed neurodevelopmental origin, and no effective treatment. Schizophrenia is a multifactorial disease with genetic, environmental and neurochemical etiology. The main theories on the pathophysiology of this disorder include alterations in dopaminergic and glutamatergic neurotransmission in limbic and cortical areas of the brain. Early hypotheses also suggested that nucleoside adenosine is a putative affected neurotransmitter system, and clinical evidence suggests that adenosine adjuvants improve treatment outcomes, especially in poorly responsive patients. Hence, it is important to elucidate the role of the neuromodulator adenosine in the pathophysiology of schizophrenia. A2A adenosine receptor (A2AR) subtypes are expressed in brain areas controlling motivational responses and cognition, including striatum, and in lower levels in hippocampus and cerebral cortex. The aim of this study was to characterize A2AR knockout (KO) mice with complete and specific inactivation of A2AR, as an animal model for schizophrenia. We performed behavioral, anatomical and neurochemical studies to assess psychotic-like symptoms in adult male and female KO and wild-type (WT) littermates. Our results show impairments in inhibitory responses and sensory gating in A2AR KO animals. Hyperlocomotion induced by d-amphetamine and MK-801 was reduced in KO animals when compared to WT littermates. Moreover, A2AR KO animals show motor disturbances, social and cognitive alterations. Finally, behavioral impairments were associated with enlargement of brain lateral ventricles and decreased BDNF levels in the hippocampus. These data highlight the role of adenosine in the pathophysiology of schizophrenia and provide new possibilities for the therapeutic management of schizophrenia.

  1. Adenosine A(2A)-cannabinoid CB(1) receptor interaction: an integrative mechanism in striatal glutamatergic neurotransmission.

    PubMed

    Tebano, Maria Teresa; Martire, Alberto; Popoli, Patrizia

    2012-10-02

    The striatum is a subcortical area involved in sensorimotor, cognitive and emotional processes. Adenosine A(2A) receptors (A(2A)Rs) are highly expressed in the striatum, and their ability to establish functional and molecular interactions with many other receptors attributes to a pivotal role in the modulation and integration of striatal neurotransmission. This review will focus on the interaction between A(2A)Rs and cannabinoid CB(1) receptors (CB(1)Rs), taking it as a paradigmatic example of synaptic integration. Indeed, A(2A)Rs can exert an opposite (permissive vs. inhibitory) influence on CB1-dependent synaptic effect. These apparently irreconcilable functions could depend on a different role of pre- vs. postsynaptic A(2A)Rs, on their interaction with other receptors (namely adenosine A(1), metabotropic glutamate 5 and dopamine D2 receptors), and on whether A(2A)Rs form or not heteromers with CB(1)Rs. Besides providing a good example of the intricate pattern of events taking place in striatal synapses, the A(2A)/CB(1)R interaction proves very informative to understand the physiology of the basal ganglia and the mechanisms of related diseases. This article is part of a Special Issue entitled: Brain Integration.

  2. Characterization of P1 (adenosine) purinoceptors.

    PubMed

    Jarvis, Michael F

    2013-10-08

    The purine nucleoside adenosine (ADO) is an important modulator of cellular function in mammalian tissues, modulating cellular function and neuronal excitability via interactions with different cell surface receptor subtypes that are heterogeneously distributed in both the mammalian CNS and peripheral tissues. Four ADO receptor subtypes have been cloned and characterized. Described in this unit are three radioligand binding assays for pharmacological characterization of the high-affinity ADO receptor subtypes A1, A2A, and A3 receptors. Pharmacological characterization of the low-affinity A2B receptor has been enabled by the use of tritiated xanthine PSB-603. Because receptor localization is an important criterion for differentiation of receptor subtypes, a support protocol that describes the methodology for the localization of ADO receptors in rat brain tissue using autoradiography is also included.

  3. Purification and characterization of a human RNA adenosine deaminase for glutamate receptor B pre-mRNA editing.

    PubMed

    Yang, J H; Sklar, P; Axel, R; Maniatis, T

    1997-04-29

    The glutamate receptor subunit B (GluR-B) pre-mRNA is edited at two adenosine residues, resulting in amino acid changes that alter the electrophysiologic properties of the glutamate receptor. Previous studies showed that these amino acid changes are due to adenosine to inosine conversions in two codons resulting from adenosine deamination. Here, we describe the purification and characterization of an activity from human HeLa cells that efficiently and accurately edits GluR-B pre-mRNA at both of these sites. The purified activity contains a human homolog of the recently reported rat RED1 (rRED1) protein, a member of the family of double-stranded RNA-dependent deaminase proteins. Recombinant human RED1 (hRED1), but not recombinant dsRAD, another member of the family, efficiently edits both the Q/R and R/G sites of GluR-B RNA. We conclude that the GluR-B editing activity present in HeLa cell extracts and the recombinant hRED1 protein are indistinguishable.

  4. Bisphenol-A rapidly promotes dynamic changes in hippocampal dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDA receptor subunit NR2B

    SciTech Connect

    Xu Xiaohong Ye Yinping; Li Tao; Chen Lei; Tian Dong; Luo Qingqing; Lu Mei

    2010-12-01

    Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) {beta} and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs. The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ER{beta} were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17{beta}-estradiol (17{beta}-E{sub 2}) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17{beta}-E{sub 2}. The present results suggest that BPA, like 17{beta}-E{sub 2}, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17{beta}-E{sub 2} when it coexists with 17{beta}-E{sub 2}. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.

  5. Expression, pharmacology and functional activity of adenosine A1 receptors in genetic models of Huntington's disease.

    PubMed

    Ferrante, Antonella; Martire, Alberto; Pepponi, Rita; Varani, Katia; Vincenzi, Fabrizio; Ferraro, Luca; Beggiato, Sarah; Tebano, Maria Teresa; Popoli, Patrizia

    2014-11-01

    Adenosine A1 receptor (A1R) stimulation exerts beneficial effects in response to various insults to the brain and, although it was found neuroprotective in a lesional model of Huntington's disease (HD), the features of this receptor in genetic models of HD have never been explored. In the present study we characterized the expression, affinity and functional effects of A1Rs in R6/2 mice (the most widely used transgenic model of HD) and in a cellular model of HD. Binding studies revealed that the density of A1Rs was significantly reduced in the cortex and the striatum of R6/2 mice compared to age-matched wild-type (WT), while receptor affinity was unchanged. The selective A1R agonist cyclopentyladenosine (CPA, 300nM) was significantly more effective in reducing synaptic transmission in corticostriatal slices from symptomatic R6/2 than in age-matched WT mice. Such an effect was due to a stronger inhibition of glutamate release from the pre-synaptic terminal. The different functional activities of A1Rs in HD mice were associated also to a different intracellular signaling pathway involved in the synaptic effect of CPA. In fact, while the PKA pathway was involved in both genotypes, p38 MAPK inhibitor SB203580 partially prevented synaptic effects of CPA in R6/2, but not in WT, mice; moreover, CPA differently modulated the phosphorylation status of p38 in the two genotypes. In vitro studies confirmed a different behavior of A1Rs in HD: CPA (100 nM for 5h) modulated cell viability in STHdh(Q111/Q111) (mhttHD cells), without affecting the viability of STHdh(Q7/Q7) (wthtt cells). This effect was prevented by the application of SB203580. Our results demonstrate that in the presence of the HD mutation A1Rs undergo profound changes in terms of expression, pharmacology and functional activity. These changes have to be taken in due account when considering A1Rs as a potential therapeutic target for this disease.

  6. NMR structure of the natural killer cell receptor 2B4 (CD244): implications for ligand recognition.

    PubMed

    Ames, James B; Vyas, Vinay; Lusin, Jacqueline D; Mariuzza, Roy

    2005-05-03

    2B4, a transmembrane receptor expressed primarily on natural killer (NK) cells and on a subset of CD8(+) T cells, plays an important role in activating NK-mediated cytotoxicity through its interaction with CD48 on target cells. We report here the atomic-resolution structure of the ligand-binding (D1) domain of 2B4 in solution determined by nuclear magnetic resonance (NMR) spectroscopy. The overall main chain structure resembles an immunoglobulin variable (V) domain fold, very similar to that seen previously for domain 1 of CD2 and CD4. The structure contains nine beta-strands assembled into two beta-sheets conventionally labeled DEB and AGFCC'C' '. The six-stranded sheet (AGFCC'C' ') contains structural features that may have implications for ligand recognition and receptor function. A noncanonical disulfide bridge between Cys2 and Cys99 stabilizes a long and parallel beta-structure between strand A (residues 3-12) and strand G (residues 100-108). A beta-bulge at residues Glu45 and Ile46 places a bend in the middle of strand C' that orients two conserved and adjacent hydrophobic residues (Ile46 and Leu47) inside the beta-sandwich as seen in other V domains. Finally, the FG-loop (implicated in ligand recognition in the CD2-CD58 complex) is dynamically disordered in 2B4 in the absence of a ligand. We propose that ligand binding to 2B4 might stabilize the structure of the FG-loop in the ligand complex.

  7. Cytisine confers neuronal protection against excitotoxic injury by down-regulating GluN2B-containing NMDA receptors.

    PubMed

    Li, Yu-Jiao; Yang, Qi; Zhang, Kun; Guo, Yan-Yan; Li, Xu-Bo; Yang, Le; Zhao, Ming-Gao; Wu, Yu-Mei

    2013-01-01

    Cytisine (CYT), one of the principal bioactive components derived from the seeds of Cytisus laborinum L, has been widely used for central nervous system (CNS) diseases treatment. The present study investigated the protective effect of CYT on cultured cortical neural injury induced by N-methyl-d-aspartate (NMDA). Our data showed that CYT conferred protective effect against loss of cellular viability induced by brief exposure to 200 μM NMDA in a concentration-dependent manner. CYT significantly inhibited the neuronal apoptosis induced by NMDA exposure by reversing intracellular Ca(2+) overload and balancing Bcl-2 and Bax expression levels. Furthermore, CYT significantly reversed the up-regulation of GluN2B-containing NMDA receptors by exposure to NMDA, but it did not affect the level of GluN2A-containing NMDA receptors. These findings suggest that CYT protects cortical neurons, at least partially, by inhibiting the level of GluN2B-containing NMDA receptors and regulating Bcl-2 family.

  8. Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength.

    PubMed

    Segala, Elena; Guo, Dong; Cheng, Robert K Y; Bortolato, Andrea; Deflorian, Francesca; Doré, Andrew S; Errey, James C; Heitman, Laura H; IJzerman, Adriaan P; Marshall, Fiona H; Cooke, Robert M

    2016-07-14

    The association and dissociation kinetics of ligands binding to proteins vary considerably, but the mechanisms behind this variability are poorly understood, limiting their utilization for drug discovery. This is particularly so for G protein-coupled receptors (GPCRs) where high resolution structural information is only beginning to emerge. Engineering the human A2A adenosine receptor has allowed structures to be solved in complex with the reference compound ZM241385 and four related ligands at high resolution. Differences between the structures are limited, with the most pronounced being the interaction of each ligand with a salt bridge on the extracellular side of the receptor. Mutagenesis experiments confirm the role of this salt bridge in controlling the dissociation kinetics of the ligands from the receptor, while molecular dynamics simulations demonstrate the ability of ligands to modulate salt bridge stability. These results shed light on a structural determinant of ligand dissociation kinetics and identify a means by which this property may be optimized.

  9. Adenosine receptor inhibition attenuates the decrease in cutaneous vascular conductance during whole-body cooling from hyperthermia.

    PubMed

    Swift, Brendan; McGinn, Ryan; Gagnon, Daniel; Crandall, Craig G; Kenny, Glen P

    2014-01-01

    Adenosine has both vasodilatory and vasoconstrictive properties, yet its influence on cutaneous vascular conductance (CVC) during whole-body cooling remains unknown. The present study evaluated the influence of adenosine on reflex cutaneous vasoconstriction. Four microdialysis probes were inserted into the dorsal forearm skin of eight subjects and infused with the following solutions: (i) lactated Ringer solution (CON); (ii) 4 mm theophylline (Theo), a non-selective adenosine receptor antagonist; (iii) 10 mm l-NAME, an inhibitor of nitric oxide synthase; and (iv) combined 4 mm theophylline and 10 mm l-NAME (Theo + l-NAME). Subjects subsequently donned a water-perfusion garment. Following a thermoneutral baseline period, the suit was perfused with water at 10°C for 20 min (Cooling 1). The suit was then perfused with water at 49°C for 45 min (Heating), followed by a second cooling period of 20 min using 10°C water (Cooling 2). Cutaneous blood flow (laser-Doppler) was measured over each microdialysis probe and used to calculate CVC as a percentage of the maximum determined by sodium nitroprusside infusion and local heating. Cutaneous vascular conductance was significantly elevated at the Theo site relative to CON following Cooling 1 (18 ± 6 versus 8 ± 2%; P = 0.01) and Cooling 2 (27 ± 11 versus 14 ± 5%; P = 0.022). Likewise, CVC at the Theo + l-NAME site remained greater compared with l-NAME after Cooling 1 (13 ± 4 versus 7 ± 3%; P = 0.030) and Cooling 2 (15 ± 3 versus 9 ± 2%; P = 0.009). The present findings demonstrate that non-selective antagonism of adenosine receptors attenuates the decrease in cutaneous vascular conductance during whole-body cooling from hyperthermia.

  10. Adenosine regulation of the immune response initiated by ischemia reperfusion injury.

    PubMed

    Boros, D; Thompson, J; Larson, D F

    2016-03-01

    It is clinically established that adenosine has negative chronotropic, antiarrhythmic effects and reduces arterial blood pressure. Adenosine addition to cardioplegic solutions used in cardiac operations is clinically well tolerated and has been shown to improve myocardial protection in several studies. However, the mechanism of action remains unclear. Therefore, it is important to define the effect of adenosine on the inflammatory cascade as immune cell activation occurs early during ischemia reperfusion injury. Adenosine appears to mediate the initial steps of the inflammatory cascade via its four G-coupled protein receptors: A1, A2A, A2B, and A3, expressed on neutrophils, lymphocytes and macrophages. The adenosine receptor isotype dictates the immune response. More specifically, the A1 and A3 receptors stimulate a pro-inflammatory immune response whereas the A2A and A2B are immunosuppressive. As the adenosine receptors are important for cardiac pre-conditioning and post-conditioning, adenosine may regulate the inflammatory responses initiated during ischemia-mediated immune injury related to myocardial protection.

  11. Locomotor activation by theacrine, a purine alkaloid structurally similar to caffeine: involvement of adenosine and dopamine receptors.

    PubMed

    Feduccia, Allison A; Wang, Yuanyuan; Simms, Jeffrey A; Yi, Henry Y; Li, Rui; Bjeldanes, Leonard; Ye, Chuangxing; Bartlett, Selena E

    2012-08-01

    Purine compounds, such as caffeine, have many health-promoting properties and have proven to be beneficial in treating a number of different conditions. Theacrine, a purine alkaloid structurally similar to caffeine and abundantly present in Camellia kucha, has recently become of interest as a potential therapeutic compound. In the present study, theacrine was tested using a rodent behavioral model to investigate the effects of the drug on locomotor activity. Long Evans rats were injected with theacrine (24 or 48 mg/kg, i.p.) and activity levels were measured. Results showed that the highest dose of theacrine (48 mg/kg, i.p.) significantly increased locomotor activity compared to control animals and activity remained elevated throughout the duration of the session. To test for the involvement of adenosine receptors underlying theacrine's motor-activating properties, rats were administered a cocktail of the adenosine A₁ agonist, N⁶-cyclopentyladenosine (CPA; 0.1 mg/kg, i.p.) and A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.2 mg/kg, i.p.). Pre-treatment with theacrine significantly attenuated the motor depression induced by the adenosine receptor agonists, indicating that theacrine is likely acting as an adenosine receptor antagonist. Next, we examined the role of DA D₁ and D₂ receptor antagonism on theacrine-induced hyperlocomotion. Both antagonists, D₁R SCH23390 (0.1 or 0.05 mg/kg, i.p.) and D₂R eticlopride (0.1 mg/kg, i.p.), significantly reduced theacrine-stimulated activity indicating that this behavioral response, at least in part, is mediated by DA receptors. In order to investigate the brain region where theacrine may be acting, the drug (10 or 20 μg) was infused bilaterally into nucleus accumbens (NAc). Theacrine enhanced activity levels in a dose-dependent manner, implicating a role of the NAc in modulating theacrine's effects on locomotion. In addition, theacrine did not induce locomotor

  12. Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy.

    PubMed

    Katz, N K; Ryals, J M; Wright, D E

    2015-01-29

    Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. The current study used a mouse model of painful diabetic neuropathy to determine the effect of diabetes on endogenous adenosine production, and if central or peripheral delivery of adenosine receptor agonists could alleviate signs of mechanical allodynia in diabetic mice. Diabetes was induced using streptozocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Hydrolysis of AMP into adenosine by ectonucleotidases was determined in the dorsal root ganglia (DRG) and spinal cord at 8 weeks post-induction of diabetes. AMP, adenosine and the specific A1R agonist, N(6)-cyclopentyladenosine (CPA), were administered both centrally (intrathecal) and peripherally (intraplantar) to determine the effect of activation of adenosine receptors on mechanical allodynia in diabetic mice. Eight weeks post-induction, diabetic mice displayed significantly decreased hydrolysis of extracellular AMP in the DRG; at this same time, diabetic mice displayed significantly decreased mechanical withdrawal thresholds compared to nondiabetic controls. Central delivery AMP, adenosine and CPA significantly improved mechanical withdrawal thresholds in diabetic mice. Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of

  13. A2A Adenosine Receptor (A2AAR) as a Therapeutic Target in Diabetic Retinopathy

    PubMed Central

    Ibrahim, Ahmed S.; El-shishtawy, Mamdouh M.; Zhang, Wenbo; Caldwell, Ruth B.; Liou, Gregory I.

    2011-01-01

    In diabetic retinopathy (DR), abnormalities in vascular and neuronal function are closely related to the local production of inflammatory mediators whose potential source is microglia. A2A adenosine receptor (A2AAR) has been shown to possess anti-inflammatory properties that have not been studied in DR. Here, we evaluate the role of A2AAR and its underlying signaling in retinal complications associated with diabetes. Initial studies in wild-type mice revealed that the treatment with the A2AAR agonist resulted in marked decreases in hyperglycemia-induced retinal cell death and tumor necrosis factor (TNF)-α release. To further assess the role of A2AAR in DR, we studied the effects of A2AAR ablation on diabetes-induced retinal abnormalities. Diabetic A2AAR−/− mice had significantly more terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells, TNF-α release, and intercellular adhesion molecule-1 expression compared with diabetic wild-type mice. To explore a potential mechanism by which A2AAR signaling regulates inflammation in DR, we performed additional studies using microglial cells treated with Amadori-glycated albumin, a risk factor in diabetic disorders. The results showed that activation of A2AAR attenuated Amadori-glycated albumin-induced TNF-α release in a cAMP/exchange protein directly activated by cAMP-dependent mechanism and significantly repressed the inflammatory cascade, C-Raf/extracellular signal-regulated kinase (ERK), in activated microglia. Collectively, this work provides pharmacological and genetic evidence for A2AAR signaling as a control point of cell death in DR and suggests that the retinal protective effect of A2AAR is mediated by abrogating the inflammatory response that occurs in microglia via interaction with C-Raf/ERK pathway. PMID:21514428

  14. Adenosine receptor signaling modulates permeability of the blood-brain barrier.

    PubMed

    Carman, Aaron J; Mills, Jeffrey H; Krenz, Antje; Kim, Do-Geun; Bynoe, Margaret S

    2011-09-14

    The blood-brain barrier (BBB) is comprised of specialized endothelial cells that form the capillary microvasculature of the CNS and is essential for brain function. It also poses the greatest impediment in the treatment of many CNS diseases because it commonly blocks entry of therapeutic compounds. Here we report that adenosine receptor (AR) signaling modulates BBB permeability in vivo. A(1) and A(2A) AR activation facilitated the entry of intravenously administered macromolecules, including large dextrans and antibodies to β-amyloid, into murine brains. Additionally, treatment with an FDA-approved selective A(2A) agonist, Lexiscan, also increased BBB permeability in murine models. These changes in BBB permeability are dose-dependent and temporally discrete. Transgenic mice lacking A(1) or A(2A) ARs showed diminished dextran entry into the brain after AR agonism. Following treatment with a broad-spectrum AR agonist, intravenously administered anti-β-amyloid antibody was observed to enter the CNS and bind β-amyloid plaques in a transgenic mouse model of Alzheimer's disease (AD). Selective AR activation resulted in cellular changes in vitro including decreased transendothelial electrical resistance, increased actinomyosin stress fiber formation, and alterations in tight junction molecules. These results suggest that AR signaling can be used to modulate BBB permeability in vivo to facilitate the entry of potentially therapeutic compounds into the CNS. AR signaling at brain endothelial cells represents a novel endogenous mechanism of modulating BBB permeability. We anticipate these results will aid in drug design, drug delivery and treatment options for neurological diseases such as AD, Parkinson's disease, multiple sclerosis and cancers of the CNS.

  15. A differential role for the adenosine A2A receptor in opiate reinforcement vs opiate-seeking behavior.

    PubMed

    Brown, Robyn Mary; Short, Jennifer Lynn; Cowen, Michael Scott; Ledent, Catherine; Lawrence, Andrew John

    2009-03-01

    The adenosine A(2A) receptor is specifically enriched in the medium spiny neurons that make up the 'indirect' output pathway from the ventral striatum, a structure known to have a crucial, integrative role in processes such as reward, motivation, and drug-seeking behavior. In the present study we investigated the impact of adenosine A(2A) receptor deletion on behavioral responses to morphine in a number of reward-related paradigms. The acute, rewarding effects of morphine were evaluated using the conditioned place preference paradigm. Operant self-administration of morphine on both fixed and progressive ratio schedules as well as cue-induced drug-seeking was assessed. In addition, the acute locomotor response to morphine as well as sensitization to morphine was evaluated. Decreased morphine self-administration and breakpoint in A(2A) knockout mice was observed. These data support a decrease in motivation to consume the drug, perhaps reflecting diminished rewarding effects of morphine in A(2A) knockout mice. In support of this finding, a place preference to morphine was not observed in A(2A) knockout mice but was present in wild-type mice. In contrast, robust cue-induced morphine-seeking behavior was exhibited by both A(2A) knockout and wild-type mice after a period of withdrawal. The acute locomotor response to morphine in the A(2A) knockout was similar to wild-type mice, yet A(2A) knockout mice did not display tolerance to chronic morphine under the present paradigm. Both genotypes display locomotor sensitization to morphine, implying a lack of a role for the A(2A) receptor in the drug-induced plasticity necessary for the development or expression of sensitization. Collectively, these data suggest a differential role for adenosine A(2A) receptors in opiate reinforcement compared to opiate-seeking.

  16. Blunted dynamics of adenosine A2A receptors is associated with increased susceptibility to Candida albicans infection in the elderly

    PubMed Central

    Rodrigues, Lisa; Miranda, Isabel M.; Andrade, Geanne M.; Mota, Marta; Cortes, Luísa; Rodrigues, Acácio G.; Cunha, Rodrigo A.; Gonçalves, Teresa

    2016-01-01

    Opportunistic gut infections and chronic inflammation, in particular due to overgrowth of Candida albicans present in the gut microbiota, are increasingly reported in the elder population. In aged, adult and young mice, we now compared the relative intestinal over-colonization by ingested C. albicans and their translocation to other organs, focusing on the role of adenosine A2A receptors that are a main stop signal of inflammation. We report that elderly mice are more prone to over-colonization by C. albicans than adult and young mice. This fungal over-growth seems to be related with higher growth rate in intestinal lumen, independent of gut tissues invasion, but resulting in higher GI tract inflammation. We observed a particularly high colonization of the stomach, with increased rate of yeast-to-hypha transition in aged mice. We found a correlation between A2A receptor density and tissue damage due to yeast infection: comparing with young and adults, aged mice have a lower gut A2A receptor density and C. albicans infection failed to increase it. In conclusion, this study shows that aged mice have a lower ability to cope with inflammation due to C. albicans over-colonization, associated with an inability to adaptively adjust adenosine A2A receptors density. PMID:27590517

  17. Adenosine A1 Receptors in Mouse Pontine Reticular Formation Modulate Nociception Only in the Presence of Systemic Leptin

    PubMed Central

    Watson, Sarah L.; Watson, Christopher J.; Baghdoyan, Helen A.; Lydic, Ralph

    2014-01-01

    Human obesity is associated with increased leptin levels and pain, but the specific brain regions and neurochemical mechanisms underlying this association remain poorly understood. This study used adult male C57BL/6J (B6, n = 14) mice and leptin-deficient, obese B6.Cg-Lepob/J (obese, n = 10) mice to evaluate the hypothesis that nociception is altered by systemic leptin levels and by adenosine A1 receptors in the pontine reticular formation. Nociception was quantified as paw withdrawal latency (PWL) in s after onset of a thermal stimulus. PWL was converted to percent maximum possible effect (%MPE). After obtaining baseline PWL measures, the pontine reticular formation was microinjected with saline (control), three concentrations of the adenosine A1 receptor agonist N6-p-sulfophenyladenosine (SPA), or super-active mouse leptin receptor antagonist (SMLA) followed by SPA 15 min later, and PWL was again quantified. In obese, leptin-deficient mice, nociception was quantified before and during leptin replacement via subcutaneous osmotic pumps. SPA was administered into the pontine reticular formation of leptin-replaced mice and PWL testing was repeated. During baseline (before vehicle or SPA administration), PWL was significantly (p = 0.0013) lower in leptin-replaced obese mice than in B6 mice. Microinjecting SPA into the pontine reticular formation of B6 mice caused a significant (p = 0.0003) concentration-dependent increase in %MPE. SPA also significantly (p < 0.05) increased %MPE in B6 mice and in leptin-replaced obese mice, but not in leptin-deficient obese mice. Microinjection of the mouse super-active leptin antagonist (SMLA) into the pontine reticular formation before SPA did not alter PWL. The results show for the first time that pontine reticular formation administration of the adenosine A1 receptor agonist SPA produced antinociception only in the presence of systemic leptin. The concentration-response data support the interpretation that adenosine A1 receptors

  18. Species-specific responses of constitutively active receptor (CAR)-CYP2B coupling: lack of CYP2B inducer-responsive nuclear translocation of CAR in marine teleost, scup (Stenotomus chrysops).

    PubMed

    Iwata, Hisato; Yoshinari, Kouichi; Negishi, Masahiko; Stegeman, John J

    2002-04-01

    The mammalian constitutively active receptor (CAR) is a novel ligand-activated transcription factor that participates in controlling the expression of cytochrome P450 2B (CYP2B) genes in response to pharmaceutical agents (phenobarbital) and halogenated aromatic hydrocarbons (ortho-substituted PCBs). The occurrence and physiological function of this protein are as yet unknown in marine animals, where there has been a paradoxical lack of induction by PB-type chemicals. One approach to understanding CAR function is to study the evolutionary history of processes such as CAR-CYP2B coupling. In this study, CAR function was evaluated in a representative teleost fish (scup, Stenotomus chrysops). Treatment of scup with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), which is one of the most potent CYP2B inducers in mouse, caused no increase in hepatic alkoxyresorufin O-dealkylase activity nor in immunodetectable CYP2B-like protein levels. Western blot analyses of scup livers using anti-human CAR antisera revealed the occurrence of a putative CAR homologue in nuclear and cytoplasmic fractions, but no nuclear accumulation of CAR following TCPOBOP treatment, which is a first step regulating the transcriptional activation of CYP2B genes in mouse. Immunohistochemical study also showed no translocation of CAR into nucleus in the hepatocytes of TCPOBOP-treated scup. These results suggest that there may be species-specific differences in CAR activation or CAR-CYP2B coupling signaling transduction in fish from those in mouse.

  19. Trafficking of the NMDAR2B Receptor Subunit Distal Cytoplasmic Tail from Endoplasmic Reticulum to the Synapse

    PubMed Central

    Standley, Steve; Petralia, Ronald S.; Hamilton, Rebecca; Wang, Ya-Xian; Schubert, Manfred

    2012-01-01

    NMDA receptor NR2A/B subunits have PDZ-binding domains on their extreme C-termini that are known to interact with the PSD-95 family and other PDZ proteins. We explore the interactions between PSD-95 family proteins and the NR2A/B cytoplasmic tails, and the consequences of these interactions, from the endoplasmic reticulum (ER) through delivery to the synapse in primary rat hippocampal and cortical cultured neurons. We find that the NR2A/B cytoplasmic tails cluster very early in the secretory pathway and interact serially with SAP102 beginning at the intermediate compartment, and then PSD-95. We further establish that colocalization of the distal C-terminus of NR2B and PSD-95 begins at the trans-Golgi Network (TGN). Formation of NR2B/PSD-95/SAP102 complexes is dependent on the PDZ binding domain of NR2B subunits, but association with SAP102 and PSD-95 plays no distinguishable role in cluster pre-formation or initial targeting to the vicinity of the synapse. Instead the PDZ binding domain plays a role in restricting cell-surface clusters to postsynaptic targets. PMID:22761831

  20. Regulation of Cytochrome P450 2B10 (CYP2B10) Expression in Liver by Peroxisome Proliferator-activated Receptor-β/δ Modulation of SP1 Promoter Occupancy.

    PubMed

    Koga, Takayuki; Yao, Pei-Li; Goudarzi, Maryam; Murray, Iain A; Balandaram, Gayathri; Gonzalez, Frank J; Perdew, Gary H; Fornace, Albert J; Peters, Jeffrey M

    2016-11-25

    Alcoholic liver disease is a pathological condition caused by overconsumption of alcohol. Because of the high morbidity and mortality associated with this disease, there remains a need to elucidate the molecular mechanisms underlying its etiology and to develop new treatments. Because peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) modulates ethanol-induced hepatic effects, the present study examined alterations in gene expression that may contribute to this disease. Chronic ethanol treatment causes increased hepatic CYP2B10 expression inPparβ/δ(+/+) mice but not in Pparβ/δ(-/-) mice. Nuclear and cytosolic localization of the constitutive androstane receptor (CAR), a transcription factor known to regulate Cyp2b10 expression, was not different between genotypes. PPARγ co-activator 1α, a co-activator of both CAR and PPARβ/δ, was up-regulated in Pparβ/δ(+/+) liver following ethanol exposure, but not in Pparβ/δ(-/-) liver. Functional mapping of the Cyp2b10 promoter and ChIP assays revealed that PPARβ/δ-dependent modulation of SP1 promoter occupancy up-regulated Cyp2b10 expression in response to ethanol. These results suggest that PPARβ/δ regulates Cyp2b10 expression indirectly by modulating SP1 and PPARγ co-activator 1α expression and/or activity independent of CAR activity. Ligand activation of PPARβ/δ attenuates ethanol-induced Cyp2b10 expression in Pparβ/δ(+/+) liver but not in Pparβ/δ(-/-) liver. Strikingly, Cyp2b10 suppression by ligand activation of PPARβ/δ following ethanol treatment occurred in hepatocytes and was mediated by paracrine signaling from Kupffer cells. Combined, results from the present study demonstrate a novel regulatory role of PPARβ/δ in modulating CYP2B10 that may contribute to the etiology of alcoholic liver disease.

  1. FGF acts as a co-transmitter through Adenosine A2A receptor to regulate morphological and physiological synaptic plasticity

    PubMed Central

    Flajolet, Marc; Wang, Zhongfeng; Futter, Marie; Shen, Weixing; Nuangchamnong, Nina; Bendor, Jacob; Palaszewski, Iwona; Nairn, Angus C.; Surmeier, D. James; Greengard, Paul

    2009-01-01

    Summary Abnormalities of striatal function have been implicated in several major neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, and depression. Adenosine, by activation of A2A receptors, antagonizes dopamine signaling at D2 receptors and A2A receptor antagonists have been tested as therapeutic agents for Parkinson's disease. We report here a direct physical interaction between the G protein-coupled A2A receptor and the receptor tyrosine kinase FGF receptor. Concomitant activation of these two classes of receptors, but not individual activation of either one alone, causes a robust activation of the MAPK/ERK pathway, differentiation and neurite extension of PC12 cells, spine morphogenesis in primary neuronal cultures, and cortico-striatal plasticity induced by a novel A2AR/FGFR-dependent mechanism. The discovery of a direct physical interaction between the A2A and FGF receptors and the robust physiological consequences of this association shed light on the mechanism underlying FGF functions as a co-transmitter and open new avenues for therapeutic interventions. PMID:18953346

  2. Extracellular adenosine triphosphate and adenosine in cancer.

    PubMed

    Stagg, J; Smyth, M J

    2010-09-30

    Adenosine triphosphate (ATP) is actively released in the extracellular environment in response to tissue damage and cellular stress. Through the activation of P2X and P2Y receptors, extracellular ATP enhances tissue repair, promotes the recruitment of immune phagocytes and dendritic cells, and acts as a co-activator of NLR family, pyrin domain-containing 3 (NLRP3) inflammasomes. The conversion of extracellular ATP to adenosine, in contrast, essentially through the enzymatic activity of the ecto-nucleotidases CD39 and CD73, acts as a negative-feedback mechanism to prevent excessive immune responses. Here we review the effects of extracellular ATP and adenosine on tumorigenesis. First, we summarize the functions of extracellular ATP and adenosine in the context of tumor immunity. Second, we present an overview of the immunosuppressive and pro-angiogenic effects of extracellular adenosine. Third, we present experimental evidence that extracellular ATP and adenosine receptors are expressed by tumor cells and enhance tumor growth. Finally, we discuss recent studies, including our own work, which suggest that therapeutic approaches that promote ATP-mediated activation of inflammasomes, or inhibit the accumulation of tumor-derived extracellular adenosine, may constitute effective new means to induce anticancer activity.

  3. Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats.

    PubMed

    Rahimian, Reza; Fakhfouri, Gohar; Daneshmand, Ali; Mohammadi, Hamed; Bahremand, Arash; Rasouli, Mohammad Reza; Mousavizadeh, Kazem; Dehpour, Ahmad Reza

    2010-12-15

    Inflammatory bowel disease comprises chronic recurrent inflammation of gastrointestinal tract. This study was conducted to investigate inosine, a potent immunomodulator, in 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced chronic model of experimental colitis, and contribution of adenosine A(2A) receptors and the metabolite uric acid as possible underlying mechanisms. Experimental colitis was rendered in rats by a single colonic administration of 10 mg of TNBS. Inosine, potassium oxonate (a hepatic uricase inhibitor), SCH-442416 (a selective adenosine A(2A) receptor antagonist), inosine+potassium oxonate, or inosine+SCH-442416 were given twice daily for 7 successive days. At the end of experiment, macroscopic and histopathologic scores, colonic malondialdehyde (MDA), Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-1beta (IL-1β) levels, and myeloperoxidase (MPO) activity were assessed. Plasma uric acid level was measured throughout the experiment. Both macroscopic and histological features of colonic injury were markedly ameliorated by either inosine, oxonate or inosine+oxonate. Likewise, the elevated amounts of MPO and MDA abated as well as those of TNF-α and IL-1β (P<0.05). SCH-442416 partially reversed the effect of inosine on theses markers, while inosine+oxonate showed a higher degree of protection than each treatment alone (P<.0.05). No significant difference was observed between TNBS and SCH-442416 groups. Uric acid levels were significantly higher in inosine or oxonate groups compared to control. Inosine+oxonate resulted in an even more elvelated uric acid level than each treatment alone (P<0.05). Inosine elicits notable anti-inflammatory effects on TNBS-induced colitis in rats. Uric acid and adenosine A(2A) receptors contribute to these salutary properties.

  4. Binding mode similarity measures for ranking of docking poses: a case study on the adenosine A2A receptor

    NASA Astrophysics Data System (ADS)

    Anighoro, Andrew; Bajorath, Jürgen

    2016-06-01

    We report an investigation designed to explore alternative approaches for ranking of docking poses in the search for antagonists of the adenosine A2A receptor, an attractive target for structure-based virtual screening. Calculation of 3D similarity of docking poses to crystallographic ligand(s) as well as similarity of receptor-ligand interaction patterns was consistently superior to conventional scoring functions for prioritizing antagonists over decoys. Moreover, the use of crystallographic antagonists and agonists, a core fragment of an antagonist, and a model of an agonist placed into the binding site of an antagonist-bound form of the receptor resulted in a significant early enrichment of antagonists in compound rankings. Taken together, these findings showed that the use of binding modes of agonists and/or antagonists, even if they were only approximate, for similarity assessment of docking poses or comparison of interaction patterns increased the odds of identifying new active compounds over conventional scoring.

  5. Stimulation of Central A1 Adenosine Receptors Suppresses Seizure and Neuropathology in a Soman Nerve Agent Seizure Rat Model

    DTIC Science & Technology

    2014-05-22

    LV’s MTD, the total dose of CPA was buffered in 10 ml of multisol (48.5% H2O, 40% propylene glycol, 10% ethanol , and 1.5% benzyl alcohol ) and adminis...physiologic functions. It is released during normal metabolic activity into the extracel- lular space where it acts on adenosine receptors (ARs) (Ribeiro et al...brain regions following soman intoxication. J Neurochem 54:72–9. Geeraerts T, Vigue B. (2009). Cellular metabolism , temperature and brain injury. Ann

  6. Estrogen receptor alpha, fos-related antigen-2, and c-Jun coordinately regulate human UDP glucuronosyltransferase 2B15 and 2B17 expression in response to 17beta-estradiol in MCF-7 cells.

    PubMed

    Hu, Dong Gui; Mackenzie, Peter I

    2009-08-01

    UDP-glucuronosyltransferase 2B15 and 2B17 expression is up-regulated by 17beta-estradiol in MCF-7 breast cancer cells, as assessed by quantitative real-time polymerase chain reaction. Using 5'-deletion mapping and site-directed mutagenesis, we demonstrate that 17beta-estradiol activation of UGT2B15 gene transcription is mediated by a 282-base pair fragment positioned -454 to -172 nucleotides from the translation start site. This region contains two putative activator protein-1 (AP-1) elements, one imperfect estrogen response element (ERE), and two consensus ERE half-sites. We propose that these five sites act as an estrogen response unit (ERU), because mutation in any site reduces activation of the UGT2B15 promoter by 17beta-estradiol. Despite the presence of two AP-1 elements, the UGT2B15 promoter is not responsive to the AP-1 activator phorbol 12-myristate 13-acetate. Although electrophoretic mobility shift assays (EMSA) indicate that the AP-1 proteins c-Jun and Fos-related antigen 2 (Fra-2) bound to the distal AP-1 site, binding of Jun or Fos family members to the proximal AP-1 site was not detected by EMSA. Chromatin immunoprecipitation assays showed a 17beta-estradiol-induced recruitment of estrogen receptor (ER) alpha, c-Jun, and Fra-2 to the 282-bp ERU. The involvement of these three transcription factors in the stimulation of UGT2B15 gene expression by 17beta-estradiol was confirmed by siRNA silencing experiments. Mutagenesis and siRNA experiments indicate that UGT2B17 expression is also regulated by 17beta-estradiol via the ERU, which is fully conserved in both promoters. Because UGT2B15 and UGT2B17 inactivate steroid hormones by glucuronidation, the regulation of their genes by 17beta-estradiol may maintain steroid hormone homeostasis and prevent excessive estrogen signaling activity.

  7. Adenosine promotes vascular barrier function in hyperoxic lung injury

    PubMed Central

    Davies, Jonathan; Karmouty‐Quintana, Harry; Le, Thuy T.; Chen, Ning‐Yuan; Weng, Tingting; Luo, Fayong; Molina, Jose; Moorthy, Bhagavatula; Blackburn, Michael R.

    2014-01-01

    Abstract Hyperoxic lung injury is characterized by cellular damage from high oxygen concentrations that lead to an inflammatory response in the lung with cellular infiltration and pulmonary edema. Adenosine is a signaling molecule that is generated extracellularly by CD73 in response to injury. Extracellular adenosine signals through cell surface receptors and has been found to be elevated and plays a protective role in acute injury situations. In particular, ADORA2B activation is protective in acute lung injury. However, little is known about the role of adenosine signaling in hyperoxic lung injury. We hypothesized that hyperoxia‐induced lung injury leads to CD73‐mediated increases in extracellular adenosine, which is protective through ADORA2B signaling pathways. To test this hypothesis, we exposed C57BL6, CD73−/−, and Adora2B−/− mice to 95% oxygen or room air and examined markers of pulmonary inflammation, edema, and monitored lung histology. Hyperoxic exposure caused pulmonary inflammation and edema in association with elevations in lung adenosine levels. Loss of CD73‐mediated extracellular adenosine production exacerbated pulmonary edema without affecting inflammatory cell counts. Furthermore, loss of the ADORA2B had similar results with worsening of pulmonary edema following hyperoxia exposure without affecting inflammatory cell infiltration. This loss of barrier function correlated with a decrease in occludin in pulmonary vasculature in CD73−/− and Adora2B−/− mice following hyperoxia exposure. These results demonstrate that exposure to a hyperoxic environment causes lung injury associated with an increase in adenosine concentration, and elevated adenosine levels protect vascular barrier function in hyperoxic lung injury through the ADORA2B‐dependent regulation of occludin. PMID:25263205

  8. Expression of striatal adenosine and dopamine receptors in mice deficient in the p50 subunit of NF-κB

    PubMed Central

    Xie, Xiaobin; Jhaveri, Krishna A.; Ding, Ming; Hughes, Larry F.; Toth, Linda A.; Ramkumar, Vickram

    2007-01-01

    The striatal dopamine D2 receptor (D2R) and adenosine A2A receptor (A2AAR) exhibit mutually antagonistic effects through physical interactions and by differential modulation of post-receptor signaling pathways. The expression of the A2AAR and the D2R are differentially regulated by nuclear factor-κB (NFkB). In this report, we determined the role of NFkB in regulation of these receptors by comparing mice deficient in the NFκB p50 subunit (p50 KO) with genetically intact B6129PF2/J (F2) mice. Quantification of adenosine receptor (AR) subtypes in mouse striatum by real time PCR, immunocytochemistry and radioligand binding assays showed more A2AAR but less A1AR in p50 KO mice as compared with F2 mice. Striata from p50 KO mice also had less D2R mRNA and [3H]-methylspiperone binding than did striata from F2 mice. Gαolf and Gαs proteins, which are transducers of A2AAR signals, were also present at a higher level in striata from the p50 KO versus F2 mice. In contrast, the Gαi1 protein, which transduces signals from the A1AR and D2R, was significantly reduced in striata from p50-/ mice. Behaviorally, p50 KO mice exhibited increased locomotor activity relative to that of F2 mice after caffeine ingestion. These data are consistent with a role for the NFkB in the regulation of A1AR, A2AAR, D2R and possibly their coupling G proteins in the striatum. Dysregulation of these receptors in the striata of p50 KO mice might sensitize these animals to locomotor stimulatory action of caffeine. PMID:17869311

  9. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J.; Mikami, Dean J.

    2015-01-01

    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions. PMID:25813057

  10. mGlu5, Dopamine D2 and Adenosine A2A Receptors in L-DOPA-induced Dyskinesias

    PubMed Central

    Morin, Nicolas; Morissette, Marc; Grégoire, Laurent; Di Paolo, Thérèse

    2016-01-01

    Patients with Parkinson’s disease (PD) receiving L-3,4-dihydroxyphenylalanine (L-DOPA, the gold-standard treatment for this disease) frequently develop abnormal involuntary movements, termed L-DOPA-induced dyskinesias (LID). Glutamate overactivity is well documented in PD and LID. An approach to manage LID is to add to L-DOPA specific agents to reduce dyskinesias such as metabotropic glutamate receptor (mGlu receptor) drugs. This article reviews the contribution of mGlu type 5 (mGlu5) receptors in animal models of PD. Several mGlu5 negative allosteric modulators acutely attenuate LID in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys and 6-hydroxydopamine(6-OHDA)-lesioned rats. Chronic administration of mGlu5 negative allosteric modulators to MPTP monkeys and 6-OHDA rats also attenuates LID while maintaining the anti-parkinsonian effect of L-DOPA. Radioligand autoradiography shows an elevation of striatal mGlu5 receptors of dyskinetic L-DOPA-treated MPTP monkeys but not in those without LID. The brain molecular correlates of the long-term effect of mGlu5 negative allosteric modulators treatments with L-DOPA attenuating development of LID was shown to extend beyond mGlu5 receptors with normalization of glutamate activity in the basal ganglia of L-DOPA-induced changes of NMDA, AMPA, mGlu2/3 receptors and VGlut2 transporter. In the basal ganglia, mGlu5 receptor negative allosteric modulators also normalize the L-DOPA-induced changes of dopamine D2 receptors, their associated signaling proteins (ERK1/2 and Akt/GSK3β) and neuropeptides (preproenkephalin, preprodynorphin) as well as the adenosine A2A receptors expression. These results show in animal models of PD reduction of LID with mGlu5 negative allosteric modulation associated with normalization of glutamate, dopamine and adenosine receptors suggesting a functional link of these receptors in chronic treatment with L-DOPA. PMID:26639458

  11. mGlu5, Dopamine D2 and Adenosine A2A Receptors in L-DOPA-induced Dyskinesias.

    PubMed

    Morin, Nicolas; Morissette, Marc; Grégoire, Laurent; Di Paolo, Thérèse

    2016-01-01

    Patients with Parkinson's disease (PD) receiving L-3,4-dihydroxyphenylalanine (L-DOPA, the gold-standard treatment for this disease) frequently develop abnormal involuntary movements, termed L-DOPA-induced dyskinesias (LID). Glutamate overactivity is well documented in PD and LID. An approach to manage LID is to add to L-DOPA specific agents to reduce dyskinesias such as metabotropic glutamate receptor (mGlu receptor) drugs. This article reviews the contribution of mGlu type 5 (mGlu5) receptors in animal models of PD. Several mGlu5 negative allosteric modulators acutely attenuate LID in 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) monkeys and 6-hydroxydopamine(6-OHDA)-lesioned rats. Chronic administration of mGlu5 negative allosteric modulators to MPTP monkeys and 6-OHDA rats also attenuates LID while maintaining the antiparkinsonian effect of L-DOPA. Radioligand autoradiography shows an elevation of striatal mGlu5 receptors of dyskinetic L-DOPA-treated MPTP monkeys but not in those without LID. The brain molecular correlates of the long-term effect of mGlu5 negative allosteric modulators treatments with L-DOPA attenuating development of LID was shown to extend beyond mGlu5 receptors with normalization of glutamate activity in the basal ganglia of L-DOPA-induced changes of NMDA, AMPA, mGlu2/3 receptors and VGlut2 transporter. In the basal ganglia, mGlu5 receptor negative allosteric modulators also normalize the L-DOPA-induced changes of dopamine D2receptors, their associated signaling proteins (ERK1/2 and Akt/GSK3β) and neuropeptides (preproenkephalin, preprodynorphin) as well as the adenosine A2A receptors expression. These results show in animal models of PD reduction of LID with mGlu5 negative allosteric modulation associated with normalization of glutamate, dopamine and adenosine receptors suggesting a functional link of these receptors in chronic treatment with L-DOPA.

  12. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).

    PubMed

    Aluru, Neelakanteswar; Karchner, Sibel I; Franks, Diana G; Nacci, Diane; Champlin, Denise; Hahn, Mark E

    2015-01-01

    Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluation of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuable non-traditional model, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for off

  13. GABAB and adenosine receptors mediate enhancement of the K+ current, IAHP, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons.

    PubMed

    Gerber, U; Gähwiler, B H

    1994-11-01

    1. Gamma-aminobuturic acid-B (GABAB) and adenosine A1 receptors, which are expressed in hippocampal pyramidal cells, are linked to pertussis toxin-sensitive G-proteins known to be coupled negatively to the enzyme adenylyl cyclase. This study investigates the electrophysiological consequences of adenylyl cyclase inhibition in response to stimulation of these receptors. 2. Single-electrode voltage-clamp recordings were obtained from CA3 pyramidal cells in rat hippocampal slice cultures in presence of tetrodotoxin. The calcium-dependent potassium current (IAHP), which is very sensitive to intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP), was used as an electrophysiological indicator of adenylyl cyclase activity. 3. Application of baclofen (10 microM), a selective agonist at GABAB receptors, or adenosine (50 microM) each resulted in a transient decrease followed by a significant enhancement in the amplitude of evoked IAHP. The initial reduction in amplitude of IAHP probably reflects inadequacies in voltage clamp of electronically distant dendritic sites, due to the shunting caused by concomitant activation of potassium conductance by baclofen/adenosine. Comparable increases in membrane conductance in response to the GABAA agonist, muscimol, caused a similar reduction in IAHP. The enhancement of IAHP is consistent with an inhibition of constitutively active adenylyl cyclase. 4. The receptor mediating the responses to adenosine was identified as belonging to the A1 subtype on the basis of its sensitivity to the selective antagonist 8-cyclopentyl-1,3-dipropylxanthine.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. A new ethyladenine antagonist of adenosine A(2A) receptors: behavioral and biochemical characterization as an antiparkinsonian drug.

    PubMed

    Pinna, Annalisa; Tronci, Elisabetta; Schintu, Nicoletta; Simola, Nicola; Volpini, Rosaria; Pontis, Silvia; Cristalli, Gloria; Morelli, Micaela

    2010-03-01

    Adenosine A(2A) receptor antagonists have emerged as an attractive non-dopaminergic target in clinical trials aimed at evaluating improvement in motor deficits in Parkinson's disease (PD). Moreover, preclinical studies suggest that A(2A) receptor antagonists may slow the course of the underlying neurodegeneration of dopaminergic neurons. In this study, we evaluated the efficacy of the new adenosine A(2A) receptor antagonist 8-ethoxy-9-ethyladenine (ANR 94) in parkinsonian models of akinesia and tremor. In addition, induction of the immediate early gene zif-268, and neuroprotective and anti-inflammatory effects of ANR 94 were evaluated. ANR 94 was effective in reversing parkinsonian tremor induced by the administration of tacrine. ANR 94 also counteracted akinesia (stepping test) and sensorimotor deficits (vibrissae-elicited forelimb-placing test), as well as potentiating l-dopa-induced contralateral turning behavior in 6-hydroxydopamine (6-OHDA) lesion model of PD. Potentiation of motor behavior in 6-OHDA-lesioned rats was not associated with increased induction of the immediate early gene zif-268 in the striatum, suggesting that ANR 94 does not induce long-term plastic changes in this structure. Finally, in a subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, ANR 94 protected nigrostriatal dopaminergic neurons from degeneration and counteracted neuroinflammatory processes by contrasting astroglial (glial fibrillary acidic protein, GFAP) and microglial (CD11b) activation. A(2A) receptor antagonism represents a uniquely realistic opportunity for improving PD treatment, since A(2A) receptor antagonists offer substantial symptomatic benefits and possibly disease-modifying activity. The characterization of ANR 94 may represent a further therapeutic opportunity for the treatment of PD with this new class of drugs.

  15. Inosine induces presynaptic inhibition of acetylcholine release by activation of A3 adenosine receptors at the mouse neuromuscular junction

    PubMed Central

    Cinalli, A R; Guarracino, J F; Fernandez, V; Roquel, L I; Losavio, A S

    2013-01-01

    Background and Purpose The role of inosine at the mammalian neuromuscular junction (NMJ) has not been clearly defined. Moreover, inosine was classically considered to be the inactive metabolite of adenosine. Hence, we investigated the effect of inosine on spontaneous and evoked ACh release, the mechanism underlying its modulatory action and the receptor type and signal transduction pathway involved. Experimental Approach End-plate potentials (EPPs) and miniature end-plate potentials (MEPPs) were recorded from the mouse phrenic-nerve diaphragm preparations using conventional intracellular electrophysiological techniques. Key Results Inosine (100 μM) reduced MEPP frequency and the amplitude and quantal content of EPPs; effects inhibited by the selective A3 receptor antagonist MRS-1191. Immunohistochemical assays confirmed the presence of A3 receptors at mammalian NMJ. The voltage-gated calcium channel (VGCC) blocker Cd2+, the removal of extracellular Ca2+ and the L-type and P/Q-type VGCC antagonists, nitrendipine and ω-agatoxin IVA, respectively, all prevented inosine-induced inhibition. In the absence of endogenous adenosine, inosine decreased the hypertonic response. The effects of inosine on ACh release were prevented by the Gi/o protein inhibitor N-ethylmaleimide, PKC antagonist chelerytrine and calmodulin antagonist W-7, but not by PKA antagonists, H-89 and KT-5720, or the inhibitor of CaMKII KN-62. Conclusion and Implications Our results suggest that, at motor nerve terminals, inosine induces presynaptic inhibition of spontaneous and evoked ACh release by activating A3 receptors through a mechanism that involves L-type and P/Q-type VGCCs and the secretory machinery downstream of calcium influx. A3 receptors appear to be coupled to Gi/o protein. PKC and calmodulin may be involved in these effects of inosine. PMID:23731236

  16. Water-soluble pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines as human A₃ adenosine receptor antagonists.

    PubMed

    Baraldi, Pier Giovanni; Saponaro, Giulia; Romagnoli, Romeo; Aghazadeh Tabrizi, Mojgan; Baraldi, Stefania; Moorman, Allan R; Cosconati, Sandro; Di Maro, Salvatore; Marinelli, Luciana; Gessi, Stefania; Merighi, Stefania; Varani, Katia; Borea, Pier Andrea; Preti, Delia

    2012-06-14

    A relevant problem of the pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine nucleus, an attractive scaffold for the preparation of adenosine receptor antagonists, is the low water solubility. We originally functionalized the C(5) position with a salifiable 4-pyridylcarbamoyl moiety that conferred good water solubility at low pH (<4.0) but poor solubility at physiologic pH, indicative of the dissociation of the pyridinium species. Here we replaced the pyridin-4-yl moiety with a 1-(substituted)piperidin-4-yl ring to exploit the higher basicity of this nucleus and for the the possibility to generate stable, water-soluble salts. The hydrochloride salt of the 1-(cyclohexylmethyl)piperidin-4-yl derivative (10, K(i)(hA(3)) = 9.7 nM, IC(50)(hA(3)) = 30 nM, K(i)(hA(1)/hA(3)) = 351, K(i)(hA(2A)/hA(3)) > 515, IC(50)(hA(2B)) > 5 μM) showed a solubility of 8 mg/mL at physiological pH and gave a stable aqueous system suitable for intravenous infusion. Molecular modeling studies were helpful in rationalizing the available structure-activity relationships and the selectivity profile of the new ligands.

  17. Characterisation of N-methyl-D-aspartate receptor-specific [(3)H]Ifenprodil binding to recombinant human NR1a/NR2B receptors compared with native receptors in rodent brain membranes.

    PubMed

    Grimwood, S; Richards, P; Murray, F; Harrison, N; Wingrove, P B; Hutson, P H

    2000-12-01

    We have performed [(3)H]ifenprodil binding experiments under NMDA receptor-specific assay conditions to provide the first detailed characterisation of the pharmacology of the ifenprodil site on NMDA NR1/NR2B receptors, using recombinant human NR1a/NR2B receptors stably expressed in L(tk-) cells, in comparison with rat cortex/hippocampus membranes. [(3)H]Ifenprodil bound to a single, saturable site on both human recombinant NR1a/NR2B receptors and native rat receptors with B:(max) values of 1.83 and 2.45 pmol/mg of protein, respectively, and K:(D) values of 33.5 and 24.8 nM:, respectively. The affinity of various ifenprodil site ligands-eliprodil, (R:(*), R:(*))-4-hydroxy-alpha-(4-hydroxyphenyl)-beta-methyl-4-pehnyl-1-pi per idineethanol [(+/-)-CP-101,606], cis-3-[4-(4-fluorophenyl)-4-hydroxy-1-piperidinyl]-3, 4-dihydro-2H:-1-benzopyran-4,7-diol [(+/-)-CP-283,097], and (R:(*), S:(*))-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol [(+/-)-Ro 25-6981] was very similar for inhibition of [(3)H]ifenprodil binding to recombinant human NR1a/NR2B and native rat receptors, whereas allosteric inhibition of [(3)H]ifenprodil binding by polyamine site ligands (spermine, spermidine, and arcaine) showed approximately twofold lower affinity for recombinant receptors compared with native receptors. Glutamate site ligands were less effective at modulating [(3)H]ifenprodil binding to recombinant NR1a/NR2B receptors compared with native rat receptors. The NMDA receptor-specific [(3)H]ifenprodil binding conditions described were also applied to ex vivo experiments to determine the receptor occupancy of ifenprodil site ligands [ifenprodil, (+/-)-CP-101,606, (+/-)-CP-283,097, and (+/-)-Ro 25-6981] given systemically.

  18. Opposite modulation of 4-aminopyridine and hypoxic hyperexcitability by A1 and A2 adenosine receptor ligands in rat hippocampal slices.

    PubMed

    Longo, R; Zeng, Y C; Sagratella, S

    1995-11-10

    The effects of the adenosine receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), and of the adenosine agonists N6-cyclopentyladenosine (CPA), N6-(2-phenylisopropyl)adenosine (R-PIA), and 2-[p-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosin e (CGS 21680) were investigated on the hyperexcitability induced in the CA1 area of rat hippocampal slices by hypoxia or the epileptogenic agent 4-aminopiridine. Slice perfusion with the mixed adenosine receptor agonist R-PIA (0.2 microM) significantly (P < 0.05) decreased: (i) the number of slices showing a transient CA1 epileptiform bursting during the hypoxic period; (ii) the duration of the hypoxia-induced epileptiform bursting. Conversely, slice perfusion with the selective A1 adenosine receptor antagonists DPCPX (0.2 microM) or with the selective A2 adenosine receptor agonist CGS 21680 significantly (P < 0.05) increased the number of slices showing a transient CA1 epileptiform bursting during the hypoxic period but did not affect the duration of the hypoxia-induced epileptiform bursting. Neither drug significantly affected the number of slices showing functional recovery after hypoxia. Slice perfusion with DPCPX (0.2 microM) also significantly increased (P < 0.05) the number of slices showing a persistent CA1 epileptiform bursting during the reoxygenation period, while the other drugs failed to affect it. Slice perfusion with the selective A1 adenosine receptor agonist CPA (2 microM) or R-PIA (5 microM) significantly (P < 0.05) decreased the duration of the CA1 epileptiform bursting induced by 100 microM 4-aminopyridine. CGS 21680 (5 microM) perfused together with CPA (2 microM) significantly (P < 0.05) counteracted the inhibitory effects of the A1 adenosine receptor agonist on 4-aminopyridine epileptiform bursting, while it failed by itself to directly affect the 4-aminopyridine epileptiform bursting duration. The results produce evidence for a selective opposite modulation by A1 and A2 adenosine

  19. Structure of Natural Killer Receptor 2B4 Bound to CD48 Reveals Basis for Heterophilic Recognition in Signaling Lymphocyte Activation Molecule Family

    SciTech Connect

    Velikovsky,C.; Deng, L.; Chlewicki, L.; Fernandez, M.; Kumar, V.; Mariuzza, R.

    2007-01-01

    Natural killer (NK) cells eliminate virally infected and tumor cells. Among the receptors regulating NK cell function is 2B4 (CD244), a member of the signaling lymphocyte-activation molecule (SLAM) family that binds CD48. 2B4 is the only heterophilic receptor of the SLAM family, whose other members, e.g., NK-T-B-antigen (NTB-A), are self-ligands. We determined the structure of the complex between the N-terminal domains of mouse 2B4 and CD48, as well as the structures of unbound 2B4 and CD48. The complex displayed an association mode related to, yet distinct from, that of the NTB-A dimer. Binding was accompanied by the rigidification of flexible 2B4 regions containing most of the polymorphic residues across different species and receptor isoforms. We propose a model for 2B4-CD48 interactions that permits the intermixing of SLAM receptors with major histocompatibility complex-specific receptors in the NK cell immune synapse. This analysis revealed the basis for heterophilic recognition within the SLAM family.

  20. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder.

    PubMed

    Freitag, Christine M; Agelopoulos, Konstantin; Huy, Ellen; Rothermundt, Matthias; Krakowitzky, Petra; Meyer, Jobst; Deckert, Jürgen; von Gontard, Alexander; Hohoff, Christa

    2010-01-01

    Autism spectrum disorders (ASDs) are heterogeneous disorders presenting with increased rates of anxiety. The adenosine A(2A) receptor gene (ADORA2A) is associated with panic disorder and is located on chromosome 22q11.23. Its gene product, the adenosine A(2A) receptor, is strongly expressed in the caudate nucleus, which also is involved in ASD. As autistic symptoms are increased in individuals with 22q11.2 deletion syndrome, and large 22q11.2 deletions and duplications have been observed in ASD individuals, in this study, 98 individuals with ASD and 234 control individuals were genotyped for eight single-nucleotide polymorphisms in ADORA2A. Nominal association with the disorder was observed for rs2236624-CC, and phenotypic variability in ASD symptoms was influenced by rs3761422, rs5751876 and rs35320474. In addition, association of ADORA2A variants with anxiety was replicated for individuals with ASD. Findings point toward a possible mediating role of ADORA2A variants on phenotypic expression in ASD that need to be replicated in a larger sample.

  1. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors.

    PubMed

    Jinka, Tulasi R; Tøien, Øivind; Drew, Kelly L

    2011-07-27

    Torpor in hibernating mammals defines the nadir in mammalian metabolic demand and body temperature that accommodates seasonal periods of reduced energy availability. The mechanism of metabolic suppression during torpor onset is unknown, although the CNS is a key regulator of torpor. Seasonal hibernators, such as the arctic ground squirrel (AGS), display torpor only during the winter, hibernation season. The seasonal character of hibernation thus provides a clue to its regulation. In the present study, we delivered adenosine receptor agonists and antagonists into the lateral ventricle of AGSs at different times of the year while monitoring the rate of O(2) consumption and core body temperature as indicators of torpor. The A(1) antagonist cyclopentyltheophylline reversed spontaneous entrance into torpor. The adenosine A(1) receptor agonist N(6)-cyclohexyladenosine (CHA) induced torpor in six of six AGSs tested during the mid-hibernation season, two of six AGSs tested early in the hibernation season, and none of the six AGSs tested during the summer, off-season. CHA-induced torpor within the hibernation season was specific to A(1)AR activation; the A(3)AR agonist 2-Cl-IB MECA failed to induce torpor, and the A(2a)R antagonist MSX-3 failed to reverse spontaneous onset of torpor. CHA-induced torpor was similar to spontaneous entrance into torpor. These results show that metabolic suppression during torpor onset is regulated within the CNS via A(1)AR activation and requires a seasonal switch in the sensitivity of purinergic signaling.

  2. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    PubMed Central

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease. PMID:26796668

  3. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  4. Positive feedback of NR2B-containing NMDA receptor activity is the initial step toward visual imprinting: a model for juvenile learning.

    PubMed

    Nakamori, Tomoharu; Sato, Katsushige; Kinoshita, Masae; Kanamatsu, Tomoyuki; Sakagami, Hiroyuki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2015-01-01

    Imprinting in chicks is a good model for elucidating the processes underlying neural plasticity changes during juvenile learning. We recently reported that neural activation of a telencephalic region, the core region of the hyperpallium densocellulare (HDCo), was critical for success of visual imprinting, and that N-Methyl-D-aspartic (NMDA) receptors containing the NR2B subunit (NR2B/NR1) in this region were essential for imprinting. Using electrophysiological and multiple-site optical imaging techniques with acute brain slices, we found that long-term potentiation (LTP) and enhancement of NR2B/NR1 currents in HDCo neurons were induced in imprinted chicks. Enhancement of NR2B/NR1 currents as well as an increase in surface NR2B expression occurred even following a brief training that was too weak to induce LTP or imprinting behavior. This means that NR2B/NR1 activation is the initial step of learning, well before the activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors which induces LTP. We also showed that knockdown of NR2B/NR1 inhibited imprinting, and inversely, increasing the surface NR2B expression by treatment with a casein kinase 2 inhibitor successfully reduced training time required for imprinting. These results suggest that imprinting stimuli activate post-synaptic NR2B/NR1 in HDCo cells, increase NR2B/NR1 signaling through up-regulation of its expression, and induce LTP and memory acquisition. The study investigated the neural mechanism underlying juvenile learning. In the initial stage of chick imprinting, NMDA receptors containing the NMDA receptor subunit 2B (NR2B) are activated, surface expression of NR2B/NR1 (NMDA receptor subunit 1) is up-regulated, and consequently long-term potentiation is induced in the telencephalic neurons. We suggest that the positive feedback in the NR2B/NR1 activation is a unique process of juvenile learning, exhibiting rapid memory acquisition.

  5. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    PubMed

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.

  6. Integrating Pharmacophore into Membrane Molecular Dynamics Simulations to Improve Homology Modeling of G Protein-coupled Receptors with Ligand Selectivity: A2A Adenosine Receptor as an Example.

    PubMed

    Zeng, Lingxiao; Guan, Mengxin; Jin, Hongwei; Liu, Zhenming; Zhang, Liangren

    2015-12-01

    Homology modeling has been applied to fill in the gap in experimental G protein-coupled receptors structure determination. However, achievement of G protein-coupled receptors homology models with ligand selectivity remains challenging due to structural diversity of G protein-coupled receptors. In this work, we propose a novel strategy by integrating pharmacophore and membrane molecular dynamics (MD) simulations to improve homology modeling of G protein-coupled receptors with ligand selectivity. To validate this integrated strategy, the A2A adenosine receptor (A2A AR), whose structures in both active and inactive states have been established, has been chosen as an example. We performed blind predictions of the active-state A2A AR structure based on the inactive-state structure and compared the performance of different refinement strategies. The blind prediction model combined with the integrated strategy identified ligand-receptor interactions and conformational changes of key structural elements related to the activation of A2 A AR, including (i) the movements of intracellular ends of TM3 and TM5/TM6; (ii) the opening of ionic lock; (iii) the movements of binding site residues. The integrated strategy of pharmacophore with molecular dynamics simulations can aid in the optimization in the identification of side chain conformations in receptor models. This strategy can be further investigated in homology modeling and expand its applicability to other G protein-coupled receptor modeling, which should aid in the discovery of more effective and selective G protein-coupled receptor ligands.

  7. Effects of 5-HT2B, 5-HT3 and 5-HT4 receptor antagonists on gastrointestinal motor activity in dogs

    PubMed Central

    Morita, Hiroki; Mochiki, Erito; Takahashi, Nobuyuki; Kawamura, Kiyoshi; Watanabe, Akira; Sutou, Toshinaga; Ogawa, Atsushi; Yanai, Mitsuhiro; Ogata, Kyoichi; Fujii, Takaaki; Ohno, Tetsuro; Tsutsumi, Souichi; Asao, Takayuki; Kuwano, Hiroyuki

    2013-01-01

    AIM: To study the effects of 5-hydroxytryptamine (5-HT) receptor antagonists on normal colonic motor activity in conscious dogs. METHODS: Colonic motor activity was recorded using a strain gauge force transducer in 5 dogs before and after 5-HT2B, 5-HT3 and 5-HT4 receptor antagonist administration. The force transducers were implanted on the serosal surfaces of the gastric antrum, terminal ileum, ileocecal sphincter and colon. Test materials or vehicle alone was administered as an intravenous bolus injection during a quiescent period of the whole colon in the interdigestive state. The effects of these receptor antagonists on normal gastrointestinal motor activity were analyzed. RESULTS: 5-HT2B, 5-HT3 and 5-HT4 receptor antagonists had no contractile effect on the fasting canine terminal ileum. The 5-HT3 and 5-HT4 receptor antagonists inhibited phase III of the interdigestive motor complex of the antrum and significantly inhibited colonic motor activity. In the proximal colon, the inhibitory effect was dose dependent. Dose dependency, however, was not observed in the distal colon. The 5-HT2B receptor antagonist had no contractile effect on normal colonic motor activity. CONCLUSION: The 5-HT3 and 5-HT4 receptor antagonists inhibited normal colonic motor activity. The 5-HT2B receptor antagonist had no contractile effect on normal colonic motor activity. PMID:24151388

  8. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    PubMed

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined.

  9. Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata.

    PubMed

    Matsumoto, Joao Paulo Pontes; Almeida, Marina Gomes; Castilho-Martins, Emerson Augusto; Costa, Maisa Aparecida; Fior-Chadi, Debora Rejane

    2014-08-01

    Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation.

  10. A tail of two signals: the C terminus of the A(2A)-adenosine receptor recruits alternative signaling pathways.

    PubMed

    Gsandtner, Ingrid; Freissmuth, Michael

    2006-08-01

    G protein-coupled receptors are endowed with carboxyl termini that vary greatly in length and sequence. In most instances, the distal portion of the C terminus is dispensable for G protein coupling. This is also true for the A(2A)-adenosine receptor, where the last 100 amino acids are of very modest relevance to G(s) coupling. The C terminus was originally viewed mainly as the docking site for regulatory proteins of the beta-arrestin family. These beta-arrestins bind to residues that have been phosphorylated by specialized kinases (G protein-coupled receptor kinases) and thereby initiate receptor desensitization and endocytosis. More recently, it has become clear that many additional "accessory" proteins bind to C termini of G protein-coupled receptors. The article by Sun et al. in the current issue of Molecular Pharmacology identifies translin-associated protein-X as yet another interaction partner of the A(2A) receptor; translin-associated protein allows the A(2A) receptor to impinge on the signaling mechanisms by which p53 regulates neuronal differentiation, but the underlying signaling pathways are uncharted territory. With a list of five known interaction partners, the C terminus of the A(2A) receptor becomes a crowded place. Hence, there must be rules that regulate the interaction. This allows the C terminus to act as coincidence detector and as signal integrator. Despite our ignorance about the precise mechanisms, the article has exciting implications: the gene encoding for translin-associated protein-X maps to a locus implicated in some