Science.gov

Sample records for adenosine deaminase gene

  1. [Gene therapy for adenosine deaminase deficiency].

    PubMed

    Sakiyama, Yukio; Ariga, Tadashi; Ohtsu, Makoto

    2005-03-01

    A four year-old boy with adenosine deaminase (ADA-) deficient severe combined immunodeficiency(SCID) receiving PEG-ADA was treated under a gene therapy protocol targeting peripheral blood lymphocytes (PBLs) in 1995. After eleven infusions of autologous PBLs transduced with retroviral vector LASN encoding ADAcDNA, he exhibited increased levels of the CD8+ T lymphocytes, serum immunoglobulin, specific antibodies and delayed type hypersensitivity skin tests. Follow-up studies also provided evidence of long-term persistence and function of transduced PBLs with improvement in the immune function. However, the therapeutic effect of this gene therapy has been difficult to assess because of the concomitant treatment of PEG-ADA. Two ADA-SCID patients have been currently treated with autologous bone marrow CD34+ cells engineered with a retroviral vector GCsapM-ADA after discontinuation of PEG-ADA. The restoration of intracellular ADA enzymatic activity in lymphocytes and granulocytes resulted in correction of the systemic toxicity and liver function in the absence of PEG-ADA treatment. Both patients are at home where they are clinically well, and they do not experience adversed effect, with follow up being 12 months after CD34+ cells gene therapy.

  2. ADA (adenosine deaminase) gene therapy enters the competition

    SciTech Connect

    Culliton, B.J.

    1990-08-31

    Around the world, some 70 children are members of a select and deadly club. Born with an immune deficiency so severe that they will die of infection unless their immune systems can be repaired, they have captured the attention of would-be gene therapists who believe that a handful of these kids--the 15 or 20 who lack functioning levels of the enzyme adenosine deaminase (ADA)--could be saved by a healthy ADA gene. A team of gene therapists is ready to put the theory to the test. In April 1987, a team of NIH researchers headed by R. Michael Blaese and W. French Anderson came up with the first formal protocol to introduce a healthy ADA gene into an unhealthy human. After 3 years of line-by-line scrutiny by five review committees, they have permission to go ahead. Two or three children will be treated in the next year, and will be infused with T lymphocytes carrying the gene for ADA. If the experiment works, the ADA gene will begin producing normal amounts of ADA. An interesting feature of ADA deficiency, that makes it ideal for initial gene studies, is that the amount of ADA one needs for a healthy immune system is quite variable. Hence, once inside a patient's T cells, the new ADA gene needs only to express the enzyme in moderate amounts. No precise gene regulation is necessary.

  3. Gene therapy for severe combined immunodeficiency due to adenosine deaminase deficiency.

    PubMed

    Montiel-Equihua, Claudia A; Thrasher, Adrian J; Gaspar, H Bobby

    2012-02-01

    The severe combined immunodeficiency caused by the absence of adenosine deaminase (SCID-ADA) was the first monogenic disorder for which gene therapy was developed. Over 30 patients have been treated worldwide using the current protocols, and most of them have experienced clinical benefit; importantly, in the absence of any vector-related complications. In this document, we review the progress made so far in the development and establishment of gene therapy as an alternative form of treatment for ADA-SCID patients.

  4. Long-term expression of human adenosine deaminase in vascular smooth muscle cells of rats: A model for gene therapy

    SciTech Connect

    Lynch, C.M.; Miller, A.D. ); Clowes, M.M.; Osborne, W.R.A.; Clowes, A.W. )

    1992-02-01

    Gene transfer into vascular smooth muscle cells in animals was examined by using recombinant retroviral vectors containing an Escherichia coli {beta}-galactosidase gene or a human adenosine deaminase gene. Direct gene transfer by infusion of virus into rat carotid arteries was not observed. However, gene transfer by infection of smooth muscle cells in culture and seeding of the transduced cells onto arteries that had been denuded of endothelial cells was successful. Potentially therapeutic levels of human adenosine deaminase activity were detected over 6 months of observation, indicating the utility of vascular smooth muscle cells for gene therapy in humans.

  5. Visible integration of the adenosine deaminase (ADA) gene into the recipient genome after gene therapy.

    PubMed

    Egashira, M; Ariga, T; Kawamura, N; Miyoshi, O; Niikawa, N; Sakiyama, Y

    1998-01-23

    Gene therapy for patients with adenosine deaminase (ADA) deficiency has become practical in the 1990s, and the exogenous gene has been reported to survive for several years in the recipient genome. To evaluate the integration efficiency of the ADA gene (ADA) into peripheral blood lymphocytes (PBL) of a patient with ADA deficiency who is receiving gene therapy, we performed two-color interphase fluorescence in situ hybridization (FISH) analysis by using digoxigenin-labeled ADA-cDNA and the biotin-labeled lambda-genomic ADA clone as probes. After each of 9 sequential series of gene therapy, interphase nuclei of 100 mononuclear cells from the patient were analyzed, and those of a LASN-producing cell line were used as a control. FISH signals were detected with rhodamine and FITC for the cDNA and the genomic DNA, respectively. The number of PBL giving a transgene signal grew after the sequential gene therapies, and the proportion of signal-positive cells reached about 10%. Our results indicate that the two-color FISH system can be used as a potential aid to monitor the efficiency of the ADA gene therapy.

  6. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human

    SciTech Connect

    Palmer, T.D.; Hock, R.A.; Osborne, W.R.A.; Miller, A.D.

    1987-02-01

    Skin fibroblasts might be considered suitable recipients for therapeutic genes to cure several human genetic diseases; however, these cells are resistant to gene transfer by most methods. The authors studied the ability of retroviral vectors to transfer genes into normal human diploid skin fibroblasts. Retroviruses carrying genes for neomycin or hygromycin B resistance conferred drug resistance to greater than 50% of the human fibroblasts after a single exposure to virus-containing medium. This represents at least a 500-fold increase in efficiency over other methods. Transfer was achieved in the absence of helper virus by using amphotropic retrovirus-packaging cells. A retrovirus vector containing a human adenosine deaminase (ADA) cDNA was constructed and used to infect ADA/sup -/ fibroblasts from a patient with ADA deficiency. The infected cells produced 12-fold more ADA enzyme than fibroblasts from normal individuals and were able to rapidly metabolize exogenous deoxyadenosine and adenosine, metabolites that accumulate in plasma in ADA-deficient patients and are responsible for the severe combined immunodeficiency in these patients. These experiments indicate the potential of retrovirus-mediated gene transfer into human fibroblasts for gene therapy.

  7. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency

    PubMed Central

    Montiel-Equihua, Claudia A; Thrasher, Adrian J; Gaspar, H Bobby

    2010-01-01

    The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID) and especially adenosine deaminase (ADA)-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. Patients in trials in three different countries have shown long-term immunological and metabolic correction. Nevertheless, improvements to the safety profile of viral vectors are underway and will undoubtedly reinforce the position of stem cell gene therapy as a treatment option for ADA-SCID. PMID:24198507

  8. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency.

    PubMed

    Montiel-Equihua, Claudia A; Thrasher, Adrian J; Gaspar, H Bobby

    2009-12-22

    The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID) and especially adenosine deaminase (ADA)-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. Patients in trials in three different countries have shown long-term immunological and metabolic correction. Nevertheless, improvements to the safety profile of viral vectors are underway and will undoubtedly reinforce the position of stem cell gene therapy as a treatment option for ADA-SCID.

  9. Hematopoietic stem cell gene therapy for adenosine deaminase deficient-SCID.

    PubMed

    Aiuti, Alessandro; Brigida, Immacolata; Ferrua, Francesca; Cappelli, Barbara; Chiesa, Robert; Marktel, Sarah; Roncarolo, Maria-Grazia

    2009-01-01

    Gene therapy is a highly attractive strategy for many types of inherited disorders of the immune system. Adenosine deaminase (ADA) deficient-severe combined immunodeficiency (SCID) has been the target of several clinical trials based on the use of hematopoietic stem/progenitor cells engineered with retroviral vectors. The introduction of a low intensity conditioning regimen has been a crucial factor in achieving stable engrafment of hematopoietic stem cells and therapeutic levels of ADA-expressing cells. Recent studies have demonstrated that gene therapy for ADA-SCID has favorable safety profile and is effective in restoring normal purine metabolism and immune functions. Stem cell gene therapy combined with appropriate conditioning regimens might be extended to other genetic disorders of the hematopoietic system.

  10. Sequence requirements for transcriptional arrest in exon 1 of the murine adenosine deaminase gene.

    PubMed Central

    Ramamurthy, V; Maa, M C; Harless, M L; Wright, D A; Kellems, R E

    1990-01-01

    We have previously shown that a transcription arrest site near the 5' end of the murine adenosine deaminase (ADA) gene is significantly involved in the regulation of ADA gene expression. To facilitate the analysis of this transcription arrest site, we have analyzed the transcription products from cloned ADA gene fragments injected into Xenopus laevis oocytes. When genomic fragments spanning the 5' end of the ADA gene were injected into oocytes, a 96-nucleotide (nt) ADA RNA was the major transcription product. The 5' end of this RNA mapped to the transcription initiation site for the ADA gene, and its 3' terminus mapped 7 nt downstream of the translation initiation codon within exon 1. A 300-base-pair fragment of genomic DNA spanning the 5' end of the ADA gene was sufficient to generate the 96-nt transcript which accounted for approximately one-half of the transcription products from injected templates. Deletion of a segment of approximately 65 base pairs, located immediately downstream of the 3' terminus of the 96-nt transcript, resulted in a substantial reduction in the synthesis of the 96-nt transcript and a corresponding increase in the production of larger transcripts. These studies show that the transcriptional apparatus of X. laevis oocytes responds to the transcription arrest site associated with exon 1 of the murine ADA gene and that oocyte injections provide a convenient functional assay for additional mechanistic studies. Images PMID:1690842

  11. Modulatory effect of iron chelators on adenosine deaminase activity and gene expression in Trichomonas vaginalis.

    PubMed

    Primon-Barros, Muriel; Rigo, Graziela Vargas; Frasson, Amanda Piccoli; Santos, Odelta dos; Smiderle, Lisiane; Almeida, Silvana; Macedo, Alexandre José; Tasca, Tiana

    2015-11-01

    Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.

  12. Sequence requirements for transcriptional arrest in exon 1 of the human adenosine deaminase gene

    SciTech Connect

    Zhi Chen; Kellems, R.E.; Innis, J.W. ); Sun, Minghua; Wright, D.A. )

    1991-12-01

    The authors have previously demonstrated that a transcriptional arrest site exists in exon 1 of the human adenosine deaminase (ADA) gene and that this site may play a role in ADA gene expression. Sequences involved in this process are not known precisely. To further define the template requirements for transcriptional arrest within exon 1 of the human ADA gene, various ADA templates were constructed and their abilities to confer transcriptional arrest were determined following injection into Xenopus oocytes. The exon 1 transcriptional arrest signal functioned downstream of several RNA polymerase II promoters and an RNA polymerase II promoter, implying that the transcriptional arrest site in exon 1 of the ADA gene is promoter independent. They identified a 43-bp DNA fragment which functions as a transcriptional arrest signal. Additional studies showed that the transcriptional arrest site functioned only in the naturally occurring orientation. Therefore, they have identified a 43-bp DNA fragment which functions as a transcriptional arrest signal in an orientation-dependent and promoter-independent manner. On the basis of the authors findings, they hypothesize that tissue-specific expression of the ADA gene is governed by factors that function as antiterminators to promote transcriptional readthrough of the exon 1 transcriptional arrest site.

  13. Defective B cell tolerance in adenosine deaminase deficiency is corrected by gene therapy.

    PubMed

    Sauer, Aisha V; Morbach, Henner; Brigida, Immacolata; Ng, Yen-Shing; Aiuti, Alessandro; Meffre, Eric

    2012-06-01

    Adenosine deaminase (ADA) gene defects are among the most common causes of SCID. Restoration of purine metabolism and immune functions can be achieved by enzyme replacement therapy, or more effectively by bone marrow transplant or HSC gene therapy (HSC-GT). However, autoimmune complications and autoantibody production, including anti-nuclear antibodies (ANAs), frequently occur in ADA-SCID patients after treatment. To assess whether ADA deficiency affects the establishment of B cell tolerance, we tested the reactivity of recombinant antibodies isolated from single B cells of ADA-SCID patients before and after HSC-GT. We found that before HSC-GT, new emigrant/transitional and mature naive B cells from ADA-SCID patients contained more autoreactive and ANA-expressing clones, indicative of defective central and peripheral B cell tolerance checkpoints. We further observed impaired B cell receptor (BCR) and TLR functions in B cells after ADA inhibition, which may underlie the defects in B cell tolerance. Strikingly, after HSC-GT, ADA-SCID patients displayed quasi-normal early B cell tolerance checkpoints, as evidenced by restored removal of developing autoreactive and ANA-expressing B cells. Hence, ADA plays an essential role in controlling autoreactive B cell counterselection by regulating BCR and TLR functions.

  14. The ADA*2 allele of the adenosine deaminase gene (20q13.11) and recurrent spontaneous abortions: an age-dependent association

    PubMed Central

    Nunes, Daniela Prudente Teixeira; Spegiorin, Lígia Cosentino Junqueira Franco; de Mattos, Cinara Cássia Brandão; Oliani, Antonio Helio; Vaz-Oliani, Denise Cristina Mós; de Mattos, Luiz Carlos

    2011-01-01

    OBJECTIVE: Adenosine deaminase acts on adenosine and deoxyadenosine metabolism and modulates the immune response. The adenosine deaminase G22A polymorphism (20q.11.33) influences the level of adenosine deaminase enzyme expression, which seems to play a key role in maintaining pregnancy. The adenosine deaminase 2 phenotype has been associated with a protective effect against recurrent spontaneous abortions in European Caucasian women. The aim of this study was to investigate whether the G22A polymorphism of the adenosine deaminase gene is associated with recurrent spontaneous abortions in Brazilian women. METHODS: A total of 311 women were recruited to form two groups: G1, with a history of recurrent spontaneous abortions (N = 129), and G2, without a history of abortions (N = 182). Genomic DNA was extracted from peripheral blood with a commercial kit and PCR-RFLP analysis was used to identify the G22A genetic polymorphism. Fisher's exact test and odds ratio values were used to compare the proportions of adenosine deaminase genotypes and alleles between women with and without a history of recurrent spontaneous abortion (p<0.05). The differences between mean values for categorical data were calculated using unpaired t tests. The Hardy-Weinberg equilibrium was assessed with a chi-square test. RESULTS: Statistically significant differences were identified for the frequencies of adenosine deaminase genotypes and alleles between the G1 and G2 groups when adjusted for maternal age. CONCLUSIONS: The results suggest that the adenosine deaminase *2 allele is associated with a low risk for recurrent spontaneous abortions, but this association is dependent on older age. PMID:22086524

  15. Purine metabolism in adenosine deaminase deficiency.

    PubMed Central

    Mills, G C; Schmalstieg, F C; Trimmer, K B; Goldman, A S; Goldblum, R M

    1976-01-01

    Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides. PMID:1066699

  16. Genetics Home Reference: adenosine deaminase 2 deficiency

    MedlinePlus

    ... This Page Bras J, Guerreiro R, Santo GC. Mutant ADA2 in vasculopathies. N Engl J Med. 2014 ... M, Anikster Y, King MC, Levy-Lahad E. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. ...

  17. Radioimmunochemical quantitation of human adenosine deaminase.

    PubMed Central

    Daddona, P E; Frohman, M A; Kelley, W N

    1979-01-01

    Markedly reduced or absent adenosine deaminase activity in man is associated with an autosomal recesive form of severe conbined immunodeficiency disease. To further define the genetic nature of this enzyme defect, we have quantitated immunologically active adenosine deaminase (CRM) in the hemolysate of homozygous deficient patients and their heterozygous parents. A highly specific radioimmunoassay was developed capable of detecting 0.05% of normal erythrocyte adenosine deaminase. Hemolysates from nine heterozygotes (five families) showed a wide range in CRM (32--100% of normal) and variable absolute specific activities with several being at least 1 SD BELOW THE NORMAL MEAN. Hemolysates from four unrelated patients showed less than 0.09% adenosine deaminase activity with CRM ranging from less than 0.06 to 5.6% of the normal mean. In conclusion, heterozygote and homozygote hemolysates from five of the eight families analyzed revealed variable levels of CRM suggesting heterogeneous genetic alteration or expression of the silent or defective allele(s) of adenosine deaminase. PMID:468994

  18. Human adenosine deaminase. Distribution and properties.

    PubMed

    Van der Weyden, M B; Kelley, W N

    1976-09-25

    Adenosine deaminase exists in multiple molecular forms in human tissue. One form of the enzyme appears to be "particulate". Three forms of the enzyme are soluble and interconvertible with apparent molecular weights of approximately 36,000, 114,000, and 298,000 (designated small, intermediate, and large, respectively). The small form of adenosine deaminase is convertible to the large form only in the presence of a protein, which has an apparent molecular weight of 200,000 and has no adenosine deaminase activity. This conversion of the small form of the enzyme to the large form occurs at 4 degrees, exhibits a pH optimum of 5.0 to 8.0, and is associated with a loss of conversion activity. The small form of the enzyme predominates in tissue preparations exhibiting the higher enzyme-specific activities and no detectable conversion activity. The large form of adenosine deaminase predominates in tissue extracts exhibiting the lower enzyme specific activities and abundant conversion activity. The small form of adenosine deaminase shows several electrophoretic variants by isoelectric focusing. The electrophoretic heterogeneity observed with the large form of the enzyme is similar to that observed with the small form, with the exception that several additional electrophoretic variants are uniformly identified. No organ specificity is demonstrable for the different electrophoretic forms. The kinetic characteristics of the three soluble molecular species of adenosine deaminase are identical except for pH optimum, which is 5.5 for the intermediate species and 7.0 to 7.4 for the large and small forms.

  19. Mutations in the human adenosine deaminase gene that affect protein structure and RNA splicing

    SciTech Connect

    Akeson, A.L.; Wiginton, D.A.; States, C.J.; Perme, C.M.; Dusing, M.R.; Hutton, J.J.

    1987-08-01

    Adenosine deaminase deficiency is one cause of the genetic disease severe combined immunodeficiency. To identify mutations responsible for ADA deficiency, the authors synthesized cDNAs to ADA mRNAs from two cell lines, GM2756 and GM2825A, derived from ADA-deficient immunodeficient patients. Sequence analysis of GM2756 cDNA clones revealed a different point mutation in each allele that causes amino acid changes of alanine to valine and arginine to histidine. One allele of GM2825A also has a point mutation that causes an alanine to valine substitution. The other allele of GM2825A was found to produce an mRNA in which exon 4 had been spliced out but had no other detrimental mutations. S1 nuclease mapping of GM2825A mRNA showed equal abundance of the full-length ADA mRNA and the ADA mRNA that was missing exon 4. Several of the ADA cDNA clones extended 5' of the major initiation start site, indicating multiple start sites for ADA transcription. The point mutations in GM2756 and GM2825A and the absence of exon 4 in GM2825A appear to be directly responsible for the ADA deficiency. Comparison of a number of normal and mutant ADA cDNA sequences showed a number of changes in the third base of codons. These change do not affect the amino acid sequence. Analyses of ADA cDNAs from different cell lines detected aberrant RNA species that either included intron 7 or excluded exon 7. Their presence is a result of aberrant splicing of pre-mRNAs and is not related to mutations that cause ADA deficiency.

  20. [Adenosine deaminase in experimental trypanosomiasis: future implications].

    PubMed

    Pérez-Aguilar, Mary Carmen; Rondón-Mercado, Rocío

    2015-09-01

    The adenosine deaminase represents a control point in the regulation of extracellular adenosine levels, thus playing a critical role in the modulation of purinergic responses to certain pathophysiological events. Several studies have shown that serum and plasma enzyme levels are elevated in some diseases caused by microorganisms, which may represent a compensatory mechanism due to the elevated levels of adenosine and the release of inflammatory mediators. Recent research indicates that adenosine deaminase activity decreases and affects hematological parameters of infected animals with Trypanosoma evansi, so that such alterations could have implications in the pathogenesis of the disease. In addition, the enzyme has been detected in this parasite; allowing the inference that it could be associated with the vital functions of the same, similar to what occurs in mammals. This knowledge may be useful in the association of chemotherapy with specific inhibitors of the enzyme in future studies.

  1. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans.

    PubMed

    Candotti, Fabio; Shaw, Kit L; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F; Weinberg, Kenneth I; Crooks, Gay M; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S; Rosenblatt, Howard M; Davis, Carla M; Hanson, Celine; Rishi, Radha G; Wang, Xiaoyan; Gjertson, David; Yang, Otto O; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A; Engel, Barbara C; Podsakoff, Gregory M; Hershfield, Michael S; Blaese, R Michael; Parkman, Robertson; Kohn, Donald B

    2012-11-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34(+) cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m(2)). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency.

  2. PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency.

    PubMed

    Hershfield, M S

    1995-01-01

    PEG-ADA is a long-circulating form of adenosine deaminase (ADA) that has been in use for > 8 years as replacement therapy for severe combined immunodeficiency disease due to ADA deficiency. Treatment with PEG-ADA almost completely corrects metabolic abnormalities, allowing the recovery of a variable degree of immune function. Although not normal, the level of function achieved has in most cases been sufficient to protect against opportunistic and life-threatening infections. PEG-ADA has been used as an alternative for patients who lack an HLA-identical bone marrow donor, but are judged to be at too high a risk for undergoing HLA-haploidentical marrow transplantation. To date, mortality and morbidity with PEG-ADA have been less than for the latter procedure. PEG-ADA has also been an important adjunct to attempts to develop somatic cell gene therapy for ADA deficiency, although its continued use poses a problem for evaluation of the benefit of gene therapy. As a true "orphan drug" developed to treat a very small patient population, the cost per patient of PEG-ADA is very high.

  3. Expression of human adenosine deaminase in murine hematopoietic cells.

    PubMed Central

    Belmont, J W; MacGregor, G R; Wager-Smith, K; Fletcher, F A; Moore, K A; Hawkins, D; Villalon, D; Chang, S M; Caskey, C T

    1988-01-01

    Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells. Images PMID:3072474

  4. Neuroprotective effects of adenosine deaminase in the striatum

    PubMed Central

    Tamura, Risa; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-01-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  5. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency

    PubMed Central

    Cicalese, Maria Pia; Ferrua, Francesca; Castagnaro, Laura; Pajno, Roberta; Barzaghi, Federica; Giannelli, Stefania; Dionisio, Francesca; Brigida, Immacolata; Bonopane, Marco; Casiraghi, Miriam; Tabucchi, Antonella; Carlucci, Filippo; Grunebaum, Eyal; Adeli, Mehdi; Bredius, Robbert G.; Puck, Jennifer M.; Stepensky, Polina; Tezcan, Ilhan; Rolfe, Katie; De Boever, Erika; Reinhardt, Rickey R.; Appleby, Jonathan; Ciceri, Fabio; Roncarolo, Maria Grazia

    2016-01-01

    Adenosine deaminase (ADA) deficiency is a rare, autosomal-recessive systemic metabolic disease characterized by severe combined immunodeficiency (SCID). The treatment of choice for ADA-deficient SCID (ADA-SCID) is hematopoietic stem cell transplant from an HLA-matched sibling donor, although <25% of patients have such a donor available. Enzyme replacement therapy (ERT) partially and temporarily relieves immunodeficiency. We investigated the medium-term outcome of gene therapy (GT) in 18 patients with ADA-SCID for whom an HLA-identical family donor was not available; most were not responding well to ERT. Patients were treated with an autologous CD34+-enriched cell fraction that contained CD34+ cells transduced with a retroviral vector encoding the human ADA complementary DNA sequence (GSK2696273) as part of single-arm, open-label studies or compassionate use programs. Overall survival was 100% over 2.3 to 13.4 years (median, 6.9 years). Gene-modified cells were stably present in multiple lineages throughout follow up. GT resulted in a sustained reduction in the severe infection rate from 1.17 events per person-year to 0.17 events per person-year (n = 17, patient 1 data not available). Immune reconstitution was demonstrated by normalization of T-cell subsets (CD3+, CD4+, and CD8+), evidence of thymopoiesis, and sustained T-cell proliferative capacity. B-cell function was evidenced by immunoglobulin production, decreased intravenous immunoglobulin use, and antibody response after vaccination. All 18 patients reported infections as adverse events; infections of respiratory and gastrointestinal tracts were reported most frequently. No events indicative of leukemic transformation were reported. Trial details were registered at www.clinicaltrials.gov as #NCT00598481. PMID:27129325

  6. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency.

    PubMed

    Cicalese, Maria Pia; Ferrua, Francesca; Castagnaro, Laura; Pajno, Roberta; Barzaghi, Federica; Giannelli, Stefania; Dionisio, Francesca; Brigida, Immacolata; Bonopane, Marco; Casiraghi, Miriam; Tabucchi, Antonella; Carlucci, Filippo; Grunebaum, Eyal; Adeli, Mehdi; Bredius, Robbert G; Puck, Jennifer M; Stepensky, Polina; Tezcan, Ilhan; Rolfe, Katie; De Boever, Erika; Reinhardt, Rickey R; Appleby, Jonathan; Ciceri, Fabio; Roncarolo, Maria Grazia; Aiuti, Alessandro

    2016-07-07

    Adenosine deaminase (ADA) deficiency is a rare, autosomal-recessive systemic metabolic disease characterized by severe combined immunodeficiency (SCID). The treatment of choice for ADA-deficient SCID (ADA-SCID) is hematopoietic stem cell transplant from an HLA-matched sibling donor, although <25% of patients have such a donor available. Enzyme replacement therapy (ERT) partially and temporarily relieves immunodeficiency. We investigated the medium-term outcome of gene therapy (GT) in 18 patients with ADA-SCID for whom an HLA-identical family donor was not available; most were not responding well to ERT. Patients were treated with an autologous CD34(+)-enriched cell fraction that contained CD34(+) cells transduced with a retroviral vector encoding the human ADA complementary DNA sequence (GSK2696273) as part of single-arm, open-label studies or compassionate use programs. Overall survival was 100% over 2.3 to 13.4 years (median, 6.9 years). Gene-modified cells were stably present in multiple lineages throughout follow up. GT resulted in a sustained reduction in the severe infection rate from 1.17 events per person-year to 0.17 events per person-year (n = 17, patient 1 data not available). Immune reconstitution was demonstrated by normalization of T-cell subsets (CD3(+), CD4(+), and CD8(+)), evidence of thymopoiesis, and sustained T-cell proliferative capacity. B-cell function was evidenced by immunoglobulin production, decreased intravenous immunoglobulin use, and antibody response after vaccination. All 18 patients reported infections as adverse events; infections of respiratory and gastrointestinal tracts were reported most frequently. No events indicative of leukemic transformation were reported. Trial details were registered at www.clinicaltrials.gov as #NCT00598481.

  7. [Gene therapy for adenosine deaminase (ADA) deficiency: review of the past, the present and the future].

    PubMed

    Ariga, T

    2001-01-01

    ADA deficiency is the first disease being treated by gene therapy. Since the first trial of gene therapy performed ten years ago, more than 10 patients including our case with ADA deficiency have been treated by the gene therapy with different clinical protocols. In contrast to the recent successful report for X-SCID patients, however, no curative effect of gene therapy for ADA deficiency has been achieved at the moment. In this chapter, I would like to review the past, the present and the future of gene therapy for ADA deficiency, and discuss an issue, especially PEG-ADA therapy, regarding the prospect for stem cell gene therapy for the disease.

  8. Adenosine Deaminases Acting on RNA, RNA Editing, and Interferon Action

    PubMed Central

    George, Cyril X.; Gan, Zhenji; Liu, Yong

    2011-01-01

    Adenosine deaminases acting on RNA (ADARs) catalyze adenosine (A) to inosine (I) editing of RNA that possesses double-stranded (ds) structure. A-to-I RNA editing results in nucleotide substitution, because I is recognized as G instead of A both by ribosomes and by RNA polymerases. A-to-I substitution can also cause dsRNA destabilization, as I:U mismatch base pairs are less stable than A:U base pairs. Three mammalian ADAR genes are known, of which two encode active deaminases (ADAR1 and ADAR2). Alternative promoters together with alternative splicing give rise to two protein size forms of ADAR1: an interferon-inducible ADAR1-p150 deaminase that binds dsRNA and Z-DNA, and a constitutively expressed ADAR1-p110 deaminase. ADAR2, like ADAR1-p110, is constitutively expressed and binds dsRNA. A-to-I editing occurs with both viral and cellular RNAs, and affects a broad range of biological processes. These include virus growth and persistence, apoptosis and embryogenesis, neurotransmitter receptor and ion channel function, pancreatic cell function, and post-transcriptional gene regulation by microRNAs. Biochemical processes that provide a framework for understanding the physiologic changes following ADAR-catalyzed A-to-I ( = G) editing events include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA-structure-dependent activities such as microRNA production or targeting or protein–RNA interactions. PMID:21182352

  9. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    PubMed

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  10. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    MedlinePlus

    ... that can affect the muscles used for movement ( skeletal muscles ). In many affected individuals, AMP deaminase deficiency does ... called AMP deaminase. This enzyme is found in skeletal muscles , where it plays a role in producing energy. ...

  11. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism.

  12. Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminase-deficient severe combined immune deficiency.

    PubMed

    Silver, Jared N; Elder, Melissa; Conlon, Thomas; Cruz, Pedro; Wright, Amy J; Srivastava, Arun; Flotte, Terence R

    2011-08-01

    Severe combined immune deficiency due to adenosine deaminase (ADA) deficiency is a rare, potentially fatal pediatric disease, which results from mutations within the ADA gene, leading to metabolic abnormalities and ultimately profound immunologic and nonimmunologic defects. In this study, recombinant adeno-associated virus (rAAV) vectors based on serotypes 1 and 9 were used to deliver a secretory version of the human ADA (hADA) gene to various tissues to promote immune reconstitution following enzyme expression in a mouse model of ADA deficiency. Here, we report that a single-stranded rAAV vector, pTR2-CB-Igκ-hADA, (1) facilitated successful gene delivery to multiple tissues, including heart, skeletal muscle, and kidney, (2) promoted ectopic expression of hADA, and (3) allowed enhanced serum-based enzyme activity over time. Moreover, the rAAV-hADA vector packaged in serotype 9 capsid drove partial, prolonged, and progressive immune reconstitution in ADA-deficient mice. Overview Summary Gene therapies for severe combined immune deficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) over two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoietic progenitor cells. These groundbreaking gene therapies represented an unprecedented revolution in clinical medicine but in most cases did not fully correct the immune deficiency and came with the potential risk of insertional mutagenesis. Alternatively, recombinant adeno-associated virus (rAAV) vectors have gained attention as valuable tools for gene transfer, having demonstrated no pathogenicity in humans, minimal immunogenicity, long-term efficacy, ease of administration, and broad tissue tropism (Muzyczka, 1992 ; Flotte et al., 1993 ; Kessler et al., 1996 ; McCown et al., 1996 ; Lipkowitz et al., 1999 ; Marshall, 2001 ; Chen et al., 2003 ; Conlon and Flotte, 2004 ; Griffey et al., 2005 ; Pacak et al., 2006 ; Stone et al., 2008 ; Liu et al., 2009 ; Choi et al., 2010

  13. Efficient, low-cost protein factories: expression of human adenosine deaminase in baculovirus-infected insect larvae.

    PubMed Central

    Medin, J A; Hunt, L; Gathy, K; Evans, R K; Coleman, M S

    1990-01-01

    Human adenosine deaminase (EC 3.5.4.4), a key purine salvage enzyme essential for immune competence, has been overproduced in Spodoptera frugiperda cells and in Trichoplusia ni (cabbage looper) larvae infected with recombinant baculovirus. The coding sequence of human adenosine deaminase was recombined into a baculovirus immediately downstream from the strong polyhedrin gene promoter. Approximately 60 hr after infection of insect cells with the recombinant virus, maximal levels of intracellular adenosine deaminase mRNA, protein, and enzymatic activity were detected. The recombinant human adenosine deaminase represented 10% of the total cellular protein and exhibited a specific activity of 70 units/mg of protein in crude homogenate. This specific activity is 70-350 times greater than that exhibited by the enzyme in homogenates of the two most abundant natural sources of human adenosine deaminase, thymus and leukemic cells. When the recombinant virus was injected into insect larvae, the maximum recombinant enzyme was produced 4 days postinfection and represented about 2% of the total insect protein with a specific activity of 10-25 units/mg of protein. The recombinant human adenosine deaminase was purified to homogeneity from both insect cells and larvae and demonstrated to be identical to native adenosine deaminase purified from human cells with respect to molecular weight, interaction with polyclonal anti-adenosine deaminase antibody, and enzymatic properties. A pilot purification yielded 8-9 mg of homogeneous enzyme from 22 larvae. The production of large quantities of recombinant human adenosine deaminase in insect larvae is inexpensive and rapid and eliminates the need for specialized facilities for tissue culture. This method should be applicable to large-scale production of many recombinant proteins. Images PMID:2181448

  14. Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)-deficient mice and corrects their immune and metabolic defects.

    PubMed

    Mortellaro, Alessandra; Hernandez, Raisa Jofra; Guerrini, Matteo M; Carlucci, Filippo; Tabucchi, Antonella; Ponzoni, Maurilio; Sanvito, Francesca; Doglioni, Claudio; Di Serio, Clelia; Biasco, Luca; Follenzi, Antonia; Naldini, Luigi; Bordignon, Claudio; Roncarolo, Maria Grazia; Aiuti, Alessandro

    2006-11-01

    Adenosine deaminase (ADA) deficiency is caused by a purine metabolic dysfunction, leading to severe combined immunodeficiency (SCID) and multiple organ damage. To investigate the efficacy of ex vivo gene therapy with self-inactivating lentiviral vectors (LVs) in correcting this complex phenotype, we used an ADA(-/-) mouse model characterized by early postnatal lethality. LV-mediated ADA gene transfer into bone marrow cells combined with low-dose irradiation rescued mice from lethality and restored their growth, as did transplantation of wild-type bone marrow. Mixed chimerism with multilineage engraftment of transduced cells was detected in the long term in animals that underwent transplantation. ADA activity was normalized in lymphocytes and partially corrected in red blood cells (RBCs), resulting in full metabolic detoxification and prevention of severe pulmonary insufficiency. Moreover, gene therapy restored normal lymphoid differentiation and immune functions, including antigen-specific antibody production. Similar degrees of detoxification and immune reconstitution were obtained in mice treated early after birth or after 1 month of enzyme-replacement therapy, mimicking 2 potential applications for ADA-SCID. Overall, this study demonstrates the efficacy of LV gene transfer in correcting both the immunological and metabolic phenotypes of ADA-SCID and supports the future clinical use of this approach.

  15. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction.

    PubMed

    Gaspar, H Bobby; Cooray, Samantha; Gilmour, Kimberly C; Parsley, Kathryn L; Zhang, Fang; Adams, Stuart; Bjorkegren, Emma; Bayford, Jinhua; Brown, Lucinda; Davies, E Graham; Veys, Paul; Fairbanks, Lynette; Bordon, Victoria; Petropoulou, Theoni; Petropolou, Theoni; Kinnon, Christine; Thrasher, Adrian J

    2011-08-24

    Genetic defects in the purine salvage enzyme adenosine deaminase (ADA) lead to severe combined immunodeficiency (SCID) with profound depletion of T, B, and natural killer cell lineages. Human leukocyte antigen-matched allogeneic hematopoietic stem cell transplantation (HSCT) offers a successful treatment option. However, individuals who lack a matched donor must receive mismatched transplants, which are associated with considerable morbidity and mortality. Enzyme replacement therapy (ERT) for ADA-SCID is available, but the associated suboptimal correction of immunological defects leaves patients susceptible to infection. Here, six children were treated with autologous CD34-positive hematopoietic bone marrow stem and progenitor cells transduced with a conventional gammaretroviral vector encoding the human ADA gene. All patients stopped ERT and received mild chemotherapy before infusion of gene-modified cells. All patients survived, with a median follow-up of 43 months (range, 24 to 84 months). Four of the six patients recovered immune function as a result of engraftment of gene-corrected cells. In two patients, treatment failed because of disease-specific and technical reasons: Both restarted ERT and remain well. Of the four reconstituted patients, three remained off enzyme replacement. Moreover, three of these four patients discontinued immunoglobulin replacement, and all showed effective metabolic detoxification. All patients remained free of infection, and two cleared problematic persistent cytomegalovirus infection. There were no adverse leukemic side effects. Thus, gene therapy for ADA-SCID is safe, with effective immunological and metabolic correction, and may offer a viable alternative to conventional unrelated donor HSCT.

  16. Attenuation of exercise vasodilatation by adenosine deaminase in anaesthetized dogs.

    PubMed Central

    Goonewardene, I P; Karim, F

    1991-01-01

    1. In dogs anaesthetized with sodium pentobarbitone and artificially ventilated, the gracilis muscles were vascularly isolated and perfused at a constant flow of 28.4 +/- 4.6 ml min-1 (100 g muscle tissue)-1 (99.8 +/- 4.5% of maximum free flow, means +/- standard error of the mean (S.E.M.), n = 9). 2. Three to five minutes of electrical stimulation of the cut peripheral end of the obturator nerve (4 Hz, 6 V, 0.2 ms) resulted in muscle contraction (0.61 +/- 0.14 kg (100 g)-1 during solvent infusion and 0.56 +/- 0.10 kg (100 g)-1 during intra-arterial adenosine deaminase infusion (50 U min-1) and an immediate decrease in arterial perfusion pressure from 184.5 +/- 8.1 mmHg to 148.2 +/- 5.7 mmHg (18.7 +/- 3.4% decrease) during solvent infusion, and from 193.5 +/- 7.16 to 142.0 +/- 10.2 mmHg (25.4 +/- 6.1% decrease) during adenosine deaminase infusion 10 s after the commencement of muscle stimulation. After about 5 min of muscle contractions, the arterial perfusion pressure decreased to 120.8 +/- 7.8 mmHg (32.9 +/- 5.8% decrease) during solvent infusion, and to 152.8 +/- 11.2 mmHg (20.9 +/- 5.3% decrease) during adenosine deaminase infusion (i.e. 37.9 +/- 6.2% attenuation of the fall in arterial perfusion pressure). The time taken for 90% recovery of the arterial perfusion pressure was 72.1 +/- 10.9 s during solvent infusion, and 51.5 +/- 9.3 s during adenosine deaminase infusion (P less than 0.05). 3. Adenosine (2 x 10(-3) mol l-1) infusion in the resting muscle during solvent infusion (final concentration in arterial blood 1.3 x 10(-4) +/- 6.0 x 10(-5) mol l-1) resulted in a 34.8 +/- 7.2% fall in arterial perfusion pressure but a fall of only 7.2 +/- 1.8% during adenosine deaminase infusion (50 U min-1; P less than 0.05; n = 5) indicating that adenosine deaminase infused at 50 U min-1 was more than adequate to metabolize endogenous adenosine produced during muscle contractions. 4. These data suggest that adenosine contributes about 40% to the sustained

  17. Genome organization and transcriptional regulation of Adenosine Deaminase Acting on RNA gene 1 (ADAR1) in grass carp (Ctenopharyngodon idella).

    PubMed

    Sun, Zhicheng; Wang, Binhua; Liu, Yong; Liu, Xiancheng; Mi, Yichuan; Gu, Meihui; Wang, Fang; Wu, Chuxin; Hu, Chengyu

    2015-06-01

    ADAR1, involved in A-to-I RNA editing, belongs to adenosine deaminase acting on RNA (ADAR) family. A-to-I RNA editing is the most widespread editing phenomenon in higher eukaryotes. In the present study, we cloned and identified the full-length cDNA, complete genomic sequence and the promoter sequence of grass carp (Ctenopharyngodon idella) ADAR1 (CiADAR1) by homology cloning strategy and genome walking. CiADAR1 full-length cDNA is comprised of a 5'UTR (43  bp), a 3'UTR (229 bp) and a 4179 bp ORF encoding a polypeptide of 1392 amino acids. The deduced amino acid sequence of CiADAR1 contains two Z-DNA binding domains, three dsRNA binding motifs and a conserved catalytic domain. The complete genomic CiADAR1 has 16 exons and 15 introns. Phylogenetic tree analysis revealed that CiADAR1 shared high homology with Danio rerio ADAR1 (DrADAR1). RT-PCR showed that CiADAR1 were ubiquitously expressed and significantly up-regulated after stimulation with poly I:C. In spleen and liver, CiADAR1 mRNA reached the peak at 12 h and maintained the highest level during 12-24 h post-injection. CiADAR1 promoter was found to be 1102 bp in length and divided into two distinct regions, the proximal region containing three putative interferon regulatory factor binding elements (IRF-E) and the distal region containing only one IRF-E. To further study the transcriptional regulatory mechanism of CiADAR1, grass carp IRF1 (CiIRF1) and IRF3 (CiIRF3) were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind resin. Then, gel mobility shift assay was employed to analyze the affinity of CiADAR1 promoter sequence with CiIRF1 and CiIRF3 in vitro. The result revealed that CiIRF1 and CiIRF3 bound to CiADAR1 promoter with high affinity, indicating that IRF1 and IRF3 could be the potential transcriptional regulatory factor for CiADAR1. Co-transfection of pcDNA3.1-IRF1 (or pcDNA3.1-IRF3) with pGL3-CiADAR1 into C. idella kidney (CIK) cells showed that both

  18. Quantitative changes in adenosine deaminase isoenzymes in human colorectal adenocarcinomas.

    PubMed

    ten Kate, J; Wijnen, J T; van der Goes, R G; Quadt, R; Griffioen, G; Bosman, F T; Khan, P M

    1984-10-01

    Several reports have suggested that a decrease or absence of adenosine deaminase complexing protein (ADCP) is consistently associated with cancer. However, in other studies, decreased as well as increased ADCP levels were found. In the present study, we investigated ADCP levels in 37 colorectal adenocarcinomas and correlated the results with clinicopathological characteristics in individual carcinomas. The levels of adenosine deaminase (EC 3.5.4.4) and soluble ADCP were determined in tissue samples by, respectively, a spectrophotometric assay and an ADCP specific radioimmunoassay. The values in the individual tumors were compared with their histological characteristics, such as degree of differentiation, nuclear grading, and the preoperative plasma carcinoembryonic antigen levels in the patients. It was found that ADCP was decreased in about a third of the tumors but unaltered or even increased in others. However, there was an overall 40% increase of the adenosine deaminase activity in the tumors compared to normal tissue. There seems to be no simple correlation between any of the clinicopathological parameters and the ADCP or adenosine deaminase levels. Methods detecting ADCP at single cell level might be helpful in exploring its potential use as a cancer-associated marker.

  19. Flow cytometry analysis of adenosine deaminase (ADA) expression: a simple and reliable tool for the assessment of ADA-deficient patients before and after gene therapy.

    PubMed

    Otsu, Makoto; Hershfield, Michael S; Tuschong, Laura M; Muul, Linda M; Onodera, Masafumi; Ariga, Tadashi; Sakiyama, Yukio; Candotti, Fabio

    2002-02-10

    Clinical gene therapy trials for adenosine deaminase (ADA) deficiency have shown limited success of corrective gene transfer into autologous T lymphocytes and CD34(+) cells. In these trials, the levels of gene transduction and expression in hematopoietic cells have been assessed by DNA- or RNA-based assays and measurement of ADA enzyme activity. Although informative, these methods are rarely applied to clonal analysis. The results of these assays therefore provide best estimates of transduction efficiency and gene expression in bulk populations based on the assumption that gene transfer and expression are uniformly distributed among transduced cells. As a useful additional tool for evaluation of ADA gene expression, we have developed a flow cytometry (fluorescence-activated cell sorting, FACS) assay capable of estimating the levels of intracellular ADA on a single-cell basis. We validated this technique with T cell lines and peripheral blood mononuclear cells (PBMCs) from ADA-deficient patients that showed severely reduced levels of ADA expression (ADA-dull) by FACS and Western blot analyses. After retrovirus-mediated ADA gene transfer, these cells showed clearly distinguishable populations exhibiting ADA expression (ADA-bright), thus allowing estimation of transduction efficiency. By mixing ADA-deficient and normal cells and using enzymatic amplification, we determined that our staining procedure could detect as little as 5% ADA-bright cells. This technique, therefore, will be useful to quickly assess the expression of ADA in hematopoietic cells of severe combined immunodeficient patients and represents an important tool for the follow-up of patients treated in clinical gene transfer protocols.

  20. Characterization of a gene coding for a putative adenosine deaminase-related growth factor by RNA interference in the basidiomycete Flammulina velutipes.

    PubMed

    Sekiya, Shuichi; Yamada, Masato; Shibata, Kou; Okuhara, Toru; Yoshida, Masumi; Inatomi, Satoshi; Taguchi, Goro; Shimosaka, Makoto

    2013-04-01

    A full-length cDNA coding for a putative adenosine deaminase (Fv-ada) was isolated from the basidiomycete Flammulina velutipes. Fv-ada encodes a polypeptide consisting of 537 amino acid residues, which has a consensus sequence conserved among adenosine deaminase-related growth factors (ADGF) found in several metazoa, including chordates and insects. Fv-ada transcript was detected at all stages of growth in dikaryotic F. velutipes cells, with a peak at the primordial stage. Heterologous expression of Fv-ada in the yeast Pichia pastoris produced recombinant Fv-ADA that catalyzed the conversion of adenosine to inosine. Dikaryotic mycelia from F. velutipes were transformed with the binary plasmid pFungiway-Fv-ada, which was designed to suppress the expression of Fv-ada through RNA interference. The growth rates of the resulting transformants were retarded in response to the degree of suppression, indicating that Fv-ada plays an important role in the mycelial growth of F. velutipes. These results suggested that ADGF could function as growth factors in fungi, as is seen in other eukaryotes.

  1. Severe combined immunodeficiency due to adenosine deaminase deficiency.

    PubMed

    Hussain, Waqar; Batool, Asma; Ahmed, Tahir Aziz; Bashir, Muhammad Mukarram

    2012-03-01

    Severe Combined Immunodeficiency is the term applied to a group of rare genetic disorders characterised by defective or absent T and B cell functions. Patients usually present in first 6 months of life with respiratory/gastrointestinal tract infections and failure to thrive. Among the various types of severe combined immunodeficiency, enzyme deficiencies are relatively less common. We report the case of a 6 years old girl having severe combined immunodeficiency due to adenosine deaminase deficiency.

  2. Adenosine Deaminase Inhibition Prevents Clostridium difficile Toxin A-Induced Enteritis in Mice ▿

    PubMed Central

    de Araújo Junqueira, Ana Flávia Torquato; Dias, Adriana Abalen Martins; Vale, Mariana Lima; Spilborghs, Graziela Machado Gruner Turco; Bossa, Aline Siqueira; Lima, Bruno Bezerra; Carvalho, Alex Fiorini; Guerrant, Richard Littleton; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne

    2011-01-01

    Toxin A (TxA) is able to induce most of the classical features of Clostridium difficile-associated disease in animal models. The objective of this study was to determine the effect of an inhibitor of adenosine deaminase, EHNA [erythro-9-(2-hydroxy-3-nonyl)-adenine], on TxA-induced enteritis in C57BL6 mice and on the gene expression of adenosine receptors. EHNA (90 μmol/kg) or phosphate-buffered saline (PBS) was injected intraperitoneally (i.p.) 30 min prior to TxA (50 μg) or PBS injection into the ileal loop. A2A adenosine receptor agonist (ATL313; 5 nM) was injected in the ileal loop immediately before TxA (50 μg) in mice pretreated with EHNA. The animals were euthanized 3 h later. The changes in the tissue were assessed by the evaluation of ileal loop weight/length and secretion volume/length ratios, histological analysis, myeloperoxidase assay (MPO), the local expression of inducible nitric oxide synthase (NOS2), pentraxin 3 (PTX3), NF-κB, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) by immunohistochemistry and/or quantitative reverse transcription-PCR (qRT-PCR). The gene expression profiles of A1, A2A, A2B, and A3 adenosine receptors also were evaluated by qRT-PCR. Adenosine deaminase inhibition, by EHNA, reduced tissue injury, neutrophil infiltration, and the levels of proinflammatory cytokines (TNF-α and IL-1β) as well as the expression of NOS2, NF-κB, and PTX3 in the ileum of mice injected with TxA. ATL313 had no additional effect on EHNA action. TxA increased the gene expression of A1 and A2A adenosine receptors. Our findings show that the inhibition of adenosine deaminase by EHNA can prevent Clostridium difficile TxA-induced damage and inflammation possibly through the A2A adenosine receptor, suggesting that the modulation of adenosine/adenosine deaminase represents an important tool in the management of C. difficile-induced disease. PMID:21115723

  3. Adenosine Deaminase Deficiency – More Than Just an Immunodeficiency

    PubMed Central

    Whitmore, Kathryn V.; Gaspar, Hubert B.

    2016-01-01

    Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) that results from mutations in the gene encoding ADA. Affected patients present with clinical and immunological manifestations typical of a SCID. Therapies are currently available that can target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well-understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences. PMID:27579027

  4. Laser photobleaching leads to a fluorescence grade adenosine deaminase.

    PubMed

    Parola, A H; Caiolfa, V R; Bar, I; Rosenwaks, S

    1989-09-01

    The enzyme adenosine deaminase (adenosine aminohydrolase EC 3.5.4.4) from calf intestinal mucosa is commercially available at high purity grade yet, at the sensitivity at which fluorescence studies may be undertaken, a nonpeptidic fluorescence is detectable at lambda exmax = 350 nm and lambda emmax = 420 nm. A sevenfold decrease of this nonpeptidic fluorescence was obtained upon irradiation by the third harmonic (355 nm) of a Nd:YAG laser for 16 min, at 5 mJ/pulse, with a pulse width of 6 ns at a repetition rate of 10 Hz. The decline of fluorescence was accompanied by a negligible loss of enzymatic activity. Moreover, the integrity of the protein was ascertained by (i) its fluorescence (lambda exmax = 305 nm, lambda emmax = 335 nm) and lifetime distribution and (ii) its kinetics in the presence of the substrate adenosine and two inhibitors, all of which remained essentially unaltered. Laser photobleaching is a simple way to achieve a fluorescence grade adenosine deaminase.

  5. Adenosine deaminase deficiency with normal immune function. An acidic enzyme mutation.

    PubMed Central

    Daddona, P E; Mitchell, B S; Meuwissen, H J; Davidson, B L; Wilson, J M; Koller, C A

    1983-01-01

    In most instances, marked deficiency of the purine catabolic enzyme adenosine deaminase results in lymphopenia and severe combined immunodeficiency disease. Over a 2-yr period, we studied a white male child with markedly deficient erythrocyte and lymphocyte adenosine deaminase activity and normal immune function. We have documented that (a) adenosine deaminase activity and immunoreactive protein are undetectable in erythrocytes, 0.9% of normal in lymphocytes, 4% in cultured lymphoblasts, and 14% in skin fibroblasts; (b) plasma adenosine and deoxyadenosine levels are undetectable and deoxy ATP levels are only slightly elevated in lymphocytes and in erythrocytes; (c) no defect in deoxyadenosine metabolism is present in the proband's cultured lymphoblasts; (d) lymphoblast adenosine deaminase has normal enzyme kinetics, absolute specific activity, S20,w, pH optimum, and heat stability; and (e) the proband's adenosine deaminase exhibits a normal apparent subunit molecular weight but an abnormal isoelectric pH. In contrast to the three other adenosine deaminase-deficient healthy subjects who have been described, the proband is unique in demonstrating an acidic, heat-stable protein mutation of the enzyme that is associated with less than 1% lymphocyte adenosine deaminase activity. Residual adenosine deaminase activity in tissues other than lymphocytes may suffice to metabolize the otherwise lymphotoxic enzyme substrate(s) and account for the preservation of normal immune function. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:6603477

  6. Autoimmune dysregulation and purine metabolism in adenosine deaminase deficiency.

    PubMed

    Sauer, Aisha Vanessa; Brigida, Immacolata; Carriglio, Nicola; Aiuti, Alessandro

    2012-01-01

    Genetic defects in the adenosine deaminase (ADA) gene are among the most common causes for severe combined immunodeficiency (SCID). ADA-SCID patients suffer from lymphopenia, severely impaired cellular and humoral immunity, failure to thrive, and recurrent infections. Currently available therapeutic options for this otherwise fatal disorder include bone marrow transplantation (BMT), enzyme replacement therapy with bovine ADA (PEG-ADA), or hematopoietic stem cell gene therapy (HSC-GT). Although varying degrees of immune reconstitution can be achieved by these treatments, breakdown of tolerance is a major concern in ADA-SCID. Immune dysregulation such as autoimmune hypothyroidism, diabetes mellitus, hemolytic anemia, and immune thrombocytopenia are frequently observed in milder forms of the disease. However, several reports document similar complications also in patients on long-term PEG-ADA and after BMT or GT treatment. A skewed repertoire and decreased immune functions have been implicated in autoimmunity observed in certain B-cell and/or T-cell immunodeficiencies, but it remains unclear to what extent specific mechanisms of tolerance are affected in ADA deficiency. Herein we provide an overview about ADA-SCID and the autoimmune manifestations reported in these patients before and after treatment. We also assess the value of the ADA-deficient mouse model as a useful tool to study both immune and metabolic disease mechanisms. With focus on regulatory T- and B-cells we discuss the lymphocyte subpopulations particularly prone to contribute to the loss of self-tolerance and onset of autoimmunity in ADA deficiency. Moreover we address which aspects of immune dysregulation are specifically related to alterations in purine metabolism caused by the lack of ADA and the subsequent accumulation of metabolites with immunomodulatory properties.

  7. Demonstration of adenosine deaminase activity in human fibroblast lysosomes.

    PubMed Central

    Lindley, E R; Pisoni, R L

    1993-01-01

    Human fibroblast lysosomes, purified on Percoll density gradients, contain an adenosine deaminase (ADA) activity that accounts for approximately 10% of the total ADA activity in GM0010A human fibroblasts. In assays of lysosomal ADA, the conversion of [3H]adenosine into [3H]inosine was proportional to incubation time and the amount of lysosomal material added to reaction mixtures. Maximal activity was observed between pH 7 and 8, and lysosomal ADA displayed a Km of 37 microM for adenosine at 25 degrees C and pH 5.5. Lysosomal ADA was completely inhibited by 2.5 mM Cu2+ or Hg2+ salts, but not by other bivalent cations (Ba2+, Cd2+, Ca2+, Fe2+, Mg2+, Mn2+ and Zn2+). Coformycin (2.5 mM), deoxycoformycin (0.02 mM), 2'-deoxyadenosine (2.5 mM), 6-methylaminopurine riboside (2.5 mM), 2'-3'-isopropylidene-adenosine (2.5 mM) and erythro-9-(2-hydroxy-3-nonyl)adenine (0.2 mM) inhibited lysosomal ADA by > 97%. In contrast, 2.5 mM S-adenosyl-L-homocysteine and cytosine were poor inhibitors. Nearly all lysosomal ADA activity is eluted as a high-molecular-mass protein (> 200 kDa) just after the void volume on a Sephacryl S-200 column, and is very heat-stable, retaining 70% of its activity after incubation at 65 degrees C for 80 min. We speculate that compartmentalization of ADA within lysosomes would allow deamination of adenosine to occur without competition by adenosine kinase, which could assist in maintaining cellular energy requirements under conditions of nutritional deprivation. PMID:8452534

  8. Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial.

    PubMed

    Muul, Linda Mesler; Tuschong, Laura M; Soenen, Sherry Lau; Jagadeesh, G Jayashree; Ramsey, W Jay; Long, Zhifeng; Carter, Charles S; Garabedian, Elizabeth K; Alleyne, Melinna; Brown, Margaret; Bernstein, Wendy; Schurman, Shepherd H; Fleisher, Thomas A; Leitman, Susan F; Dunbar, Cynthia E; Blaese, R Michael; Candotti, Fabio

    2003-04-01

    The first human gene therapy experiment begun in September 1990 used a retroviral vector containing the human adenosine deaminase (ADA) cDNA to transduce mature peripheral blood lymphocytes from patients with ADA deficiency, an inherited disorder of immunity. Two patients who had been treated with intramuscular injections of pegylated bovine ADA (PEG-ADA) for 2 to 4 years were enrolled in this trial and each received a total of approximately 10(11) cells in 11 or 12 infusions over a period of about 2 years. No adverse events were observed. During and after treatment, the patients continued to receive PEG-ADA, although at a reduced dose. Ten years after the last cell infusion, approximately 20% of the first patient's lymphocytes still carry and express the retroviral gene, indicating that the effects of gene transfer can be remarkably long lasting. On the contrary, the persistence of gene-marked cells is very low (< 0.1%), and no expression of the transgene is detectable in lymphocytes from the second patient who developed persisting antibodies to components of the gene transfer system. Data collected from these original patients have provided novel information about the longevity of T lymphocytes in humans and persistence of gene expression in vivo from vectors driven by the Moloney murine leukemia virus long-terminal repeat (LTR) promoter. This long-term follow-up has also provided unique evidence supporting the safety of retroviral-mediated gene transfer and illustrates clear examples of both the potential and the pitfalls of gene therapy in humans.

  9. Adenine arabinoside inhibition of adenovirus replication enhanced by an adenosine deaminase inhibitor.

    PubMed

    Wigand, R

    1979-01-01

    The inhibition of adenovirus multiplication by adenine arabinoside was determined by yield reduction in one-step multiplication cycle. Inhibition was greatly enhanced by an adenosine deaminase inhibitor (2-deoxycoformycin) in concentrations down to 10 ng/ml. Adenovirus types from four subgroups showed similar results. However, the enhancing effect of adenosine deaminase inhibitor was great in HeLa cells, moderate in human fibroblasts, and negligible in Vero cells. This difference could be explained by different concentrations of adenosine deaminase found in cell homogenates.

  10. Adenosine Deaminases Acting on RNA (ADARs) are both Antiviral and Proviral Dependent upon the Virus

    PubMed Central

    Samuel, Charles E.

    2010-01-01

    A-to-I RNA editing, the deamination of adenosine (A) to inosine (I) that occurs in regions of RNA with double-stranded character, is catalyzed by a family of Adenosine Deaminases Acting on RNA (ADARs). In mammals there are three ADAR genes. Two encode proteins that possess demonstrated deaminase activity: ADAR1, which is interferon-inducible, and ADAR2 which is constitutively expressed. ADAR3, by contrast, has not yet been shown to bean active enzyme. The specificity of the ADAR1 and ADAR2 deaminases ranges from highly site-selective to non-selective, dependent on the duplex structure of the substrate RNA. A-to-I editing is a form of nucleotide substitution editing, because I is decoded as guanosine (G) instead of A by ribosomes during translation and by polymerases during RNA-dependent RNA replication. Additionally, A-to-I editing can alter RNA structure stability as I:U mismatches are less stable than A:U base pairs. Both viral and cellular RNAs are edited by ADARs. A-to-I editing is of broad physiologic significance. Among the outcomes of A-to-I editing are biochemical changes that affect how viruses interact with their hosts, changes that can lead to either enhanced or reduced virus growth and persistence dependent upon the specific virus. PMID:21211811

  11. Late-onset adenosine deaminase deficiency presenting with Heck's disease.

    PubMed

    Artac, Hasibe; Göktürk, Bahar; Bozdemir, Sefika Elmas; Toy, Hatice; van der Burg, Mirjam; Santisteban, Ines; Hershfield, Michael; Reisli, Ismail

    2010-08-01

    Focal epithelial hyperplasia, also known as Heck's disease, is a rare but distinctive entity of viral etiology with characteristic clinical and histopathological features. It is a benign, asymptomatic disease of the oral mucosa caused by human papilloma viruses (HPV). Previous studies postulated an association between these lesions and immunodeficiency. Genetic deficiency of adenosine deaminase (ADA) results in varying degrees of immunodeficiency, including neonatal onset severe combined immunodeficiency (ADA-SCID), and milder, later onset immunodeficiency. We report a 12-year-old girl with the late onset-ADA deficiency presenting with Heck's disease. Our case report should draw attention to the possibility of immunodeficiency in patients with HPV-induced focal epithelial hyperplasia.

  12. Crystal Structure of Staphylococcus aureus tRNA Adenosine Deaminase TadA in Complex with RNA

    SciTech Connect

    Losey,H.; Ruthenburg, A.; Verdine, G.

    2006-01-01

    Bacterial tRNA adenosine deaminases (TadAs) catalyze the hydrolytic deamination of adenosine to inosine at the wobble position of tRNA(Arg2), a process that enables this single tRNA to recognize three different arginine codons in mRNA. In addition, inosine is also introduced at the wobble position of multiple eukaryotic tRNAs. The genes encoding these deaminases are essential in bacteria and yeast, demonstrating the importance of their biological activity. Here we report the crystallization and structure determination to 2.0 A of Staphylococcus aureus TadA bound to the anticodon stem-loop of tRNA(Arg2) bearing nebularine, a non-hydrolyzable adenosine analog, at the wobble position. The cocrystal structure reveals the basis for both sequence and structure specificity in the interactions of TadA with RNA, and it additionally provides insight into the active site architecture that promotes efficient hydrolytic deamination.

  13. How We Manage Adenosine Deaminase-Deficient Severe Combined Immune Deficiency (ADA SCID).

    PubMed

    Kohn, Donald B; Gaspar, H Bobby

    2017-02-14

    Adenosine deaminase-deficient severe combined immune deficiency (ADA SCID) accounts for 10-15% of cases of human SCID. From what was once a uniformly fatal disease, the prognosis for infants with ADA SCID has improved greatly based on the development of multiple therapeutic options, coupled with more frequent early diagnosis due to implementation of newborn screening for SCID. We review the various treatment approaches for ADA SCID including allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen-matched sibling or family member or from a matched unrelated donor or a haplo-identical donor, autologous HSCT with gene correction of the hematopoietic stem cells (gene therapy-GT), and enzyme replacement therapy (ERT) with polyethylene glycol-conjugated adenosine deaminase. Based on growing evidence of safety and efficacy from GT, we propose a treatment algorithm for patients with ADA SCID that recommends HSCT from a matched family donor, when available, as a first choice, followed by GT as the next option, with allogeneic HSCT from an unrelated or haplo-identical donor or long-term ERT as other options.

  14. A 24-Year Enzyme Replacement Therapy in an Adenosine-deaminase-Deficient Patient.

    PubMed

    Tartibi, Hana M; Hershfield, Michael S; Bahna, Sami L

    2016-01-01

    Severe combined immunodeficiency (SCID) is a fatal childhood disease unless immune reconstitution is performed early in life, with either hematopoietic stem cell transplantation or gene therapy. One of its subtypes is caused by adenosine deaminase (ADA) enzyme deficiency, which leads to the accumulation of toxic metabolites that impair lymphocyte development and function. With the development of polyethylene glycol-conjugated adenosine deaminase (PEG-ADA) enzyme replacement therapy, many ADA-deficient children with SCID who could not receive a hematopoietic stem cell transplantation or gene therapy survived and had longer and healthier lives. We report a 24-year course of treatment in a patient who was diagnosed with ADA deficiency at 4 months of age. The patient was treated with PEG-ADA, which was the only therapy available for him. The patient's plasma ADA level was regularly monitored and the PEG-ADA dose adjusted accordingly. This treatment has resulted in near-normalization of lymphocyte counts, and his clinical course has been associated with only minor to moderate infections. Thus far, he has had no manifestations of autoimmune or lymphoproliferative disorders. This patient is among the longest to be maintained on PEG-ADA enzyme replacement therapy.

  15. Adenosine potentiates the therapeutic effects of neural stem cells expressing cytosine deaminase against metastatic brain tumors.

    PubMed

    Kang, Wonyoung; Seol, Ho Jun; Seong, Dong-Ho; Kim, Jandi; Kim, Yonghyun; Kim, Seung U; Nam, Do-Hyun; Joo, Kyeung Min

    2013-09-01

    Tumor-tropic properties of neural stem cells (NSCs) provide a novel approach with which to deliver targeting therapeutic genes to brain tumors. Previously, we developed a therapeutic strategy against metastatic brain tumors using a human NSC line (F3) expressing cytosine deaminase (F3.CD). F3.CD converts systemically administered 5-fluorocytosine (5-FC), a blood-brain barrier permeable nontoxic prodrug, into the anticancer agent 5-fluorouracil (5-FU). In this study, we potentiated a therapeutic strategy of treatment with nucleosides in order to chemically facilitate the endogenous conversion of 5-FU to its toxic metabolite 5-FU ribonucleoside (5-FUR). In vitro, 5-FUR showed superior cytotoxic activity against MDA-MB-435 cancer cells when compared to 5-FU. Although adenosine had little cytotoxic activity, the addition of adenosine significantly potentiated the in vitro cytotoxicity of 5-FU. When MDA-MB‑435 cells were co-cultured with F3.CD cells, F3.CD cells and 5-FC inhibited the growth of MDA-MB-435 cells more significantly in the presence of adenosine. Facilitated 5-FUR production by F3.CD was confirmed by an HPLC analysis of the conditioned media derived from F3.CD cells treated with 5-FC and adenosine. In vivo systemic adenosine treatment also significantly potentiated the therapeutic effects of F3.CD cells and 5-FC in an MDA-MB-435 metastatic brain tumor model. Simple adenosine addition improved the antitumor activity of the NSCs carrying the therapeutic gene. Our results demonstrated an increased therapeutic potential, and thereby, clinical applicability of NSC-based gene therapy.

  16. Structural and Metabolic Specificity of Methylthiocoformycin for Malarial Adenosine Deaminases

    SciTech Connect

    Ho, M.; Cassera, M; Madrid, D; Ting, L; Tyler, P; Kim, K; Almo, S; Schramm, V

    2009-01-01

    Plasmodium falciparum is a purine auxotroph requiring hypoxanthine as a key metabolic precursor. Erythrocyte adenine nucleotides are the source of the purine precursors, making adenosine deaminase (ADA) a key enzyme in the pathway of hypoxanthine formation. Methylthioadenosine (MTA) is a substrate for most malarial ADAs, but not for human ADA. The catalytic site specificity of malarial ADAs permits methylthiocoformycin (MT-coformycin) to act as a Plasmodium-specific transition state analogue with low affinity for human ADA. The structural basis for MTA and MT-coformycin specificity in malarial ADAs is the subject of speculation. Here, the crystal structure of ADA from Plasmodium vivax (PvADA) in a complex with MT-coformycin reveals an unprecedented binding geometry for 5?-methylthioribosyl groups in the malarial ADAs. Compared to malarial ADA complexes with adenosine or deoxycoformycin, 5?-methylthioribosyl groups are rotated 130 degrees. A hydrogen bonding network between Asp172 and the 3?-hydroxyl of MT-coformycin is essential for recognition of the 5?-methylthioribosyl group. Water occupies the 5?-hydroxyl binding site when MT-coformycin is bound. Mutagenesis of Asp172 destroys the substrate specificity for MTA and MT-coformycin. Kinetic, mutagenic, and structural analyses of PvADA and kinetic analysis of five other Plasmodium ADAs establish the unique structural basis for its specificity for MTA and MT-coformycin. Plasmodium gallinaceum ADA does not use MTA as a substrate, is not inhibited by MT-coformycin, and is missing Asp172. Treatment of P. falciparum cultures with coformycin or MT-coformycin in the presence of MTA is effective in inhibiting parasite growth.

  17. Adenosine deaminase in cell transformation. Biophysical manifestation of membrane dynamics.

    PubMed

    Porat, N; Gill, D; Parola, A H

    1988-10-15

    Cell transformation is associated with a dramatic collapse of a graphic fingerprint characteristic of normal cells, as measured by phase fluorimetry. This is demonstrated on adenosine deaminase (ADA, EC 3.5.4.4), an established malignancy marker. ADA activity is known to decrease markedly in chick embryo fibroblasts (CEF) transformed by Rous sarcoma virus. The high affinity between the catalytic small subunit ADA (SS-ADA) and its membranal complexing protein (ADCP) (which abounds on the plasma membrane of CEF) allowed the hybridization of fluorescent labeled SS-ADA with native ADCP on CEF. Multifrequency differential phase fluorimetry responded remarkably to the state of this hybrid membrane protein. The transformation process is shown to have led to increased membrane fluidity and rotational mobility of ADCP as well as to its reduced availability to SS-ADA binding. The hypothesis of protein vertical sinking into the lipid core of the membrane is now given support by our spectroscopic data. Additional models are considered. A regulatory role is thus suggested for the complexing protein, which may also account for (a) reduced ADA activity in transformed cells and (b) detachment, exclusive to normal cells, upon addition of SS-ADA in excess.

  18. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma.

    PubMed

    ten Kate, J; van den Ingh, H F; Khan, P M; Bosman, F T

    1986-04-15

    Immunoreactive adenosine deaminase complexing protein (ADCP) was studied in 91 human colorectal adenocarcinomas. The expression of ADCP was correlated with that of secretory component (SC) and carcinoembryonic antigen (CEA), with the histological grade and the Dukes' stage of the carcinomas. The histological grade was scored semi-quantitatively according to 5 structural and 4 cytological variables. ADCP expression was observed in 3 different staining patterns, namely: (1) diffuse cytoplasmic (77% of the carcinomas); (2) granular cytoplasmic (13%); and (3) membrane-associated (66%). These patterns were observed alone or in combination. Eleven percent of the carcinomas exhibited no ADCP immunoreactivity. Linear regression analysis showed that the expression of ADCP correlates with that of SC and CEA. However, no significant correlation emerged between the histological parameters or the Dukes' stage and any of the immunohistological parameters. Comparison of the histological characteristics of carcinomas exhibiting little or no ADCP immunoreactivity with those showing extensive immunoreactivity, showed that membranous ADCP immunoreactivity occurs more frequently in well-differentiated carcinomas. Structural parameters showed a better correlation with membranous ADCP expression than the cytological variables. It is concluded that membranous expression of ADCP and CEA are indicators of a high level of differentiation as reflected primarily in the structural characteristics of the tumor.

  19. Distribution of adenosine deaminase complexing protein (ADCP) in human tissues.

    PubMed

    Dinjens, W N; ten Kate, J; van der Linden, E P; Wijnen, J T; Khan, P M; Bosman, F T

    1989-12-01

    The normal distribution of adenosine deaminase complexing protein (ADCP) in the human body was investigated quantitatively by ADCP-specific radioimmunoassay (RIA) and qualitatively by immunohistochemistry. In these studies we used a specific rabbit anti-human ADCP antiserum. In all 19 investigated tissues, except erythrocytes, ADCP was found by RIA in the soluble and membrane fractions. From all tissues the membrane fractions contained more ADCP (expressed per mg protein) than the soluble fractions. High membrane ADCP concentrations were found in skin, renal cortex, gastrointestinal tract, and prostate. Immunoperoxidase staining confirmed the predominant membrane-associated localization of the protein. In serous sweat glands, convoluted tubules of renal cortex, bile canaliculi, gastrointestinal tract, lung, pancreas, prostate gland, salivary gland, gallbladder, mammary gland, and uterus, ADCP immunoreactivity was found confined to the luminal membranes of the epithelial cells. These data demonstrate that ADCP is present predominantly in exocrine glands and absorptive epithelia. The localization of ADCP at the secretory or absorptive apex of the cells suggests that the function of ADCP is related to the secretory and/or absorptive process.

  20. In vivo kinetics of transduced cells in peripheral T cell-directed gene therapy: role of CD8+ cells in improved immunological function in an adenosine deaminase (ADA)-SCID patient.

    PubMed

    Kawamura, N; Ariga, T; Ohtsu, M; Kobayashi, I; Yamada, M; Tame, A; Furuta, H; Okano, M; Egashira, M; Niikawa, N; Kobayashi, K; Sakiyama, Y

    1999-08-15

    We previously reported successful peripheral T cell-directed gene therapy in a boy with adenosine deaminase (ADA)-SCID. In the present study, to better understand the reconstitutive effect of this gene therapy on his immunological system, we investigated the in vivo kinetics and functional subsets of T cells in PBL. Apparent immunological improvements were obtained after infusion of transduced cells at more than 4 x 108 cells/kg/therapy/3 mo. Frequency of ADAcDNA-integrated cells in PBL, ADA activity in PBL and clinical improvement showed good correlation, even though CD8+ cells gradually became predominant in PBL. On the basis that polyethylene glycol (PEG)-ADA was maintained at the same dosage as before gene therapy, we consider that his immunological improvement resulted from the gene therapy itself. Most CD3+ cells in PBL after gene therapy expressed TCRalphabeta. Analysis of TCR repertoire based on TCR V region usage revealed no expansion of limited clones in his PBL. The T cell subset cells CD8+CDw60+ and CD8+CD27+CD45RA-, which are reported to provide substantial help to B cells, were maintained throughout the gene therapy. Furthermore, his reconstituted peripheral T cells helped normal B cells to produce substantial IgG in vitro. Expression of both Th1- and Th2-type cytokine genes was induced in his reconstituted T cells at the same comparably high level as in normal subjects. Collectively, these results provide evidence of persistent and distinct functions of transduced cells in this patient's PBL after gene therapy.

  1. [Conformation of adenosine deaminase in complexes with inhibitors: application of selective quenching of fluorescence emission].

    PubMed

    Vermishian, I G; Sharoian, S G; Antonian, A A; Grigorian, N A; Mardanian, S S; Khoetsian, A V; Markarian, Sh A

    2008-01-01

    The effect of inhibitors, 1-deazaadenosine (1-dAdo) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), on the conformation of adenosine deaminase was studied using the method of selective quenching of fluorescence emission by acrylamide, I- and Cs+. Both in free adenosine deaminase and in its complexes with the inhibitors, the wavelength maxima and half-width of the emission characterize the environment of fluorescing tryptophan residues in adenosine deaminase as weak polar with limited access to solvent. The formation of complexes with the ground state inhibitors used did not quench or change the main emission characteristics of tryptophan fluorescence in adenosine deaminase. Small blue shifts of emission maxima were observed upon quenching in all three samples. The Stern-Volmer parameters of tryptophan fluorescence quenching by acrylamide were not essentially influenced by complex formation of the enzyme with the inhibitors: in general, the folding of the enzyme molecule in the complexes is not perturbed. On the contrary, the emission quenching by charged heavy ions, I- and Cs+, in the complexes was hindered in comparison with free adenosine deaminase. In the complex with 1-deazaadenosine, the parameters for quenching by both ions evidence the essential worsening of their interaction with tryptophans. In the complex with erythro-9-(2-hydroxy-3-nonyl)adenine, along with the worse quenching by I-, complete prohibition of quenching by Cs+ was observed. These data indicate that the local environments of fluorescing tryptophan residues is substantially distorted compared with free adenosine deaminase, which leads to their screening from charged heavy ions.

  2. Adenosine deaminase production by an endophytic bacterium (Lysinibacillus sp.) from Avicennia marina.

    PubMed

    Kathiresan, Kandasamy; Saravanakumar, Kandasamy; Sahu, Sunil Kumar; Sivasankaran, Muthu

    2014-06-01

    The present study was carried out with the following objectives: (1) to isolate the endophytic bacilli strains from the leaves of mangrove plant Avicennia marina, (2) to screen the potential strains for the production of adenosine deaminase, (3) to statistically optimize the factors that influence the enzyme activity in the potent strain, and (4) to identify the potent strain using 16S rRNA sequence and construct its phylogenetic tree. The bacterial strains isolated from the fresh leaves of a mangrove A. marina were assessed for adenosine deaminase activity by plating method. Optimization of reaction process was carried out using response surface methodology of central composite design. The potent strain was identified based on 16S rRNA sequencing and phylogeny. Of five endophytic strains, EMLK1 showed a significant deaminase activity over other four strains. The conditions for maximum activity of the isolated adenosine deaminase are described. The potent strain EMLK1 was identified as Lysinibacillus sp. (JQ710723) being the first report as a mangrove endophyte. Mangrove-derived endophytic bacillus strain Lysinibacillus sp. EMLK1 is proved to be a promising source for the production of adenosine deaminase and this enzyme deserves further studies for purification and its application in disease diagnosis.

  3. Hyperbilirubinemia and rapid fatal hepatic failure in severe combined immunodeficiency caused by adenosine deaminase deficiency (ADA-SCID).

    PubMed

    Kühl, J S; Schwarz, K; Münch, A; Schmugge, M; Pekrun, A; Meisel, C; Wahn, V; Ebell, W; von Bernuth, H

    2011-03-01

    Adenosin deaminase (ADA) deficiency is the cause for Severe Combined Immunodeficiency (SCID) in about 15% of patients with SCID, often presenting as T (-)B (-)NK (-)SCID. Treatment options for ADA-SCID are enzyme replacement, bone marrow transplantation or gene therapy. We here describe the first patient with ADA-SCID and fatal hepatic failure despite bone marrow transplantation from a 10/10 HLA identical related donor. As patients with ADA-SCID may be at yet underestimated increased risk for rapid hepatic failure we speculate whether hepatitis in ADA-SCID should lead to the immediate treatment with enzyme replacement by pegylated ADA.

  4. Adenosine deaminase complexing protein (ADCP): a transformation sensitive protein with potentials of a cancer marker.

    PubMed

    Herbschleb-Voogt, E; Ten Kate, J; Meera Khan, P

    1983-01-01

    Several observations by independent investigators in the past have indicated that adenosine deaminase complexing protein (ADCP), present in considerable quantities in certain human tissues, was absent or decreased in the cancers originated from them. During the present study, electrophoretic analysis of adenosine deaminase (ADA) isozymes and radioimmunoassay for ADCP in the primary fibroblasts and the transformed as well as certain tumor derived cell lines have demonstrated that ADCP present in large quantities in the primary cells was absent or nearly absent in the transformed or tumor-derived cell lines. Though the mechanisms involved are not yet clear, the above observations indicate that ADCP has the potentials of a useful marker in the studies on transformed cells and cancer tissues.

  5. Expression of human adenosine deaminase in mice transplanted with hemopoietic stem cells infected with amphotropic retroviruses

    PubMed Central

    1990-01-01

    Amphotropic recombinant retroviruses were generated carrying sequences encoding human adenosine deaminase (ADA). Transcription of the human ADA gene was under control of a hybrid long terminal repeat in which the enhancer from the Moloney murine leukemia virus was replaced by an enhancer from the F101 host-range mutant of polyoma virus. Hemopoietic stem cells in murine bone marrow were infected with this virus under defined culture conditions. As a result, 59% of day-12 colony forming unit spleen (CFU-S) stem cells became infected without any in vitro selection. Infected CFU-S were shown to express human ADA before transplantation and this expression sustained upon in vivo maturation. Mice transplanted with infected bone marrow exhibited human ADA expression in lymphoid, myeloid, and erythroid cell types. Moreover, human ADA expression persisted in secondary and tertiary transplanted recipients showing that human ADA-expressing cells were derived from pluripotent stem cells. These characteristics of our amphotropic viruses make them promising tools in gene therapy protocols for the treatment of severe combined immunodeficiency caused by ADA deficiency. In this respect it is also relevant that the viral vector that served as backbone for the ADA vector was previously shown to be nonleukemogenic. PMID:1974914

  6. Hereditary overexpression of adenosine deaminase in erythrocytes: Evidence for a cis-acting mutation

    SciTech Connect

    Chen, E.H. ); Tartaglia, A.P. ); Mitchell, B.S. )

    1993-10-01

    Overexpression of adenosine deaminase (ADA) in red blood cells is inherited as an autosomal dominant trait and causes hemolytic anemia. The increased ADA activity in erythrocytes is due to an increase in steady-state levels of ADA mRNA of normal sequence. Increased ADA mRNA may be due to a cis-acting mutation which results in increased transcription or a loss of down-regulation during erythroid differentiation. Alternatively, it is possible that the mutation is in a trans-acting factor which interacts with normal ADA transcriptional elements to cause overexpression in red blood cells. To discriminate between a cis-acting and a trans-acting mutation, the authors took advantage of a highly polymorphic TAAA repeat located at the tail end of an Alu repeat approximately 1.1 kb upstream of the ADA gene. Using PCR to amplify this region, the authors identified five different alleles in 19 members of the family. All 11 affected individuals had an ADA allele with 12 TAAA repeats, whereas none of the 8 normal individuals did. The authors conclude that this disorder results from a cis-acting mutation in the vicinity of the ADA gene. 24 refs., 3 figs.

  7. Evaluation of adenosine deaminase assay for analyzing T-lymphocyte density in vitro.

    PubMed

    Kainthla, Rani Poonam; Kashyap, Rajpal Singh; Prasad, Sweta; Purohit, Hemant J; Taori, Giridhar M; Daginawala, Hatim F

    2006-01-01

    The proliferative capacity of T cells in response to various stimuli is commonly determined by radioactive assay based on incorporation of [3H]thymidine ([3H]TdR) into newly synthesized DNA. In order to assess techniques for application in laboratories where radioactive facilities are not present, an alternative method was tested. As an alternative, T-cell proliferation was measured by spectrophotometrically analyzing the presence of an enzyme adenosine deaminase in lymphocytes and also using a standard XTT assay. Jurkat (human) T-cell line (clone E6.1) was used for lymphocyte population. The Jurkat cell concentration was adjusted according to different cell densities and enzyme activity was determined. Cells were also seeded in complete medium up to 72 h and harvested for estimation of enzyme activity. A significant correlation between the standard cell-proliferation assay and adenosine deaminase assay was observed. The present study indicates that the assay of adenosine deaminase is a reliable and accurate method for measuring proliferation of T lymphocytes.

  8. Somatic cell genetics of adenosine deaminase expression and severe combined immunodeficiency disease in humans.

    PubMed

    Koch, G; Shows, T B

    1980-07-01

    The somatic cell hybrid method has been used to study the number and different types of human genes involved in the expression of adenosine deaminase (ADA; adenosine aminohydrolase, EC 3.5.4.4) in normal cells and cells from a patient with ADA-deficient severe combined immunodeficiency disease (SCID). Genetic and biochemical characterization of ADA in SCID and the ADA tissue-specific isozymes in normal human cells indicates that additional genes, besides the ADA structural gene on chromosome 20, are involved in ADA expression. Human chromosome 6 encodes a gene, ADCP-1, whose presence is necessary for the expression of an ADA-complexing protein in human-mouse somatic cell hybrids [Koch, G. & Shows, T. B. (1978) Proc. Natl. Acad. Sci. USA 75, 3876-3880]. We report the identification of a second gene, ADCP-2, on human chromosome 2, that is also involved in the expression of the ADA-complexing protein. The data indicate that these two ADCP genes must be present in the same cell for that cell to express the complexing protein. Human-mouse somatic cell hybrids, in which the human parental cells were fibroblastss from an individual with ADA-deficient SCID, also required human chromosomes 2 and 6 to express the ADA-complexing protein, indicating that neither ADCP-1 nor ADCP-2 is involved in the ADA deficiency in SCID. The SCID-mouse hybrid cells expressed no human ADA even when human chromosome 20 had been retained. The deficiency of human ADA in these hybrids maps to human chromosome 20, and therefore is not due to the repression or inhibiton of ADA or its product by unlinked genes or gene products. We propose that the expression of the polymeric ADA tissue isozymes in human cells requires at least three genes: ADA on chromosome 20, ADCP-1 on chromosome 6, and ADCP-2 on chromosome 2. A genetic scheme is presented and the different genes involved in ADA expression and their possible functions are discussed.

  9. Elevated erythrocyte adenosine deaminase activity in a patient with primary acquired sideroblastic anemia.

    PubMed

    Kanno, H; Fujii, H; Tani, K; Morisaki, T; Takahashi, K; Horiuchi, N; Kizaki, M; Ogawa, T; Miwa, S

    1988-03-01

    We report a case of primary acquired sideroblastic anemia (PASA) associated with elevated erythrocyte adenosine deaminase (ADA) activity. The patient was an 85-year-old Japanese male. Analysis of the peripheral blood revealed pancytopenia, and the bone marrow findings showed marked ringed sideroblasts and chromosomal deletion (46XY, 11q-). The erythrocyte ADA activity was 17 times higher than that of normal control, the leukocyte ADA activity was within the normal range, and the plasma ADA activity was 2 times higher than the normal mean. The adenine nucleotides in the patient's erythrocytes were within normal range. According to starch gel electrophoresis, ADA isozyme of the patient was ADA 1. Western blotting showed an increased amount of ADA protein in the patient's erythrocytes. Southern blotting revealed no gene amplification or large structural change. Dot blot analysis of the reticulocyte mRNA showed no increase in the amount of ADA mRNA in the patient's reticulocytes compared with those of reticulocyte-rich controls. We considered that the mechanism of elevated ADA activity in this acquired defect was similar to that found in hereditary hemolytic anemia associated with ADA overproduction.

  10. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    PubMed Central

    Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Dias, Ana Sofia; Pelletier, Julie

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders. PMID:25210228

  11. Metabolic and functional consequences of inhibiting adenosine deaminase during renal ischemia in rats.

    PubMed Central

    Stromski, M E; van Waarde, A; Avison, M J; Thulin, G; Gaudio, K M; Kashgarian, M; Shulman, R G; Siegel, N J

    1988-01-01

    The concentrations of renal ATP have been measured by 31P-nuclear magnetic resonance (NMR) before, during, and after bilateral renal artery occlusion. Using in vivo NMR, the initial postischemic recovery of ATP increased with the magnitude of the residual nucleotide pool at the end of ischemia. ATP levels after 120 min of reflow correlated with functional recovery at 24 h. In the present study the effect of blocking the degradation of ATP during ischemia upon the postischemic restoration of ATP was investigated. Inhibition of adenosine deaminase by 80% with the tight-binding inhibitor 2'-deoxycoformycin led to a 20% increase in the residual adenine nucleotide pool. This increased the ATP initial recovery after 45 min of ischemia from 52% (in controls) to 62% (in the treated animals), as compared to the basal levels. The inhibition also caused an accelerated postischemic restoration of cellular ATP so that at 120 min it was 83% in treated rats vs. 63% in untreated animals. There was a corresponding improvement in the functional recovery from the insult (increase of 33% in inulin clearance 24 h after the injury). Inhibition of adenosine deaminase during ischemia results in a injury similar to that seen after a shorter period of insult. PMID:3263396

  12. Expression of a functional human adenosine deaminase in transgenic tobacco plants.

    PubMed

    Singhabahu, Sanjeewa; George, John; Bringloe, David

    2013-06-01

    An inherited disorder, adenosine deaminase deficiency is a form of severe combined immunodeficiency, which is ultimately caused by an absence of adenosine deaminase (ADA), a key enzyme of the purine salvage pathway. The absence of ADA-activity in sufferers eventually results in a dysfunctional immune system due to the build-up of toxic metabolites. To date, this has been treated with mixed success, using PEG-ADA, made from purified bovine ADA coupled to polyethylene glycol. It is likely, however, that an enzyme replacement therapy protocol based on recombinant human ADA would be a more effective treatment for this disease. Therefore, as a preliminary step to produce biologically active human ADA in transgenic tobacco plants a human ADA cDNA has been inserted into a plant expression vector under the control of the CaMV 35S promoter and both human and TMV 5' UTR control regions. Plant vector expression constructs have been used to transform tobacco plants via Agrobacterium-mediated transformation. Genomic DNA, RNA and protein blot analyses have demonstrated the integration of the cDNA construct into the plant nuclear genome and the expression of recombinant ADA mRNA and protein in transgenic tobacco leaves. Western blot analysis has also revealed that human and recombinant ADA have a similar size of approximately 41 kDa. ADA-specific activities of between 0.001 and 0.003 units per mg total soluble protein were measured in crude extracts isolated from transformed tobacco plant leaves.

  13. [The involvement of adenosine and adenosine deaminase in experimental myocardial infarct].

    PubMed

    Stratone, A; Busuioc, A; Roşca, V; Bazgan, L; Popa, M; Hăulică, I

    1989-01-01

    By the ligature of the left coronary artery in the rat anesthetized with nembutal (10 mg/100 i.p.) a significant increase of the 5'-nucleotidase activity (Wooton method) was noticed 10 minutes after the left ventricle infarction (from an average value of 1038.5 +/- 187 mU/g tissue to 1537 +/- 225 mU/g fresh tissue). The adenosine desaminase levels spectrophotometrically determined by Denstedt technique, do not appear significantly modified 10 or 30 minutes after the left ventricle infarction. The chromatographically determined adenosine levels, by HPLC technique, decrease from the average value of 11.63 +/- 1.4 micrograms/mg PT to 8.60 +/- 1.0 micrograms/mg PT 30 minutes after infarction. The observed changes are explained by the conditions of hypoxia in the infarcted ventricle which lead to the raise in adenosine levels by activating the 5'-nucleotidase and their depression by a very fast metabolism of the same substance.

  14. Adenosine deaminase 1 and concentrative nucleoside transporters 2 and 3 regulate adenosine on the apical surface of human airway epithelia: implications for inflammatory lung diseases.

    PubMed

    Hirsh, Andrew J; Stonebraker, Jaclyn R; van Heusden, Catja A; Lazarowski, Eduardo R; Boucher, Richard C; Picher, Maryse

    2007-09-11

    Adenosine is a multifaceted signaling molecule mediating key aspects of innate and immune lung defenses. However, abnormally high airway adenosine levels exacerbate inflammatory lung diseases. This study identifies the mechanisms regulating adenosine elimination from the apical surface of human airway epithelia. Experiments conducted on polarized primary cultures of nasal and bronchial epithelial cells showed that extracellular adenosine is eliminated by surface metabolism and cellular uptake. The conversion of adenosine to inosine was completely inhibited by the adenosine deaminase 1 (ADA1) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA). The reaction exhibited Km and Vmax values of 24 microM and 0.14 nmol x min(-1) x cm(-2). ADA1 (not ADA2) mRNA was detected in human airway epithelia. The adenosine/mannitol permeability coefficient ratio (18/1) indicated a minor contribution of paracellular absorption. Adenosine uptake was Na+-dependent and was inhibited by the concentrative nucleoside transporter (CNT) blocker phloridzin but not by the equilibrative nucleoside transporter (ENT) blocker dipyridamole. Apparent Km and Vmax values were 17 microM and 7.2 nmol x min(-1) x cm(-2), and transport selectivity was adenosine = inosine = uridine > guanosine = cytidine > thymidine. CNT3 mRNA was detected throughout the airways, while CNT2 was restricted to nasal epithelia. Inhibition of adenosine elimination by EHNA or phloridzin raised apical adenosine levels by >3-fold and stimulated IL-13 and MCP-1 secretion by 6-fold. These responses were reproduced by the adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA) and blocked by the adenosine receptor antagonist, 8-(p-sulfophenyl) theophylline (8-SPT). This study shows that adenosine elimination on human airway epithelia is mediated by ADA1, CNT2, and CNT3, which constitute important regulators of adenosine-mediated inflammation.

  15. Adenosine ecto-deaminase (ecto-ADA) from porcine cerebral cortex synaptic membrane.

    PubMed

    Romanowska, Małgorzata; Ostrowska, Marta; Komoszyński, Michał A

    2007-07-02

    We have purified and investigated the role of adenosine ecto-deaminase (ecto-ADA) in porcine brain synaptic membranes and found a low activity of ecto-ADA in synaptic preparations from the cerebral cortex, hippocampus, striatum and medulla oblongata in the presence of purine transport inhibitors (NBTI, dipyridamole and papaverine). The purification procedure with affinity chromatography on epoxy-Toyopearl gel/purine riboside column as a crucial step of purification allowed a 214-fold purification of synaptic ecto-ADA with a yield of 30%. Gel filtration chromatography revealed a molecular mass estimated at 42.4+/-3.9 kDa. The enzyme had a broad optimum pH and was not affected by mono- and divalent cations. Ecto-ADA revealed a low affinity to adenosine (Ado) and 2'-deoxyadenosine (2'-dAdo) (K(M)=286.30+/-40.38 microM and 287.14+/-46.50 microM, respectively). We compared the affinity of ecto-ADA to the substrates with the physiological and pathological concentrations of the extracellular Ado in brains that do not exceed a low micromolar range even during ischemia and hypoxia, and with the affinity of adenosine receptors to Ado not exceeding a low nanomolar (A(1) and A(2A) receptors) or low micromolar (A(2B) and A(3)) range. Taken together, our data suggest that the role of synaptic ecto-ADA in the regulation of the ecto-Ado level in the brain and in the termination of adenosine receptor signaling is questionable. The porcine brain synapses must have other mechanisms for the ecto-Ado removal from the synaptic cleft and synaptic ecto-ADA may also play an extra-enzymatic role in cell adhesion and non-enzymatic regulation of adenosine receptor activity.

  16. Carrier frequency of a nonsense mutation in the adenosine deaminase (ADA) gene implies a high incidence of ADA-deficient severe combined immunodeficiency (SCID) in Somalia and a single, common haplotype indicates common ancestry.

    PubMed

    Sanchez, Juan J; Monaghan, Gemma; Børsting, Claus; Norbury, Gail; Morling, Niels; Gaspar, H Bobby

    2007-05-01

    Inherited adenosine deaminase (ADA) deficiency is a rare metabolic disorder that causes immunodeficiency, varying from severe combined immunodeficiency (SCID) in the majority of cases to a less severe form in a small minority of patients. Five patients of Somali origin from four unrelated families, with severe ADA-SCID, were registered in the Greater London area. Patients and their parents were investigated for the nonsense mutation Q3X (ADA c7C>T), two missense mutations K80R (ADA c239A>G) and R142Q (ADA c425G>A), and a TAAA repeat located at the 3' end of an Alu element (AluVpA) positioned 1.1 kb upstream of the ADA transcription start site. All patients were homozygous for the haplotype ADA-7T/ADA-239G/ADA-425G/AluVpA7. Among 207 Somali immigrants to Denmark, the frequency of ADA c7C>T and the maximum likelihood estimate of the frequency of the haplotype ADA-7T/ADA-239G/ADA-425G/AluVpA7 were both 0.012 (carrier frequency 2.4%). Based on the analysis of AluVpA alleles, the ADA c7C/T mutation was estimated to be approximately 7,100 years old. Approximately 1 out of 5 - 10000 Somali children will be born with ADA deficiency due to an ADA c7C/T mutation, although within certain clans the frequency may be significantly higher. ADA-SCID may be a frequent immunodeficiency disorder in Somalia, but will be underdiagnosed due to the prevailing socioeconomic and nutritional deprivation.

  17. Does adenosine deaminase activity play a role in the early diagnosis of ectopic pregnancy?

    PubMed

    Turkmen, G G; Karçaaltıncaba, D; Isık, H; Fidancı, V; Kaayalp, D; Tımur, H; Batıoglu, S

    2016-01-01

    Early diagnosis of ectopic pregnancy (EP) is important due to life-threatening consequences in the first trimester of pregnancy. In this study we aimed to investigate the role of adenosine deaminase (ADA) activity in the prediction of EP. Forty-one patients with unruptured ectopic pregnancy comprised the case group and forty-two first trimester pregnant women with shown foetal heart beating in ultrasound comprised the control group. The mean ADA level in EP (10.9 ± 3.0 IU/L) was higher than that in control group (9.2 ± 3.6 IU/L) (p = 0.018). Receiver operating characteristics or ROC curve identified ADA value of 10.95 IU/L as optimal threshold for the prediction of EP with 56% sensitivity and 67% specificity. High ADA levels are valuable in the early diagnosis of EP. However more comprehensive studies are required.

  18. Non-infectious lung disease in patients with adenosine deaminase deficient severe combined immunodeficiency.

    PubMed

    Booth, C; Algar, V E; Xu-Bayford, J; Fairbanks, L; Owens, C; Gaspar, H B

    2012-06-01

    Adenosine deaminase deficiency is a disorder of purine metabolism manifesting severe combined immunodeficiency (ADA-SCID) and systemic abnormalities. Increased levels of the substrate deoxyadenosine triphosphate (dATP) lead to immunodeficiency and are associated in a murine model with pulmonary insufficiency. We compared a cohort of patients with ADA-SCID and X-linked SCID and found that despite similar radiological and respiratory findings, positive microbiology is significantly less frequent in ADA-SCID patients (p < 0.0005), suggesting a metabolic pathogenesis for the lung disease. Clinicians should be aware of this possibility and correct metabolic abnormalities either through enzyme replacement or haematopoietic stem cell transplant, in addition to treating infectious complications.

  19. Correlation between tumor histology, steroid receptor status, and adenosine deaminase complexing protein immunoreactivity in ovarian cancer.

    PubMed

    Rao, B R; Slotman, B J; Geldof, A A; Dinjens, W N

    1990-01-01

    Adenosine deaminase complexing protein (ADCP) immunoreactivity was investigated in 40 ovarian tumors and correlated with clinicopathologic parameters, including tumor steroid receptor content. Ten (29%) of 34 common epithelial ovarian carcinomas showed ADCP reactivity. Reactivity for ADCP was seen more frequently in mucinous (100%; p less than 0.001), well-differentiated (73%; p less than 0.001) and Stage I (56%; p less than 0.05) ovarian carcinomas. Furthermore, tumors that contained high levels of androgen receptors and tumors that did not contain estrogen receptors were more frequently ADCP positive (p less than 0.05). However, after stratifying for histologic grade, no correlation between ADCP reactivity and receptor status was found. Determination of ADCP reactivity appears to be of limited value in ovarian cancer.

  20. Diagnostic Value of Adenosine Deaminase and Its Isoforms in Type II Diabetes Mellitus

    PubMed Central

    Larijani, Bagher; Heshmat, Ramin; Ebrahimi-Rad, Mina; Khatami, Shohreh; Valadbeigi, Shirin

    2016-01-01

    Background and Aims. In the present study, we have investigated the activity of adenosine deaminase (ADA) as a diagnostic marker in type 2 (or II) diabetes mellitus (T2DM). Design and Methods. The deaminase activity of ADA1 and ADA2 was determined in serum from 33 patients with type 2 (or II) diabetes mellitus and 35 healthy controls. We also determined the proportion of glycated hemoglobin (HbA1c). Results. Our results showed significant differences between total serum ADA (tADA) and ADA2 activities in the diabetic groups with HbA1c < 8 (%) and HbA1c ≥ 8 (%) with respect to the values in healthy individuals (p < 0.001). ADA2 activity in patients with high HbA1c was found to be much higher than that in patients with low HbA1c (p = 0.0001). In addition, total ADA activity showed a significant correlation with HbA1c (r = 0.6, p < 0.0001). Conclusions. Total serum ADA activity, specially that due to ADA2, could be useful test for the diagnosis of type 2 (or II) diabetes mellitus. PMID:28050278

  1. Tad1p, a yeast tRNA-specific adenosine deaminase, is related to the mammalian pre-mRNA editing enzymes ADAR1 and ADAR2.

    PubMed Central

    Gerber, A; Grosjean, H; Melcher, T; Keller, W

    1998-01-01

    We have identified an RNA-specific adenosine deaminase (termed Tad1p/scADAT1) from Saccharomyces cerevisiae that selectively converts adenosine at position 37 of eukaryotic tRNAAla to inosine. The activity of purified recombinant Tad1p depends on the conformation of its tRNA substrate and the enzyme was found to be inactive on all other types of RNA tested. Mutant strains in which the TAD1 gene is disrupted are viable but lack Tad1p enzyme activity and their tRNAAla is not modified at position A37. Transformation of the mutant cells with the TAD1 gene restored enzyme activity. Tad1p has significant sequence similarity with the mammalian editing enzymes which act on specific precursor-mRNAs and on long double-stranded RNA. These findings suggest an evolutionary link between pre-mRNA editing and tRNA modification. PMID:9707437

  2. Platelet aggregation and serum adenosine deaminase (ADA) activity in pregnancy associated with diabetes, hypertension and HIV.

    PubMed

    Leal, Claudio A M; Leal, Daniela B R; Adefegha, Stephen A; Morsch, Vera M; da Silva, José E P; Rezer, João F P; Schrekker, Clarissa M L; Abdalla, Faida H; Schetinger, Maria R C

    2016-07-01

    Platelet aggregation and adenosine deaminase (ADA) activity were evaluated in pregnant women living with some disease conditions including hypertension, diabetes mellitus and human immunodeficiency virus infection. The subject population is consisted of 15 non-pregnant healthy women [control group (CG)], 15 women with normal pregnancy (NP), 7 women with hypertensive pregnancy (HP), 10 women with gestational diabetes mellitus (GDM) and 12 women with human immunodeficiency virus-infected pregnancy (HIP) groups. The aggregation of platelets was checked using an optical aggregometer, and serum ADA activity was determined using the colorimetric method. After the addition of 5 µM of agonist adenosine diphosphate, the percentage of platelet aggregation was significantly (p < 0·05) increased in NP, HP, GDM and HIP groups when compared with the CG, while the addition of 10 µM of the same agonist caused significant (p < 0·05) elevations in HP, GDM and HIP groups when compared with CG. Furthermore, ADA activity was significantly (p < 0·05) enhanced in NP, HP, GDM and HIP groups when compared with CG. In this study, the increased platelet aggregation and ADA activity in pregnancy and pregnancy-associated diseases suggest that platelet aggregation and ADA activity could serve as peripheral markers for the development of effective therapy in the maintenance of homeostasis and some inflammatory process in these pathophysiological conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Syzygium cumini inhibits adenosine deaminase activity and reduces glucose levels in hyperglycemic patients.

    PubMed

    Bopp, A; De Bona, K S; Bellé, L P; Moresco, R N; Moretto, M B

    2009-08-01

    Syzigium cumini (L.) Skeels from the Myrtaceae family is among the most common medicinal plants used to treat diabetes in Brazil. Leaves, fruits, and barks of S. cumini have been used for their hypoglycemic activity. Adenosine deaminase (ADA) is an important enzyme that plays a relevant role in purine and DNA metabolism, immune responses, and peptidase activity. ADA is suggested to be an important enzyme for modulating the bioactivity of insulin, but its clinical significance in diabetes mellitus (DM) has not yet been proven. In this study, we examined the effect of aqueous leaf extracts of S. cumini (L.) (ASC) on ADA activity of hyperglycemic subjects and the activity of total ADA, and its isoenzymes in serum and erythrocytes. The present study indicates that: (i) the ADA activity in hyperglycemic serum was higher than normoglycemic serum and ADA activity was higher when the blood glucose level was more elevated; (ii) ASC (60-1000 microg/mL) in vitro caused a concentration-dependent inhibition of total ADA activity and a decrease in the blood glucose level in serum; (iii) ADA1 and 2 were reduced both in erythrocytes and in hyperglycemic serum. These results suggest that the decrease of ADA activity provoked by ASC may contribute to control adenosine levels and the antioxidant defense system of red cells and could be related to the complex ADA/DPP-IV-CD26 and the properties of dipeptidyl peptidase IV (DPP-IV) inhibitors which serve as important regulators of blood glucose.

  4. Long-term expression of human adenosine deaminase in mice transplanted with retrovirus-infected hematopoietic stem cells

    SciTech Connect

    Lim, B.; Apperley, J.F.; Orkin, S.H.; Williams, D.A. )

    1989-11-01

    Long-term stable expression of foreign genetic sequences transferred into hematopoietic stem cells by using retroviral vectors constitutes a relevant model for somatic gene therapy. Such stability of expression may depend on vector design, including the presence or absence of specific sequences within the vector, in combination with the nature and efficiency of infection of the hematopoietic target cells. The authors have previously reported successful transfer of human DNA encoding adenosine deaminase (ADA) into CFU-S (colony-forming unit-spleen) stem cells using simplified recombinant retroviral vectors. Human ADA was expressed in CFU-S-derived spleen colonies at levels near to endogenous enzyme. However, because of the lack of an efficient dominant selectable marker and low recombinant viral titers, stability of long-term expression of human ADA was not examined. They report here the development of an efficient method of infection of hematopoietic stem cells (HSC) without reliance on in vitro selection. Peripheral blood samples of 100% of mice transplanted with HSC infected by this protocol exhibit expression of human ADA 30 days after transplantation. Some mice (6 of 13) continue to express human ADA in all lineages after complete hematopoietic reconstitution (4 months). The use of recombinant retroviral vectors that efficiently transfer human ADA cDNA into HSC leading to stable expression of functional ADA in reconstituted mice, provides an experimental framework for future development of approaches to somatic gene therapy.

  5. Host response to polyomavirus infection is modulated by RNA adenosine deaminase ADAR1 but not by ADAR2.

    PubMed

    George, Cyril X; Samuel, Charles E

    2011-08-01

    Adenosine deaminases acting on RNA (ADARs) catalyze the C-6 deamination of adenosine (A) to produce inosine (I), which behaves as guanine (G), thereby altering base pairing in RNAs with double-stranded character. Two genes, adar1 and adar2, are known to encode enzymatically active ADARs in mammalian cells. Furthermore, two size forms of ADAR1 are expressed by alternative promoter usage, a short (p110) nuclear form that is constitutively made and a long (p150) form that is interferon inducible and present in both the cytoplasm and nucleus. ADAR2 is also a constitutively expressed nuclear protein. Extensive A-to-G substitution has been described in mouse polyomavirus (PyV) RNA isolated late times after infection, suggesting modification by ADAR. To test the role of ADAR in PyV infection, we used genetically null mouse embryo fibroblast cells deficient in either ADAR1 or ADAR2. The single-cycle yields and growth kinetics of PyV were comparable between adar1(-/-) and adar2(-/-) genetic null fibroblast cells. While large T antigen was expressed to higher levels in adar1(-/-) cells than adar2(-/-) cells, less difference was seen in VP1 protein expression levels between the two knockout MEFs. However, virus-induced cell killing was greatly enhanced in PyV-infected adar1(-/-) cells compared to that of adar2(-/-) cells. Complementation with p110 protected cells from PyV-induced cytotoxicity. UV-irradiated PyV did not display any enhanced cytopathic effect in adar1(-/-) cells. Reovirus and vesicular stomatitis virus single-cycle yields were comparable between adar1(-/-) and adar2(-/-) cells, and neither reovirus nor VSV showed enhanced cytotoxicity in adar1(-/-)-infected cells. These results suggest that ADAR1 plays a virus-selective role in the host response to infection.

  6. Adenosine deaminase activity in serum and lymphocytes of rats infected with Sporothrix schenckii.

    PubMed

    Castro, Verônica S P; Pimentel, Victor C; Da Silva, Aleksandro S; Thomé, Gustavo R; Wolkmer, Patrícia; Castro, Jorge L C; Costa, Márcio M; da Silva, Cássia B; Oliveira, Daniele C; Alves, Sydney H; Schetinger, Maria R C; Lopes, Sonia T A; Mazzanti, Cinthia M

    2012-07-01

    Sporotrichosis is a fungal infection of subcutaneous or chronic evolution, inflammatory lesions characterized by their pyogranulomatous aspect, caused by the dimorphic fungus Sporothrix schenckii. Adenosine deaminase (ADA) is a "key" enzyme in the purine metabolism, promoting the deamination of adenosine, an important anti-inflammatory molecule. The increase in ADA activity has been demonstrated in several inflammatory conditions; however, there are no data in the literature associated with this fungal infection. The objective of this study was to evaluate the activity of serum ADA (S-ADA) and lymphocytes (L-ADA) of rats infected with S. schenckii. We used seventy-eight rats divided into two groups. In the first experiment, rats were infected subcutaneously and in the second experiment, infected intraperitoneally. Blood samples for hematologic evaluation and activities of S-ADA and L-ADA were performed at days 15, 30, and 40 post-infection (PI) to assess disease progression. In the second experiment, it was observed an acute decrease in activity of S-ADA and L-ADA (P < 0.05), suggesting a compensatory mechanism in an attempt to protect the host from excessive tissue damage. With chronicity of disease the rats in the first and second experiment at 30 days PI showed an increased activity of L-ADA (P < 0.05), promoting an inflammatory response in an attempt to combat the spread of the agent. Thus, it is suggested that infection with S. schenckii alters the activities of S-ADA in experimentally infected rats, demonstrating the involvement of this enzyme in the pathogenesis of sporotrichosis.

  7. High-yield production of apoplast-directed human adenosine deaminase in transgenic tobacco BY-2 cell suspensions.

    PubMed

    Singhabahu, Sanjeewa; George, John; Bringloe, David

    2015-01-01

    Adenosine deaminase (ADA) deficiency, where a deleterious mutation in the ADA gene of patients results in a dysfunctional immune system, is ultimately caused by an absence of ADA. Over the last 25 years the disease has been treated with PEG-ADA, made from purified bovine ADA coupled with polyethylene glycol (PEG). However, it is thought that an enzyme replacement therapy protocol based on recombinant human ADA would probably be a more effective treatment. With this end in mind, a human ADA cDNA was inserted into plant expression vectors used to transform tobacco plant cell suspensions. Transgenic calli expressing constructs containing apoplast-directing signals showed significantly higher levels of recombinant ADA expression than calli transformed with cytosolic constructs. The most significant ADA activities, however, were measured in the media of transgenic cell suspensions prepared from high expressing transformed calli: where incorporation of a signal for arabinogalactan addition to ADA led to a recombinant protein yield of approximately 16 mg L(-1) , a 336-fold increase over ADA produced by cell suspensions transformed with a cytosolic construct.

  8. Role of adenosine deaminase, ecto-(5'-nucleotidase) and ecto-(non-specific phosphatase) in cyanide-induced adenosine monophosphate catabolism in rat polymorphonuclear leucocytes.

    PubMed Central

    Newby, A C

    1980-01-01

    1. The role of adenosine deaminase (EC 3.5.4.4), ecto-(5'-nucleotidase) (EC 3.1.3.5) and ecto-(non-specific phosphatase) in the CN-induced catabolism of adenine nucleotides in intact rat polymorphonuclear leucocytes was investigated by inhibiting the enzymes in situ. 2. KCN (10mM for 90 min) induced a 20-30% fall in ATP concentration accompanied by an approximately equimolar increase in hypoxanthine, ADP, AMP and adenosine concentrations were unchanged, and IMP and inosine remained undetectable ( less than 0.05 nmol/10(7) cells). 3. Cells remained 98% intact, as judged by loss of the cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27). 4. Pentostatin (30 microM), a specific inhibitor of adenosine deaminase, completely inhibited hypoxanthine production from exogenous adenosine (55 microM), but did not black CN-induced hypoxanthine production or cause adenosine accumulation in intact cells. This implied that IMP rather than adenosine was an intermediate in AMP breakdown in response to cyanide. 5. Antibodies raised against purified plasma-membrane 5'-nucleotidase inhibited the ecto-(5'-nucleotidase) by 95-98%. Non-specific phosphatases were blocked by 10 mM-sodium beta-glycerophosphate. 6. These two agents together blocked hypoxanthine production from exogenous AMP and IMP (200 microM) by more than 90%, but had no effect on production from endogenous substrates. 7. These data suggest that ectophosphatases do not participate in CN-induced catabolism of intracellular AMP in rat polymorphonuclear leucocytes. 8. A minor IMPase, not inhibited by antiserum, was detected in the soluble fraction of disrupted cells. PMID:6249264

  9. Adenosine deaminase activity level as a tool for diagnosing tuberculous pleural effusion.

    PubMed

    Khow-Ean, Nathapol; Booraphun, Suchart; Aekphachaisawat, Noppadol; Sawanyawisuth, Kittisak

    2013-07-04

    The yield for using a pleural fluid culture to diagnose tuberculous pleural effusion (TPE) is low. Adenosine deaminase activity (ADA) has been shown to have good diagnostic value for TPE. The ADA cutoff point for the diagnosis of TPE is unclear. We attempted to determine the ADA level cutoff point for diagnosing of TPE in Thailand, where tuberculosis is endemic. We reviewed the medical records of patients with newly diagnosed pleural effusion aged >15 years who had a pleural fluid ADAlevel and who underwent a pleural biopsy. The study period was from March 1, 2010 to January 31, 2011. The diagnoses of TPE and malignant pleural effusion (MPE) were based on pathological findings. The diagnostic cutoff level for using ADA to diagnose TPE was determined. Forty-eight patients met study criteria. Of those, 18 patients (37.5%) were diagnosed with TPE. The mean ADA level was significantly higher among patients in the TPE group than in the MPE group (38.2 vs 14.8 U/l, p < 0.001). The cutoff level of 17.5 U/l gave sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of 88.9%, 73.3%, 3.33, and 0.15, respectively. An ADA level >17.5 U/l had good diagnostic values among TPE patients in our study.

  10. Activities of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) on undernourished and renourished rats' thymus.

    PubMed

    Feliu, M S.; Slobodianik, N H.

    2001-02-01

    We studied the effect of administration of a low quality dietary protein, from weaning onwards, on the thymus of undernourished rats and the posterior effect of refeeding with a high quality dietary protein. Changes in thymus weight and the activity of Adenosine Deaminase (ADA) and Purine Nucleoside Phosphorylase (PNP) on thymus, were determined. Wistar rats were suckled in groups of 14-16 per dam since birth to weaning (23 days) to obtain undernutrition. At weaning, a group of 14-16 rats received pre-cooked maize flour (Protein content: 6.5%) for 18 days. One group was sacrificed (M) and the other rats were refed with the casein diet (Protein content: 20%) during 20 days (R). The age-matched control groups were fed stock diet since 40 (C40) and 60 (C60) days of age, respectively. At the end of the experimental period, body (Bw) and thymus weight were determined. ADA and PNP activities were determined in thymocyte suspensions. Highly significant differences in thymus weight-expressed as mg or mg/Bw(0.75)-and the activity of ADA and PNP were observed in rats fed the experimental diet containing maize flour, when compared to the respective age-matched control. No statistical differences were observed between R and C60.The administration of a high quality dietary protein to undernourished weanling rats is capable to reverse the damage produced by the low quality dietary protein on thymus weight and ADA and PNP thymus activities.

  11. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency.

    PubMed

    Hassan, Amel; Booth, Claire; Brightwell, Alex; Allwood, Zoe; Veys, Paul; Rao, Kanchan; Hönig, Manfred; Friedrich, Wilhelm; Gennery, Andrew; Slatter, Mary; Bredius, Robbert; Finocchi, Andrea; Cancrini, Caterina; Aiuti, Alessandro; Porta, Fulvio; Lanfranchi, Arnalda; Ridella, Michela; Steward, Colin; Filipovich, Alexandra; Marsh, Rebecca; Bordon, Victoria; Al-Muhsen, Saleh; Al-Mousa, Hamoud; Alsum, Zobaida; Al-Dhekri, Hasan; Al Ghonaium, Abdulaziz; Speckmann, Carsten; Fischer, Alain; Mahlaoui, Nizar; Nichols, Kim E; Grunebaum, Eyal; Al Zahrani, Daifulah; Roifman, Chaim M; Boelens, Jaap; Davies, E Graham; Cavazzana-Calvo, Marina; Notarangelo, Luigi; Gaspar, H Bobby

    2012-10-25

    Deficiency of the purine salvage enzyme adenosine deaminase leads to SCID (ADA-SCID). Hematopoietic cell transplantation (HCT) can lead to a permanent cure of SCID; however, little data are available on outcome of HCT for ADA-SCID in particular. In this multicenter retrospective study, we analyzed outcome of HCT in 106 patients with ADA-SCID who received a total of 119 transplants. HCT from matched sibling and family donors (MSDs, MFDs) had significantly better overall survival (86% and 81%) in comparison with HCT from matched unrelated (66%; P < .05) and haploidentical donors (43%; P < .001). Superior overall survival was also seen in patients who received unconditioned transplants in comparison with myeloablative procedures (81% vs 54%; P < .003), although in unconditioned haploidentical donor HCT, nonengraftment was a major problem. Long-term immune recovery showed that regardless of transplant type, overall T-cell numbers were similar, although a faster rate of T-cell recovery was observed after MSD/MFD HCT. Humoral immunity and donor B-cell engraftment was achieved in nearly all evaluable surviving patients and was seen even after unconditioned HCT. These data detail for the first time the outcomes of HCT for ADA-SCID and show that, if patients survive HCT, long-term cellular and humoral immune recovery is achieved.

  12. PMMA/polysaccharides nanofilm loaded with adenosine deaminase inhibitor for targeted anti-inflammatory drug delivery.

    PubMed

    Redolfi Riva, Eugenio; Desii, Andrea; Sartini, Stefania; La Motta, Concettina; Mazzolai, Barbara; Mattoli, Virgilio

    2013-10-29

    A novel drug delivery vector, a free-standing polymeric ultrathin film (nanofilm) composed of PMMA and a polysaccharides multilayer, is presented. Chitosan and sodium alginate are alternatively deposited by spin-assisted LbL assembly onto a plasma-treated PMMA thin film. Hydrophobic anti-inflammatory drugs, an adenosine deaminase inhibitor (APP) and its fluorescent dansyl derivate (APP-Dns), are encapsulated inside the LbL multilayer using a simple casting deposition procedure. The resulting drug loaded nanofilm can be suspended in water upon dissolution of a PVA sacrificial layer. Morphological characterization of the nanofilm shows that PMMA/LbL nanofilms possess nanometric thickness (<200 nm) and very low surface roughness (1-2 nm for drug loaded nanofilms and <1 nm for blank nanofilm). Drug loaded films exhibit a diffusion controlled release mechanism following the Korsmayer-Peppas release model, confirmed by the fit of release data with a characteristic power law. Drug release is impaired through the PMMA layer, which acts effectively as a barrier for drug transport. This ultrathin polymer film can find application as a nanopatch for targeted inflammatory drug delivery to treat localized pathologies as inflammatory bowel disease.

  13. Adenosine Deaminase Acting on RNA-1 (ADAR1) Inhibits HIV-1 Replication in Human Alveolar Macrophages

    PubMed Central

    Levy, David N.; Li, Yonghua; Kumar, Rajnish; Burke, Sean A.; Dawson, Rodney; Hioe, Catarina E.; Borkowsky, William; Rom, William N.; Hoshino, Yoshihiko

    2014-01-01

    While exploring the effects of aerosol IFN-γ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL) of aerosol IFN-γ-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1) in the BAL cells. IFN-γ induced ADAR1 expression in monocyte-derived macrophages (MDM) but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected in vitro. Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells in vitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-γ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages. PMID:25272020

  14. Assessment of adenosine deaminase (ADA) activity and oxidative stress in patients with chronic tonsillitis.

    PubMed

    Garca, Mehmet Fatih; Demir, Halit; Turan, Mahfuz; Bozan, Nazım; Kozan, Ahmet; Belli, Şeyda Bayel; Arslan, Ayşe; Cankaya, Hakan

    2014-06-01

    To emphasize the effectiveness of adenosine deaminase (ADA) enzyme, which has important roles in the differentiation of lymphoid cells, and oxidative stress in patients with chronic tonsillitis. Serum and tissue samples were obtained from 25 patients who underwent tonsillectomy due to recurrent episodes of acute tonsillitis. In the control group, which also had 25 subjects, only serum samples were taken as obtaining tissue samples would not have been ethically appropriate. ADA enzyme activity, catalase (CAT), carbonic anhydrase (CA), nitric oxide (NO) and malondialdehyde (MDA) were measured in the serum and tissue samples of patients and control group subjects. The serum values of both groups were compared. In addition, the tissue and serum values of patients were compared. Serum ADA activity and the oxidant enzymes MDA and NO values of the patient group were significantly higher than those of the control group (p < 0.001), the antioxidant enzymes CA and CAT values of the patient group were significantly lower than those of the control group (p < 0.001). In addition, while CA, CAT and NO enzyme levels were found to be significantly higher in the tonsil tissue of the patient group when compared to serum levels (p < 0.05), there was no difference between tissue and serum MDA and ADA activity (p > 0.05). Elevated ADA activity may be effective in the pathogenesis of chronic tonsillitis both by impairing tissue structure and contributing to SOR formation.

  15. Adenosine deaminase complexing protein (ADCP) expression and metastatic potential in prostatic adenocarcinomas.

    PubMed

    Dinjens, W N; Ten Kate, J; Kirch, J A; Tanke, H J; Van der Linden, E P; Van den Ingh, H F; Van Steenbrugge, G J; Meera Khan, P; Bosman, F T

    1990-03-01

    The expression of the adenosine deaminase complexing protein (ADCP) was investigated by immunohistochemistry in the normal and hyperplastic human prostate, in 30 prostatic adenocarcinomas, and in seven human prostatic adenocarcinoma cell lines grown as xenografts in athymic nude mice. In the normal and hyperplastic prostate, ADCP was localized exclusively in the apical membrane and the apical cytoplasm of the glandular epithelial cells. In prostatic adenocarcinomas, four distinct ADCP expression patterns were observed: diffuse cytoplasmic, membranous, both cytoplasmic and membranous, and no ADCP expression. The expression patterns were compared with the presence of metastases. We found an inverse correlation between membranous ADCP immunoreactivity and metastatic propensity. Exclusively membranous ADCP immunoreactivity occurred only in non-metastatic tumours. In contrast, the metastatic tumours showed no or diffuse cytoplasmic ADCP immunoreactivity. This suggests that immunohistochemical detection of ADCP might predict the biological behaviour of prostatic cancer. However, the occurrence of membranous ADCP immunoreactivity in the xenograft of a cell line (PC-EW), derived from a prostatic carcinoma metastasis, indicates that not only the tendency to metastasize modulates ADCP expression.

  16. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    SciTech Connect

    Sadat Hayatshahi, Sayyed Hamed; Khajeh, Khosro

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, the previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.

  17. Preclinical demonstration of lentiviral vector-mediated correction of immunological and metabolic abnormalities in models of adenosine deaminase deficiency.

    PubMed

    Carbonaro, Denise A; Zhang, Lin; Jin, Xiangyang; Montiel-Equihua, Claudia; Geiger, Sabine; Carmo, Marlene; Cooper, Aaron; Fairbanks, Lynette; Kaufman, Michael L; Sebire, Neil J; Hollis, Roger P; Blundell, Michael P; Senadheera, Shantha; Fu, Pei-Yu; Sahaghian, Arineh; Chan, Rebecca Y; Wang, Xiaoyan; Cornetta, Kenneth; Thrasher, Adrian J; Kohn, Donald B; Gaspar, H Bobby

    2014-03-01

    Gene transfer into autologous hematopoietic stem cells by γ-retroviral vectors (gRV) is an effective treatment for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). However, current gRV have significant potential for insertional mutagenesis as reported in clinical trials for other primary immunodeficiencies. To improve the efficacy and safety of ADA-SCID gene therapy (GT), we generated a self-inactivating lentiviral vector (LV) with a codon-optimized human cADA gene under the control of the short form elongation factor-1α promoter (LV EFS ADA). In ADA(-/-) mice, LV EFS ADA displayed high-efficiency gene transfer and sufficient ADA expression to rescue ADA(-/-) mice from their lethal phenotype with good thymic and peripheral T- and B-cell reconstitution. Human ADA-deficient CD34(+) cells transduced with 1-5 × 10(7) TU/ml had 1-3 vector copies/cell and expressed 1-2x of normal endogenous levels of ADA, as assayed in vitro and by transplantation into immune-deficient mice. Importantly, in vitro immortalization assays demonstrated that LV EFS ADA had significantly less transformation potential compared to gRV vectors, and vector integration-site analysis by nrLAM-PCR of transduced human cells grown in immune-deficient mice showed no evidence of clonal skewing. These data demonstrated that the LV EFS ADA vector can effectively transfer the human ADA cDNA and promote immune and metabolic recovery, while reducing the potential for vector-mediated insertional mutagenesis.

  18. Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing.

    PubMed Central

    Kim, U; Wang, Y; Sanford, T; Zeng, Y; Nishikura, K

    1994-01-01

    We have cloned human cDNA encoding double-stranded RNA adenosine deaminase (DRADA). DRADA is a ubiquitous nuclear enzyme that converts multiple adenosines to inosines in double-helical RNA substrates without apparent sequence specificity. The A --> I conversion activity of the protein encoded by the cloned cDNA was confirmed by recombinant expression in insect cells. Use of the cloned DNA as a molecular probe documented sequence conservation across mammals and detected a single transcript of 7 kb in RNA of all human tissues analyzed. The deduced primary structure of human DRADA revealed a bipartite nuclear localization signal, three repeats of a double-stranded RNA binding motif, and the presence of sequences conserved in the catalytic center of other deaminases, including a cytidine deaminase involved in the RNA editing of apolipoprotein B. These structural properties are consistent with the enzymatic signature of DRADA, and strengthen the hypothesis that DRADA carries out the RNA editing of transcripts encoding glutamate-gated ion channels in brain. Images PMID:7972084

  19. T-cell lines from 2 patients with adenosine deaminase (ADA) deficiency showed the restoration of ADA activity resulted from the reversion of an inherited mutation.

    PubMed

    Ariga, T; Oda, N; Yamaguchi, K; Kawamura, N; Kikuta, H; Taniuchi, S; Kobayashi, Y; Terada, K; Ikeda, H; Hershfield, M S; Kobayashi, K; Sakiyama, Y

    2001-05-01

    Inherited deficiency of adenosine deaminase (ADA) results in one of the autosomal recessive forms of severe combined immunodeficiency. This report discusses 2 patients with ADA deficiency from different families, in whom a possible reverse mutation had occurred. The novel mutations were identified in the ADA gene from the patients, and both their parents were revealed to be carriers. Unexpectedly, established patient T-cell lines, not B-cell lines, showed half-normal levels of ADA enzyme activity. Reevaluation of the mutations in these T-cell lines indicated that one of the inherited ADA gene mutations was reverted in both patients. At least one of the patients seemed to possess the revertant cells in vivo; however, the mutant cells might have overcome the revertant after receiving ADA enzyme replacement therapy. These findings may have significant implications regarding the prospects for stem cell gene therapy for ADA deficiency.

  20. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases.

    PubMed Central

    Lai, F; Chen, C X; Carter, K C; Nishikura, K

    1997-01-01

    Double-stranded (ds) RNA-specific adenosine deaminase converts adenosine residues into inosines in dsRNA and edits transcripts of certain cellular and viral genes such as glutamate receptor (GluR) subunits and hepatitis delta antigen. The first member of this type of deaminase, DRADA1, has been recently cloned based on the amino acid sequence information derived from biochemically purified proteins. Our search for DRADA1-like genes through expressed sequence tag databases led to the cloning of the second member of this class of enzyme, DRADA2, which has a high degree of sequence homology to DRADA1 yet exhibits a distinctive RNA editing site selectivity. There are four differentially spliced isoforms of human DRADA2. These different isoforms of recombinant DRADA2 proteins, including one which is a human homolog of the recently reported rat RED1, were analyzed in vitro for their GluR B subunit (GluR-B) RNA editing site selectivity. As originally reported for rat RED1, the DRADA2a and -2b isoforms edit GluR-B RNA efficiently at the so-called Q/R site, whereas DRADA1 barely edits this site. In contrast, the R/G site of GluR-B RNA was edited efficiently by the DRADA2a and -2b isoforms as well as DRADA1. Isoforms DRADA2c and -2d, which have a distinctive truncated shorter C-terminal structure, displayed weak adenosine-to-inosine conversion activity but no editing activity tested at three known sites of GluR-B RNA. The possible role of these DRADA2c and -2d isoforms in the regulatory mechanism of RNA editing is discussed. PMID:9111310

  1. Adenosine deaminase in CSF and pleural fluid for diagnosis of tubercular meningitis and pulmonary tuberculosis.

    PubMed

    Nepal, A K; Gyawali, N; Poudel, B; Mahato, R V; Lamsal, M; Gurung, R; Baral, N; Majhi, S

    2012-12-01

    Tuberculosis (TB) is one of the most common infectious diseases in developing countries including Nepal. Delay in diagnosis and treatment of tuberculosis results in poor prognosis of the disease. This study was conducted to estimate diagnostic cut off values of Adenosine Deaminase (ADA) in cerebrospinal fluid (CSF) and pleural fluid and to evaluate the sensitivity, specificity, positive and negative predictive values ofADA in pleural fluid and CSF from patients with tuberculous and non-tuberculous disease. A total of 98 body fluid (CSF: 24, Pleural fluid: 74) specimens were received for the estimation of ADA. ADA activity was measured at 37 degrees C by spectrophotometric method of Guisti and Galanti, 1984 at 625nm wavelength. Among the patients enrolled for the study subjects for which CSF were received (n = 24) included 8 tuberculous meningitis (TBM), and 16 non-tubercular meningitis (NTM). Pleural fluid samples (n = 74) were received from 19 pulmonary TB with pleural effusion, 17 PTB without pleural effusion and 37 of non-tuberculous disease patients. CSF ADA activity were (11. 1 +/- 2.03 IU/L) and (5.3 +/- +1.89 IU/L) (p <00001) in TM and non-NTM groups and Pleural fluid ADA activity were (10 +/- 22.18 IU/L) and (23.79 +/- 11.62 IU/L) (p < 0.001) in PTB and non-TB groups respectively. ADA test in body fluids, which is simple, cost-effective and sensitive, specific for the tubercular disease is recommended to perform before forwarding the cumbersome and expensive procedures like culture and PCR for TB diagnosis.

  2. Adenosine deaminase activity in serum, erythrocytes and lymphocytes of rats infected with Leptospira icterohaemorrhagiae.

    PubMed

    Tonin, Alexandre A; Pimentel, Victor C; da Silva, Aleksandro S; de Azevedo, Maria Isabel; Souza, Viviane C G; Wolkmer, Patrícia; Rezer, João F P; Badke, Manoel R T; Leal, Daniela B R; Schetinger, Maria Rosa C; Monteiro, Silvia G; Lopes, Sonia T A

    2012-04-01

    Leptospirosis is a systemic disease of humans and domestic animals, mainly dogs, cattle and swine. The course of human leptospirosis varies from mild to severe fatal forms and the most severe form of human leptospirosis is principally caused by Leptospira interrogans serovar icterohaemorrhagiae (L. icterohaemorrhagiae). The enzyme adenosine deaminase (ADA) plays an important role in the production and differentiation of blood cells. The aim of this study was to evaluate the activity of ADA in serum, erythrocytes and lymphocytes of rats infected with L. icterohaemorrhagiae, as compared with non-infected rats. Twenty-four adult rats, divided into two uniform groups (A and B) were used for the enzymatic assays. The animals in Group B were inoculated intraperitoneally with 2×10(8) leptospires/rat, and the rodents in Group A (control) were not-inoculated. Blood collection was performed on days 5 and 15 post-infection (PI) and the blood used to assess the ADA activity. The infection by L.icterohaemorrhagiae altered erythrocyte count, hemoglobin concentration and hematocrit, causing a decrease in all these parameters on day 15 PI. Lymphocytes decreased significantly on day 15 PI, and ADA activity in serum was inhibited in infected rats on days 5 and 15 PI and its activity in erythrocytes were increased on day 5 PI. On day 5 PI, we found an increase in ADA activity in erythrocytes of infected rats. No correlation was observed between hematocrit and erythrocyte ADA activity on days 5 and 15 PI. The ADA activity was inhibited in rats infected on day 15 PI. A positive correlation (r(2)=60) was also observed between the number of lymphocytes and ADA activity in lymphocytes on day 15 PI (P<0.05). In conclusion, our results showed that the ADA activity is altered in serum, lymphocytes and erythrocytes in experimental infection by L.icterohaemorrhagiae in rats, concomitantly with hematological parameters.

  3. Diagnostic value of sputum adenosine deaminase (ADA) level in pulmonary tuberculosis

    PubMed Central

    Binesh, Fariba; Jalali, Hadi; Zare, Mohammad Reza; Behravan, Farhad; Tafti, Arefeh Dehghani; Behnaz, Fatemah; Tabatabaee, Mohammad; Shahcheraghi, Seyed Hossein

    2016-01-01

    Introduction Tuberculosis is still a considerable health problem in many countries. Rapid diagnosis of this disease is important, and adenosine deaminase (ADA) has been used as a diagnostic test. The aim of this study was to assess the diagnostic value of ADA in the sputum of patients with pulmonary tuberculosis. Methods The current study included 40 patients with pulmonary tuberculosis (culture positive, smear ±) and 42 patients with non tuberculosis pulmonary diseases (culture negative). ADA was measured on all of the samples. Results The median value of ADA in non-tuberculosis patients was 2.94 (4.2) U/L and 4.01 (6.54) U/L in tuberculosis patients, but this difference was not statistically significant (p=0.100). The cut-off point of 3.1 U/L had a sensitivity of 61% and a specificity of 53%, the cut-off point of 2.81 U/L had a sensitivity of 64% and a specificity of 50% and the cut-off point of 2.78 U/L had a sensitivity of 65% and a specificity of 48%. The positive predictive values for cut-off points of 3.1, 2.81 and 2.78 U/L were 55.7%, 57.44% and 69.23%, respectively. The negative predictive values for the abovementioned cut-off points were 56.75%, 57.14% and 55.88%, respectively. Conclusion Our results showed that sputum ADA test is neither specific nor sensitive. Because of its low sensitivity and specificity, determination of sputum ADA for the diagnosis of pulmonary tuberculosis is not recommended. PMID:27482515

  4. Diagnosis of tuberculosis pleurisy with adenosine deaminase (ADA): a systematic review and meta-analysis.

    PubMed

    Gui, Xuwei; Xiao, Heping

    2014-01-01

    This systematic review and meta-analysis was performed to determine accuracy and usefulness of adenosine deaminase (ADA) in diagnosis of tuberculosis pleurisy. Medline, Google scholar and Web of Science databases were searched to identify related studies until 2014. Two reviewers independently assessed quality of studies included according to standard Quality Assessment of Diagnosis Accuracy Studies (QUADAS) criteria. The sensitivity, specificity, diagnostic odds ratio and other parameters of ADA in diagnosis of tuberculosis pleurisy were analyzed with Meta-DiSC1.4 software, and pooled using the random effects model. Twelve studies including 865 tuberculosis pleurisy patients and 1379 non-tuberculosis pleurisy subjects were identified from 110 studies for this meta-analysis. The sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnosis odds ratio (DOR) of ADA in the diagnosis of tuberculosis pleurisy were 45.25 (95% CI 27.63-74.08), 0.86 (95% CI 0.84-0.88), 0.88 (95% CI 0.86-0.90), 6.32 (95% CI 4.83-8.26) and 0.15 (95% 0.11-0.22), respectively. The area under the summary receiver operating characteristic curve (SROC) was 0.9340. Our results demonstrate that the sensitivity and specificity of ADA are high in the diagnosis of tuberculosis pleurisy especially when ADA≥50 (U/L). Thus, ADA is a relatively sensitive and specific marker for tuberculosis pleurisy diagnosis. However, it is cautious to apply these results due to the heterogeneity in study design of these studies. Further studies are required to confirm the optimal cut-off value of ADA.

  5. Correlation study of adenosine deaminase and its isoenzymes in type 2 diabetes mellitus

    PubMed Central

    Sapkota, Lokendra Bahadur; Thapa, Sangita; Subedi, Nuwadatta

    2017-01-01

    Objective Adenosine deaminase (ADA) plays an important role in cell-mediated immunity and modulation of insulin activity. Its clinical and diagnostic significance in Nepalese type 2 diabetes is not yet characterized. So, this study's objective was to determine the isoenzymatic activities of ADA (ADA1, ADA2, and total ADA) and show its correlation with demographic, anthropometric, and biochemical characteristics of type 2 Nepalese subjects with diabetes. Research design and methods This is a hospital-based cross-sectional study including 80 type 2 diabetes mellitus (DM) patients and same number of age-matched and sex-matched healthy controls. Data were collected using preformed set of questionnaires and biochemical data were obtained from the laboratory analysis of the patient's blood samples. Statistical analysis was performed with SPSS V.20. Results A significantly higher (p<0.001) mean values of body mass index (BMI), fasting blood sugar (FBS), postprandial blood sugar (PPBS), glycated hemoglobin (HbA1c), and lipid profiles except high-density lipoprotein cholesterol (HDL-C) were found in type 2 diabetic cases compared with controls. Serum ADA activities were significantly higher in cases compared with controls (p<0.001) showing significant positive correlation (p<0.05) with FBS, PPBS, HbA1c, and alcoholism; while no correlation was found with age, sex, ethnicity, BMI, waist–hip ratio, dietary habits, smoking, and duration of diabetes. Conclusions Serum ADA activities were significantly higher in type 2 diabetic patients compared with controls having significant positive correlation with glycemic parameters. Serum ADA and its isoenzymes could be used as biomarkers for assessing glycemic status in patients with type 2 DM. PMID:28321313

  6. Seed specific expression and analysis of recombinant human adenosine deaminase (hADA) in three host plant species.

    PubMed

    Doshi, Ketan M; Loukanina, Natalia N; Polowick, Patricia L; Holbrook, Larry A

    2016-10-01

    The plant seed is a leading platform amongst plant-based storage systems for the production of recombinant proteins. In this study, we compared the activity of human adenosine deaminase (hADA) expressed in transgenic seeds of three different plant species: pea (Pisum sativum L.), Nicotiana benthamiana L. and tarwi (Lupinus mutabilis Sweet). All three species were transformed with the same expression vector containing the hADA gene driven by the seed-specific promoter LegA2 with an apoplast targeting pinII signal peptide. During the study, several independent transgenic lines were generated and screened from each plant species and only lines with a single copy of the gene of interest were used for hADA expression analysis. A stable transgenic canola line expressing the ADA protein, under the control of 35S constitutive promoter was used as both as a positive control and for comparative study with the seed specific promoter. Significant differences were detected in the expression of hADA. The highest activity of the hADA enzyme (Units/g seed) was reported in tarwi (4.26 U/g) followed by pea (3.23 U/g) and Nicotiana benthamiana (1.69 U/g). The expression of mouse ADA in canola was very low in both seed and leaf tissue compared to other host plants, confirming higher activity of seed specific promoter. Altogether, these results suggest that tarwi could be an excellent candidate for the production of valuable recombinant proteins.

  7. Novel deletion and a new missense mutation (Glu 217 Lys) at the catalytic site in two adenosine deaminase alleles of a patient with neonatal onset adenosine deaminase severe combined immunodeficiency

    SciTech Connect

    Hirschhorn, R.; Nicknam, M.N.; Eng, F.; Yang, D.R.; Borkowsky, W. )

    1992-11-01

    Mutations at the adenosine deaminase (ADA) locus result in a spectrum of disorders, encompassing a fulminant neonatal onset severe combined immunodeficiency (SCID) and childhood onset immunodeficiency, as well as apparently normal immune function. The extent of accumulation of the toxic metabolite, deoxyATP, correlates directly with severity of disease. The authors have now determined the mutations on both alleles of a child with fulminant, neonatal onset ADA SCID and accumulation of extremely high concentrations of deoxyATP. The genotype was consistent with the severely affected phenotype. One allele carried a large deletion that arose by non-homologous recombination and included the first five exons and promoter region. The second allele carried a missense mutation (G[sup 649]A) resulting in replacement of Glu[sup 217], an amino acid involved in the catalytic site, by Lys and predicting a major alteration in charge. Expression of the mutant cDNA on Cos cells confirmed that the mutation abolished enzyme activity. The authors have previously reported that a missense mutation at the preceding codon is similarly associated with neonatal onset ADA SCID and accumulation of extremely high deoxyATP. These findings suggest that genotype-phenotype correlations may be apparent for ADA SCID, despite the role that random variation in exposure to environmental pathogens may play in the initial phenotype. Such genotype-phenotype correlations may be important to consider in evaluating results of ongoing trials of [open quotes]gene[close quotes] and enzyme replacement therapy. 50 refs., 5 figs., 2 tabs.

  8. Effects of surfactant, salt and solvent on the structure and activity of adenosine deaminase: molecular dynamic and spectrophotometric studies.

    PubMed

    Ajloo, Davood; Taghizadeh, Elias; Saboury, Ali A; Bazyari, Elahe; Mahnam, Karim

    2008-08-15

    Effects of sodium dodecyl sulfate, dodecyltrimethylammonium bromide, sodium chloride, sodium sulfate, methanol and ethanol, on the structure and activity of adenosine deaminase (ADA) were investigated by UV-Vis, circular dichroism spectrophotometry and molecular dynamics (MDs) studies. Relative activity, experimental and computational helix content, total accessible surface area (ASA) and exposed charged surface area (ECSA) were obtained. The relative activity of ADA in the absence and the presence of denaturants were compared with structural results. It was shown that an increase in the surface area and a decrease in the amount of helicity are associated with a decrease in the activity of ADA.

  9. Antigenicity of UV radiation-induced murine tumors correlates positively with the level of adenosine deaminase activity.

    PubMed

    Aukerman, S L; Fidler, I J

    1987-01-01

    The specific activities of adenosine deaminase (ADA) in 16 murine tumor cell lines derived from seven UV light-induced neoplasms (melanoma and fibrosarcoma) were determined. In each case, the specific activity of ADA correlated positively with the antigenicity of the tumor cells. Highly antigenic cell lines that regress upon introduction into syngeneic hosts had on average 4- to 6-fold higher ADA specific activities than cell lines of low antigenicity that grow progressively in syngeneic hosts. The antigenic differences are probably not related to intracellular cAMP levels, as the level of cAMP differed only 2-fold between the two groups of cell lines.

  10. Mycobacterium tuberculosis ESAT6 and CPF10 Induce Adenosine Deaminase 2 mRNA Expression in Monocyte-Derived Macrophages

    PubMed Central

    Bae, Mi Jung; Ryu, Suyeon; Kim, Ha-Jeong; Cha, Seung Ick

    2017-01-01

    Background Delayed hypersensitivity plays a large role in the pathogenesis of tuberculous pleural effusion (TPE). Macrophages infected with live Mycobacterium tuberculosis (MTB) increase the levels of adenosine deaminase2 (ADA2) in the pleural fluid of TPE patients. However, it is as yet unclear whether ADA2 can be produced by macrophages when challenged with MTB antigens alone. This study therefore evaluated the levels of ADA2 mRNA expression, using monocyte-derived macrophages (MDMs) stimulated with MTB antigens. Methods Purified monocytes from the peripheral blood mononuclear cells of healthy volunteers were differentiated into macrophages using granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). The MDMs were stimulated with early secretory antigenic target protein 6 (ESAT6) and culture filtrate protein 10 (CFP10). The mRNA expression levels for the cat eye syndrome chromosome region, candidate 1 (CECR1) gene encoding ADA2 were then measured. Results CECR1 mRNA expression levels were significantly higher in MDMs stimulated with ESAT6 and CFP10, than in the unstimulated MDMs. When stimulated with ESAT6, M-CSF-treated MDMs showed more pronounced CECR1 mRNA expression than GM-CSF-treated MDMs. Interferon-γ decreased the ESAT6- and CFP10-induced CECR1 mRNA expression in MDMs. CECR1 mRNA expression levels were positively correlated with mRNA expression of tumor necrosis factor α and interleukin 10, respectively. Conclusion ADA2 mRNA expression increased when MDMs were stimulated with MTB antigens alone. This partly indicates that pleural fluid ADA levels could increase in patients with culture-negative TPE. Our results may be helpful in improving the understanding of TPE pathogenesis. PMID:28119750

  11. Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space

    PubMed Central

    Li, Ruolin; Wang, Junli; Wang, Xinfeng; Wang, Maoshui

    2016-01-01

    OBJECTIVES: Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics. METHODS: A total of 76 patients were enrolled and grouped into subgroups according to Gram staining: 1) patients with Gram-negative bacterial infections, aged 53.2±18.6 years old, of whom 44.7% had empyemas and 2) patients with Gram-positive bacterial infections, aged 53.5±21.5 years old, of whom 63.1% had empyemas. The pleural effusion was sampled by thoracocentesis and then sent for adenosine deaminase testing, biochemical testing and microbiological culture. The Mann-Whitney U test was used to examine the differences in adenosine deaminase levels between the groups. Correlations between adenosine deaminase and specified variables were also quantified using Spearman’s correlation coefficient. Moreover, receiver operator characteristic analysis was performed to evaluate the diagnostic accuracy of pleural effusion adenosine deaminase. RESULTS: Mean pleural adenosine deaminase levels differed significantly between Gram-negative and Gram-positive bacterial infections of the pleural space (191.8±32.1 U/L vs 81.0±16.9 U/L, p<0.01). The area under the receiver operator characteristic curve was 0.689 (95% confidence interval: 0.570, 0.792, p<0.01) at the cutoff value of 86 U/L. Additionally, pleural adenosine deaminase had a sensitivity of 63.2% (46.0-78.2%); a specificity of 73.7% (56.9-86.6%); positive and negative likelihood ratios of 2.18 and 0.50, respectively; and positive and negative predictive values of 70.6% and 66.7%, respectively. CONCLUSIONS: Pleural effusion adenosine deaminase is a helpful alternative biomarker for early and quick discrimination of Gram-negative from Gram-positive bacterial infections of the pleural space

  12. Crystallization and preliminary X-ray crystallographic analysis of the tRNA-specific adenosine deaminase from Streptococcus pyogenes

    SciTech Connect

    Ku, Min-Je; Lee, Won-Ho; Nam, Ki-hyun; Rhee, Kyeong-hee; Lee, Ki-Seog; Kim, Eunice EunKyung; Yu, Myung-Hee; Hwang, Kwang Yeon

    2005-04-01

    The tRNA-specific adenosine deaminase from the pathogenic bacteria S. pyogenes has been overexpressed and crystallized. The tRNA-specific adenosine deaminase from the pathogenic bacteria Streptococcus pyogenes (spTAD) has been overexpressed in Escherichia coli and crystallized in the presence of Zn{sup 2+} ion at 295 K using ammonium sulfate as a precipitant. Flash-cooled crystals of spTAD diffracted to 2.0 Å using 30%(v/v) glycerol as a cryoprotectant. X-ray diffraction data have been collected to 2.0 Å using synchrotron radiation. The crystal belongs to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 81.042, c = 81.270 Å. The asymmetric unit contains one subunit of spTAD, with a corresponding crystal volume per protein weight (V{sub M}) of 3.3 Å{sup 3} Da{sup −1} and a solvent content of 62.7%.

  13. DNA-templated silver nanoclusters based label-free fluorescent molecular beacon for the detection of adenosine deaminase.

    PubMed

    Zhang, Kai; Wang, Ke; Xie, Minhao; Zhu, Xue; Xu, Lan; Yang, Runlin; Huang, Biao; Zhu, Xiaoli

    2014-02-15

    A general and reliable fluorescent molecular beacon is proposed in this work utilizing DNA-templated silver nanoclusters (AgNCs). The fluorescent molecular beacon has been employed for sensitive determination of the concentration of adenosine deaminase (ADA) and its inhibition. A well-designed oligonucleotide containing three functional regions (an aptamer region for adenosine assembly, a sequence complementary to the region of the adenosine aptamer, and an inserted six bases cytosine-loop) is adopted as the core element in the strategy. The enzymatic reaction of adenosine catalyzed by ADA plays a key role as well in the regulation of the synthesis of the DNA-templated AgNCs, i.e. the signal indicator. The intensity of the fluorescence signal may thereby determine the concentration of the enzyme and its inhibitor. The detection limit of the ADA can be lowered to 0.05 UL(-1). Also, 100 fM of a known inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA) is enough to present distinguishable fluorescence emission. Moreover, since the fluorescent signal indicator is not required to be bound with the oligonucleotide, this fluorescent molecular beacon may integrate the advantages of both the label-free and signal-on strategies.

  14. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities.

    PubMed

    Marisco, Patricia C; Carvalho, Fabiano B; Rosa, Michelle M; Girardi, Bruna A; Gutierres, Jessié M; Jaques, Jeandre A S; Salla, Ana P S; Pimentel, Víctor C; Schetinger, Maria Rosa C; Leal, Daniela B R; Mello, Carlos F; Rubin, Maribel A

    2013-08-01

    Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.

  15. Purification and characterization of a human RNA adenosine deaminase for glutamate receptor B pre-mRNA editing.

    PubMed

    Yang, J H; Sklar, P; Axel, R; Maniatis, T

    1997-04-29

    The glutamate receptor subunit B (GluR-B) pre-mRNA is edited at two adenosine residues, resulting in amino acid changes that alter the electrophysiologic properties of the glutamate receptor. Previous studies showed that these amino acid changes are due to adenosine to inosine conversions in two codons resulting from adenosine deamination. Here, we describe the purification and characterization of an activity from human HeLa cells that efficiently and accurately edits GluR-B pre-mRNA at both of these sites. The purified activity contains a human homolog of the recently reported rat RED1 (rRED1) protein, a member of the family of double-stranded RNA-dependent deaminase proteins. Recombinant human RED1 (hRED1), but not recombinant dsRAD, another member of the family, efficiently edits both the Q/R and R/G sites of GluR-B RNA. We conclude that the GluR-B editing activity present in HeLa cell extracts and the recombinant hRED1 protein are indistinguishable.

  16. Repetitive systemic morphine alters activity-dependent plasticity of Schaffer-collateral-CA1 pyramidal cell synapses: involvement of adenosine A1 receptors and adenosine deaminase.

    PubMed

    Sadegh, Mehdi; Fathollahi, Yaghoub

    2014-10-01

    The effectiveness of O-pulse stimulation (TPS) for the reversal of O-pattern primed bursts (PB)-induced long-term potentiation (LTP) were examined at the Schaffer-collateral-CA1 pyramidal cell synapses of hippocampal slices derived from rats chronically treated with morphine (M-T). The results showed that slices derived from both control and M-T rats had normal field excitatory postsynaptic potential (fEPSP)-LTP, whereas PS-LTP in slices from M-T rats was significantly greater than that from control slices. When morphine was applied in vitro to slices derived from rats chronically treated with morphine, the augmentation of PS-LTP was not seen. TPS given 30 min after LTP induction failed to reverse the fEPSP- or PS-LTP in both groups of slices. However, TPS delivered in the presence of long-term in vitro morphine caused the PS-LTP reversal. This effect was blocked by the adenosine A1 receptor (A1R) antagonist CPX (200 nM) and furthermore was enhanced by the adenosine deaminase (ADA) inhibitor EHNA (10 μM). Interestingly, TPS given 30 min after LTP induction in the presence of EHNA (10 μM) can reverse LTP in morphine-exposed control slices in vitro. These results suggest adaptive changes in the hippocampus area CA1 in particular in adenosine system following repetitive systemic morphine. Chronic in vivo morphine increases A1R and reduces ADA activity in the hippocampus. Consequently, adenosine can accumulate because of a stimulus train-induced activity pattern in CA1 area and takes the opportunity to work as an inhibitory neuromodulator and also to enable CA1 to cope with chronic morphine. In addition, adaptive mechanisms are differentially working in the dendrite layer rather than the somatic layer of hippocampal CA1.

  17. The Effect of Acute Exercise upon Adenosin Deaminase Oxidant and Antioxidant Activity

    ERIC Educational Resources Information Center

    Kafkas, M. Emin; Karabulut, Aysun Bay; Sahin, Armagan; Otlu, Onder; Savas, Seyfi; Aytac, Aylin

    2012-01-01

    The purpose of this study was to determine the changes of MDA, glutation (GSH), Adenozine deaminase (ADA) and superoxidase dismutaze (SOD) levels with exercise training in obese middle-aged women (body mass index, MMI [greater than or equal to] 30.0). Twelve obese middle-aged women participated in this study. The descriptive statistics of some of…

  18. Cryptococcal pleuritis containing a high level of adenosine deaminase in a patient with AIDS: a case report.

    PubMed

    Yoshino, Yusuke; Kitazawa, Takatoshi; Tatsuno, Keita; Ota, Yasuo; Koike, Kazuhiko

    2010-01-01

    Cryptococcal infection is the 4th most common opportunistic infection in patients with acquired immune deficiency syndrome (AIDS). Although pleural effusion alone is an unusual presentation, we present a case of cryptococcal pleuritis in an AIDS patient which was initially difficult to discriminate from tuberculous pleuritis because of the high level of pleural adenosine deaminase (ADA). Cryptococcus neoformans was detected in the culture of the pleural effusion after the initiation of antituberculous treatment. High levels of ADA in the pleural fluid can be observed in patients with cryptococcal pleuritis, and longer incubation of pleural fluid should be performed in all patients who present with pleuritis associated with a high ADA level as the only significant finding.

  19. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR).

    PubMed

    Solomon, Oz; Oren, Shirley; Safran, Michal; Deshet-Unger, Naamit; Akiva, Pinchas; Jacob-Hirsch, Jasmine; Cesarkas, Karen; Kabesa, Reut; Amariglio, Ninette; Unger, Ron; Rechavi, Gideon; Eyal, Eran

    2013-05-01

    Alternative mRNA splicing is a major mechanism for gene regulation and transcriptome diversity. Despite the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood. Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes has been linked to splicing regulation in several cases. Here we used bioinformatics approaches, RNA-seq and exon-specific microarray of ADAR knockdown cells to globally examine how ADAR and its A-to-I RNA editing activity influence alternative mRNA splicing. Although A-to-I RNA editing only rarely targets canonical splicing acceptor, donor, and branch sites, it was found to affect splicing regulatory elements (SREs) within exons. Cassette exons were found to be significantly enriched with A-to-I RNA editing sites compared with constitutive exons. RNA-seq and exon-specific microarray revealed that ADAR knockdown in hepatocarcinoma and myelogenous leukemia cell lines leads to global changes in gene expression, with hundreds of genes changing their splicing patterns in both cell lines. This global change in splicing pattern cannot be explained by putative editing sites alone. Genes showing significant changes in their splicing pattern are frequently involved in RNA processing and splicing activity. Analysis of recently published RNA-seq data from glioblastoma cell lines showed similar results. Our global analysis reveals that ADAR plays a major role in splicing regulation. Although direct editing of the splicing motifs does occur, we suggest it is not likely to be the primary mechanism for ADAR-mediated regulation of alternative splicing. Rather, this regulation is achieved by modulating trans-acting factors involved in the splicing machinery.

  20. Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma.

    PubMed

    Oakes, Eimile; Anderson, Ashley; Cohen-Gadol, Aaron; Hundley, Heather A

    2017-03-10

    RNA editing is a cellular process that precisely alters nucleotide sequences, thus regulating gene expression and generating protein diversity. Over 60% of human transcripts undergo adenosine to inosine RNA editing, and editing is required for normal development and proper neuronal function of animals. Editing of one adenosine in the transcript encoding the glutamate receptor subunit B, glutamate receptor ionotropic AMPA 2 (GRIA2), modifies a codon, replacing the genomically encoded glutamine (Q) with arginine (R); thus this editing site is referred to as the Q/R site. Editing at the Q/R site of GRIA2 is essential, and reduced editing of GRIA2 transcripts has been observed in patients suffering from glioblastoma. In glioblastoma, incorporation of unedited GRIA2 subunits leads to a calcium-permeable glutamate receptor, which can promote cell migration and tumor invasion. In this study, we identify adenosine deaminase that acts on RNA 3 (ADAR3) as an important regulator of Q/R site editing, investigate its mode of action, and detect elevated ADAR3 expression in glioblastoma tumors compared with adjacent brain tissue. Overexpression of ADAR3 in astrocyte and astrocytoma cell lines inhibits RNA editing at the Q/R site of GRIA2 Furthermore, the double-stranded RNA binding domains of ADAR3 are required for repression of RNA editing. As the Q/R site of GRIA2 is specifically edited by ADAR2, we suggest that ADAR3 directly competes with ADAR2 for binding to GRIA2 transcript, inhibiting RNA editing, as evidenced by the direct binding of ADAR3 to the GRIA2 pre-mRNA. Finally, we provide evidence that both ADAR2 and ADAR3 expression contributes to the relative level of GRIA2 editing in tumors from patients suffering from glioblastoma.

  1. Syzygium cumini extract decrease adenosine deaminase, 5'nucleotidase activities and oxidative damage in platelets of diabetic patients.

    PubMed

    De Bona, Karine S; Bellé, Luziane P; Sari, Marcel H; Thomé, Gustavo; Schetinger, Maria R C; Morsch, Vera M; Boligon, Aline; Athayde, Margareth L; Pigatto, Aline S; Moretto, Maria B

    2010-01-01

    Diabetes mellitus, a chronic metabolic disorder, has assumed epidemic proportions and its long-term complications can have devastating consequences. The oxidative stress in diabetes was greatly increased due to prolonged exposure to hyperglycemia and impairment of oxidant/antioxidant equilibrium. Syzygium cumini is being widely used to treat diabetes by the traditional practitioners over many centuries. Adenosine deaminase (ADA) and 5'-Nucleotidase (5'NT) are enzymes of purine nucleoside metabolism that play an important role in the regulation of adenosine (Ado) levels. In this study, we investigated the effect of Syzygium cumini aqueous leaves extract (ASc) on ADA and 5'NT activities and on parameters of oxidative stress under in vitro conditions, using platelets of patients with Type 2 diabetes mellitus. Platelet-Rich Plasma (PRP) was assayed by ADA, 5'NT, Catalase (CAT), Superoxide Dismutase (SOD) activities and Thiobarbituric acid reactive substances (TBARS) levels. We observed that ADA, 5'NT activities and TBARS levels were significantly higher when compared to the control group, and ASc (100 and 200 μg/mL) prevented these effects. Our study demonstrates that ASc was able to remove oxidant species generated in diabetic conditions and modulates in the Ado levels. Then, ASc may promote a compensatory response in platelet function, improving the susceptibility-induced by the diabetes mellitus.

  2. Partial resolution of bone lesions. A child with severe combined immunodeficiency disease and adenosine deaminase deficiency after enzyme-replacement therapy

    SciTech Connect

    Yulish, B.S.; Stern, R.C.; Polmar, S.H.

    1980-01-01

    A child with severe combined immunodeficiency disease and adenosine deaminase deficiency, with characteristic bone dysplasia, was treated with transfusions of frozen irradiated RBCs as a means of enzyme replacement. This therapy resulted in restoration of immunologic competence and partial resolution of the bone lesions. Although the natural history of these lesions without therapy is not known, enzyme-replacement therapy may have played a role in the resolution of this patient's bone lesions.

  3. Adenosine Deaminase-2–Induced Hyperpermeability in Human Retinal Vascular Endothelial Cells Is Suppressed by MicroRNA-146b-3p

    PubMed Central

    Samra, Yara A.; Saleh, Heba M.; Hussein, Khaled A.; Elsherbiny, Nehal M.; Ibrahim, Ahmed S.; Elmasry, Khaled; Fulzele, Sadanand; El-Shishtawy, Mamdouh M.; Eissa, Laila A.; Al-Shabrawey, Mohamed; Liou, Gregory I.

    2017-01-01

    Purpose We recently demonstrated that adenosine deaminase-2 (ADA2) contributes to diabetic retinopathy (DR) via up-regulating the production of inflammatory cytokines in macrophages. Also, microRNA (miR)-146b-3p has the ability to inhibit ADA2. The goal of this study was to investigate the potential role of ADA2 and therapeutic benefit of miR-146b-3p in retinal inflammation and endothelial barrier dysfunction during diabetes. Methods Adenosine deaminase-2 activity was determined by colorimetric method in diabetic human vitreous. Human monocyte cell line U937 was differentiated into macrophages and then treated with amadori glycated albumin (AGA), and conditioned medium (CM) was used to assess the changes in ADA2 activity and TNF-α and IL-6 levels by ELISA. Also, macrophages were transfected with miR-146b-3p before treatment with AGA. Permeability of human retinal endothelial cells (hRECs) was assessed by electric cell-substrate impedance sensing (ECIS) after treatment with macrophage CM. Zonula occludens (ZO)-1 was examined by immuno-fluorescence in hRECs. Leukocyte adhesion was assessed in hRECs by measuring myeloperoxidase (MPO) activity and intercellular adhesion molecule-1 (ICAM-1) expression. Results Adenosine deaminase-2 activity was significantly increased in diabetic human vitreous. ADA2 activity and TNF-α and IL-6 levels were significantly increased in human macrophages by AGA treatment. Amadori glycated albumin–treated macrophage CM significantly increased hREC permeability, disrupted ZO-1 pattern, and increased leukocyte adhesion to hRECs through up-regulating ICAM-1. All these changes were reversed by miR-146b-3p. Conclusions Adenosine deaminase-2 is implicated in breakdown of the blood–retinal barrier (BRB) in DR through macrophages-derived cytokines. Therefore, inhibition of ADA2 by miR-146b-3p might be a useful tool to preserve BRB function in DR. PMID:28170537

  4. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    EPA Science Inventory

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  5. Photodynamic therapy-driven induction of suicide cytosine deaminase gene.

    PubMed

    Bil, Jacek; Wlodarski, Pawel; Winiarska, Magdalena; Kurzaj, Zuzanna; Issat, Tadeusz; Jozkowicz, Alicja; Wegiel, Barbara; Dulak, Jozef; Golab, Jakub

    2010-04-28

    Photodynamic therapy (PDT) of tumors is associated with induction of hypoxia that results in activation of hypoxia-inducible factors (HIFs). Several observations indicate that increased HIFs transcriptional activity in tumor cells is associated with cytoprotective responses that limit cytotoxic effectiveness of PDT. Therefore, we decided to examine whether this cytoprotective mechanism could be intentionally used for designing more efficient tumor cell cytotoxicity. To this end we transfected tumor cells with a plasmid vector carrying a suicide cytosine deaminase gene driven by a promoter containing hypoxia response elements (HRE). The presence of such a genetic molecular beacon rendered tumor cells sensitive to cytotoxic effects of a non-toxic prodrug 5-fluorocytosine (5-FC). The results of this study provides a proof of concept that inducible cytoprotective mechanisms can be exploited to render tumor cells more susceptible to cytotoxic effects of prodrugs activated by products of suicide genes.

  6. Effects of aqueous soybean, mistletoe and red clover extracts on activities of adenosine deaminase and xanthine oxidase enzyme.

    PubMed

    Namuslu, M; Kocaoglu, H; Celik, H T; Avci, A; Devrim, E; Genc, Y; Gocmen, E; Erguder, I B; Durak, I

    2014-01-01

    Soybean (Glycine max), mistletoe (Viscum album) and red clover (Trifolium pratence) have been argued to have anti-cancer effects. In the present study it was aimed to investigate possible effects of these plant extracts on the activities of DNA turn-over enzymes, namely adenosine deaminase (ADA) and xanthine oxidase (XO) in cancerous and non-cancerous gastric and colon tissues. For this aim, 6 cancerous and 6 non-cancerous adjacent human gastric tissues, and 7 cancerous and 7 non-cancerous adjacent colon tissues were obtained by surgical operations. Our results suggest that aqueous soybean, mistletoe and red clover extracts may exhibit anti-tumoral activity by depleting hypoxanthine concentration in the cancer cells through XO activation, which may lead to lowered salvage pathway activity necessary for the cancer cells to proliferate in the cancerous colon tissue. Some foods like soybean, mistletoe and red clover may provide nutritional support to medical cancer therapy through inhibiting and/or activating key enzymes in cancer metabolism (Tab. 4, Ref. 33).

  7. A Study on the Serum Adenosine Deaminase Activity in Patients with Typhoid Fever and Other Febrile Illnesses

    PubMed Central

    Ketavarapu, Sameera; Ramani G., Uma; Modi, Prabhavathi

    2013-01-01

    Background: Adenosine Deaminase (ADA) has been suggested to be an important enzyme which is associated with the cell mediated immunity, but its clinical significance in typhoid fever has not yet been characterized. The present study was taken up to evaluate the serum ADA activity in patients of typhoid fever. The levels of ADA were also measured in the patients who were suffering from other febrile illnesses. Material and Method: This was a case control study. The subjects who were included in this study were divided into 3 groups. Group A consisted of 50 normal healthy individuals who served as the controls. Group B consisted of 50 patients, both males and females of all age groups, who were suffering from culture positive typhoid fever. Group C consisted of 50 patients who were suffering from febrile illnesses other than typhoid fever like viral fever, gastro enteritis, malaria, tonsillitis, upper respiratory tract infections, etc. The serum levels of ADA were estimated in all the subjects who were under study. Results: The serum ADA level was found to be increased in the patients of typhoid fever as compared to that in those with other febrile illnesses and in the controls. Conclusion: From the present study, it can be concluded that there was a statistically significant increase in the serum ADA levels in the patients with typhoid. PMID:23730630

  8. Activity of cholinesterases and adenosine deaminase in blood and serum of rats experimentally infected with Trypanosoma cruzi

    PubMed Central

    DA SILVA, A S; PIMENTEL, V C; FIORENZA, A M; FRANÇA, R T; TONIN, A A; JAQUES, J A; LEAL, C A M; DA SILVA, C B; MORSCH, V; SCHETINGER, M R C; LOPES, S T A; MONTEIRO, S G

    2011-01-01

    This study aimed to evaluate the activity of cholinesterases and adenosine deaminase (ADA) in blood and serum of rats infected with Trypanosoma cruzi. Twelve adult rats were used in the experiment divided into two uniform groups. Rodents from group A (control group) were non-infected and animals from group B served as infected, receiving intraperitoneally 3.3×107 trypomastigotes/each. Blood collection was performed at days 60 and 120 post-infection (PI) in order to evaluate the hemogram, blood activity of acetylcholinesterase, and serum butyrylcholinesterase and ADA activities. Hematological parameters did not differ between groups. A significant increase (P<0.05) of acetylcholinesterase activity was observed in blood while butyrylcholinesterase had a significant reduction (P<0.01) in serum of infected rats at days 60 and 120 PI. ADA activity in serum showed an inhibition in infected animals when compared to non-infected at day 120 PI. Based on these results, it is possible to conclude that the activity of cholinesterases and ADA were changed in animals infected with T. cruzi. The possible causes of these alterations will be discussed in this paper. PMID:21929880

  9. Dietary Supplementation of Ginger and Turmeric Rhizomes Modulates Platelets Ectonucleotidase and Adenosine Deaminase Activities in Normotensive and Hypertensive Rats.

    PubMed

    Akinyemi, Ayodele Jacob; Thomé, Gustavo Roberto; Morsch, Vera Maria; Bottari, Nathieli B; Baldissarelli, Jucimara; de Oliveira, Lizielle Souza; Goularte, Jeferson Ferraz; Belló-Klein, Adriane; Oboh, Ganiyu; Schetinger, Maria Rosa Chitolina

    2016-07-01

    Hypertension is associated with platelet alterations that could contribute to the development of cardiovascular complications. Several studies have reported antiplatelet aggregation properties of ginger (Zingiber officinale) and turmeric (Curcuma longa) with limited scientific basis. Hence, this study assessed the effect of dietary supplementation of these rhizomes on platelet ectonucleotidase and adenosine deaminase (ADA) activities in Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Animals were divided into seven groups (n = 10): normotensive control rats; induced (l-NAME hypertensive) rats; hypertensive rats treated with atenolol (10 mg/kg/day); normotensive and hypertensive rats treated with 4% supplementation of turmeric or ginger, respectively. After 14 days of pre-treatment, the animals were induced with hypertension by oral administration of l-NAME (40 mg/kg/day). The results revealed a significant (p < 0.05) increase in platelet ADA activity and ATP hydrolysis with a concomitant decrease in ADP and AMP hydrolysis of l-NAME hypertensive rats when compared with the control. However, dietary supplementation with turmeric or ginger efficiently prevented these alterations by modulating the hydrolysis of ATP, ADP and AMP with a concomitant decrease in ADA activity. Thus, these activities could suggest some possible mechanism of the rhizomes against hypertension-derived complications associated to platelet hyperactivity. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Circulating type 1 vaccine-derived poliovirus may evolve under the pressure of adenosine deaminases acting on RNA.

    PubMed

    Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Xu, Ruixue; Wang, Shujing

    2015-01-01

    Poliovirus, the causative agent of poliomyelitis, is a human enterovirus and member of the Picornaviridae family. An effective live-attenuated poliovirus vaccine strain (Sabin 1) has been developed and has protected humans from polio. However, a few cases of vaccine virulence reversion have been documented in several countries. For instance, circulating type 1 vaccine-derived poliovirus is a highly pathogenic poliovirus that evolved from an avirulent strain, but the mechanism by which vaccine strains undergo reversion remains unclear. In this study, vaccine strains exhibited A to G/U to C and G to A/C to U hypermutations in the reversed evolution of Sabin 1. Furthermore, the mutation ratios of U to C and C to U were higher than those of other mutation types. Dinucleotide editing context was then analyzed. Results showed that A to G and U to C mutations exhibited preferences similar to adenosine deaminases acting on RNA (ADAR). Hence, ADARs may participate in poliovirus vaccine evolution.

  11. Inhibition of adenosine deaminase (ADA)-mediated metabolism of cordycepin by natural substances.

    PubMed

    Li, Gen; Nakagome, Izumi; Hirono, Shuichi; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-03-01

    Cordycepin, which is an analogue of a nucleoside adenosine, exhibits a wide variety of pharmacological activities including anticancer effects. In this study, ADA1- and ADA2-expressing HEK293 cells were established to determine the major ADA isoform responsible for the deamination of cordycepin. While the metabolic rate of cordycepin deamination was similar between ADA2-expressing and Mock cells, extensive metabolism of cordycepin was observed in the ADA1-expressing cells with K m and V max values of 54.9 μmol/L and 45.8 nmole/min/mg protein. Among five natural substances tested in this study (kaempferol, quercetin, myricetin, naringenin, and naringin), naringin strongly inhibited the deamination of cordycepin with K i values of 58.8 μmol/L in mouse erythrocytes and 168.3 μmol/L in human erythrocytes. A treatment of Jurkat cells with a combination of cordycepin and naringin showed significant cytotoxicity. Our in silico study suggests that not only small molecules such as adenosine derivatives but also bulky molecules like naringin can be a potent ADA1 inhibitor for the clinical usage.

  12. Crystallization and preliminary X-ray crystallographic analysis of adenosine 5′-monophosphate deaminase (AMPD) from Arabidopsis thaliana in complex with coformycin 5′-phosphate

    SciTech Connect

    Han, Byung Woo; Bingman, Craig A.; Mahnke, Donna K.; Sabina, Richard L.; Phillips, George N. Jr

    2005-08-01

    Adenosine 5′-monophosphate deaminase from A. thaliana has been crystallized in complex with coformycin 5′-phosphate. Diffraction data have been collected to 3.34 Å resolution. Adenosine 5′-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5′-monophosphate (AMP) to inosine 5′-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5′-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6{sub 2}22, with unit-cell parameters a = b = 131.325, c = 208.254 Å, α = β = 90, γ = 120°. Diffraction data were collected to 3.34 Å resolution from a crystal in complex with coformycin 5′-phosphate and to 4.05 Å resolution from a crystal of a mercury derivative.

  13. Regulation of 5'-adenosine monophosphate deaminase in the freeze tolerant wood frog, Rana sylvatica

    PubMed Central

    Dieni, Christopher A; Storey, Kenneth B

    2008-01-01

    Background The wood frog, Rana sylvatica, is one of a few vertebrate species that have developed natural freeze tolerance, surviving days or weeks with 65–70% of its total body water frozen in extracellular ice masses. Frozen frogs exhibit no vital signs and their organs must endure multiple stresses, particularly long term anoxia and ischemia. Maintenance of cellular energy supply is critical to viability in the frozen state and in skeletal muscle, AMP deaminase (AMPD) plays a key role in stabilizing cellular energetics. The present study investigated AMPD control in wood frog muscle. Results Wood frog AMPD was subject to multiple regulatory controls: binding to subcellular structures, protein phosphorylation, and effects of allosteric effectors, cryoprotectants and temperature. The percentage of bound AMPD activity increased from 20 to 35% with the transition to the frozen state. Bound AMPD showed altered kinetic parameters compared with the free enzyme (S0.5 AMP was reduced, Hill coefficient fell to ~1.0) and the transition to the frozen state led to a 3-fold increase in S0.5 AMP of the bound enzyme. AMPD was a target of protein phosphorylation. Bound AMPD from control frogs proved to be a low phosphate form with a low S0.5 AMP and was phosphorylated in incubations that stimulated PKA, PKC, CaMK, or AMPK. Bound AMPD from frozen frogs was a high phosphate form with a high S0.5 AMP that was reduced under incubation conditions that stimulated protein phosphatases. Frog muscle AMPD was activated by Mg·ATP and Mg·ADP and inhibited by Mg·GTP, KCl, NaCl and NH4Cl. The enzyme product, IMP, uniquely inhibited only the bound (phosphorylated) enzyme from muscle of frozen frogs. Activators and inhibitors differentially affected the free versus bound enzyme. S0.5 AMP of bound AMPD was also differentially affected by high versus low assay temperature (25 vs 5°C) and by the presence/absence of the natural cryoprotectant (250 mM glucose) that accumulates during freezing

  14. RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis

    PubMed Central

    Ward, Simone V.; George, Cyril X.; Welch, Megan J.; Liou, Li-Ying; Hahm, Bumsuk; Lewicki, Hanna; de la Torre, Juan C.; Samuel, Charles E.; Oldstone, Michael B.

    2011-01-01

    Measles virus (MV), a member of the family Paramyxoviridae and an exclusively human pathogen, is among the most infectious viruses. A progressive fatal neurodegenerative complication, subacute sclerosing panencephalitis (SSPE), occurs during persistent MV infection of the CNS and is associated with biased hypermutations of the viral genome. The observed hypermutations of A-to-G are consistent with conversions catalyzed by the adenosine deaminase acting on RNA (ADAR1). To evaluate the role of ADAR1 in MV infection, we selectively disrupted expression of the IFN-inducible p150 ADAR1 isoform and found it caused embryonic lethality at embryo day (E) 11–E12. We therefore generated p150-deficient and WT mouse embryo fibroblast (MEF) cells stably expressing the MV receptor signaling lymphocyte activation molecule (SLAM or CD150). The p150−/− but not WT MEF cells displayed extensive syncytium formation and cytopathic effect (CPE) following infection with MV, consistent with an anti-MV role of the p150 isoform of ADAR1. MV titers were 3 to 4 log higher in p150−/− cells compared with WT cells at 21 h postinfection, and restoration of ADAR1 in p150−/− cells prevented MV cytopathology. In contrast to infection with MV, p150 disruption had no effect on vesicular stomatitis virus, reovirus, or lymphocytic choriomeningitis virus replication but protected against CPE resulting from infection with Newcastle disease virus, Sendai virus, canine distemper virus, and influenza A virus. Thus, ADAR1 is a restriction factor in the replication of paramyxoviruses and orthomyxoviruses. PMID:21173229

  15. Double-stranded-RNA-specific adenosine deaminase 1 (ADAR1) is proposed to contribute to the adaptation of equine infectious anemia virus from horses to donkeys.

    PubMed

    Tang, Yan-Dong; Zhang, Xiang; Na, Lei; Wang, Xue-Feng; Fu, Li-Hua; Zhu, Chun-Hui; Wang, Xiaojun; Zhou, Jian-Hua

    2016-10-01

    Equine infectious anemia virus (EIAV) is a member of the genus Lentivirus of the family Retroviridae. Horses are the most susceptible equids to EIAV infection and are therefore the primary hosts of this virus. In contrast, infected donkeys do not develop clinically active equine infectious anemia (EIA). This phenomenon is similar to what has been observed with HIV-1, which fails to induce AIDS in non-human primates. Interestingly, Shen et al. developed a donkey-tropic pathogenic virus strain (EIAVDV117, DV117) by serially passaging a horse-tropic pathogenic strain, EIAVLN40 (LN40), in donkeys. LN40, which was generated by passaging a field isolate in horses, displayed enhanced virulence in horses but caused no clinical symptoms in donkeys. Infection with DV117 induced acute EIA in nearly 100 % of donkeys. Genomic analysis of DV117 revealed a significantly higher frequency of A-to-G substitutions when compared to LN40. Furthermore, detailed analysis of dinucleotide editing showed that A-to-G mutations had a preference for 5'TpA and 5'ApA. These results strongly implicated the activity of the adenosine deaminase, ADAR1, in this type of mutation. Further investigation demonstrated that overexpression of donkey ADAR1 increased A-to-G mutations within the genome of EIAV. Together with our previous finding that multiple mutations in multiple genes are generated in DV117 during its adaptation from horses to donkeys, the present study suggests that ADAR1-induced A-to-G mutations occur during virus adaption to related new hosts contributing to the alteration of EIAV host tropism.

  16. Mixed inhibition of adenosine deaminase activity by 1,3-dinitrobenzene: a model for understanding cell-selective neurotoxicity in chemically-induced energy deprivation syndromes in brain.

    PubMed

    Wang, Yipei; Liu, Xin; Schneider, Brandon; Zverina, Elaina A; Russ, Kristen; Wijeyesakere, Sanjeeva J; Fierke, Carol A; Richardson, Rudy J; Philbert, Martin A

    2012-02-01

    Astrocytes are acutely sensitive to 1,3-dinitrobenzene (1,3-DNB) while adjacent neurons are relatively unaffected, consistent with other chemically-induced energy deprivation syndromes. Previous studies have investigated the role of astrocytes in protecting neurons from hypoxia and chemical injury via adenosine release. Adenosine is considered neuroprotective, but it is rapidly removed by extracellular deaminases such as adenosine deaminase (ADA). The present study tested the hypothesis that ADA is inhibited by 1,3-DNB as a substrate mimic, thereby preventing adenosine catabolism. ADA was inhibited by 1,3-DNB with an IC(50) of 284 μM, Hill slope, n = 4.8 ± 0.4. Native gel electrophoresis showed that 1,3-DNB did not denature ADA. Furthermore, adding Triton X-100 (0.01-0.05%, wt/vol), Nonidet P-40 (0.0015-0.0036%, wt/vol), or bovine serum albumin (0.05 mg/ml or changing [ADA] (0.2 and 2 nM) did not substantially alter the 1,3-DNB IC(50) value. Likewise, dynamic light scattering showed no particle formation over a (1,3-DNB) range of 149-1043 μM. Kinetics revealed mixed inhibition with 1,3-DNB binding to ADA (K(I) = 520 ± 100 μM, n = 1 ± 0.6) and the ADA-adenosine complex (K(IS) = 262 ± 7 μM, n = 6 ± 0.6, indicating positive cooperativity). In accord with the kinetics, docking predicted binding of 1,3-DNB to the active site and three peripheral sites. In addition, exposure of DI TNC-1 astrocytes to 10-500 μM 1,3-DNB produced concentration-dependent increases in extracellular adenosine at 24 h. Overall, the results demonstrate that 1,3-DNB is a mixed inhibitor of ADA and may thus lead to increases in extracellular adenosine. The finding may provide insights to guide future work on chemically-induced energy deprivation.

  17. Structures of Substrate-And Inhibitor-Bound Adenosine Deaminase From a Human Malaria Parasite Show a Dramatic Conformational Change And Shed Light on Drug Selectivity

    SciTech Connect

    Larson, E.T.; Deng, W.; Krumm, B.E.; Napuli, A.; Mueller, N.; Voorhis, W.C.Van; Buckner, F.S.; Fan, E.; Lauricella, A.; DeTitta, G.; Luft, J.; Zucker, F.; Hol, W.G.J.; Verlinde, C.L.M.J.; Merritt, E.A.

    2009-05-20

    Plasmodium and other apicomplexan parasites are deficient in purine biosynthesis, relying instead on the salvage of purines from their host environment. Therefore, interference with the purine salvage pathway is an attractive therapeutic target. The plasmodial enzyme adenosine deaminase (ADA) plays a central role in purine salvage and, unlike mammalian ADA homologs, has a further secondary role in methylthiopurine recycling. For this reason, plasmodial ADA accepts a wider range of substrates, as it is responsible for deamination of both adenosine and 5{prime}-methylthioadenosine. The latter substrate is not accepted by mammalian ADA homologs. The structural basis for this natural difference in specificity between plasmodial and mammalian ADA has not been well understood. We now report crystal structures of Plasmodium vivax ADA in complex with adenosine, guanosine, and the picomolar inhibitor 2{prime}-deoxycoformycin. These structures highlight a drastic conformational change in plasmodial ADA upon substrate binding that has not been observed for mammalian ADA enzymes. Further, these complexes illuminate the structural basis for the differential substrate specificity and potential drug selectivity between mammalian and parasite enzymes.

  18. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase.

    PubMed

    Ajloo, Davood; Mahmoodabadi, Najmeh; Ghadamgahi, Maryam; Saboury, Ali Akbar

    2016-07-01

    Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.

  19. Ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) activities in prostate cancer patients: influence of Gleason score, treatment and bone metastasis.

    PubMed

    Battisti, Vanessa; Maders, Liési D K; Bagatini, Margarete D; Battisti, Iara E; Bellé, Luziane P; Santos, Karen F; Maldonado, Paula A; Thomé, Gustavo R; Schetinger, Maria R C; Morsch, Vera M

    2013-04-01

    The relation between adenine nucleotides and cancer has already been described in literature. Considering that the enzymes ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) act together to control nucleotide levels, we aimed to investigate the role of these enzymes in prostate cancer (PCa). E-NPP and ADA activities were determined in serum and platelets of PCa patients and controls. We also verified the influence of the Gleason score, bone metastasis and treatment in the enzyme activities. Platelets and serum E-NPP activity increased, whereas ADA activity in serum decreased in PCa patients. In addition, Gleason score, metastasis and treatment influenced E-NPP and ADA activities. We may propose that E-NPP and ADA are involved in the development of PCa. Moreover, E-NPP and ADA activities are modified in PCa patients with distinct Gleason score, with bone metastasis, as well as in patients under treatment.

  20. A 30-year-old female Behçet’s disease patient with recurrent pleural and pericardial effusion and elevated adenosine deaminase levels: case report

    PubMed Central

    Choi, Joon Young; Kim, Sung-Hwan; Kwok, Seung-Ki; Jung, Jung Im; Lee, Kyo-Young; Kim, Tae-Jung

    2016-01-01

    Behçet’s disease is a systemic disease which may involve various organs. We describe a case of a patient diagnosed as pleuropericardial involvement of Behçet’s disease. A 30-year-old woman visited our clinic presented with left pleuritic chest pain for s days. She had been diagnosed as Behçet’s disease and admitted to our clinic due to pericardial and pleural effusion repeatedly in past two years. In the previous studies, effusion analysis revealed to be lympho-dominant exudate with high adenosine deaminase level. Acid-fast bacilli (AFB) culture and polymerase chain reaction (PCR) for mycobacterial tuberculosis (M.TB) were negative in the pericardial tissue, and pathologic finding showed mild endothelitis with micro-thrombi formation in the lumen. The patient had been treated with antituberculous medication for a year. In the current admission, chest computed tomography (CT) again showed left pleural effusion without other significant lesion. Pleural fluid analysis was similar with the previous study. Video-assisted thoracoscopic pleural biopsy was performed to obtain the definite diagnosis. Pathology confirmed the diagnosis as pleuropericardial involvement of Behçet’s disease, and we treated the patient with oral steroid in the out-patient department. Pleuropericardial involvement of Behçet’s disease may mimic TB pleurisy or pericarditis due to high adenosine deaminase (ADA) level in effusion analysis. Clinicians should keep in mind that Behçet’s disease may manifest as pleural or pericardial effusion, and pathologic confirmation could be helpful for the definite diagnosis. PMID:27499994

  1. Molecular characterization of adenosine 5'-monophosphate deaminase--the key enzyme responsible for the umami taste of nori (Porphyra yezoensis Ueda, Rhodophyta).

    PubMed

    Minami, Seiko; Sato, Minoru; Shiraiwa, Yoshihiro; Iwamoto, Koji

    2011-12-01

    The enzyme adenosine 5'-monophosphate deaminase (AMPD, EC 3.5.4.6) catalyzes the conversion of adenosine 5'-monophosphate to inosine 5'-mononucleotide (IMP). IMP is generally known as the compound responsible for the umami taste of the edible red alga Porphyra yezoensis Ueda that is known in Japan as nori. Therefore, we suspect that AMPD plays a key role in providing a favorable nori taste. In this study, we undertake the molecular characterization of nori-derived AMPD. The nori AMPD protein has a molecular mass of 55 kDa as estimated from both gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The calculated molecular mass from the amino acid sequence deduced from cDNA is 57.1 kDa. The isoelectric point is 5.71. The coding region of AMPD consists of 1,566 bp encoding 522 amino acids and possesses a transmembrane domain and two N-glycosylation sites. The sequence identity of nori AMPD in human and yeast AMPDs was found to be less than 50% and 20% in DNA and amino acid sequences, respectively. Proline in the conserved motif of [SA]-[LIVM]-[NGS]-[STA]-D-D-P was found to be converted to glutamate. These results indicate that nori AMPD is a novel type of AMPD.

  2. A genome-wide identification and analysis of the DYW-deaminase genes in the pentatricopeptide repeat gene family in cotton (Gossypium spp.)

    PubMed Central

    Liu, Guoyuan; Li, Xue; Guo, Liping; Zhang, Xuexian; Qi, Tingxiang; Wang, Hailin; Tang, Huini; Qiao, Xiuqin; Zhang, Jinfa; Xing, Chaozhu; Wu, Jianyong

    2017-01-01

    The RNA editing occurring in plant organellar genomes mainly involves the change of cytidine to uridine. This process involves a deamination reaction, with cytidine deaminase as the catalyst. Pentatricopeptide repeat (PPR) proteins with a C-terminal DYW domain are reportedly associated with cytidine deamination, similar to members of the deaminase superfamily. PPR genes are involved in many cellular functions and biological processes including fertility restoration to cytoplasmic male sterility (CMS) in plants. In this study, we identified 227 and 211 DYW deaminase-coding PPR genes for the cultivated tetraploid cotton species G. hirsutum and G. barbadense (2n = 4x = 52), respectively, as well as 126 and 97 DYW deaminase-coding PPR genes in the ancestral diploid species G. raimondii and G. arboreum (2n = 26), respectively. The 227 G. hirsutum PPR genes were predicted to encode 52–2016 amino acids, 203 of which were mapped onto 26 chromosomes. Most DYW deaminase genes lacked introns, and their proteins were predicted to target the mitochondria or chloroplasts. Additionally, the DYW domain differed from the complete DYW deaminase domain, which contained part of the E domain and the entire E+ domain. The types and number of DYW tripeptides may have been influenced by evolutionary processes, with some tripeptides being lost. Furthermore, a gene ontology analysis revealed that DYW deaminase functions were mainly related to binding as well as hydrolase and transferase activities. The G. hirsutum DYW deaminase expression profiles varied among different cotton tissues and developmental stages, and no differentially expressed DYW deaminase-coding PPRs were directly associated with the male sterility and restoration in the CMS-D2 system. Our current study provides an important piece of information regarding the structural and evolutionary characteristics of Gossypium DYW-containing PPR genes coding for deaminases and will be useful for characterizing the DYW deaminase gene

  3. Maize haplotype with a helitron-amplified cytidine deaminase gene copy

    PubMed Central

    Xu, Jian-Hong; Messing, Joachim

    2006-01-01

    Background Genetic maps are based on recombination of orthologous gene sequences between different strains of the same species. Therefore, it was unexpected to find extensive non-collinearity of genes between different inbred strains of maize. Interestingly, disruption of gene collinearity can be caused among others by a rolling circle-type copy and paste mechanism facilitated by Helitrons. However, understanding the role of this type of gene amplification has been hampered by the lack of finding intact gene sequences within Helitrons. Results By aligning two haplotypes of the z1C1 locus of maize we found a Helitron that contains two genes, one encoding a putative cytidine deaminase and one a hypothetical protein with part of a 40S ribosomal protein. The cytidine deaminase gene, called ZmCDA3, has been copied from the ZmCDA1 gene on maize chromosome 7 about 4.5 million years ago (mya) after maize was formed by whole-genome duplication from two progenitors. Inbred lines contain gene copies of both progenitors, the ZmCDA1 and ZmCDA2 genes. Both genes diverged when the progenitors of maize split and are derived from the same progenitor as the rice OsCDA1 gene. The ZmCDA1 and ZmCDA2 genes are both transcribed in leaf and seed tissue, but transcripts of the paralogous ZmCDA3 gene have not been found yet. Based on their protein structure the maize CDA genes encode a nucleoside deaminase that is found in bacterial systems and is distinct from the mammalian RNA and/or DNA modifying enzymes. Conclusion The conservation of a paralogous gene sequence encoding a cytidine deaminase gene over 4.5 million years suggests that Helitrons could add functional gene sequences to new chromosomal positions and thereby create new haplotypes. However, the function of such paralogous gene copies cannot be essential because they are not present in all maize strains. However, it is interesting to note that maize hybrids can outperform their inbred parents. Therefore, certain haplotypes may

  4. Pathologic findings in adenosine deaminase deficient-severe combined immunodeficiency. II. Thymus, spleen, lymph node, and gastrointestinal tract lymphoid tissue alterations.

    PubMed Central

    Ratech, H.; Hirschhorn, R.; Greco, M. A.

    1989-01-01

    Eight autopsies of patients with adenosine deaminase deficient-severe combined immunodeficiency disease (ADA-SCID) were reviewed with special emphasis on the lymphoid tissues. The thymus histology in five cases was remarkably uniform, whether or not prior ADA enzyme replacement or immunologic reconstitution therapy had been administered. Lymph nodes and spleens in all cases examined showed a residual nonlymphoid architectural framework corresponding to usual T and B cell zones found in normals. The development of an extranodal, monoclonal IgA lambda B cell immunoblastic lymphoma as a terminal event in one patient after several years of successful ADA enzyme replacement therapy through multiple red blood cell transfusions is described. In another patient with long-term ADA enzyme replacement, a terminal autoimmune hemolytic anemia developed. Autopsy revealed severe deposits of iron in the B cell zones of the lymph nodes, which is an unusual location. In addition, iron deposits outlined the splenic trabeculae, as well as the ring fibers and bridging fibers of the splenic sinuses. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:2596574

  5. Molecular basis for paradoxical carriers of adenosine deaminase (ADA) deficiency that show extremely low levels of ADA activity in peripheral blood cells without immunodeficiency.

    PubMed

    Ariga, T; Oda, N; Sanstisteban, I; Arredondo-Vega, F X; Shioda, M; Ueno, H; Terada, K; Kobayashi, K; Hershfield, M S; Sakiyama, Y

    2001-02-01

    Adenosine deaminase (ADA) deficiency causes an autosomal recessive form of severe combined immunodeficiency and also less severe phenotypes, depending to a large degree on genotype. In general, ADA activity in cells of carriers is approximately half-normal. Unexpectedly, healthy first-degree relatives of two unrelated ADA-deficient severe combined immunodeficient patients (mother and brother in family I; mother in family II) had only 1-2% of normal ADA activity in PBMC, lower than has previously been found in PBMC of healthy individuals with so-called "partial ADA deficiency." The level of deoxyadenosine nucleotides in erythrocytes of these paradoxical carriers was slightly elevated, but much lower than levels found in immunodeficient patients with ADA deficiency. ADA activity in EBV-lymphoblastoid cell lines (LCL) and T cell lines established from these carriers was 10-20% of normal. Each of these carriers possessed two mutated ADA alleles. Expression of cloned mutant ADA cDNAs in an ADA-deletion strain of Escherichia coli indicated that the novel mutations G239S and M310T were responsible for the residual ADA activity. ADA activity in EBV-LCL extracts of the paradoxical carriers was much more labile than ADA from normal EBV-LCL. Immunoblotting suggested that this lability was due to denaturation rather than to degradation of the mutant protein. These results further define the threshold level of ADA activity necessary for sustaining immune function.

  6. Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: Influences of these enzymes on inflammatory response and pathological findings.

    PubMed

    Baldissera, Matheus D; Bottari, Nathieli B; Mendes, Ricardo E; Schwertz, Claiton I; Lucca, Neuber J; Dalenogare, Diessica; Bochi, Guilherme V; Moresco, Rafael N; Morsch, Vera M; Schetinger, Maria R C; Rech, Virginia C; Jaques, Jeandre A; Da Silva, Aleksandro S

    2015-11-01

    The aim of this study was to investigate acetylcholinesterase (AChE) in total blood and liver tissue; butyrylcholinesterase (BChE) in serum and liver tissue; adenosine deaminase (ADA) in serum and liver tissue; and pyruvate kinase (PK) in liver tissue of rats experimentally infected by Fasciola hepatica. Animals were divided into two groups with 12 animals each, as follows: group A (uninfected) and group B (infected). Samples were collected at 20 (A1 and B1;n=6 each) and 150 (A2 and B2; n=6 each) days post-infection (PI). Infected animals showed an increase in AChE activity in whole blood and a decrease in AChE activity in liver homogenates (P<0.05) at 20 and 150 days PI. BChE and PK activities were decreased (P<0.05) in serum and liver homogenates of infected animals at 150 days PI. ADA activity was decreased in serum at 20 and 150 days PI, while in liver homogenates it was only decreased at 150 days PI (P<0.05). Aspartate aminotransferase and alanine aminotransferase activities in serum were increased (P<0.05), while concentrations of total protein and albumin were decreased (P<0.05) when compared to control. The histological analysis revealed fibrous perihepatitis and necrosis. Therefore, we conclude that the liver fluke is associated with cholinergic and purinergic dysfunctions, which in turn may influence the pathogenesis of the disease.

  7. Aqueous seed extract of Syzygium cumini inhibits the dipeptidyl peptidase IV and adenosine deaminase activities, but it does not change the CD26 expression in lymphocytes in vitro.

    PubMed

    Bellé, Luziane Potrich; Bitencourt, Paula Eliete Rodrigues; Abdalla, Faida Husein; Bona, Karine Santos de; Peres, Alessandra; Maders, Liési Diones Konzen; Moretto, Maria Beatriz

    2013-03-01

    Syzygium cumini (Sc) have been intensively studied in the last years due its beneficial effects including anti-diabetic and anti-inflammatory potential. Thus, the aim of this study was to evaluate the effect of aqueous seed extract of Sc (ASc) in the activity of enzymes involved in lymphocyte functions. To perform this study, we isolated lymphocytes from healthy donors. Lymphocytes were exposed to 10, 30, and 100 mg/mL of ASc during 4 and 6 h and adenosine deaminase (ADA), dipeptidyl peptidase IV (DPP-IV), and acetylcholinesterase (AChE) activities as well as CD26 expression and cellular viability were evaluated. ASc inhibited the ADA and DPP-IV activities without alteration in the CD26 expression (DPP-IV protein). No alterations were observed in the AChE activity or in the cell viability. These results indicate that the inhibition of the DPP-IV and ADA activities was dependent on the time of exposition to ASc. We suggest that ASc exhibits immunomodulatory properties probably via the pathway of DPP-IV-ADA complex, contributing to the understanding of these proceedings in the purinergic signaling.

  8. Adenosine deaminase, 5'-nucleotidase, xanthine oxidase, superoxide dismutase, and catalase activities in gastric juices from patients with gastric cancer, ulcer, and atrophic gastritis.

    PubMed

    Durak, I; Ormeci, N; Akyol, O; Canbolat, O; Kavutçu, M; Bülbül, M

    1994-04-01

    Adenosine deaminase (ADA), 5'-Nucleotidase (5NT), Xanthine oxidase (XO), Cu-Zn Superoxide dismutase (SOD) and Catalase (CAT) activities were determined in gastric juices from patients with gastric cancer, ulcer, gastritis and from healthy subjects. Enzyme activities were given as units per ml gastric juice and units per mg protein in gastric juice. ADA, 5NT and XO activities were found lower and protein concentrations were found higher in the cancer group than controls. There was however no significant difference between Cu-Zn SOD activities of the cancer and control groups. In all groups including control one, we could not find catalase activities in most of the samples. On the other hand, ADA, 5NT activities and protein concentrations in the gastric juice were lower in the gastritis group than control group. In the ulcer group, we found higher Cu-Zn SOD and XO activities and lower 5NT activity and protein concentrations compared with control values. In an attempt to establish statistical correlations between mean enzyme activities, pH and protein concentrations in the gastric juices of the groups, we found noticeable intra and inter-correlations, which indicated possible relations between DNA and free radical metabolizing enzymes.

  9. Role of caffeic acid phenethyl ester on mitomycin C induced clastogenesis: analysis of chromosome aberrations, micronucleus, mitotic index and adenosine deaminase activity in vivo.

    PubMed

    Sulaiman, Ghassan Mohammad

    2012-05-01

    The aim of the present investigation is to determine whether the caffeic acid phenethyl ester (CAPE) in combination with mitomycine-C (MMC) can ameliorate MMC-induced clastogenesis in the bone marrow cells of mice. The scoring of chromosomal aberrations, mitotic activity and micronuclei were undertaken in the current study as markers of clastogenicity. The action of CAPE in adenosine deaminase enzyme (ADA) activities of serum, thymus and spleen were also investigated. The animals were orally administered CAPE alone at the doses 5 or 10 mg kg b.wt.(-1) for 5 days then sacrificed 24 hours after the CAPE administration. MMC was administered to mice either alone at a single dose (2 mg kg b.wt.(-1)) by intraperitoneal injection, before or after CAPE treatment. Pre or post - treatment with two doses of CAPE significantly decreased the number of chromosomal aberrations, micronuclei and adapted the mitotic activity reduction in the bone marrow cells of mice induced by MMC when compared with only MMC given group. In addition, combination treatment with MMC caused a significant decrease in the activities of ADA in serum, thymus and spleen. The results of this study showed that ADA activity probably related to high levels of reactive oxygen species. This study concluded that the protective effect of CAPE against MMC clastogenesis resides at least in part, in its antioxidant effects.

  10. Chicken embryo fibroblasts exposed to weak, time-varying magnetic fields share cell proliferation, adenosine deaminase activity, and membrane characteristics of transformed cells

    SciTech Connect

    Parola, A.H.; Porat, N.; Kiesow, L.A. )

    1993-01-01

    Chicken embryo fibroblasts (CEF) exposed to a sinusoidally varying magnetic field (SVMF) (100 Hz, 700 microT, for 24 h) showed a remarkable rise of segmental rotational relaxation rate of adenosine deaminase (ADA, EC 3.5.4.4) as determined by multifrequency phase fluorometry. Pyrene-labeled, small subunit ADA was applied to cultured (normal) CEF, which have available and abundant ADA complexing protein (ADCP) on their plasma membranes. Sine-wave-modulated fluorometry of the pyrene yielded a profile of phase angle vs. modulation frequency. In SVMF-treated cells and in Rous-sarcoma-virus (RSV) transformed cells the differential phase values at low modulation frequencies of the excitation are remarkably reduced. This effect is magnetic rather than thermal, because the temperature was carefully controlled and monitored; nevertheless to further check this matter we studied CEF, infected by the RSV-Ts68 temperature-sensitive mutant (36 degrees C transformed, 41 degrees C revertant). When grown at 36 degrees C in the SVMF, cells did not show the slightest trend towards reversion, as would be expected had there been local heating. Concomitant with the increased segmental rotational relaxation rate of ADA, there was a decrease in fluorescence lifetime and a slight, yet significant, increase in membrane lipid microfluidity. These biophysical observations prompted us to examine the effect of SVMF on cell proliferation and ADA activity (a malignancy marker): higher rates of cell proliferation and reduced specific activity of ADA were observed.

  11. Immunohistochemical localization of adenosine deaminase complexing protein in intestinal mucosa and in colorectal adenocarcinoma as a marker for tumour cell heterogeneity.

    PubMed

    Ten Kate, J; Wijnen, J T; Boldewijn, J; Khan, P M; Bosman, F T

    1985-01-01

    Adenosine deaminase complexing protein (ADCP), a dimeric glycoprotein, has been reported to be decreased or deficient in transformed or cancer-derived cell lines, indicating its potential significance as an indicator of malignant transformation. A similar deficiency was reported in total homogenates of tumours of colon, kidney, lung and liver. In previous biochemical studies we failed to confirm the consistent reduction in ADCP concentration in cancer tissues. A possible explanation for our findings was thought to be intercellular heterogeneity in ADCP expression in individual tumour cells. To study ADCP expression in individual cells, we developed an immunohistochemical method which was applied to tissue sections. Paraformaldehyde--lysine--periodate (PLP) solution was found to be a suitable fixative. Fixed tissue samples were paraffin-embedded, sectioned and stained for ADCP, using an indirect peroxidase-labelled antibody procedure. The protein was localized in normal colonic mucosa, mainly in the brush border region of the luminal epithelium and in cytoplasmic granules. Intense ADCP immunoreactivity was found also in the basal part of some cells. In cancer cells, three staining patterns were observed: membranous, diffuse cytoplasmic and granular cytoplasmic. The adenocarcinomas exhibited significant intratumour and intertumour heterogeneity in their staining types. Further studies on ADCP expression in colorectal cancer in relation to clinical and histopathological characteristics are warranted in order to fully evaluate the potential significance of ADCP as a cancer associated antigen.

  12. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression.

    PubMed

    Ning, Chen; Wen, Jiaming; Zhang, Yujin; Dai, Yingbo; Wang, Wei; Zhang, Weiru; Qi, Lin; Grenz, Almut; Eltzschig, Holger K; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2014-06-01

    Priapism is featured with prolonged and painful penile erection and is prevalent among males with sickle cell disease (SCD). The disorder is a dangerous urological and hematological emergency since it is associated with ischemic tissue damage and erectile disability. Here we report that phosphodiesterase-5 (PDE5) gene expression and PDE activity is significantly reduced in penile tissues of two independent priapic models: SCD mice and adenosine deaminase (ADA)-deficient mice. Moreover, using ADA enzyme therapy to reduce adenosine or a specific antagonist to block A(2B) adenosine receptor (ADORA2B) signaling, we successfully attenuated priapism in both ADA(-/-) and SCD mice by restoring penile PDE5 gene expression to normal levels. This finding led us to further discover that excess adenosine signaling via ADORA2B activation directly reduces PDE5 gene expression in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. Overall, we reveal that excess adenosine-mediated ADORA2B signaling underlies reduced penile PDE activity by decreasing PDE5 gene expression in a HIF-1α-dependent manner and provide new insight for the pathogenesis of priapism and novel therapies for the disease.

  13. A combination of the QuantiFERON-TB Gold In-Tube assay and the detection of adenosine deaminase improves the diagnosis of tuberculous pleural effusion.

    PubMed

    Liu, Yuanyuan; Ou, Qinfang; Zheng, Jian; Shen, Lei; Zhang, Bingyan; Weng, Xinhua; Shao, Lingyun; Gao, Yan; Zhang, Wenhong

    2016-08-03

    The differential diagnosis of tuberculous pleural effusion (TPE) and malignant pleural effusion (MPE) remains difficult despite the availability of numerous diagnostic tools. The current study aimed to evaluate the performance of the whole blood QuantiFERON-TB Gold In-Tube (QFT-GIT) assay and conventional laboratory biomarkers in differential diagnosis of TPE and MPE in high tuberculosis prevalence areas. A total of 117 patients with pleural effusions were recruited, including 91 with TPE and 26 with MPE. All of the patients were tested with QFT-GIT, and the conventional biomarkers in both blood and pleural effusion were detected. The level of antigen-stimulated QFT-GIT in the whole blood of TPE patients was significantly higher than that of MPE (2.89 vs 0.33 IU/mL, P<0.0001). The sensitivity and specificity of QFT-GIT for the diagnosis of TPE were 93.0% and 60.0%, respectively. Among the biomarkers in blood and pleural effusion, pleural adenosine deaminase (ADA) was the most prominent biomarker, with a cutoff value of 15.35 IU/L. The sensitivity and specificity for the diagnosis of TPE were 93.4% and 96.2%, respectively. The diagnostic classification tree from the combination of these two biomarkers was 97.8% sensitive and 92.3% specific. Ultimately, the combination of whole blood QFT-GIT with pleural ADA improved both the specificity and positive predictive value to 100%. Thus, QFT-GIT is not superior to pleural ADA in the differential diagnosis of TPE and MPE. Combined whole blood QFT-GIT and pleural ADA detection can improve the diagnosis of TPE.

  14. Somatic mosaicism for a newly identified splice-site mutation in a patient with adenosine deaminase-deficient immunodeficiency and spontaneous clinical recovery

    SciTech Connect

    Hirschhorn, R.; Yang, D.R.; Israni, A.; Huie, M.L. ); Ownby, D.R. )

    1994-07-01

    Absent or severely reduced adenosine deaminase (ADA) activity produces inherited immunodeficiency of varying severity, with defects of both cellular and humoral immunity. The authors report somatic mosaicism as the basis for a delayed presentation and unusual course of a currently healthy young adult receiving no therapy. He was diagnosed at age 2[1/2] years because of life-threatening pneumonia, recurrent infections, failure of normal growth, and lymphopenia, but he retained significant cellular immune function. A fibroblast cell line and a B cell line, established at diagnosis, lacked ADA activity and were heteroallelic for a splice-donor-site mutation in IVS 1 (+1GT[yields]CT) and a missense mutation (Arg101Gln). All clones (17/17) isolated from the B cell mRNA carried the missense mutation, indicating that the allele with the splice-site mutation produced unstable mRNA. In striking contrast, a B cell line established at age 16 years expressed 50% of normal ADA; 50% had the missense mutation. Genomic DNA contained the missense mutation but not the splice-site mutation. All three cell lines were identical for multiple polymorphic markers and the presence of a Y chromosome. In vivo somatic mosaicism was demonstrated in genomic DNA from peripheral blood cells obtained at 16 years of age, in that less than half the DNA carried the splice-site mutation (P<.0.02, vs. original B cell line). Consistent with mosaicism, erythrocyte content of the toxic metabolite deoxyATP was only minimally elevated. Somatic mosaicism could have arisen either by somatic mutation or by reversion at the site of mutation. Selection in vivo for ADA normal hematopoietic cells may have played a role in the return to normal health, in the absence of therapy. 57 refs., 4 figs., 2 tabs.

  15. A 9-yr evaluation of carrier erythrocyte encapsulated adenosine deaminase (ADA) therapy in a patient with adult-type ADA deficiency.

    PubMed

    Bax, Bridget E; Bain, Murray D; Fairbanks, Lynette D; Webster, A David B; Ind, Philip W; Hershfield, Michael S; Chalmers, Ronald A

    2007-10-01

    Adenosine deaminase (ADA) deficiency is an inherited disorder which leads to elevated cellular levels of deoxyadenosine triphosphate (dATP) and systemic accumulation of its precursor, 2-deoxyadenosine. These metabolites impair lymphocyte function, and inactivate S-adenosylhomocysteine hydrolase (SAHH) respectively, leading to severe immunodeficiency. Enzyme replacement therapy with polyethylene glycol-conjugated ADA is available, but its efficacy is reduced by anti-ADA neutralising antibody formation. We report here carrier erythrocyte encapsulated native ADA therapy in an adult-type ADA deficient patient. Encapsulated enzyme is protected from antigenic responses and therapeutic activities are sustained. ADA-loaded autologous carrier erythrocytes were prepared using a hypo-osmotic dialysis procedure. Over a 9-yr period 225 treatment cycles were administered at 2-3 weekly intervals. Therapeutic efficacy was determined by monitoring immunological and metabolic parameters. After 9 yr of therapy, erythrocyte dATP concentration ranged between 24 and 44 micromol/L (diagnosis, 234) and SAHH activity between 1.69 and 2.29 nmol/h/mg haemoglobin (diagnosis, 0.34). Erythrocyte ADA activities were above the reference range of 40-100 nmol/h/mg haemoglobin (0 at diagnosis). Initial increases in absolute lymphocyte counts were not sustained; however, despite subnormal circulating CD20(+) cell numbers, serum immunoglobulin levels were normal. The patient tolerated the treatment well. The frequency of respiratory problems was reduced and the decline in the forced expiratory volume in 1 s and vital capacity reduced compared with the 4 yr preceding carrier erythrocyte therapy. Carrier erythrocyte-ADA therapy in an adult patient with ADA deficiency was shown to be metabolically and clinically effective.

  16. Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model.

    PubMed

    Akinyemi, Ayodele Jacob; Okonkwo, Princess Kamsy; Faboya, Opeyemi Ayodeji; Onikanni, Sunday Amos; Fadaka, Adewale; Olayide, Israel; Akinyemi, Elizabeth Olufisayo; Oboh, Ganiyu

    2017-02-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes has been reported to exert cognitive enhancing potential with limited scientific basis. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) and adenosine deaminase (ADA) activities in cadmium (Cd)-induced memory impairment in rats. Animals were divided into six groups (n = 6): saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. Rats received Cd (2.5 mg/kg) and curcumin (12.5 and 25 mg/kg, respectively) by gavage for 7 days. The results of this study revealed that cerebral cortex AChE and ADA activities were increased in Cd-poisoned rats, and curcumin co-treatment reversed these activities to the control levels. Furthermore, Cd intoxication increased the level of lipid peroxidation in cerebral cortex with a concomitant decreased in functional sulfuhydryl (-SH) group and nitric oxide (NO), a potent neurotransmitter and neuromodulatory agent. However, the co-treatment with curcumin at 12.5 and 25 mg/kg, respectively increased the non-enzymatic antioxidant status and NO in cerebral cortex with a decreased in malondialdehyde (MDA) level. Therefore, inhibition of AChE and ADA activities as well as increased antioxidant status by curcumin in Cd-induced memory dysfunction could suggest some possible mechanism of action for their cognitive enhancing properties.

  17. Combined evaluation of adenosine deaminase level and histopathological findings from pleural biopsy with Cope’s needle for the diagnosis of tuberculous pleurisy

    PubMed Central

    Behrsin, Rodolfo Fred; Junior, Cyro Teixeira da Silva; Cardoso, Gilberto Perez; Barillo, Jorge Luiz; de Souza, Joeber Bernardo Soares; de Araújo, Elizabeth Giestal

    2015-01-01

    Introduction: Closed needle pleural biopsy (CNPB) has historically been the gold standard procedure for the diagnosis of pleural tuberculosis. Adenosine deaminase (ADA) is an efficient biomarker for tuberculosis that is measurable in pleural fluids. Objective: We compared the diagnostic accuracy of the pleural ADA (P-ADA) level and histopathological findings of CNPB specimens in patients with pleural tuberculosis. Methods: This prospective study consisted of two groups of examinations with a proven diagnosis of pleural effusion. The P-ADA level was measured in 218 patients with pleural effusion due to a number of causes, and 157 CNPB specimens underwent histopathological analysis. Results: CNPBs were performed in patients with tuberculosis (n=122) and other diseases: adenocarcinoma (n=23), lymphoma (n=5), systemic lupus erythematosus (n=4), squamous cell carcinoma (n=2), and small cell lung cancer (n=1). According to the ROC curve, the optimal cut-off value of the P-ADA level (Giusti and Galanti colorimetric method) was equal to or greater than 40.0 U/L. The diagnostic accuracy of the P-ADA test was 83.0%, and that of histopathological examination of the CNPB tissue, was 78.8% (AUC=0.293, P=0.7695). The association between the P-ADA assay and pleural histopathology was 24.41 (P<0.0001). The tetrachoric correlation coefficient was 0.563 (high correlation). Conclusion: In Brazil and other countries with a high incidence of tuberculosis, P-ADA activity is an accurate test for the diagnosis of tuberculous pleural effusions, and its use should be encouraged. The high diagnostic performance of the P-ADA test could to aid the diagnosis of pleural tuberculosis and render CNPB unnecessary. PMID:26261621

  18. Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other actinobacteria.

    PubMed

    Dubeau, Marie-Pierre; Ghinet, Mariana Gabriela; Jacques, Pierre-Etienne; Clermont, Nancy; Beaulieu, Carole; Brzezinski, Ryszard

    2009-02-01

    We developed a novel negative selection system for actinobacteria based on cytosine deaminase (CodA). We constructed vectors that include a synthetic gene encoding the CodA protein from Escherichia coli optimized for expression in Streptomyces species. Gene disruption and the introduction of an unmarked in-frame deletion were successfully achieved with these vectors.

  19. Effect of a chemical modification on the hydrated adenosine intermediate produced by adenosine deaminase and a model reaction for a potential mechanism of action of 5-aminoimidazole ribonucleotide carboxylase.

    PubMed

    Groziak, M P; Huan, Z W; Ding, H; Meng, Z; Stevens, W C; Robinson, P D

    1997-10-10

    Using the hydrated adenosine intermediate (6R)-6-amino-1, 6-dihydro-6-hydroxy-9-(beta-D-ribofuranosyl)purine (2) produced by adenosine deaminase (ADA, EC 3.5.4.4) as a starting point, the active site probe and inhibitor platform 5-(formylamino)imidazole riboside (FAIRs, 4) was designed by removal of the-C6(OH)(NH2)-molecular fragment of 2 generated by the early events of the enzyme-catalyzed hydrolysis. FAIRs was synthesized directly from the sodium salt of 5-amino-1-(beta-D-ribofuranosyl)imidazole-4-carboxylic acid (CAIR) along a reaction sequence involving a tandem N-formylation/decarboxylation that may have a mechanistic connection to the Escherichia coli purE-catalyzed constitutional isomerization of N5-CAIR to CAIR. The physical and spectral properties of FAIRs were elucidated, its X-ray crystal and NMR solution structures were determined, and its interaction with ADA was investigated. Crystalline FAIRs exists solely as the Z-formamide rotamer and exhibits many of the same intramolecular hydrogen bonding events known to contribute to the association of Ado to ADA. In water and various organic solvents, however, FAIRs exists as NMR-distinct, slowly interconverting Z and E rotamers. This truncated enzymatic tetrahedral intermediate analog was determined to be a competitive inhibitor of ADA with an apparent Ki binding constant of 40 microM, a value quite close to that (33 microM) of the natural substrate's K(m). The actual species selected for binding by ADA, though, is likely the minor hydroxyimino prototropic form of Z-FAIRs possessing a far lower true Ki value. As the structural features of FAIRs appear well-suited to support its use as a template for constructing active site probes of both ADA and AIR carboxylases, a variety of carbohydrate-protected versions of FAIRs suitable for facile aglycon elaborations were synthesized. The N3-alkylation, N3-borane complexation, and C4-iodination of some of these were investigated in order to assess physicochemical

  20. Markerless Gene Deletion with Cytosine Deaminase in Thermus thermophilus Strain HB27.

    PubMed

    Wang, Lei; Hoffmann, Jana; Watzlawick, Hildegard; Altenbuchner, Josef

    2015-12-11

    We developed a counterselectable deletion system for Thermus thermophilus HB27 based on cytosine deaminase (encoded by codA) from Thermaerobacter marianensis DSM 12885 and the sensitivity of T. thermophilus HB27 to the antimetabolite 5-fluorocytosine (5-FC). The deletion vector comprises the pUC18 origin of replication, a thermostable kanamycin resistance marker functional in T. thermophilus HB27, and codA under the control of a constitutive putative trehalose promoter from T. thermophilus HB27. The functionality of the system was demonstrated by deletion of the bglT gene, encoding a β-glycosidase, and three carotenoid biosynthesis genes, CYP175A1, crtY, and crtI, from the genome of T. thermophilus HB27.

  1. Cloning of L-amino acid deaminase gene from Proteus vulgaris.

    PubMed

    Takahashi, E; Ito, K; Yoshimoto, T

    1999-12-01

    The L-amino acid degrading enzyme gene from Proteus vulgaris was cloned and the nucleotide sequence of the enzyme gene was clarified. An open reading frame of 1,413 bp starting at an ATG methionine codon was found, which encodes a protein of 471 amino acid residues, the calculated molecular weight of which is 51,518. The amino acid sequence of P. vulgaris was 58.6% identical with the L-amino acid deaminase of P. mirabilis. A significantly conserved sequence was found around the FAD-binding sequence of flavo-proteins. The partially purified wild and recombinant enzymes had the same substrate specificity for L-amino acids to form the respective keto-acids, however not for D-amino acids.

  2. Correct splicing despite mutation of the invariant first nucleotide of a 5[prime] splice site: A possible basis for disparate clinical phenotypes in siblings with adenosine deaminase deficiency

    SciTech Connect

    Arredondo-Vega, F.X.; Santisteban, I.; Kelly, S.; Hershfield, M.S. ); Umetsu, D.T. ); Schlossman, C.M.

    1994-05-01

    Adenosine deaminase (ADA) deficiency usually causes severe combined immune deficiency in infancy. Milder phenotypes also occur and are associated with less severely impaired deoxyadenosine (dAdo) catabolism. The authors have characterized the mutations responsible for ADA deficiency in siblings with disparity in clinical phenotype. Erythrocyte dAdo nucleotide pool size, which reflects total residual ADA activity, was lower in the older, more mildly affected sib (RG) than in her younger, more severely affected sister (EG). Cultured T cells, fibroblasts, and B lymphoblasts of RG had detectable residual ADA activity, while cells of EG did not. ADA mRNA was undetectable by northern analysis in cells of both patients. Both sibs were found to be compound heterozygotes for the following novel splicing defects: (1) a G[sup +1][yields]A substitution at the 5' splice site of IVS 2 and (2) a complex 17-bp rearrangement of the 3' splice site of IVS 8, which inserted a run of seven purines into the polypyrimidine tract and altered the reading frame of exon 9. PCR-amplified ADA cDNA clones with premature translation stop codons arising from aberrant pre-mRNA splicing were identified, which were consistent with these mutations. However, some cDNA clones from T cells of both patients and from fibroblasts and Epstein-Barr virus (EBV)-transformed B cells of RG, were normally spliced at both the exon 2/3 and exon 8/9 junctions. A normal coding sequence was documented for clones from both sibs. The normal cDNA clones did not appear to arise from either contamination or PCR artifact, and mosaicism seems unlikely to have been involved. These findings suggest (1) that a low level of normal pre-mRNA splicing may occur despite mutation of the invariant first nucleotide of the 5' splice sequence and (2) that differences in efficiency of such splicing may account for the difference in residual ADA activity, immune dysfunction, and clinical severity in these siblings. 66 refs., 6 figs., 1 tab.

  3. Effect of zinc supplementation on ecto-adenosine deaminase activity in lambs infected by Haemonchus contortus: highlights on acute phase of disease.

    PubMed

    Baldissera, Matheus D; Pivoto, Felipe L; Bottari, Nathieli B; Tonin, Alexandre A; Machado, Gustavo; Aires, Adelina R; Rocha, José F X; Pelinson, Luana P; Dalenogare, Diéssica P; Schetinger, Maria Rosa C; Morsch, Vera M; Leal, Marta L R; Da Silva, Aleksandro S

    2015-01-01

    Haemonchus contortus (order Strongylida) is a common parasitic nematode infecting small ruminants and causing significant economic losses worldwide. It induces innate and adaptive immune responses, which are essential for the clearance of this nematode from the host. Ecto-adenosine deaminase (E-ADA) is an enzyme that plays an important role in the immune system, while Zinc (Zn) has been found playing a critical role in E-ADA catalysis. Therefore, the aim of this study was to assess the effect of Zn supplementation on E-ADA activity in serum of lambs experimentally infected with H.contortus. To reach this purpose 28 male lambs (in average 25 kg) were used. The animals were divided into four groups: A and B composed of healthy animals (uninfected); C and D, infected with H.contortus. Groups B and D were supplemented with Zn Edetate, subcutaneously with 3 mg kg of live weight, on days 11 and 25 post-infection (PI). Blood and fecal samples were collected on the days 11, 25 and 39 PI, in order to assess hematocrit, seric E-ADA, and eggs per gram (EPG) counting, respectively. The animals of groups C and D showed severe hematocrit reduction (days 25 and 39 PI) and were EPG positive (days 11, 25 and 39 PI). On day 41 PI, three animals each group were subjected to necropsy. This procedure showed that animals of groups A and B did not have helminths in abomasum and intestines, while H.contortus were observed in groups C (5782.5 ± 810.9) and D (6185.0 ± 150.0). Infected and untreated animals (group C) showed a reduction in E-ADA activity, but this was not observed when the animals were supplemented with Zn (Group D). Therefore, based on our results, it was possible to observe that Zn supplementation exercised a positive effect on E-ADA activity in lambs infected with H.contortus, and did not allow a reduction in E-ADA activity, as occurred in the group infected and without supplementation. However, Zn supplementation was not able to prevent the worm burden.

  4. Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells.

    PubMed

    Someya, Tatsuhiko; Nonaka, Satoko; Nakamura, Kouji; Ezura, Hiroshi

    2013-10-01

    Agrobacterium-mediated transformation is a useful tool for the genetic modification in plants, although its efficiency is low for several plant species. Agrobacterium-mediated transformation has three major steps in laboratory-controlled experiments: the delivery of T-DNA into plant cells, the selection of transformed plant cells, and the regeneration of whole plants from the selected cells. Each of these steps must be optimized to improve the efficiency of Agrobacterium-mediated plant transformation. It has been reported that increasing the number of cells transformed by T-DNA delivery can improve the frequency of stable transformation. Previously, we demonstrated that a reduction in ethylene production by plant cells during cocultivation with A. tumefaciens-expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase resulted in increased T-DNA delivery into the plant cells. In this study, to further improve T-DNA delivery by A. tumefaciens, we modified the expression cassette of the ACC deaminase gene using vir gene promoter sequences. The ACC deaminase gene driven by the virD1 promoter was expressed at a higher level, resulting in a higher ACC deaminase activity in this A. tumefaciens strain than in the strain with the lac promoter used in a previous study. The newly developed A. tumefaciens strain improves the delivery of T-DNA into Solanum lycopersicum (tomato) and Erianthus ravennae plants and thus may be a powerful tool for the Agrobacterium-mediated genetic engineering of plants.

  5. Adenoviral-Mediated Imaging of Gene Transfer Using a Somatostatin Receptor-Cytosine Deaminase Fusion Protein

    PubMed Central

    Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.

    2015-01-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  6. Adenoviral-mediated imaging of gene transfer using a somatostatin receptor-cytosine deaminase fusion protein.

    PubMed

    Lears, K A; Parry, J J; Andrews, R; Nguyen, K; Wadas, T J; Rogers, B E

    2015-03-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy owing to the enzyme's ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that both the SSTR2 and yCD were functional in binding assays, conversion assays and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy.

  7. Homozygosity for a novel adenosine deaminase (ADA) nonsense mutation (Q3>X) in a child with severe combined immunodeficiency (SCID)

    SciTech Connect

    Santisteban, I.; Arrendondo-Vega, F.X.; Kelly, S. |

    1994-09-01

    A Somali girl was diagnosed with ADA-deficient SCID at 7 mo; she responded well to PEG-ADA replacement and is now 3.3 yr old. ADA mRNA was undetectable (Northern) in her cultured T cells, but was present in T cells of her parents and two sibs. All PCR-amplified exon 1 genomic clones from the patient had a C>T transition at bp 7 relative to the start of translation, replacing Gln at codon 3 (AGA) with a termination codon (TGA, Q3>X). Patient cDNA (prepared by RT-PCR with a 5{prime} primer that covered codons 1-7) had a previously described polymorphism, K80>R, but was otherwise normal, indicating that no other coding mutations were present. A predicted new genomic BfaI restriction site was used to establish her homozygosity for Q3>X and to analyze genotypes of family members. We also analyzed the segregation of a variable Alu polyA-associated TAAA repeat (AluVpA) situated 5{prime} of the ADA gene. Three different AluVpA alleles were found, one of which was only present in the father and was not associated with his Q3>X allele. Because the father`s RBCs had only {approximately}15% of normal ADA activity, we analyzed his ADA cDNA. We found a G>A transition at bp 425 that substitutes Gln for Arg142, a solvent-accessible residue, and eliminates a BsmAI site in exon 5. ADA activity of the R142>Q in vitro translation product was 20-25% of wild type ADA translation product, suggesting that R142>Q is a new {open_quote}partial{close_quote} ADA deficiency mutation. As expected, Q3>X mRNA did not yield a detectable in vitro translation product. We conclude that the patient`s father is a compound heterozygote carrying the ADA Q3>X/R142>Q genotype. {open_quote}Partial{close_quote} ADA deficiency unassociated with immunodeficiency is relatively common in individuals of African descent. The present findings and previous observations suggest that {open_quote}partial{close_quote} ADA deficiency may have had an evolutionary advantage.

  8. Identification of two pentatricopeptide repeat genes required for RNA editing and zinc binding by C-terminal cytidine deaminase-like domains.

    PubMed

    Hayes, Michael L; Giang, Karolyn; Berhane, Beniam; Mulligan, R Michael

    2013-12-20

    Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome.

  9. Gene therapy for adenosine deaminase–deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans

    PubMed Central

    Candotti, Fabio; Shaw, Kit L.; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H.; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G. Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F.; Weinberg, Kenneth I.; Crooks, Gay M.; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S.; Rosenblatt, Howard M.; Davis, Carla M.; Hanson, Celine; Rishi, Radha G.; Wang, Xiaoyan; Gjertson, David; Yang, Otto O.; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A.; Engel, Barbara C.; Podsakoff, Gregory M.; Hershfield, Michael S.; Blaese, R. Michael; Parkman, Robertson

    2012-01-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)–deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34+ cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m2). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency. PMID:22968453

  10. Retrovirus-mediated transduction of a cytosine deaminase gene preserves the stemness of mesenchymal stem cells.

    PubMed

    Park, Jin Sung; Chang, Da-Young; Kim, Ji-Hoi; Jung, Jin Hwa; Park, JoonSeong; Kim, Se-Hyuk; Lee, Young-Don; Kim, Sung-Soo; Suh-Kim, Haeyoung

    2013-02-22

    Human mesenchymal stem cells (MSCs) have emerged as attractive cellular vehicles to deliver therapeutic genes for ex-vivo therapy of diverse diseases; this is, in part, because they have the capability to migrate into tumor or lesion sites. Previously, we showed that MSCs could be utilized to deliver a bacterial cytosine deaminase (CD) suicide gene to brain tumors. Here we assessed whether transduction with a retroviral vector encoding CD gene altered the stem cell property of MSCs. MSCs were transduced at passage 1 and cultivated up to passage 11. We found that proliferation and differentiation potentials, chromosomal stability and surface antigenicity of MSCs were not altered by retroviral transduction. The results indicate that retroviral vectors can be safely utilized for delivery of suicide genes to MSCs for ex-vivo therapy. We also found that a single retroviral transduction was sufficient for sustainable expression up to passage 10. The persistent expression of the transduced gene indicates that transduced MSCs provide a tractable and manageable approach for potential use in allogeneic transplantation.

  11. Targeted endostatin-cytosine deaminase fusion gene therapy plus 5-fluorocytosine suppresses ovarian tumor growth.

    PubMed

    Sher, Y-P; Chang, C-M; Juo, C-G; Chen, C-T; Hsu, J L; Lin, C-Y; Han, Z; Shiah, S-G; Hung, M-C

    2013-02-28

    There are currently no effective therapies for cancer patients with advanced ovarian cancer, therefore developing an efficient and safe strategy is urgent. To ensure cancer-specific targeting, efficient delivery, and efficacy, we developed an ovarian cancer-specific construct (Survivin-VISA-hEndoyCD) composed of the cancer specific promoter survivin in a transgene amplification vector (VISA; VP16-GAL4-WPRE integrated systemic amplifier) to express a secreted human endostatin-yeast cytosine deaminase fusion protein (hEndoyCD) for advanced ovarian cancer treatment. hEndoyCD contains an endostatin domain that has tumor-targeting ability for anti-angiogenesis and a cytosine deaminase domain that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic drug, 5-fluorouracil. Survivin-VISA-hEndoyCD was found to be highly specific, selectively express secreted hEndoyCD from ovarian cancer cells, and induce cancer-cell killing in vitro and in vivo in the presence of 5-FC without affecting normal cells. In addition, Survivin-VISA-hEndoyCD plus 5-FC showed strong synergistic effects in combination with cisplatin in ovarian cancer cell lines. Intraperitoneal (i.p.) treatment with Survivin-VISA-hEndoyCD coupled with liposome attenuated tumor growth and prolonged survival in mice bearing advanced ovarian tumors. Importantly, there was virtually no severe toxicity when hEndoyCD is expressed by Survivin-VISA plus 5-FC compared with CMV plus 5-FC. Thus, the current study demonstrates an effective cancer-targeted gene therapy that is worthy of development in clinical trials for treating advanced ovarian cancer.

  12. Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy.

    PubMed

    Leveille, S; Samuel, S; Goulet, M-L; Hiscott, J

    2011-06-01

    Oncolytic viruses (OVs) are promising therapeutic agents for cancer treatment, with recent studies emphasizing the combined use of chemotherapeutic compounds and prodrug suicide gene strategies to improve OV efficacy. In the present study, the synergistic activity of recombinant vesicular stomatitis virus (VSV)-MΔ51 virus expressing the cytosine deaminase/uracil phosphoribosyltransferase (CD::UPRT) suicide gene and 5-fluorocytosine (5FC) prodrug was investigated in triggering tumor cell oncolysis. In a panel of VSV-sensitive and -resistant cells-prostate PC3, breast MCF7 and TSA, B-lymphoma Karpas and melanoma B16-F10-the combination treatment increased killing of non-infected bystander cells in vitro via the release of 5FC toxic derivatives. In addition, we showed a synergistic effect on cancer cell killing with VSV-MΔ51 and the active form of the drug 5-fluorouracil. Furthermore, by monitoring VSV replication at the tumor site and maximizing 5FC bioavailability, we optimized the treatment regimen and improved survival of animals bearing TSA mammary adenocarcinoma. Altogether, this study emphasizes the potency of the VSV-CD::UPRT and 5FC combination, and demonstrates the necessity of optimizing each step of a multicomponent therapy to design efficient treatment.

  13. Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes

    PubMed Central

    Taylor, Benjamin JM; Wu, Yee Ling; Rada, Cristina

    2014-01-01

    Cytidine deaminases are single stranded DNA mutators diversifying antibodies and restricting viral infection. Improper access to the genome leads to translocations and mutations in B cells and contributes to the mutation landscape in cancer, such as kataegis. It remains unclear how deaminases access double stranded genomes and whether off-target mutations favor certain loci, although transcription and opportunistic access during DNA repair are thought to play a role. In yeast, AID and the catalytic domain of APOBEC3G preferentially mutate transcriptionally active genes within narrow regions, 110 base pairs in width, fixed at RNA polymerase initiation sites. Unlike APOBEC3G, AID shows enhanced mutational preference for small RNA genes (tRNAs, snoRNAs and snRNAs) suggesting a putative role for RNA in its recruitment. We uncover the high affinity of the deaminases for the single stranded DNA exposed by initiating RNA polymerases (a DNA configuration reproduced at stalled polymerases) without a requirement for specific cofactors. DOI: http://dx.doi.org/10.7554/eLife.03553.001 PMID:25237741

  14. Antitumor activity of mutant bacterial cytosine deaminase gene for colon cancer

    PubMed Central

    Deng, Long-Ying; Wang, Jian-Ping; Gui, Zhi-Fu; Shen, Li-Zong

    2011-01-01

    AIM: To evaluate bacterial cytosine deaminase (bCD) mutant D314A and 5-fluorocytosine (5-FC) for treatment of colon cancer in a mouse model. METHODS: Recombinant lentivirus vectors that contained wild-type bCD gene (bCDwt), and bCD mutant D314A gene (bCD-D314A) with green fluorescence protein gene were constructed and used to infect human colon carcinoma LoVo cells, to generate stable transfected cells, LoVo/null, LoVo/bCDwt or LoVo/bCD-D314A. These were injected subcutaneously into Balb/c nude mice to establish xenograft models. Two weeks post-LoVo cell inoculation, PBS or 5-FC (500 mg/kg) was administered by intraperitoneal (i.p.) injection once daily for 14 d. On the day after LoVo cell injection, mice were monitored daily for tumor volume and survival. RESULTS: Sequence analyses confirmed the construction of recombinant lentiviral plasmids that contained bCDwt or bCD-D314A. The lentiviral vector had high efficacy for gene delivery, and RT-PCR showed that bCDwt or bCD-D314A gene was transferred to LoVo cells. Among these treatment groups, gene delivery or 5-FC administration alone had no effect on tumor growth. However, bCDwt/5-FC or bCD-D314A/5-FC treatment inhibited tumor growth and prolonged survival of mice significantly (P < 0.05). Importantly, the tumor volume in the bCD-D314A/5-FC-treated group was lower than that in the bCDwt/5-FC group (P < 0.05), and bCD-D314A plus 5-FC significantly prolonged survival of mice in comparison with bCDwt plus 5-FC (P < 0.05). CONCLUSION: The bCD mutant D314A enhanced significantly antitumor activity in human colon cancer xenograft models, which provides a promising approach for human colon carcinoma therapy. PMID:21734808

  15. Molecular chemotherapy of pancreatic cancer using novel mutant bacterial cytosine deaminase gene.

    PubMed

    Kaliberova, Lyudmila N; Della Manna, Debbie L; Krendelchtchikova, Valentina; Black, Margaret E; Buchsbaum, Donald J; Kaliberov, Sergey A

    2008-09-01

    The combination of molecular chemotherapy with radiation therapy has the potential to become a powerful approach for treatment of pancreatic cancer. We have developed an adenoviral vector (AdbCD-D314A) encoding a mutant bacterial cytosine deaminase (bCD) gene, which converts the prodrug 5-fluorocytosine (5-FC) into the active drug 5-fluorouracil. The aim of this study was to investigate AdbCD-D314A/5-FC-mediated cytotoxicity in vitro and therapeutic efficacy in vivo alone and in combination with radiation against human pancreatic cancer cells and xenografts. AdbCD-D314A/5-FC-mediated cytotoxicity alone and in combination with radiation was analyzed using crystal violet inclusion and clonogenic survival assays. CD enzyme activity was determined by measuring conversion of [3H]5-FC to [3H]5-fluorouracil after adenoviral infection of pancreatic cancer cells in vitro and pancreatic tumor xenografts by TLC. S.c. pancreatic tumor xenografts were used to evaluate the therapeutic efficacy of AdbCD-D314A/5-FC molecular chemotherapy in combination with radiation therapy. AdbCD-D314A infection resulted in increased 5-FC-mediated pancreatic cancer cell killing that correlated with significantly enhanced CD enzyme activity compared with AdbCDwt encoding wild-type of bCD. Animal studies showed significant inhibition of growth of human pancreatic tumors treated with AdbCD-D314A/5-FC in comparison with AdbCDwt/5-FC. Also, a significantly greater inhibition of growth of Panc2.03 and MIA PaCA-2 tumor xenografts was produced by the combination of AdbCD-D314A/5-FC with radiation compared with either agent alone. The results indicate that the combination of AdbCD-D314A/5-FC molecular chemotherapy with radiation therapy significantly enhanced cytotoxicity of pancreatic cancer cells in vitro and increased therapeutic efficacy against human pancreatic tumor xenografts.

  16. Characterization of ACC deaminase gene in Pseudomonas entomophila strain PS-PJH isolated from the rhizosphere soil.

    PubMed

    Kamala-Kannan, Seralathan; Lee, Kui-Jae; Park, Seung-Moon; Chae, Jong-Chan; Yun, Bong-Sik; Lee, Yong Hoon; Park, Yool-Jin; Oh, Byung-Taek

    2010-04-01

    The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase cleaves the ethylene precursor ACC into alpha-ketobutyrate and ammonia. The decreased level of ethylene allows the plant to be more resistant to a wide environmental stress including plant pathogens. In the present study, we characterized the ACC deaminase activity of a Pseudomonas entomophila strain PS-PJH isolated from the red pepper rhizosphere region of red pepper grown at Jinan, Korea. The isolate produced 23.8 +/- 0.4 micromol of alpha-ketobutyrate/mg of protein/h during ACC deamination under in vitro conditions. Polymerase chain reaction for acdS gene showed that the isolated P. entomophila strain PS-PJH carry sequences similar to the known acdS genes. Results of the multiple sequence alignment revealed >99% identity (nucleotide and amino acid) with acdS gene of Pseudomonas putida strains AM15 and UW4. The isolated bacteria promoted 43.3 and 34.1% of growth in Raphanus sativus and Lactuca sativa plants, respectively. Based on the 16S-23S internal transcribed spacer region sequences, the isolate was identified as P. entomophila. To the best of our knowledge this is the first study to report the acdS gene in P. entomophila.

  17. [Cytotoxicity of cytosine deaminase and herpes simplex virus thymidine kinase genes in melanoma cells is independent on promoter strength].

    PubMed

    Alekseenko, I V; Kuz'min, D V; Pleshkan, V V; Zinov'eva, M V; Sverdlov, E D

    2013-01-01

    In preparation of the therapeutic genetic constructs aimed to the gene-programmed enzymatic transformation of the non-toxic prodrug into toxin within cancer cells the right choice of regulatory elements (promoters and enhancers) is essential. This is widely accepted that the efficiency of the gene therapy constructions is dependent, in particular, on the strength of promoters driving the expression of the therapeutic genes. In this work we demonstrated, using the melanoma-specific promoters and enhancers of human melanoma inhibitory activity and mouse tyrosinase gene, that for the development of cytotoxic effect the promoter strength is not of primary importance. In the case of HSVtk, coding for the herpes simplex virus thymidine kinase, and FCU1, coding for cytosine deaminase/uracil phosphoribosyltransferase hybrid protein genes, their cytotoxic activity was determined by the quantity of the added prodrug.

  18. Specific CEA-producing colorectal carcinoma cell killing with recombinant adenoviral vector containing cytosine deaminase gene

    PubMed Central

    Shen, Li-Zong; Wu, Wen-Xi; Xu, De-Hua; Zheng, Zhong-Cheng; Liu, Xin-Yuan; Ding, Qiang; Hua, Yi-Bing; Yao, Kun

    2002-01-01

    AIM: To kill CEA positive colorectal carcinoma cells specifically using the E coli cytosine deaminase (CD) suicide gene, a new replication-deficient recombinant adenoviral vector was constructed in which CD gene was controlled under CEA promoter and its in vitro cytotoxic effects were evaluated. METHODS: Shuttle plasmid containing CD gene and regulatory sequence of the CEA gene was constructed and recombined with the right arm of adenovirus genome DNA in 293 cell strain. Dot blotting and PCR were used to identify positive plaques. The purification of adenovirus was performed with ultra-concentration in CsCl step gradients and the titration was measured with plaque formation assay. Cytotoxic effects were assayed with MTT method, The fifty percent inhibition concentration (IC50) of 5-FC was calculated using a curve-fitting parameter. The human colorectal carcinoma cell line, which was CEA-producing, and the CEA-nonproducing Hela cell line were applied in cytological tests. An established recombinant adenovirus vector AdCMVCD, in which the CD gene was controlled under CMV promoter, was used as virus control. Quantitative results were expressed as the mean ± SD of the mean. Statistical analysis was performed using ANOVA test. RESULTS: The desired recombinant adenovirus vector was named AdCEACD. The results of dot blotting and PCR showed that the recombinant adenovirus contained CEA promoter and CD gene. Virus titer was about 5.0 × 1014 pfu/L-1 after purification. The CEA-producing Lovo cells were sensitive to 5-FC and had the same cytotoxic effect after infection with AdCEACD and AdCMVCD (The IC50 values of 5-FC in parent Lovo cells, Lovo cells infected with 100 M.O.I AdCEACD and Lovo cells infected with 10 M.O.I AdCMVCD were > 15000, 216.5 ± 38.1 and 128.8 ± 25.4 μmol•L⁻¹, P < 0.001, respectively), and the cytotoxicity of 5-FC increased accordingly when the M.O.I of adenoviruses were enhanced (The value of IC50 of 5-FC was reduced to 27.9 ± 4.2 μmol•L-1

  19. The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala.

    PubMed

    Tittabutr, Panlada; Awaya, Jonathan D; Li, Qing X; Borthakur, Dulal

    2008-06-01

    The objective of this study was to determine the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase of symbionts in nodulation and growth of Leucaena leucocephala. The acdS genes encoding ACC deaminase were cloned from Rhizobium sp. strain TAL1145 and Sinorhizobium sp. BL3 in multicopy plasmids, and transferred to TAL1145. The BL3-acdS gene greatly enhanced ACC deaminase activity in TAL1145 compared to the native acdS gene. The transconjugants of TAL1145 containing the native or BL3 acdS gene could grow in minimal media containing 1.5mM ACC, whereas BL3 could tolerate up to 3mM ACC. The TAL1145 acdS gene was inducible by mimosine and not by ACC, while the BL3 acdS gene was highly inducible by ACC and not by mimosine. The transconjugants of TAL1145 containing the native- and BL3-acdS genes formed nodules with greater number and sizes, and produced higher root mass on L. leucocephala than by TAL1145. This study shows that the introduction of multiple copies of the acdS gene increased ACC deaminase activities of TAL1145 and enhanced its symbiotic efficiency on L. leucocephala.

  20. Measles Virus Defective Interfering RNAs Are Generated Frequently and Early in the Absence of C Protein and Can Be Destabilized by Adenosine Deaminase Acting on RNA-1-Like Hypermutations

    PubMed Central

    Pfaller, Christian K.; Mastorakos, George M.; Matchett, William E.; Ma, Xiao; Samuel, Charles E.

    2015-01-01

    ABSTRACT Defective interfering RNAs (DI-RNAs) of the viral genome can form during infections of negative-strand RNA viruses and outgrow full-length viral genomes, thereby modulating the severity and duration of infection. Here we document the frequent de novo generation of copy-back DI-RNAs from independent rescue events both for a vaccine measles virus (vac2) and for a wild-type measles virus (IC323) as early as passage 1 after virus rescue. Moreover, vaccine and wild-type C-protein-deficient (C-protein-knockout [CKO]) measles viruses generated about 10 times more DI-RNAs than parental virus, suggesting that C enhances the processivity of the viral polymerase. We obtained the nucleotide sequences of 65 individual DI-RNAs, identified breakpoints and reinitiation sites, and predicted their structural features. Several DI-RNAs possessed clusters of A-to-G or U-to-C transitions. Sequences flanking these mutation sites were characteristic of those favored by adenosine deaminase acting on RNA-1 (ADAR1), which catalyzes in double-stranded RNA the C-6 deamination of adenosine to produce inosine, which is recognized as guanosine, a process known as A-to-I RNA editing. In individual DI-RNAs the transitions were of the same type and occurred on both sides of the breakpoint. These patterns of mutations suggest that ADAR1 edits unencapsidated DI-RNAs that form double-strand RNA structures. Encapsidated DI-RNAs were incorporated into virus particles, which reduced the infectivity of virus stocks. The CKO phenotype was dominant: DI-RNAs derived from vac2 with a CKO suppressed the replication of vac2, as shown by coinfections of interferon-incompetent lymphatic cells with viruses expressing different fluorescent reporter proteins. In contrast, coinfection with a C-protein-expressing virus did not counteract the suppressive phenotype of DI-RNAs. IMPORTANCE Recombinant measles viruses (MVs) are in clinical trials as cancer therapeutics and as vectored vaccines for HIV-AIDS and

  1. Elucidation of the time course of adenosine deaminase APOBEC3G and viral infectivity factor vif in HIV-2287-infected infant macaques

    PubMed Central

    Endsley, Aaron N.; Ho, Rodney J.Y.

    2012-01-01

    Background Although the interactions of cellular cytidine deaminase A3G and viral infection factor (vif) of human immunodeficiency virus (HIV) were reported, regulation of A3G after in vivo HIV infection and disease progression is not known. Methods Time courses of plasma virus, CD4+ T lymphocyte Macaca levels, and concentrations of A3G and vif transcripts were determined in infant macaques infected with HIV-2287. These in vivo results were compared with those collected in vitro in HIV-2-infected T cells. Results Human immunodeficiency virus-infected macaques exhibited plasma viremia (≥108 copies/ml) followed by a precipitous CD4+ T-cell (from 40–70 to ≤5%) decline. An initial increase in A3G transcripts coincides with early increases in virus and vif RNA. As virus load continues to increase, A3G RNA decreases but recovers at a later phase as virus level stabilizes. Pearson correlation analysis revealed strong interactions of A3G–CD4, vif–CD4, and A3G–vif. Conclusions There is a time-dependent A3G and vif RNA interaction throughout the course of HIV infection. PMID:22017399

  2. Assignment of the human cytidine deaminase (CDA) gene to chromosome 1 band p35-p36.2

    SciTech Connect

    Saccone, S.; Andreozzi, L.; Della Valle, G.

    1994-08-01

    The enzyme cytidine deaminase (EC 3.5.4.12; CDA) catalyzes the hydrolytic deamination of cytidine or deoxycytidine to uridine or deoxyuridine, respectively. It can also catalyze the deamination of cytosine nucleoside analogues such as cytosine arabinoside and 5-azacytidine, which results in a loss of their cytotoxic and antitumor activity. Cytosine arabinoside is used in the treatment of acute myeloid leukemia, and the antileukemic activity of the drug is dependent on phosphorylation by deoxycytidine kinase. The occurrence of clinical cytosine arabinoside resistance is one of the main problems in the successful treatment of acute myeloid leukemia. Resistance to the drug has been ascribed to functional deoxycytidine kinase deficiency and to increased expression of the CDA gene. In this study, we report on the isolation of a CDA genomic fragment and its use as a probe for the chromosomal localization of the human CDA gene by in situ hybridization. 9 refs., 1 fig.

  3. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?

    PubMed Central

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; De Carlo, Anna; Emiliani, Giovanni; Mancuso, Stefano; Spini, Giulia; Viti, Carlo; Mengoni, Alessio

    2017-01-01

    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior. PMID:28194158

  4. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?

    PubMed

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; De Carlo, Anna; Emiliani, Giovanni; Mancuso, Stefano; Spini, Giulia; Viti, Carlo; Mengoni, Alessio

    2017-01-01

    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior.

  5. Human neural stem cells transduced with IFN-beta and cytosine deaminase genes intensify bystander effect in experimental glioma.

    PubMed

    Ito, S; Natsume, A; Shimato, S; Ohno, M; Kato, T; Chansakul, P; Wakabayashi, T; Kim, S U

    2010-05-01

    Previously, we have shown that the genetically modified human neural stem cells (NSCs) show remarkable migratory and tumor-tropic capability to track down brain tumor cells and deliver therapeutic agents with significant therapeutic benefit. Human NSCs that were retrovirally transduced with cytosine deaminase (CD) gene showed remarkable 'bystander killer effect' on the glioma cells after application of the prodrug, 5-fluorocytosine (5-FC). Interferon-beta (IFN-beta) is known for its antiproliferative effects in a variety of cancers. In our pilot clinical trial in glioma, the IFN-beta gene has shown potent antitumor activity in patients with malignant glioma. In the present study, we sought to examine whether human NSCs genetically modified to express both CD and IFN-beta genes intensified antitumor effect on experimental glioma. In vitro studies showed that CD/IFN-beta-expressing NSCs exerted a remarkable bystander effect on human glioma cells after the application of 5-FC, as compared with parental NSCs and CD-expressing NSCs. In animal models with human glioma orthotopic xenograft, intravenously infused CD/IFN-beta-expressing NSCs produced striking antitumor effect after administration of the prodrug 5-FC. Furthermore, the same gene therapy regimen prolonged survival periods significantly in the experimental animals. The results of the present study indicate that the multimodal NSC-based treatment strategy might have therapeutic potential against gliomas.

  6. Dynamic Regulation of the Adenosine Kinase Gene during Early Postnatal Brain Development and Maturation

    PubMed Central

    Kiese, Katharina; Jablonski, Janos; Boison, Detlev; Kobow, Katja

    2016-01-01

    The ubiquitous metabolic intermediary and nucleoside adenosine is a “master regulator” in all living systems. Under baseline conditions adenosine kinase (ADK) is the primary enzyme for the metabolic clearance of adenosine. By regulating the availability of adenosine, ADK is a critical upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. ADK protein exists in the two isoforms nuclear ADK-L, and cytoplasmic ADK-S, which are subject to dynamic expression changes during brain development and in response to brain injury; however, gene expression changes of the Adk gene as well as regulatory mechanisms that direct the cell-type and isoform specific expression of ADK have never been investigated. Here we analyzed potential gene regulatory mechanisms that may influence Adk expression including DNA promoter methylation, histone modifications and transcription factor binding. Our data suggest binding of transcription factor SP1 to the Adk promoter influences the regulation of Adk expression. PMID:27812320

  7. Thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell apoptosis in breast cancer cells.

    PubMed

    Kong, H; Tao, L; Qi, K; Wang, Y; Li, Q; Du, J; Huang, Z

    2013-09-01

    The present study was conducted to explore the efficacy of suicide gene therapy with thymidine kinase (TK) in combination with cytosine deaminase (CD) for breast cancer. The expression of CD/TK was detected in the infected cells by RT-PCR. The killing effect on MCF-7 cells following treatment was analyzed by MTT assay. The morphological characteristics of the cells were observed by electron microscopy, and the distribution of the cell cycle was analyzed by flow cytometry. Caspase‑3 and -8 activities were detected by absorption spectrometry. Cytotoxic assays showed that cells transfected with CD/TK became more sensitive to the prodrugs. Morphological features characteristic of apoptosis were noted in the MCF‑7 cells via electron microscopy. The experimental data showed that the proportion of MCF-7 cells during the different phases of the cell cycle varied significantly following treatment with the prodrugs. The activity of caspase‑3 gradually increased following treatment with increasing concentrations of the prodrugs. We conclude that the TK/ganciclovir and CD/5-fluorocytosine suicide gene system used here induces apoptosis in breast cancer cells, and provides a promising treatment modality for breast cancer.

  8. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene.

    PubMed

    Chalikonda, S; Kivlen, M H; O'Malley, M E; Eric Dong, X D; McCart, J A; Gorry, M C; Yin, X-Y; Brown, C K; Zeh, H J; Guo, Z S; Bartlett, D L

    2008-02-01

    In this study, we assessed the ability of a highly tumor-selective oncolytic vaccinia virus armed with a yeast cytosine deaminase gene to infect and lyse human and murine ovarian tumors both in vitro and in vivo. The virus vvDD-CD could infect, replicate in and effectively lyse both human and mouse ovarian cancer cells in vitro. In two different treatment schedules involving either murine MOSEC or human A2780 ovarian carcinomatosis models, regional delivery of vvDD-CD selectively targeted tumor cells and ovarian tissue, effectively delaying the development of either tumor or ascites and leading to significant survival advantages. Oncolytic virotherapy using vvDD-CD in combination with the prodrug 5-fluorocytosine conferred an additional long-term survival advantage upon tumor-bearing immunocompetent mice. These findings demonstrate that a tumor-selective oncolytic vaccinia combined with gene-directed enzyme prodrug therapy is a highly effective strategy for treating advanced ovarian cancers in both syngeneic mouse and human xenograft models. Given the biological safety, tumor selectivity and oncolytic potency of this armed oncolytic virus, this dual therapy merits further investigation as a promising new treatment for metastatic ovarian cancer.

  9. Hypoxia imaging predicts success of hypoxia-induced cytosine deaminase/5-fluorocytosine gene therapy in a murine lung tumor model.

    PubMed

    Lee, B-F; Lee, C-H; Chiu, N-T; Hsia, C-C; Shen, L-H; Shiau, A-L

    2012-04-01

    Tc-99m-HL91 is a hypoxia imaging biomarker. The aim of this study was to investigate the value of Tc-99m-HL91 imaging for hypoxia-induced cytosine deaminase (CD)/5-fluorocytosine (5-FC) gene therapy in a murine lung tumor model. C57BL/6 mice were implanted with Lewis lung carcinoma cells transduced with the hypoxia-inducible promoter-driven CD gene (LL2/CD) or luciferase gene (LL2/Luc) serving as the control. When tumor volumes reached 100 mm(3), pretreatment images were acquired after injection of Tc-99m-HL91. The mice were divided into low and high hypoxic groups based on the tumor-to-non-tumor ratio of Tc-99m-HL91. They were injected daily with 5-FC (500 mg kg(-1)) or the vehicle for 1 week. When tumor volumes reached 1000 mm(3), autoradiography and histological examinations were performed. Treatment with 5-FC delayed tumor growth and enhanced the survival of mice bearing high hypoxic LL2/CD tumors. The therapeutic effect of hypoxia-induced CD/5-FC gene therapy was more pronounced in high hypoxic tumors than in low hypoxic tumors. This study provides the first evidence that Tc-99m-HL91 can serve as an imaging biomarker for predicting the treatment responses of hypoxia-regulated CD/5-FC gene therapy in animal tumor models. Our results suggest that hypoxia imaging using Tc-99m-HL91 has the predictive value for the success of hypoxia-directed treatment regimens.

  10. A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity.

    PubMed

    Yue, Lijie; Saikawa, Yutaka; Ota, Kazuhisa; Tanaka, Motohiro; Nishimura, Ryosei; Uehara, Takahiro; Maeba, Hideaki; Ito, Takashi; Sasaki, Takuma; Koizumi, Shoichi

    2003-01-01

    To test the hypothesis that analyses of drug targets for polymorphism will help to establish gene-based information for the treatment of cancer patients, we investigated the functional single-nucleotide polymorphisms in the human cytidine deaminase (HDCA) gene. The cDNAs from 52 leukaemia/lymphoma samples and 169 control blood samples were direct-sequenced and analysed for the polymorphisms. Three different polymorphisms (A79C, G208A and T435C) were identified in the coding region of the HDCA gene and displayed allelic frequencies of 20.1%, 4.3% and 70.1%, respectively. No association with susceptibility to disease was observed. A novel polymorphism, G208A produced an alanine to threonine substitution (A70T) within the conserved catalytic domain. By introduction of the polymorphic HCDA genes into the yeast CDA-null mutants, the HCDA-70T showed 40% and 32% activity of prototype for cytidine and ara-C substrates, respectively (P < 0.01). The ara-C IC50 value of the yeast transformants carrying HCDA-70T was 757 +/- 33 micromol and was significantly lower (P < 0.01) than that of prototype (941 +/- 58 micromol). This study demonstrated a population characterized with 208A genotype for, which potentially leads one more sensitive to ara-C treatment than prototype. Accumulation of polymorphisms in the genes responsible for drug metabolism and determination of polymorphism-induced biological variations could provide the additional therapeutic strategies in risk-stratified protocols for the treatment of childhood malignancies.

  11. Bacterial Ammeline Metabolism via Guanine Deaminase

    PubMed Central

    Seffernick, Jennifer L.; Dodge, Anthony G.; Sadowsky, Michael J.; Bumpus, John A.; Wackett, Lawrence P.

    2010-01-01

    Melamine toxicity in mammals has been attributed to the blockage of kidney tubules by insoluble complexes of melamine with cyanuric acid or uric acid. Bacteria metabolize melamine via three consecutive deamination reactions to generate cyanuric acid. The second deamination reaction, in which ammeline is the substrate, is common to many bacteria, but the genes and enzymes responsible have not been previously identified. Here, we combined bioinformatics and experimental data to identify guanine deaminase as the enzyme responsible for this biotransformation. The ammeline degradation phenotype was demonstrated in wild-type Escherichia coli and Pseudomonas strains, including E. coli K12 and Pseudomonas putida KT2440. Bioinformatics analysis of these and other genomes led to the hypothesis that the ammeline deaminating enzyme was guanine deaminase. An E. coli guanine deaminase deletion mutant was deficient in ammeline deaminase activity, supporting the role of guanine deaminase in this reaction. Two guanine deaminases from disparate sources (Bradyrhizobium japonicum USDA 110 and Homo sapiens) that had available X-ray structures were purified to homogeneity and shown to catalyze ammeline deamination at rates sufficient to support bacterial growth on ammeline as a sole nitrogen source. In silico models of guanine deaminase active sites showed that ammeline could bind to guanine deaminase in a similar orientation to guanine, with a favorable docking score. Other members of the amidohydrolase superfamily that are not guanine deaminases were assayed in vitro, and none had substantial ammeline deaminase activity. The present study indicated that widespread guanine deaminases have a promiscuous activity allowing them to catalyze a key reaction in the bacterial transformation of melamine to cyanuric acid and potentially contribute to the toxicity of melamine. PMID:20023034

  12. Towards a rAAV-based gene therapy for ADA-SCID: from ADA deficiency to current and future treatment strategies.

    PubMed

    Silver, Jared N; Flotte, Terence R

    2008-07-01

    Adenosine deaminase deficiency fosters a rare, devastating pediatric immune deficiency with concomitant opportunistic infections, metabolic anomalies and multiple organ system pathology. The standard of care for adenosine deaminase deficient severe combined immune deficiency (ADA-SCID) includes enzyme replacement therapy or bone marrow transplantation. Gene therapies for ADA-SCID over nearly two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoetic progenitors. These groundbreaking gene therapies represent a revolution in clinical medicine, but come with several challenges, including the risk of insertional mutagenesis. An alternative gene therapy for ADA-SCID may utilize recombinant adeno-associated virus vectors in vivo, with numerous target tissues, to foster ectopic expression and secretion of adenosine deaminase. This review endeavors to describe ADA-SCID, the traditional treatments, previous retroviral gene therapies, and primarily, alternative recombinant adeno-associated virus-based strategies to remedy this potentially fatal genetic disease.

  13. Genetics Home Reference: adenosine deaminase deficiency

    MedlinePlus

    ... disorder that damages the immune system and causes severe combined immunodeficiency (SCID). People with SCID lack virtually all immune ... Management Formal Diagnostic Criteria (1 link) ACT Sheet: Severe Combined Immunodeficiency (SCID) and Conditions Associated with T Cell Lymphoneia ( ...

  14. Adenosine deaminase complexing protein in cancer studies.

    PubMed

    Ten Kate, J; Dinjens, W N; Meera Khan, P; Bosman, F T

    1986-01-01

    ADCP is a dimeric glycoprotein of about 200KD, for which the physiological role is still obscure. This protein occurs mainly in a membrane bound form in various human tissues. In this paper we review the current literature on ADCP in cancer studies. Soluble ADCP was described to be consistently decreased or absent in cancers of lung, liver, kidney and colon. These findings could not be confirmed by immunohistochemical and quantitative biochemical studies in a series of colorectal-, prostatic-, and renal carcinomas. Only in a third of these tumors a decrease could be demonstrated, whereas in the other cases unaltered or even increased amounts were observed. However, in virally transformed human fibroblasts a consistent decrease or complete absence of ADCP was seen, while primary fibroblasts were found to contain high amounts of this protein. Recently, the use of ADCP as a differentiation marker in colonic cancer has been advocated. Furthermore the presence of ADCP in the serum of renal adenocarcinoma patients was found to be indicative of a better chance of five year survival. These studies suggest that ADCP may be a differentiation marker useful for immunohistochemical characterization of colonic and renal carcinomas as well as a serum marker useful for follow-up studies of these types of cancer, analogous to CEA. Finally, ADCP has been found to be selectively expressed by certain T-cell subsets and henceforth may be useful in the studies on leukemias.

  15. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis.

  16. Gene Therapy for "Bubble Boy" Disease.

    PubMed

    Hoggatt, Jonathan

    2016-07-14

    Adenosine deaminase (ADA) deficiency results in the accumulation of toxic metabolites that destroy the immune system, causing severe combined immunodeficiency (ADA-SCID), often referred to as the "bubble boy" disease. Strimvelis is a European Medicines Agency approved gene therapy for ADA-SCID patients without a suitable bone marrow donor.

  17. A mutated cytosine deaminase gene, codA (D314A), as an efficient negative selection marker for gene targeting in rice.

    PubMed

    Osakabe, Keishi; Nishizawa-Yokoi, Ayako; Ohtsuki, Namie; Osakabe, Yuriko; Toki, Seiichi

    2014-03-01

    Gene targeting (GT) is a powerful tool manipulating a gene of interest in a given genome specifically and precisely. To achieve efficient GT in higher plants, both positive and negative selection markers are required. In particular, a strong negative selection system is needed for enrichment of cells to eliminate those cells in which random integration of the introduced DNA has occurred in GT experiments. Currently, non-conditional negative selection marker genes are used for GT experiments in rice plants, and no conditional negative selection system is available. In this study, we describe the development of an efficient conditional negative selection system in rice plants using Escherichia coli cytosine deaminase (codA). We found that a mutant codA gene, codA(D314A), acts more efficiently than the wild-type codA for negative selection in rice plants. The codA(D314A) marker was further used as a negative selection marker for GT experiments in rice. Our conditional negative selection system effectively eliminated the cells in which random integration event(s) occurred; the enrichment factor was approximately 100-fold. This enrichment factor was similar to that found when Corynebacterium diphtheriae toxin fragment A was used. Our results suggest the codA(D314A) marker gene as a promising negative selection marker for GT of rice.

  18. Autosomal recessive hyper IgM syndrome associated with activation-induced cytidine deaminase gene in three Turkish siblings presented with tuberculosis lymphadenitis - Case report.

    PubMed

    Patiroglu, Turkan; Akar, H Haluk; van der Burg, Mirjam; Unal, Ekrem

    2015-09-01

    The hyper-immunoglobulin M (HIGM) syndrome is a heterogeneous group of genetic disorders characterized by recurrent infections, decreased serum levels of immunoglobulin G (IgG) and IgA, and normal/increased serum levels of IgM. Herein, we describe three Turkish siblings with HIGM syndrome who had a homozygous missense mutation (c.70C>T, p.Arg24Trp) in the activation-induced cytidine deaminase gene which results in autosomal recessive HIGM syndrome. Two of the siblings, sibling 1 and sibling 3, presented with cervical deep abscess and cervical tuberculosis lymphadenitis, respectively.

  19. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in psychrotolerant bacteria modulates ethylene metabolism and cold induced genes in tomato under chilling stress.

    PubMed

    Subramanian, Parthiban; Krishnamoorthy, Ramasamy; Chanratana, Mak; Kim, Kiyoon; Sa, Tongmin

    2015-04-01

    The role of stress induced ethylene under low temperature stress has been controversial and hitherto remains unclear. In the present study, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) gene, acdS expressing mutant strains were generated from ACCD negative psychrotolerant bacterial strains Flavobacterium sp. OR306 and Pseudomonas frederiksbergensis OS211, isolated from agricultural soil during late winter. After transformation with plasmid pRKACC which contained the acdS gene, both the strains were able to exhibit ACCD activity in vitro. The effect of this ACCD under chilling stress with regards to ethylene was studied in tomato plants inoculated with both acdS expressing and wild type bacteria. On exposing the plants to one week of chilling treatment at 12/10 °C, it was found that stress ethylene, ACC accumulation and ACO activity which are markers of ethylene stress, were significantly reduced in plants inoculated with the acdS gene transformed mutants. In case of plants inoculated with strain OS211-acdS, ethylene emission, ACC accumulation and ACO activity was significantly reduced by 52%, 75.9% and 23.2% respectively compared to uninoculated control plants. Moreover, expression of cold induced LeCBF1 and LeCBF3 genes showed that these genes were significantly induced by the acdS transformed mutants in addition to reduced expression of ethylene-responsive transcription factor 13 (ETF-13) and ACO genes. Induced expression of LeCBF1 and LeCBF3 in plants inoculated with acdS expressing mutants compared to wild type strains show that physiologically evolved stress ethylene and its transcription factors play a role in regulation of cold induced genes as reported earlier in the literature.

  20. Selective killing of lung cancer cells using carcinoembryonic antigen promoter and double suicide genes, thymidine kinase and cytosine deaminase (pCEA-TK/CD).

    PubMed

    Qiu, Yuan; Peng, Gui-Lin; Liu, Qi-Cai; Li, Fu-Li; Zou, Xu-Sen; He, Jian-Xing

    2012-03-01

    The application of gene therapy in cancer treatment is limited by non-specific targeting. In the present study, we constructed a recombinant plasmid, containing a carcinoembryonic antigen (CEA) promoter and double suicide genes thymidine kinase (TK) and cytosine deaminase (CD), henceforth referred to as pCEA-TK/CD. Our results showed that the CEA promoter can specifically drive target gene expression in CEA-positive lung cancer cells. In the presence of prodrugs 5-flucytosine and ganciclovir, pCEA-TK/CD transfection decreased inhibitory concentration 50 and increased apoptosis and cyclomorphosis. Our result suggests that gene therapy using pCEA-TK/CD may be a promising new approach for treating lung cancer.

  1. Differentiation of 1-aminocyclopropane-1-carboxylate (ACC) deaminase from its homologs is the key for identifying bacteria containing ACC deaminase.

    PubMed

    Li, Zhengyi; Chang, Siping; Ye, Shuting; Chen, Mingyue; Lin, Li; Li, Yuanyuan; Li, Shuying; An, Qianli

    2015-10-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase-mediated reduction of ethylene generation in plants under abiotic stresses is a key mechanism by which bacteria can promote plant growth. Misidentification of ACC deaminase and the ACC deaminase structure gene (acdS) can lead to overestimation of the number of bacteria containing ACC deaminase and their function in ecosystems. Previous non-specific amplification of acdS homologs has led to an overestimation of the horizontal transfer of acdS genes. Here, we designed consensus-degenerate hybrid oligonucleotide primers (acdSf3, acdSr3 and acdSr4) based on differentiating the key residues in ACC deaminases from those of homologs for specific amplification of partial acdS genes. PCR amplification, sequencing and phylogenetic analysis identified acdS genes from a wide range of proteobacteria and actinobacteria. PCR amplification and a genomic search did not find the acdS gene in bacteria belonging to Pseudomonas stutzeri or in the genera Enterobacter, Klebsiella or Bacillus. We showed that differentiating the acdS gene and ACC deaminase from their homologs was crucial for the molecular identification of bacteria containing ACC deaminase and for understanding the evolution of the acdS gene. We provide an effective method for screening and identifying bacteria containing ACC deaminase.

  2. Functions and Regulation of RNA Editing by ADAR Deaminases

    PubMed Central

    Nishikura, Kazuko

    2010-01-01

    One type of RNA editing converts adenosines to inosines (A→I editing) in double-stranded RNA (dsRNA) substrates. A→I RNA editing is mediated by adenosine deaminase acting on RNA (ADAR) enzymes. A→I RNA editing of protein-coding sequences of a limited number of mammalian genes results in recoding and subsequent alterations of their functions. However, A→I RNA editing most frequently targets repetitive RNA sequences located within introns and 5′ and 3′ untranslated regions (UTRs). Although the biological significance of noncoding RNA editing remains largely unknown, several possibilities, including its role in the control of endogenous short interfering RNAs (esiRNAs), have been proposed. Furthermore, recent studies have revealed that the biogenesis and functions of certain microRNAs (miRNAs) are regulated by the editing of their precursors. Here, I review the recent findings that indicate new functions for A→I editing in the regulation of noncoding RNAs and for interactions between RNA editing and RNA interference mechanisms. PMID:20192758

  3. Phosphodiesterase 2 negatively regulates adenosine-induced transcription of the tyrosine hydroxylase gene in PC12 rat pheochromocytoma cells.

    PubMed

    Makuch, Edyta; Kuropatwa, Marianna; Kurowska, Ewa; Ciekot, Jaroslaw; Klopotowska, Dagmara; Matuszyk, Janusz

    2014-07-05

    Adenosine induces expression of the tyrosine hydroxylase (TH) gene in PC12 cells. However, it is suggested that atrial natriuretic peptide (ANP) inhibits expression of this gene. Using real-time PCR and luciferase reporter assays we found that ANP significantly decreases the adenosine-induced transcription of the TH gene. Results of measurements of cyclic nucleotide concentrations indicated that ANP-induced accumulation of cGMP inhibits the adenosine-induced increase in cAMP level. Using selective phosphodiesterase 2 (PDE2) inhibitors and a synthetic cGMP analog activating PDE2, we found that PDE2 is involved in coupling the ANP-triggered signal to the cAMP metabolism. We have established that ANP-induced elevated levels of cGMP as well as cGMP analog stimulate hydrolytic activity of PDE2, leading to inhibition of adenosine-induced transcription of the TH gene. We conclude that ANP mediates negative regulation of TH gene expression via stimulation of PDE2-dependent cAMP breakdown in PC12 cells.

  4. Increased sensitivity of glioma cells to 5-fluorocytosine following photo-chemical internalization enhanced nonviral transfection of the cytosine deaminase suicide gene.

    PubMed

    Wang, Frederick; Zamora, Genesis; Sun, Chung-Ho; Trinidad, Anthony; Chun, Changho; Kwon, Young Jik; Berg, Kristian; Madsen, Steen J; Hirschberg, Henry

    2014-05-01

    Despite advances in surgery, chemotherapy and radiotherapy, the outcomes of patients with GBM have not significantly improved. Tumor recurrence in the resection margins occurs in more than 80% of cases indicating aggressive treatment modalities, such as gene therapy are warranted. We have examined photochemical internalization (PCI) as a method for the non-viral transfection of the cytosine deaminase (CD) suicide gene into glioma cells. The CD gene encodes an enzyme that can convert the nontoxic antifungal agent, 5-fluorocytosine, into the chemotherapeutic drug, 5-fluorouracil. Multicell tumor spheroids derived from established rat and human glioma cell lines were used as in vitro tumor models. Plasmids containing either the CD gene alone or together with the uracil phosphoribosyl transferase (UPRT) gene combined with the gene carrier protamine sulfate were employed in all experiments.PCI was performed with the photosensitizer AlPcS2a and 670 nm laser irradiance. Protamine sulfate/CD DNA polyplexes proved nontoxic but inefficient transfection agents due to endosomal entrapment. In contrast, PCI mediated CD gene transfection resulted in a significant inhibition of spheroid growth in the presence of, but not in the absence of, 5-FC. Repetitive PCI induced transfection was more efficient at low CD plasmid concentration than single treatment. The results clearly indicate that AlPcS2a-mediated PCI can be used to enhance transfection of a tumor suicide gene such as CD, in malignant glioma cells and cells transfected with both the CD and UPRT genes had a pronounced bystander effect.

  5. Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies

    PubMed Central

    Boison, Detlev

    2009-01-01

    Deficiencies in the brain’s own adenosine-based seizure control system contribute to seizure generation. Consequently, reconstitution of adenosinergic neuromodulation constitutes a rational approach for seizure control. This review will critically discuss focal adenosine augmentation strategies and their potential for antiepileptic and disease modifying therapy. Due to systemic side effects of adenosine focal adenosine augmentation – ideally targeted to an epileptic focus – becomes a therapeutic necessity. This has experimentally been achieved in kindled seizure models as well as in post status epilepticus models of spontaneous recurrent seizures using three different therapeutic strategies that will be discussed here: (i) Polymer-based brain implants that were loaded with adenosine; (ii) Brain implants comprised of cells engineered to release adenosine and embedded in a cell-encapsulation device; (iii) Direct transplantation of stem cells engineered to release adenosine. To meet the therapeutic goal of focal adenosine augmentation, genetic disruption of the adenosine metabolizing enzyme adenosine kinase (ADK) in rodent and human cells was used as a molecular strategy to induce adenosine release from cellular brain implants, which demonstrated antiepileptic and neuroprotective properties. New developments and therapeutic challenges in using AATs for epilepsy therapy will critically be evaluated. PMID:19428218

  6. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa

    PubMed Central

    Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R.; Zhou, Rong; Hegedus, Dwayne D.

    2016-01-01

    Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30–50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content. PMID:28018305

  7. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa.

    PubMed

    Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R; Zhou, Rong; Hegedus, Dwayne D

    2016-01-01

    Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30-50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content.

  8. Enhanced EJ Cell Killing of 125I Radiation by Combining with Cytosine Deaminase Gene Therapy Regulated by Synthetic Radio-Responsive Promoter

    PubMed Central

    Li, Ling; Kang, Lei; Wang, Rong-Fu; Yan, Ping; Zhao, Qian; Yin, Lei; Guo, Feng-qin

    2015-01-01

    Abstract Aim: To investigate the enhancing effect of radionuclide therapy by the therapeutic gene placed under the control of radio-responsive promoter. Methods: The recombinant lentivirus E8-codA-GFP, including a synthetic radiation-sensitive promoter E8, cytosine deaminase (CD) gene, and green fluorescent protein gene, was constructed. The gene expression activated by 125I radiation was assessed by observation of green fluorescence. The ability of converting 5-fluorocytosine (5-FC) to 5-fluorourial (5-FU) by CD enzyme was assessed by high-performance liquid chromatography. The viability of the infected cells exposed to 125I in the presence of 5-FC was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the infected cells exposed to 125I alone served as negative control and 5-FU as positive control. Results: The recombinant lentiviral vector was constructed successfully. On exposure of infected cells to 125I, green fluorescence can be observed and 5-FU can be detected. MTT assay showed that the survival rate for infected cells treated with 125I was lower compared with the 125I control group, but higher than the positive control group. Conclusion: The synthetic promoter E8 can induce the expression of downstream CD gene under 125I radiation, and the tumor killing effect of 125I can be enhanced by combining CD gene therapy with radiosensitive promoter. PMID:26382009

  9. Absence of a gene encoding cytosine deaminase in the genome of the agaricomycete Coprinopsis cinerea enables simple marker recycling through 5-fluorocytosine counterselection.

    PubMed

    Nakazawa, Takehito; Honda, Yoichi

    2015-08-01

    Coprinopsis cinerea is a model species for molecular genetics studies of sexual development in agaricomycetes or homobasidiomycetes. Recently, efficient gene targeting was established in this fungus by generating Cc.ku70 or Cc.lig4 disruptants. To determine the molecular mechanisms underlying sexual development, which involves many genes, generating multiple gene disruptants is required. However, the number of transformation markers available for C. cinerea is limited. This problem would be solved by establishing marker recycling. In this study, we found that C. cinerea lacks a gene encoding a homolog of Saccharomyces cerevisiae cytosine deaminase (Fcy1p) in its genome, which is present in many other fungi. We also observed that C. cinerea is resistant to 5-fluorocytosine. Based on these findings, we established a simple marker recycling method in this fungus using 5-fluorocytosine counterselection after heterologous expression of FCY1 derived from Pleurotus ostreatus, together with the hygromycin resistance gene. This study proposes a simple genetic manipulation system that can be performed using wild-type strains of several fungi that lack a gene homologous to S. cerevisiae FCY1 in their genomes.

  10. Reversible MRI findings in a case of acute intermittent porphyria with a novel mutation in the porphobilinogen deaminase gene.

    PubMed

    Yang, Jing; Yang, Hang; Chen, Qianlong; Hua, Baolai; Zhu, Tienan; Zhao, Yongqiang; Yu, Xuezhong; Zhu, Huadong; Zhou, Zhou

    2017-03-01

    Acute intermittent porphyria (AIP) is an autosomal dominant disorder caused by a partial deficiency of porphobilinogen deaminase (PBGD), the third enzyme in the of heme biosynthetic pathway. It can affect the autonomic, peripheral, and central nervous system. Posterior reversible encephalopathy syndrome is a clinicoradiological entity characterized by headache, seizures, altered consciousness, and visual disorder associated with potentially reversible neuroradiological abnormalities predominantly in the parieto-occipital lobes. Establishing accurate diagnoses of the patient and asymptomatic family members with AIP involves identifying the PBGD enzyme mutations directly. In this study, we report a 28-year-old woman with acute intermittent porphyria who presented with radiological manifestations suggestive of posterior reversible encephalopathy syndrome, she had a novel PBGD frame shift mutation, base 875 and 876 have been deleted resulting in glutamine to a stop codon (Gln292fs), in a Chinese family.

  11. Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy.

    PubMed

    Young, D; Fong, D M; Lawlor, P A; Wu, A; Mouravlev, A; McRae, M; Glass, M; Dragunow, M; During, M J

    2014-12-01

    Astrocytes are an attractive cell target for gene therapy, but the validation of new therapeutic candidates is needed. We determined whether adeno-associated viral (AAV) vector-mediated overexpression of glutamine synthetase (GS) or excitatory amino-acid transporter 2 (EAAT2), or expression of microRNA targeting adenosine kinase (miR-ADK) in hippocampal astrocytes in the rat brain could modulate susceptibility to kainate-induced seizures and neuronal cell loss. Transgene expression was found predominantly in astrocytes following direct injection of glial-targeting AAV9 vectors by 3 weeks postinjection. ADK expression in miR-ADK vector-injected rats was reduced by 94-96% and was associated with an ~50% reduction in the duration of kainate-induced seizures and greater protection of dentate hilar neurons but not CA3 neurons compared with miR-control vector-injected rats. In contrast, infusion of AAV-GS and EAAT2 vectors did not afford any protection against seizures or neuronal damage as the level of transcriptional activity of the glial fibrillary acidic promoter was too low to drive any significant increase in transgenic GS or EAAT2 relative to the high endogenous levels of these proteins. Our findings support ADK as a prime therapeutic target for gene therapy of temporal lobe epilepsy and suggest that alternative approaches including the use of stronger glial promoters are needed to increase transgenic GS and EAAT2 expression to levels that may be required to affect seizure induction and propagation.

  12. Engineering and optimising deaminase fusions for genome editing

    PubMed Central

    Yang, Luhan; Briggs, Adrian W.; Chew, Wei Leong; Mali, Prashant; Guell, Marc; Aach, John; Goodman, Daniel Bryan; Cox, David; Kan, Yinan; Lesha, Emal; Soundararajan, Venkataramanan; Zhang, Feng; Church, George

    2016-01-01

    Precise editing is essential for biomedical research and gene therapy. Yet, homology-directed genome modification is limited by the requirements for genomic lesions, homology donors and the endogenous DNA repair machinery. Here we engineered programmable cytidine deaminases and test if we could introduce site-specific cytidine to thymidine transitions in the absence of targeted genomic lesions. Our programmable deaminases effectively convert specific cytidines to thymidines with 13% efficiency in Escherichia coli and 2.5% in human cells. However, off-target deaminations were detected more than 150 bp away from the target site. Moreover, whole genome sequencing revealed that edited bacterial cells did not harbour chromosomal abnormalities but demonstrated elevated global cytidine deamination at deaminase intrinsic binding sites. Therefore programmable deaminases represent a promising genome editing tool in prokaryotes and eukaryotes. Future engineering is required to overcome the processivity and the intrinsic DNA binding affinity of deaminases for safer therapeutic applications. PMID:27804970

  13. [60]Fullerene derivative modulates adenosine and metabotropic glutamate receptors gene expression: a possible protective effect against hypoxia

    PubMed Central

    2014-01-01

    Background Glutamate, the main excitatory neurotransmitter, is involved in learning and memory processes but at higher concentration results excitotoxic causing degeneration and neuronal death. Adenosine is a nucleoside that exhibit neuroprotective effects by modulating of glutamate release. Hypoxic and related oxidative conditions, in which adenosine and metabotropic glutamate receptors are involved, have been demonstrated to contribute to neurodegenerative processes occurring in certain human pathologies. Results Human neuroblastoma cells (SH-SY5Y) were used to evaluate the long time (24, 48 and 72 hours) effects of a [60]fullerene hydrosoluble derivative (t3ss) as potential inhibitor of hypoxic insult. Low oxygen concentration (5% O2) caused cell death, which was avoided by t3ss exposure in a concentration dependent manner. In addition, gene expression analysis by real time PCR of adenosine A1, A2A and A2B and metabotropic glutamate 1 and 5 receptors revealed that t3ss significantly increased A1 and mGlu1 expression in hypoxic conditions. Moreover, t3ss prevented the hypoxia-induced increase in A2A mRNA expression. Conclusions As t3ss causes overexpression of adenosine A1 and metabotropic glutamate receptors which have been shown to be neuroprotective, our results point to a radical scavenger protective effect of t3ss through the enhancement of these neuroprotective receptors expression. Therefore, the utility of these nanoparticles as therapeutic target to avoid degeneration and cell death of neurodegenerative diseases is suggested. PMID:25123848

  14. Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: a strategy for the isolation of nuclear mutations that affect chloroplast gene expression.

    PubMed

    Young, Rosanna E B; Purton, Saul

    2014-12-01

    Negative selectable markers are useful tools for forward-genetic screens aimed at identifying trans-acting factors that are required for expression of specific genes. Transgenic lines harbouring the marker fused to a gene element, such as a promoter, may be mutagenized to isolate loss-of-function mutants able to survive under selection. Such a strategy allows the molecular dissection of factors that are essential for expression of the gene. Expression of individual chloroplast genes in plants and algae typically requires one or more nuclear-encoded factors that act at the post-transcriptional level, often through interaction with the 5' UTR of the mRNA. To study such nuclear control further, we have developed the Escherichia coli cytosine deaminase gene codA as a conditional negative selectable marker for use in the model green alga Chlamydomonas reinhardtii. We show that a codon-optimized variant of codA with three amino acid substitutions confers sensitivity to 5-fluorocytosine (5-FC) when expressed in the chloroplast under the control of endogenous promoter/5' UTR elements from the photosynthetic genes psaA or petA. UV mutagenesis of the psaA transgenic line allowed recovery of 5-FC-resistant, photosynthetically deficient lines harbouring mutations in the nuclear gene for the factor TAA1 that is required for psaA translation. Similarly, the petA line was used to isolate mutants of the petA mRNA stability factor MCA1 and the translation factor TCA1. The codA marker may be used to identify critical residues in known nuclear factors and to aid the discovery of additional factors required for expression of chloroplast genes.

  15. Role of adenosine in postprandial and reactive hyperemia in canine jejunum.

    PubMed

    Sawmiller, D R; Chou, C C

    1992-10-01

    The role of adenosine in postprandial jejunal hyperemia was investigated by determining the effect of placement of predigested food into the jejunal lumen on blood flow and oxygen consumption before and during intra-arterial infusion of dipyridamole (1.5 microM arterial concn) or adenosine deaminase (9 U/ml arterial concn) in anesthetized dogs. Neither drug significantly altered resting jejunal blood flow and oxygen consumption. Before dipyridamole or deaminase, food placement increased blood flow by 30-36%, 26-42%, and 21-46%, and oxygen consumption by 13-22%, 21-22%, and 26-29%, during 0- to 3-, 4- to 7-, and 8- to 11-min placement periods, respectively. Adenosine deaminase abolished the entire 11-min hyperemia, whereas dipyridamole significantly enhanced the initial 7-min hyperemia (45-49%). Both drugs abolished the initial 7-min food-induced increase in oxygen consumption. Dipyridamole attenuated (14%), whereas deaminase did not alter (28%), the increased oxygen consumption that occurred at 8-11 min. Adenosine deaminase also prevented the food-induced increase in venoarterial adenosine concentration difference. In separate series of experiments, luminal placement of food significantly increased jejunal lymphatic adenosine concentration and release. Also, reactive hyperemia was accompanied by an increase in venous adenosine concentration and release. This study provides further evidence to support the thesis that adenosine plays a role in postprandial and reactive hyperemia in the canine jejunum.

  16. In silico structural and functional analysis of Mesorhizobium ACC deaminase.

    PubMed

    Pramanik, Krishnendu; Soren, Tithi; Mitra, Soumik; Maiti, Tushar Kanti

    2017-02-11

    Nodulation is one of the very important processes of legume plants as it is the initiating event of fixing nitrogen. Although ethylene has essential role in normal plant metabolism but it has also negative impact on plants particularly in nodule formation in legume plants. It is also produced due to a variety of biotic or abiotic stresses. 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase is a rhizobial enzyme which cleaves ACC (immediate precursor of ethylene) into α-ketobutyrate and ammonia. As a result, the level of ethylene from the plant cells is decreased and the negative impact of ethylene on nodule formation is reduced. ACC deaminase is widely studied in several plant growth promoting rhizobacterial (PGPR) strains including many legume nodulating bacteria like Mesorhizobium sp. It is an important symbiotic nitrogen fixer belonging to the class - alphaproteobacteria under the order Rhizobiales. ACC deaminase has positive role in Legume-rhizobium symbiosis. Rhizobial ACC deaminase has the potentiality to reduce the adverse effects of ethylene, thereby triggering the nodulation process. The present study describes an in silico comparative structural (secondary structure prediction, homology modeling) and functional analysis of ACC deaminase from Mesorhizobium spp. to explore physico-chemical properties using a number of bio-computational tools. M. loti was selected as a representative species of Mesorhizobium genera for 3D modelling of ACC deaminase protein. Correlation by the phylogenetic relatedness on the basis of both ACC deaminase enzymes and respective acdS genes of different strains of Mesorhizobium has also studied.

  17. Localization of the A{sub 3} adenosine receptor gene (ADORA3) to human chromosome 1p

    SciTech Connect

    Monitto, C.L.; Levitt, R.C.; Holroyd, K.J.

    1995-04-10

    Adenosine modulates important physiologic functions involving the cardiovascular system, brain, kidneys, lungs, GI tract, and immune system. To date four adenosine receptors have been identified: A{sub 1}, A{sub 2a}, A{sub 2b}, and A{sub 3}. Activation of these receptors results in inhibition (A{sub 1} and A{sub 3}) or stimulation (A{sub 2a} and A{sub 2b}) of intracellular adenyl cyclase activity, stimulation of K{sup +} flux, inhibition of Ca{sup 2+} flux, and modulation of inositol phospholipid turnover. A{sub 3} receptors have been identified and sequenced in the testes, brain, lung, liver, kidney, and heart of various species, including the rat, mouse, and human. A{sub 3} receptor activation is responsible for release of inflammatory mediators from mast cells, which can cause allergic bronchoconstriction. In addition, they can produce systemic vasodilation and locomotor depression via activation of A{sub 3} receptors in the brain. Given the potential importance of A{sub 3} receptor activity in the pathogenesis of pulmonary, cardiovascular, and central nervous system disease states, we set out to localize the human A{sub 3} adenosine receptor gene (ADORA3). 9 refs., 1 fig.

  18. Decreased survival in normal karyotype AML with single-nucleotide polymorphisms in genes encoding the AraC metabolizing enzymes cytidine deaminase and 5'-nucleotidase.

    PubMed

    Falk, Ingrid Jakobsen; Fyrberg, Anna; Paul, Esbjörn; Nahi, Hareth; Hermanson, Monica; Rosenquist, Richard; Höglund, Martin; Palmqvist, Lars; Stockelberg, Dick; Wei, Yuan; Gréen, Henrik; Lotfi, Kourosh

    2013-12-01

    De novo acute myeloid leukemia with normal karyotype (NK-AML) comprises a large group of patients with no common cytogenetic alterations and with a large variation in treatment response. Single-nucleotide polymorphisms (SNPs) in genes related to the metabolism of the nucleoside analogue AraC, the backbone in AML treatment, might affect drug sensitivity and treatment outcome. Therefore, SNPs may serve as prognostic biomarkers aiding clinicians in individualized treatment decisions, with the aim of improving patient outcomes. We analyzed polymorphisms in genes encoding cytidine deaminase (CDA 79A>C rs2072671 and -451C>T rs532545), 5'-nucleotidase (cN-II 7A>G rs10883841), and deoxycytidine kinase (DCK 3'UTR 948T>C rs4643786) in 205 de novo NK-AML patients. In FLT3-internal tandem duplication (ITD)-positive patients, the CDA 79C/C and -451T/T genotypes were associated with shorter overall survival compared to other genotypes (5 vs. 24 months, P < 0.001 and 5 vs. 23 months, P = 0.015, respectively), and this was most pronounced in FLT3-ITD-positive/NPM1-positive patients. We observed altered in vitro sensitivity to topoisomerase inhibitory drugs, but not to nucleoside analogues, and a decrease in global DNA methylation in cells carrying both CDA variant alleles. A shorter survival was also observed for the cN-II variant allele, but only in FLT3-ITD-negative patients (25 vs. 31 months, P = 0.075). Our results indicate that polymorphisms in genes related to nucleoside analog drug metabolism may serve as prognostic markers in de novo NK-AML.

  19. A bacterial gene codA encoding cytosine deaminase is an effective conditional negative selectable marker in Glycine max

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Conditional negative selection is a powerful technique whereby the absence of a gene product allows survival in otherwise lethal conditions. In plants, the Escherichia coli gene codA has been employed as a negative selection marker. CodA is a conditionally lethal dominant gene encoding cy...

  20. Halogenated pyrrolopyrimidine analogues of adenosine from marine organisms: pharmacological activities and potent inhibition of adenosine kinase.

    PubMed

    Davies, L P; Jamieson, D D; Baird-Lambert, J A; Kazlauskas, R

    1984-02-01

    Two novel halogenated pyrrolopyrimidine analogues of adenosine, isolated from marine sources, have been examined for pharmacological and biochemical activities. 4-Amino-5-bromo-pyrrolo[2,3-d]pyrimidine, from a sponge of the genus Echinodictyum, had bronchodilator activity at least as potent as theophylline but with a different biochemical profile; unlike theophylline it had no antagonist activity at CNS adenosine receptors and it was quite a potent inhibitor of adenosine uptake and adenosine kinase in brain tissue. 5'-Deoxy-5-iodotubercidin, isolated from the red alga Hypnea valentiae, caused potent muscle relaxation and hypothermia when injected into mice. This compound was a very potent inhibitor of adenosine uptake into rat and guinea-pig brain slices and an extremely potent inhibitor of adenosine kinase from guinea-pig brain and rat brain and liver. Neither of these two pyrrolopyrimidine analogues was a substrate for, or an inhibitor of, adenosine deaminase. Neither compound appeared to have any direct agonist activity on guinea-pig brain adenosine-stimulated adenylate cyclase (A2 adenosine receptors). 5'-Deoxy-5-iodotubercidin is unique in two respects: it appears to be the first naturally-occurring example of a 5'-deoxyribosyl nucleoside and is the first example of a specifically iodinated nucleoside from natural sources. It may be the most potent adenosine kinase inhibitor yet described and, by virtue of its structure, may prove to be the most specific.

  1. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas

    PubMed Central

    Chung, Taemoon; Na, Juri; Kim, Young-il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy. PMID:27446484

  2. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas.

    PubMed

    Chung, Taemoon; Na, Juri; Kim, Young-Il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy.

  3. Metabolite gene regulation: imidazole and imidazole derivatives which circumvent cyclic adenosine 3',5'-monophosphate in induction of the Escherichia coli L-arabinose operon.

    PubMed

    Kline, E L; Bankaitis, V A; Brown, C S; Montefiori, D C

    1980-02-01

    Imidazole, histidine, histamine, histidinol phosphate, urocanic acid, or imidazolepropionic acid were shown to induce the L-arabinose operon in the absence of cyclic adenosine 3',5'-monophosphate. Induction was quantitated by measuring the increased differential rate of synthesis of L-arabinose isomerase in Escherichia coli strains which carried a deletion of the adenyl cyclase gene. The crp gene product (cyclic adenosine 3',5'-monophosphate receptor protein) and the araC gene product (P2) were essential for induction of the L-arabinose operon by imidazole and its derivatives. These compounds were unable to circumvent the cyclic adenosine 3',5'-monophosphate in the induction of the lactose or the maltose operons. The L-arabinose regulon was catabolite repressed upon the addition of glucose to a strain carrying an adenyl cyclase deletion growing in the presence of L-arabinose with imidazole. These results demonstrated that several imidazole derivatives may be involved in metabolite gene regulation (23).

  4. [Cloning of the gene controlling catabolite repression with the participation of cyclic adenosine monophosphate in Escherichia coli K-12].

    PubMed

    Lisenkov, A F; Smirnov, Iu V; Sukhodolets, V V

    1983-05-01

    The crp gene coding for cyclic adenosine monophosphate receptor protein has been cloned on the vehicle pBR325 using restriction endonuclease PstI and the recipient strain C600 crp. The pCAP2 hybrid plasmid obtained has a molecular weight 7.0 MD and in the pBR325 with the insertion into a PstI site. Bacterial clones carrying pCAP2 restore Crp+ phenotype, as judged by the capacity of bacteria for utilization of various carbohydrates and by the activity of catabolite sensitive enzymes.

  5. Studies on Plant Growth Promoting Properties of Fruit-Associated Bacteria from Elettaria cardamomum and Molecular Analysis of ACC Deaminase Gene.

    PubMed

    Jasim, B; Anish, Mathew Chacko; Shimil, Vellakudiyan; Jyothis, Mathew; Radhakrishnan, E K

    2015-09-01

    Endophytic microorganisms have been reported to have diverse plant growth promoting mechanisms including phosphate solubilization, N2 fixation, production of phyto-hormones and ACC (1-aminocyclopropane-1-carboxylate) deaminase and antiphyto-pathogenic properties. Among these, ACC deaminase production is very important because of its regulatory effect on ethylene which is a stress hormone with precise role in the control of fruit development and ripening. However, distribution of these properties among various endophytic bacteria associated with fruit tissue and its genetic basis is least investigated. In the current study, 11 endophytic bacteria were isolated and identified from the fruit tissue of Elettaria cardamomum and were studied in detail for various plant growth promoting properties especially ACC deaminase activity using both culture-based and PCR-based methods. PCR-based screening identified the isolates EcB 2 (Pantoea sp.), EcB 7 (Polaromonas sp.), EcB 9 (Pseudomonas sp.), EcB 10 (Pseudomonas sp.) and EcB 11 (Ralstonia sp.) as positive for ACC deaminase. The PCR products were further subjected to sequence analysis which proved the similarity of the sequences identified in the study with ACC deaminase sequences reported from other sources. The detailed bioinformatic analysis of the sequence including homology-based modelling and molecular docking confirmed the sequences to have ACC deaminase activity. The docking of the modelled proteins was done using patch dock, and the detailed scrutiny of the protein ligand interaction revealed conservation of key amino acids like Lys51, Ser78, Tyr268 and Tyr294 which play important role in the enzyme activity. These suggest the possible regulatory effect of these isolates on fruit physiology.

  6. Activation of neuronal adenosine A1 receptors suppresses secretory reflexes in the guinea pig colon.

    PubMed

    Cooke, H J; Wang, Y; Liu, C Y; Zhang, H; Christofi, F L

    1999-02-01

    The role of adenosine A1 receptors (A1R) in reflex-evoked short-circuit current (Isc) indicative of chloride secretion was studied in the guinea pig colon. The A1R antagonist 8-cyclopentyltheophylline (CPT) enhanced reflex-evoked Isc. Adenosine deaminase and the nucleoside transport inhibitor S-(4-nitrobenzyl)-6-thioinosine enhanced and reduced reflex-induced Isc, respectively. The A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA) inhibited reflex-evoked Isc at nanomolar concentrations, and its action was antagonized by CPT. In the presence of either N-acetyl-5-hydroxytryptophyl-5-hydroxytryptophan amide to block the 5-hydroxytryptamine (5-HT)-mediated pathway or piroxicam to block the prostaglandin-mediated pathway, CCPA reduced the residual reflex-evoked Isc. CCPA reduced the response to a 5-HT pulse without affecting the tetrodotoxin-insensitive Isc responses to carbachol or forskolin. Immunoreactivity for A1R was detected in the membrane (10% of neurons) and cytoplasm (90% of neurons) of neural protein gene product 9.5-immunoreactive (or S-100-negative) submucosal neurons, in glia, and in the muscularis mucosa. A1R immunoreactivity in a majority of neurons remained elevated in the cytoplasm despite preincubation with adenosine deaminase or CPT. A1R immunoreactivity colocalized in synaptophysin-immunoreactive presynaptic varicose nerve terminals. The results indicate that endogenous adenosine binding to high-affinity A1R on submucosal neurons acts as a physiological brake to suppress reflex-evoked Isc indicative of chloride secretion.

  7. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder.

    PubMed

    Freitag, Christine M; Agelopoulos, Konstantin; Huy, Ellen; Rothermundt, Matthias; Krakowitzky, Petra; Meyer, Jobst; Deckert, Jürgen; von Gontard, Alexander; Hohoff, Christa

    2010-01-01

    Autism spectrum disorders (ASDs) are heterogeneous disorders presenting with increased rates of anxiety. The adenosine A(2A) receptor gene (ADORA2A) is associated with panic disorder and is located on chromosome 22q11.23. Its gene product, the adenosine A(2A) receptor, is strongly expressed in the caudate nucleus, which also is involved in ASD. As autistic symptoms are increased in individuals with 22q11.2 deletion syndrome, and large 22q11.2 deletions and duplications have been observed in ASD individuals, in this study, 98 individuals with ASD and 234 control individuals were genotyped for eight single-nucleotide polymorphisms in ADORA2A. Nominal association with the disorder was observed for rs2236624-CC, and phenotypic variability in ASD symptoms was influenced by rs3761422, rs5751876 and rs35320474. In addition, association of ADORA2A variants with anxiety was replicated for individuals with ASD. Findings point toward a possible mediating role of ADORA2A variants on phenotypic expression in ASD that need to be replicated in a larger sample.

  8. A study of three polymorphic sites of ADA gene in colon cancer.

    PubMed

    Spina, C; Saccucci, P; Cozzoli, E; Bottini, E; Gloria-Bottini, F

    2010-12-01

    Adenosine inhibits the immune response in tumors. Adenosine deaminase (ADA) controls adenosine level and as ecto-enzyme acts as costimulatory molecule of adenosine receptors and/or CD26. We examined ADA₁, ADA₂, ADA₆ polymorphic sites of ADA gene in 109 subjects with colon cancer from Rome's population and in 246 blood donors as controls from the same population. In colon cancer ADA₁*2/ADA₂*1 haplotype is more represented, while ADA₁*2/ADA₂*2 is less represented than in controls. ADA₂*2/ADA₆*2 is less represented in patients than in controls. Polymorphic sites of ADA might influence cell-mediated anti-tumor immune responses controlling adenosine level and extraenzymatic protein functions.

  9. Cytotoxic effect of a replication-incompetent adenoviral vector with cytosine deaminase gene driven by L-plastin promoter in hepatocellular carcinoma cells.

    PubMed

    Jung, Kihwa; Kim, Sunja; Lee, Kyumhyang; Kim, Changmin; Chung, Injae

    2007-06-01

    Great expectations are set on gene therapy for the treatment of malignant hepatocellular carcinomas (HCC) in East Asia. Recombinant adenoviral vectors (AV) have been developed in which the L-plastin promoter (LP) regulates the expression of transgenes, in a tumor cell specific manner, resulting in an increase in the therapeutic index. The development of the AdLPCD vector, a replication-incompetent AV, containing a transcription unit of LP and E. coli cytosine deaminase (CD), was reported in our previous work. In the present study, the AdLPCD vector combined with 5-fluorocytosine (5-FC) administration was tested to see if it might have significant utility in the chemosensitization of L-plastin positive HCC. Four HCC cell lines (HepG2, Chang Liver, Huh-7 and SK-Hep-1 cells) were investigated for the expression of LacZ after infecting the cells with the AdLPLacZ vector containing a 2.4 kb fragment of LP and the LacZ gene. Relatively high levels of LP activity were detected in HepG2, followed by Chang Liver cells; whereas, no promoter activity was found in Huh-7 and SK-Hep-1 cells, as determined by AdLPLacZ infection followed by the beta-galactosidase assay. In addition, the results of RT-PCR assays for the detection of endogenous L-plastin mRNA in these cells lines correlated well with those of the beta-galactosidase activity after infection with AdLPLacZ. Based on these data, the cytotoxic effect of AdLPCD/5-FC was evaluated in HepG2 cells. These results indicate that the CD gene delivered by AV could sensitize HepG2 cells to the prodrug, 5-FC. However, the observed effects were insufficient to cause the death of most of cells. This suggests that the screening of patients for an AdLP/5-FC strategy based on AdLPLacZ data might not always guarantee a good therapeutic outcome.

  10. Rhodium Complex and Enzyme Couple Mediated Electrochemical Detection of Adenosine.

    PubMed

    Han, Dawoon; Kim, Hyeong-Mook; Chand, Rohit; Kim, Gyumin; Shin, Ik-Soo; Kim, Yong-Sang

    2015-10-01

    Adenosine is one of the nucleoside which plays an important role in signal transduction and neuromodulation. This work proposes a simple electrochemical assay, comprising two enzymes and rhodium complex based electron transfer mediator, for the detection of adenosine. Sequential reaction of adenosine deaminase and L-glutamic dehydrogenase and the supporting cycle between β-NADH and mediator enable quantitative analysis of adenosine. Role of electron transfer mediator is the conveyance of proton from electrode to β-NAD(+) for regeneration of β-NADH. The electrochemical characteristics of electron transfer mediator were also studied. Real-time adenosine detection was carried out using this multiple enzyme based chronoamperometric assay. The analysis results show a low limit of detection (140 μM) and good correspondence between current signal and the adenosine concentration (R (2) = 0.997).

  11. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings.

    PubMed Central

    Correia-de-Sá, P.; Ribeiro, J. A.

    1994-01-01

    1. The effect of calcitonin gene-related peptide (CGRP) on [3H]-acetylcholine ([3H]-ACh) release from motor nerve endings and its interaction with presynaptic facilitatory A2a-adenosine and nicotinic acetylcholine receptors was studied on rat phrenic nerve-hemidiaphragm preparations loaded with [3H]-choline. 2. CGRP (100-400 nM) increased electrically evoked [3H]-ACh release from phrenic nerve endings in a concentration-dependent manner. 3. The magnitude of CGRP excitation increased with the increase of the stimulation pulse duration from 40 microseconds to 1 ms, keeping the frequency, the amplitude and the train length constants. With 1 ms pulses, the evoked [3H]-ACh release was more intense than with 40 microseconds pulse duration. 4. Both the nicotinic acetylcholine receptor agonist, 1,1-dimethyl-4-phenylpiperazinium, and the A2a adenosine receptor agonist, CGS 21680C, increased evoked [3H]-ACh release, but only CGS 21680C potentiated the facilitatory effect of CGRP. This potentiation was prevented by the A2a adenosine receptor antagonist, PD 115,199. 5. Adenosine deaminase prevented the excitatory effect of CGRP (400 nM) on [3H]-ACh release. This effect was reversed by the non-hydrolysable A2a-adenosine receptor agonist, CGS 21680C. 6. The nicotinic antagonist, tubocurarine, did not significantly change, whereas the A2-adenosine receptor antagonist, PD 115,199, blocked the CGRP facilitation. The A1-adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine, potentiated the CGRP excitatory effect. 7. The results suggest that the facilitatory effect of CGRP on evoked [3H]-ACh release from rat phrenic motor nerve endings depends on the presence of endogenous adenosine which tonically activates A2a-adenosine receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004402

  12. Different mechanisms of extracellular adenosine accumulation by reduction of the external Ca(2+) concentration and inhibition of adenosine metabolism in spinal astrocytes.

    PubMed

    Eguchi, Ryota; Akao, Sanae; Otsuguro, Ken-ichi; Yamaguchi, Soichiro; Ito, Shigeo

    2015-05-01

    Extracellular adenosine is a neuromodulator in the central nervous system. Astrocytes mainly participate in adenosine production, and extracellular adenosine accumulates under physiological and pathophysiological conditions. Inhibition of intracellular adenosine metabolism and reduction of the external Ca(2+) concentration ([Ca(2+)]e) participate in adenosine accumulation, but the precise mechanisms remain unclear. This study investigated the mechanisms underlying extracellular adenosine accumulation in cultured rat spinal astrocytes. The combination of adenosine kinase and deaminase (ADK/ADA) inhibition and a reduced [Ca(2+)]e increased the extracellular adenosine level. ADK/ADA inhibitors increased the level of extracellular adenosine but not of adenine nucleotides, which was suppressed by inhibition of equilibrative nucleoside transporter (ENT) 2. Unlike ADK/ADA inhibition, a reduced [Ca(2+)]e increased the extracellular level not only of adenosine but also of ATP. This adenosine increase was enhanced by ENT2 inhibition, and suppressed by sodium polyoxotungstate (ecto-nucleoside triphosphate diphosphohydrolase inhibitor). Gap junction inhibitors suppressed the increases in adenosine and adenine nucleotide levels by reduction of [Ca(2+)]e. These results indicate that extracellular adenosine accumulation by ADK/ADA inhibition is due to the adenosine release via ENT2, while that by reduction of [Ca(2+)]e is due to breakdown of ATP released via gap junction hemichannels, after which ENT2 incorporates adenosine into the cells.

  13. Adenosine-to-inosine RNA editing meets cancer.

    PubMed

    Dominissini, Dan; Moshitch-Moshkovitz, Sharon; Amariglio, Ninette; Rechavi, Gideon

    2011-11-01

    The role of epigenetics in tumor onset and progression has been extensively addressed. Discoveries in the last decade completely changed our view on RNA. We now realize that its diversity lies at the base of biological complexity. Adenosine-to-inosine (A-to-I) RNA editing emerges a central generator of transcriptome diversity and regulation in higher eukaryotes. It is the posttranscriptional deamination of adenosine to inosine in double-stranded RNA catalyzed by enzymes of the adenosine deaminase acting on RNA (ADAR) family. Thought at first to be restricted to coding regions of only a few genes, recent bioinformatic analyses fueled by high-throughput sequencing revealed that it is a widespread modification affecting mostly non-coding repetitive elements in thousands of genes. The rise in scope is accompanied by discovery of a growing repertoire of functions based on differential decoding of inosine by the various cellular machineries: when recognized as guanosine, it can lead to protein recoding, alternative splicing or altered microRNA specificity; when recognized by inosine-binding proteins, it can result in nuclear retention of the transcript or its degradation. An imbalance in expression of ADAR enzymes with consequent editing dysregulation is a characteristic of human cancers. These alterations may be responsible for activating proto-oncogenes or inactivating tumor suppressors. While unlikely to be an early initiating 'hit', editing dysregulation seems to contribute to tumor progression and thus should be considered a 'driver mutation'. In this review, we examine the contribution of A-to-I RNA editing to carcinogenesis.

  14. Adenine and adenosine salvage in Leishmania donovani.

    PubMed

    Boitz, Jan M; Ullman, Buddy

    2013-08-01

    6-aminopurine metabolism in Leishmania is unique among trypanosomatid pathogens since this genus expresses two distinct routes for adenine salvage: adenine phosphoribosyltransferase (APRT) and adenine deaminase (AAH). To evaluate the relative contributions of APRT and AAH, adenine salvage was evaluated in Δaprt, Δaah, and Δaprt/Δaah null mutants of L. donovani. The data confirm that AAH plays the dominant role in adenine metabolism in L. donovani, although either enzyme alone is sufficient for salvage. Adenosine salvage was also evaluated in a cohort of null mutants. Adenosine is also primarily converted to hypoxanthine, either intracellularly or extracellularly, but can also be phosphorylated to the nucleotide level by adenosine kinase when the predominant pathways are genetically or pharmacologically blocked. These data provide genetic verification for the relative contributions of 6-aminopurine metabolizing pathways in L. donovani and demonstrate that all of the pathways can function under appropriate conditions of genetic or pharmacologic perturbation.

  15. Adenosine receptor neurobiology: overview.

    PubMed

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases.

  16. Phosphorylation of Cytokinin by Adenosine Kinase from Wheat Germ 1

    PubMed Central

    Chen, Chong-Maw; Eckert, Richard L.

    1977-01-01

    Adenosine kinase was partially purified from wheat germ. This enzyme preparation, which was devoid of adenine phosphoribosyltransferase and nearly free of adenosine deaminase but contained adenylate kinase, rapidly phosphorylated adenosine and a cytokinin, N6-(δ2-isopentenyl)adenosine. Electrophoretic analysis indicated that only N6-(δ2-isopentenyl)adenosine-monophosphate was formed from the cytokinin while about 55% AMP, 45% ADP, and a trace of ATP were formed from adenosine. The biosynthesized nucleoside monophosphates were quantitatively hydrolyzed to the corresponding nucleosides by 5′-nucleotidase and the isopentenyl side chain of the phosphorylated cytokinin was not cleaved. The enzyme did not catalyze phosphorylation of inosine. The phosphorylation of the cytokinin and adenosine required ATP and Mg2+. The pH optimum was from 6.8 to 7.2 for both the cytokinin and adenosine. At pH 7 and 37 C the Km and Vmax for the cytokinin were 31 μm and 8.3 nmoles per mg protein per minute, and the values for adenosine were 8.7 μm and 46 nmoles per mg protein per minute. Crude enzyme preparations from tobacco callus tissue and wheat germ phosphorylated N6-(δ2-isopentenyl)adenosine. These preparations also phosphorylated N6-(δ2-isopentenyl)adenine when 5-phosphorylribose-1-pyrophosphate was present. PMID:16659870

  17. RNA Editing by Adenosine Deaminases That Act on RNA

    PubMed Central

    Bass, Brenda L.

    2007-01-01

    ADARs are RNA editing enzymes that target double-stranded regions of nuclear-encoded RNA and viral RNA. These enzymes are particularly abundant in the nervous system, where they diversify the information encoded in the genome, for example, by altering codons in mRNAs. The functions of ADARs in known substrates suggest that the enzymes serve to fine-tune and optimize many biological pathways, in ways that we are only starting to imagine. ADARs are also interesting in regard to the remarkable double-stranded structures of their substrates and how enzyme specificity is achieved with little regard to sequence. This review summarizes ongoing investigations of the enzyme family and their substrates, focusing on biological function as well as biochemical mechanism. PMID:12045112

  18. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance

    PubMed Central

    Nascimento, Francisco X.; Rossi, Márcio J.; Soares, Cláudio R. F. S.; McConkey, Brendan J.; Glick, Bernard R.

    2014-01-01

    The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications. PMID:24905353

  19. Hydroxycarbamide modulates components involved in the regulation of adenosine levels in blood cells from sickle-cell anemia patients.

    PubMed

    Silva-Pinto, Ana C; Dias-Carlos, Carolina; Saldanha-Araujo, Felipe; Ferreira, Flávia I S; Palma, Patrícia V B; Araujo, Amélia G; Queiroz, Regina H C; Elion, Jacques; Covas, Dimas T; Zago, Marco A; Panepucci, Rodrigo A

    2014-09-01

    Recent studies have demonstrated the role of adenosine (ADO) in sickle-cell anemia (SCA). ADO is produced by CD39 and CD73 and converted to inosine by adenosine deaminase (ADA). We evaluated the effects of hydroxycarbamide (HU) treatment on the modulation of adenosine levels in SCA patients. The expressions of CD39, CD73, and CD26 were evaluated by flow cytometry on blood cells in 15 HU-treated and 17 untreated patients and 10 healthy individuals. RNA was extracted from monocytes, and ADA gene expression was quantified by real-time PCR. ADA activity was also evaluated. We found that ADA transcripts were two times higher in monocytes of HU-treated patients, compared with untreated (P = 0.039). Monocytes of HU-treated patients expressed CD26, while monocytes of controls and untreated patients did not (P = 0.023). In treated patients, a lower percentage of T lymphocytes expressed CD39 compared with untreated (P = 0.003), and the percentage of T regulatory (Treg) cells was reduced in the treated group compared with untreated (P = 0.017) and controls (P = 0.0009). Besides, HU-treated patients displayed increased ADA activity, compared with untreated. Our results indicate a novel mechanism of action of HU mediated by the reduction of adenosine levels and its effects on pathophysiological processes in SCA.

  20. Identification, expression, and characterization of Escherichia coli guanine deaminase.

    PubMed

    Maynes, J T; Yuan, R G; Snyder, F F

    2000-08-01

    Using the human cDNA sequence corresponding to guanine deaminase, the Escherichia coli genome was scanned using the Basic Local Alignment Search Tool (BLAST), and a corresponding 439-residue open reading frame of unknown function was identified as having 36% identity to the human protein. The putative gene was amplified, subcloned into the pMAL-c2 vector, expressed, purified, and characterized enzymatically. The 50.2-kDa protein catalyzed the conversion of guanine to xanthine, having a K(m) of 15 microM with guanine and a k(cat) of 3.2 s(-1). The bacterial enzyme shares a nine-residue heavy metal binding site with human guanine deaminase, PG[FL]VDTHIH, and was found to contain approximately 1 mol of zinc per mol of subunit of protein. The E. coli guanine deaminase locus is 3' from an open reading frame which shows homology to a bacterial purine base permease.

  1. Identification, Expression, and Characterization of Escherichia coli Guanine Deaminase

    PubMed Central

    Maynes, Jason T.; Yuan, Richard G.; Snyder, Floyd F.

    2000-01-01

    Using the human cDNA sequence corresponding to guanine deaminase, the Escherichia coli genome was scanned using the Basic Local Alignment Search Tool (BLAST), and a corresponding 439-residue open reading frame of unknown function was identified as having 36% identity to the human protein. The putative gene was amplified, subcloned into the pMAL-c2 vector, expressed, purified, and characterized enzymatically. The 50.2-kDa protein catalyzed the conversion of guanine to xanthine, having a Km of 15 μM with guanine and a kcat of 3.2 s−1. The bacterial enzyme shares a nine-residue heavy metal binding site with human guanine deaminase, PG[FL]VDTHIH, and was found to contain approximately 1 mol of zinc per mol of subunit of protein. The E. coli guanine deaminase locus is 3′ from an open reading frame which shows homology to a bacterial purine base permease. PMID:10913105

  2. High frequency of mutations in exon 10 of the porphobilinogen deaminase gene in patients with a CRIM-positive subtype of acute intermittent porphyria

    SciTech Connect

    Gu, X.F.; Rooij, F. de; Voortman, G.; Velde, K.T.; Nordmann, Y.; Grandchamp, B.

    1992-09-01

    Acute intermittent porphyria (AIP) is an autosomal dominant disease characterized by a partial deficiency of porphobilinogen (PBG) deaminase. Different subtypes of the disease have been defined, and more than 10 different mutations have been described. The authors focused their study on exon 10, since they previously found that three different mutations were located in this exon and that two of them seemed to be relatively common. They used denaturing gradient gel electrophoresis (DGGE) after in vitro amplification to detect all possible mutations in exon 10 in 41 unrelated AIP patients. In about one-fourth of these patients they could distinguish three abnormal migration patterns, indicating the presence of various mutations. Additional sequencing demonstrated the presence of three different single-base substitutions. Two of these mutations had already been described. A third one consisted of a C-to-T transition located at position 499 of the PBG deaminase mRNA and resulted in an Arg-to-Trp substitution. All three mutations were found in patients with crossreacting immunological material (CRIM)-positive forms of AlP. The high frequency of these mutations make DGGE analysis of exon 10 a useful approach allowing the direct detection of the DNA abnormality in most of the families with the CRIM-positive subtype of AlP. 23 refs., 3 figs., 1 tab.

  3. Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity.

    PubMed

    Sun, Kaiqi; Zhang, Yujin; Bogdanov, Mikhail V; Wu, Hongyu; Song, Anren; Li, Jessica; Dowhan, William; Idowu, Modupe; Juneja, Harinder S; Molina, Jose G; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-03-05

    Erythrocyte possesses high sphingosine kinase 1 (SphK1) activity and is the major cell type supplying plasma sphingosine-1-phosphate, a signaling lipid regulating multiple physiological and pathological functions. Recent studies revealed that erythrocyte SphK1 activity is upregulated in sickle cell disease (SCD) and contributes to sickling and disease progression. However, how erythrocyte SphK1 activity is regulated remains unknown. Here we report that adenosine induces SphK1 activity in human and mouse sickle and normal erythrocytes in vitro. Next, using 4 adenosine receptor-deficient mice and pharmacological approaches, we determined that the A2B adenosine receptor (ADORA2B) is essential for adenosine-induced SphK1 activity in human and mouse normal and sickle erythrocytes in vitro. Subsequently, we provide in vivo genetic evidence that adenosine deaminase (ADA) deficiency leads to excess plasma adenosine and elevated erythrocyte SphK1 activity. Lowering adenosine by ADA enzyme therapy or genetic deletion of ADORA2B significantly reduced excess adenosine-induced erythrocyte SphK1 activity in ADA-deficient mice. Finally, we revealed that protein kinase A-mediated extracellular signal-regulated kinase 1/2 activation functioning downstream of ADORA2B underlies adenosine-induced erythrocyte SphK1 activity. Overall, our findings reveal a novel signaling network regulating erythrocyte SphK1 and highlight innovative mechanisms regulating SphK1 activity in normal and SCD.

  4. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID.

    PubMed

    Sauer, Aisha V; Brigida, Immacolata; Carriglio, Nicola; Hernandez, Raisa Jofra; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna; Aiuti, Alessandro

    2012-02-09

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.

  5. Guanine Deaminase Functions as Dihydropterin Deaminase in the Biosynthesis of Aurodrosopterin, a Minor Red Eye Pigment of Drosophila*

    PubMed Central

    Kim, Jaekwang; Park, Sang Ick; Ahn, Chiyoung; Kim, Heuijong; Yim, Jeongbin

    2009-01-01

    Dihydropterin deaminase, which catalyzes the conversion of 7,8-dihydropterin to 7,8-dihydrolumazine, was purified 5850-fold to apparent homogeneity from Drosophila melanogaster. Its molecular mass was estimated to be 48 kDa by gel filtration and SDS-PAGE, indicating that it is a monomer under native conditions. The pI value, temperature, and optimal pH of the enzyme were 5.5, 40 °C, and 7.5, respectively. Interestingly the enzyme had much higher activity for guanine than for 7,8-dihydropterin. The specificity constant (kcat/Km) for guanine (8.6 × 106 m−1·s−1) was 860-fold higher than that for 7,8-dihydropterin (1.0 × 104 m−1·s−1). The structural gene of the enzyme was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis as CG18143, located at region 82A1 on chromosome 3R. The cloned and expressed CG18143 exhibited both 7,8-dihydropterin and guanine deaminase activities. Flies with mutations in CG18143, SUPor-P/Df(3R)A321R1 transheterozygotes, had severely decreased activities in both deaminases compared with the wild type. Among several red eye pigments, the level of aurodrosopterin was specifically decreased in the mutant, and the amount of xanthine and uric acid also decreased considerably to 76 and 59% of the amounts in the wild type, respectively. In conclusion, dihydropterin deaminase encoded by CG18143 plays a role in the biosynthesis of aurodrosopterin by providing one of its precursors, 7,8-dihydrolumazine, from 7,8-dihydropterin. Dihydropterin deaminase also functions as guanine deaminase, an important enzyme for purine metabolism. PMID:19567870

  6. Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma.

    PubMed

    Qin, Yan-Ru; Qiao, Jun-Jing; Chan, Tim Hon Man; Zhu, Ying-Hui; Li, Fang-Fang; Liu, Haibo; Fei, Jing; Li, Yan; Guan, Xin-Yuan; Chen, Leilei

    2014-02-01

    Esophageal squamous cell carcinoma (ESCC), the major histologic form of esophageal cancer, is a heterogeneous tumor displaying a complex variety of genetic and epigenetic changes. Aberrant RNA editing of adenosine-to-inosine (A-to-I), as it is catalyzed by adenosine deaminases acting on RNA (ADAR), represents a common posttranscriptional modification in certain human diseases. In this study, we investigated the status and role of ADARs and altered A-to-I RNA editing in ESCC tumorigenesis. Among the three ADAR enzymes expressed in human cells, only ADAR1 was overexpressed in primary ESCC tumors. ADAR1 overexpression was due to gene amplification. Patients with ESCC with tumoral overexpression of ADAR1 displayed a poor prognosis. In vitro and in vivo functional assays established that ADAR1 functions as an oncogene during ESCC progression. Differential expression of ADAR1 resulted in altered gene-specific editing activities, as reflected by hyperediting of FLNB and AZIN1 messages in primary ESCC. Notably, the edited form of AZIN1 conferred a gain-of-function phenotype associated with aggressive tumor behavior. Our findings reveal that altered gene-specific A-to-I editing events mediated by ADAR1 drive the development of ESCC, with potential implications in diagnosis, prognosis, and treatment of this disease.

  7. Melamine Deaminase and Atrazine Chlorohydrolase: 98 Percent Identical but Functionally Different

    PubMed Central

    Seffernick, Jennifer L.; de Souza, Mervyn L.; Sadowsky, Michael J.; Wackett, Lawrence P.

    2001-01-01

    The gene encoding melamine deaminase (TriA) from Pseudomonas sp. strain NRRL B-12227 was identified, cloned into Escherichia coli, sequenced, and expressed for in vitro study of enzyme activity. Melamine deaminase displaced two of the three amino groups from melamine, producing ammeline and ammelide as sequential products. The first deamination reaction occurred more than 10 times faster than the second. Ammelide did not inhibit the first or second deamination reaction, suggesting that the lower rate of ammeline hydrolysis was due to differential substrate turnover rather than product inhibition. Remarkably, melamine deaminase is 98% identical to the enzyme atrazine chlorohydrolase (AtzA) from Pseudomonas sp. strain ADP. Each enzyme consists of 475 amino acids and differs by only 9 amino acids. AtzA was shown to exclusively catalyze dehalogenation of halo-substituted triazine ring compounds and had no activity with melamine and ammeline. Similarly, melamine deaminase had no detectable activity with the halo-triazine substrates. Melamine deaminase was active in deamination of a substrate that was structurally identical to atrazine, except for the substitution of an amino group for the chlorine atom. Moreover, melamine deaminase and AtzA are found in bacteria that grow on melamine and atrazine compounds, respectively. These data strongly suggest that the 9 amino acid differences between melamine deaminase and AtzA represent a short evolutionary pathway connecting enzymes catalyzing physiologically relevant deamination and dehalogenation reactions, respectively. PMID:11274097

  8. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients

    PubMed Central

    Sauer, Aisha V.; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L.; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S.; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D.; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D’Adamo, Patrizia; Aiuti, Alessandro

    2017-01-01

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency. PMID:28074903

  9. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients.

    PubMed

    Sauer, Aisha V; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D'Adamo, Patrizia; Aiuti, Alessandro

    2017-01-11

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency.

  10. Temporal variations of adenosine metabolism in human blood.

    PubMed

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yáñez, L; Aguilar-Roblero, R; Oksenberg, A; Vega-González, A; Villalobos, L; Rosenthal, L; Fernández-Cancino, F; Drucker-Colín, R; Díaz-Muñoz, M

    1996-08-01

    Eight diurnally active (06:00-23:00 h) subjects were adapted for 2 days to the room conditions where the experiments were performed. Blood sampling for adenosine metabolites and metabolizing enzymes was done hourly during the activity span and every 30 min during sleep. The results showed that adenosine and its catabolites (inosine, hypoxanthine, and uric acid), adenosine synthesizing (S-adenosylhomocysteine hydrolase and 5'-nucleotidase), degrading (adenosine deaminase) and nucleotide-forming (adenosine kinase) enzymes as well as adenine nucleotides (AMP, ADP, and ATP) undergo statistically significant fluctuations (ANOVA) during the 24 h. However, energy charge was invariable. Glucose and lactate chronograms were determined as metabolic indicators. The same data analyzed by the chi-square periodogram and Fourier series indicated ultradian oscillatory periods for all the metabolites and enzymatic activities determined, and 24-h oscillatory components for inosine, hypoxanthine, adenine nucleotides, glucose, and the activities of SAH-hydrolase, 5'-nucleotidase, and adenosine kinase. The single cosinor method showed significant oscillatory components exclusively for lactate. As a whole, these results suggest that adenosine metabolism may play a role as a biological oscillator coordinating and/or modulating the energy homeostasis and physiological status of erythrocytes in vivo and could be an important factor in the distribution of purine rings for the rest of the organism.

  11. Inhibition of AMP deaminase as therapeutic target in cardiovascular pathology.

    PubMed

    Zabielska, Magdalena A; Borkowski, Tomasz; Slominska, Ewa M; Smolenski, Ryszard T

    2015-08-01

    AMP deaminase (AMPD; EC 3.5.4.6) catalyzes hydrolysis of the amino group from the adenine ring of AMP resulting in production of inosine 5'-monophosphate (IMP) and ammonia. This reaction helps to maintain healthy cellular energetics by removing excess AMP that accumulates in energy depleted cells. Furthermore, AMPD permits the synthesis of guanine nucleotides from the larger adenylate pool. This enzyme competes with cytosolic 5'-nucleotidases (c5NT) for AMP. Adenosine, a product of c5NT is a vasodilator, antagonizes inotropic effects of catecholamines and exerts anti-platelet, anti-inflammatory and immunosuppressive activities. The ratio of AMPD/c5NT defines the amount of adenosine produced in adenine nucleotide catabolic pathway. Inhibition of AMPD could alter this ratio resulting in increased adenosine production. Besides the potential effect on adenosine production, elevation of AMP due to inhibition of AMPD could also lead to activation of AMP regulated protein kinase (AMPK) with myriad of downstream events including enhanced energetic metabolism, mitochondrial biogenesis and cytoprotection. While the benefits of these processes are well appreciated in cells such as skeletal or cardiac myocytes its role in protection of endothelium could be even more important. Therapeutic use of AMPD inhibition has been limited due to difficulties with obtaining compounds with adequate characteristics. However, endothelium seems to be the easiest target as effective inhibition of AMPD could be achieved at much lower concentration than in the other types of cells. New generation of AMPD inhibitors has recently been established and its testing in context of endothelial and organ protection could provide important basic knowledge and potential therapeutic tools.

  12. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    PubMed Central

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A1 receptors with 2-chloro-N6-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A1 receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis. PMID:22552934

  13. Transendothelial transport and metabolism of adenosine and inosine in the intact rat aorta

    SciTech Connect

    Kroll, K.; Kelm, M.K.; Buerrig, K.F.S.; Schrader, J.

    1989-06-01

    This study was aimed at defining the role of vascular endothelium in the transport and metabolism of adenosine. For this purpose, endothelium-intact and endothelium-denuded isolated rat aortas, perfused at constant flow (2 ml/min), were prelabeled with 3H-adenosine or 3H-inosine for 10 minutes at concentrations of 0.012-100 microM. Sequestration of adenosine by endothelium was determined from radioactivity recovered during selective endothelial cell removal with deoxycholic acid (0.75% for 15 seconds). In the physiological concentration range of adenosine (0.012-1 microM), fractional sequestration by endothelium was 90-92% of the total adenosine incorporation by the aorta. Endothelial sequestration of inosine at 0.1 microM was 85%. At 100 microM adenosine or inosine, fractional sequestration by aortic endothelium was 33% and 39%, respectively. Analysis of the specific radioactivity of adenine nucleotides extracted from prelabeled aortas indicated that most of the adenosine was incorporated into endothelial adenine nucleotides. Incorporation of inosine into endothelial ATP was approximately 15% that of adenosine. Inhibition of aortic adenosine deaminase with erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) did not influence sequestration of 0.1 microM adenosine, but resulted in a 49% reduction of total endothelial incorporation at 100 microM adenosine. Transfer of radioactive purines from the endothelium to underlying smooth muscle after prelabeling was equivalent to only 1%/hr of total endothelial radioactivity.

  14. Regulatory factors governing adenosine-to-inosine (A-to-I) RNA editing.

    PubMed

    Hong, HuiQi; Lin, Jaymie Siqi; Chen, Leilei

    2015-03-31

    Adenosine-to-inosine (A-to-I) RNA editing, the most prevalent mode of transcript modification in higher eukaryotes, is catalysed by the adenosine deaminases acting on RNA (ADARs). A-to-I editing imposes an additional layer of gene regulation as it dictates various aspects of RNA metabolism, including RNA folding, processing, localization and degradation. Furthermore, editing events in exonic regions contribute to proteome diversity as translational machinery decodes inosine as guanosine. Although it has been demonstrated that dysregulated A-to-I editing contributes to various diseases, the precise regulatory mechanisms governing this critical cellular process have yet to be fully elucidated. However, integration of previous studies revealed that regulation of A-to-I editing is multifaceted, weaving an intricate network of auto- and transregulations, including the involvement of virus-originated factors like adenovirus-associated RNA. Taken together, it is apparent that tipping of any regulatory components will have profound effects on A-to-I editing, which in turn contributes to both normal and aberrant physiological conditions. A complete understanding of this intricate regulatory network may ultimately be translated into new therapeutic strategies against diseases driven by perturbed RNA editing events. Herein, we review the current state of knowledge on the regulatory mechanisms governing A-to-I editing and propose the role of other co-factors that may be involved in this complex regulatory process.

  15. Association of G22A and A4223C ADA1 gene polymorphisms and ADA activity with PCOS.

    PubMed

    Salehabadi, Mahshid; Farimani, Marzieh; Tavilani, Heidar; Ghorbani, Marzieh; Poormonsefi, Faranak; Poorolajal, Jalal; Shafiei, Gholamreza; Ghasemkhani, Neda; Khodadadi, Iraj

    2016-06-01

    Adenosine deaminase-1 (ADA1) regulates the concentration of adenosine as the main modulator of oocyte maturation. There is compelling evidence for the association of ADA1 gene polymorphisms with many diseases but the importance of ADA1 polymorphisms in polycystic ovary syndrome (PCOS) has not been studied before. This study investigates serum total ADA activity (tADA), ADA1 and ADA2 isoenzyme activities, and genotype and allele frequencies of G22A and A4223C polymorphisms in healthy and PCOS women. In this case-control study 200 PCOS patients and 200 healthy women were enrolled. Genomic DNA was extracted from whole blood and the PCR-RFLP technique was used to determine the G22A and A4223C variants. The genotype frequencies were calculated and the association between polymorphic genotypes and enzyme activities were determined. tADA activity was significantly lower in the PCOS group compared with the control group (27.76±6.0 vs. 39.63±7.48, respectively). PCOS patients also showed reduced activity of ADA1 and ADA2. PCOS was not associated with G22A polymorphism whereas AA, AC, and CC genotypes of A4223C polymorphism were found distributed differently between the control and the PCOS women where the C allele showed a strong protective role for PCOS (odds ratio=1.876, p=0.033). The present study for the first time showed that lower ADA activity may be involved in pathogenesis of PCOS by maintaining a higher concentration of adenosine affecting follicular growth. As a novel finding, we also showed great differences in genotype distribution and allele frequencies of A4223C polymorphism between groups indicating a protective role for C allele against PCOS. AbbreviationsADA: adenosine deaminase PCOS: polycystic ovary syndrome PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism tADA: total adenosine deaminase.

  16. Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use.

    PubMed

    Kim, Kyoung-Yoon; Yi, Bo-Rim; Lee, Hye-Rim; Kang, Nam-Hee; Jeung, Eui-Bae; Kim, Seung U; Choi, Kyung-Chul

    2012-04-01

    Genetically engineered stem cells (GESTECs) producing suicide enzymes and immunotherapeutic cytokines have therapeutic effects on tumors, and may possibly reduce the side effects of toxic drugs used for treatments. Suicide enzymes can convert non-toxic pro-drugs to toxic metabolites that can reduce tumor growth. Cytosine deaminase (CD) is a suicide enzyme that metabolizes a non-toxic pro-drug, 5-fluorocytosine (5-FC), into the cytotoxic agent, 5-fluorouracil (5-FU). As an immunotherapeutic agent, human interferon-β (IFN-β) has anticancer effects. In this study, we used modified human neural stem cells (HB1.F3) expressing the Escherichia coli (E. coli) CD gene (HB1.F3.CD) or both the CD and human IFN-β genes (HB1.F3.CD.IFN-β) and evaluated their effectiveness on gastric carcinoma cells (AGS); migration of GESTECs to AGS was analyzed as well as formation of 5-FU and IFN-β. Reverse transcription-polymerase chain reaction (RT-PCR) was used to confirm the expression of CD and IFN-β genes in GESTECs along with confirming the production of chemoattractant molecules such as stem cell factor (SCF), CXCR4, c-Kit, vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). In addition, by co-culturing GESTECs with AGS in the presence of 5-FC, we were able to confirm that cancer growth was inhibited, along with a synergistic effect when the CD and IFN-β genes (HB1.F3.CD.IFN-β) were co-expressed. Indeed a marked anticancer effect was demonstrated when the CD and IFN-β genes were expressed together compared to expression of the CD gene alone (HB1.F3.CD). According to a modified transwell migration assay, the migration of GESTECs toward AGS was confirmed. In conclusion, these data suggest potential application of GESTECs to gastric cancer therapy, due to a remarkable synergistic effect of CD and IFN-β genes in the presence of 5-FC. Additionally, the tumor-selective migration capability in vitro suggests that GESTECs are a potential anticancer therapy

  17. Lymphocytes as cellular vehicles for gene therapy in mouse and man

    SciTech Connect

    Culver, K.; Cornetta, K.; Morgan, R.; Morecki, S.; Aebersold, P.; Kasid, A.; Lotze, M.; Rosenberg, S.A.; Anderson, W.F.; Blaese, R.M. )

    1991-04-15

    The application of bone marrow gene therapy has been stalled by the inability to achieve stable high-level gene transfer and expression in the totipotent stem cells. The authors that retroviral vectors can stably introduce genes into antigen-specific murine and human T lymphocytes in culture. Murine helper T cells were transduced with the retroviral vector SAX to express both neomycin-resistance and human adenosine deaminase genes. To determine if cultured T cells might be used for gene therapy, their persistence and continued expression of the introduced genes was evaluated in nude mice transplanted with the SAX-transduced T cells. They studied cultured human tumor-infiltrating lymphocytes as a candidate cell for a trial of gene transfer in man. Gene insertion and subsequent G418 selection did not substantially alter the growth characteristics, interleukin 2 dependence, membrane phenotype, or cytotoxicity profile of the transduced T cells. These studies provided a portion of the experimental evidence supporting the feasibility of the presently ongoing clinical trials of lymphocyte gene therapy in cancer as well as in patients with adenosine deaminase deficiency.

  18. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome.

    PubMed

    Lemaire, Benny; Van Cauwenberghe, Jannick; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Muasya, A Muthama

    2015-11-01

    The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types.

  19. Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides.

    PubMed Central

    Cunha, R. A.; Correia-de-Sá, P.; Sebastião, A. M.; Ribeiro, J. A.

    1996-01-01

    1. In the present work, we investigated the action of adenosine originating from extracellular catabolism of adenine nucleotides, in two preparations where synaptic transmission is modulated by both inhibitory A1 and excitatory A(2a)-adenosine receptors, the rat hippocampal Schaffer fibres/CA1 pyramid synapses and the rat innervated hemidiaphragm. 2. Endogenous adenosine tonically inhibited synaptic transmission, since 0.5-2 u ml-1 of adenosine deaminase increased both the population spike amplitude (30 +/- 4%) and field excitatory post-synaptic potential (f.e.p.s.p.) slope (27 +/- 4%) recorded from hippocampal slices and the evoked [3H]-acetylcholine ([3H]-ACh) release from the motor nerve terminals (25 +/- 2%). 3. alpha, beta-Methylene adenosine diphosphate (AOPCP) in concentrations (100-200 microM) that almost completely inhibited the formation of adenosine from the extracellular catabolism of AMP, decreased population spike amplitude by 39 +/- 5% and f.e.p.s.p. slope by 32 +/- 3% in hippocampal slices and [3H]-ACh release from motor nerve terminals by 27 +/- 3%. 4. Addition of exogenous 5'-nucleotidase (5 u ml-1) prevented the inhibitory effect of AOPCP on population spike amplitude and f.e.p.s.p. slope by 43-57%, whereas the P2 antagonist, suramin (100 microM), did not modify the effect of AOPCP. 5. In both preparations, the effect of AOPCP resulted from prevention of adenosine formation since it was no longer evident when accumulation of extracellular adenosine was hindered by adenosine deaminase (0.5-2 u ml-1). The inhibitory effect of AOPCP was still evident when A1 receptors were blocked by 1,3-dipropyl-8-cyclopentylxanthine (2.5-5 nM), but was abolished by the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (10 microM). 6. These results suggest that adenosine originating from catabolism of released adenine nucleotides preferentially activates excitatory A2 receptors in hippocampal CAI pyramid synapses and in phrenic motor nerve endings. PMID:8886406

  20. Rescue of the Orphan Enzyme Isoguanine Deaminase

    PubMed Central

    Hitchcock, Daniel S.; Fedorov, Alexander A.; Fedorov, Elena V.; Dangott, Lawrence J.; Almo, Steven C.; Raushel, Frank M.

    2011-01-01

    Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are kcat = 49 s-1, Km = 72 μM, and kcat/Km = 6.7 × 105 M-1 s-1. The kinetic constant for the deamination of cytosine are kcat = 45 s-1, Km = 302 μM, and kcat/Km = 1.5 × 105 M-1 s-1. Under these reaction conditions isoguanine is the better substrate for cytosine deaminase. The three dimensional structure of CDA was determined with isoguanine in the active site. PMID:21604715

  1. Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5'-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes.

    PubMed

    Meyer, Birte; Kuever, Jan

    2007-10-01

    Dissimilatory adenosine-5'-phosphosulfate (APS) reductase (AprBA) is a key enzyme of the dissimilatory sulfate-reduction pathway. Homologues have been found in photo- and chemotrophic sulfur-oxidizing prokaryotes (SOP), in which they are postulated to operate in the reverse direction, oxidizing sulfite to APS. Newly developed PCR assays allowed the amplification of 92-93 % (2.1-2.3 kb) of the APS reductase locus aprBA. PCR-based screening of 116 taxonomically divergent SOP reference strains revealed a distribution of aprBA restricted to photo- and chemotrophs with strict anaerobic or at least facultative anaerobic lifestyles, including Chlorobiaceae, Chromatiaceae, Thiobacillus, Thiothrix and invertebrate symbionts. In the AprBA-based tree, the SOP diverge into two distantly related phylogenetic lineages, Apr lineages I and II, with the proteins of lineage II (Chlorobiaceae and others) in closer affiliation to the enzymes of the sulfate-reducing prokaryotes (SRP). This clustering is discordant with the dissimilatory sulfite reductase (DsrAB) phylogeny and indicates putative lateral aprBA gene transfer from SRP to the respective SOB lineages. In support of lateral gene transfer (LGT), several beta- and gammaproteobacterial species harbour both aprBA homologues, the DsrAB-congruent 'authentic' and the SRP-related, LGT-derived gene loci, while some relatives possess exclusively the SRP-related apr genes as a possible result of resident gene displacement by the xenologue. The two-gene state might be an intermediate in the replacement of the resident essential gene. Collected genome data demonstrate the correlation between the AprBA tree topology and the composition/arrangement of the apr gene loci (occurrence of qmoABC or aprM genes) from SRP and SOP of lineages I and II. The putative functional role of the SRP-related APS reductases in photo- and chemotrophic SOP is discussed.

  2. Extracellular adenosine triphosphate and adenosine in cancer.

    PubMed

    Stagg, J; Smyth, M J

    2010-09-30

    Adenosine triphosphate (ATP) is actively released in the extracellular environment in response to tissue damage and cellular stress. Through the activation of P2X and P2Y receptors, extracellular ATP enhances tissue repair, promotes the recruitment of immune phagocytes and dendritic cells, and acts as a co-activator of NLR family, pyrin domain-containing 3 (NLRP3) inflammasomes. The conversion of extracellular ATP to adenosine, in contrast, essentially through the enzymatic activity of the ecto-nucleotidases CD39 and CD73, acts as a negative-feedback mechanism to prevent excessive immune responses. Here we review the effects of extracellular ATP and adenosine on tumorigenesis. First, we summarize the functions of extracellular ATP and adenosine in the context of tumor immunity. Second, we present an overview of the immunosuppressive and pro-angiogenic effects of extracellular adenosine. Third, we present experimental evidence that extracellular ATP and adenosine receptors are expressed by tumor cells and enhance tumor growth. Finally, we discuss recent studies, including our own work, which suggest that therapeutic approaches that promote ATP-mediated activation of inflammasomes, or inhibit the accumulation of tumor-derived extracellular adenosine, may constitute effective new means to induce anticancer activity.

  3. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture.

    PubMed

    Saleem, Muhammad; Arshad, Muhammad; Hussain, Sarfraz; Bhatti, Ahmad Saeed

    2007-10-01

    Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into alpha-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.

  4. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish.

    PubMed

    Bortolotto, Josiane Woutheres; Melo, Gabriela Madalena de; Cognato, Giana de Paula; Vianna, Mônica Ryff Moreira; Bonan, Carla Denise

    2015-02-01

    Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment.

  5. A rapid enzymatic assay for high-throughput screening of adenosine-producing strains

    PubMed Central

    Dong, Huina; Zu, Xin; Zheng, Ping; Zhang, Dawei

    2015-01-01

    Adenosine is a major local regulator of tissue function and industrially useful as precursor for the production of medicinal nucleoside substances. High-throughput screening of adenosine overproducers is important for industrial microorganism breeding. An enzymatic assay of adenosine was developed by combined adenosine deaminase (ADA) with indophenol method. The ADA catalyzes the cleavage of adenosine to inosine and NH3, the latter can be accurately determined by indophenol method. The assay system was optimized to deliver a good performance and could tolerate the addition of inorganic salts and many nutrition components to the assay mixtures. Adenosine could be accurately determined by this assay using 96-well microplates. Spike and recovery tests showed that this assay can accurately and reproducibly determine increases in adenosine in fermentation broth without any pretreatment to remove proteins and potentially interfering low-molecular-weight molecules. This assay was also applied to high-throughput screening for high adenosine-producing strains. The high selectivity and accuracy of the ADA assay provides rapid and high-throughput analysis of adenosine in large numbers of samples. PMID:25580842

  6. Endogenous adenosine is an autacoid feedback inhibitor of chloride transport in the shark rectal gland.

    PubMed Central

    Kelley, G G; Aassar, O S; Forrest, J N

    1991-01-01

    The present studies define the physiologic role of endogenous adenosine in the perfused shark rectal gland, a model epithelia for hormone-stimulated chloride transport. Chloride ion secretion, and venous adenosine and inosine concentrations increased in parallel in response to hormone stimulation. From a basal rate of 157 +/- 26 mu eq/h per g, chloride secretion increased to 836 +/- 96 and 2170 +/- 358 with 1 and 10 microM forskolin, venous adenosine increased from 5.0 +/- 1 to 126 +/- 29 and 896 +/- 181 nM, and inosine increased from 30 +/- 9 to 349 +/- 77 and 1719 +/- 454 nM (all P less than 0.01). Nitrobenzylthioinosine (NBTI), a nucleoside transport inhibitor, completely blocked the release of adenosine and inosine. Inhibition of chloride transport with bumetanide, an inhibitor of the Na+/K+/2Cl- cotransporter, or ouabain, an inhibitor of Na+/K+ ATPase activity, reduced venous adenosine and inosine to basal values. When the interaction of endogenous adenosine with extracellular receptors was prevented by adenosine deaminase, NBTI, or 8-phenyltheophylline, the chloride transport response to secretagogues increased by 1.7-2.3-fold. These studies demonstrate that endogenous adenosine is released in response to hormone-stimulated cellular work and acts at A1 adenosine receptors as a feedback inhibitor of chloride transport. Images PMID:1752953

  7. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    PubMed

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver.

  8. Gene therapy for primary immunodeficiencies: Part 1.

    PubMed

    Cavazzana-Calvo, Marina; Fischer, Alain; Hacein-Bey-Abina, Salima; Aiuti, Alessandro

    2012-10-01

    Over 60 patients affected by SCID due to IL2RG deficiency (SCID-X1) or adenosine deaminase (ADA)-SCID have received hematopoietic stem cell gene therapy in the past 15 years using gammaretroviral vectors, resulting in immune reconstitution and clinical benefit in the majority of them. However, the occurrence of insertional oncogenesis in the SCID-X1 trials has led to the development of new clinical trials based on integrating vectors with improved safety design as well as investigation on new technologies for highly efficient gene targeting and site-specific gene editing. Here we will present the experience and perspectives of gene therapy for SCID-X1 and ADA-SCID and discuss the pros and cons of gene therapy in comparison to allogeneic transplantation.

  9. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  10. Update on gene therapy for immunodeficiencies.

    PubMed

    Kohn, Donald B

    2010-05-01

    Primary immune deficiencies (PID) are due to blood cell defects and can be treated with transplantation of normal hematopoietic stem cells (HSC) from another person (allogeneic). Gene therapy in which a patient's autologous HSC are genetically corrected represents an alternative treatment for patients with PID, which could avoid the immunologic risks of allogeneic HSCT and confer similar benefits. Recent clinical trials using gene therapy have led to immune restoration in patients with X-linked severe combined immune deficiency (XSCID), adenosine deaminase (ADA)-deficient SCID and chronic granulomatous disease (CGD). However, severe complications arose in several of the patients in whom the integrated retroviral vectors led to leukoproliferative disorders. New approaches using safer integrating vectors or direct correction of the defective gene underlying the PID are being developed and may lead to safer and effective gene therapy for PID.

  11. Maintaining Genome Stability: The Role of Helicases and Deaminases

    DTIC Science & Technology

    2007-07-01

    of Helicases and Deaminases PRINCIPAL INVESTIGATOR: XiaoJiang Chen CONTRACTING ORGANIZATION: University of Southern...SUBTITLE 5a. CONTRACT NUMBER Maintaining Genome Stability: The Role of Helicases and Deaminases 5b. GRANT NUMBER W81XWH-05-1-0391 5c... deaminases . We will focus on AID and APOBEC3G to obtain purified deaminase proteins for the in vitro biochemical, functional, and structural

  12. Maintaining Genome Stability: The Role of Helicases and Deaminases

    DTIC Science & Technology

    2006-07-01

    W81XWH-05-1-0391 TITLE: Maintaining Genome Stability: The Role of Helicases and Deaminases PRINCIPAL INVESTIGATOR: Xiaojiang Chen...Helicases and Deaminases 5b. GRANT NUMBER W81XWH-05-1-0391 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Xiaojiang Chen 5e...crystallize the proteins of deaminases . We will focus on AID and APOBEC3G to obtain purified deaminase proteins for the in vitro biochemical

  13. Advances in gene therapy for ADA-deficient SCID.

    PubMed

    Aiuti, Alessandro

    2002-10-01

    Adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID) was the first inherited disease treated with gene therapy. The pilot gene therapy studies demonstrated the safety, therapeutic potential and limitations of ADA gene transfer into hematopoietic cells using retroviral vectors. This review describes the latest progress in ADA-SCID dinical trials using peripheral blood lymphocytes (PBLs) and hematopoietic stem cells (HSCs). PBL gene therapy was able to restore T-cell functions after discontinuation of ADA enzyme replacement therapy, but only partially corrected the purine metabolic defect. The development of improved HSC gene transfer protocols, combined with low intensity conditioning, allowed full correction of the immunological and metabolic ADA defects, with clinic benefit. These results have important implications for future applications of gene therapy in other disorders involving the hemapoietic system.

  14. Isolation and properties of AMP deaminase from jumbo squid (Dosidicus gigas) mantle muscle from the Gulf of California, Mexico.

    PubMed

    Marquez-Rios, E; Pacheco-Aguilar, R; Castillo-Yañez, F J; Figueroa-Soto, C G; Ezquerra-Brauer, J M; Gollas-Galvan, T

    2008-09-01

    Adenosine monophosphate (AMP) deaminase was purified from jumbo squid mantle muscle by chromatography in cellulose phosphate, Q-Fast and 5'-AMP sepharose. Specific activity of 2.5U/mg protein, 4.5% recovery and 133.68 purification fold were obtained at the end of the experiment. SDS-PAGE showed a single band with 87kDa molecular mass, native PAGE proved a band of 178kDa, whereas gel filtration detected a 180kDa protein, suggesting the homodimeric nature of this enzyme, in which subunits are not linked by covalent forces. Isoelectric focusing of this enzyme showed a pI of 5.76, which agrees with pI values of AMP deaminase from other invertebrate organisms. AMP deaminase presented a kinetic sigmoidal plot with Vmax of 1.16μM/min/mg, Km of 13mM, Kcat of 3.48μM.s(-1) and a Kcat/Km of 267 (mol/L)(-1).s(-1). The apparent relative low catalytic activity of jumbo squid muscle AMP deaminase in the absence of positive effectors is similar to that reported for homologous enzymes in other invertebrate organisms.

  15. Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats.

    PubMed

    Zou, A P; Wu, F; Li, P L; Cowley, A W

    1999-01-01

    Previous studies have shown that chronic salt loading increased renal interstitial adenosine concentrations and desensitized renal effects of adenosine, a phenomenon that could facilitate sodium excretion. However, the mechanisms responsible for the increased adenosine production and decreased adenosine response are poorly understood. This study examined the effects of the dietary high salt intake on adenosine metabolism and receptor expression in the renal cortex and medulla in Sprague Dawley rats. Fluorescent high-performance liquid chromatography analyses were performed to determine adenosine levels in snap-frozen kidney tissues. Comparing rats fed a normal (1% NaCl) versus high salt (4% NaCl) diet, renal adenosine concentrations in rats fed a high salt diet were significantly higher (cortex: 43+/-3 versus 85+/-4, P<0.05; medulla: 183+/-4 versus 302+/-8 nmol/g wet tissue, P<0.05). Increased adenosine concentrations were not associated with changes in the 5'-nucleotidase or adenosine deaminase activity, as determined by quantitative isoelectric focusing and gel electrophoresis. Western blot analyses showed that a high salt diet (4% NaCl for 3 weeks) downregulated A1 receptors (antinatriuretic type), did not alter A2A and A2B receptors (natriuretic type), and upregulated A3 receptors (function unknown) in both renal cortex and medulla. The data show that stimulation of adenosine production and downregulation of A1 receptors with salt loading may play an important role in adaptation in the kidney to promote sodium excretion.

  16. Effects of different concentrations of metal ions on degradation of adenosine triphosphate in common carp (Cyprinus carpio) fillets stored at 4°C: An in vivo study.

    PubMed

    Li, Dapeng; Qin, Na; Zhang, Longteng; Lv, Jian; Li, Qingzheng; Luo, Yongkang

    2016-11-15

    The impact of different concentrations of Na(+), K(+), Ca(2+), Mg(2+), Fe(2+), and Zn(2+) on the degradation of adenosine triphosphate (ATP) and the influence of these ions on the activity of adenosine monophosphate deaminase (AMP-deaminase) and acid phosphatase (ACP) in common carp fillets (in vivo) during 4°C storage was examined. The content of ATP, inosine monophosphate (IMP), and hypoxanthine (Hx), and the activity of AMP-deaminase and ACP were determined. Results indicated that the effects of different concentrations of six kinds of metal ions on AMP-deaminase and ACP were not the same. Na(+), K(+), Fe(2+), and Zn(2+) enhanced AMP-deaminase activity, which led to the rapid degradation of ATP and to the generation of a large quantity of IMP within a short time. Ca(2+) and Mg(2+) delayed the change in AMP-deaminase and ACP activity in carp and caused a further delay in the degradation of ATP. Fe(2+) and Zn(2+) inhibited ACP activity, which reduced the decomposition of IMP and the formation of Hx.

  17. Improved cytotoxic effects of Salmonella-producing cytosine deaminase in tumour cells.

    PubMed

    Mesa-Pereira, Beatriz; Medina, Carlos; Camacho, Eva María; Flores, Amando; Santero, Eduardo

    2015-01-01

    In order to increase the cytotoxic activity of a Salmonella strain carrying a salicylate-inducible expression system that controls cytosine deaminase production, we have modified both, the vector and the producer bacterium. First, the translation rates of the expression module containing the Escherichia coli codA gene cloned under the control of the Pm promoter have been improved by using the T7 phage gene 10 ribosome binding site sequence and replacing the original GUG start codon by AUG. Second, to increase the time span in which cytosine deaminase may be produced by the bacteria in the presence of 5-fluorocytosine, a 5-fluorouracyl resistant Salmonella strain has been constructed by deleting its upp gene sequence. This new Salmonella strain shows increased cytosine deaminase activity and, after infecting tumour cell cultures, increased cytotoxic and bystander effects under standard induction conditions. In addition, we have generated a purD mutation in the producer strain to control its intracellular proliferation by the presence of adenine and avoid the intrinsic Salmonella cell death induction. This strategy allows the analysis and comparison of the cytotoxic effects of cytosine deaminase produced by different Salmonella strains in tumour cell cultures.

  18. Drug evaluation: ADA-transduced hematopoietic stem cell therapy for ADA-SCID.

    PubMed

    Taupin, Phillippe

    2006-06-01

    San Raffaele Telethon Institute for Gene Therapy is developing an adenosine deaminase-transduced hematopoietic stem cell therapy for the potential intravenous treatment of adenosine deaminase deficiency in severe combined immunocompromised individuals.

  19. Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine.

    PubMed

    Chen, Yunjia; Liu, Yin; Cottingham, Christopher; McMahon, Lori; Jiao, Kai; Greengard, Paul; Wang, Qin

    2012-02-22

    Endogenous adenosine is an essential protective agent against neural damage by various insults to the brain. However, the therapeutic potential of adenosine receptor-directed ligands for neuroprotection is offset by side effects in peripheral tissues and organs. An increase in adenosine receptor responsiveness to endogenous adenosine would enhance neuroprotection while avoiding the confounding effects of exogenous ligands. Here we report novel regulation of adenosine-evoked responses by a neural tissue-specific protein, neurabin. Neurabin attenuated adenosine A(1) receptor (A1R) signaling by assembling a complex between the A1R and the regulator of G-protein signaling 4 (RGS4), a protein known to turn off G-protein signaling. Inactivation of the neurabin gene enhanced A1R signaling and promoted the protective effect of adenosine against excitotoxic seizure and neuronal death in mice. Furthermore, administration of a small molecule inhibitor of RGS4 significantly attenuated seizure severity in mice. Notably, the dose of kainate capable of inducing an ∼50% rate of death in wild-type (WT) mice did not affect neurabin-null mice or WT mice cotreated with an RGS4 inhibitor. The enhanced anti-seizure and neuroprotective effect achieved by disruption of the A1R/neurabin/RGS4 complex is elicited by the on-site and on-demand release of endogenous adenosine, and does not require administration of A1R ligands. These data identify neurabin-RGS4 as a novel tissue-selective regulatory mechanism for fine-tuning adenosine receptor function in the nervous system. Moreover, these findings implicate the A1R/neurabin/RGS4 complex as a valid therapeutic target for specifically manipulating the neuroprotective effects of endogenous adenosine.

  20. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle.

    PubMed Central

    Sabina, R L; Swain, J L; Olanow, C W; Bradley, W G; Fishbein, W N; DiMauro, S; Holmes, E W

    1984-01-01

    To assess the role of the purine nucleotide cycle in human skeletal muscle function, we evaluated 10 patients with AMP deaminase deficiency (myoadenylate deaminase deficiency; MDD). 4 MDD and 19 non-MDD controls participated in an exercise protocol. The latter group was composed of a patient cohort (n = 8) exhibiting a constellation of symptoms similar to those of the MDD patients, i.e., postexertional aches, cramps, and pains; as well as a cohort of normal, unconditioned volunteers (n = 11). The individuals with MDD fatigued after performing only 28% as much work as their non-MDD counterparts. Muscle biopsies were obtained from the four MDD patients and the eight non-MDD patients at rest and following exercise to the point of fatigue. Creatine phosphate content fell to a comparable extent in the MDD (69%) and non-MDD (52%) patients at the onset of fatigue. Following exercise the 34% decrease in ATP content of muscle from the non-MDD subjects was significantly greater than the 6% decrease in ATP noted in muscle from the MDD patients (P = 0.048). Only one of four MDD patients had a measurable drop in ATP compared with seven of eight non-MDD patients. At end-exercise the muscle content of inosine 5'-monophosphate (IMP), a product of AMP deaminase, was 13-fold greater in the non-MDD patients than that observed in the MDD group (P = 0.008). Adenosine content of muscle from the MDD patients increased 16-fold following exercise, while there was only a twofold increase in adenosine content of muscle from the non-MDD patients (P = 0.028). Those non-MDD patients in whom the decrease in ATP content following exercise was measurable exhibited a stoichiometric increase in IMP, and total purine content of the muscle did not change significantly. The one MDD patient in whom the decrease in ATP was measurable, did not exhibit a stoichiometric increase in IMP. Although the adenosine content increased 13-fold in this patient, only 48% of the ATP catabolized could be accounted for

  1. Unique properties of Plasmodium falciparum porphobilinogen deaminase.

    PubMed

    Nagaraj, Viswanathan Arun; Arumugam, Rajavel; Gopalakrishnan, Bulusu; Jyothsna, Yeleswarapu Sri; Rangarajan, Pundi N; Padmanaban, Govindarajan

    2008-01-04

    The hybrid pathway for heme biosynthesis in the malarial parasite proposes the involvement of parasite genome-coded enzymes of the pathway localized in different compartments such as apicoplast, mitochondria, and cytosol. However, knowledge on the functionality and localization of many of these enzymes is not available. In this study, we demonstrate that porphobilinogen deaminase encoded by the Plasmodium falciparum genome (PfPBGD) has several unique biochemical properties. Studies carried out with PfPBGD partially purified from parasite membrane fraction, as well as recombinant PfPBGD lacking N-terminal 64 amino acids expressed and purified from Escherichia coli cells (DeltaPfPBGD), indicate that both the proteins are catalytically active. Surprisingly, PfPBGD catalyzes the conversion of porphobilinogen to uroporphyrinogen III (UROGEN III), indicating that it also possesses uroporphyrinogen III synthase (UROS) activity, catalyzing the next step. This obviates the necessity to have a separate gene for UROS that has not been so far annotated in the parasite genome. Interestingly, DeltaPfP-BGD gives rise to UROGEN III even after heat treatment, although UROS from other sources is known to be heat-sensitive. Based on the analysis of active site residues, a DeltaPfPBGDL116K mutant enzyme was created and the specific activity of this recombinant mutant enzyme is 5-fold higher than DeltaPfPBGD. More interestingly, DeltaPfPBGDL116K catalyzes the formation of uroporphyrinogen I (UROGEN I) in addition to UROGEN III, indicating that with increased PBGD activity the UROS activity of PBGD may perhaps become rate-limiting, thus leading to non-enzymatic cyclization of preuroporphyrinogen to UROGEN I. PfPBGD is localized to the apicoplast and is catalytically very inefficient compared with the host red cell enzyme.

  2. Evidence for a substrate cycle between AMP and adenosine in isolated hepatocytes.

    PubMed Central

    Bontemps, F; Van den Berghe, G; Hers, H G

    1983-01-01

    The effect of adenosine on the metabolism of prelabeled adenine nucleotides was investigated in isolated hepatocytes. Adenosine caused an approximately equal to 2-fold increase in the ATP content of the cells. This effect was in part counteracted by an increased rate of adenine nucleotide catabolism that could be explained by a stimulation of both AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) and the cytoplasmic 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) because of the increased concentration of ATP. The unexpected finding that labeled adenosine was formed immediately after the addition of the unlabeled nucleoside could be explained by the trapping effect of adenosine. An accumulation of labeled adenosine was observed also in the presence of 5-iodotubercidin, a potent inhibitor of adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20). Under these conditions, there was a decrease in the concentration of ATP in the cell and a 2- to 3-fold increase in the rate of formation of allantoin. This formation of adenosine was only slightly decreased by inhibition of the membranous 5'-nucleotidase; it led to the accumulation of S-adenosylhomocysteine in the presence of coformycin and an excess of L-homocysteine. It was concluded that, under basal conditions, the cytoplasmic 5'-nucleotidase present in the liver cell continuously produces adenosine, which is immediately reconverted into AMP by adenosine kinase, without giving rise to allantoin. This futile cycle between AMP and adenosine amounts to at least 20 nmol/min per g of liver and, thus, exceeds the basic rate of allantoin formation. PMID:6304684

  3. Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation

    PubMed Central

    Boison, Detlev; Stewart, Kerry-Ann

    2009-01-01

    Epilepsy is a common seizure disorder affecting approximately 70 million people worldwide. Current pharmacotherapy is neuron-centered, frequently accompanied by intolerable side-effects, and fails to be effective in about one third of patients. Therefore, new therapeutic concepts are needed. Recent research suggests an astrocytic basis of epilepsy, presenting the possibility of novel therapeutic targets. In particular, dysfunction of the astrocyte-controlled, endogenous, adenosine-based seizure control system of the brain is implicated in seizure generation. Thus, astrogliosis – a pathological hallmark of the epileptic brain – is associated with upregulation of the adenosine-removing enzyme adenosine kinase (ADK), resulting in focal adenosine deficiency. Both astrogliotic upregulation of ADK in epilepsy and transgenic overexpression of ADK are associated with seizures, and inhibition of ADK prevents seizures in a mouse model of pharmacoresistant epilepsy. These findings link adenosine deficiency with seizures and predict that adenosine augmentation therapies (AATs) will likely be effective in preventing seizures. Given the widespread systemic and central side effects of systemically administered AATs, focal AATs (i.e., limited to the astrogliotic lesion) are a necessity. This Commentary will discuss the pharmacological rationale for the development of focal AATs. Additionally, several AAT strategies will be discussed: (1) adenosine released from silk-based brain implants; (2) adenosine released from locally implanted encapsulated cells; (3) adenosine released from stem cell-derived brain implants; and (4) adenosine augmenting gene therapies. Finally, new developments and therapeutic challenges in using focal AATs for epilepsy therapy will critically be evaluated. PMID:19682439

  4. 1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals.

    PubMed

    Han, Yunlei; Wang, Rui; Yang, Zhirong; Zhan, Yuhua; Ma, Yao; Ping, Shuzhen; Zhang, Liwen; Lin, Min; Yan, Yongliang

    2015-07-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase, which is encoded by some bacteria, can reduce the amount of ethylene, a root elongation inhibitor, and stimulate the growth of plants under various environmental stresses. The presence of ACC deaminase activity and the regulation of ACC in several rhizospheric bacteria have been reported. The nitrogen-fixing Pseudomonas stutzeri A1501 is capable of endophytic association with rice plants and promotes the growth of rice. However, the functional identification of ACC deaminase has not been performed. In this study, the proposed effect of ACC deaminase in P. stutzeri A1501 was investigated. Genome mining showed that P. stutzeri A1501 carries a single gene encoding ACC deaminase, designated acdS. The acdS mutant was devoid of ACC deaminase activity and was less resistant to NaCl and NiCl2 compared with the wild-type. Furthermore, inactivation of acdS greatly impaired its nitrogenase activity under salt stress conditions. It was also observed that mutation of the acdS gene led to loss of the ability to promote the growth of rice under salt or heavy metal stress. Taken together, this study illustrates the essential role of ACC deaminase, not only in enhancing the salt or heavy metal tolerance of bacteria but also in improving the growth of plants, and provides a theoretical basis for studying the interaction between plant growth-promoting rhizobacteria and plants.

  5. Rescue of the Orphan Enzyme Isoguanine Deaminase

    SciTech Connect

    D Hitchcock; A Fedorov; E Fedorov; L Dangott; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration, and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are as follows: k{sub cat} = 49 s{sup -1}, K{sub m} = 72 {micro}M, and k{sub cat}/K{sub m} = 6.7 x 10{sup 5} M{sup -1} s{sup -1}. The kinetic constants for the deamination of cytosine are as follows: k{sub cat} = 45 s{sup -1}, K{sub m} = 302 {micro}M, and k{sub cat}/K{sub m} = 1.5 x 10{sup 5} M{sup -1} s{sup -1}. Under these reaction conditions, isoguanine is the better substrate for cytosine deaminase. The three-dimensional structure of CDA was determined with isoguanine in the active site.

  6. Rescue of the orphan enzyme isoguanine deaminase.

    PubMed

    Hitchcock, Daniel S; Fedorov, Alexander A; Fedorov, Elena V; Dangott, Lawrence J; Almo, Steven C; Raushel, Frank M

    2011-06-28

    Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration, and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are as follows: k(cat) = 49 s(-1), K(m) = 72 μM, and k(cat)/K(m) = 6.7 × 10(5) M(-1) s(-1). The kinetic constants for the deamination of cytosine are as follows: k(cat) = 45 s(-1), K(m) = 302 μM, and k(cat)/K(m) = 1.5 × 10(5) M(-1) s(-1). Under these reaction conditions, isoguanine is the better substrate for cytosine deaminase. The three-dimensional structure of CDA was determined with isoguanine in the active site.

  7. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Menezes, Fabiano Peres; Nazario, Luiza Reali; Pohlmann, Julhana Bianchini; de Oliveira, Giovanna M T; Fazenda, Lidiane; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2011-01-01

    Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase.

  8. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation.

    PubMed

    Stellos, Konstantinos; Gatsiou, Aikaterini; Stamatelopoulos, Kimon; Perisic Matic, Ljubica; John, David; Lunella, Federica Francesca; Jaé, Nicolas; Rossbach, Oliver; Amrhein, Carolin; Sigala, Frangiska; Boon, Reinier A; Fürtig, Boris; Manavski, Yosif; You, Xintian; Uchida, Shizuka; Keller, Till; Boeckel, Jes-Niels; Franco-Cereceda, Anders; Maegdefessel, Lars; Chen, Wei; Schwalbe, Harald; Bindereif, Albrecht; Eriksson, Per; Hedin, Ulf; Zeiher, Andreas M; Dimmeler, Stefanie

    2016-10-01

    Adenosine-to-inosine (A-to-I) RNA editing, which is catalyzed by a family of adenosine deaminase acting on RNA (ADAR) enzymes, is important in the epitranscriptomic regulation of RNA metabolism. However, the role of A-to-I RNA editing in vascular disease is unknown. Here we show that cathepsin S mRNA (CTSS), which encodes a cysteine protease associated with angiogenesis and atherosclerosis, is highly edited in human endothelial cells. The 3' untranslated region (3' UTR) of the CTSS transcript contains two inverted repeats, the AluJo and AluSx(+) regions, which form a long stem-loop structure that is recognized by ADAR1 as a substrate for editing. RNA editing enables the recruitment of the stabilizing RNA-binding protein human antigen R (HuR; encoded by ELAVL1) to the 3' UTR of the CTSS transcript, thereby controlling CTSS mRNA stability and expression. In endothelial cells, ADAR1 overexpression or treatment of cells with hypoxia or with the inflammatory cytokines interferon-γ and tumor-necrosis-factor-α induces CTSS RNA editing and consequently increases cathepsin S expression. ADAR1 levels and the extent of CTSS RNA editing are associated with changes in cathepsin S levels in patients with atherosclerotic vascular diseases, including subclinical atherosclerosis, coronary artery disease, aortic aneurysms and advanced carotid atherosclerotic disease. These results reveal a previously unrecognized role of RNA editing in gene expression in human atherosclerotic vascular diseases.

  9. Association study of three single-nucleotide polymorphisms in the cyclic adenosine monophosphate response element binding 1 gene and major depressive disorder.

    PubMed

    Wei, Yange; Bu, Shufang; Liu, Xican; Li, Hengfen

    2015-06-01

    Major depressive disorder is a common chronic emotional disorder, and cyclic adenosine monophosphate response element binding protein 1 (CREB1) is hypothesized to play a role in its pathogenesis. The aim of the present study was to investigate the associations between major depressive disorder and relevant single nucleotide polymorphisms (SNPs) in the CREB1 gene. A total of 1,038 subjects of Han Chinese descent were recruited, including 456 patients with major depressive disorder (case group) and 582 healthy volunteers (control group). The frequency distributions of the genotypes and alleles were estimated in the case and control groups, and analyzed for any correlation with major depressive disorder. Three relevant SNP sites in CREB1 were analyzed using quantitative polymerase chain reaction, and statistical analyses were performed to estimate their use as risk factors for major depressive disorder. The analyses revealed that rs2254137 and rs16839883 in CREB1 showed polymorphisms in the sample population, and the genotype and allele frequencies of rs16839883 differed significantly when comparing the patients and healthy controls (P<0.05). No statistically significant differences were detected in the two SNP sites between the male and female patients (P>0.05). Furthermore, no statistically significant differences were detected in rs2254137 genotype and allele distribution when comparing the male and female patients with their corresponding control groups (P>0.05). However, statistically significant differences were observed in the genotype and allele frequencies of rs16839883 when the male and female patients were compared with their respective controls (P<0.05). Therefore, the results demonstrated that there is a close correlation between the rs16839883 polymorphism in CREB1 and major depressive disorder, which suggests that this SNP site should be further studied as a potential biomarker for major depressive disorder.

  10. N-terminal amino acid sequences of D-serine deaminases of wild-type and operator-constitutive strains of Escherichia coli K-12.

    PubMed Central

    Heincz, M C; McFall, E

    1975-01-01

    The N-terminal amino acid sequences of the D-serine deaminases from strains of Escherichia coli K-12 that harbor wild-type and high-level constitutive catabolite-insensitive operator-initiator regions are identical: Met-Ser-GluNH2-Ser-Gly-Arg-His-Cys. This result indicates that the operator-initiator region is probably distinct from the D-serine deaminase structural gene. Images PMID:1099073

  11. Cooperation of Adenosine with Macrophage Toll-4 Receptor Agonists Leads to Increased Glycolytic Flux through the Enhanced Expression of PFKFB3 Gene*

    PubMed Central

    Ruiz-García, Almudena; Monsalve, Eva; Novellasdemunt, Laura; Navarro-Sabaté, Àurea; Manzano, Anna; Rivero, Samuel; Castrillo, Antonio; Casado, Marta; Laborda, Jorge; Bartrons, Ramón; Díaz-Guerra, María José M.

    2011-01-01

    Macrophages activated through Toll receptor triggering increase the expression of the A2A and A2B adenosine receptors. In this study, we show that adenosine receptor activation enhances LPS-induced pfkfb3 expression, resulting in an increase of the key glycolytic allosteric regulator fructose 2,6-bisphosphate and the glycolytic flux. Using shRNA and differential expression of A2A and A2B receptors, we demonstrate that the A2A receptor mediates, in part, the induction of pfkfb3 by LPS, whereas the A2B receptor, with lower adenosine affinity, cooperates when high adenosine levels are present. pfkfb3 promoter sequence deletion analysis, site-directed mutagenesis, and inhibition by shRNAs demonstrated that HIF1α is a key transcription factor driving pfkfb3 expression following macrophage activation by LPS, whereas synergic induction of pfkfb3 expression observed with the A2 receptor agonists seems to depend on Sp1 activity. Furthermore, levels of phospho-AMP kinase also increase, arguing for increased PFKFB3 activity by phosphorylation in long term LPS-activated macrophages. Taken together, our results show that, in macrophages, endogenously generated adenosine cooperates with bacterial components to increase PFKFB3 isozyme activity, resulting in greater fructose 2,6-bisphosphate accumulation. This process enhances the glycolytic flux and favors ATP generation helping to develop and maintain the long term defensive and reparative functions of the macrophages. PMID:21464136

  12. Gene therapy of primary T cell immunodeficiencies.

    PubMed

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2013-08-10

    Gene therapy of severe combined immunodeficiencies has been proven to be effective to provide sustained correction of the T cell immunodeficiencies. This has been achieved for 2 forms of SCID, i.e SCID-X1 (γc deficiency) and adenosine deaminase deficiency. Occurrence of gene toxicity generated by integration of first generation retroviral vectors, as observed in the SCID-X1 trials has led to replace these vectors by self inactivated (SIN) retro(or lenti) viruses that may provide equivalent efficacy with a better safety profile. Results of ongoing clinical studies in SCID as well as in other primary immunodeficiencies, such as the Wiskott Aldrich syndrome, will be thus very informative.

  13. Advances of gene therapy for primary immunodeficiencies

    PubMed Central

    Candotti, Fabio

    2016-01-01

    In the recent past, the gene therapy field has witnessed a remarkable series of successes, many of which have involved primary immunodeficiency diseases, such as X-linked severe combined immunodeficiency, adenosine deaminase deficiency, chronic granulomatous disease, and Wiskott-Aldrich syndrome. While such progress has widened the choice of therapeutic options in some specific cases of primary immunodeficiency, much remains to be done to extend the geographical availability of such an advanced approach and to increase the number of diseases that can be targeted. At the same time, emerging technologies are stimulating intensive investigations that may lead to the application of precise genetic editing as the next form of gene therapy for these and other human genetic diseases. PMID:27508076

  14. Adenosine: Tipping the balance towards hepatic steatosis and fibrosis

    PubMed Central

    Robson, Simon C.; Schuppan, Detlef

    2010-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the histochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:20395005

  15. Progress and prospects: gene therapy for inherited immunodeficiencies.

    PubMed

    Qasim, W; Gaspar, H B; Thrasher, A J

    2009-11-01

    Haematopoietic stem cell transplantation (HSCT) is now widely used to treat primary immunodeficiencies (PID). For patients with specific disorders (severe combined immunodeficiency (SCID)-X1, adenosine deaminase deficiency (ADA)-SCID, X-chronic granulomatous disease (CGD) and Wiskott-Aldrich Syndrome (WAS)) who lack a suitable human leukocyte antigen (HLA)-matched donor, gene therapy has offered an important alternative treatment option. The success of gene therapy can be attributed, in part, to the selective advantage offered to gene-corrected cells, the avoidance of graft-versus-host disease and to the use of pre-conditioning in patients with chemotherapy to facilitate engraftment of corrected cells. Adverse events have been encountered and this has led to detailed characterization of retroviral vector integration profiles. A new generation of self-inactivating retroviral and lentiviral vectors have been designed to address these safety concerns, and are at an advanced stage of preparation for the next phase of clinical testing.

  16. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants

    PubMed Central

    Singh, Rajnish P.; Shelke, Ganesh M.; Kumar, Anil; Jha, Prabhat N.

    2015-01-01

    1-aminocyclopropane-1-carboxylate deaminase (ACCD), a pyridoxal phosphate-dependent enzyme, is widespread in diverse bacterial and fungal species. Owing to ACCD activity, certain plant associated bacteria help plant to grow under biotic and abiotic stresses by decreasing the level of “stress ethylene” which is inhibitory to plant growth. ACCD breaks down ACC, an immediate precursor of ethylene, to ammonia and α-ketobutyrate, which can be further metabolized by bacteria for their growth. ACC deaminase is an inducible enzyme whose synthesis is induced in the presence of its substrate ACC. This enzyme encoded by gene AcdS is under tight regulation and regulated differentially under different environmental conditions. Regulatory elements of gene AcdS are comprised of the regulatory gene encoding LRP protein and other regulatory elements which are activated differentially under aerobic and anaerobic conditions. The role of some additional regulatory genes such as AcdB or LysR may also be required for expression of AcdS. Phylogenetic analysis of AcdS has revealed that distribution of this gene among different bacteria might have resulted from vertical gene transfer with occasional horizontal gene transfer (HGT). Application of bacterial AcdS gene has been extended by developing transgenic plants with ACCD gene which showed increased tolerance to biotic and abiotic stresses in plants. Moreover, distribution of ACCD gene or its homolog's in a wide range of species belonging to all three domains indicate an alternative role of ACCD in the physiology of an organism. Therefore, this review is an attempt to explore current knowledge of bacterial ACC deaminase mediated physiological effects in plants, mode of enzyme action, genetics, distribution among different species, ecological role of ACCD and, future research avenues to develop transgenic plants expressing foreign AcdS gene to cope with biotic and abiotic stressors. Systemic identification of regulatory circuits

  17. Alanine-scanning mutagenesis reveals a cytosine deaminase mutant with altered substrate preference.

    PubMed

    Mahan, Sheri D; Ireton, Greg C; Stoddard, Barry L; Black, Margaret E

    2004-07-20

    Suicide gene therapy of cancer is a method whereby cancerous tumors can be selectively eradicated while sparing damage to normal tissue. This is accomplished by delivering a gene, encoding an enzyme capable of specifically converting a nontoxic prodrug into a cytotoxin, to cancer cells followed by prodrug administration. The Escherichia coli gene, codA, encodes cytosine deaminase and is introduced into cancer cells followed by administration of the prodrug 5-fluorocytosine (5-FC). Cytosine deaminase converts 5-FC into cytotoxic 5-fluorouracil, which leads to tumor-cell eradication. One limitation of this enzyme/prodrug combination is that 5-FC is a poor substrate for bacterial cytosine deaminase. The crystal structure of bacterial cytosine deaminase (bCD) reveals that a loop structure in the active site pocket of wild-type bCD comprising residues 310-320 undergoes a conformational change upon cytosine binding, making several contacts to the pyrimidine ring. Alanine-scanning mutagenesis was used to investigate the structure-function relationship of amino acid residues within this region, especially with regard to substrate specificity. Using an E. coli genetic complementation system, seven active mutants were identified (F310A, G311A, H312A, D314A, V315A, F316A, and P318A). Further characterization of these mutants reveals that mutant F316A is 14-fold more efficient than the wild-type at deaminating cytosine to uracil. The mutant D314A enzyme demonstrates a dramatic decrease in cytosine activity (17-fold) as well as a slight increase in activity toward 5-FC (2-fold), indicating that mutant D314A prefers the prodrug over cytosine by almost 20-fold, suggesting that it may be a superior suicide gene.

  18. Structural and Kinetic Characterization of Escherichia coli TadA, the Wobble-Specific tRNA Deaminase

    SciTech Connect

    Kim,J.; Malashkevich, V.; Roday, S.; Lisbin, M.; Schramm, V.; Almo, S.

    2006-01-01

    The essential tRNA-specific adenosine deaminase catalyzes the deamination of adenosine to inosine at the wobble position of tRNAs. This modification allows for a single tRNA species to recognize multiple synonymous codons containing A, C, or U in the last (3'-most) position and ensures that all sense codons are appropriately decoded. We report the first combined structural and kinetic characterization of a wobble-specific deaminase. The structure of the Escherichia coli enzyme clearly defines the dimer interface and the coordination of the catalytically essential zinc ion. The structure also identifies the nucleophilic water and highlights residues near the catalytic zinc likely to be involved in recognition and catalysis of polymeric RNA substrates. A minimal 19 nucleotide RNA stem substrate has permitted the first steady-state kinetic characterization of this enzyme (k{sub cat} = 13 {+-} 1 min{sup -1} and K{sub M} = 0.83 {+-} 0.22 {micro}M). A continuous coupled assay was developed to follow the reaction at high concentrations of polynucleotide substrates (>10 {micro}M). This work begins to define the chemical and structural determinants responsible for catalysis and substrate recognition and lays the foundation for detailed mechanistic analysis of this essential enzyme.

  19. Gene therapy for newborns.

    PubMed

    Kohn, D B; Parkman, R

    1997-07-01

    Application of gene therapy to treat genetic and infectious diseases may have several advantages if performed in newborns. Because of the minimal adverse effect of the underlying disease on cells of the newborn, the relatively small size of infants, and the large amount of future growth, gene therapy may be more successful in newborns than in older children or adults. The presence of umbilical cord blood from newborns provides a unique and susceptible target for the genetic modification of hematopoietic stem cells. In our first trial of gene therapy in newborns, we inserted a normal adenosine deaminase gene into umbilical cord blood cells of three neonates with a congenital immune deficiency. The trial demonstrated the successful transduction and engraftment of stem cells, which continue to contribute to leukocyte production more than 3 years later. A similar approach may be taken to insert genes that inhibit replication of HIV-1 into umbilical cord blood cells of HIV-1-infected neonates. Many other metabolic and infectious disorders could be treated by gene therapy during the neonatal period if prenatal diagnoses are made and the appropriate technical and regulatory requirements have been met.

  20. Significance of the D-serine-deaminase and D-serine metabolism of Staphylococcus saprophyticus for virulence.

    PubMed

    Korte-Berwanger, Miriam; Sakinc, Türkan; Kline, Kimberly; Nielsen, Hailyn V; Hultgren, Scott; Gatermann, Sören G

    2013-12-01

    Staphylococcus saprophyticus is the only species of Staphylococcus that is typically uropathogenic and possesses a gene coding for a D-serine-deaminase (DsdA). As D-serine is prevalent in urine and toxic or bacteriostatic to many bacteria, it is not surprising that the D-serine-deaminase gene is found in the genome of uropathogens. It has been suggested that D-serine-deaminase or the ability to respond to or to metabolize D-serine is important for virulence. For uropathogenic Escherichia coli (UPEC), a high intracellular D-serine concentration affects expression of virulence factors. S. saprophyticus is able to grow in the presence of high D-serine concentrations; however, its D-serine metabolism has not been described. The activity of the D-serine-deaminase was verified by analyzing the formation of pyruvate from D-serine in different strains with and without D-serine-deaminase. Cocultivation experiments were performed to show that D-serine-deaminase confers a growth advantage to S. saprophyticus in the presence of D-serine. Furthermore, in vivo coinfection experiments showed a disadvantage for the ΔdsdA mutant during urinary tract infection. Expression analysis of known virulence factors by reverse transcription-quantitative PCR (RT-qPCR) showed that the surface-associated lipase Ssp is upregulated in the presence of D-serine. In addition, we show that S. saprophyticus is able to use D-serine as the sole carbon source, but interestingly, D-serine had a negative effect on growth when glucose was also present. Taken together, D-serine metabolism is associated with virulence in S. saprophyticus, as at least one known virulence factor is upregulated in the presence of D-serine and a ΔdsdA mutant was attenuated in virulence murine model of urinary tract infection.

  1. Adenosine and sleep

    SciTech Connect

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  2. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning.

    PubMed

    Aiuti, Alessandro; Slavin, Shimon; Aker, Memet; Ficara, Francesca; Deola, Sara; Mortellaro, Alessandra; Morecki, Shoshana; Andolfi, Grazia; Tabucchi, Antonella; Carlucci, Filippo; Marinello, Enrico; Cattaneo, Federica; Vai, Sergio; Servida, Paolo; Miniero, Roberto; Roncarolo, Maria Grazia; Bordignon, Claudio

    2002-06-28

    Hematopoietic stem cell (HSC) gene therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID) has shown limited clinical efficacy because of the small proportion of engrafted genetically corrected HSCs. We describe an improved protocol for gene transfer into HSCs associated with nonmyeloablative conditioning. This protocol was used in two patients for whom enzyme replacement therapy was not available, which allowed the effect of gene therapy alone to be evaluated. Sustained engraftment of engineered HSCs with differentiation into multiple lineages resulted in increased lymphocyte counts, improved immune functions (including antigen-specific responses), and lower toxic metabolites. Both patients are currently at home and clinically well, with normal growth and development. These results indicate the safety and efficacy of HSC gene therapy combined with nonmyeloablative conditioning for the treatment of SCID.

  3. A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea

    PubMed Central

    Randau, Lennart; Stanley, Bradford J.; Kohlway, Andrew; Mechta, Sarah; Xiong, Yong; Söll, Dieter

    2010-01-01

    All canonical transfer RNAs (tRNAs) have a uridine at position 8, involved in maintaining tRNA tertiary structure. However, the hyperthermophilic archaeon Methanopyrus kandleri harbors 30 (out of 34) tRNA genes with cytidine at position 8. Here, we demonstrate C-to-U editing at this location in the tRNA’s tertiary core, and present the crystal structure of a tRNA-specific cytidine deaminase, CDAT8, which has the cytidine deaminase domain linked to a tRNA-binding THUMP domain. CDAT8 is specific for C deamination at position 8, requires only the acceptor stem hairpin for activity, and belongs to a unique family within the “cytidine deaminase–like” superfamily. The presence of this C-to-U editing enzyme guarantees the proper folding and functionality of all M. kandleri tRNAs. PMID:19407206

  4. Inhibition of Platelet Activation and Thrombus Formation by Adenosine and Inosine: Studies on Their Relative Contribution and Molecular Modeling

    PubMed Central

    Fuentes, Eduardo; Pereira, Jaime; Mezzano, Diego; Alarcón, Marcelo; Caballero, Julio; Palomo, Iván

    2014-01-01

    Background The inhibitory effect of adenosine on platelet aggregation is abrogated after the addition of adenosine-deaminase. Inosine is a naturally occurring nucleoside degraded from adenosine. Objectives The mechanisms of antiplatelet action of adenosine and inosine in vitro and in vivo, and their differential biological effects by molecular modeling were investigated. Results Adenosine (0.5, 1 and 2 mmol/L) inhibited phosphatidylserine exposure from 52±4% in the control group to 44±4 (p<0.05), 29±2 (p<0.01) and 20±3% (p<0.001). P-selectin expression in the presence of adenosine 0.5, 1 and 2 mmol/L was inhibited from 32±4 to 27±2 (p<0.05), 14±3 (p<0.01) and 9±3% (p<0.001), respectively. At the concentrations tested, only inosine to 4 mmol/L had effect on platelet P-selectin expression (p<0.05). Adenosine and inosine inhibited platelet aggregation and ATP release stimulated by ADP and collagen. Adenosine and inosine reduced collagen-induced platelet adhesion and aggregate formation under flow. At the same concentrations adenosine inhibited platelet aggregation, decreased the levels of sCD40L and increased intraplatelet cAMP. In addition, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent adenosine receptor A2A antagonist) attenuated the effect of adenosine on platelet aggregation induced by ADP and intraplatelet level of cAMP. Adenosine and inosine significantly inhibited thrombosis formation in vivo (62±2% occlusion at 60 min [n = 6, p<0.01] and 72±1.9% occlusion at 60 min, [n = 6, p<0.05], respectively) compared with the control (98±2% occlusion at 60 min, n = 6). A2A is the adenosine receptor present in platelets; it is known that inosine is not an A2A ligand. Docking of adenosine and inosine inside A2A showed that the main difference is the formation by adenosine of an additional hydrogen bond between the NH2 of the adenine group and the residues Asn253 in H6 and Glu169 in EL2 of the A2A receptor. Conclusion Therefore

  5. Cytosine deaminase MX cassettes as positive/negative selectable markers in Saccharomyces cerevisiae.

    PubMed

    Hartzog, Phillip E; Nicholson, Bradly P; McCusker, John H

    2005-07-30

    We describe positive/negative selectable cytosine deaminase MX cassettes for use in Saccharomyces cerevisiae. The basis of positive selection for cytosine deaminase (Fcy1) activity is that (a) fcy1 strains are unable to grow on medium containing cytosine as a sole nitrogen source and (b) fcy1 ura3 strains are unable to grow on medium containing cytosine as the sole pyrimidine source. Conversely, as 5-fluorocytosine (5FC) is toxic to cytosine deaminase-producing cells, fcy1 strains are resistant to 5FC. FCY1MX and FCA1MX cassettes, containing open reading frames (ORFs) of S. cerevisiae FCY1 and Candida albicans FCA1, respectively, were constructed and used to disrupt targeted genes in S. cerevisiae fcy1 strains. In addition, new direct repeat cassettes, kanPR, FCA1PR, FCY1PR and CaURA3PR, were developed to allow efficient deletion of target genes in cells containing MX3 repeats. Finally, the FCY1- and FCA1MX3 or PR direct repeat cassettes can be readily recycled after 5FC counter-selection on both synthetic and rich media.

  6. Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth.

    PubMed

    Magnucka, Elżbieta G; Pietr, Stanisław J

    2015-12-01

    The study evaluates the effect of rhizobacteria having 1-aminocyclopropane-1-carboxylate deaminase (ACCd) on the development of wheat seedlings. This enzyme has been proposed to play a key role in microbe-plant association. Three fluorescent pseudomonads containing this deaminase were selected from 70 strains of pseudomonads isolated from rhizosphere of wheat (Triticum aestivum L.) and rape (Brassica napus L.). These bacteria, varied significantly in the ability to both biosynthesize auxins and hydrolyze ACC. Among them, Pseudomonas brassicacearum subsp. brassicacearum strain RZ310 presented the highest activities of ACC deaminase during 96h of growth in liquid Dworkin and Foster (DF) salt medium. Additionally, this rape rhizosphere strain did not produce indoles. Two other isolates, Pseudomonas sp. PO283 and Pseudomonas sp. PO366, secreted auxins only in the presence of their precursor. Phylogenetic analysis of the 16S rRNA gene and four other protein-encoding genes indicated that these wheat rhizosphere isolates belonged to the fluorescent Pseudomonas group. Moreover, the effects of these strains on wheat seedling growth under in vitro conditions were markedly dependent on both their cell suspensions used to grain inoculation and nutrient conditions. Strains tested had beneficial influence on wheat seedlings mainly at low cell densities. In addition, access to nutrients markedly changed bacteria action on cereal growth. Their presence generally favored the positive effects of pseudomonads on length and the estimated biomasses of wheat coleoptiles. Despite these general rules, impacts of each isolate on the growth parameters of cereal seedlings were unique.

  7. Adenosine receptor expression and function in rat striatal cholinergic interneurons.

    PubMed

    Preston, Z; Lee, K; Widdowson, L; Freeman, T C; Dixon, A K; Richardson, P J

    2000-06-01

    Cholinergic neurons were identified in rat striatal slices by their size, membrane properties, sensitivity to the NK(1) receptor agonist (Sar(9), Met(O(2))(11)) Substance P, and expression of choline acetyltransferase mRNA. A(1) receptor mRNA was detected in 60% of the neurons analysed, and A(2A) receptor mRNA in 67% (n=15). The A(1) receptor agonist R-N(6)-(2-phenylisopropyl)adenosine (R-PIA) hyperpolarized cholinergic neurons in a concentration dependent manner sensitive to the A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX, 100 nM). In dual stimulus experiments, the A(2A) receptor antagonist 8-(3-chlorostyryl)caffeine (CSC, 500 nM) decreased release of [(3)H]-acetylcholine from striatal slices (S2/S1 0.78+/-0.07 versus 0.95+/-0.05 in control), as did adenosine deaminase (S2/S1 ratio 0.69+/-0.05), whereas the A(1) receptor antagonist DPCPX (100 nM) had no effect (S2/S1 1.05+/-0.14). In the presence of adenosine deaminase the adenosine A(2A) receptor agonist 2-p-((carboxyethyl)phenylethylamino)-5'-N-ethylcarboxamidoadeno sin e (CGS21680, 10 nM) increased release (S2/S1 ratio 1.03+/-0.05 versus 0.88+/-0.05 in control), an effect blocked by the antagonist CSC (500 nM, S2/S1 0.68+/-0.05, versus 0.73+/-0.08 with CSC alone). The combined superfusion of bicuculline (10 microM), saclofen (1 microM) and naloxone (10 microM) had no effect on the stimulation by CGS21680 (S2/S1 ratio 0.99+/-0.04). The A(1) receptor agonist R-PIA (100 nM) inhibited the release of [(3)H]-acetylcholine (S2/S1 ratio 0.70+/-0.03), an effect blocked by DPCPX (S2/S1 ratio 1.06+/-0.07). It is concluded that both A(1) and A(2A) receptors are expressed on striatal cholinergic neurons where they are functionally active.

  8. Yeast Cytosine Deaminase Mutants with Increased Thermostability Impart Sensitivity to 5-Fluorocytosine

    PubMed Central

    Stolworthy, Tiffany S.; Korkegian, Aaron M.; Willmon, Candice L.; Ardiani, Andressa; Cundiff, Jennifer; Stoddard, Barry L.; Black, Margaret E.

    2008-01-01

    SUMMARY Prodrug gene therapy (PGT) is a treatment strategy in which tumor cells are transfected with a 'suicide' gene that encodes a metabolic enzyme capable of converting a nontoxic prodrug into a potent cytotoxin. One of the most promising PGT enzymes is cytosine deaminase (CD), a microbial salvage enzyme that converts cytosine to uracil. CD also converts 5-fluorocytosine (5FC) to 5-fluorouracil (5FU), an inhibitor of DNA synthesis and RNA function. Over 150 studies of cytosine deaminase-mediated PGT applications have been reported since 2000, all using wild-type enzymes. However, various forms of cytosine deaminase are limited by inefficient turnover of 5FC and/or limited thermostability. In a previous study we stabilized and extended the half-life of yeast cytosine deaminase (yCD) by repacking of its hydrophobic core at several positions distant from the active site. Here we report that random mutagenesis of residues selected based on alignment with similar enzymes, followed by selection for enhanced sensitization to 5FC, also produces an enzyme variant (yCD-D92E) with elevated Tm values and increased activity half-life. The new mutation is located at the enzyme's dimer interface, indicating that independent mutational pathways can lead to an increase in the temperature that induces protein unfolding and aggregation in thermal denaturation experiments measured by circular dichroism spectroscopy, and an increase in the half-life of enzyme activity at physiological temperature, as well as more subtle effect on enzyme kinetics. Each independently derived set of mutations significantly improves the enzyme's performance in PGT assays both in cell culture and in animal models. PMID:18291415

  9. Multivalent Induction of Biodegradative Threonine Deaminase

    PubMed Central

    Yui, Yoshiki; Watanabe, Yasuyoshi; Ito, Seiji; Shizuta, Yutaka; Hayaishi, Osamu

    1977-01-01

    To determine the inducer(s) of the biodegradative threonine deaminase in Escherichia coli, the effects of various amino acids on the synthesis of this enzyme were investigated. The complex medium used hitherto for the enzyme induction can be completely replaced by a synthetic medium composed of 18 natural amino acids. In this synthetic medium, the omission of each of the seven amino acids threonine, serine, aspartic acid, methionine, valine, leucine, and arginine resulted in the greatest loss of enzyme formation. These seven amino acids did not significantly influence the uptake of other amino acids into the cells. Furthermore, they did not stimulate the conversion of inactive enzyme into an active form, since they did not affect the enzyme level in cells in which protein synthesis was inhibited by chloramphenicol. Threonine, serine, aspartic acid, and methionine failed to stimulate enzyme production in cells in which messenger ribonucleic acid synthesis was arrested by rifampin, whereas valine, leucine, and arginine stimulated enzyme synthesis under the same conditions. Therefore, the first four amino acids appear to act as inducers of the biodegradative threonine deaminase in E. coli and the last three amino acids appear to be amplifiers of enzyme production. The term “multivalent induction” has been proposed for this type of induction, i.e., enzyme induction only by the simultaneous presence of several amino acids. PMID:334736

  10. Rat cardiac myocyte adenosine transport and metabolism

    SciTech Connect

    Ford, D.A.; Rovetto, M.J.

    1987-01-01

    Based on the importance of myocardial adenosine and adenine nucleotide metabolism, the adenosine salvage pathway in ventricular myocytes was studied. Accurate estimates of transport rates, separate from metabolic fllux, were determined. Adenosine influx was constant between 3 and 60 s. Adenosine metabolism maintained intracellular adenosine concentrations < 10% of the extracellular adenosine concentrations and thus unidirectional influx could be measured. Myocytes transported adenosine via saturable and nonsaturable processes. A minimum estimate of the V/sub max/ of myocytic adenosine kinase indicated the saturable component of adenosine influx was independent of adenosine kinase activity. Saturable transport was inhibited by nitrobenzylthioinosine and verapamil. Extracellular adenosine taken up myocytes was rapidly phosphorylated to adenine taken up by myocytes was rapidly phosphorylated to adenine nucleotides. Not all extracellular adenosine, though, was phosphorylated on entering myocytes, since free, as opposed to protein-bound, intracellular adenosine was detected after digitonin extraction of cells in the presence of 1 mM ethylene-diaminetetraacetic acid.

  11. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors.

    PubMed

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  12. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    PubMed Central

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  13. Pleural effusion: Role of pleural fluid cytology, adenosine deaminase level, and pleural biopsy in diagnosis

    PubMed Central

    Biswas, Biswajit; Sharma, Sudershan Kumar; Negi, Rameshwar Singh; Gupta, Neelam; Jaswal, Virender Mohan Singh; Niranjan, Narsimhalu

    2016-01-01

    Objective: The present study is designed to evaluate the role of pleural fluid analysis in diagnosing pleural diseases and to study the advantages and disadvantages of thoracocentasis and pleural biopsy. Materials and Methods: We prospectively included 66 consecutive indoor patients over a duration of 1 year. Pleural fluid was collected and cytological smears were made from the fluid. Plural biopsy was done in the same patient by Cope needle. Adequate pleural biopsy tissue yielding specific diagnosis was obtained in 47 (71.2%) cases. Results: Tuberculosis was the commonest nonneoplastic lesion followed by chronic nonspecific pleuritis comprising 60% and 33.3% of the nonneoplastic cases respectively and tuberculosis was predominantly diagnosed in the younger age group. Majority (70.8%) of malignancy cases were in the age group of >50-70. Adenocarcinoma was found to be the commonest (66.7%) malignant neoplasm in the pleurae followed by small-cell carcinoma (20.8%). Conclusion: Pleural biopsy is a useful and minimally invasive procedure. It is more sensitive and specific than pleural fluid smears. PMID:27756990

  14. Discovery and Structure Determination of the Orphan Enzyme Isoxanthopterin Deaminase

    SciTech Connect

    Hall, R.S.; Swaminathan, S.; Agarwal, R.; Hitchcock, D.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2010-05-25

    Two previously uncharacterized proteins have been identified that efficiently catalyze the deamination of isoxanthopterin and pterin 6-carboxylate. The genes encoding these two enzymes, NYSGXRC-9339a (gi|44585104) and NYSGXRC-9236b (gi|44611670), were first identified from DNA isolated from the Sargasso Sea as part of the Global Ocean Sampling Project. The genes were synthesized, and the proteins were subsequently expressed and purified. The X-ray structure of Sgx9339a was determined at 2.7 {angstrom} resolution (Protein Data Bank entry 2PAJ). This protein folds as a distorted ({beta}/{alpha}){sub 8} barrel and contains a single zinc ion in the active site. These enzymes are members of the amidohydrolase superfamily and belong to cog0402 within the clusters of orthologous groups (COG). Enzymes in cog0402 have previously been shown to catalyze the deamination of guanine, cytosine, S-adenosylhomocysteine, and 8-oxoguanine. A small compound library of pteridines, purines, and pyrimidines was used to probe catalytic activity. The only substrates identified in this search were isoxanthopterin and pterin 6-carboxylate. The kinetic constants for the deamination of isoxanthopterin with Sgx9339a were determined to be 1.0 s{sup -1}, 8.0 {micro}M, and 1.3 x 10{sup 5} M{sup -1} s{sup -1} (k{sub cat}, K{sub m}, and k{sub cat}/K{sub m}, respectively). The active site of Sgx9339a most closely resembles the active site for 8-oxoguanine deaminase (Protein Data Bank entry 2UZ9). A model for substrate recognition of isoxanthopterin by Sgx9339a was proposed on the basis of the binding of guanine and xanthine in the active site of guanine deaminase. Residues critical for substrate binding appear to be conserved glutamine and tyrosine residues that form hydrogen bonds with the carbonyl oxygen at C4, a conserved threonine residue that forms hydrogen bonds with N5, and another conserved threonine residue that forms hydrogen bonds with the carbonyl group at C7. These conserved active site

  15. Adenosine A2A Receptor Gene Knockout Prevents l-3,4-Dihydroxyphenylalanine-Induced Dyskinesia by Downregulation of Striatal GAD67 in 6-OHDA-Lesioned Parkinson’s Mice

    PubMed Central

    Yin, Su-bing; Zhang, Xiao-guang; Chen, Shuang; Yang, Wen-ting; Zheng, Xia-wei; Zheng, Guo-qing

    2017-01-01

    l-3,4-Dihydroxyphenylalanine (l-DOPA) remains the primary pharmacological agent for the symptomatic treatment of Parkinson’s disease (PD). However, the development of l-DOPA-induced dyskinesia (LID) limits the long-term use of l-DOPA for PD patients. Some data have reported that adenosine A2A receptor (A2AR) antagonists prevented LID in animal model of PD. However, the mechanism in which adenosine A2AR blockade alleviates the symptoms of LID has not been fully clarified. Here, we determined to knock out (KO) the gene of A2AR and explored the possible underlying mechanisms implicated in development of LID in a mouse model of PD. A2AR gene KO mice were unilaterally injected into the striatum with 6-hydroxydopamine (6-OHDA) in order to damage dopamine neurons on one side of the brain. 6-OHDA-lesioned mice were then injected once daily for 21 days with l-DOPA. Abnormal involuntary movements (AIMs) were evaluated on days 3, 8, 13, and 18 after l-DOPA administration, and real-time polymerase chain reaction and immunohistochemistry for glutamic acid decarboxylase (GAD) 65 and GAD67 were performed. We found that A2AR gene KO was effective in reducing AIM scores and accompanied with decrease of striatal GAD67, rather than GAD65. These results demonstrated that the possible mechanism involved in alleviation of AIM symptoms by A2AR gene KO might be through reducing the expression of striatal GAD67. PMID:28377741

  16. Concurrent agonism of adenosine A2B and glucocorticoid receptors in human airway epithelial cells cooperatively induces genes with anti-inflammatory potential: a novel approach to treat chronic obstructive pulmonary disease.

    PubMed

    Greer, Stephanie; Page, Cara W; Joshi, Taruna; Yan, Dong; Newton, Robert; Giembycz, Mark A

    2013-09-01

    Chronic obstructive pulmonary disease (COPD) is a neutrophilic inflammatory disorder that is weakly responsive to glucocorticoids. Identification of ways to enhance the anti-inflammatory activity of glucocorticoids is, therefore, a major research objective. Adenosine receptor agonists that target the A2B-receptor subtype are efficacious in several cell-based assays and preclinical models of inflammation. Accordingly, the present study was designed to determine if a selective A2B-receptor agonist, 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulphanyl]acetamide (Bay 60-6583), and a glucocorticoid, dexamethasone, in combination display putative anti-inflammatory activity that is superior to either drug alone. In BEAS-2B human airway epithelial cells stably transfected with cAMP-response element (CRE) and glucocorticoid response element (GRE) reporter constructs, Bay 60-6583 promoted CRE-dependent transcription and enhanced GRE-dependent transcription by an adenosine A2B-receptor-mediated mechanism that was associated with cAMP formation and abolished by an inhibitor of cAMP-dependent protein kinase. Analysis of the concentration-response relationship that described the enhancement of GRE-dependent transcription showed that Bay 60-6583 increased the magnitude of response without affecting the potency of dexamethasone. Bay 60-6583 and dexamethasone also induced a panel of genes that, collectively, could have benefit in COPD. These were categorized into genes that were induced in a positive cooperative manner (RGS2, p57(kip2)), an additive manner (TTP, BRL-1), or by Bay 60-6583 (CD200, CRISPLD2, SOCS3) or dexamethasone (GILZ) only. Thus, the gene induction "fingerprints" produced by Bay 60-6583 and dexamethasone, alone and in combination, were distinct. Collectively, through their actions on gene expression, an adenosine A2B-receptor agonist and a glucocorticoid administered together may have utility in the treatment of inflammatory disorders that

  17. Dual Effect of Adenosine A1 Receptor Activation on Renal O2 Consumption.

    PubMed

    Babich, Victor; Vadnagara, Komal; Di Sole, Francesca

    2015-12-01

    The high requirement of O2 in the renal proximal tubule stems from a high rate of Na(+) transport. Adenosine A1 receptor (A1R) activation regulates Na(+) transport in this nephron segment. Thus, the effect of the acute activation and the mechanisms of A1R on the rate of O2 consumption were evaluated. The A1R-antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPX) and adenosine deaminase (ADA), which metabolize endogenous adenosine, reduced O2 consumption (40-50%). Replacing Na(+) in the buffer reversed the ADA- or CPX-mediated reduction of O2 consumption. Blocking the Na/H-exchanger activity, which decreases O2 usage per se, did not enhance the ADA- or CPX-induced inhibition of O2 consumption. These data indicate that endogenous adenosine increases O2 usage via the activation of Na(+) transport. In the presence of endogenous adenosine, A1R was further activated by the A1R-agonist N(6)-cyclopentyladenosine (CPA); CPA inhibited O2 usage (30%) and this effect also depended on Na(+) transport. Moreover, a low concentration of CPA activated O2 usage in tissue pretreated with ADA, whereas a high concentration of CPA inhibited O2 usage; both effects depended on Na(+). Protein kinase C signaling mediated the inhibitory effect of A1R, while adenylyl cyclase mediated its stimulatory effect on O2 consumption. In summary, increasing the local concentrations of adenosine can either activate or inhibit O2 consumption via A1R, and this mechanism depends on Na(+) transport. The inhibition of O2 usage by A1R activation might restore the compromised balance between energy supply and demand under pathophysiological conditions, such as renal ischemia, which results in high adenosine production.

  18. 1-Aminocyclopropane-1-carboxylate (ACC) deaminases from Methylobacterium radiotolerans and Methylobacterium nodulans with higher specificity for ACC.

    PubMed

    Fedorov, Dmitry N; Ekimova, Galina A; Doronina, Nina V; Trotsenko, Yuri A

    2013-06-01

    The 1-aminocyclopropane-1-carboxylate (ACC) deaminases (EC 3.4.99.7), the key enzymes of degradation of the precursor of the phytohormone ethylene, have not been well studied despite their great importance for plant-bacterial interactions. Using blast, the open reading frames encoding ACC deaminases were found in the genomes of epiphytic methylotroph Methylobacterium radiotolerans JCM2831 and nodule-forming endosymbiont Methylobacterium nodulans ORS2060. These genes were named acdS and cloned; recombinant proteins were expressed and purified from Escherichia coli. The enzyme from M. nodulans displayed the highest substrate specificity among all of the characterized ACC deaminases (Km 0.80 ± 0.04 mM), whereas the enzyme from M. radiotolerans had Km 1.8 ± 0.3 mM. The kcat values were 111.8 ± 0.2 and 65.8 ± 2.8 min(-1) for the enzymes of M. nodulans and M. radiotolerans, respectively. Both enzymes are homotetramers with a molecular mass of 144 kDa, as was demonstrated by size exclusion chromatography and native PAGE. The purified enzymes displayed the maximum activity at 45-50 °C and pH 8.0. Thus, the priority data have been obtained, extending the knowledge of biochemical properties of bacterial ACC deaminases.

  19. Valerian extract Ze 911 inhibits postsynaptic potentials by activation of adenosine A1 receptors in rat cortical neurons.

    PubMed

    Vissiennon, Z; Sichardt, K; Koetter, U; Brattström, A; Nieber, K

    2006-06-01

    In this study we evaluated the adenosine A1 receptor-mediated effect of valerian extract (Ze 911) on postsynaptic potentials (PSPs) in pyramidal cells of the rat cingulate cortex in a slice preparation. We first observed that N6-cyclopentyladenosine (CPA, 0.01 - 10 microM), an adenosine A1 receptor agonist, inhibited PSPs in a concentration-dependent manner. The CPA (10 microM)-induced inhibition was antagonized by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.1 microM), an adenosine A1 receptor antagonist. Ze 911 concentration dependently (0.1 - 15 mg/mL) inhibited PSPs in the presence of the adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC, 0.2 microM) and adenosine deaminase (1 U/mL). The maximal inhibition induced by 10 mg/mL was completely antagonised by DPCPX (0.1 microM), an A1 receptor blocker. The data suggest that activation of adenosine A1 receptors is involved in the pharmacological effects of the valerian extract Ze 911.

  20. Transcriptional pausing and stalling causes multiple clustered mutations by human activation-induced deaminase

    PubMed Central

    Canugovi, Chandrika; Samaranayake, Mala; Bhagwat, Ashok S.

    2009-01-01

    Transcription of the rearranged immunoglobulin gene and expression of the enzyme activation-induced deaminase (AID) are essential for somatic hypermutations of this gene during antibody maturation. While AID acts as a single-strand DNA-cytosine deaminase creating U · G mispairs that lead to mutations, the role played by transcription in this process is less clear. We have used in vitro transcription of the kan gene by the T7 RNA polymerase (RNAP) in the presence of AID and a genetic reversion assay for kanamycin-resistance to investigate the causes of multiple clustered mutations (MCMs) during somatic hypermutations. We find that, depending on transcription conditions, AID can cause single-base substitutions or MCMs. When wild-type RNAP is used for transcription at physiologically relevant concentrations of ribonucleoside triphosphates (NTPs), few MCMs are found. In contrast, slowing the rate of elongation by reducing the NTP concentration or using a mutant RNAP increases several-fold the percent of revertants containing MCMs. Arresting the elongation complexes by a quick removal of NTPs leads to formation of RNA-DNA hybrids (R-loops). Treatment of these structures with AID results in a high percentage of KanR revertants with MCMs. Furthermore, selecting for transcription elongation complexes stalled near the codon that suffers mutations during acquisition of kanamycin-resistance results in an overwhelming majority of revertants with MCMs. These results show that if RNAP II pauses or stalls during transcription of immunoglobulin gene, AID is likely to promote MCMs. As changes in physiological conditions such as occurrence of certain DNA primary or secondary structures or DNA adducts are known to cause transcriptional pausing and stalling in mammalian cells, this process may cause MCMs during somatic hypermutation.—Canugovi, C., Samaranayake, M., Bhagwat, A. S. Transcriptional pausing and stalling causes multiple clustered mutations by human activation

  1. Studies on guanine deaminase and its inhibitors in rat tissue

    PubMed Central

    Kumar, S.; Josan, V.; Sanger, K. C. S.; Tewari, K. K.; Krishnan, P. S.

    1967-01-01

    1. In kidney, but not in rat whole brain and liver, guanine-deaminase activity was localized almost exclusively in the 15000g supernatant fraction of iso-osmotic sucrose homogenates. However, as in brain and liver, the enzymic activity recovered in the supernatant was higher than that in the whole homogenate. The particulate fractions of kidney, especially the heavy mitochondria, brought about powerful inhibition of the supernatant guanine-deaminase activity. 2. In spleen, as in kidney, guanine-deaminase activity was localized in the 15000g supernatant fraction of iso-osmotic sucrose homogenates. However, the particulate fractions did not inhibit the activity of the supernatant. 3. Guanine-deaminase activity in rat brain was absent from the cerebellum and present only in the cerebral hemispheres. The inhibitor of guanine deaminase was located exclusively in the cerebellum, where it was associated with the particles sedimenting at 5000g from sucrose homogenates. 4. Homogenates of cerebral hemispheres, the separated cortex or the remaining portion of the hemispheres had significantly higher guanine-deaminase activity than homogenates of whole brain. The enzymic activity of the subcellular particulate fractions was nearly the same. 5. Guanine deaminase was purified from the 15000g supernatant of sucrose homogenates of whole brain. The enzyme separated as two distinct fractions, A and B, on DEAE-cellulose columns. 6. The guanine-deaminase activity of the light-mitochondrial fraction of whole brain was fully exposed and solubilized by treatment with Triton X-100, and partially purified. 7. Tested in the form of crude preparations, the inhibitor from kidney did not act on the brain and liver supernatant enzymes and the inhibitor from cerebellum did not act on kidney enzyme, but the inhibitor from liver acted on both brain and kidney enzyme. 8. The inhibitor of guanine deaminase was purified from the heavy mitochondria of whole brain and liver and the 5000g residue of

  2. The catalase activity of diiron adenine deaminase

    SciTech Connect

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  3. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    PubMed Central

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  4. Human gene therapy: a brief overview of the genetic revolution.

    PubMed

    Misra, Sanjukta

    2013-02-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The prelude to successful gene therapy i.e. the efficient transfer and expression of a variety of human gene into target cells has already been accomplished in several systems. Safe methods have been devised to do this, using several viral and no-viral vectors. Two main approaches emerged: in vivo modification and ex vivo modification. Retrovirus, adenovirus, adeno-associated virus are suitable for gene therapeutic approaches which are based on permanent expression of the therapeutic gene. Non-viral vectors are far less efficient than viral vectors, but they have advantages due to their low immunogenicity and their large capacity for therapeutic DNA. To improve the function of non-viral vectors, the addition of viral functions such as receptor mediated uptake and nuclear translocation of DNA may finally lead to the development of an artificial virus. Gene transfer protocols have been approved for human use in inherited diseases, cancers and acquired disorders. In 1990, the first successful clinical trial of gene therapy was initiated for adenosine deaminase deficiency. Since then, the number of clinical protocols initiated worldwide has increased exponentially. Although preliminary results of these trials are somewhat disappointing, but human gene therapy dreams of treating diseases by replacing or supplementing the product of defective or introducing novel therapeutic genes. So definitely human gene therapy is an effective addition to the arsenal of approaches to many human therapies in the 21st century.

  5. Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat--possible physiological significance for the energetic homeostasis and the sleep-wake cycle.

    PubMed

    Chagoya de Sánchez, V; Hernández Múñoz, R; Suárez, J; Vidrio, S; Yáñez, L; Díaz Múñoz, M

    1993-05-28

    The role of adenosine as a metabolic regulator of physiological processes in the brain was studied by measuring its concentrations and the activity of adenosine-metabolizing enzymes: 5'-nucleotidase, S-adenosylhomocysteine hydrolase, adenosine deaminase and adenosine kinase in the cerebral cortex of the rat. Other purine compounds, such as, inosine, hypoxanthine and adenine nucleotides were also studied. The purines' pattern was bimodal with high levels of adenosine, inosine and hypoxanthine during the light period reaching their peak at 12.00 h, 08.00 h and 16.00 h, respectively, and small increments during the night between 02.00 h and 04.00 h. The enzymatic activities showed, in general, an unimodal profile with low activity during the day and high activities at night. The adenine nucleotide profile showed a significant diminution between 12.00 h and 24.00 h. The high adenosine level during the day might be due to a diminution of adenine nucleotide and to the low activity of adenosine-metabolizing enzymes, suggesting an accumulation of the nucleoside. The night increase, although of less magnitude, is simultaneous to high activity of adenosine-metabolizing enzymes and could be due to an increased formation of the nucleoside. The present data and the findings from other authors strongly suggest that adenosine in the brain cortex of the rat can participate at least in two physiological processes: regulation of the sleep-wake cycle and replenishment of the adenine nucleotide pool.

  6. Twenty-four-hour changes of S-adenosylmethionine, S-adenosylhomocysteine adenosine and their metabolizing enzymes in rat liver; possible physiological significance in phospholipid methylation.

    PubMed

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Sánchez, L; Vidrio, S; Yáñez, L; Suárez, J

    1991-01-01

    1. The metabolic control of adenosine concentration in the rat liver through the 24-hr cycle is related to the activity of adenosine-metabolizing enzymes [5'-nucleotidase (5'N), adenosine deaminase (A.D.), adenosine kinase (A.K.) and S-adenosylhomocysteine hydrolase (SAH-H)]. 2. Two peaks of adenosine were observed, one at 12:00 hr caused by high activity of 5'N and SAH-H, and the other at 02:00 hr, caused by a decrease in purine catabolism and purine utilization, low activity of SAH-H and de novo purine formation. 3. The similarity of the adenosine and S-adenosylmethionine (SAM) profiles through the 24-hr cycle suggests a role of adenosine in transmethylation reactions, because, during the night (02:00 hr), the metabolic conditions favor the formation and accumulation of S-adenosylhomocysteine (SAH), with consequent inhibition of transmethylation reactions. 4. In the 24-hr variation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), the lowest ratio of PC/PE was observed at 24:00-02:00 hr when SAH concentration is high, whereas the highest PC/PE ratio occurs at the same time as one of the SAM/SAH ratio maxima.

  7. Elevation of serum IgE level and peripheral eosinophil count during T lymphocyte-directed gene therapy for ADA deficiency: implication of Tc2-like cells after gene transduction procedure.

    PubMed

    Kawamura, N; Ariga, T; Ohtsu, M; Yamada, M; Tame, A; Furuta, H; Kobayashi, I; Okano, M; Yanagihara, Y; Sakiyama, Y

    1998-11-01

    We have successfully carried out T-cell-directed gene therapy for a boy with severe combined immunodeficiency due to adenosine deaminase deficiency (ADA SCID) and unexpectedly found an elevation of serum IgE level and peripheral eosinophil count during the course. More than 90% of transduced cells cultured for 7-11 days before infusion into the patient were positive for CD8 and expressed Th2-type cytokine genes such as IL-4, IL-5 and IL-13. Furthermore, CD4(+) T-depleted PBMC (peripheral blood mononuclear cells) from the patient synthesized IgE in vitro by stimulation with IL-4. Collectively, these results suggested that Tc2-like cells in the transduced cells have distinct immunological functions to help IgE synthesis and activate eosinophils.

  8. Altered AMP deaminase activity may extend postmortem glycolysis.

    PubMed

    England, E M; Matarneh, S K; Scheffler, T L; Wachet, C; Gerrard, D E

    2015-04-01

    Postmortem energy metabolism drives hydrogen accumulation in muscle and results in a fairly constant ultimate pH. Extended glycolysis results in adverse pork quality and may be possible with greater adenonucleotide availability postmortem. We hypothesized that slowing adenonucleotide removal by reducing AMP deaminase activity would extend glycolysis and lower the ultimate pH of muscle. Longissimus muscle samples were incorporated into an in vitro system that mimics postmortem glycolysis with or without pentostatin, an AMP deaminase inhibitor. Pentostatin lowered ultimate pH and increased lactate and glucose 6-phosphate with time. Based on these results and that AMPK γ3(R200Q) mutated pigs (RN⁻) produce low ultimate pH pork, we hypothesized AMP deaminase abundance and activity would be lower in RN⁻ muscle than wild-type. RN⁻ muscle contained lower AMP deaminase abundance and activity. These data show that altering adenonucleotide availability postmortem can extend postmortem pH decline and suggest that AMP deaminase activity may, in part, contribute to the low ultimate pH observed in RN⁻ pork.

  9. TNF-{alpha} upregulates the A{sub 2B} adenosine receptor gene: The role of NAD(P)H oxidase 4

    SciTech Connect

    St Hilaire, Cynthia; Koupenova, Milka; Carroll, Shannon H.; Smith, Barbara D.; Ravid, Katya

    2008-10-24

    Proliferation of vascular smooth muscle cells (VSMC), oxidative stress, and elevated inflammatory cytokines are some of the components that contribute to plaque formation in the vasculature. The cytokine tumor necrosis factor-alpha (TNF-{alpha}) is released during vascular injury, and contributes to lesion formation also by affecting VSMC proliferation. Recently, an A{sub 2B} adenosine receptor (A{sub 2B}AR) knockout mouse illustrated that this receptor is a tissue protector, in that it inhibits VSMC proliferation and attenuates the inflammatory response following injury, including the release of TNF-{alpha}. Here, we show a regulatory loop by which TNF-{alpha} upregulates the A{sub 2B}AR in VSMC in vitro and in vivo. The effect of this cytokine is mimicked by its known downstream target, NAD(P)H oxidase 4 (Nox4). Nox4 upregulates the A{sub 2B}AR, and Nox inhibitors dampen the effect of TNF-{alpha}. Hence, our study is the first to show that signaling associated with Nox4 is also able to upregulate the tissue protecting A{sub 2B}AR.

  10. Adenosine-Associated Delivery Systems

    PubMed Central

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  11. Genetic immunotherapy for hepatocellular carcinoma by endothelial progenitor cells armed with cytosine deaminase.

    PubMed

    Chen, Rong; Yu, Hui; An, Yan-Li; Yu-Jia, Zhen; Teng, Gao-Jun

    2014-02-01

    Endothelial progenitor cells (EPCs) serve as cellular vehicles for targeting cancer cells and are a powerful tool for delivery of therapeutic genes. Cytosine deaminase (CD), a kind of frequent suicide gene which can kill carcinoma cells by converting a non-poisonous pro-drug 5-flucytosine (5-FC) into a poisonous cytotoxic 5-fluorouracil (5-FU). We combined super-paramagnetic iron oxide (SPIO) nanoparticles labeled EPCs with CD gene to treat grafted liver carcinomas and tracked them with 7.0 T Magnetic resonance imaging (MRI). Results showed that the therapeutic EPCs loaded with CD plus 5-Fc provided stronger carcinoma growth suppression compared with treatment using CD alone. The CD/5-Fc significantly inhibited the growth of endothelial cells and induced carcinoma cells apoptosis. These results indicate that EPCs transfected with anti-carcinoma genes can be used in carcinoma therapy as a novel therapeutic modality.

  12. 8-Chloro-adenosine-induced E2F1 promotes p14ARF gene activation in H1299 cells through displacing Sp1 from multiple overlapping E2F1/Sp1 sites.

    PubMed

    Zhang, Hai-Jun; Li, Wen-Juan; Yang, Sheng-Yong; Li, Shu-Yan; Ni, Ju-Hua; Jia, Hong-Ti

    2009-02-15

    The regulation of p14ARF gene by E2F transcription factor, which differs from that of classical E2F targets, has recently been attributed to a variant E2F-response element. However, promoter assays suggest multiple elements present in the p14ARF promoter and argue against the idea that the ARF promoter has a unique ability to distinguish between aberrant and physiological levels of E2F1. Therefore, the functional characterization of the promoter still needs to be done. We demonstrate that at least two overlapping E2F1/Sp1 binding sites are present in the p14ARF promoter, and E2F1 activates the promoter through displacing constitutive Sp1 from the overlapping sites. We found that 8-chloro-adenosine (a metabolite of 8-Cl-cAMP) exposure induced the p14ARF gene in human lung cancer H1299 cells, followed by increased expression of E2F1 and constitutive expression of Sp1. The combination of cotransfection and electrophoretic mobility shift assay (EMSA) indicated that constitutive binding of Sp1 to the overlapping sites contributed to a constitutive expression of the ARF gene in unexposed H1299, whereas displacing Sp1 from the overlapping sites by E2F1 promoted the gene activation after exposure. EMSA and chromatin immunoprecipitation revealed increased association of E2F1 with the overlapping sites in the active promoter in 8-Cl-Ado-exposed cells. Together, these data suggest that the overlapping E2F1/Sp1 site, being present in multiple copies in the p14ARF promoter, may serve as the targets for both E2F1 and Sp1, thereby playing a crucial role in response to some oncogenic signals and stimulators, which activate the ARF gene through inducing E2F in the cell.

  13. AMP deaminase histochemical activity and immunofluorescent isozyme localization in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Sabina, R. L.; Ogasawara, N.; Riley, D. A.

    1992-01-01

    The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.

  14. Protein preparation and preliminary X-ray crystallographic analysis of a putative glucosamine 6-phosphate deaminase from Streptococcus mutants

    SciTech Connect

    Hu, Guan-Jing; Li, Lan-Fen; Li, Dan; Liu, Cong; Wei, Shi-Cheng; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A glucosamine 6-phosphate deaminase homologue from S. mutans was expressed, purified and crystallized. Diffraction data have been collected to 2.4 Å resolution. The SMU.636 protein from Streptococcus mutans is a putative glucosamine 6-phosphate deaminase with 233 residues. The smu.636 gene was PCR-amplified from S. mutans genomic DNA and cloned into the expression vector pET-28a(+). The resultant His-tagged fusion protein was expressed in Escherichia coli and purified to homogeneity in two steps. Crystals of the fusion protein were obtained by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.4 Å resolution and belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.83, b = 82.13, c = 134.70 Å.

  15. Adenosine receptor targets for pain.

    PubMed

    Sawynok, J

    2016-12-03

    The main focus for the development of adenosine targets as analgesics to date has been A1Rs due to its antinociceptive profile in various preclinical pain models. The usefulness of systemic A1R agonists may be limited by other effects (cardiovascular, motor), but enhanced selectivity for pain might occur with partial agonists, potent and highly selective agonists, or allosteric modulators. A2AR agonists exhibit some peripheral pronociceptive effects, but also act on immune cells to suppress inflammation and on spinal glia to suppress pain signaling and may be useful for inflammatory and neuropathic pain. A2BR agonists exhibit peripheral proinflammatory effects on immune cells, but also spinal antinociceptive effects similar to A2AR agonists. A3Rs are now demonstrated to produce antinociception in several preclinical neuropathic pain models, with mechanistic actions on glial cells, and may be useful for neuropathic pain. Endogenous adenosine levels can be augmented by inhibition of metabolism (via adenosine kinase) or increased generation (via nucleotidases), and these approaches have implications for pain. Endogenous adenosine contributes to antinociception by several pharmacological agents, herbal remedies, acupuncture, transcutaneous electrical nerve stimulation, exercise, joint mobilization, and water immersion via spinal and/or peripheral effects, such that this system appears to constitute a major pain regulatory system. Finally, caffeine inhibits A1-, A2A- and A3Rs with similar potency, and dietary caffeine intake will need attention in trials of: (a) agonists and/or modulators acting at these receptors, (b) some pharmacological and herbal analgesics, and (c) manipulations that enhance endogenous adenosine levels, all of which are inhibited by caffeine and/or A1R antagonists in preclinical studies. All adenosine receptors have effects on spinal glial cells in regulating nociception, and gender differences in the involvement of such cells in chronic

  16. Adenosine signaling contributes to ethanol-induced fatty liver in mice

    PubMed Central

    Peng, Zhongsheng; Borea, Pier Andrea; Wilder, Tuere; Yee, Herman; Chiriboga, Luis; Blackburn, Michael R.; Azzena, Gianfranco; Resta, Giuseppe; Cronstein, Bruce N.

    2009-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the biochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5′-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:19221436

  17. Expression of activation-induced cytidine deaminase decreases throughout the life.

    PubMed

    Radu, D L; Kodera, T; Bona, C

    2003-01-01

    Activation-induced cytidine deaminase (AID) is an RNA editing enzyme, which contributes to generation of new functional genes from a restricted number of genes of plant and animal genome. This enzyme was involved in the process of somatic mutation and class switching in vertebrate. Since the rate of somatic mutations is variable throughout ontogeny, we have studied the transcription of AID in 3 to 24 month-old Balb/c mice. Our results demonstrate a significant decrease of the transcription of the AID gene with aging. The decreased AID activity is not related to variation of phenotypic and functional properties of B cells throughout the life. This observation can explain the low rate of somatic mutation in aged animals.

  18. Nicotine and ethanol activate protein kinase A synergistically via G(i) betagamma subunits in nucleus accumbens/ventral tegmental cocultures: the role of dopamine D(1)/D(2) and adenosine A(2A) receptors.

    PubMed

    Inoue, Yuichiro; Yao, Lina; Hopf, F Woodward; Fan, Peidong; Jiang, Zhan; Bonci, Antonello; Diamond, Ivan

    2007-07-01

    Tobacco and alcohol are the most commonly used drugs of abuse and show the most serious comorbidity. The mesolimbic dopamine system contributes significantly to nicotine and ethanol reinforcement, but the underlying cellular signaling mechanisms are poorly understood. Nicotinic acetylcholine (nACh) receptors are highly expressed on ventral tegmental area (VTA) dopamine neurons, with relatively low expression in nucleus accumbens (NAcb) neurons. Because dopamine receptors D(1) and D(2) are highly expressed on NAcb neurons, nicotine could influence NAcb neurons indirectly by activating VTA neurons to release dopamine in the NAcb. To investigate this possibility in vitro, we established primary cultures containing neurons from VTA or NAcb separately or in cocultures. Nicotine increased cAMP response element-mediated gene expression only in cocultures; this increase was blocked by nACh or dopamine D(1) or D(2) receptor antagonists. Furthermore, subthreshold concentrations of nicotine with ethanol increased gene expression in cocultures, and this increase was blocked by nACh, D(2) or adenosine A(2A) receptor antagonists, Gbetagamma or protein kinase A (PKA) inhibitors, and adenosine deaminase. These results suggest that nicotine activated VTA neurons, causing the release of dopamine, which in turn stimulated both D(1) and D(2) receptors on NAcb neurons. In addition, subthreshold concentrations of nicotine and ethanol in combination also activated NAcb neurons through synergy between D(2) and A(2A) receptors. These data provide a novel cellular mechanism, involving Gbetagamma subunits, A(2A) receptors, and PKA, whereby combined use of tobacco and alcohol could enhance the reinforcing effect in humans as well as facilitate long-term neuroadaptations, increasing the risk for developing coaddiction.

  19. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice.

    PubMed

    Saito, Tetsuo; Nishida, Miyako; Saito, Masafumi; Tanabe, Akari; Eitsuka, Takahiro; Yuan, Shi-Hua; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-10-01

    Obesity-associated insulin resistance is a major risk factor for most metabolic diseases, including dyslipidemia and type 2 diabetes. Acanthopanax senticosus (Rupr. et Maxim.) Harms (Goka) root has been used in traditional Chinese medicine for treatment of diabetes and other conditions; however, little is known about the effects of Goka fruit (GF). Goka fruit is rich in anthocyanin, which has beneficial effects on obesity and insulin resistance via activation of adenosine monophosphate-activated protein kinase (AMPK). We hypothesized that GF can improve obesity-associated insulin resistance. The aim of the present study was to investigate whether GF improves insulin resistance in high-fat diet (HFD)-induced obese mice. High-fat diet mice treated with GF (500 and 1000 mg/kg) for 12 weeks showed an improved glucose tolerance and insulin sensitivity, as well as reduced plasma insulin and liver lipid accumulation. Moreover, GF administration to HFD mice resulted in down-regulation of fatty acid synthase expression and up-regulation of cholesterol 7-alpha-hydroxylase expression in the liver. Notably, AMPK phosphorylation in the liver increased after GF administration. In summary, GF supplementation improved obesity-associated insulin resistance and hepatic lipid accumulation through modulation of AMPK activity and lipid metabolism-associated gene expression.

  20. Ten years of gene therapy for primary immune deficiencies.

    PubMed

    Aiuti, Alessandro; Roncarolo, Maria Grazia

    2009-01-01

    Gene therapy with hematopoietic stem cells (HSC) is an attractive therapeutic strategy for several forms of primary immunodeficiencies. Current approaches are based on ex vivo gene transfer of the therapeutic gene into autologous HSC by vector-mediated gene transfer. In the past decade, substantial progress has been achieved in the treatment of severe combined immundeficiencies (SCID)-X1, adenosine deaminase (ADA)-deficient SCID, and chronic granulomatous disease (CGD). Results of the SCID gene therapy trials have shown long-term restoration of immune competence and clinical benefit in over 30 patients. The inclusion of reduced-dose conditioning in the ADA-SCID has allowed the engraftment of multipotent gene-corrected HSC at substantial level. In the CGD trial significant engraftment and transgene expression were observed, but the therapeutic effect was transient. The occurrence of adverse events related to insertional mutagenesis in the SCID-X1 and CGD trial has highlighted the limitations of current retroviral vector technology. For future applications the risk-benefit evaluation should include the type of vector employed, the disease background and the nature of the transgene. The use of self-inactivating lentiviral vectors will provide significant advantages in terms of natural gene regulation and reduction in the potential for adverse mutagenic events. Following recent advances in preclinical studies, lentiviral vectors are now being translated into new clinical approaches, such as Wiskott-Aldrich Syndrome.

  1. Adenosine 3',5-cyclic monophosphate phosphodiesterase activity in granulosa cells from Booroola x Romney ewes with and without the F gene.

    PubMed

    McNatty, K P; Heath, D A; Lun, S; Hudson, N L

    1989-02-01

    Granulosa cells from ovarian follicles (greater than or equal to 1 mm diameter) in Booroola ewes which are homozygous (FF) or heterozygous (F+) for the F gene have previously been shown to produce significantly more cAMP in response to FSH or LH than those from similar sized follicles in ewes without the F gene (++). The aim of these studies was to test whether these F gene-specific differences arose because of differences in cAMP-phosphodiesterase (cAMP-PDE) activity. In the first study using 1 mumol cAMP/l as substrate, no F gene-specific effects were noted in cAMP-PDE activity in granulosa cells from small (1-2.5 mm diameter, n = 4 per genotype) or large (greater than or equal to 3 mm diameter, n = 4 per genotype) follicles from FF, F+ or ++ ewes, despite F gene-specific effects in FSH (1 microgram/ml)- and LH (0.1 microgram/ml)-induced cAMP accumulation in these same cell preparations. The overall mean levels of cAMP-PDE across all genotypes in cells from small and large follicles were 0.47 +/- 0.04 (S.E.M., n = 12) and 0.28 +/- 0.03 pmol cAMP/10(6) cells per min respectively; the mean PDE activity in cells from small follicles was significantly (P less than 0.05) higher compared with that in cells from large follicles. In a second study, granulosa cells from each genotype were pooled over all follicle sizes (greater than or equal to 1 mm diameter, one pool per genotype) and the rates of cAMP hydrolysis tested over a range of substrate concentrations (0-16 mumol/l) but no gene-specific differences with respect to the Michaelis constant and maximum velocity were noted.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Formulated Delivery of Enzyme/Pro-Drug and Cytokine Gene Therapy to Promote Immune Reduction of Treated and Remote Tumors in Mouse Models of Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    reduction both at the treatment site and at remote locations. In this therapy, a gene (a fusion of cytosine deaminase and uracil phosphoribosyltransferase...In this therapy, a gene (a fusion of cytosine deaminase and uracil phosphoribosyltransferase (CDUPRT)) is delivered to a cancer cell so that...represents a total of 18 months of work. Task 1: GDEPT alone. Assess the ability of lentivirus expressing GDEPT (based on the fusion gene, cytosine deaminase

  3. Clinical applications of gene therapy for primary immunodeficiencies.

    PubMed

    Cicalese, Maria Pia; Aiuti, Alessandro

    2015-04-01

    Primary immunodeficiencies (PIDs) have represented a paradigmatic model for successes and pitfalls of hematopoietic stem cells gene therapy. First clinical trials performed with gamma retroviral vectors (γ-RV) for adenosine deaminase severe combined immunodeficiency (ADA-SCID), X-linked SCID (SCID-X1), and Wiskott-Aldrich syndrome (WAS) showed that gene therapy is a valid therapeutic option in patients lacking an HLA-identical donor. No insertional mutagenesis events have been observed in more than 40 ADA-SCID patients treated so far in the context of different clinical trials worldwide, suggesting a favorable risk-benefit ratio for this disease. On the other hand, the occurrence of insertional oncogenesis in SCID-X1, WAS, and chronic granulomatous disease (CGD) RV clinical trials prompted the development of safer vector construct based on self-inactivating (SIN) retroviral or lentiviral vectors (LVs). Here we present the recent results of LV-mediated gene therapy for WAS showing stable multilineage engraftment leading to hematological and immunological improvement, and discuss the differences with respect to the WAS RV trial. We also describe recent clinical results of SCID-X1 gene therapy with SIN γ-RV and the perspectives of targeted genome editing techniques, following early preclinical studies showing promising results in terms of specificity of gene correction. Finally, we provide an overview of the gene therapy approaches for other PIDs and discuss its prospects in relation to the evolving arena of allogeneic transplant.

  4. An efficient approach to identify ilvA mutations reveals an amino-terminal catalytic domain in biosynthetic threonine deaminase from Escherichia coli.

    PubMed Central

    Fisher, K E; Eisenstein, E

    1993-01-01

    High-level expression of the regulatory enzyme threonine deaminase in Escherichia coli strains grown on minimal medium that are deficient in the activities of enzymes needed for branched-chain amino acid biosynthesis result in growth inhibition, possibly because of the accumulation of toxic levels of alpha-ketobutyrate, the product of the committed step in isoleucine biosynthesis. This condition affords a means for selecting genetic variants of threonine deaminase that are deficient in catalysis by suppression of growth inhibition. Strains harboring mutations in ilvA that decreased the catalytic activity of threonine deaminase were found to grow more rapidly than isogenic strains containing wild-type ilvA. Modification of the ilvA gene to introduce additional unique, evenly spaced restriction enzyme sites facilitated the identification of suppressor mutations by enabling small DNA fragments to be subcloned for sequencing. The 10 mutations identified in ilvA code for enzymes with significantly reduced activity relative to that of wild-type threonine deaminase. Values for their specific activities range from 40% of that displayed by wild-type enzyme to complete inactivation as evidenced by failure to complement an ilvA deletion strain to isoleucine prototrophy. Moreover, some mutant enzymes showed altered allosteric properties with respect to valine activation and isoleucine inhibition. The location of the 10 mutations in the 5' two-thirds of the ilvA gene is consistent with suggestions that threonine deaminase is organized functionally with an amino-terminal domain that is involved in catalysis and a carboxy-terminal domain that is important for regulation. Images PMID:8407838

  5. Augmentation of a Novel Enzyme/Pro-Drug Gene Therapy "Distant Bystander Effect" to Target Prostate Cancer Metastasis

    DTIC Science & Technology

    2005-09-01

    enzyme/prodrug therapy(GDEPT)_ mIL-12; mIL-18; cytosine deaminase and uracil phopho-ribosyl transferase (CDUPRT) 16. SECURITY CLASSIFICATION OF: 17...therapy, a gene (a fusion of cytosine deaminase and uracil phosphoribosyltransferase (CD/UPRT)) is delivered to a cancer cell so that harmless bacterial...reduction both at the treatment site and at remote locations. In this therapy, a gene (a fusion of cytosine deaminase and uracil phosphoribosyltransferase

  6. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  7. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  8. A1 and A2a receptors mediate inhibitory effects of adenosine on the motor activity of human colon.

    PubMed

    Fornai, M; Antonioli, L; Colucci, R; Ghisu, N; Buccianti, P; Marioni, A; Chiarugi, M; Tuccori, M; Blandizzi, C; Del Tacca, M

    2009-04-01

    Experimental evidence in animal models suggests that adenosine is involved in the regulation of digestive functions. This study examines the influence of adenosine on the contractile activity of human colon. Reverse transcription-polymerase chain reaction revealed A(1) and A(2a) receptor expression in colonic neuromuscular layers. Circular muscle preparations were connected to isotonic transducers to determine the effects of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; A(1) receptor antagonist), ZM 241385 (A(2a) receptor antagonist), CCPA (A(1) receptor agonist) and 2-[(p-2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamide-adenosine (CGS 21680; A(2a) receptor agonist) on motor responses evoked by electrical stimulation or carbachol. Electrically evoked contractions were enhanced by DPCPX and ZM 241385, and reduced by CCPA and CGS 21680. Similar effects were observed when colonic preparations were incubated with guanethidine (noradrenergic blocker), L-732,138, GR-159897 and SB-218795 (NK receptor antagonists). However, in the presence of guanethidine, NK receptor antagonists and N(omega)-propyl-L-arginine (NPA; neuronal nitric oxide synthase inhibitor), the effects of DPCPX and CCPA were still evident, while those of ZM 241385 and CGS 21680 no longer occurred. Carbachol-induced contractions were unaffected by A(2a) receptor ligands, but they were enhanced or reduced by DPCPX and CCPA, respectively. When colonic preparations were incubated with guanethidine, NK antagonists and atropine, electrically induced relaxations were partly reduced by ZM 241385 or NPA, but unaffected by DPCPX. Dipyridamole or application of exogenous adenosine reduced electrically and carbachol-evoked contractions, whereas adenosine deaminase enhanced such motor responses. In conclusion, adenosine exerts an inhibitory control on human colonic motility. A(1) receptors mediate direct modulating actions on smooth muscle, whereas A(2a) receptors operate through inhibitory nitrergic nerve pathways.

  9. Volatilization of Arsenic from Polluted Soil by Pseudomonas putida Engineered for Expression of the arsM Arsenic(III) S-Adenosine Methyltransferase Gene

    PubMed Central

    2015-01-01

    Even though arsenic is one of the most widespread environmental carcinogens, methods of remediation are still limited. In this report we demonstrate that a strain of Pseudomonas putida KT2440 endowed with chromosomal expression of the arsM gene encoding the As(III) S-adenosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contaminated soil. We genetically engineered the P. putida KT2440 with stable expression of an arsM-gfp fusion gene (GE P. putida), which was inserted into the bacterial chromosome. GE P. putida showed high arsenic methylation and volatilization activity. When exposed to 25 μM arsenite or arsenate overnight, most inorganic arsenic was methylated to the less toxic methylated arsenicals methylarsenate (MAs(V)), dimethylarsenate (DMAs(V)) and trimethylarsine oxide (TMAs(V)O). Of total added arsenic, the species were about 62 ± 2.2% DMAs(V), 25 ± 1.4% MAs(V) and 10 ± 1.2% TMAs(V)O. Volatilized arsenicals were trapped, and the predominant species were dimethylarsine (Me2AsH) (21 ± 1.0%) and trimethylarsine (TMAs(III)) (10 ± 1.2%). At later times, more DMAs(V) and volatile species were produced. Volatilization of Me2AsH and TMAs(III) from contaminated soil is thus possible with this genetically engineered bacterium and could be instrumental as an agent for reducing the inorganic arsenic content of soil and agricultural products. PMID:25122054

  10. Vitamins and monothiols efficacy in the restoration of adenosine nucleotide degradation enzymes altered during methylmercury intoxication

    SciTech Connect

    Sood, P.P.; Bapu, C.; Vijayalakshmi, K.

    1995-12-31

    Male albino mice were intoxicated with a daily dose of 1 mg/kg of methylmercury chloride (MMC) for 7 days, and were treated thereafter with glutathione, N-acetyl-DL-homocysteine thiolactone, vitamin B complex, and vitamin E, either alone or in combinations for the next 7 days. The animals were sacrificed on the eighth day, with the exception of one group that was kept without toxic exposure for an additional 7 days and sacrificed on the fifteenth day. Brain, spinal cord, kidney, and liver of the animals were examined for changes in adenosine deaminase and 5{prime} nucleotidase. We found a severe inhibition of these enzymes during MMC intoxication and significant recovery during monothiols and vitamins administration, indicating the effectiveness of these agents in methylmercury detoxication. 26 refs., 2 figs.

  11. The G22A Polymorphism of the ADA Gene and Susceptibility to Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Hettinger, Joe A.; Liu, Xudong; Holden, Jeanette Jeltje Anne

    2008-01-01

    Inborn errors of purine metabolism have been implicated as a cause for some cases of autism. This hypothesis is supported by the finding of decreased adenosine deaminase (ADA) activity in the sera of some children with autism and reports of an association of the A allele of the ADA G22A (Asp8Asn) polymorphism in individuals with autism of…

  12. RNA editing of non-coding RNA and its role in gene regulation.

    PubMed

    Daniel, Chammiran; Lagergren, Jens; Öhman, Marie

    2015-10-01

    It has for a long time been known that repetitive elements, particularly Alu sequences in human, are edited by the adenosine deaminases acting on RNA, ADAR, family. The functional interpretation of these events has been even more difficult than that of editing events in coding sequences, but today there is an emerging understanding of their downstream effects. A surprisingly large fraction of the human transcriptome contains inverted Alu repeats, often forming long double stranded structures in RNA transcripts, typically occurring in introns and UTRs of protein coding genes. Alu repeats are also common in other primates, and similar inverted repeats can frequently be found in non-primates, although the latter are less prone to duplex formation. In human, as many as 700,000 Alu elements have been identified as substrates for RNA editing, of which many are edited at several sites. In fact, recent advancements in transcriptome sequencing techniques and bioinformatics have revealed that the human editome comprises at least a hundred million adenosine to inosine (A-to-I) editing sites in Alu sequences. Although substantial additional efforts are required in order to map the editome, already present knowledge provides an excellent starting point for studying cis-regulation of editing. In this review, we will focus on editing of long stem loop structures in the human transcriptome and how it can effect gene expression.

  13. Gene therapy for primary adaptive immune deficiencies.

    PubMed

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2011-06-01

    Gene therapy has become an option for the treatment of 2 forms of severe combined immunodeficiency (SCID): X-linked SCID and adenosine deaminase deficiency. The results of clinical trials initiated more than 10 years ago testify to sustained and reproducible correction of the underlying T-cell immunodeficiency. Successful treatment is based on the selective advantage conferred on T-cell precursors through their expression of the therapeutic transgene. However, "first-generation" retroviral vectors also caused leukemia in some patients with X-linked SCID because of the constructs' tendency to insert into active genes (eg, proto-oncogenes) in progenitor cells and transactivate an oncogene through a viral element in the long terminal repeat. These elements have been deleted from the vectors now in use. Together with the use of lentiviral vectors (which are more potent for transducing stem cells), these advances should provide a basis for the safe and effective extension of gene therapy's indications in the field of primary immunodeficiencies. Nevertheless, this extension will have to be proved by examining the results of the ongoing clinical trials.

  14. Polymorphous crystallization and diffraction of threonine deaminase from Escherichia coli.

    PubMed

    Gallagher, D T; Eisenstein, E; Fisher, K E; Zondlo, J; Chinchilla, D; Yu, H D; Dill, J; Winborne, E; Ducote, K; Xiao, G; Gilliland, G L

    1998-05-01

    The biosynthetic threonine deaminase from Escherichia coli, an allosteric tetramer with key regulatory functions, has been crystallized in several crystal forms. Two distinct forms, both belonging to either space group P3121 or P3221, with different sized asymmetric units that both contain a tetramer, grow under identical conditions. Diffraction data sets to 2.8 A resolution (native) and 2. 9 A resolution (isomorphous uranyl derivative) have been collected from a third crystal form in space group I222.

  15. Mycoplasma hyorhinis-encoded cytidine deaminase efficiently inactivates cytosine-based anticancer drugs.

    PubMed

    Vande Voorde, Johan; Vervaeke, Peter; Liekens, Sandra; Balzarini, Jan

    2015-01-01

    Mycoplasmas may colonize tumor tissue in patients. The cytostatic activity of gemcitabine was dramatically decreased in Mycoplasma hyorhinis-infected tumor cell cultures compared with non-infected tumor cell cultures. This mycoplasma-driven drug deamination could be prevented by exogenous administration of the cytidine deaminase (CDA) inhibitor tetrahydrouridine, but also by the natural nucleosides or by a purine nucleoside phosphorylase inhibitor. The M. hyorhinis-encoded CDAHyor gene was cloned, expressed as a recombinant protein and purified. CDAHyor was found to be more catalytically active than its human equivalent and efficiently deaminates (inactivates) cytosine-based anticancer drugs. CDAHyor expression at the tumor site may result in selective drug inactivation and suboptimal therapeutic efficiency.

  16. Induction of homologous recombination between sequence repeats by the activation induced cytidine deaminase (AID) protein.

    PubMed

    Buerstedde, Jean-Marie; Lowndes, Noel; Schatz, David G

    2014-07-08

    The activation induced cytidine deaminase (AID) protein is known to initiate somatic hypermutation, gene conversion or switch recombination by cytidine deamination within the immunoglobulin loci. Using chromosomally integrated fluorescence reporter transgenes, we demonstrate a new recombinogenic activity of AID leading to intra- and intergenic deletions via homologous recombination of sequence repeats. Repeat recombination occurs at high frequencies even when the homologous sequences are hundreds of bases away from the positions of AID-mediated cytidine deamination, suggesting DNA end resection before strand invasion. Analysis of recombinants between homeologous repeats yielded evidence for heteroduplex formation and preferential migration of the Holliday junctions to the boundaries of sequence homology. These findings broaden the target and off-target mutagenic potential of AID and establish a novel system to study induced homologous recombination in vertebrate cells.DOI: http://dx.doi.org/10.7554/eLife.03110.001.

  17. Application of ADA1 as a new marker enzyme in sandwich ELISA to study the effect of adenosine on activated monocytes

    PubMed Central

    Liu, Chengqian; Skaldin, Maksym; Wu, Chengxiang; Lu, Yuanan; Zavialov, Andrey V.

    2016-01-01

    Enzyme-linked immunosorbent assay (ELISA) is a valuable technique to detect antigens in biological fluids. Horse radish peroxidase (HRP) is one of the most common enzymes used for signal amplification in ELISA. Despite new advances in technology, such as a large-scale production of recombinant enzymes and availability of new detection systems, limited research is devoted to finding alternative enzymes and their substrates to amplify the ELISA signals. Here, HRP-avidin was substituted with the human adenosine deaminase (hADA1)-streptavidin complex and adenosine as a detection system in commercial ELISA kits. The hADA1 ELISA was successfully used to demonstrate that adenosine, bound to A1 and A3 adenosine receptors, increases cytokine secretion by LPS activated monocytes. We show that hADA1-based ELISA has the same sensitivity, and also provides identical results, as HRP ELISA. In addition, the sensitivity of hADA1-based ELISA could be easily adjusted by changing the adenosine concentration and the incubation time. Therefore, hADA1 could be used as a detection enzyme with any commercial ELISA kit with a wide range of concentration of antigens. PMID:27510152

  18. Antihyperglycemic, antihyperlipidemic, anti-inflammatory and adenosine deaminase– lowering effects of garlic in patients with type 2 diabetes mellitus with obesity

    PubMed Central

    Kumar, Rahat; Chhatwal, Simran; Arora, Sahiba; Sharma, Sita; Singh, Jaswinder; Singh, Narinder; Bhandari, Vikram; Khurana, Ashok

    2013-01-01

    Introduction Type 2 diabetes mellitus is a chronic disorder characterized by chronic hyperglycemia, with long term macrovascular and microvascular complications. The treatment is lifestyle management, exercise, weight control, and antihyperglycemic drugs such as sulfonylureas, biguanides, alpha-glucosidase inhibitors, thiazolidinediones, and meglitinide. Recently, a direct association between high levels of C-reactive protein and serum adenosine deaminase levels in patients with uncontrolled diabetes with long-term complications has been seen. This study was conducted to assess the antihyperglycemic, lipid-lowering, anti-inflammatory, and improving glycemic control of garlic in type 2 diabetes patients with obesity. Materials and methods This was an open-label, prospective, comparative study, conducted on 60 patients having type 2 diabetes mellitus and obesity. The patients were divided into two groups of 30 each, of either sex. Group 1 was given metformin tablets, 500 mg twice a day (BD)/three times a day (TDS), after meals, and group 2 was given metformin tablets, 500 mg BD/TDS, after meals, along with garlic (Allium sativum) capsules, 250 mg BD. Patients were routinely investigated for fasting and postprandial blood glucose, glycosylated hemoglobin (HbA1c), serum adenosine deaminase levels and lipid profile (serum cholesterol, high-density lipoprotein cholesterol, triglycerides and low-density lipoprotein cholesterol) at the start of the study. Patients were followed up for 12 weeks, with monitoring of fasting and postprandial blood glucose at 2 week intervals, and monitoring of the other parameters at the end of study. Data obtained at the end of the study was statistically analyzed using Student’s t test. Results It was observed that both metformin alone and metformin with garlic reduced fasting blood glucose and postprandial blood glucose significantly, with a greater percentage reduction with metformin plus garlic; however, change in HbA1c levels was not

  19. Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity.

    PubMed

    Wu, Chuanfeng; Dunbar, Cynthia E

    2011-12-01

    Virus-based vectors are widely used in hematopoietic stem cell (HSC) gene therapy, and have the ability to integrate permanently into genomic DNA, thus driving long-term expression of corrective genes in all hematopoietic lineages. To date, HSC gene therapy has been successfully employed in the clinic for improving clinical outcomes in small numbers of patients with X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), adrenoleukodystrophy (ALD), thalassemia, chronic granulomatous disease (CGD), and Wiskott-Aldrich syndrome (WAS). However, adverse events were observed during some of these HSC gene therapy clinical trials, linked to insertional activation of proto-oncogenes by integrated proviral vectors leading to clonal expansion and eventual development of leukemia. Numerous studies have been performed to understand the molecular basis of vector-mediated genotoxicity, with the aim of developing safer vectors and lower-risk gene therapy protocols. This review will summarize current information on the mechanisms of insertional mutagenesis in hematopoietic stem and progenitor cells due to integrating gene transfer vectors, discuss the available assays for predicting genotoxicity and mapping vector integration sites, and introduce newly-developed approaches for minimizing genotoxicity as a way to further move HSC gene therapy forward into broader clinical application.

  20. Standing on the Shoulders of Stem Cell Gene Therapists: History, Hyperbole, and Hope for the Future.

    PubMed

    Gardner, Jason

    2016-12-01

    A new type of medicine approved in Europe at the end of May represents the culmination of the successful convergence of two fields of science: stem cell transplantation and gene therapy. Strimvelis, a patient-specific gene-modified stem cell medicine for ADA-SCID (adenosine deaminase deficiency leading to severe combined immunodeficiency; a fatal immunometabolic disorder similar to the bubble-boy disease), was developed by scientists at the San Raffaele Telethon Institute for Gene Therapy (TIGET) in Milan, Italy, which then later partnered with GlaxoSmithKline (GSK, Brentford, UK). The journey took more than 25 years of dedicated work by many groups and involved a pivotal trial with 12 children and their brave families. I was fortunate to be involved on the GSK side of the TIGET alliance from 2010 to 2015, building on my previous experiences with gene-modified stem cells during a postdoctoral fellowship in the mid-1990s and at Chiron, which had acquired Viagene, an early gene therapy biotech firm. I thought it was timely to pick out a couple of observations from the development of Strimvelis, to see how these might apply to the future of stem cell gene therapy and perhaps act like shoulders for the related chimeric antigen receptor T-cell (CAR-T) and gene-editing technologies to stand on.

  1. Pathological overproduction: the bad side of adenosine.

    PubMed

    Borea, Pier Andrea; Gessi, Stefania; Merighi, Stefania; Vincenzi, Fabrizio; Varani, Katia

    2017-03-02

    Adenosine is an endogenous ubiquitous purine nucleoside, which is increased by hypoxia, ischaemia and tissue damage and mediates a number of physiopathological effects by interacting with four GPCRs, identified as A1 , A2A , A2B and A3 . Physiological and acutely increased adenosine is mostly associated with beneficial effects that include vasodilatation and a decrease in inflammation. In contrast, chronic overproduction of adenosine occurs in important pathological states, where long-lasting increases in the nucleoside levels are responsible for the bad side of adenosine associated with chronic inflammation, fibrosis and organ damage. In this review, we describe and critically discuss the pathological overproduction of adenosine and analyse when, where and how adenosine exerts its detrimental effects throughout the body.

  2. Gene therapy for monogenic disorders of the bone marrow.

    PubMed

    Ghosh, Sujal; Thrasher, Adrian J; Gaspar, H Bobby

    2015-06-05

    Ex-vivo gene transfer of autologous haematopoietic stem cells in patients with monogenic diseases of the bone marrow has emerged as a new therapeutic approach, mainly in patients lacking a suitable donor for transplant. The encouraging results of initial clinical trials of gene therapy for primary immunodeficiencies were tempered by the occurrence of genotoxicity in a number of patients. Over the last decade, safer viral vectors have been developed to overcome the risk of insertional mutagenesis and have led to impressive clinical outcomes with considerably improved safety. We review the efforts in specific immunodeficiencies including adenosine deaminase deficiency, X-linked severe combined immunodeficiency, chronic granulomatous disease and Wiskott Aldrich syndrome. Major recent progress has also been made in haemoglobinopathies, such as beta-thalassaemia, sickle cell disease and Fanconi anaemia, and also specific lysosomal storage diseases, which, although not strictly bone marrow specific conditions, have been effectively treated by bone marrow-based treatment. The success of these recent studies and the advent of new technologies, such as gene editing, suggest that gene therapy could become a more generally applied treatment modality for a number of haematopoietic disorders.

  3. Gene Therapy for the Treatment of Primary Immune Deficiencies.

    PubMed

    Kuo, Caroline Y; Kohn, Donald B

    2016-05-01

    The use of gene therapy in the treatment of primary immune deficiencies (PID) has advanced significantly in the last decade. Clinical trials for X-linked severe combined immunodeficiency, adenosine deaminase deficiency (ADA), chronic granulomatous disease, and Wiskott-Aldrich syndrome have demonstrated that gene transfer into hematopoietic stem cells and autologous transplant can result in clinical improvement and is curative for many patients. Unfortunately, early clinical trials were complicated by vector-related insertional mutagenic events for several diseases with the exception of ADA-deficiency SCID. These results prompted the current wave of clinical trials for primary immunodeficiency using alternative retro- or lenti-viral vector constructs that are self-inactivating, and they have shown clinical efficacy without leukemic events thus far. The field of gene therapy continues to progress, with improvements in viral vector profiles, stem cell culturing techniques, and site-specific genome editing platforms. The future of gene therapy is promising, and we are quickly moving towards a time when it will be a standard cellular therapy for many forms of PID.

  4. Torsades de pointes after adenosine administration.

    PubMed

    Teodorovich, Nicholay; Margolin, Elena; Kogan, Yonatan; Paz, Ofir; Swissa, Moshe

    2016-01-01

    Adenosine can produce arrhythmias, which are generally short living. It may induce PACs and PVCs, sinus bradycardia, and atrial fibrillation. There have been reports of transient polymorphic VT (torsades de pointes) in patients with LQTS and others in people with normal QT interval. We report a case of a long episode of polymorphic VT induced by adenosine. A 27 year old woman received 6 mg adenosine for PSVT, which terminated and torsades de pointes developed, persisting for 17 seconds and terminated spontaneously. This is the longest described duration of the torsades after adenosine administration in patients with normal QT interval.

  5. In vivo transduction by intravenous injection of a lentiviral vector expressing human ADA into neonatal ADA gene knockout mice: a novel form of enzyme replacement therapy for ADA deficiency.

    PubMed

    Carbonaro, Denise A; Jin, Xiangyang; Petersen, Denise; Wang, Xingchao; Dorey, Fred; Kil, Ki Soo; Aldrich, Melissa; Blackburn, Michael R; Kellems, Rodney E; Kohn, Donald B

    2006-06-01

    Using a mouse model of adenosine deaminase-deficient severe combined immune deficiency syndrome (ADA-deficient SCID), we have developed a noninvasive method of gene transfer for the sustained systemic expression of human ADA as enzyme replacement therapy. The method of delivery is a human immunodeficiency virus 1-based lentiviral vector given systemically by intravenous injection on day 1 to 2 of life. In this article we characterize the biodistribution of the integrated vector, the expression levels of ADA enzyme activity in various tissues, as well as the efficacy of systemic ADA expression to correct the ADA-deficient phenotype in this mouse model. The long-term expression of enzymatically active ADA achieved by this method, primarily from transduction of liver and lung, restored immunologic function and significantly extended survival. These studies illustrate the potential for sustained in vivo production of enzymatically active ADA, as an alternative to therapy by frequent injection of exogenous ADA protein.

  6. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  7. Novel Rhizosphere Soil Alleles for the Enzyme 1-Aminocyclopropane-1-Carboxylate Deaminase Queried for Function with an In Vivo Competition Assay.

    PubMed

    Jin, Zhao; Di Rienzi, Sara C; Janzon, Anders; Werner, Jeff J; Angenent, Largus T; Dangl, Jeffrey L; Fowler, Douglas M; Ley, Ruth E

    2015-12-04

    Metagenomes derived from environmental microbiota encode a vast diversity of protein homologs. How this diversity impacts protein function can be explored through selection assays aimed to optimize function. While artificially generated gene sequence pools are typically used in selection assays, their usage may be limited because of technical or ethical reasons. Here, we investigate an alternative strategy, the use of soil microbial DNA as a starting point. We demonstrate this approach by optimizing the function of a widely occurring soil bacterial enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase. We identified a specific ACC deaminase domain region (ACCD-DR) that, when PCR amplified from the soil, produced a variant pool that we could swap into functional plasmids carrying ACC deaminase-encoding genes. Functional clones of ACC deaminase were selected for in a competition assay based on their capacity to provide nitrogen to Escherichia coli in vitro. The most successful ACCD-DR variants were identified after multiple rounds of selection by sequence analysis. We observed that previously identified essential active-site residues were fixed in the original unselected library and that additional residues went to fixation after selection. We identified a divergent essential residue whose presence hints at the possible use of alternative substrates and a cluster of neutral residues that did not influence ACCD performance. Using an artificial ACCD-DR variant library generated by DNA oligomer synthesis, we validated the same fixation patterns. Our study demonstrates that soil metagenomes are useful starting pools of protein-coding-gene diversity that can be utilized for protein optimization and functional characterization when synthetic libraries are not appropriate.

  8. Novel Rhizosphere Soil Alleles for the Enzyme 1-Aminocyclopropane-1-Carboxylate Deaminase Queried for Function with an In Vivo Competition Assay

    PubMed Central

    Jin, Zhao; Di Rienzi, Sara C.; Janzon, Anders; Werner, Jeff J.; Angenent, Largus T.; Dangl, Jeffrey L.; Fowler, Douglas M.

    2015-01-01

    Metagenomes derived from environmental microbiota encode a vast diversity of protein homologs. How this diversity impacts protein function can be explored through selection assays aimed to optimize function. While artificially generated gene sequence pools are typically used in selection assays, their usage may be limited because of technical or ethical reasons. Here, we investigate an alternative strategy, the use of soil microbial DNA as a starting point. We demonstrate this approach by optimizing the function of a widely occurring soil bacterial enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase. We identified a specific ACC deaminase domain region (ACCD-DR) that, when PCR amplified from the soil, produced a variant pool that we could swap into functional plasmids carrying ACC deaminase-encoding genes. Functional clones of ACC deaminase were selected for in a competition assay based on their capacity to provide nitrogen to Escherichia coli in vitro. The most successful ACCD-DR variants were identified after multiple rounds of selection by sequence analysis. We observed that previously identified essential active-site residues were fixed in the original unselected library and that additional residues went to fixation after selection. We identified a divergent essential residue whose presence hints at the possible use of alternative substrates and a cluster of neutral residues that did not influence ACCD performance. Using an artificial ACCD-DR variant library generated by DNA oligomer synthesis, we validated the same fixation patterns. Our study demonstrates that soil metagenomes are useful starting pools of protein-coding-gene diversity that can be utilized for protein optimization and functional characterization when synthetic libraries are not appropriate. PMID:26637602

  9. Acute intermittent porphyria: expression of mutant and wild-type porphobilinogen deaminase in COS-1 cells.

    PubMed Central

    Mustajoki, S.; Laine, M.; Lahtela, M.; Mustajoki, P.; Peltonen, L.; Kauppinen, R.

    2000-01-01

    BACKGROUND: Acute intermittent porphyria (AIP) is an autosomal dominant disorder that results from the partial deficiency of porphobilinogen deaminase (PBGD) in the heme biosynthetic pathway. Patients with AIP can experience acute attacks consisting of abdominal pain and various neuropsychiatric symptoms. Although molecular biological studies on the porphobilinogen deaminase (PBGD) gene have revealed several mutations responsible for AIP, the properties of mutant PBGD in eukaryotic expression systems have not been studied previously. MATERIALS AND METHODS: Seven mutations were analyzed using transient expression of the mutated polypeptides in COS-1 cells. The properties of mutated polypeptides were studied by enzyme activity measurement, Western blot analysis, pulse-chase experiments, and immunofluorescence staining. RESULTS: Of the mutants studied, R26C, R167W, R173W, R173Q, and R225X resulted in a decreased enzyme activity (0-5%), but R225G and 1073delA (elongated protein) displayed a significant residual activity of 16% and 50%, respectively. In Western blot analysis, the polyclonal PBGD antibody detected all mutant polypeptides except R225X, which was predicted to result in a truncated protein. In the pulse-chase experiment, the mutant polypeptides were as stable as the wild-type enzyme. In the immunofluorescence staining both wild-type and mutant polypeptides were diffusely dispersed in the cytoplasm and, thus, no accumulation of mutated proteins in the cellular compartments could be observed. CONCLUSIONS: The results confirm the causality of mutations for the half normal enzyme activity measured in the patients' erythrocytes. In contrast to the decreased enzyme activity, the majority of the mutations produced a detectable polypeptide, and the stability and the intracellular processing of the mutated polypeptides were both comparable to that of the wild-type PBGD and independent of the cross-reacting immunological material (CRIM) class. PMID:11055586

  10. Extracellular adenosine triphosphate affects the response of human macrophages infected with Mycobacterium tuberculosis.

    PubMed

    Dubois-Colas, Nicolas; Petit-Jentreau, Laetitia; Barreiro, Luis B; Durand, Sylvère; Soubigou, Guillaume; Lecointe, Cécile; Klibi, Jihène; Rezaï, Keyvan; Lokiec, François; Coppée, Jean-Yves; Gicquel, Brigitte; Tailleux, Ludovic

    2014-09-01

    Granulomas are the hallmark of Mycobacterium tuberculosis infection. As the host fails to control the bacteria, the center of the granuloma exhibits necrosis resulting from the dying of infected macrophages. The release of the intracellular pool of nucleotides into the surrounding medium may modulate the response of newly infected macrophages, although this has never been investigated. Here, we show that extracellular adenosine triphosphate (ATP) indirectly modulates the expression of 272 genes in human macrophages infected with M. tuberculosis and that it induces their alternative activation. ATP is rapidly hydrolyzed by the ecto-ATPase CD39 into adenosine monophosphate (AMP), and it is AMP that regulates the macrophage response through the adenosine A2A receptor. Our findings reveal a previously unrecognized role for the purinergic pathway in the host response to M. tuberculosis. Dampening inflammation through signaling via the adenosine A2A receptor may limit tissue damage but may also favor bacterial immune escape.

  11. Adaptive evolution of threonine deaminase in plant defense against insect herbivores

    SciTech Connect

    Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.; Howe, Gregg A.

    2011-11-07

    Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.

  12. Role of ascitic fluid adenosine deaminase (ADA) and serum CA-125 in the diagnosis of tuberculous peritonitis.

    PubMed

    Ali, N; Nath, N C; Parvin, R; Rahman, A; Bhuiyan, T M; Rahman, M; Mohsin M N

    2014-12-01

    This cross sectional study was carried out in the department of gastroenterology, BIRDEM, Dhaka from January 2010 to May 2011 to determine the role of ascitic fluid ADA and serum CA-125 in the diagnosis of clinically suspected tubercular peritonitis. Total 30 patients (age 39.69 ± 21.26, 18M/12F) with clinical suspicion of tuberculosis peritonitis were included in this study after analyzing selection criteria. Laparoscopic peritoneal biopsy with 'histopathological diagnosis' was considered gold standard against which accuracics of two biomarkers (ADA & CA-125) were compared. Cut off value of ADA and CA-125 are 24 u/l, 35 U/ml respectively. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy of ADA as a diagnostic modality in tuberculos peritonitis were 87.5%, 83.33%, 95.45%, 62.5% and 86.67% respectively where as CA-125 was found to have 83.33% sensitivity, 50% specificity, 86.9% positive predictive value, 42.85% negative predictive value and 76.6% accuracy. Both biomarkers are simple, non-invasive, rapid and relatively cheap diagnostic test where as laparoscopy is an invasive procedure, costly & requires trained staff and not without risk and also not feasible in all the centre in our country. So ascitic fluid ADA and serum CA-125 are important diagnostic test for peritoneal tuberculosis.

  13. Effects of iron supplementation on blood adenine deaminase activity and oxidative stress in Trypanosoma evansi infection of rats.

    PubMed

    Bottari, Nathieli B; Baldissera, Matheus D; Tonin, Alexandre A; França, Raqueli T; Zanini, Danieli; Leal, Marta L R; Lopes, Sonia T A; Schetinger, Maria Rosa C; Morsch, Vera M; Monteiro, Silvia G; Guarda, Naiara S; Moresco, Rafael N; Aires, Adelina R; Stefani, Lenita M; Da Silva, Aleksandro S

    2014-12-01

    The aim of this study was to assess the effects of iron supplementation on oxidative stress and on the activity of the adenosine deaminase (ADA) in rats experimentally infected by Trypanosoma evansi. For this purpose, 20 rats were divided into four experimental groups with five animals each as follows: groups A and B were composed by healthy animals, while animals from groups C and D were infected by T. evansi. Additionally, groups B and D received two subcutaneous doses of iron (60 mg kg(-1)) within an interval of 5 days. Blood samples were drawn on day 8 post infection in order to assess hematological and biochemical variables. Among the main results are: (1) animals from group C showed reduced erythrogram (with tendency to anemia); however the same results were not observed for group D; this might be a direct effect of free iron on trypanosomes which helped to reduce the parasitemia and the damage to erythrocytes caused by the infection; (2) iron supplementation was able to reduce NOx levels by inhibiting iNOS, and thus, providing an antioxidant action and, indirectly, reducing the ALT levels in groups Band D; (3) increase FRAP levels in group D; (4) reduce ADA activity in serum and erythrocytes in group C; however, this supplementation (5) increased the protein oxidation in groups B and D, as well as group C (positive control). Therefore, iron showed antioxidant and oxidant effects on animals that received supplementation; and it maintained the activity of E-ADA stable in infected/supplemented animals.

  14. Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors.

    PubMed

    Panjehpour, Mojtaba; Karami-Tehrani, Fatemeh

    2007-01-01

    Adenosine modulates the proliferation, survival, and apoptosis of many different cell types. The present study was performed to investigate the role of adenosine receptors in the human breast cancer cell lines MCF-7 and MDA-MB468. The biological effects of adenosine on the cells were analyzed by adenylyl cyclase and cell viability assay as well as RT-PCR of adenosine receptors. RT-PCR results show the expression of the transcript of all adenosine receptors in both cell lines. By using adenosine and selective adenosine receptor agonists or antagonists, we found that A3 stimulation reduced cell viability, which was abolished by pretreatment with A3 receptor antagonist. Moreover, we demonstrated that adenosine (natural agonist) triggers a cytotoxic signal via A3 receptor activation that was not seen for other subclasses of adenosine receptors. Intracellular cAMP concentration was changed significantly only for A3 and A2B receptor-selective agonists, which indicates the functional form of these receptors on the cell surface. In conclusion, our findings revealed the role of adenosine receptors in breast cancer cell lines on growth modulation role of A3 and functional form of A2B, although its involvement in cell growth modulation was not seen. Theses findings as well as data by others may provide a possible application of adenosine receptor agonists/antagonists in breast malignancies.

  15. A novel activation-induced cytidine deaminase (AID) mutation in Brazilian patients with hyper-IgM type 2 syndrome.

    PubMed

    Caratão, Nadine; Cortesão, Catarina S; Reis, Pedro H; Freitas, Raquel F; Jacob, Cristina M A; Pastorino, Antonio C; Carneiro-Sampaio, Magda; Barreto, Vasco M

    2013-08-01

    Activation-induced cytidine deaminase (AID) is a DNA editing protein that plays an essential role in three major events of immunoglobulin (Ig) diversification: somatic hypermutation, class switch recombination and Ig gene conversion. Mutations in the AID gene (AICDA) have been found in patients with autosomal recessive Hyper-IgM (HIGM) syndrome type 2. Here, two 9- and 14-year-old Brazilian sisters, from a consanguineous family, were diagnosed with HIGM2 syndrome. Sequencing analysis of the exons from AICDA revealed that both patients are homozygous for a single C to G transversion in the third position of codon 15, which replaces a conserved Phenylalanine with a Leucine. To our knowledge, this is a new AICDA mutation found in HIGM2 patients. Functional studies confirm that the homologous murine mutation leads to a dysfunctional protein with diminished intrinsic cytidine deaminase activity and is unable to rescue CSR when introduced in Aicda(-/-)stimulated murine B cells. We briefly discuss the relevance of AICDA mutations found in patients for the biology of this molecule.

  16. The double-domain cytidine deaminase APOBEC3G is a cellular site-specific RNA editing enzyme

    PubMed Central

    Sharma, Shraddha; Patnaik, Santosh K.; Taggart, Robert T.; Baysal, Bora E.

    2016-01-01

    APOBEC3G is a cytidine deaminase with two homologous domains and restricts retroelements and HIV-1. APOBEC3G deaminates single-stranded DNAs via its C-terminal domain, whereas the N-terminal domain is considered non-catalytic. Although APOBEC3G is known to bind RNAs, APOBEC3G-mediated RNA editing has not been observed. We recently discovered RNA editing by the single-domain enzyme APOBEC3A in innate immune cells. To determine if APOBEC3G is capable of RNA editing, we transiently expressed APOBEC3G in the HEK293T cell line and performed transcriptome-wide RNA sequencing. We show that APOBEC3G causes site-specific C-to-U editing of mRNAs from over 600 genes. The edited cytidines are often flanked by inverted repeats, but are largely distinct from those deaminated by APOBEC3A. We verified protein-recoding RNA editing of selected genes including several that are known to be involved in HIV-1 infectivity. APOBEC3G co-purifies with highly edited mRNA substrates. We find that conserved catalytic residues in both cytidine deaminase domains are required for RNA editing. Our findings demonstrate the novel RNA editing function of APOBEC3G and suggest a role for the N-terminal domain in RNA editing. PMID:27974822

  17. APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase

    PubMed Central

    Suspène, Rodolphe; Sommer, Peter; Henry, Michel; Ferris, Stéphane; Guétard, Denise; Pochet, Sylvie; Chester, Ann; Navaratnam, Naveenan; Wain-Hobson, Simon; Vartanian, Jean-Pierre

    2004-01-01

    In the absence of the viral vif gene, human immunodeficiency virus (HIV) may be restricted by the APOBEC3G gene on chromosome 22. The role of the HIV Vif protein is to exclude host cell APOBEC3G from the budding virion. As APOBEC3G shows sequence homology to cytidine deaminases, it is presumed that in the absence of Vif, cytidine residues in the cDNA are deaminated yielding uracil. It is not known if additional proteins mediate APOBEC3G function or if deamination occurs in concert with reverse transcription. This report describes an in vitro assay showing that Baculovirus derived APOBEC3G alone extensively deaminates cDNA independently of reverse transcriptase. It reproduces the dinucleotide context typical of G → A hypermutants derived from a Δvif virus. By using an RNaseH– form of reverse transcriptase, it was shown that the cDNA has to be free of its RNA template to allow deamination. APOBEC3G deamination of dC or dCTP was not detected. In short, APOBEC3G is a single-stranded DNA cytidine deaminase capable of restricting retroviral replication. PMID:15121899

  18. The double-domain cytidine deaminase APOBEC3G is a cellular site-specific RNA editing enzyme.

    PubMed

    Sharma, Shraddha; Patnaik, Santosh K; Taggart, Robert T; Baysal, Bora E

    2016-12-15

    APOBEC3G is a cytidine deaminase with two homologous domains and restricts retroelements and HIV-1. APOBEC3G deaminates single-stranded DNAs via its C-terminal domain, whereas the N-terminal domain is considered non-catalytic. Although APOBEC3G is known to bind RNAs, APOBEC3G-mediated RNA editing has not been observed. We recently discovered RNA editing by the single-domain enzyme APOBEC3A in innate immune cells. To determine if APOBEC3G is capable of RNA editing, we transiently expressed APOBEC3G in the HEK293T cell line and performed transcriptome-wide RNA sequencing. We show that APOBEC3G causes site-specific C-to-U editing of mRNAs from over 600 genes. The edited cytidines are often flanked by inverted repeats, but are largely distinct from those deaminated by APOBEC3A. We verified protein-recoding RNA editing of selected genes including several that are known to be involved in HIV-1 infectivity. APOBEC3G co-purifies with highly edited mRNA substrates. We find that conserved catalytic residues in both cytidine deaminase domains are required for RNA editing. Our findings demonstrate the novel RNA editing function of APOBEC3G and suggest a role for the N-terminal domain in RNA editing.

  19. Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina

    SciTech Connect

    Braas, K.M.; Zarbin, M.A.; Snyder, S.H.

    1987-06-01

    Using specific sensitive antisera against adenosine, we have immunocytochemically localized endogenous adenosine to specific layers of rat, guinea pig, monkey, and human retina. Highest adenosine immunoreactivity was observed in ganglion cells and their processes in the optic nerve fiber layer. Substantial staining was also found throughout the inner plexiform layer and in select cells in the inner nuclear layer. Adenosine A1 receptors, labeled with the agonists L-(/sup 3/H)phenylisopropyladenosine and /sup 125/I-labeled hydroxy-phenylisopropyladenosine, were autoradiographically localized. The highest levels of binding sites occurred in the nerve fiber, ganglion cell, and inner plexiform layers of the retina in all the species examined. The distribution of adenosine A1 receptor sites closely parallels that of retinal neurons and fibers containing immunoreactive adenosine. These results suggest a role for endogenous adenosine as a coneurotransmitter in ganglion cells and their fibers in the optic nerve.

  20. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  1. Umbilical cord blood stem cells as targets for genetic modification: new therapeutic approaches to somatic gene therapy.

    PubMed

    Williams, D A; Moritz, T

    1994-01-01

    Human umbilical cord blood is an abundant source of long term repopulating stem cells and therefore we investigated the utilization of these cells as targets for genetic manipulation directed towards human gene therapy. Using two different retroviral vectors, one which transfers the neomycin resistance gene and the other which transfers therapeutically relevant adenosine deaminase gene, we have demonstrated increased gene transfer efficiency into committed progenitor cells (CPCs) and long term culture-initiating cells (LTC-IC) derived from cord blood versus adult bone marrow. We further identified a chymotryptic fragment of the extracellular matrix molecule fibronectin (FN 30/35), to which primitive hematopoietic cells adhere. Gene transfer efficiency into hematopoietic cells adherent to FN 30/35 is significantly increased when compared to infection on bovine serum albumin-coated control plates. Utilization of this fragment allowed retroviral mediated gene transfer into cord blood derived CPCs and LTC-ICs with high efficiencies, similar to that observed after coculture of hematopoietic cells on virus producer cells. These data imply cord blood may be a promising source for efficient gene delivery to the human hematopoietic system, and the utilization of the FN 30/35 fibronectin molecule may provide a clinically applicable protocol to achieve this aim.

  2. Dissecting the Contingent Interactions of Protein Complexes with the Optimized Yeast Cytosine Deaminase Protein-Fragment Complementation Assay.

    PubMed

    Ear, Po Hien; Kowarzyk, Jacqueline; Michnick, Stephen W

    2016-11-01

    Here, we present a detailed protocol for studying in yeast cells the contingent interaction between a substrate and its multisubunit enzyme complex by using a death selection technique known as the optimized yeast cytosine deaminase protein-fragment complementation assay (OyCD PCA). In yeast, the enzyme cytosine deaminase (encoded by FCY1) is involved in pyrimidine metabolism. The PCA is based on an engineered form of yeast cytosine deaminase optimized by directed evolution for maximum activity (OyCD), which acts as a reporter converting the pro-drug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), a toxic compound that kills the cell. Cells that have OyCD PCA activity convert 5-FC to 5-FU and die. Using this assay, it is possible to assess how regulatory subunits of an enzyme contribute to the overall interaction between the catalytic subunit and the potential substrates. Furthermore, OyCD PCA can be used to dissect different functions of mutant forms of a protein as a mutant can disrupt interaction with one partner, while retaining interaction with others. As it is scalable to a medium- or high-throughput format, OyCD PCA can be used to study hundreds to thousands of pairwise protein-protein interactions in different deletion strains. In addition, OyCD PCA vectors (pAG413GAL1-ccdB-OyCD-F[1] and pAG415GAL1-ccdB-OyCD-F[2]) have been designed to be compatible with the proprietary Gateway technology. It is therefore easy to generate fusion genes with the OyCD reporter fragments. As an example, we will focus on the yeast cyclin-dependent protein kinase 1 (Cdk1, encoded by CDC28), its regulatory cyclin subunits, and its substrates or binding partners.

  3. Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488.

    PubMed

    Dixit, Ritu; Agrawal, Lalit; Gupta, Swati; Kumar, Manoj; Yadav, Sumit; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-01-01

    Tomato cultivation is highly susceptible for soil born diseases and among them southern blight disease caused by Scelerotium rolfsii is very common. For its management use of chemical fungicides is not very successful as their spores are able to survive for many years in the soil. As an alternative eco-friendly approach to control the disease antagonistic microbes are being characterized.Among them plant growth promoting rhizobacteria Paenibacillus lentimorbus B-30488 (B-30488) with antagonistic properties, multiple PGP attributes stress tolerance and ACC deaminase enzyme activity is characterized to decipher its mode of action against S. rolfsii under in vitro and in vivo conditions. In vitro results obtained from this study clearly demonstrate that B-30488 has ability to show antagonistic properties under different abiotic stresses against S. rolfsii. Similar results were also obtained from in vivo experiments where B-30488 inoculation has efficiently controlled the disease caused by S. rolfsii and improve the plant growth. Deleterious enhanced ethylene level in S. rolfsii infected plants was also ameliorated by inoculation of ACC deaminase producing B-30488. The ACC accumulation, ACO and ACS activities were also modulated in S. rolfsii infected plants. Results from defense enzymes and other biochemical attributes were also support the role of B-30488 inoculation in ameliorating the biotic stress caused by S. rolfsii in tomato plants. These results were further validated by pathogen related gene expression analysis by real time PCR. Overall results from the present study may be concluded that ACC deaminase producing B-30488 has ability to control the southern blight disease caused by S. rolfsii and commercial bioinoculant package may be developed.

  4. Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488

    PubMed Central

    Dixit, Ritu; Agrawal, Lalit; Gupta, Swati; Kumar, Manoj; Yadav, Sumit; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-01-01

    abstract Tomato cultivation is highly susceptible for soil born diseases and among them southern blight disease caused by Scelerotium rolfsii is very common. For its management use of chemical fungicides is not very successful as their spores are able to survive for many years in the soil. As an alternative eco-friendly approach to control the disease antagonistic microbes are being characterized.Among them plant growth promoting rhizobacteria Paenibacillus lentimorbus B-30488 (B-30488) with antagonistic properties, multiple PGP attributes stress tolerance and ACC deaminase enzyme activity is characterized to decipher its mode of action against S. rolfsii under in vitro and in vivo conditions. In vitro results obtained from this study clearly demonstrate that B-30488 has ability to show antagonistic properties under different abiotic stresses against S. rolfsii. Similar results were also obtained from in vivo experiments where B-30488 inoculation has efficiently controlled the disease caused by S. rolfsii and improve the plant growth. Deleterious enhanced ethylene level in S. rolfsii infected plants was also ameliorated by inoculation of ACC deaminase producing B-30488. The ACC accumulation, ACO and ACS activities were also modulated in S. rolfsii infected plants. Results from defense enzymes and other biochemical attributes were also support the role of B-30488 inoculation in ameliorating the biotic stress caused by S. rolfsii in tomato plants. These results were further validated by pathogen related gene expression analysis by real time PCR. Overall results from the present study may be concluded that ACC deaminase producing B-30488 has ability to control the southern blight disease caused by S. rolfsii and commercial bioinoculant package may be developed. PMID:26825539

  5. The effect of therapeutic drugs and other pharmacologic agents on activity of porphobilinogen deaminase, the enzyme that is deficient in intermittent acute porphyria.

    PubMed

    Tishler, P V

    1999-01-01

    Drugs and toxins precipitate life-threatening acute attacks in patients with intermittent acute porphyria. These materials may act by directly inhibiting enzyme activity, thus further reducing porphobilinogen (PBG) deaminase activity below the ca. 50% level that results from the gene defect. To test this, we studied the effects of drugs that precipitate acute attacks (lead, phenobarbital, griseofulvin, phenytoin, sulfanilamide, sulfisoxazole, 17alpha-ethinyl estradiol, 5beta-pregnan-3alpha-ol-20-one), drugs that are safe (lithium, magnesium, chlorpromazine, promethazine), and those with uncertain effects (ethyl alcohol, imipramine, diazepam, haloperidol) on activity of PBG deaminase in vitro and in vivo. In the in vitro studies, of PBG deaminase from human erythrocytes from normals and individuals with IAP, only lead (> or = .01 mM) inhibited enzyme activity. Chlorpromazine (> or = .01 mM), promethazine (> or = .01 mM) and imipramine (1 mM) seemed to increase enzyme activity. In most in vivo experiments, male rats were injected intraperitoneally with test material twice daily for 3 days and once on day four; and erythrocyte and hepatic PBG deaminase activity was assayed thereafter. Effects on enzyme activity were observed only with 17alpha-ethinyl estradiol (0.05 microg/kg/day; reduction of 11% in erythrocyte enzyme [NS], and of 20% in liver enzyme [P=.02]), and imipramine (12.5 mg/kg/day; reduction in erythrocyte enzyme activity of 13% [P<.001]). Rats given lead acetate in their drinking water (10 mg/ml) for the first 60 days of life, resulting in high blood and liver lead levels, had increased erythrocyte PBG deaminase (167% of control; P=.004). Thus, enzyme inhibition by lead in vitro was not reflected in a similar in vivo inhibition. The only inhibitory effects in vivo, with ethinyl estradiol and imipramine, appear to be mild and biologically inconsequential. We conclude that inhibition of PBG deaminase activity by materials that precipitate acute attacks is an

  6. Halobacterial adenosine triphosphatases and the adenosine triphosphatase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, Hordur; Sadler, Martha H.; Hochstein, Lawrence I.

    1986-01-01

    Membranes prepared from various members of the genus Halobacterium contained a Triton X-l00 activated adenosine triphosphatase. The enzyme from Halobacterium saccharovorum was unstable in solutions of low ionic strength and maximally active in the presence of 3.5 M NaCl. A variety of nucleotide triphosphates was hydrolyzed. MgADP, the product of ATP hydrolysis, was not hydrolyzed and was a competitive inhibitor with respect to MgATP. The enzyme from H. saccharovorum was composed of at least 2 and possibly 4 subunits. The 83-kDa and 60-kDa subunits represented about 90 percent of total protein. The 60-kDa subunit reacted with dicyclohexyl-carbodiimide when inhibition was carried out in an acidic medium. The enzyme from H. saccharovorum, possesses properties of an F(1)F(0) as well as an E(1)E(2) ATPase.

  7. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    PubMed

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver.

  8. Gene transfer into hematopoietic stem cells as treatment for primary immunodeficiency diseases.

    PubMed

    Candotti, Fabio

    2014-04-01

    Gene transfer into the hematopoietic stem cell has shown curative potential for a variety of hematological disorders. Primary immunodeficiency diseases have led to the way in this field of gene therapy as an example and a model. Clinical results from the past 15 years have shown that significant improvement and even cure can be achieved for diseases such as X-linked severe combined immunodeficiency, adenosine deaminase deficiency, chronic granulomatous disease and Wiskott-Aldrich syndrome. Unfortunately, with the initial clear clinical benefits, the first serious complications of gene therapy have also occurred. In a significant number of patients treated using vectors based on murine gamma-retroviruses and carrying powerful viral enhancer elements, insertional oncogenesis events have resulted in acute leukemias that, in some cases, have had fatal outcomes. These serious adverse events have sparked a revision of the assessment of risks and benefits of integrating gene transfer for hematological diseases and prompted the development and application of new generations of viral vectors with recognized superior safety characteristics. This review summarizes the clinical experience of gene therapy for primary immunodeficiencies and discusses the likely avenues of progress in the future development of this expanding field of clinical investigations.

  9. [Current status and future prospects of stem cell gene therapy for primary immunodeficiency].

    PubMed

    Uchiyama, Toru; Onodera, Masafumi

    2013-01-01

    Patients affected by primary immunodeficiency (PID) can be cured by allogeneic hematopoietic stem cell transplantation (HSCT). In the absence of HLA-matched donors, however, incidence of HSCT-related complications is observed. Therefore, gene therapy has been developed as a highly desirable alternative treatment for patients lacking suitable donors. Retrovirus-based gene therapy was begun in 1990 for the patients of adenosine deaminase deficiency, followed by X-linked severe combined immunodeficiency, Wiskott-Aldrich syndrome and chronic granulomatous disease. Although treated patients have had excellent immune reconstitution and resolution of ongoing infections, complications such as a lymphoproliferative syndrome and a disappearance of gene-modified cells were observed in some clinical trials. To overcome these, ongoing and upcoming clinical trials use some new strategies. The use of preconditioning chemotherapy makes space in the bone marrow for the gene-treated stem cells and allows engraftment of multi lineage stem/progenitor cells. Self-inactivating vectors in which strong enhancers of long terminal repeat are eliminated may reduce the risk of insertional activation of proto-oncogene resulting in leukemia. These modifications will surely increase the safety and efficacy of stem cell gene therapy for PID.

  10. Homeostatic control of synaptic activity by endogenous adenosine is mediated by adenosine kinase.

    PubMed

    Diógenes, Maria José; Neves-Tomé, Raquel; Fucile, Sergio; Martinello, Katiuscia; Scianni, Maria; Theofilas, Panos; Lopatár, Jan; Ribeiro, Joaquim A; Maggi, Laura; Frenguelli, Bruno G; Limatola, Cristina; Boison, Detlev; Sebastião, Ana M

    2014-01-01

    Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.

  11. The antidepressant-like effect of inosine in the FST is associated with both adenosine A1 and A 2A receptors.

    PubMed

    Kaster, Manuella P; Budni, Josiane; Gazal, Marta; Cunha, Mauricio P; Santos, Adair R S; Rodrigues, Ana Lúcia S

    2013-09-01

    Inosine is an endogenous purine nucleoside, which is formed during the breakdown of adenosine. The adenosinergic system was already described as capable of modulating mood in preclinical models; we now explored the effects of inosine in two predictive models of depression: the forced swim test (FST) and tail suspension test (TST). Mice treated with inosine displayed higher anti-immobility in the FST (5 and 50 mg/kg, intraperitoneal route (i.p.)) and in the TST (1 and 10 mg/kg, i.p.) when compared to vehicle-treated groups. These antidepressant-like effects started 30 min and lasted for 2 h after intraperitoneal administration of inosine and were not accompanied by any changes in the ambulatory activity in the open-field test. Both adenosine A1 and A2A receptor antagonists prevented the antidepressant-like effect of inosine in the FST. In addition, the administration of an adenosine deaminase inhibitor (1 and 10 mg/kg, i.p.) also caused an antidepressant-like effect in the FST. These results indicate that inosine possesses an antidepressant-like effect in the FST and TST probably through the activation of adenosine A1 and A2A receptors, further reinforcing the potential of targeting the purinergic system to the management of mood disorders.

  12. Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy.

    PubMed

    Aiuti, Alessandro; Cassani, Barbara; Andolfi, Grazia; Mirolo, Massimiliano; Biasco, Luca; Recchia, Alessandra; Urbinati, Fabrizia; Valacca, Cristina; Scaramuzza, Samantha; Aker, Memet; Slavin, Shimon; Cazzola, Matteo; Sartori, Daniela; Ambrosi, Alessandro; Di Serio, Clelia; Roncarolo, Maria Grazia; Mavilio, Fulvio; Bordignon, Claudio

    2007-08-01

    Gene transfer into HSCs is an effective treatment for SCID, although potentially limited by the risk of insertional mutagenesis. We performed a genome-wide analysis of retroviral vector integrations in genetically corrected HSCs and their multilineage progeny before and up to 47 months after transplantation into 5 patients with adenosine deaminase-deficient SCID. Gene-dense regions, promoters, and transcriptionally active genes were preferred retroviral integrations sites (RISs) both in preinfusion transduced CD34(+) cells and in vivo after gene therapy. The occurrence of insertion sites proximal to protooncogenes or genes controlling cell growth and self renewal, including LMO2, was not associated with clonal selection or expansion in vivo. Clonal analysis of long-term repopulating cell progeny in vivo revealed highly polyclonal T cell populations and shared RISs among multiple lineages, demonstrating the engraftment of multipotent HSCs. These data have important implications for the biology of retroviral vectors, the dynamics of genetically modified HSCs, and the safety of gene therapy.

  13. Optical Aptasensors for Adenosine Triphosphate

    PubMed Central

    Ng, Stella; Lim, Hui Si; Ma, Qian; Gao, Zhiqiang

    2016-01-01

    Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives. PMID:27446501

  14. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    SciTech Connect

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2013-01-24

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

  15. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adenosine triphosphate release assay. 864.7040... Adenosine triphosphate release assay. (a) Identification. An adenosine triphosphate release assay is a device that measures the release of adenosine triphosphate (ATP) from platelets following...

  16. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adenosine triphosphate release assay. 864.7040... Adenosine triphosphate release assay. (a) Identification. An adenosine triphosphate release assay is a device that measures the release of adenosine triphosphate (ATP) from platelets following...

  17. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adenosine triphosphate release assay. 864.7040... Adenosine triphosphate release assay. (a) Identification. An adenosine triphosphate release assay is a device that measures the release of adenosine triphosphate (ATP) from platelets following...

  18. Repeated administration of adenosine increases its cardiovascular effects in rats.

    PubMed

    Vidrio, H; García-Márquez, F; Magos, G A

    1987-01-20

    Hypotensive and negative chronotropic responses to adenosine in anesthetized rats increased after previous administration of the nucleoside. Bradycardia after adenosine in the isolated perfused rat heart was also potentiated after repeated administration at short intervals. This self-potentiation could be due to extracellular accumulation of adenosine and persistent stimulation of receptors caused by saturation or inhibition of cellular uptake of adenosine.

  19. An interaction between glucagon-like peptide-1 and adenosine contributes to cardioprotection of a dipeptidyl peptidase 4 inhibitor from myocardial ischemia-reperfusion injury.

    PubMed

    Ihara, Madoka; Asanuma, Hiroshi; Yamazaki, Satoru; Kato, Hisakazu; Asano, Yoshihiro; Shinozaki, Yoshihiro; Mori, Hidezo; Minamino, Tetsuo; Asakura, Masanori; Sugimachi, Masaru; Mochizuki, Naoki; Kitakaze, Masafumi

    2015-05-15

    Dipeptidyl peptidase 4 (DPP4) inhibitors suppress the metabolism of the potent antihyperglycemic hormone glucagon-like peptide-1 (GLP-1). DPP4 was recently shown to provide cardioprotection through a reduction of infarct size, but the mechanism for this remains elusive. Known interactions between DPP4 and adenosine deaminase (ADA) suggest an involvement of adenosine signaling in DPP4 inhibitor-mediated cardioprotection. We tested whether the protective mechanism of the DPP4 inhibitor alogliptin against myocardial ischemia-reperfusion injury involves GLP-1- and/or adenosine-dependent signaling in canine hearts. In anesthetized dogs, the coronary artery was occluded for 90 min followed by reperfusion for 6 h. A 4-day pretreatment with alogliptin reduced the infarct size from 43.1 ± 2.5% to 17.1 ± 5.0% without affecting collateral flow and hemodynamic parameters, indicating a potent antinecrotic effect. Alogliptin also suppressed apoptosis as demonstrated by the following analysis: 1) reduction in the Bax-to-Bcl2 ratio; 2) cytochrome c release, 3) an increase in Bad phosphorylation in the cytosolic fraction; and 4) terminal deoxynucleotidyl transferase dUTP nick end labeling assay. This DPP4 inhibitor did not affect blood ADA activity or adenosine concentrations. In contrast, the nonselective adenosine receptor blocker 8-(p-sulfophenyl)theophylline (8SPT) completely blunted the effect of alogliptin. Alogliptin did not affect Erk1/2 phosphorylation, but it did stimulate phosphorylation of Akt, glycogen synthase kinase-3β, and cAMP response element-binding protein (CREB). Only 8SPT prevented alogliptin-induced CREB phosphorylation. In conclusion, the DPP4 inhibitor alogliptin suppresses ischemia-reperfusion injury via adenosine receptor- and CREB-dependent signaling pathways.

  20. Retroviral Replicating Vectors Deliver Cytosine Deaminase Leading to Targeted 5-Fluorouracil-Mediated Cytotoxicity in Multiple Human Cancer Types

    PubMed Central

    Twitty, Chris G.; Diago, Oscar R.; Hogan, Daniel J.; Burrascano, Cindy; Ibanez, Carlos E.; Jolly, Douglas J.; Ostertag, Derek

    2016-01-01

    Toca 511 is a modified retroviral replicating vector based on Moloney γ-retrovirus with an amphotropic envelope. As an investigational cancer treatment, Toca 511 preferentially infects cancer cells without direct cell lysis and encodes an enhanced yeast cytosine deaminase that converts the antifungal drug 5-fluorocytosine to the anticancer drug, 5-fluorouracil. A panel of established human cancer cell lines, derived from glioblastoma, colon, and breast cancer tissue, was used to evaluate parameters critical for effective anticancer activity. Gene transfer, cytosine deaminase production, conversion of 5-fluorocytosine to 5-fluorouracil, and subsequent cell killing occurred in all lines tested. We observed >50% infection within 25 days in all lines and 5-fluorocytosine LD50 values between 0.02 and 6 μg/ml. Although we did not identify a small number of key criteria, these studies do provide a straightforward approach to rapidly gauge the probability of a Toca 511 and 5-fluorocytosine treatment effect in various cancer indications: a single MTS assay of maximally infected cancer cell lines to determine 5-fluorocytosine LD50. The data suggest that, although there can be variation in susceptibility to Toca 511 and 5-fluorocytosine because of multiple mechanistic factors, this therapy may be applicable to a broad range of cancer types and individuals. PMID:26467507

  1. Retroviral Replicating Vectors Deliver Cytosine Deaminase Leading to Targeted 5-Fluorouracil-Mediated Cytotoxicity in Multiple Human Cancer Types.

    PubMed

    Twitty, Chris G; Diago, Oscar R; Hogan, Daniel J; Burrascano, Cindy; Ibanez, Carlos E; Jolly, Douglas J; Ostertag, Derek

    2016-02-01

    Toca 511 is a modified retroviral replicating vector based on Moloney γ-retrovirus with an amphotropic envelope. As an investigational cancer treatment, Toca 511 preferentially infects cancer cells without direct cell lysis and encodes an enhanced yeast cytosine deaminase that converts the antifungal drug 5-fluorocytosine to the anticancer drug, 5-fluorouracil. A panel of established human cancer cell lines, derived from glioblastoma, colon, and breast cancer tissue, was used to evaluate parameters critical for effective anticancer activity. Gene transfer, cytosine deaminase production, conversion of 5-fluorocytosine to 5-fluorouracil, and subsequent cell killing occurred in all lines tested. We observed >50% infection within 25 days in all lines and 5-fluorocytosine LD50 values between 0.02 and 6 μg/ml. Although we did not identify a small number of key criteria, these studies do provide a straightforward approach to rapidly gauge the probability of a Toca 511 and 5-fluorocytosine treatment effect in various cancer indications: a single MTS assay of maximally infected cancer cell lines to determine 5-fluorocytosine LD50. The data suggest that, although there can be variation in susceptibility to Toca 511 and 5-fluorocytosine because of multiple mechanistic factors, this therapy may be applicable to a broad range of cancer types and individuals.

  2. Some aspects of adenosine triphosphate synthesis from adenine and adenosine in human red blood cells

    PubMed Central

    Whittam, R.; Wiley, J. S.

    1968-01-01

    1. The synthesis of ATP has been studied in human erythrocytes. Fresh cells showed no net synthesis of ATP when incubated with adenine or adenosine, although labelled adenine was incorporated into ATP in small amounts. 2. Cold-stored cells (3-6 weeks old) became progressively depleted of adenine nucleotides but incubation with adenosine or adenine plus inosine restored the ATP concentration to normal within 4 hr. Incorporation of labelled adenine or adenosine into the ATP of incubated stored cells corresponded to net ATP synthesis by these cells. 3. Synthesis of ATP from adenosine plus adenine together was 75% derived from adenine and only 25% from adenosine, indicating that nucleotide synthesis from adenine inhibits the simultaneous synthesis of nucleotide from adenosine. PMID:5723519

  3. Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates.

    PubMed

    Schmidt, Manfred; Carbonaro, Denise A; Speckmann, Carsten; Wissler, Manuela; Bohnsack, John; Elder, Melissa; Aronow, Bruce J; Nolta, Jan A; Kohn, Donald B; von Kalle, Christof

    2003-04-01

    A clinical trial of retroviral-mediated transfer of the adenosine deaminase (ADA) gene into umbilical cord blood CD34(+) cells was started in 1993. ADA-containing peripheral blood mononuclear cells (PBMCs) have persisted in patients from this trial, with T lymphocytes showing the highest prevalence of gene marking. To gain a greater understanding of the nature and number of the transduced cells that were engrafted, we used linear amplification-mediated PCR (LAM-PCR) to identify clonal vector proviral integrants. In one patient, a single vector integrant was predominant in T lymphocytes at a stable level over most of the eight-year time span analyzed and was also detected in some myeloid samples. T-cell clones with the predominant integrant, isolated after eight years, showed multiple patterns of T-cell receptor (TCR) gene rearrangement, indicating that a single pre-thymic stem or progenitor cell served as the source of the majority of the gene-marked cells over an extended period of time. It is important to distinguish the stable pattern of monoclonal gene marking that we observed here from the progressive increase of a T-cell clone with monoclonal gene marking that results from leukemic transformation, as observed in two subjects in a clinical trial of gene therapy for X-linked severe combined immunodeficiency (SCID).

  4. Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence

    PubMed Central

    Tittabutr, Panlada; Sripakdi, Sudarat; Boonkerd, Nantakorn; Tanthanuch, Waraporn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-01-01

    Sinorhizobium sp. BL3 forms symbiotic interactions with mung bean (Vigna radiata) and contains lrpL-acdS genes, which encode the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that cleaves ACC, a precursor of plant ethylene synthesis. Since ethylene interferes with nodule formation in some legumes and plays a role in senescence in plant cells, BL3-enhancing ACC deaminase activity (BL3+) and defective mutant (BL3−) strains were constructed in order to investigate the effects of this enzyme on symbiosis and nodule senescence. Nodulation competitiveness was weaker in BL3− than in the wild-type, but was stronger in BL3+. The inoculation of BL3− into mung bean resulted in less plant growth, a lower nodule dry weight, and smaller nodule number than those in the wild-type, whereas the inoculation of BL3+ had no marked effects. However, similar nitrogenase activity was observed with all treatments; it was strongly detected 3 weeks after the inoculation and gradually declined with time, indicating senescence. The rate of plant nodulation by BL3+ increased in a time-dependent manner. Nodules occupied by BL3− formed smaller symbiosomes, and bacteroid degradation was more prominent than that in the wild-type 7 weeks after the inoculation. Changes in biochemical molecules during nodulation were tracked by Fourier Transform Infrared (FT-IR) microspectroscopy, and the results obtained confirmed that aging processes differed in nodules occupied by BL3 and BL3−. This is the first study to show the possible role of ACC deaminase activity in senescence in determinate nodules. Our results suggest that an increase in ACC deaminase activity in this strain does not extend the lifespan of nodules, whereas the lack of this activity may accelerate nodule senescence. PMID:26657304

  5. Adenosine receptors as drug targets — what are the challenges?

    PubMed Central

    Chen, Jiang-Fan; Eltzschig, Holger K.; Fredholm, Bertil B.

    2014-01-01

    Adenosine signalling has long been a target for drug development, with adenosine itself or its derivatives being used clinically since the 1940s. In addition, methylxanthines such as caffeine have profound biological effects as antagonists at adenosine receptors. Moreover, drugs such as dipyridamole and methotrexate act by enhancing the activation of adenosine receptors. There is strong evidence that adenosine has a functional role in many diseases, and several pharmacological compounds specifically targeting individual adenosine receptors — either directly or indirectly — have now entered the clinic. However, only one adenosine receptor-specific agent — the adenosine A2A receptor agonist regadenoson (Lexiscan; Astellas Pharma) — has so far gained approval from the US Food and Drug Administration (FDA). Here, we focus on the biology of adenosine signalling to identify hurdles in the development of additional pharmacological compounds targeting adenosine receptors and discuss strategies to overcome these challenges. PMID:23535933

  6. Activation-Induced Cytidine Deaminase Expression in Human B Cell Precursors Is Essential for Central B Cell Tolerance.

    PubMed

    Cantaert, Tineke; Schickel, Jean-Nicolas; Bannock, Jason M; Ng, Yen-Shing; Massad, Christopher; Oe, Tyler; Wu, Renee; Lavoie, Aubert; Walter, Jolan E; Notarangelo, Luigi D; Al-Herz, Waleed; Kilic, Sara Sebnem; Ochs, Hans D; Nonoyama, Shigeaki; Durandy, Anne; Meffre, Eric

    2015-11-17

    Activation-induced cytidine deaminase (AID), the enzyme-mediating class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B cell intrinsic AID expression mediates central B cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells.

  7. Strong enhancement of recombinant cytosine deaminase activity in Bifidobacterium longum for tumor-targeting enzyme/prodrug therapy.

    PubMed

    Hamaji, Yoshinori; Fujimori, Minoru; Sasaki, Takayuki; Matsuhashi, Hitomi; Matsui-Seki, Keiichi; Shimatani-Shibata, Yuko; Kano, Yasunobu; Amano, Jun; Taniguchi, Shun'ichiro

    2007-04-01

    In our previous studies, a strain of the nonpathogenic, anaerobic, intestinal bacterium, Bifidobacterium longum (B. longum), was found to be localized selectively and to proliferate within solid tumors after systemic administration. In addition, B. longum transformed with the shuttle-plasmid encoding the cytosine deaminase (CD) gene expressed active CD, which deaminated the prodrug 5-fluorocytosine (5-FC) to the anticancer agent 5-fluorouracil (5-FU). We also reported antitumor efficacy with the same plasmid in several animal experiments. In this study, we constructed a novel shuttle-plasmid, pAV001-HU-eCD-M968, which included the mutant CD gene with a mutation at the active site to increase the enzymatic activity. In addition, the plasmid-transformed B. longum produces mutant CD and strongly increased (by 10-fold) its 5-FC to 5-FU enzymatic activity. The use of B. longum harboring the new shuttle-plasmid increases the effectiveness of our enzyme/prodrug strategy.

  8. Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors

    SciTech Connect

    Hu, Yi Ericsson, Ida Doseth, Berit Liabakk, Nina B. Krokan, Hans E. Kavli, Bodil

    2014-03-10

    Activation-induced cytidine deaminase (AID) is the mutator enzyme in adaptive immunity. AID initiates the antibody diversification processes in activated B cells by deaminating cytosine to uracil in immunoglobulin genes. To some extent other genes are also targeted, which may lead to genome instability and B cell malignancy. Thus, it is crucial to understand its targeting and regulation mechanisms. AID is regulated at several levels including subcellular compartmentalization. However, the complex nuclear distribution and trafficking of AID has not been studied in detail previously. In this work, we examined the subnuclear localization of AID and its interaction partner CTNNBL1 and found that they associate with spliceosome-associated structures including Cajal bodies and nuclear speckles. Moreover, protein kinase A (PKA), which activates AID by phosphorylation at Ser38, is present together with AID in nuclear speckles. Importantly, we demonstrate that AID physically associates with the major spliceosome subunits (small nuclear ribonucleoproteins, snRNPs), as well as other essential splicing components, in addition to the transcription machinery. Based on our findings and the literature, we suggest a transcription-coupled splicing-associated model for AID targeting and activation. - Highlights: • AID and its interaction partner CTNNBL1 localize to Cajal bodies and nuclear speckles. • AID associates with its activating kinase PKA in nuclear speckles. • AID is linked to the splicing machinery in switching B-cells. • Our findings suggest a transcription-coupled splicing associated mechanism for AID targeting and activation.

  9. Heme-Biosynthetic Porphobilinogen Deaminase Protects Aspergillus nidulans from Nitrosative Stress

    PubMed Central

    Zhou, Shengmin; Narukami, Toshiaki; Nameki, Misuzu; Ozawa, Tomoko; Kamimura, Yosuke; Hoshino, Takayuki

    2012-01-01

    Microorganisms have developed mechanisms to combat reactive nitrogen species (RNS); however, only a few of the fungal genes involved have been characterized. Here we screened RNS-resistant Aspergillus nidulans strains from fungal transformants obtained by introducing a genomic DNA library constructed in a multicopy vector. We found that the AN0121.3 gene (hemC) encodes a protein similar to the heme biosynthesis enzyme porphobilinogen deaminase (PBG-D) and facilitates RNS-tolerant fungal growth. The overproduction of PBG-D in A. nidulans promoted RNS tolerance, whereas PBG-D repression caused growth that was hypersensitive to RNS. PBG-D levels were comparable to those of cellular protoheme synthesis as well as flavohemoglobin (FHb; encoded by fhbA and fhbB) and nitrite reductase (NiR; encoded by niiA) activities. Both FHb and NiR are hemoproteins that consume nitric oxide and nitrite, respectively, and we found that they are required for maximal growth in the presence of RNS. The transcription of hemC was upregulated by RNS. These results demonstrated that PBG-D is a novel NO-tolerant protein that modulates the reduction of environmental NO and nitrite levels by FHb and NiR. PMID:22038601

  10. Yeast cytosine deaminase mutants with increased thermostability impart sensitivity to 5-fluorocytosine.

    PubMed

    Stolworthy, Tiffany S; Korkegian, Aaron M; Willmon, Candice L; Ardiani, Andressa; Cundiff, Jennifer; Stoddard, Barry L; Black, Margaret E

    2008-03-28

    Prodrug gene therapy (PGT) is a treatment strategy in which tumor cells are transfected with a 'suicide' gene that encodes a metabolic enzyme capable of converting a nontoxic prodrug into a potent cytotoxin. One of the most promising PGT enzymes is cytosine deaminase (CD), a microbial salvage enzyme that converts cytosine to uracil. CD also converts 5-fluorocytosine (5FC) to 5-fluorouracil, an inhibitor of DNA synthesis and RNA function. Over 150 studies of CD-mediated PGT applications have been reported since 2000, all using wild-type enzymes. However, various forms of CD are limited by inefficient turnover of 5FC and/or limited thermostability. In a previous study, we stabilized and extended the half-life of yeast CD (yCD) by repacking of its hydrophobic core at several positions distant from the active site. Here we report that random mutagenesis of residues selected based on alignment with similar enzymes, followed by selection for enhanced sensitization to 5FC, also produces an enzyme variant (yCD-D92E) with elevated T(m) values and increased activity half-life. The new mutation is located at the enzyme's dimer interface, indicating that independent mutational pathways can lead to an increase in stability, as well as a more subtle effect on enzyme kinetics. Each independently derived set of mutations significantly improves the enzyme's performance in PGT assays both in cell culture and in animal models.

  11. AMP-deaminase from thymus of patients with myasthenia gravis.

    PubMed

    Rybakowska, I; Szydłowska, M; Szrok, S; Bakuła, S; Kaletha, K

    2015-01-01

    Myasthenia gravis (MG) is characterized clinically by skeletal muscle fatigue following the excessive exercise. Interestingly most of MG patients manifest parallely also some abnormalities of the thymus.AMP-deaminase (AMPD) from human thymus was not a subject of studies up to now. In this paper, mRNA expression and some physico-chemical and immunological properties of AMPD purified from the thymus of MG patients were described. Experiments performed identified the liver isozyme (AMPD2) as the main isoform of AMPD expressed in this organ. The activity of AMPD found in this organ was higher than in other human non-(skeletal) muscle tissues indicating on role the enzyme may play in supplying of guanylates required for the intensive multiplication of thymocytes.

  12. Glutamate-induced depression of EPSP-spike coupling in rat hippocampal CA1 neurons and modulation by adenosine receptors.

    PubMed

    Ferguson, Alexandra L; Stone, Trevor W

    2010-04-01

    The presence of high concentrations of glutamate in the extracellular fluid following brain trauma or ischaemia may contribute substantially to subsequent impairments of neuronal function. In this study, glutamate was applied to hippocampal slices for several minutes, producing over-depolarization, which was reflected in an initial loss of evoked population potential size in the CA1 region. Orthodromic population spikes recovered only partially over the following 60 min, whereas antidromic spikes and excitatory postsynaptic potentials (EPSPs) showed greater recovery, implying a change in EPSP-spike coupling (E-S coupling), which was confirmed by intracellular recording from CA1 pyramidal cells. The recovery of EPSPs was enhanced further by dizocilpine, suggesting that the long-lasting glutamate-induced change in E-S coupling involves NMDA receptors. This was supported by experiments showing that when isolated NMDA-receptor-mediated EPSPs were studied in isolation, there was only partial recovery following glutamate, unlike the composite EPSPs. The recovery of orthodromic population spikes and NMDA-receptor-mediated EPSPs following glutamate was enhanced by the adenosine A1 receptor blocker DPCPX, the A2A receptor antagonist SCH58261 or adenosine deaminase, associated with a loss of restoration to normal of the glutamate-induced E-S depression. The results indicate that the long-lasting depression of neuronal excitability following recovery from glutamate is associated with a depression of E-S coupling. This effect is partly dependent on activation of NMDA receptors, which modify adenosine release or the sensitivity of adenosine receptors. The results may have implications for the use of A1 and A2A receptor ligands as cognitive enhancers or neuroprotectants.

  13. Gene therapy for primary immunodeficiencies: current status and future prospects.

    PubMed

    Qasim, Waseem; Gennery, Andrew R

    2014-06-01

    Gene therapy using autologous haematopoietic stem cells offers a valuable treatment option for patients with primary immunodeficiencies who do not have access to an HLA-matched donor, although such treatments have not been without their problems. This review details gene therapy trials for X-linked and adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome (WAS) and chronic granulomatous disease (CGD). X-linked SCID was chosen for gene therapy because of previous 'natural' genetic correction through a reversion event in a single lymphoid precursor, demonstrating limited thymopoiesis and restricted T-lymphocyte receptor repertoire, showing selective advantage of progenitors possessing the wild-type gene. In early studies, patients were treated with long terminal repeats-intact gamma-retroviral vectors, without additional chemotherapy. Early results demonstrated gene-transduced cells, sustained thymopoiesis, and a diverse T-lymphocyte repertoire with normal function. Serious adverse effects were subsequently reported in 5 of 20 patients, with T-lymphocyte leukaemia developing, secondary to the viral vector integrating adjacent to a known oncogene. New trials using self-inactivating gamma-retroviral vectors are progressing. Trials for ADA-SCID using gamma-retroviral vectors have been successful, with no similar serious adverse effects reported; trials using lentiviral vectors are in progress. Patients with WAS and CGD treated with early gamma-retroviral vectors have developed similar lymphoproliferative adverse effects to those seen in X-SCID--current trials are using new-generation vectors. Targeted gene insertion using homologous recombination of corrected gene sequences by cellular DNA repair pathways following targeted DNA breakage will improve efficacy and safety of gene therapy. A number of new techniques are discussed.

  14. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes

    SciTech Connect

    Venema, J.; van Hoffen, A.; Karcagi, V.; Natarajan, A.T.; van Zeeland, A.A.; Mullenders, L.H. )

    1991-08-01

    The authors have measured the removal of UV-induced pyrimidine dimers from DNA fragments of the adenosine deaminase (ADA) and dihydrofolate reductase (DHFR) genes in primary normal human and xeroderma pigmentosum complementation group C (XP-C) cells. Using strand-specific probes, we show that in normal cells, preferential repair of the 5{prime} part of the ADA gene is due to the rapid and efficient repair of the transcribed strand. Within 8 h after irradiation with UV at 10 J m-2, 70% of the pyrimidine dimers in this strand are removed. The nontranscribed strand is repaired at a much slower rate, with 30% dimers removed after 8 h. Repair of the transcribed strand in XP-C cells occurs at a rate indistinguishable from that in normal cells, but the nontranscribed strand is not repaired significantly in these cells. Similar results were obtained for the DHFR gene. In the 3{prime} part of the ADA gene, however, both normal and XP-C cells perform fast and efficient repair of either strand, which is likely to be caused by the presence of transcription units on both strands. The factor defective in XP-C cells is apparently involved in the processing of DNA damage in inactive parts of the genome, including nontranscribed strands of active genes. These findings have important implications for the understanding of the mechanism of UV-induced excision repair and mutagenesis in mammalian cells.

  15. Prolonged pancytopenia in a gene therapy patient with ADA-deficient SCID and trisomy 8 mosaicism: a case report.

    PubMed

    Engel, Barbara C; Podsakoff, Greg M; Ireland, Joanna L; Smogorzewska, E Monika; Carbonaro, Denise A; Wilson, Kathy; Shah, Ami; Kapoor, Neena; Sweeney, Mirna; Borchert, Mark; Crooks, Gay M; Weinberg, Kenneth I; Parkman, Robertson; Rosenblatt, Howard M; Wu, Shi-Qi; Hershfield, Michael S; Candotti, Fabio; Kohn, Donald B

    2007-01-15

    A patient with adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID) was enrolled in a study of retroviral-mediated ADA gene transfer to bone marrow hematopoietic stem cells. After the discontinuation of ADA enzyme replacement, busulfan (75 mg/m2) was administered for bone marrow cytoreduction, followed by infusion of autologous, gene-modified CD34+ cells. The expected myelosuppression developed after busulfan but then persisted, necessitating the administration of untransduced autologous bone marrow back-up at day 40. Because of sustained pancytopenia and negligible gene marking, diagnostic bone marrow biopsy and aspirate were performed at day 88. Analyses revealed hypocellular marrow and, unexpectedly, evidence of trisomy 8 in 21.6% of cells. Trisomy 8 mosaicism (T8M) was subsequently diagnosed by retrospective analysis of a pretreatment marrow sample that might have caused the lack of hematopoietic reconstitution. The confounding effects of this preexisting marrow cytogenetic abnormality on the response to gene transfer highlights another challenge of gene therapy with the use of autologous hematopoietic stem cells.

  16. Role of adenosine receptors in caffeine tolerance

    SciTech Connect

    Holtzman, S.G.; Mante, S.; Minneman, K.P. )

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  17. Comparative transcriptome analysis of Bacillus subtilis responding to dissolved oxygen in adenosine fermentation.

    PubMed

    Yu, Wen-Bang; Gao, Shu-Hong; Yin, Chun-Yun; Zhou, Ying; Ye, Bang-Ce

    2011-01-01

    Dissolved oxygen (DO) is an important factor for adenosine fermentation. Our previous experiments have shown that low oxygen supply in the growth period was optimal for high adenosine yield. Herein, to better understand the link between oxygen supply and adenosine productivity in B. subtilis (ATCC21616), we sought to systematically explore the effect of DO on genetic regulation and metabolism through transcriptome analysis. The microarrays representing 4,106 genes were used to study temporal transcript profiles of B. subtilis fermentation in response to high oxygen supply (agitation 700 r/min) and low oxygen supply (agitation 450 r/min). The transcriptome data analysis revealed that low oxygen supply has three major effects on metabolism: enhance carbon metabolism (glucose metabolism, pyruvate metabolism and carbon overflow), inhibit degradation of nitrogen sources (glutamate family amino acids and xanthine) and purine synthesis. Inhibition of xanthine degradation was the reason that low oxygen supply enhanced adenosine production. These provide us with potential targets, which can be modified to achieve higher adenosine yield. Expression of genes involved in energy, cell type differentiation, protein synthesis was also influenced by oxygen supply. These results provided new insights into the relationship between oxygen supply and metabolism.

  18. A-to-I RNA editing promotes developmental stage-specific gene and lncRNA expression.

    PubMed

    Goldstein, Boaz; Agranat-Tamir, Lily; Light, Dean; Ben-Naim Zgayer, Orna; Fishman, Alla; Lamm, Ayelet T

    2017-03-01

    A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in Caenorhabditis elegans cause defects in normal development but are not lethal as in human and mouse. Previous studies in C. elegans indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled us to identify thousands of RNA editing sites in nonrepetitive regions in the genome. These include dozens of genes that are edited at their 3' UTR region. We found that these genes are mainly germline and neuronal genes, and that they are down-regulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner, indicating that RNA editing is a highly regulated process. We found that many pseudogenes and other lncRNAs are also extensively down-regulated in the absence of ADARs in the embryo but not in the fourth larval (L4) stage. This down-regulation is not observed upon additional knockout of RNAi. Furthermore, levels of siRNAs aligned to pseudogenes in ADAR mutants are enhanced. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi.

  19. IL-3 or IL-7 increases ex vivo gene transfer efficiency in ADA-SCID BM CD34+ cells while maintaining in vivo lymphoid potential.

    PubMed

    Ficara, Francesca; Superchi, Daniela B; Hernández, Raisa Jofra; Mocchetti, Cristina; Carballido-Perrig, Nicole; Andolfi, Grazia; Deola, Sara; Colombo, Augusto; Bordignon, Claudio; Carballido, José M; Roncarolo, Maria Grazia; Aiuti, Alessandro

    2004-12-01

    To improve maintenance and gene transfer of human lymphoid progenitors for clinical use in gene therapy of adenosine deaminase (ADA)-deficient SCID we investigated several gene transfer protocols using various stem cell-enriched sources. The lymphoid differentiation potential was measured by an in vitro clonal assay for B/NK cells and in the in vivo SCID-hu mouse model. Ex vivo culture with the cytokines TPO, FLT3-ligand, and SCF (T/F/S) plus IL-3 or IL-7 substantially increased the yield of transduced bone marrow (BM) CD34(+) cells purified from ADA-SCID patients or healthy donors, compared to T/F/S alone. Moreover, the use of IL-3 or IL-7 significantly improved the maintenance of in vitro B cell progenitors from ADA-SCID BM cells and allowed the efficient transduction of B and NK cell progenitors. Under these optimized conditions transduced CD34(+) cells were efficiently engrafted into SCID-hu mice and gave rise to B and T cell progeny, demonstrating the maintenance of in vivo lymphoid reconstitution capacity. The protocol based on the T/F/S + IL-3 combination was included in a gene therapy clinical trial for ADA-SCID, resulting in long-term engraftment of stem/progenitor cells. Remarkably, gene-corrected BM CD34(+) cells obtained from one patient 4 and 11 months after gene therapy were capable of repopulating the lymphoid compartment of SCID-hu hosts.

  20. Cytosine Deaminase/5-Fluorocytosine Exposure Induces Bystander and Radiosensitization Effects in Hypoxic Glioblastoma Cells in vitro

    SciTech Connect

    Chen, Jennifer K.; Hu, Lily J.; Wang Dongfang; Lamborn, Kathleen R.; Deen, Dennis F. . E-mail: dennisdeen@juno.com

    2007-04-01

    Purpose: Treatment of glioblastoma (GBM) is limited by therapeutic ratio; therefore, successful therapy must be specifically cytotoxic to cancer cells. Hypoxic cells are ubiquitous in GBM, and resistant to radiation and chemotherapy, and, thus, are logical targets for gene therapy. In this study, we investigated whether cytosine deaminase (CD)/5-fluorocytosine (5-FC) enzyme/prodrug treatment induced a bystander effect (BE) and/or radiosensitization in hypoxic GBM cells. Methods and Materials: We stably transfected cells with a gene construct consisting of the SV40 minimal promoter, nine copies of a hypoxia-responsive element, and the yeast CD gene. During hypoxia, a hypoxia-responsive element regulates expression of the CD gene and facilitates the conversion of 5-FC to 5-fluorouracil, a highly toxic antimetabolite. We used colony-forming efficiency (CFE) and immunofluorescence assays to assess for BE in co-cultures of CD-expressing clone cells and parent, pNeo- or green fluorescent protein-stably transfected GBM cells. We also investigated the radiosensitivity of CD clone cells treated with 5-FC under hypoxic conditions, and we used flow cytometry to investigate treatment-induced cell cycle changes. Results: Both a large BE and radiosensitization occurred in GBM cells under hypoxic conditions. The magnitude of the BE depended on the number of transfected cells producing CD, the functionality of the CD, the administered concentration of 5-FC, and the sensitivity of cell type to 5-fluorouracil. Conclusion: Hypoxia-inducible CD/5-FC therapy in combination with radiation therapy shows both a pronounced BE and a radiosensitizing effect under hypoxic conditions.

  1. Restriction of Porcine Endogenous Retrovirus by Porcine APOBEC3 Cytidine Deaminases

    PubMed Central

    Dörrschuck, Eva; Fischer, Nicole; Bravo, Ignacio G.; Hanschmann, Kay-Martin; Kuiper, Heidi; Spötter, Andreas; Möller, Ronny; Cichutek, Klaus; Münk, Carsten; Tönjes, Ralf R.

    2011-01-01

    Xenotransplantation of porcine cells, tissues, and organs shows promise to surmount the shortage of human donor materials. Among the barriers to pig-to-human xenotransplantation are porcine endogenous retroviruses (PERV) since functional representatives of the two polytropic classes, PERV-A and PERV-B, are able to infect human embryonic kidney cells in vitro, suggesting that a xenozoonosis in vivo could occur. To assess the capacity of human and porcine cells to counteract PERV infections, we analyzed human and porcine APOBEC3 (A3) proteins. This multigene family of cytidine deaminases contributes to the cellular intrinsic immunity and act as potent inhibitors of retroviruses and retrotransposons. Our data show that the porcine A3 gene locus on chromosome 5 consists of the two single-domain genes A3Z2 and A3Z3. The evolutionary relationships of the A3Z3 genes reflect the evolutionary history of mammals. The two A3 genes encode at least four different mRNAs: A3Z2, A3Z3, A3Z2-Z3, and A3Z2-Z3 splice variant A (SVA). Porcine and human A3s have been tested toward their antiretroviral activity against PERV and murine leukemia virus (MuLV) using novel single-round reporter viruses. The porcine A3Z2, A3Z3 and A3Z2-Z3 were packaged into PERV particles and inhibited PERV replication in a dose-dependent manner. The antiretroviral effect correlated with editing by the porcine A3s with a trinucleotide preference for 5′ TGC for A3Z2 and A3Z2-Z3 and 5′ CAC for A3Z3. These results strongly imply that human and porcine A3s could inhibit PERV replication in vivo, thereby reducing the risk of infection of human cells by PERV in the context of pig-to-human xenotransplantation. PMID:21307203

  2. Evaluation of Adenosine Triphosphate-Binding Cassette Transporter A1 (ABCA1) R219K and C-Reactive Protein Gene (CRP) +1059G/C Gene Polymorphisms in Susceptibility to Coronary Heart Disease.

    PubMed

    Li, Jing-Fang; Peng, Dian-Ying; Ling, Mei; Yin, Yong

    2016-08-25

    BACKGROUND This meta-analysis investigated the correlation of ABCA1 R219K and C-Reactive Protein Gene (CRP) +1059G/C gene polymorphisms with susceptibility to coronary heart disease (CHD). MATERIAL AND METHODS We searched PubMed, Springer link, Wiley, EBSCO, Ovid, Wanfang database, VIP database, and China National Knowledge Infrastructure (CNKI) databases to retrieve published studies by keyword. Searches were filtered using our stringent inclusion and exclusion criteria. Resultant high-quality data collected from the final selected studies were analyzed using Comprehensive Meta-analysis 2.0 software. Eleven case-control studies involving 3053 CHD patients and 3403 healthy controls met our inclusion criteria. Seven studies were conducted in Asian populations, 3 studies were done in Caucasian populations, and 1 was in an African population. RESULTS Our major finding was that ABCA1 R219K polymorphism increased susceptibility to CHD in allele model (OR=0.729, 95% CI=0.559~0.949, P=0.019) and dominant model (OR=0.698, 95% CI=0.507~0.961, P=0.027). By contrast, we were unable to find any significant association between the CRP +1059G/C polymorphism and susceptibility to CHD (allele model: OR=1.170, 95% CI=0.782~1.751, P=0.444; dominant model: OR=1.175, 95% CI=0.768~1.797, P=0.457). CONCLUSIONS This meta-analysis provides convincing evidence that polymorphism of ABCA1 R219K is associated with susceptibility to CHD while the CRP +1059G/C polymorphism appears to have no correlation with susceptibility to CHD.

  3. Mucosal adenosine stimulates chloride secretion in canine tracheal epithelium

    SciTech Connect

    Pratt, A.D.; Clancy, G.; Welsh, M.J.

    1986-08-01

    Adenosine is a local regulator of a variety of physiological functions in many tissues and has been observed to stimulate secretion in several Cl-secreting epithelia. In canine tracheal epithelium the authors found that adenosine stimulates Cl secretion from both the mucosal and submucosal surfaces. Addition of adenosine, or its analogue 2-chloroadenosine, to the mucosal surface potently stimulated Cl secretion with no effect on the rate of Na absorption. Stimulation resulted from an interaction of adenosine with adenosine receptors, because it was blocked by the adenosine receptor blocker, 8-phenyltheophylline. The adenosine receptor was a stimulatory receptor as judged by the rank-order potency of adenosine and its analogues and by the increase in cellular adenosine 3',5'-cyclic monophosphate levels produced by 2-chloroadenosine. Adenosine also stimulated Cl secretion when it was added to the submucosal surface, although the maximal increase in secretion was less and it was much less potent. The observation that mucosal 8-phenyletheophylline blocked the effect of submucosal 2-chloroadenosine, whereas submucosal 8-phenyltheophylline did not prevent a response to mucosal or submucosal 2-chloroadenosine, suggests that adenosine receptors are located on the mucosal surface. Thus submucosal adenosine may stimulate secretion by crossing the epithelium and interacting with receptors located on the mucosal surface. Because adenosine can be released from mast cells located in the airway lumen in response to inhaled material, and because adenosine stimulated secretion from the mucosal surface, it may be in a unique position to control the epithelium on a regional level.

  4. The β-globin locus control region in combination with the EF1α short promoter allows enhanced lentiviral vector-mediated erythroid gene expression with conserved multilineage activity.

    PubMed

    Montiel-Equihua, Claudia A; Zhang, Lin; Knight, Sean; Saadeh, Heba; Scholz, Simone; Carmo, Marlene; Alonso-Ferrero, Maria E; Blundell, Michael P; Monkeviciute, Aiste; Schulz, Reiner; Collins, Mary; Takeuchi, Yasuhiro; Schmidt, Manfred; Fairbanks, Lynette; Antoniou, Michael; Thrasher, Adrian J; Gaspar, H Bobby

    2012-07-01

    Some gene therapy strategies are compromised by the levels of gene expression required for therapeutic benefit, and also by the breadth of cell types that require correction. We designed a lentiviral vector system in which a transgene is under the transcriptional control of the short form of constitutively acting elongation factor 1α promoter (EFS) combined with essential elements of the locus control region of the β-globin gene (β-LCR). We show that the β-LCR can upregulate EFS activity specifically in erythroid cells but does not alter EFS activity in myeloid or lymphoid cells. Experiments using the green fluorescent protein (GFP) reporter or the human adenosine deaminase (ADA) gene demonstrate 3-7 times upregulation in vitro but >20 times erythroid-specific upregulation in vivo, the effects of which were sustained for 1 year. The addition of the β-LCR did not alter the mutagenic potential of the vector in in vitro mutagenesis (IM) assays although microarray analysis showed that the β-LCR upregulates ~9% of neighboring genes. This vector design therefore combines the benefits of multilineage gene expression with high-level erythroid expression, and has considerable potential for correction of multisystem diseases including certain lysosomal storage diseases through a hematopoietic stem cell (HSC) gene therapy approach.

  5. A2a and a2b adenosine receptors affect HIF-1α signaling in activated primary microglial cells.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Stefanelli, Angela; Bencivenni, Serena; Castillo, Carlos Alberto; Varani, Katia; Gessi, Stefania

    2015-05-15

    Microglia are central nervous system (CNS)-resident immune cells, that play a crucial role in neuroinflammation. Hypoxia-inducible factor-1 (HIF-1), the main transcription factor of hypoxia-inducible genes, is also involved in the immune response, being regulated in normoxia by inflammatory mediators. Adenosine is an ubiquitous nucleoside that has an influence on many immune properties of microglia through interaction with four receptor subtypes. The aim of this study was to investigate whether adenosine may affect microglia functions by acting on HIF-1α modulation. Primary murine microglia were activated with lipopolysaccharide (LPS) with or without adenosine, adenosine receptor agonists and antagonists and HIF-1α accumulation and downstream genes regulation were determined. Adenosine increased LPS-induced HIF-1α accumulation leading to an increase in HIF-1α target genes involved in cell metabolism [glucose transporter-1 (GLUT-1)] and pathogens killing [inducible nitric-oxide synthase (iNOS)] but did not induce HIF-1α dependent genes related to angiogenesis [vascular endothelial growth factor (VEGF)] and inflammation [tumor necrosis factor-α (TNF-α)]. The stimulatory effect of adenosine on HIF-1α and its target genes was essentially exerted by activation of A2A through p44/42 and A2B subtypes via p38 mitogen-activated protein kinases (MAPKs) and Akt phosphorylation. Furthermore the nucleoside raised VEGF and decreased TNF-α levels, by activating A2B subtypes. In conclusion adenosine increases GLUT-1 and iNOS gene expression in a HIF-1α-dependent way, through A2A and A2B receptors, suggesting their role in the regulation of microglial cells function following injury. However, inhibition of TNF-α adds an important anti-inflammatory effect only for the A2B subtype. GLIA 2015.

  6. Wireless Instantaneous Neurotransmitter Concentration System–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring

    PubMed Central

    Agnesi, Filippo; Tye, Susannah J.; Bledsoe, Jonathan M.; Griessenauer, Christoph J.; Kimble, Christopher J.; Sieck, Gary C.; Bennet, Kevin E.; Garris, Paul A.; Blaha, Charles D.; Lee, Kendall H.

    2009-01-01

    Object In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. Methods The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal

  7. Increased proliferation and chemosensitivity of human mesenchymal stromal cells expressing fusion yeast cytosine deaminase.

    PubMed

    Kucerova, Lucia; Poturnajova, Martina; Tyciakova, Silvia; Matuskova, Miroslava

    2012-03-01

    Mesenchymal stromal cells (MSCs) are considered to be suitable vehicles for cellular therapy in various conditions. The expression of reporter and/or effector protein(s) enabled both the identification of MSCs within the organism and the exploitation in targeted tumor therapies. The aim of this study was to evaluate cellular changes induced by retrovirus-mediated transgene expression in MSCs in vitro. Human Adipose Tissue-derived MSCs (AT-MSCs) were transduced to express (i) the enhanced green fluorescent protein (EGFP) reporter transgene, (ii) the fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy::UPRT) enzyme along with the expression of dominant positive selection gene NeoR or (iii) the selection marker NeoR alone (MOCK). CDy::UPRT expression resulted in increased proliferation of CDy::UPRT-MSCs versus naïve AT-MSCs, MOCK-MSCs or EGFP-MSCs. Furthermore, CDy::UPRT-MSCs were significantly more sensitive to 5-fluorouracil (5FU), cisplatin, cyclophosphamide and cytosine arabinoside as determined by increased Caspase 3/7 activation and/or decreased relative proliferation. CDy::UPRT-MSCs in direct cocultures with breast cancer cells MDA-MB-231 increased tumor cell killing induced by low concentrations of 5FU. Our data demonstrated the changes in proliferation and chemoresistance in engineered MSCs expressing transgene with enzymatic function and suggested the possibilities for further augmentation of targeted MSC-mediated antitumor therapy.

  8. Endothelial Progenitor Cells Combined with Cytosine Deaminase-Endostatin for Suppression of Liver Carcinoma.

    PubMed

    Chen, Rong; Yu, Hui; An, Yan-Li; Chen, Hua-Jun; Jia, ZhenYu; Teng, Gao-Jun

    2016-06-01

    Transplantation of gene transfected endothelial progenitor cells (EPCs) provides a novel method for treatment of human tumors. To study treatment of hepatocellular carcinoma using cytosine deaminase (CD)- and endostatin (ES)-transfected endothelial progenitor cells (EPCs), mouse bone marrow-derived EPCs were cultured and transfected with Lenti6.3-CD-EGFP and Lenti6.3-ES-Monomer-DsRed labeled with superparamagnetic iron oxide (SPIO) nanoparticles. DiD (lipophilic fluorescent dye)-labeled EPCs were injected into normal mice and mice with liver carcinoma. The EPCs loaded with CD-ES were infused into the mice through caudal veins and tumor volumes were measured. The tumor volumes in the EPC + SPIO + CD/5-Fc + ES group were found to be smaller as a result and grew more slowly than those from the EPC + SPIO + LV (lentivirus, empty vector control) group. Survival times were also measured after infusion of the cells into the mice. The median survival time was found to be longer in the EPC + SPIO + CD/5-Fc + ES group than in the others. In conclusion, the EPCs transfected with CD-ES suppressed the liver carcinoma cells in vitro, migrated primarily to the carcinoma, inhibited tumor growth, and also extended the median survival time for the mice with liver carcinoma.

  9. Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution

    NASA Astrophysics Data System (ADS)

    Senavirathne, Gayan; Bertram, Jeffrey G.; Jaszczur, Malgorzata; Chaurasiya, Kathy R.; Pham, Phuong; Mak, Chi H.; Goodman, Myron F.; Rueda, David

    2015-12-01

    Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single-molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for ~5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer.

  10. Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme-replacement therapy and cytoreduction.

    PubMed

    Carbonaro, Denise A; Jin, Xiangyang; Wang, Xingchao; Yu, Xiao-Jin; Rozengurt, Nora; Kaufman, Michael L; Wang, Xiaoyan; Gjertson, David; Zhou, Yang; Blackburn, Michael R; Kohn, Donald B

    2012-11-01

    Gene therapy (GT) for adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID) can provide significant long-term benefit when patients are given nonmyeloablative conditioning and ADA enzyme-replacement therapy (ERT) is withheld before autologous transplantation of γ-retroviral vector-transduced BM CD34+ cells. To determine the contributions of conditioning and discontinuation of ERT to the therapeutic effects, we analyzed these factors in Ada gene knockout mice (Ada(-/-)). Mice were transplanted with ADA-deficient marrow transduced with an ADA-expressing γ-retroviral vector without preconditioning or after 200 cGy or 900 cGy total-body irradiation and evaluated after 4 months. In all tissues analyzed, vector copy numbers (VCNs) were 100- to 1000-fold greater in mice receiving 900 cGy compared with 200 cGy (P < .05). In mice receiving 200 cGy, VCN was similar whether ERT was stopped or given for 1 or 4 months after GT. In unconditioned mice, there was decreased survival with and without ERT, and VCN was very low to undetectable. When recipients were conditioned with 200 cGy and received transduced lineage-depleted marrow, only recipients receiving ERT (1 or 4 months) had detectable vector sequences in thymocytes. In conclusion, cytoreduction is important for the engraftment of gene-transduced HSC, and short-term ERT after GT did not diminish the capacity of gene-corrected cells to engraft and persist.

  11. Lack of association of the G22A polymorphism of the ADA gene in patients with ankylosing spondylitis.

    PubMed

    Camargo, U; Toledo, R A; Cintra, J R; Nunes, D P T; Acayaba de Toledo, R; Brandão de Mattos, C C; Mattos, L C

    2012-05-07

    Genes located outside the HLA region (6p21) have been considered as candidates for susceptibility to ankylosing spondylitis. We tested the hypothesis that the G22A polymorphism of the adenosine deaminase gene (ADA; 20q13.11) is associated with ankylosing spondylitis in 166 Brazilian subjects genotyped for the HLA*27 gene (47 patients and 119 controls matched for gender, age and geographic origin). The HLA-B*27 gene and the G22A ADA polymorphism were identified by PCR with sequence-specific oligonucleotide probes and PCR-RFLP, respectively. There were no significant differences in frequencies of ADA genotypes [odds ratio (OR) = 1.200, 95% confidence interval (CI) = 0.3102-4.643, P > 0.8] and ADA*01 and ADA*02 alleles (OR = 1.192, 95%CI = 0.3155-4.505, P > 0.8) in patients versus controls. We conclude that the G22A polymorphism is not associated with ankylosing spondylitis.

  12. Evaluation of Adenosine Triphosphate-Binding Cassette Transporter A1 (ABCA1) R219K and C-Reactive Protein Gene (CRP) +1059G/C Gene Polymorphisms in Susceptibility to Coronary Heart Disease

    PubMed Central

    Li, Jing-Fang; Peng, Dian-Ying; Ling, Mei; Yin, Yong

    2016-01-01

    Background This meta-analysis investigated the correlation of ABCA1 R219K and CRP +1059G/C gene polymorphisms with susceptibility to coronary heart disease (CHD). Material/Methods We searched PubMed, Springer link, Wiley, EBSCO, Ovid, Wanfang database, VIP database, and China National Knowledge Infrastructure (CNKI) databases to retrieve published studies by keyword. Searches were filtered using our stringent inclusion and exclusion criteria. Resultant high-quality data collected from the final selected studies were analyzed using Comprehensive Meta-analysis 2.0 software. Eleven case-control studies involving 3053 CHD patients and 3403 healthy controls met our inclusion criteria. Seven studies were conducted in Asian populations, 3 studies were done in Caucasian populations, and 1 was in an African population. Results Our major finding was that ABCA1 R219K polymorphism increased susceptibility to CHD in allele model (OR=0.729, 95% CI=0.559~0.949, P=0.019) and dominant model (OR=0.698, 95% CI=0.507~0.961, P=0.027). By contrast, we were unable to find any significant association between the CRP +1059G/C polymorphism and susceptibility to CHD (allele model: OR=1.170, 95% CI=0.782~1.751, P=0.444; dominant model: OR=1.175, 95% CI=0.768~1.797, P=0.457). Conclusions This meta-analysis provides convincing evidence that polymorphism of ABCA1 R219K is associated with susceptibility to CHD while the CRP +1059G/C polymorphism appears to have no correlation with susceptibility to CHD. PMID:27560308

  13. Bystander cytotoxicity in human medullary thyroid carcinoma cells mediated by fusion yeast cytosine deaminase and 5-fluorocytosine.

    PubMed

    Kucerova, Lucia; Matuskova, Miroslava; Hlubinova, Kristina; Bohovic, Roman; Feketeova, Lucia; Janega, Pavol; Babal, Pavel; Poturnajova, Martina

    2011-12-01

    In our work, we have evaluated efficiency of gene-directed enzyme/prodrug therapy (GDEPT) based on combination of fusion yeast cytosine deaminase (yCD) and 5-fluorocytosine (5FC) on model human medullary thyroid carcinoma (MTC) cell line TT. We determined the efficiency of this GDEPT approach in suicide and bystander cytotoxicity induction. We have shown significant bystander effect in vitro and 5FC administration resulted in potent antitumor effect in vivo. Furthermore, we have unraveled high efficiency of cell-mediated GDEPT, when human mesenchymal stromal cells (MSC) were used as delivery vehicles in direct cocultures in vitro. Nevertheless, effector MSC exhibited inhibitory effect on TT cell proliferation and abrogated TT xenotransplant growth in vivo. We suggest that yCD/5FC combination represents another experimental treatment modality to be tested in MTC and our data further support the exploration of MSC antitumor potential for future use in metastatic MTC therapy.

  14. Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling.

    PubMed

    Rudich, Noam; Dekel, Ornit; Sagi-Eisenberg, Ronit

    2015-05-01

    Adenosine activated mast cells have been long implicated in allergic asthma and studies in rodent mast cells have assigned the A3 adenosine receptor (A3R) a primary role in mediating adenosine responses. Here we analyzed the functional impact of A3R activation on genes that are implicated in tissue remodeling in severe asthma in the human mast cell line HMC-1 that shares similarities with lung derived human mast cells. Quantitative real time PCR demonstrated upregulation of IL6, IL8, VEGF, amphiregulin and osteopontin. Moreover, further upregulation of these genes was noted upon the addition of dexamethasone. Unexpectedly, activated A3R down regulated its own expression and knockdown of the receptor replicated the pattern of agonist induced gene upregulation. This study therefore identifies the human mast cell A3R as regulator of tissue remodeling gene expression in human mast cells and demonstrates a heretofore-unrecognized mode of feedback regulation that is exerted by this receptor.

  15. MOLECULAR PROBES FOR EXTRACELLULAR ADENOSINE RECEPTORS

    PubMed Central

    Jacobson, Kenneth A.; Ukena, Dieter; Padgett, William; Kirk, Kenneth L.; Daly, John W.

    2012-01-01

    Derivatives of adenosine receptor agonists (N6-phenyladenosines) and antagonists (1,3-dialkyl-8-phenylxanthines) bearing functionalized chains suitable for attachment to other molecules have been reported [Jacobson et al., J. med. Chem. 28, 1334 and 1341 (1985)]. The “functionalized congener” approach has been extended to the synthesis of spectroscopic and other probes for adenosine receptors that retain high affinity (Ki ~ 10−9 −10−8 M) in A1-receptor binding. The probes have been synthesized from an antagonist xanthine amine congener (XAC) and an adenosine amine congener (ADAC). [3H]ADAC has been synthesized and found to bind highly specifically to A1-adenosine receptors of rat and calf cerebral cortical membranes with KD values of 1.4 and 0.34 nM respectively. The higher affinity in the bovine brain, seen also with many of the probes derived from ADAC and XAC, is associated with phenyl substituents. The spectroscopic probes contain a reporter group attached at a distal site of the functionalized chain. These bifunctional ligands may contain a spin label (e.g. the nitroxyl radical TEMPO) for electron spin resonance spectroscopy, or a fluorescent dye, including fluorescein and 4-nitrobenz-2-oxa-1,3-diazole (NBD), or labels for 19F nuclear magnetic resonance spectroscopy. Potential applications of the spectroscopic probes in characterization of adenosine receptors are discussed. PMID:3036153

  16. The adenosine kinase hypothesis of epileptogenesis

    PubMed Central

    Boison, Detlev

    2008-01-01

    Current therapies for epilepsy are largely symptomatic and do not affect the underlying mechanisms of disease progression, i.e. epileptogenesis. Given the large percentage of pharmacoresistant chronic epilepsies, novel approaches are needed to understand and modify the underlying pathogenetic mechanisms. Although different types of brain injury (e.g. status epilepticus, traumatic brain injury, stroke) can trigger epileptogenesis, astrogliosis appears to be a homotypic response and hallmark of epilepsy. Indeed, recent findings indicate that epilepsy might be a disease of astrocyte dysfunction. This review focuses on the inhibitory neuromodulator and endogenous anticonvulsant adenosine, which is largely regulated by astrocytes and its key metabolic enzyme adenosine kinase (ADK). Recent findings support the “ADK hypothesis of epileptogenesis”: (i) Mouse models of epileptogenesis suggest a sequence of events leading from initial downregulation of ADK and elevation of ambient adenosine as an acute protective response, to changes in astrocytic adenosine receptor expression, to astrocyte proliferation and hypertrophy (i.e. astrogliosis), to consequential overexpression of ADK, reduced adenosine and – finally – to spontaneous focal seizure activity restricted to regions of astrogliotic overexpression of ADK. (ii) Transgenic mice overexpressing ADK display increased sensitivity to brain injury and seizures. (iii) Inhibition of ADK prevents seizures in a mouse model of pharmacoresistant epilepsy. (iv) Intrahippocampal implants of stem cells engineered to lack ADK prevent epileptogenesis. Thus, ADK emerges both as a diagnostic marker to predict, as well as a prime therapeutic target to prevent, epileptogenesis. PMID:18249058

  17. Caffeine, adenosine receptors, and synaptic plasticity.

    PubMed

    Costenla, Ana Rita; Cunha, Rodrigo A; de Mendonça, Alexandre

    2010-01-01

    Few studies to date have looked at the effects of caffeine on synaptic plasticity, and those that did used very high concentrations of caffeine, whereas the brain concentrations attained by regular coffee consumption in humans should be in the low micromolar range, where caffeine exerts pharmacological actions mainly by antagonizing adenosine receptors. Accordingly, rats drinking caffeine (1 g/L) for 3 weeks, displayed a concentration of caffeine of circa 22 microM in the hippocampus. It is known that selective adenosine A1 receptor antagonists facilitate, whereas selective adenosine A2A receptor antagonists attenuate, long term potentiation (LTP) in the hippocampus. Although caffeine is a non-selective antagonist of adenosine receptors, it attenuates frequency-induced LTP in hippocampal slices in a manner similar to selective adenosine A2A receptor antagonists. These effects of low micromolar concentration of caffeine (30 microM) are maintained in aged animals, which is important when a possible beneficial effect for caffeine in age-related cognitive decline is proposed. Future studies will still be required to confirm and detail the involvement of A1 and A2A receptors in the effects of caffeine on hippocampal synaptic plasticity, using both pharmacological and genetic approaches.

  18. The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase.

    PubMed

    Chang, Da-Young; Yoo, Seung-Wan; Hong, Youngtae; Kim, Sujeong; Kim, Se Joong; Yoon, Sung-Hwa; Cho, Kyung-Gi; Paek, Sun Ha; Lee, Young-Don; Kim, Sung-Soo; Suh-Kim, Haeyoung

    2010-10-15

    Suicide genes have recently emerged as an attractive alternative therapy for the treatment of various types of intractable cancers. The efficacy of suicide gene therapy relies on efficient gene delivery to target tissues and the localized concentration of final gene products. Here, we showed a potential ex vivo therapy that used mesenchymal stem cells (MSCs) as cellular vehicles to deliver a bacterial suicide gene, cytosine deaminase (CD) to brain tumors. MSCs were engineered to produce CD enzymes at various levels using different promoters. When co-cultured, CD-expressing MSCs had a bystander, anti-cancer effect on neighboring C6 glioma cells in proportion to the levels of CD enzymes that could convert a nontoxic prodrug, 5-fluorocytosine (5-FC) into cytotoxic 5-fluorouracil (5-FU) in vitro. Consistent with the in vitro results, for early stage brain tumors induced by intracranial inoculation of C6 cells, transplantation of CD-expressing MSCs reduced tumor mass in proportion to 5-FC dosages. However, for later stage, established tumors, a single treatment was insufficient, but only multiple transplantations were able to successfully repress tumor growth. Our findings indicate that the level of total CD enzyme activity is a critical parameter that is likely to affect the clinical efficacy for CD gene therapy. Our results also highlight the potential advantages of autograftable MSCs compared with other types of allogeneic stem cells for the treatment of recurrent glioblastomas through repetitive treatments.

  19. Circulating adenosine increases during human experimental endotoxemia but blockade of its receptor does not influence the immune response and subsequent organ injury

    PubMed Central

    2011-01-01

    Introduction Preclinical studies have shown that the endogenous nucleoside adenosine prevents excessive tissue injury during systemic inflammation. We aimed to study whether endogenous adenosine also limits tissue injury in a human in vivo model of systemic inflammation. In addition, we studied whether subjects with the common 34C > T nonsense variant (rs17602729) of adenosine monophosphate deaminase (AMPD1), which predicts increased adenosine formation, have less inflammation-induced injury. Methods In a randomized double-blinded design, healthy male volunteers received 2 ng/kg E. Coli LPS intravenously with (n = 10) or without (n = 10) pretreatment with the adenosine receptor antagonist caffeine (4 mg/kg body weight). In addition, lipopolysaccharide (LPS) was administered to 10 subjects heterozygous for the AMPD1 34C > T variant. Results The increase in adenosine levels tended to be more pronounced in the subjects heterozygous for the AMPD1 34C > T variant (71 ± 22%, P=0.04), compared to placebo- (59 ± 29%, P=0.012) and caffeine-treated (53 ± 47%, P=0.29) subjects, but this difference between groups did not reach statistical significance. Also the LPS-induced increase in circulating cytokines was similar in the LPS-placebo, LPS-caffeine and LPS-AMPD1-groups. Endotoxemia resulted in an increase in circulating plasma markers of endothelial activation [intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM)], and in subclinical renal injury, measured by increased urinary excretion of tubular injury markers. The LPS-induced increase of these markers did not differ between the three groups. Conclusions Human experimental endotoxemia induces an increase in circulating cytokine levels and subclinical endothelial and renal injury. Although the plasma adenosine concentration is elevated during systemic inflammation, co-administration of caffeine or the presence of the 34C > T variant of AMPD1 does not affect the observed subclinical organ

  20. The role of microorganisms in the degradation of adenosine triphosphate (ATP) in chill-stored common carp (Cyprinus carpio) fillets.

    PubMed

    Li, Dapeng; Zhang, Longteng; Song, Sijia; Wang, Zhiying; Kong, Chunli; Luo, Yongkang

    2017-06-01

    Biochemical and microbial changes after harvest strongly affect the final quality and shelf life of fish and fish products. In this study, the role of microbes in the degradation of adenosine triphosphate (ATP), and the origin of adenosine monophosphate deaminase (AMPD) and acid phosphatase (ACP) in common carp fillets during different stages of chilled storage (at 4°C) were investigated. The content of ATP, ADP, AMP, IMP, HxR, and Hx, the activity of AMPD and ACP, and the total count of viable, Aeromonas, Pseudomonas, H2S-producing bacteria, and lactic acid bacteria were examined. Results indicated that the population of microbial communities in control samples increased with storage time, and Pseudomonas peaked on the 10th day of storage. Changes in AMPD activity were less related to the abundance of microbes during the entire storage period. However, ACP was derived from both fish muscle and microbial secretion during the middle and late stages of storage. Degradation of ATP to IMP was not affected by spoilage bacteria, but the hydrolysis of IMP, and the transformation of HxR to Hx was affected considerably by the spoilage bacteria.

  1. Adenosine (ADO) released during orthodromic stimulation of the frog sympathetic ganglion inhibits phosphatidylinositol turnover (PI) associated with synaptic transmission

    SciTech Connect

    Curnish, R.; Bencherif, M.; Rubio, R.; Berne, R.M.

    1986-03-05

    The authors have previously demonstrated that /sup 3/H-purine release was enhanced during synaptic activation of the prelabelled frog sympathetic ganglion. In addition, during orthodromic stimulation, there is an increased /sup 3/H-inositol release (an index of PI) that occurs during the poststimulation period and not during the period of stimulation. They hypothesized that endogenous ADO inhibits PI turnover during orthodromic stimulation. To test this hypothesis (1) they performed experiments to directly measure ADO release in the extracellular fluid by placing the ganglion in a 5 ..mu..l drop of Ringer's and let it come to equilibrium with the interstitial fluid, (2) they destroyed endogenous ADO by suffusing adenosine deaminase (ADA) during the stimulation period. Their results show (1) orthodromic stimulation increases release of ADO into the bathing medium, (2) ADA induced an increase of PI during the stimulation period in contrast to an increase seen only during the poststimulation period when ADA was omitted. They conclude that there is dual control of PI during synaptic activity, a stimulatory effect (cause unknown) and a short lived inhibitory effect that is probably caused by adenosine.

  2. Effect of adenosine on heart rate in isolated muskrat and guinea pig hearts.

    PubMed

    McKean, T A; Sterling, H; Streeby, D R; Lynch, A E; Lacroix, C; Vestal, R E

    1993-07-01

    The purpose of this study was to compare the responses of isolated hearts of the diving muskrat with the nondividing guinea pig (GP) to determine the contribution of adenosine (ADO) to the profound bradycardia that was seen in isolated muskrat hearts during exposure to hypoxia. Muskrat hearts were more sensitive than GP hearts to the heart rate-lowering effects of exogenously applied ADO or a stable ADO analogue, (R)-N6-(phenylisopropyl)adenosine. The hearts of both species were unpaced, and the bradycardia appeared to be due to high degree of atrioventricular block. Radioligand binding with 8-cyclopentyl-1,3-[3H]dipropylxanthine to A1-ADO receptors was greater in cardiac membranes prepared from GP hearts than from muskrat hearts. Nucleoside transporter antagonist binding was also greater in GP hearts compared with muskrats. This was determined by membrane binding of [3H]-nitrobenzylthioinosine, an antagonist of nucleoside transport. Both muskrat and GP hearts responded to 30 min of hypoxic perfusion by releasing ADO into the coronary effluent; however, the muskrat hearts released approximately five times more than the GP hearts. When hearts were subjected to hypoxia in the presence of ADO deaminase, theophylline, or 8-(p-sulfophenyl)theophylline, the hypoxia-induced bradycardia was blocked in the GP hearts and either slightly reduced or not affected in muskrat hearts. In contrast to GP hearts, muskrat hearts release larger amounts of ADO during hypoxia and are more sensitive to the negative chronotropic effects of exogenously administered ADO; yet the hypoxia-induced bradycardia does not appear to be exclusively mediated by ADO in the muskrat as it is in the isolated GP heart.

  3. Three-dimensional structure and catalytic mechanism of cytosine deaminase.

    PubMed

    Hall, Richard S; Fedorov, Alexander A; Xu, Chengfu; Fedorov, Elena V; Almo, Steven C; Raushel, Frank M

    2011-06-07

    Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K(i) of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pK(a) of 6.0, and Zn-CDA has a kinetic pK(a) of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k(cat) and k(cat)/K(m), consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.

  4. The ONIOM molecular dynamics method for biochemical applications: cytidine deaminase

    SciTech Connect

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2007-03-22

    Abstract We derived and implemented the ONIOM-molecular dynamics (MD) method for biochemical applications. The implementation allows the characterization of the functions of the real enzymes taking account of their thermal motion. In this method, the direct MD is performed by calculating the ONIOM energy and gradients of the system on the fly. We describe the first application of this ONOM-MD method to cytidine deaminase. The environmental effects on the substrate in the active site are examined. The ONIOM-MD simulations show that the product uridine is strongly perturbed by the thermal motion of the environment and dissociates easily from the active site. TM and MA were supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.

  5. Three-Dimensional Structure and Catalytic Mechanism of Cytosine Deaminase

    SciTech Connect

    R Hall; A Fedorov; C Xu; E Fedorov; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K{sub i} of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pKa of 6.0, and Zn-CDA has a kinetic pKa of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k{sub cat} and k{sub cat}/K{sub m}, consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.

  6. Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell.

    PubMed

    Biasco, Luca; Ambrosi, Alessandro; Pellin, Danilo; Bartholomae, Cynthia; Brigida, Immacolata; Roncarolo, Maria Grazia; Di Serio, Clelia; von Kalle, Christof; Schmidt, Manfred; Aiuti, Alessandro

    2011-02-01

    The analysis of genomic distribution of retroviral vectors is a powerful tool to monitor 'vector-on-host' effects in gene therapy (GT) trials but also provides crucial information about 'host-on-vector' influences based on the target cell genetic and epigenetic state. We had the unique occasion to compare the insertional profile of the same therapeutic moloney murine leukemia virus (MLV) vector in the context of the adenosine deaminase-severe combined immunodeficiency (ADA-SCID) genetic background in two GT trials based on infusions of transduced mature lymphocytes (peripheral blood lymphocytes, PBL) or a single infusion of haematopoietic stem/progenitor cells (HSC). We found that vector insertions are cell-specific according to the differential expression profile of target cells, favouring, in PBL-GT, genes involved in immune system and T-cell functions/pathways as well as T-cell DNase hypersensitive sites, differently from HSC-GT. Chromatin conformations and histone modifications influenced integration preferences but we discovered that only H3K27me3 was cell-specifically disfavoured, thus representing a key epigenetic determinant of cell-type dependent insertion distribution. Our study shows that MLV vector insertional profile is cell-specific according to the genetic/chromatin state of the target cell both in vitro and in vivo in patients several years after GT.

  7. A new class of adenosine receptors in brain: Characterization by 2-chloro( sup 3 H)adenosine binding

    SciTech Connect

    Chin, Jerome Hsicheng.

    1988-01-01

    Considerable evidence has accumulated in recent years to support a role for adenosine as an important physiological modulator in many mammalian tissues. In brain, adenosine is a potent depressant of neuronal firing and synaptic transmission. The exact mechanisms by which adenosine analogs depress nerve cell activity in the brain are not clear. Despite considerable investigation, neither the A1 nor the A2 adenosine receptors associated with adenylate cyclase have been able to account adequately for the actions of adenosine in brain. It has been proposed that additional adenosine receptors, possibly linked to calcium channels, are present in the central nervous system and are responsible for the physiological actions of adenosine. In this thesis, evidence is provided for the existence of a novel class of adenosine receptors in rat brain. The methods used to identify this new class of receptors involved radioligand binding techniques which have been successfully employed to characterize the properties of many neurotransmitter and drug receptors. 2-Chloro({sup 3}H)adenosine (Cl({sup 3}H)Ado) was selected as the ligand for these experiments since is a water-soluble, metabolically-stable analog of adenosine and a potent depressant of synaptic transmission in brain. The results demonstrate the presence of a distinct class of 2-chloro({sup 3}H)adenosine binding sites in rat forebrain membranes with an apparent K{sub D} of about 10 {mu}M and a B{sub max} of about 60 pmol per mg of protein. Specific 2-chloro ({sup 3}H)adenosine binding is highly specific for adenosine agonists and antagonists. Inhibition of binding by adenosine agonists exhibits an order of potency 2-chloroadenosine > 5{prime}-N-ethylcarboxamide adenosine > ({minus})-N{sup 6}-(R-phenylisopropyl)adenosine, which differs from that of both A1 and A2 adenosine receptors.