Science.gov

Sample records for adenosine deaminase gene

  1. [Gene therapy for adenosine deaminase deficiency].

    PubMed

    Sakiyama, Yukio; Ariga, Tadashi; Ohtsu, Makoto

    2005-03-01

    A four year-old boy with adenosine deaminase (ADA-) deficient severe combined immunodeficiency(SCID) receiving PEG-ADA was treated under a gene therapy protocol targeting peripheral blood lymphocytes (PBLs) in 1995. After eleven infusions of autologous PBLs transduced with retroviral vector LASN encoding ADAcDNA, he exhibited increased levels of the CD8+ T lymphocytes, serum immunoglobulin, specific antibodies and delayed type hypersensitivity skin tests. Follow-up studies also provided evidence of long-term persistence and function of transduced PBLs with improvement in the immune function. However, the therapeutic effect of this gene therapy has been difficult to assess because of the concomitant treatment of PEG-ADA. Two ADA-SCID patients have been currently treated with autologous bone marrow CD34+ cells engineered with a retroviral vector GCsapM-ADA after discontinuation of PEG-ADA. The restoration of intracellular ADA enzymatic activity in lymphocytes and granulocytes resulted in correction of the systemic toxicity and liver function in the absence of PEG-ADA treatment. Both patients are at home where they are clinically well, and they do not experience adversed effect, with follow up being 12 months after CD34+ cells gene therapy.

  2. ADA (adenosine deaminase) gene therapy enters the competition

    SciTech Connect

    Culliton, B.J.

    1990-08-31

    Around the world, some 70 children are members of a select and deadly club. Born with an immune deficiency so severe that they will die of infection unless their immune systems can be repaired, they have captured the attention of would-be gene therapists who believe that a handful of these kids--the 15 or 20 who lack functioning levels of the enzyme adenosine deaminase (ADA)--could be saved by a healthy ADA gene. A team of gene therapists is ready to put the theory to the test. In April 1987, a team of NIH researchers headed by R. Michael Blaese and W. French Anderson came up with the first formal protocol to introduce a healthy ADA gene into an unhealthy human. After 3 years of line-by-line scrutiny by five review committees, they have permission to go ahead. Two or three children will be treated in the next year, and will be infused with T lymphocytes carrying the gene for ADA. If the experiment works, the ADA gene will begin producing normal amounts of ADA. An interesting feature of ADA deficiency, that makes it ideal for initial gene studies, is that the amount of ADA one needs for a healthy immune system is quite variable. Hence, once inside a patient's T cells, the new ADA gene needs only to express the enzyme in moderate amounts. No precise gene regulation is necessary.

  3. Gene therapy for severe combined immunodeficiency due to adenosine deaminase deficiency.

    PubMed

    Montiel-Equihua, Claudia A; Thrasher, Adrian J; Gaspar, H Bobby

    2012-02-01

    The severe combined immunodeficiency caused by the absence of adenosine deaminase (SCID-ADA) was the first monogenic disorder for which gene therapy was developed. Over 30 patients have been treated worldwide using the current protocols, and most of them have experienced clinical benefit; importantly, in the absence of any vector-related complications. In this document, we review the progress made so far in the development and establishment of gene therapy as an alternative form of treatment for ADA-SCID patients.

  4. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency

    PubMed Central

    Kohn, Donald B.; Weinberg, Kenneth I.; Nolta, Jan A.; Heiss, Linda N.; Lenarsky, Carl; Crooks, Gay M.; Hanley, Mary E.; Annett, Geralyn; Brooks, Judith S.; El-Khoureiy, Anthony; Lawrence, Kim; Wells, Susie; Moen, Robert C.; Bastian, John; Williams-Herman, Debora E.; Elder, Melissa; Wara, Diane; Bowen, Thomas; Hershfield, Michael S.; Mullen, Craig A.; Blaese, R. Michael; Parkman, Robertson

    2010-01-01

    Haematopoietic stem cells in umbilical cord blood are an attractive target for gene therapy of inborn errors of metabolism. Three neonates with severe combined immunodeficiency were treated by retroviral-mediated transduction of the CD34+ cells from their umbilical cord blood with a normal human adenosine deaminase complementary DNA followed by autologous transplantation. The continued presence and expression of the introduced gene in leukocytes from bone marrow and peripheral blood for 18 months demonstrates that umbilical cord blood cells may be genetically modified with retroviral vectors and engrafted in neonates for gene therapy. PMID:7489356

  5. Long-term expression of human adenosine deaminase in vascular smooth muscle cells of rats: A model for gene therapy

    SciTech Connect

    Lynch, C.M.; Miller, A.D. ); Clowes, M.M.; Osborne, W.R.A.; Clowes, A.W. )

    1992-02-01

    Gene transfer into vascular smooth muscle cells in animals was examined by using recombinant retroviral vectors containing an Escherichia coli {beta}-galactosidase gene or a human adenosine deaminase gene. Direct gene transfer by infusion of virus into rat carotid arteries was not observed. However, gene transfer by infection of smooth muscle cells in culture and seeding of the transduced cells onto arteries that had been denuded of endothelial cells was successful. Potentially therapeutic levels of human adenosine deaminase activity were detected over 6 months of observation, indicating the utility of vascular smooth muscle cells for gene therapy in humans.

  6. Visible integration of the adenosine deaminase (ADA) gene into the recipient genome after gene therapy.

    PubMed

    Egashira, M; Ariga, T; Kawamura, N; Miyoshi, O; Niikawa, N; Sakiyama, Y

    1998-01-23

    Gene therapy for patients with adenosine deaminase (ADA) deficiency has become practical in the 1990s, and the exogenous gene has been reported to survive for several years in the recipient genome. To evaluate the integration efficiency of the ADA gene (ADA) into peripheral blood lymphocytes (PBL) of a patient with ADA deficiency who is receiving gene therapy, we performed two-color interphase fluorescence in situ hybridization (FISH) analysis by using digoxigenin-labeled ADA-cDNA and the biotin-labeled lambda-genomic ADA clone as probes. After each of 9 sequential series of gene therapy, interphase nuclei of 100 mononuclear cells from the patient were analyzed, and those of a LASN-producing cell line were used as a control. FISH signals were detected with rhodamine and FITC for the cDNA and the genomic DNA, respectively. The number of PBL giving a transgene signal grew after the sequential gene therapies, and the proportion of signal-positive cells reached about 10%. Our results indicate that the two-color FISH system can be used as a potential aid to monitor the efficiency of the ADA gene therapy.

  7. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human

    SciTech Connect

    Palmer, T.D.; Hock, R.A.; Osborne, W.R.A.; Miller, A.D.

    1987-02-01

    Skin fibroblasts might be considered suitable recipients for therapeutic genes to cure several human genetic diseases; however, these cells are resistant to gene transfer by most methods. The authors studied the ability of retroviral vectors to transfer genes into normal human diploid skin fibroblasts. Retroviruses carrying genes for neomycin or hygromycin B resistance conferred drug resistance to greater than 50% of the human fibroblasts after a single exposure to virus-containing medium. This represents at least a 500-fold increase in efficiency over other methods. Transfer was achieved in the absence of helper virus by using amphotropic retrovirus-packaging cells. A retrovirus vector containing a human adenosine deaminase (ADA) cDNA was constructed and used to infect ADA/sup -/ fibroblasts from a patient with ADA deficiency. The infected cells produced 12-fold more ADA enzyme than fibroblasts from normal individuals and were able to rapidly metabolize exogenous deoxyadenosine and adenosine, metabolites that accumulate in plasma in ADA-deficient patients and are responsible for the severe combined immunodeficiency in these patients. These experiments indicate the potential of retrovirus-mediated gene transfer into human fibroblasts for gene therapy.

  8. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency.

    PubMed

    Montiel-Equihua, Claudia A; Thrasher, Adrian J; Gaspar, H Bobby

    2009-12-22

    The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID) and especially adenosine deaminase (ADA)-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. Patients in trials in three different countries have shown long-term immunological and metabolic correction. Nevertheless, improvements to the safety profile of viral vectors are underway and will undoubtedly reinforce the position of stem cell gene therapy as a treatment option for ADA-SCID.

  9. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency

    PubMed Central

    Montiel-Equihua, Claudia A; Thrasher, Adrian J; Gaspar, H Bobby

    2010-01-01

    The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID) and especially adenosine deaminase (ADA)-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. Patients in trials in three different countries have shown long-term immunological and metabolic correction. Nevertheless, improvements to the safety profile of viral vectors are underway and will undoubtedly reinforce the position of stem cell gene therapy as a treatment option for ADA-SCID. PMID:24198507

  10. Hematopoietic stem cell gene therapy for adenosine deaminase deficient-SCID.

    PubMed

    Aiuti, Alessandro; Brigida, Immacolata; Ferrua, Francesca; Cappelli, Barbara; Chiesa, Robert; Marktel, Sarah; Roncarolo, Maria-Grazia

    2009-01-01

    Gene therapy is a highly attractive strategy for many types of inherited disorders of the immune system. Adenosine deaminase (ADA) deficient-severe combined immunodeficiency (SCID) has been the target of several clinical trials based on the use of hematopoietic stem/progenitor cells engineered with retroviral vectors. The introduction of a low intensity conditioning regimen has been a crucial factor in achieving stable engrafment of hematopoietic stem cells and therapeutic levels of ADA-expressing cells. Recent studies have demonstrated that gene therapy for ADA-SCID has favorable safety profile and is effective in restoring normal purine metabolism and immune functions. Stem cell gene therapy combined with appropriate conditioning regimens might be extended to other genetic disorders of the hematopoietic system.

  11. Sequence requirements for transcriptional arrest in exon 1 of the murine adenosine deaminase gene.

    PubMed Central

    Ramamurthy, V; Maa, M C; Harless, M L; Wright, D A; Kellems, R E

    1990-01-01

    We have previously shown that a transcription arrest site near the 5' end of the murine adenosine deaminase (ADA) gene is significantly involved in the regulation of ADA gene expression. To facilitate the analysis of this transcription arrest site, we have analyzed the transcription products from cloned ADA gene fragments injected into Xenopus laevis oocytes. When genomic fragments spanning the 5' end of the ADA gene were injected into oocytes, a 96-nucleotide (nt) ADA RNA was the major transcription product. The 5' end of this RNA mapped to the transcription initiation site for the ADA gene, and its 3' terminus mapped 7 nt downstream of the translation initiation codon within exon 1. A 300-base-pair fragment of genomic DNA spanning the 5' end of the ADA gene was sufficient to generate the 96-nt transcript which accounted for approximately one-half of the transcription products from injected templates. Deletion of a segment of approximately 65 base pairs, located immediately downstream of the 3' terminus of the 96-nt transcript, resulted in a substantial reduction in the synthesis of the 96-nt transcript and a corresponding increase in the production of larger transcripts. These studies show that the transcriptional apparatus of X. laevis oocytes responds to the transcription arrest site associated with exon 1 of the murine ADA gene and that oocyte injections provide a convenient functional assay for additional mechanistic studies. Images PMID:1690842

  12. Modulatory effect of iron chelators on adenosine deaminase activity and gene expression in Trichomonas vaginalis

    PubMed Central

    Primon-Barros, Muriel; Rigo, Graziela Vargas; Frasson, Amanda Piccoli; dos Santos, Odelta; Smiderle, Lisiane; Almeida, Silvana; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival. PMID:26517498

  13. Modulatory effect of iron chelators on adenosine deaminase activity and gene expression in Trichomonas vaginalis.

    PubMed

    Primon-Barros, Muriel; Rigo, Graziela Vargas; Frasson, Amanda Piccoli; Santos, Odelta dos; Smiderle, Lisiane; Almeida, Silvana; Macedo, Alexandre José; Tasca, Tiana

    2015-11-01

    Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.

  14. Sequence requirements for transcriptional arrest in exon 1 of the human adenosine deaminase gene

    SciTech Connect

    Zhi Chen; Kellems, R.E.; Innis, J.W. ); Sun, Minghua; Wright, D.A. )

    1991-12-01

    The authors have previously demonstrated that a transcriptional arrest site exists in exon 1 of the human adenosine deaminase (ADA) gene and that this site may play a role in ADA gene expression. Sequences involved in this process are not known precisely. To further define the template requirements for transcriptional arrest within exon 1 of the human ADA gene, various ADA templates were constructed and their abilities to confer transcriptional arrest were determined following injection into Xenopus oocytes. The exon 1 transcriptional arrest signal functioned downstream of several RNA polymerase II promoters and an RNA polymerase II promoter, implying that the transcriptional arrest site in exon 1 of the ADA gene is promoter independent. They identified a 43-bp DNA fragment which functions as a transcriptional arrest signal. Additional studies showed that the transcriptional arrest site functioned only in the naturally occurring orientation. Therefore, they have identified a 43-bp DNA fragment which functions as a transcriptional arrest signal in an orientation-dependent and promoter-independent manner. On the basis of the authors findings, they hypothesize that tissue-specific expression of the ADA gene is governed by factors that function as antiterminators to promote transcriptional readthrough of the exon 1 transcriptional arrest site.

  15. The Adenosine Deaminase Gene Polymorphism Is Associated with Chronic Heart Failure Risk in Chinese

    PubMed Central

    He, Hai-Rong; Li, Yuan-Jie; He, Gong-Hao; Wang, Ya-Jun; Zhai, Ya-Jing; Xie, Jiao; Zhang, Wei-Peng; Dong, Ya-Lin; Lu, Jun

    2014-01-01

    Adenosine (Ado) is an important cardioprotective agent. Since endogenous Ado levels are affected by the enzyme Ado deaminase (ADA), polymorphisms within the ADA gene may exert some effect on chronic heart failure (CHF). This study applied a case-control investigation to 300 northern Chinese Han CHF patients and 400 ethnicity-matched healthy controls in which nine single-nucleotide polymorphisms (SNPs) of ADA were genotyped and association analyses were performed. Odds ratios (ORs) with 95% confidence intervals (CI) were used to assess the association. Overall, rs452159 polymorphism in ADA gene was significantly associated with susceptibility to CHF under the dominant model (p = 0.013, OR = 1.537, 95% CI = 1.10–2.16), after adjustment for age, sex, and traditional cardiovascular risk factors. No difference in genotype distribution and allele frequency for the rs452159 according to the functional New York Heart Association class was found. Furthermore, the values of left ventricular ejection fraction, left-ventricle end-diastolic diameter or left-ventricle end-systolic diameter did not differ significantly among the different rs452159 genotype CHF patients. Although further studies with larger cohorts and other ethnicities are required to validate the conclusions, the findings of this study potentially provide novel insight into the pathogenesis of CHF. PMID:25170811

  16. Defective B cell tolerance in adenosine deaminase deficiency is corrected by gene therapy.

    PubMed

    Sauer, Aisha V; Morbach, Henner; Brigida, Immacolata; Ng, Yen-Shing; Aiuti, Alessandro; Meffre, Eric

    2012-06-01

    Adenosine deaminase (ADA) gene defects are among the most common causes of SCID. Restoration of purine metabolism and immune functions can be achieved by enzyme replacement therapy, or more effectively by bone marrow transplant or HSC gene therapy (HSC-GT). However, autoimmune complications and autoantibody production, including anti-nuclear antibodies (ANAs), frequently occur in ADA-SCID patients after treatment. To assess whether ADA deficiency affects the establishment of B cell tolerance, we tested the reactivity of recombinant antibodies isolated from single B cells of ADA-SCID patients before and after HSC-GT. We found that before HSC-GT, new emigrant/transitional and mature naive B cells from ADA-SCID patients contained more autoreactive and ANA-expressing clones, indicative of defective central and peripheral B cell tolerance checkpoints. We further observed impaired B cell receptor (BCR) and TLR functions in B cells after ADA inhibition, which may underlie the defects in B cell tolerance. Strikingly, after HSC-GT, ADA-SCID patients displayed quasi-normal early B cell tolerance checkpoints, as evidenced by restored removal of developing autoreactive and ANA-expressing B cells. Hence, ADA plays an essential role in controlling autoreactive B cell counterselection by regulating BCR and TLR functions.

  17. The ADA*2 allele of the adenosine deaminase gene (20q13.11) and recurrent spontaneous abortions: an age-dependent association

    PubMed Central

    Nunes, Daniela Prudente Teixeira; Spegiorin, Lígia Cosentino Junqueira Franco; de Mattos, Cinara Cássia Brandão; Oliani, Antonio Helio; Vaz-Oliani, Denise Cristina Mós; de Mattos, Luiz Carlos

    2011-01-01

    OBJECTIVE: Adenosine deaminase acts on adenosine and deoxyadenosine metabolism and modulates the immune response. The adenosine deaminase G22A polymorphism (20q.11.33) influences the level of adenosine deaminase enzyme expression, which seems to play a key role in maintaining pregnancy. The adenosine deaminase 2 phenotype has been associated with a protective effect against recurrent spontaneous abortions in European Caucasian women. The aim of this study was to investigate whether the G22A polymorphism of the adenosine deaminase gene is associated with recurrent spontaneous abortions in Brazilian women. METHODS: A total of 311 women were recruited to form two groups: G1, with a history of recurrent spontaneous abortions (N = 129), and G2, without a history of abortions (N = 182). Genomic DNA was extracted from peripheral blood with a commercial kit and PCR-RFLP analysis was used to identify the G22A genetic polymorphism. Fisher's exact test and odds ratio values were used to compare the proportions of adenosine deaminase genotypes and alleles between women with and without a history of recurrent spontaneous abortion (p<0.05). The differences between mean values for categorical data were calculated using unpaired t tests. The Hardy-Weinberg equilibrium was assessed with a chi-square test. RESULTS: Statistically significant differences were identified for the frequencies of adenosine deaminase genotypes and alleles between the G1 and G2 groups when adjusted for maternal age. CONCLUSIONS: The results suggest that the adenosine deaminase *2 allele is associated with a low risk for recurrent spontaneous abortions, but this association is dependent on older age. PMID:22086524

  18. Purine metabolism in adenosine deaminase deficiency.

    PubMed Central

    Mills, G C; Schmalstieg, F C; Trimmer, K B; Goldman, A S; Goldblum, R M

    1976-01-01

    Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides. PMID:1066699

  19. Genetics Home Reference: adenosine deaminase 2 deficiency

    MedlinePlus

    ... This Page Bras J, Guerreiro R, Santo GC. Mutant ADA2 in vasculopathies. N Engl J Med. 2014 ... M, Anikster Y, King MC, Levy-Lahad E. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. ...

  20. Radioimmunochemical quantitation of human adenosine deaminase.

    PubMed Central

    Daddona, P E; Frohman, M A; Kelley, W N

    1979-01-01

    Markedly reduced or absent adenosine deaminase activity in man is associated with an autosomal recesive form of severe conbined immunodeficiency disease. To further define the genetic nature of this enzyme defect, we have quantitated immunologically active adenosine deaminase (CRM) in the hemolysate of homozygous deficient patients and their heterozygous parents. A highly specific radioimmunoassay was developed capable of detecting 0.05% of normal erythrocyte adenosine deaminase. Hemolysates from nine heterozygotes (five families) showed a wide range in CRM (32--100% of normal) and variable absolute specific activities with several being at least 1 SD BELOW THE NORMAL MEAN. Hemolysates from four unrelated patients showed less than 0.09% adenosine deaminase activity with CRM ranging from less than 0.06 to 5.6% of the normal mean. In conclusion, heterozygote and homozygote hemolysates from five of the eight families analyzed revealed variable levels of CRM suggesting heterogeneous genetic alteration or expression of the silent or defective allele(s) of adenosine deaminase. PMID:468994

  1. Human adenosine deaminase. Distribution and properties.

    PubMed

    Van der Weyden, M B; Kelley, W N

    1976-09-25

    Adenosine deaminase exists in multiple molecular forms in human tissue. One form of the enzyme appears to be "particulate". Three forms of the enzyme are soluble and interconvertible with apparent molecular weights of approximately 36,000, 114,000, and 298,000 (designated small, intermediate, and large, respectively). The small form of adenosine deaminase is convertible to the large form only in the presence of a protein, which has an apparent molecular weight of 200,000 and has no adenosine deaminase activity. This conversion of the small form of the enzyme to the large form occurs at 4 degrees, exhibits a pH optimum of 5.0 to 8.0, and is associated with a loss of conversion activity. The small form of the enzyme predominates in tissue preparations exhibiting the higher enzyme-specific activities and no detectable conversion activity. The large form of adenosine deaminase predominates in tissue extracts exhibiting the lower enzyme specific activities and abundant conversion activity. The small form of adenosine deaminase shows several electrophoretic variants by isoelectric focusing. The electrophoretic heterogeneity observed with the large form of the enzyme is similar to that observed with the small form, with the exception that several additional electrophoretic variants are uniformly identified. No organ specificity is demonstrable for the different electrophoretic forms. The kinetic characteristics of the three soluble molecular species of adenosine deaminase are identical except for pH optimum, which is 5.5 for the intermediate species and 7.0 to 7.4 for the large and small forms.

  2. Mutations in the human adenosine deaminase gene that affect protein structure and RNA splicing

    SciTech Connect

    Akeson, A.L.; Wiginton, D.A.; States, C.J.; Perme, C.M.; Dusing, M.R.; Hutton, J.J.

    1987-08-01

    Adenosine deaminase deficiency is one cause of the genetic disease severe combined immunodeficiency. To identify mutations responsible for ADA deficiency, the authors synthesized cDNAs to ADA mRNAs from two cell lines, GM2756 and GM2825A, derived from ADA-deficient immunodeficient patients. Sequence analysis of GM2756 cDNA clones revealed a different point mutation in each allele that causes amino acid changes of alanine to valine and arginine to histidine. One allele of GM2825A also has a point mutation that causes an alanine to valine substitution. The other allele of GM2825A was found to produce an mRNA in which exon 4 had been spliced out but had no other detrimental mutations. S1 nuclease mapping of GM2825A mRNA showed equal abundance of the full-length ADA mRNA and the ADA mRNA that was missing exon 4. Several of the ADA cDNA clones extended 5' of the major initiation start site, indicating multiple start sites for ADA transcription. The point mutations in GM2756 and GM2825A and the absence of exon 4 in GM2825A appear to be directly responsible for the ADA deficiency. Comparison of a number of normal and mutant ADA cDNA sequences showed a number of changes in the third base of codons. These change do not affect the amino acid sequence. Analyses of ADA cDNAs from different cell lines detected aberrant RNA species that either included intron 7 or excluded exon 7. Their presence is a result of aberrant splicing of pre-mRNAs and is not related to mutations that cause ADA deficiency.

  3. [Adenosine deaminase in experimental trypanosomiasis: future implications].

    PubMed

    Pérez-Aguilar, Mary Carmen; Rondón-Mercado, Rocío

    2015-09-01

    The adenosine deaminase represents a control point in the regulation of extracellular adenosine levels, thus playing a critical role in the modulation of purinergic responses to certain pathophysiological events. Several studies have shown that serum and plasma enzyme levels are elevated in some diseases caused by microorganisms, which may represent a compensatory mechanism due to the elevated levels of adenosine and the release of inflammatory mediators. Recent research indicates that adenosine deaminase activity decreases and affects hematological parameters of infected animals with Trypanosoma evansi, so that such alterations could have implications in the pathogenesis of the disease. In addition, the enzyme has been detected in this parasite; allowing the inference that it could be associated with the vital functions of the same, similar to what occurs in mammals. This knowledge may be useful in the association of chemotherapy with specific inhibitors of the enzyme in future studies.

  4. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans.

    PubMed

    Candotti, Fabio; Shaw, Kit L; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F; Weinberg, Kenneth I; Crooks, Gay M; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S; Rosenblatt, Howard M; Davis, Carla M; Hanson, Celine; Rishi, Radha G; Wang, Xiaoyan; Gjertson, David; Yang, Otto O; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A; Engel, Barbara C; Podsakoff, Gregory M; Hershfield, Michael S; Blaese, R Michael; Parkman, Robertson; Kohn, Donald B

    2012-11-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34(+) cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m(2)). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency.

  5. Ecto-enzyme activity of human erythrocyte adenosine deaminase.

    PubMed

    Bielat, K; Tritsch, G L

    1989-04-11

    Adenosine deaminase is found primarily in the cytoplasm of many cell types. In the human erythrocyte, about 30 per cent of the total adenosine deaminase activity is membrane associated, and about two-thirds of this is inactivated by treatment of intact erythrocytes with the nonpenetrating reagent diazotized sulfanilic acid, without affecting lactate dehydrogenase, a soluble cytoplasmic enzyme. This indicates that within the cell membranes, the catalytic site of about two-thirds of the adenosine deaminase faces the external medium, i.e., ecto adenosine deaminase. Localization of adenosine deaminase activity at the cell membrane is demonstrated directly by electron microscopy by use of the substrate 6-Chloropurine ribonucleoside, which is dechlorinated by adenosine deaminase to produce Cl-, which is precipitated at its locus of formation by added Ag+, and the precipitated AgCl converted into the electron dense Ag0 upon exposure to light. From the Hydropathic Profile of the amino acid sequence of adenosine deaminase it is evident that there are two hydrophobic domains of sufficient length to span a biological membrane, and it is proposed that these domains could function to anchor the enzyme to the membrane. The importance of adenosine deaminase is indicated by the fatal immuno-deficiency which results from untreated genetic adenosine deaminase deficiency. It may be important to determine whether the amount of ecto adenosine deaminase activity is better suited to assess the clinical status of adenosine deaminase deficient patients that the currently used total cellular enzyme activity.

  6. Site-directed RNA editing by adenosine deaminase acting on RNA (ADAR1) for correction of the genetic code in gene therapy.

    PubMed

    Azad, T A; Bhakta, S; Tsukahara, T

    2017-10-06

    Site-directed RNA editing is an important technique for correcting gene sequences and ultimately tuning protein function. In this study, we engineered the deaminase domain of adenosine deaminase acting on RNA (ADAR1) and the MS2 system to target specific adenosines, with the goal of correcting G-to-A mutations at the RNA level. For this purpose, the ADAR1 deaminase domain was fused downstream of the RNA-binding protein MS2, which has affinity for the MS2 RNA. To direct editing to specific targets, we designed guide RNAs complementary to target RNAs. The guide RNAs directed the ADAR1 deaminase to the desired editing site, where it converted adenosine to inosine. To provide proof of principle, we used an allele of EGFP bearing a mutation at the 58th amino acid (TGG), encoding Trp, into an amber (TAG) or ochre (TAA) stop codon. In HEK-293 cells, our system could convert stop codons to read-through codons, thereby turning on fluorescence. We confirmed the specificity of editing at the DNA level by restriction fragment length polymorphism (RFLP) analysis and sequencing, and at the protein level by western blotting. The editing efficiency of this enzyme system was ~5%. We believe that this system could be used to treat genetic diseases resulting from G-to-A point mutations.Gene Therapy accepted article preview online, 06 October 2017. doi:10.1038/gt.2017.90.

  7. PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency.

    PubMed

    Hershfield, M S

    1995-01-01

    PEG-ADA is a long-circulating form of adenosine deaminase (ADA) that has been in use for > 8 years as replacement therapy for severe combined immunodeficiency disease due to ADA deficiency. Treatment with PEG-ADA almost completely corrects metabolic abnormalities, allowing the recovery of a variable degree of immune function. Although not normal, the level of function achieved has in most cases been sufficient to protect against opportunistic and life-threatening infections. PEG-ADA has been used as an alternative for patients who lack an HLA-identical bone marrow donor, but are judged to be at too high a risk for undergoing HLA-haploidentical marrow transplantation. To date, mortality and morbidity with PEG-ADA have been less than for the latter procedure. PEG-ADA has also been an important adjunct to attempts to develop somatic cell gene therapy for ADA deficiency, although its continued use poses a problem for evaluation of the benefit of gene therapy. As a true "orphan drug" developed to treat a very small patient population, the cost per patient of PEG-ADA is very high.

  8. Expression of human adenosine deaminase in murine hematopoietic cells.

    PubMed Central

    Belmont, J W; MacGregor, G R; Wager-Smith, K; Fletcher, F A; Moore, K A; Hawkins, D; Villalon, D; Chang, S M; Caskey, C T

    1988-01-01

    Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells. Images PMID:3072474

  9. Neuroprotective effects of adenosine deaminase in the striatum

    PubMed Central

    Tamura, Risa; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-01-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  10. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency

    PubMed Central

    Cicalese, Maria Pia; Ferrua, Francesca; Castagnaro, Laura; Pajno, Roberta; Barzaghi, Federica; Giannelli, Stefania; Dionisio, Francesca; Brigida, Immacolata; Bonopane, Marco; Casiraghi, Miriam; Tabucchi, Antonella; Carlucci, Filippo; Grunebaum, Eyal; Adeli, Mehdi; Bredius, Robbert G.; Puck, Jennifer M.; Stepensky, Polina; Tezcan, Ilhan; Rolfe, Katie; De Boever, Erika; Reinhardt, Rickey R.; Appleby, Jonathan; Ciceri, Fabio; Roncarolo, Maria Grazia

    2016-01-01

    Adenosine deaminase (ADA) deficiency is a rare, autosomal-recessive systemic metabolic disease characterized by severe combined immunodeficiency (SCID). The treatment of choice for ADA-deficient SCID (ADA-SCID) is hematopoietic stem cell transplant from an HLA-matched sibling donor, although <25% of patients have such a donor available. Enzyme replacement therapy (ERT) partially and temporarily relieves immunodeficiency. We investigated the medium-term outcome of gene therapy (GT) in 18 patients with ADA-SCID for whom an HLA-identical family donor was not available; most were not responding well to ERT. Patients were treated with an autologous CD34+-enriched cell fraction that contained CD34+ cells transduced with a retroviral vector encoding the human ADA complementary DNA sequence (GSK2696273) as part of single-arm, open-label studies or compassionate use programs. Overall survival was 100% over 2.3 to 13.4 years (median, 6.9 years). Gene-modified cells were stably present in multiple lineages throughout follow up. GT resulted in a sustained reduction in the severe infection rate from 1.17 events per person-year to 0.17 events per person-year (n = 17, patient 1 data not available). Immune reconstitution was demonstrated by normalization of T-cell subsets (CD3+, CD4+, and CD8+), evidence of thymopoiesis, and sustained T-cell proliferative capacity. B-cell function was evidenced by immunoglobulin production, decreased intravenous immunoglobulin use, and antibody response after vaccination. All 18 patients reported infections as adverse events; infections of respiratory and gastrointestinal tracts were reported most frequently. No events indicative of leukemic transformation were reported. Trial details were registered at www.clinicaltrials.gov as #NCT00598481. PMID:27129325

  11. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency.

    PubMed

    Cicalese, Maria Pia; Ferrua, Francesca; Castagnaro, Laura; Pajno, Roberta; Barzaghi, Federica; Giannelli, Stefania; Dionisio, Francesca; Brigida, Immacolata; Bonopane, Marco; Casiraghi, Miriam; Tabucchi, Antonella; Carlucci, Filippo; Grunebaum, Eyal; Adeli, Mehdi; Bredius, Robbert G; Puck, Jennifer M; Stepensky, Polina; Tezcan, Ilhan; Rolfe, Katie; De Boever, Erika; Reinhardt, Rickey R; Appleby, Jonathan; Ciceri, Fabio; Roncarolo, Maria Grazia; Aiuti, Alessandro

    2016-07-07

    Adenosine deaminase (ADA) deficiency is a rare, autosomal-recessive systemic metabolic disease characterized by severe combined immunodeficiency (SCID). The treatment of choice for ADA-deficient SCID (ADA-SCID) is hematopoietic stem cell transplant from an HLA-matched sibling donor, although <25% of patients have such a donor available. Enzyme replacement therapy (ERT) partially and temporarily relieves immunodeficiency. We investigated the medium-term outcome of gene therapy (GT) in 18 patients with ADA-SCID for whom an HLA-identical family donor was not available; most were not responding well to ERT. Patients were treated with an autologous CD34(+)-enriched cell fraction that contained CD34(+) cells transduced with a retroviral vector encoding the human ADA complementary DNA sequence (GSK2696273) as part of single-arm, open-label studies or compassionate use programs. Overall survival was 100% over 2.3 to 13.4 years (median, 6.9 years). Gene-modified cells were stably present in multiple lineages throughout follow up. GT resulted in a sustained reduction in the severe infection rate from 1.17 events per person-year to 0.17 events per person-year (n = 17, patient 1 data not available). Immune reconstitution was demonstrated by normalization of T-cell subsets (CD3(+), CD4(+), and CD8(+)), evidence of thymopoiesis, and sustained T-cell proliferative capacity. B-cell function was evidenced by immunoglobulin production, decreased intravenous immunoglobulin use, and antibody response after vaccination. All 18 patients reported infections as adverse events; infections of respiratory and gastrointestinal tracts were reported most frequently. No events indicative of leukemic transformation were reported. Trial details were registered at www.clinicaltrials.gov as #NCT00598481.

  12. [Gene therapy for adenosine deaminase (ADA) deficiency: review of the past, the present and the future].

    PubMed

    Ariga, T

    2001-01-01

    ADA deficiency is the first disease being treated by gene therapy. Since the first trial of gene therapy performed ten years ago, more than 10 patients including our case with ADA deficiency have been treated by the gene therapy with different clinical protocols. In contrast to the recent successful report for X-SCID patients, however, no curative effect of gene therapy for ADA deficiency has been achieved at the moment. In this chapter, I would like to review the past, the present and the future of gene therapy for ADA deficiency, and discuss an issue, especially PEG-ADA therapy, regarding the prospect for stem cell gene therapy for the disease.

  13. Serum adenosine deaminase activity in cutaneous anthrax.

    PubMed

    Sunnetcioglu, Mahmut; Karadas, Sevdegul; Aslan, Mehmet; Ceylan, Mehmet Resat; Demir, Halit; Oncu, Mehmet Resit; Karahocagil, Mustafa Kasım; Sunnetcioglu, Aysel; Aypak, Cenk

    2014-07-06

    Adenosine deaminase (ADA) activity has been discovered in several inflammatory conditions; however, there are no data associated with cutaneous anthrax. The aim of this study was to investigate serum ADA activity in patients with cutaneous anthrax. Sixteen patients with cutaneous anthrax and 17 healthy controls were enrolled. We measured ADA activity; peripheral blood leukocyte, lymphocyte, neutrophil, and monocyte counts; erythrocyte sedimentation rate; and C reactive protein levels. Serum ADA activity was significantly higher in patients with cutaneous anthrax than in the controls (p<0.001). A positive correlation was observed between ADA activity and lymphocyte counts (r=0.589, p=0.021) in the patient group. This study suggests that serum ADA could be used as a biochemical marker in cutaneous anthrax.

  14. Adenosine Deaminases Acting on RNA, RNA Editing, and Interferon Action

    PubMed Central

    George, Cyril X.; Gan, Zhenji; Liu, Yong

    2011-01-01

    Adenosine deaminases acting on RNA (ADARs) catalyze adenosine (A) to inosine (I) editing of RNA that possesses double-stranded (ds) structure. A-to-I RNA editing results in nucleotide substitution, because I is recognized as G instead of A both by ribosomes and by RNA polymerases. A-to-I substitution can also cause dsRNA destabilization, as I:U mismatch base pairs are less stable than A:U base pairs. Three mammalian ADAR genes are known, of which two encode active deaminases (ADAR1 and ADAR2). Alternative promoters together with alternative splicing give rise to two protein size forms of ADAR1: an interferon-inducible ADAR1-p150 deaminase that binds dsRNA and Z-DNA, and a constitutively expressed ADAR1-p110 deaminase. ADAR2, like ADAR1-p110, is constitutively expressed and binds dsRNA. A-to-I editing occurs with both viral and cellular RNAs, and affects a broad range of biological processes. These include virus growth and persistence, apoptosis and embryogenesis, neurotransmitter receptor and ion channel function, pancreatic cell function, and post-transcriptional gene regulation by microRNAs. Biochemical processes that provide a framework for understanding the physiologic changes following ADAR-catalyzed A-to-I ( = G) editing events include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA-structure-dependent activities such as microRNA production or targeting or protein–RNA interactions. PMID:21182352

  15. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    PubMed

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  16. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    MedlinePlus

    ... that can affect the muscles used for movement ( skeletal muscles ). In many affected individuals, AMP deaminase deficiency does ... called AMP deaminase. This enzyme is found in skeletal muscles , where it plays a role in producing energy. ...

  17. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminase-deficient severe combined immune deficiency.

    PubMed

    Silver, Jared N; Elder, Melissa; Conlon, Thomas; Cruz, Pedro; Wright, Amy J; Srivastava, Arun; Flotte, Terence R

    2011-08-01

    Severe combined immune deficiency due to adenosine deaminase (ADA) deficiency is a rare, potentially fatal pediatric disease, which results from mutations within the ADA gene, leading to metabolic abnormalities and ultimately profound immunologic and nonimmunologic defects. In this study, recombinant adeno-associated virus (rAAV) vectors based on serotypes 1 and 9 were used to deliver a secretory version of the human ADA (hADA) gene to various tissues to promote immune reconstitution following enzyme expression in a mouse model of ADA deficiency. Here, we report that a single-stranded rAAV vector, pTR2-CB-Igκ-hADA, (1) facilitated successful gene delivery to multiple tissues, including heart, skeletal muscle, and kidney, (2) promoted ectopic expression of hADA, and (3) allowed enhanced serum-based enzyme activity over time. Moreover, the rAAV-hADA vector packaged in serotype 9 capsid drove partial, prolonged, and progressive immune reconstitution in ADA-deficient mice. Overview Summary Gene therapies for severe combined immune deficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) over two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoietic progenitor cells. These groundbreaking gene therapies represented an unprecedented revolution in clinical medicine but in most cases did not fully correct the immune deficiency and came with the potential risk of insertional mutagenesis. Alternatively, recombinant adeno-associated virus (rAAV) vectors have gained attention as valuable tools for gene transfer, having demonstrated no pathogenicity in humans, minimal immunogenicity, long-term efficacy, ease of administration, and broad tissue tropism (Muzyczka, 1992 ; Flotte et al., 1993 ; Kessler et al., 1996 ; McCown et al., 1996 ; Lipkowitz et al., 1999 ; Marshall, 2001 ; Chen et al., 2003 ; Conlon and Flotte, 2004 ; Griffey et al., 2005 ; Pacak et al., 2006 ; Stone et al., 2008 ; Liu et al., 2009 ; Choi et al., 2010

  19. Efficient, low-cost protein factories: expression of human adenosine deaminase in baculovirus-infected insect larvae.

    PubMed Central

    Medin, J A; Hunt, L; Gathy, K; Evans, R K; Coleman, M S

    1990-01-01

    Human adenosine deaminase (EC 3.5.4.4), a key purine salvage enzyme essential for immune competence, has been overproduced in Spodoptera frugiperda cells and in Trichoplusia ni (cabbage looper) larvae infected with recombinant baculovirus. The coding sequence of human adenosine deaminase was recombined into a baculovirus immediately downstream from the strong polyhedrin gene promoter. Approximately 60 hr after infection of insect cells with the recombinant virus, maximal levels of intracellular adenosine deaminase mRNA, protein, and enzymatic activity were detected. The recombinant human adenosine deaminase represented 10% of the total cellular protein and exhibited a specific activity of 70 units/mg of protein in crude homogenate. This specific activity is 70-350 times greater than that exhibited by the enzyme in homogenates of the two most abundant natural sources of human adenosine deaminase, thymus and leukemic cells. When the recombinant virus was injected into insect larvae, the maximum recombinant enzyme was produced 4 days postinfection and represented about 2% of the total insect protein with a specific activity of 10-25 units/mg of protein. The recombinant human adenosine deaminase was purified to homogeneity from both insect cells and larvae and demonstrated to be identical to native adenosine deaminase purified from human cells with respect to molecular weight, interaction with polyclonal anti-adenosine deaminase antibody, and enzymatic properties. A pilot purification yielded 8-9 mg of homogeneous enzyme from 22 larvae. The production of large quantities of recombinant human adenosine deaminase in insect larvae is inexpensive and rapid and eliminates the need for specialized facilities for tissue culture. This method should be applicable to large-scale production of many recombinant proteins. Images PMID:2181448

  20. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction.

    PubMed

    Gaspar, H Bobby; Cooray, Samantha; Gilmour, Kimberly C; Parsley, Kathryn L; Zhang, Fang; Adams, Stuart; Bjorkegren, Emma; Bayford, Jinhua; Brown, Lucinda; Davies, E Graham; Veys, Paul; Fairbanks, Lynette; Bordon, Victoria; Petropoulou, Theoni; Petropolou, Theoni; Kinnon, Christine; Thrasher, Adrian J

    2011-08-24

    Genetic defects in the purine salvage enzyme adenosine deaminase (ADA) lead to severe combined immunodeficiency (SCID) with profound depletion of T, B, and natural killer cell lineages. Human leukocyte antigen-matched allogeneic hematopoietic stem cell transplantation (HSCT) offers a successful treatment option. However, individuals who lack a matched donor must receive mismatched transplants, which are associated with considerable morbidity and mortality. Enzyme replacement therapy (ERT) for ADA-SCID is available, but the associated suboptimal correction of immunological defects leaves patients susceptible to infection. Here, six children were treated with autologous CD34-positive hematopoietic bone marrow stem and progenitor cells transduced with a conventional gammaretroviral vector encoding the human ADA gene. All patients stopped ERT and received mild chemotherapy before infusion of gene-modified cells. All patients survived, with a median follow-up of 43 months (range, 24 to 84 months). Four of the six patients recovered immune function as a result of engraftment of gene-corrected cells. In two patients, treatment failed because of disease-specific and technical reasons: Both restarted ERT and remain well. Of the four reconstituted patients, three remained off enzyme replacement. Moreover, three of these four patients discontinued immunoglobulin replacement, and all showed effective metabolic detoxification. All patients remained free of infection, and two cleared problematic persistent cytomegalovirus infection. There were no adverse leukemic side effects. Thus, gene therapy for ADA-SCID is safe, with effective immunological and metabolic correction, and may offer a viable alternative to conventional unrelated donor HSCT.

  1. Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)-deficient mice and corrects their immune and metabolic defects.

    PubMed

    Mortellaro, Alessandra; Hernandez, Raisa Jofra; Guerrini, Matteo M; Carlucci, Filippo; Tabucchi, Antonella; Ponzoni, Maurilio; Sanvito, Francesca; Doglioni, Claudio; Di Serio, Clelia; Biasco, Luca; Follenzi, Antonia; Naldini, Luigi; Bordignon, Claudio; Roncarolo, Maria Grazia; Aiuti, Alessandro

    2006-11-01

    Adenosine deaminase (ADA) deficiency is caused by a purine metabolic dysfunction, leading to severe combined immunodeficiency (SCID) and multiple organ damage. To investigate the efficacy of ex vivo gene therapy with self-inactivating lentiviral vectors (LVs) in correcting this complex phenotype, we used an ADA(-/-) mouse model characterized by early postnatal lethality. LV-mediated ADA gene transfer into bone marrow cells combined with low-dose irradiation rescued mice from lethality and restored their growth, as did transplantation of wild-type bone marrow. Mixed chimerism with multilineage engraftment of transduced cells was detected in the long term in animals that underwent transplantation. ADA activity was normalized in lymphocytes and partially corrected in red blood cells (RBCs), resulting in full metabolic detoxification and prevention of severe pulmonary insufficiency. Moreover, gene therapy restored normal lymphoid differentiation and immune functions, including antigen-specific antibody production. Similar degrees of detoxification and immune reconstitution were obtained in mice treated early after birth or after 1 month of enzyme-replacement therapy, mimicking 2 potential applications for ADA-SCID. Overall, this study demonstrates the efficacy of LV gene transfer in correcting both the immunological and metabolic phenotypes of ADA-SCID and supports the future clinical use of this approach.

  2. Attenuation of exercise vasodilatation by adenosine deaminase in anaesthetized dogs.

    PubMed Central

    Goonewardene, I P; Karim, F

    1991-01-01

    1. In dogs anaesthetized with sodium pentobarbitone and artificially ventilated, the gracilis muscles were vascularly isolated and perfused at a constant flow of 28.4 +/- 4.6 ml min-1 (100 g muscle tissue)-1 (99.8 +/- 4.5% of maximum free flow, means +/- standard error of the mean (S.E.M.), n = 9). 2. Three to five minutes of electrical stimulation of the cut peripheral end of the obturator nerve (4 Hz, 6 V, 0.2 ms) resulted in muscle contraction (0.61 +/- 0.14 kg (100 g)-1 during solvent infusion and 0.56 +/- 0.10 kg (100 g)-1 during intra-arterial adenosine deaminase infusion (50 U min-1) and an immediate decrease in arterial perfusion pressure from 184.5 +/- 8.1 mmHg to 148.2 +/- 5.7 mmHg (18.7 +/- 3.4% decrease) during solvent infusion, and from 193.5 +/- 7.16 to 142.0 +/- 10.2 mmHg (25.4 +/- 6.1% decrease) during adenosine deaminase infusion 10 s after the commencement of muscle stimulation. After about 5 min of muscle contractions, the arterial perfusion pressure decreased to 120.8 +/- 7.8 mmHg (32.9 +/- 5.8% decrease) during solvent infusion, and to 152.8 +/- 11.2 mmHg (20.9 +/- 5.3% decrease) during adenosine deaminase infusion (i.e. 37.9 +/- 6.2% attenuation of the fall in arterial perfusion pressure). The time taken for 90% recovery of the arterial perfusion pressure was 72.1 +/- 10.9 s during solvent infusion, and 51.5 +/- 9.3 s during adenosine deaminase infusion (P less than 0.05). 3. Adenosine (2 x 10(-3) mol l-1) infusion in the resting muscle during solvent infusion (final concentration in arterial blood 1.3 x 10(-4) +/- 6.0 x 10(-5) mol l-1) resulted in a 34.8 +/- 7.2% fall in arterial perfusion pressure but a fall of only 7.2 +/- 1.8% during adenosine deaminase infusion (50 U min-1; P less than 0.05; n = 5) indicating that adenosine deaminase infused at 50 U min-1 was more than adequate to metabolize endogenous adenosine produced during muscle contractions. 4. These data suggest that adenosine contributes about 40% to the sustained

  3. Genome organization and transcriptional regulation of Adenosine Deaminase Acting on RNA gene 1 (ADAR1) in grass carp (Ctenopharyngodon idella).

    PubMed

    Sun, Zhicheng; Wang, Binhua; Liu, Yong; Liu, Xiancheng; Mi, Yichuan; Gu, Meihui; Wang, Fang; Wu, Chuxin; Hu, Chengyu

    2015-06-01

    ADAR1, involved in A-to-I RNA editing, belongs to adenosine deaminase acting on RNA (ADAR) family. A-to-I RNA editing is the most widespread editing phenomenon in higher eukaryotes. In the present study, we cloned and identified the full-length cDNA, complete genomic sequence and the promoter sequence of grass carp (Ctenopharyngodon idella) ADAR1 (CiADAR1) by homology cloning strategy and genome walking. CiADAR1 full-length cDNA is comprised of a 5'UTR (43  bp), a 3'UTR (229 bp) and a 4179 bp ORF encoding a polypeptide of 1392 amino acids. The deduced amino acid sequence of CiADAR1 contains two Z-DNA binding domains, three dsRNA binding motifs and a conserved catalytic domain. The complete genomic CiADAR1 has 16 exons and 15 introns. Phylogenetic tree analysis revealed that CiADAR1 shared high homology with Danio rerio ADAR1 (DrADAR1). RT-PCR showed that CiADAR1 were ubiquitously expressed and significantly up-regulated after stimulation with poly I:C. In spleen and liver, CiADAR1 mRNA reached the peak at 12 h and maintained the highest level during 12-24 h post-injection. CiADAR1 promoter was found to be 1102 bp in length and divided into two distinct regions, the proximal region containing three putative interferon regulatory factor binding elements (IRF-E) and the distal region containing only one IRF-E. To further study the transcriptional regulatory mechanism of CiADAR1, grass carp IRF1 (CiIRF1) and IRF3 (CiIRF3) were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind resin. Then, gel mobility shift assay was employed to analyze the affinity of CiADAR1 promoter sequence with CiIRF1 and CiIRF3 in vitro. The result revealed that CiIRF1 and CiIRF3 bound to CiADAR1 promoter with high affinity, indicating that IRF1 and IRF3 could be the potential transcriptional regulatory factor for CiADAR1. Co-transfection of pcDNA3.1-IRF1 (or pcDNA3.1-IRF3) with pGL3-CiADAR1 into C. idella kidney (CIK) cells showed that both

  4. Quantitative changes in adenosine deaminase isoenzymes in human colorectal adenocarcinomas.

    PubMed

    ten Kate, J; Wijnen, J T; van der Goes, R G; Quadt, R; Griffioen, G; Bosman, F T; Khan, P M

    1984-10-01

    Several reports have suggested that a decrease or absence of adenosine deaminase complexing protein (ADCP) is consistently associated with cancer. However, in other studies, decreased as well as increased ADCP levels were found. In the present study, we investigated ADCP levels in 37 colorectal adenocarcinomas and correlated the results with clinicopathological characteristics in individual carcinomas. The levels of adenosine deaminase (EC 3.5.4.4) and soluble ADCP were determined in tissue samples by, respectively, a spectrophotometric assay and an ADCP specific radioimmunoassay. The values in the individual tumors were compared with their histological characteristics, such as degree of differentiation, nuclear grading, and the preoperative plasma carcinoembryonic antigen levels in the patients. It was found that ADCP was decreased in about a third of the tumors but unaltered or even increased in others. However, there was an overall 40% increase of the adenosine deaminase activity in the tumors compared to normal tissue. There seems to be no simple correlation between any of the clinicopathological parameters and the ADCP or adenosine deaminase levels. Methods detecting ADCP at single cell level might be helpful in exploring its potential use as a cancer-associated marker.

  5. Flow cytometry analysis of adenosine deaminase (ADA) expression: a simple and reliable tool for the assessment of ADA-deficient patients before and after gene therapy.

    PubMed

    Otsu, Makoto; Hershfield, Michael S; Tuschong, Laura M; Muul, Linda M; Onodera, Masafumi; Ariga, Tadashi; Sakiyama, Yukio; Candotti, Fabio

    2002-02-10

    Clinical gene therapy trials for adenosine deaminase (ADA) deficiency have shown limited success of corrective gene transfer into autologous T lymphocytes and CD34(+) cells. In these trials, the levels of gene transduction and expression in hematopoietic cells have been assessed by DNA- or RNA-based assays and measurement of ADA enzyme activity. Although informative, these methods are rarely applied to clonal analysis. The results of these assays therefore provide best estimates of transduction efficiency and gene expression in bulk populations based on the assumption that gene transfer and expression are uniformly distributed among transduced cells. As a useful additional tool for evaluation of ADA gene expression, we have developed a flow cytometry (fluorescence-activated cell sorting, FACS) assay capable of estimating the levels of intracellular ADA on a single-cell basis. We validated this technique with T cell lines and peripheral blood mononuclear cells (PBMCs) from ADA-deficient patients that showed severely reduced levels of ADA expression (ADA-dull) by FACS and Western blot analyses. After retrovirus-mediated ADA gene transfer, these cells showed clearly distinguishable populations exhibiting ADA expression (ADA-bright), thus allowing estimation of transduction efficiency. By mixing ADA-deficient and normal cells and using enzymatic amplification, we determined that our staining procedure could detect as little as 5% ADA-bright cells. This technique, therefore, will be useful to quickly assess the expression of ADA in hematopoietic cells of severe combined immunodeficient patients and represents an important tool for the follow-up of patients treated in clinical gene transfer protocols.

  6. Characterization of a gene coding for a putative adenosine deaminase-related growth factor by RNA interference in the basidiomycete Flammulina velutipes.

    PubMed

    Sekiya, Shuichi; Yamada, Masato; Shibata, Kou; Okuhara, Toru; Yoshida, Masumi; Inatomi, Satoshi; Taguchi, Goro; Shimosaka, Makoto

    2013-04-01

    A full-length cDNA coding for a putative adenosine deaminase (Fv-ada) was isolated from the basidiomycete Flammulina velutipes. Fv-ada encodes a polypeptide consisting of 537 amino acid residues, which has a consensus sequence conserved among adenosine deaminase-related growth factors (ADGF) found in several metazoa, including chordates and insects. Fv-ada transcript was detected at all stages of growth in dikaryotic F. velutipes cells, with a peak at the primordial stage. Heterologous expression of Fv-ada in the yeast Pichia pastoris produced recombinant Fv-ADA that catalyzed the conversion of adenosine to inosine. Dikaryotic mycelia from F. velutipes were transformed with the binary plasmid pFungiway-Fv-ada, which was designed to suppress the expression of Fv-ada through RNA interference. The growth rates of the resulting transformants were retarded in response to the degree of suppression, indicating that Fv-ada plays an important role in the mycelial growth of F. velutipes. These results suggested that ADGF could function as growth factors in fungi, as is seen in other eukaryotes.

  7. Severe combined immunodeficiency due to adenosine deaminase deficiency.

    PubMed

    Hussain, Waqar; Batool, Asma; Ahmed, Tahir Aziz; Bashir, Muhammad Mukarram

    2012-03-01

    Severe Combined Immunodeficiency is the term applied to a group of rare genetic disorders characterised by defective or absent T and B cell functions. Patients usually present in first 6 months of life with respiratory/gastrointestinal tract infections and failure to thrive. Among the various types of severe combined immunodeficiency, enzyme deficiencies are relatively less common. We report the case of a 6 years old girl having severe combined immunodeficiency due to adenosine deaminase deficiency.

  8. Adenosine Deaminase Inhibition Prevents Clostridium difficile Toxin A-Induced Enteritis in Mice ▿

    PubMed Central

    de Araújo Junqueira, Ana Flávia Torquato; Dias, Adriana Abalen Martins; Vale, Mariana Lima; Spilborghs, Graziela Machado Gruner Turco; Bossa, Aline Siqueira; Lima, Bruno Bezerra; Carvalho, Alex Fiorini; Guerrant, Richard Littleton; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne

    2011-01-01

    Toxin A (TxA) is able to induce most of the classical features of Clostridium difficile-associated disease in animal models. The objective of this study was to determine the effect of an inhibitor of adenosine deaminase, EHNA [erythro-9-(2-hydroxy-3-nonyl)-adenine], on TxA-induced enteritis in C57BL6 mice and on the gene expression of adenosine receptors. EHNA (90 μmol/kg) or phosphate-buffered saline (PBS) was injected intraperitoneally (i.p.) 30 min prior to TxA (50 μg) or PBS injection into the ileal loop. A2A adenosine receptor agonist (ATL313; 5 nM) was injected in the ileal loop immediately before TxA (50 μg) in mice pretreated with EHNA. The animals were euthanized 3 h later. The changes in the tissue were assessed by the evaluation of ileal loop weight/length and secretion volume/length ratios, histological analysis, myeloperoxidase assay (MPO), the local expression of inducible nitric oxide synthase (NOS2), pentraxin 3 (PTX3), NF-κB, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) by immunohistochemistry and/or quantitative reverse transcription-PCR (qRT-PCR). The gene expression profiles of A1, A2A, A2B, and A3 adenosine receptors also were evaluated by qRT-PCR. Adenosine deaminase inhibition, by EHNA, reduced tissue injury, neutrophil infiltration, and the levels of proinflammatory cytokines (TNF-α and IL-1β) as well as the expression of NOS2, NF-κB, and PTX3 in the ileum of mice injected with TxA. ATL313 had no additional effect on EHNA action. TxA increased the gene expression of A1 and A2A adenosine receptors. Our findings show that the inhibition of adenosine deaminase by EHNA can prevent Clostridium difficile TxA-induced damage and inflammation possibly through the A2A adenosine receptor, suggesting that the modulation of adenosine/adenosine deaminase represents an important tool in the management of C. difficile-induced disease. PMID:21115723

  9. Adenosine Deaminase Deficiency – More Than Just an Immunodeficiency

    PubMed Central

    Whitmore, Kathryn V.; Gaspar, Hubert B.

    2016-01-01

    Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) that results from mutations in the gene encoding ADA. Affected patients present with clinical and immunological manifestations typical of a SCID. Therapies are currently available that can target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well-understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences. PMID:27579027

  10. Laser photobleaching leads to a fluorescence grade adenosine deaminase.

    PubMed

    Parola, A H; Caiolfa, V R; Bar, I; Rosenwaks, S

    1989-09-01

    The enzyme adenosine deaminase (adenosine aminohydrolase EC 3.5.4.4) from calf intestinal mucosa is commercially available at high purity grade yet, at the sensitivity at which fluorescence studies may be undertaken, a nonpeptidic fluorescence is detectable at lambda exmax = 350 nm and lambda emmax = 420 nm. A sevenfold decrease of this nonpeptidic fluorescence was obtained upon irradiation by the third harmonic (355 nm) of a Nd:YAG laser for 16 min, at 5 mJ/pulse, with a pulse width of 6 ns at a repetition rate of 10 Hz. The decline of fluorescence was accompanied by a negligible loss of enzymatic activity. Moreover, the integrity of the protein was ascertained by (i) its fluorescence (lambda exmax = 305 nm, lambda emmax = 335 nm) and lifetime distribution and (ii) its kinetics in the presence of the substrate adenosine and two inhibitors, all of which remained essentially unaltered. Laser photobleaching is a simple way to achieve a fluorescence grade adenosine deaminase.

  11. Adenosine deaminase deficiency with normal immune function. An acidic enzyme mutation.

    PubMed Central

    Daddona, P E; Mitchell, B S; Meuwissen, H J; Davidson, B L; Wilson, J M; Koller, C A

    1983-01-01

    In most instances, marked deficiency of the purine catabolic enzyme adenosine deaminase results in lymphopenia and severe combined immunodeficiency disease. Over a 2-yr period, we studied a white male child with markedly deficient erythrocyte and lymphocyte adenosine deaminase activity and normal immune function. We have documented that (a) adenosine deaminase activity and immunoreactive protein are undetectable in erythrocytes, 0.9% of normal in lymphocytes, 4% in cultured lymphoblasts, and 14% in skin fibroblasts; (b) plasma adenosine and deoxyadenosine levels are undetectable and deoxy ATP levels are only slightly elevated in lymphocytes and in erythrocytes; (c) no defect in deoxyadenosine metabolism is present in the proband's cultured lymphoblasts; (d) lymphoblast adenosine deaminase has normal enzyme kinetics, absolute specific activity, S20,w, pH optimum, and heat stability; and (e) the proband's adenosine deaminase exhibits a normal apparent subunit molecular weight but an abnormal isoelectric pH. In contrast to the three other adenosine deaminase-deficient healthy subjects who have been described, the proband is unique in demonstrating an acidic, heat-stable protein mutation of the enzyme that is associated with less than 1% lymphocyte adenosine deaminase activity. Residual adenosine deaminase activity in tissues other than lymphocytes may suffice to metabolize the otherwise lymphotoxic enzyme substrate(s) and account for the preservation of normal immune function. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:6603477

  12. Autoimmune dysregulation and purine metabolism in adenosine deaminase deficiency.

    PubMed

    Sauer, Aisha Vanessa; Brigida, Immacolata; Carriglio, Nicola; Aiuti, Alessandro

    2012-01-01

    Genetic defects in the adenosine deaminase (ADA) gene are among the most common causes for severe combined immunodeficiency (SCID). ADA-SCID patients suffer from lymphopenia, severely impaired cellular and humoral immunity, failure to thrive, and recurrent infections. Currently available therapeutic options for this otherwise fatal disorder include bone marrow transplantation (BMT), enzyme replacement therapy with bovine ADA (PEG-ADA), or hematopoietic stem cell gene therapy (HSC-GT). Although varying degrees of immune reconstitution can be achieved by these treatments, breakdown of tolerance is a major concern in ADA-SCID. Immune dysregulation such as autoimmune hypothyroidism, diabetes mellitus, hemolytic anemia, and immune thrombocytopenia are frequently observed in milder forms of the disease. However, several reports document similar complications also in patients on long-term PEG-ADA and after BMT or GT treatment. A skewed repertoire and decreased immune functions have been implicated in autoimmunity observed in certain B-cell and/or T-cell immunodeficiencies, but it remains unclear to what extent specific mechanisms of tolerance are affected in ADA deficiency. Herein we provide an overview about ADA-SCID and the autoimmune manifestations reported in these patients before and after treatment. We also assess the value of the ADA-deficient mouse model as a useful tool to study both immune and metabolic disease mechanisms. With focus on regulatory T- and B-cells we discuss the lymphocyte subpopulations particularly prone to contribute to the loss of self-tolerance and onset of autoimmunity in ADA deficiency. Moreover we address which aspects of immune dysregulation are specifically related to alterations in purine metabolism caused by the lack of ADA and the subsequent accumulation of metabolites with immunomodulatory properties.

  13. Demonstration of adenosine deaminase activity in human fibroblast lysosomes.

    PubMed Central

    Lindley, E R; Pisoni, R L

    1993-01-01

    Human fibroblast lysosomes, purified on Percoll density gradients, contain an adenosine deaminase (ADA) activity that accounts for approximately 10% of the total ADA activity in GM0010A human fibroblasts. In assays of lysosomal ADA, the conversion of [3H]adenosine into [3H]inosine was proportional to incubation time and the amount of lysosomal material added to reaction mixtures. Maximal activity was observed between pH 7 and 8, and lysosomal ADA displayed a Km of 37 microM for adenosine at 25 degrees C and pH 5.5. Lysosomal ADA was completely inhibited by 2.5 mM Cu2+ or Hg2+ salts, but not by other bivalent cations (Ba2+, Cd2+, Ca2+, Fe2+, Mg2+, Mn2+ and Zn2+). Coformycin (2.5 mM), deoxycoformycin (0.02 mM), 2'-deoxyadenosine (2.5 mM), 6-methylaminopurine riboside (2.5 mM), 2'-3'-isopropylidene-adenosine (2.5 mM) and erythro-9-(2-hydroxy-3-nonyl)adenine (0.2 mM) inhibited lysosomal ADA by > 97%. In contrast, 2.5 mM S-adenosyl-L-homocysteine and cytosine were poor inhibitors. Nearly all lysosomal ADA activity is eluted as a high-molecular-mass protein (> 200 kDa) just after the void volume on a Sephacryl S-200 column, and is very heat-stable, retaining 70% of its activity after incubation at 65 degrees C for 80 min. We speculate that compartmentalization of ADA within lysosomes would allow deamination of adenosine to occur without competition by adenosine kinase, which could assist in maintaining cellular energy requirements under conditions of nutritional deprivation. PMID:8452534

  14. Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial.

    PubMed

    Muul, Linda Mesler; Tuschong, Laura M; Soenen, Sherry Lau; Jagadeesh, G Jayashree; Ramsey, W Jay; Long, Zhifeng; Carter, Charles S; Garabedian, Elizabeth K; Alleyne, Melinna; Brown, Margaret; Bernstein, Wendy; Schurman, Shepherd H; Fleisher, Thomas A; Leitman, Susan F; Dunbar, Cynthia E; Blaese, R Michael; Candotti, Fabio

    2003-04-01

    The first human gene therapy experiment begun in September 1990 used a retroviral vector containing the human adenosine deaminase (ADA) cDNA to transduce mature peripheral blood lymphocytes from patients with ADA deficiency, an inherited disorder of immunity. Two patients who had been treated with intramuscular injections of pegylated bovine ADA (PEG-ADA) for 2 to 4 years were enrolled in this trial and each received a total of approximately 10(11) cells in 11 or 12 infusions over a period of about 2 years. No adverse events were observed. During and after treatment, the patients continued to receive PEG-ADA, although at a reduced dose. Ten years after the last cell infusion, approximately 20% of the first patient's lymphocytes still carry and express the retroviral gene, indicating that the effects of gene transfer can be remarkably long lasting. On the contrary, the persistence of gene-marked cells is very low (< 0.1%), and no expression of the transgene is detectable in lymphocytes from the second patient who developed persisting antibodies to components of the gene transfer system. Data collected from these original patients have provided novel information about the longevity of T lymphocytes in humans and persistence of gene expression in vivo from vectors driven by the Moloney murine leukemia virus long-terminal repeat (LTR) promoter. This long-term follow-up has also provided unique evidence supporting the safety of retroviral-mediated gene transfer and illustrates clear examples of both the potential and the pitfalls of gene therapy in humans.

  15. Refractory Pure Red Cell Aplasia Manifesting as Deficiency of Adenosine Deaminase 2.

    PubMed

    Hashem, Hasan; Egler, Rachel; Dalal, Jignesh

    2017-07-01

    Primary progress has been made in the last 2 years, particularly in finding novel disease-causing genes for a number of autoinflammatory diseases and primary immunodeficiencies. Whole-exome sequencing has dramatically increased the pace at which causative genes are being discovered. CECR1 (Cat eye syndrome chromosome region, candidate 1) gene encodes adenosine deaminase 2 (ADA2) protein. Patients who carry CECR1 mutation(s) suffer from deficiency of ADA2 (DADA2). Here, we describe a patient with pure red cell aplasia discovered to have DADA2. We also review the literature on DADA2. This report will help raise awareness of physicians for this complex disease.

  16. Adenine arabinoside inhibition of adenovirus replication enhanced by an adenosine deaminase inhibitor.

    PubMed

    Wigand, R

    1979-01-01

    The inhibition of adenovirus multiplication by adenine arabinoside was determined by yield reduction in one-step multiplication cycle. Inhibition was greatly enhanced by an adenosine deaminase inhibitor (2-deoxycoformycin) in concentrations down to 10 ng/ml. Adenovirus types from four subgroups showed similar results. However, the enhancing effect of adenosine deaminase inhibitor was great in HeLa cells, moderate in human fibroblasts, and negligible in Vero cells. This difference could be explained by different concentrations of adenosine deaminase found in cell homogenates.

  17. Late-onset adenosine deaminase deficiency presenting with Heck's disease.

    PubMed

    Artac, Hasibe; Göktürk, Bahar; Bozdemir, Sefika Elmas; Toy, Hatice; van der Burg, Mirjam; Santisteban, Ines; Hershfield, Michael; Reisli, Ismail

    2010-08-01

    Focal epithelial hyperplasia, also known as Heck's disease, is a rare but distinctive entity of viral etiology with characteristic clinical and histopathological features. It is a benign, asymptomatic disease of the oral mucosa caused by human papilloma viruses (HPV). Previous studies postulated an association between these lesions and immunodeficiency. Genetic deficiency of adenosine deaminase (ADA) results in varying degrees of immunodeficiency, including neonatal onset severe combined immunodeficiency (ADA-SCID), and milder, later onset immunodeficiency. We report a 12-year-old girl with the late onset-ADA deficiency presenting with Heck's disease. Our case report should draw attention to the possibility of immunodeficiency in patients with HPV-induced focal epithelial hyperplasia.

  18. Adenosine Deaminases Acting on RNA (ADARs) are both Antiviral and Proviral Dependent upon the Virus

    PubMed Central

    Samuel, Charles E.

    2010-01-01

    A-to-I RNA editing, the deamination of adenosine (A) to inosine (I) that occurs in regions of RNA with double-stranded character, is catalyzed by a family of Adenosine Deaminases Acting on RNA (ADARs). In mammals there are three ADAR genes. Two encode proteins that possess demonstrated deaminase activity: ADAR1, which is interferon-inducible, and ADAR2 which is constitutively expressed. ADAR3, by contrast, has not yet been shown to bean active enzyme. The specificity of the ADAR1 and ADAR2 deaminases ranges from highly site-selective to non-selective, dependent on the duplex structure of the substrate RNA. A-to-I editing is a form of nucleotide substitution editing, because I is decoded as guanosine (G) instead of A by ribosomes during translation and by polymerases during RNA-dependent RNA replication. Additionally, A-to-I editing can alter RNA structure stability as I:U mismatches are less stable than A:U base pairs. Both viral and cellular RNAs are edited by ADARs. A-to-I editing is of broad physiologic significance. Among the outcomes of A-to-I editing are biochemical changes that affect how viruses interact with their hosts, changes that can lead to either enhanced or reduced virus growth and persistence dependent upon the specific virus. PMID:21211811

  19. Adenosine deaminase activity in COPD patients and healthy subjects.

    PubMed

    Goodarzi, Mohammad Taghi; Abdi, Mohammad; Tavilani, Heidar; Nadi, Ebrahim; Rashidi, Mojtaba

    2010-03-01

    Chronic obstructive pulmonary disease (COPD) has been defined by the Global Initiative for Chronic Obstructive Lung Disease (GOLD), as a disease state characterized by airflow limitation which is not fully reversible. COPD consists of emphysema which is the destruction and inflammation of the lung alveoli. Adenosine deaminase (ADA, E.C.3.5.4.4) converts adenosine to inosine. There are two isoenzymes of ADA in serum; ADA1 and ADA2. It has been established that in COPD patients the adenosine levels increase, which can contribute to decrease of ADA activity. In this research we studied the ADA and its isoenzyme activity in COPD patients. This descriptive analytical case-control study was performed on thirty patients who were hospitalized in the pulmonary wards with an acute exacerbation of COPD. ADA activity was determined in 30 COPD patients, 30 nonsmokers and 30 smokers controls. All subjects were male. We used colorimetric (Giusti) method for measuring of ADA activity. The data were analyzed using SPSS 13 software and Kruskall-Wallis and two-way ANOVA tests. Total ADA activity in the COPD and smoker control groups was significantly lower than in non smoker group (18.99 -/+ 7, 19.03 -/+ 9.1 and 22.95 -/+ 6.7 U/L, respectively). There was a significant difference for ADA2 between the three groups. Whereas the ADA1 activity in the three groups had no significant difference. Based on the obtained data, decrease of ADA activity may play an important role in the formation of pulmonary injury in COPD patients.

  20. Crystal Structure of Staphylococcus aureus tRNA Adenosine Deaminase TadA in Complex with RNA

    SciTech Connect

    Losey,H.; Ruthenburg, A.; Verdine, G.

    2006-01-01

    Bacterial tRNA adenosine deaminases (TadAs) catalyze the hydrolytic deamination of adenosine to inosine at the wobble position of tRNA(Arg2), a process that enables this single tRNA to recognize three different arginine codons in mRNA. In addition, inosine is also introduced at the wobble position of multiple eukaryotic tRNAs. The genes encoding these deaminases are essential in bacteria and yeast, demonstrating the importance of their biological activity. Here we report the crystallization and structure determination to 2.0 A of Staphylococcus aureus TadA bound to the anticodon stem-loop of tRNA(Arg2) bearing nebularine, a non-hydrolyzable adenosine analog, at the wobble position. The cocrystal structure reveals the basis for both sequence and structure specificity in the interactions of TadA with RNA, and it additionally provides insight into the active site architecture that promotes efficient hydrolytic deamination.

  1. How We Manage Adenosine Deaminase-Deficient Severe Combined Immune Deficiency (ADA SCID).

    PubMed

    Kohn, Donald B; Gaspar, H Bobby

    2017-02-14

    Adenosine deaminase-deficient severe combined immune deficiency (ADA SCID) accounts for 10-15% of cases of human SCID. From what was once a uniformly fatal disease, the prognosis for infants with ADA SCID has improved greatly based on the development of multiple therapeutic options, coupled with more frequent early diagnosis due to implementation of newborn screening for SCID. We review the various treatment approaches for ADA SCID including allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen-matched sibling or family member or from a matched unrelated donor or a haplo-identical donor, autologous HSCT with gene correction of the hematopoietic stem cells (gene therapy-GT), and enzyme replacement therapy (ERT) with polyethylene glycol-conjugated adenosine deaminase. Based on growing evidence of safety and efficacy from GT, we propose a treatment algorithm for patients with ADA SCID that recommends HSCT from a matched family donor, when available, as a first choice, followed by GT as the next option, with allogeneic HSCT from an unrelated or haplo-identical donor or long-term ERT as other options.

  2. A 24-Year Enzyme Replacement Therapy in an Adenosine-deaminase-Deficient Patient.

    PubMed

    Tartibi, Hana M; Hershfield, Michael S; Bahna, Sami L

    2016-01-01

    Severe combined immunodeficiency (SCID) is a fatal childhood disease unless immune reconstitution is performed early in life, with either hematopoietic stem cell transplantation or gene therapy. One of its subtypes is caused by adenosine deaminase (ADA) enzyme deficiency, which leads to the accumulation of toxic metabolites that impair lymphocyte development and function. With the development of polyethylene glycol-conjugated adenosine deaminase (PEG-ADA) enzyme replacement therapy, many ADA-deficient children with SCID who could not receive a hematopoietic stem cell transplantation or gene therapy survived and had longer and healthier lives. We report a 24-year course of treatment in a patient who was diagnosed with ADA deficiency at 4 months of age. The patient was treated with PEG-ADA, which was the only therapy available for him. The patient's plasma ADA level was regularly monitored and the PEG-ADA dose adjusted accordingly. This treatment has resulted in near-normalization of lymphocyte counts, and his clinical course has been associated with only minor to moderate infections. Thus far, he has had no manifestations of autoimmune or lymphoproliferative disorders. This patient is among the longest to be maintained on PEG-ADA enzyme replacement therapy.

  3. Structural and Metabolic Specificity of Methylthiocoformycin for Malarial Adenosine Deaminases

    SciTech Connect

    Ho, M.; Cassera, M; Madrid, D; Ting, L; Tyler, P; Kim, K; Almo, S; Schramm, V

    2009-01-01

    Plasmodium falciparum is a purine auxotroph requiring hypoxanthine as a key metabolic precursor. Erythrocyte adenine nucleotides are the source of the purine precursors, making adenosine deaminase (ADA) a key enzyme in the pathway of hypoxanthine formation. Methylthioadenosine (MTA) is a substrate for most malarial ADAs, but not for human ADA. The catalytic site specificity of malarial ADAs permits methylthiocoformycin (MT-coformycin) to act as a Plasmodium-specific transition state analogue with low affinity for human ADA. The structural basis for MTA and MT-coformycin specificity in malarial ADAs is the subject of speculation. Here, the crystal structure of ADA from Plasmodium vivax (PvADA) in a complex with MT-coformycin reveals an unprecedented binding geometry for 5?-methylthioribosyl groups in the malarial ADAs. Compared to malarial ADA complexes with adenosine or deoxycoformycin, 5?-methylthioribosyl groups are rotated 130 degrees. A hydrogen bonding network between Asp172 and the 3?-hydroxyl of MT-coformycin is essential for recognition of the 5?-methylthioribosyl group. Water occupies the 5?-hydroxyl binding site when MT-coformycin is bound. Mutagenesis of Asp172 destroys the substrate specificity for MTA and MT-coformycin. Kinetic, mutagenic, and structural analyses of PvADA and kinetic analysis of five other Plasmodium ADAs establish the unique structural basis for its specificity for MTA and MT-coformycin. Plasmodium gallinaceum ADA does not use MTA as a substrate, is not inhibited by MT-coformycin, and is missing Asp172. Treatment of P. falciparum cultures with coformycin or MT-coformycin in the presence of MTA is effective in inhibiting parasite growth.

  4. Adenosine potentiates the therapeutic effects of neural stem cells expressing cytosine deaminase against metastatic brain tumors.

    PubMed

    Kang, Wonyoung; Seol, Ho Jun; Seong, Dong-Ho; Kim, Jandi; Kim, Yonghyun; Kim, Seung U; Nam, Do-Hyun; Joo, Kyeung Min

    2013-09-01

    Tumor-tropic properties of neural stem cells (NSCs) provide a novel approach with which to deliver targeting therapeutic genes to brain tumors. Previously, we developed a therapeutic strategy against metastatic brain tumors using a human NSC line (F3) expressing cytosine deaminase (F3.CD). F3.CD converts systemically administered 5-fluorocytosine (5-FC), a blood-brain barrier permeable nontoxic prodrug, into the anticancer agent 5-fluorouracil (5-FU). In this study, we potentiated a therapeutic strategy of treatment with nucleosides in order to chemically facilitate the endogenous conversion of 5-FU to its toxic metabolite 5-FU ribonucleoside (5-FUR). In vitro, 5-FUR showed superior cytotoxic activity against MDA-MB-435 cancer cells when compared to 5-FU. Although adenosine had little cytotoxic activity, the addition of adenosine significantly potentiated the in vitro cytotoxicity of 5-FU. When MDA-MB‑435 cells were co-cultured with F3.CD cells, F3.CD cells and 5-FC inhibited the growth of MDA-MB-435 cells more significantly in the presence of adenosine. Facilitated 5-FUR production by F3.CD was confirmed by an HPLC analysis of the conditioned media derived from F3.CD cells treated with 5-FC and adenosine. In vivo systemic adenosine treatment also significantly potentiated the therapeutic effects of F3.CD cells and 5-FC in an MDA-MB-435 metastatic brain tumor model. Simple adenosine addition improved the antitumor activity of the NSCs carrying the therapeutic gene. Our results demonstrated an increased therapeutic potential, and thereby, clinical applicability of NSC-based gene therapy.

  5. Adenosine deaminase in cell transformation. Biophysical manifestation of membrane dynamics.

    PubMed

    Porat, N; Gill, D; Parola, A H

    1988-10-15

    Cell transformation is associated with a dramatic collapse of a graphic fingerprint characteristic of normal cells, as measured by phase fluorimetry. This is demonstrated on adenosine deaminase (ADA, EC 3.5.4.4), an established malignancy marker. ADA activity is known to decrease markedly in chick embryo fibroblasts (CEF) transformed by Rous sarcoma virus. The high affinity between the catalytic small subunit ADA (SS-ADA) and its membranal complexing protein (ADCP) (which abounds on the plasma membrane of CEF) allowed the hybridization of fluorescent labeled SS-ADA with native ADCP on CEF. Multifrequency differential phase fluorimetry responded remarkably to the state of this hybrid membrane protein. The transformation process is shown to have led to increased membrane fluidity and rotational mobility of ADCP as well as to its reduced availability to SS-ADA binding. The hypothesis of protein vertical sinking into the lipid core of the membrane is now given support by our spectroscopic data. Additional models are considered. A regulatory role is thus suggested for the complexing protein, which may also account for (a) reduced ADA activity in transformed cells and (b) detachment, exclusive to normal cells, upon addition of SS-ADA in excess.

  6. Diagnostic value of adenosine deaminase to differentiate exudates and transudates.

    PubMed

    Jadhav, Ashish Anantrao; Bardapurkar, Jayashree Suhas

    2007-01-01

    The differentiation of pleural effusions as exudates or transudates is the first step in the diagnosis of pleural effusions. The aim of this study was to evaluate the value of adenosine deaminase (ADA) concentration in the pleural effusions for differentiating exudates from transudates. Sixty indoor patients, admitted to our hospital, having pleural effusions and suffering from varying etiologies were included in this study. According to the final diagnosis, these 60 patients were divided into two groups: exudates (50) and transudates (10). The mean pleural ADA, serum ADA and pleural fluid/serum ADA ratio were significantly (P < 0.0001) higher in exudates as compared to transudates. Using a cut-off point of 22 IU/L, the sensitivity and specificity of pleural ADA in the diagnosis of exudates was computed to be 90% and 90% respectively. At a cut-off point 1.28, pleural fluid/serum ADA ratio was found to have sensitivity 84% and specificity 90%, respectively. From this study it is concluded that, ADA is a useful biochemical marker to suggest exudative effusions.

  7. Deficiency of Adenosine Deaminase 2 Causes Antibody Deficiency.

    PubMed

    Schepp, Johanna; Bulashevska, Alla; Mannhardt-Laakmann, Wilma; Cao, Hongzhi; Yang, Fang; Seidl, Maximilian; Kelly, Susan; Hershfield, Michael; Grimbacher, Bodo

    2016-04-01

    Determining the monogenic cause of antibody deficiency and immune dysregulation in a non-consanguineous family with healthy parents, two affected children, and one unaffected child. Whole Exome Sequencing (WES) was performed in the index family. WES results were confirmed by Sanger Sequencing. Dried plasma spots of the male patient and his mother were analyzed for ADA2 enzymatic activity. Following data analysis of WES, we found a compound heterozygous mutation in CECR1 (encoding adenosine deaminase 2, ADA2) that segregated in the two affected children. Enzyme activity measurement confirmed a severely diminished ADA2 activity in our patient. The 32 year old index patient was suffering from recurrent respiratory infections and was previously diagnosed with common variable immunodeficiency (CVID), showing no signs of vasculitis. His sister had a systemic lupus erythematosus (SLE)-like phenotype and died at age 17. Deficiency of ADA2 (DADA2) has been reported to cause vasculopathy and early-onset stroke. Our case suggests that it should also be considered when evaluating patients with antibody deficiencies and immune dysregulation syndromes.

  8. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma.

    PubMed

    ten Kate, J; van den Ingh, H F; Khan, P M; Bosman, F T

    1986-04-15

    Immunoreactive adenosine deaminase complexing protein (ADCP) was studied in 91 human colorectal adenocarcinomas. The expression of ADCP was correlated with that of secretory component (SC) and carcinoembryonic antigen (CEA), with the histological grade and the Dukes' stage of the carcinomas. The histological grade was scored semi-quantitatively according to 5 structural and 4 cytological variables. ADCP expression was observed in 3 different staining patterns, namely: (1) diffuse cytoplasmic (77% of the carcinomas); (2) granular cytoplasmic (13%); and (3) membrane-associated (66%). These patterns were observed alone or in combination. Eleven percent of the carcinomas exhibited no ADCP immunoreactivity. Linear regression analysis showed that the expression of ADCP correlates with that of SC and CEA. However, no significant correlation emerged between the histological parameters or the Dukes' stage and any of the immunohistological parameters. Comparison of the histological characteristics of carcinomas exhibiting little or no ADCP immunoreactivity with those showing extensive immunoreactivity, showed that membranous ADCP immunoreactivity occurs more frequently in well-differentiated carcinomas. Structural parameters showed a better correlation with membranous ADCP expression than the cytological variables. It is concluded that membranous expression of ADCP and CEA are indicators of a high level of differentiation as reflected primarily in the structural characteristics of the tumor.

  9. Distribution of adenosine deaminase complexing protein (ADCP) in human tissues.

    PubMed

    Dinjens, W N; ten Kate, J; van der Linden, E P; Wijnen, J T; Khan, P M; Bosman, F T

    1989-12-01

    The normal distribution of adenosine deaminase complexing protein (ADCP) in the human body was investigated quantitatively by ADCP-specific radioimmunoassay (RIA) and qualitatively by immunohistochemistry. In these studies we used a specific rabbit anti-human ADCP antiserum. In all 19 investigated tissues, except erythrocytes, ADCP was found by RIA in the soluble and membrane fractions. From all tissues the membrane fractions contained more ADCP (expressed per mg protein) than the soluble fractions. High membrane ADCP concentrations were found in skin, renal cortex, gastrointestinal tract, and prostate. Immunoperoxidase staining confirmed the predominant membrane-associated localization of the protein. In serous sweat glands, convoluted tubules of renal cortex, bile canaliculi, gastrointestinal tract, lung, pancreas, prostate gland, salivary gland, gallbladder, mammary gland, and uterus, ADCP immunoreactivity was found confined to the luminal membranes of the epithelial cells. These data demonstrate that ADCP is present predominantly in exocrine glands and absorptive epithelia. The localization of ADCP at the secretory or absorptive apex of the cells suggests that the function of ADCP is related to the secretory and/or absorptive process.

  10. Expression of human adenosine deaminase in mice reconstituted with retrovirus-transduced hematopoietic stem cells

    SciTech Connect

    Wilson, J.M.; Danos, O.; Grossman, M.; Raulet, D.H.; Mulligan, R.C. )

    1990-01-01

    Recombinant retroviruses encoding human adenosine deaminase have been used to infect murine hematopoietic stem cells. In bone marrow transplant recipients reconstituted with the genetically modified cells, human ADA was detected in peripheral blood mononuclear cells of the recipients for at least 6 months after transplantation. In animals analyzed in detail 4 months after transplantation, human ADA and proviral sequences were detected in all hematopoietic lineages; in several cases, human ADA activity exceeded the endogenous activity. These studies demonstrate the feasibility of introducing a functional human ADA gene into hematopoietic stem cells and obtaining expression in multiple hematopoietic lineages long after transplantation. This approach should be helpful in designing effective gene therapies for severe combined immunodeficiency syndromes in humans.

  11. In vivo kinetics of transduced cells in peripheral T cell-directed gene therapy: role of CD8+ cells in improved immunological function in an adenosine deaminase (ADA)-SCID patient.

    PubMed

    Kawamura, N; Ariga, T; Ohtsu, M; Kobayashi, I; Yamada, M; Tame, A; Furuta, H; Okano, M; Egashira, M; Niikawa, N; Kobayashi, K; Sakiyama, Y

    1999-08-15

    We previously reported successful peripheral T cell-directed gene therapy in a boy with adenosine deaminase (ADA)-SCID. In the present study, to better understand the reconstitutive effect of this gene therapy on his immunological system, we investigated the in vivo kinetics and functional subsets of T cells in PBL. Apparent immunological improvements were obtained after infusion of transduced cells at more than 4 x 108 cells/kg/therapy/3 mo. Frequency of ADAcDNA-integrated cells in PBL, ADA activity in PBL and clinical improvement showed good correlation, even though CD8+ cells gradually became predominant in PBL. On the basis that polyethylene glycol (PEG)-ADA was maintained at the same dosage as before gene therapy, we consider that his immunological improvement resulted from the gene therapy itself. Most CD3+ cells in PBL after gene therapy expressed TCRalphabeta. Analysis of TCR repertoire based on TCR V region usage revealed no expansion of limited clones in his PBL. The T cell subset cells CD8+CDw60+ and CD8+CD27+CD45RA-, which are reported to provide substantial help to B cells, were maintained throughout the gene therapy. Furthermore, his reconstituted peripheral T cells helped normal B cells to produce substantial IgG in vitro. Expression of both Th1- and Th2-type cytokine genes was induced in his reconstituted T cells at the same comparably high level as in normal subjects. Collectively, these results provide evidence of persistent and distinct functions of transduced cells in this patient's PBL after gene therapy.

  12. [Conformation of adenosine deaminase in complexes with inhibitors: application of selective quenching of fluorescence emission].

    PubMed

    Vermishian, I G; Sharoian, S G; Antonian, A A; Grigorian, N A; Mardanian, S S; Khoetsian, A V; Markarian, Sh A

    2008-01-01

    The effect of inhibitors, 1-deazaadenosine (1-dAdo) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), on the conformation of adenosine deaminase was studied using the method of selective quenching of fluorescence emission by acrylamide, I- and Cs+. Both in free adenosine deaminase and in its complexes with the inhibitors, the wavelength maxima and half-width of the emission characterize the environment of fluorescing tryptophan residues in adenosine deaminase as weak polar with limited access to solvent. The formation of complexes with the ground state inhibitors used did not quench or change the main emission characteristics of tryptophan fluorescence in adenosine deaminase. Small blue shifts of emission maxima were observed upon quenching in all three samples. The Stern-Volmer parameters of tryptophan fluorescence quenching by acrylamide were not essentially influenced by complex formation of the enzyme with the inhibitors: in general, the folding of the enzyme molecule in the complexes is not perturbed. On the contrary, the emission quenching by charged heavy ions, I- and Cs+, in the complexes was hindered in comparison with free adenosine deaminase. In the complex with 1-deazaadenosine, the parameters for quenching by both ions evidence the essential worsening of their interaction with tryptophans. In the complex with erythro-9-(2-hydroxy-3-nonyl)adenine, along with the worse quenching by I-, complete prohibition of quenching by Cs+ was observed. These data indicate that the local environments of fluorescing tryptophan residues is substantially distorted compared with free adenosine deaminase, which leads to their screening from charged heavy ions.

  13. Paradoxical expression of adenosine deaminase in T cells cultured from a patient with adenosine deaminase deficiency and combine immunodeficiency.

    PubMed Central

    Arredondo-Vega, F X; Kurtzberg, J; Chaffee, S; Santisteban, I; Reisner, E; Povey, M S; Hershfield, M S

    1990-01-01

    T lymphocytes cultured from a patient (T.D.) with adenosine deaminase (ADA) deficiency expressed ADA activity in the normal range, inconsistent with her severe immunodeficiency, metabolic abnormalities, and with the absence of ADA activity in her B lymphocytes and other nucleated hematopoietic cells. ADA from T.D. T cells had normal Km, heat stability, and sensitivity to ADA inhibitors. Examination of HLA phenotype and polymorphic DNA loci indicated that T.D. was neither chimeric nor a genetic mosaic. Amplified and subcloned ADA cDNA from ADA+ T.D. T cells was shown by allele-specific oligonucleotide hybridization to possess the same mutations (Arg101----Trp, Arg211----His) previously found in the ADA-T.D. B cell line GM 2606 (Akeson, A. L., D. A. Wiginton, M. R. Dusing, J. C. States, and J. J. Hutton. 1988. J. Biol. Chem. 263:16291-16296). Our findings suggest that one of these mutant alleles can be expressed selectively in IL-2-dependent T cells as stable, active enzyme. Cultured T cells from other patients with the Arg211----His mutation did not express significant ADA activity, while some B cell lines from a patient with an Arg101----Gln mutation have been found to express normal ADA activity. We speculate that Arg101 may be at a site that determines degradation of ADA by a protease that is under negative control by IL-2 in T cells, and is variably expressed in B cells. Il-2 might increase ADA expression in T cells of patients who possess mutations of Arg101. Images PMID:1974554

  14. Adenosine deaminase production by an endophytic bacterium (Lysinibacillus sp.) from Avicennia marina.

    PubMed

    Kathiresan, Kandasamy; Saravanakumar, Kandasamy; Sahu, Sunil Kumar; Sivasankaran, Muthu

    2014-06-01

    The present study was carried out with the following objectives: (1) to isolate the endophytic bacilli strains from the leaves of mangrove plant Avicennia marina, (2) to screen the potential strains for the production of adenosine deaminase, (3) to statistically optimize the factors that influence the enzyme activity in the potent strain, and (4) to identify the potent strain using 16S rRNA sequence and construct its phylogenetic tree. The bacterial strains isolated from the fresh leaves of a mangrove A. marina were assessed for adenosine deaminase activity by plating method. Optimization of reaction process was carried out using response surface methodology of central composite design. The potent strain was identified based on 16S rRNA sequencing and phylogeny. Of five endophytic strains, EMLK1 showed a significant deaminase activity over other four strains. The conditions for maximum activity of the isolated adenosine deaminase are described. The potent strain EMLK1 was identified as Lysinibacillus sp. (JQ710723) being the first report as a mangrove endophyte. Mangrove-derived endophytic bacillus strain Lysinibacillus sp. EMLK1 is proved to be a promising source for the production of adenosine deaminase and this enzyme deserves further studies for purification and its application in disease diagnosis.

  15. Investigation into effects of antipsychotics on ectonucleotidase and adenosine deaminase in zebrafish brain.

    PubMed

    Seibt, Kelly Juliana; Oliveira, Renata da Luz; Bogo, Mauricio Reis; Senger, Mario Roberto; Bonan, Carla Denise

    2015-12-01

    Antipsychotic agents are used for the treatment of psychotic symptoms in patients with several brain disorders, such as schizophrenia. Atypical and typical antipsychotics differ regarding their clinical and side-effects profile. Haloperidol is a representative typical antipsychotic drug and has potent dopamine receptor antagonistic functions; however, atypical antipsychotics have been developed and characterized an important advance in the treatment of schizophrenia and other psychotic disorders. Purine nucleotides and nucleosides, such as ATP and adenosine, constitute a ubiquitous class of extracellular signaling molecules crucial for normal functioning of the nervous system. Indirect findings suggest that changes in the purinergic system, more specifically in adenosinergic activity, could be involved in the pathophysiology of schizophrenia. We investigated the effects of typical and atypical antipsychotics on ectonucleotidase and adenosine deaminase (ADA) activities, followed by an analysis of gene expression patterns in zebrafish brain. Haloperidol treatment (9 µM) was able to decrease ATP hydrolysis (35%), whereas there were no changes in hydrolysis of ADP and AMP in brain membranes after antipsychotic exposure. Adenosine deamination in membrane fractions was inhibited (38%) after haloperidol treatment when compared to the control; however, no changes were observed in ADA soluble fractions after haloperidol exposure. Sulpiride (250 µM) and olanzapine (100 µM) did not alter ectonucleotidase and ADA activities. Haloperidol also led to a decrease in entpd2_mq, entpd3 and adal mRNA transcripts. These findings demonstrate that haloperidol is an inhibitor of NTPDase and ADA activities in zebrafish brain, suggesting that purinergic signaling may also be a target of pharmacological effects promoted by this drug.

  16. Hyperbilirubinemia and rapid fatal hepatic failure in severe combined immunodeficiency caused by adenosine deaminase deficiency (ADA-SCID).

    PubMed

    Kühl, J S; Schwarz, K; Münch, A; Schmugge, M; Pekrun, A; Meisel, C; Wahn, V; Ebell, W; von Bernuth, H

    2011-03-01

    Adenosin deaminase (ADA) deficiency is the cause for Severe Combined Immunodeficiency (SCID) in about 15% of patients with SCID, often presenting as T (-)B (-)NK (-)SCID. Treatment options for ADA-SCID are enzyme replacement, bone marrow transplantation or gene therapy. We here describe the first patient with ADA-SCID and fatal hepatic failure despite bone marrow transplantation from a 10/10 HLA identical related donor. As patients with ADA-SCID may be at yet underestimated increased risk for rapid hepatic failure we speculate whether hepatitis in ADA-SCID should lead to the immediate treatment with enzyme replacement by pegylated ADA.

  17. Adenosine deaminase complexing protein (ADCP): a transformation sensitive protein with potentials of a cancer marker.

    PubMed

    Herbschleb-Voogt, E; Ten Kate, J; Meera Khan, P

    1983-01-01

    Several observations by independent investigators in the past have indicated that adenosine deaminase complexing protein (ADCP), present in considerable quantities in certain human tissues, was absent or decreased in the cancers originated from them. During the present study, electrophoretic analysis of adenosine deaminase (ADA) isozymes and radioimmunoassay for ADCP in the primary fibroblasts and the transformed as well as certain tumor derived cell lines have demonstrated that ADCP present in large quantities in the primary cells was absent or nearly absent in the transformed or tumor-derived cell lines. Though the mechanisms involved are not yet clear, the above observations indicate that ADCP has the potentials of a useful marker in the studies on transformed cells and cancer tissues.

  18. Hereditary overexpression of adenosine deaminase in erythrocytes: Evidence for a cis-acting mutation

    SciTech Connect

    Chen, E.H. ); Tartaglia, A.P. ); Mitchell, B.S. )

    1993-10-01

    Overexpression of adenosine deaminase (ADA) in red blood cells is inherited as an autosomal dominant trait and causes hemolytic anemia. The increased ADA activity in erythrocytes is due to an increase in steady-state levels of ADA mRNA of normal sequence. Increased ADA mRNA may be due to a cis-acting mutation which results in increased transcription or a loss of down-regulation during erythroid differentiation. Alternatively, it is possible that the mutation is in a trans-acting factor which interacts with normal ADA transcriptional elements to cause overexpression in red blood cells. To discriminate between a cis-acting and a trans-acting mutation, the authors took advantage of a highly polymorphic TAAA repeat located at the tail end of an Alu repeat approximately 1.1 kb upstream of the ADA gene. Using PCR to amplify this region, the authors identified five different alleles in 19 members of the family. All 11 affected individuals had an ADA allele with 12 TAAA repeats, whereas none of the 8 normal individuals did. The authors conclude that this disorder results from a cis-acting mutation in the vicinity of the ADA gene. 24 refs., 3 figs.

  19. Evaluation of adenosine deaminase assay for analyzing T-lymphocyte density in vitro.

    PubMed

    Kainthla, Rani Poonam; Kashyap, Rajpal Singh; Prasad, Sweta; Purohit, Hemant J; Taori, Giridhar M; Daginawala, Hatim F

    2006-01-01

    The proliferative capacity of T cells in response to various stimuli is commonly determined by radioactive assay based on incorporation of [3H]thymidine ([3H]TdR) into newly synthesized DNA. In order to assess techniques for application in laboratories where radioactive facilities are not present, an alternative method was tested. As an alternative, T-cell proliferation was measured by spectrophotometrically analyzing the presence of an enzyme adenosine deaminase in lymphocytes and also using a standard XTT assay. Jurkat (human) T-cell line (clone E6.1) was used for lymphocyte population. The Jurkat cell concentration was adjusted according to different cell densities and enzyme activity was determined. Cells were also seeded in complete medium up to 72 h and harvested for estimation of enzyme activity. A significant correlation between the standard cell-proliferation assay and adenosine deaminase assay was observed. The present study indicates that the assay of adenosine deaminase is a reliable and accurate method for measuring proliferation of T lymphocytes.

  20. Hyperglycemia alters E-NTPDases, ecto-5'-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Siebel, Anna Maria; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2016-06-01

    Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5'-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment.

  1. Somatic cell genetics of adenosine deaminase expression and severe combined immunodeficiency disease in humans.

    PubMed

    Koch, G; Shows, T B

    1980-07-01

    The somatic cell hybrid method has been used to study the number and different types of human genes involved in the expression of adenosine deaminase (ADA; adenosine aminohydrolase, EC 3.5.4.4) in normal cells and cells from a patient with ADA-deficient severe combined immunodeficiency disease (SCID). Genetic and biochemical characterization of ADA in SCID and the ADA tissue-specific isozymes in normal human cells indicates that additional genes, besides the ADA structural gene on chromosome 20, are involved in ADA expression. Human chromosome 6 encodes a gene, ADCP-1, whose presence is necessary for the expression of an ADA-complexing protein in human-mouse somatic cell hybrids [Koch, G. & Shows, T. B. (1978) Proc. Natl. Acad. Sci. USA 75, 3876-3880]. We report the identification of a second gene, ADCP-2, on human chromosome 2, that is also involved in the expression of the ADA-complexing protein. The data indicate that these two ADCP genes must be present in the same cell for that cell to express the complexing protein. Human-mouse somatic cell hybrids, in which the human parental cells were fibroblastss from an individual with ADA-deficient SCID, also required human chromosomes 2 and 6 to express the ADA-complexing protein, indicating that neither ADCP-1 nor ADCP-2 is involved in the ADA deficiency in SCID. The SCID-mouse hybrid cells expressed no human ADA even when human chromosome 20 had been retained. The deficiency of human ADA in these hybrids maps to human chromosome 20, and therefore is not due to the repression or inhibiton of ADA or its product by unlinked genes or gene products. We propose that the expression of the polymeric ADA tissue isozymes in human cells requires at least three genes: ADA on chromosome 20, ADCP-1 on chromosome 6, and ADCP-2 on chromosome 2. A genetic scheme is presented and the different genes involved in ADA expression and their possible functions are discussed.

  2. Adenosine Deaminase Polymorphism Affects Sleep EEG Spectral Power in a Large Epidemiological Sample

    PubMed Central

    Mazzotti, Diego Robles; Guindalini, Camila; de Souza, Altay Alves Lino; Sato, João Ricardo; Santos-Silva, Rogério; Bittencourt, Lia Rita Azeredo; Tufik, Sergio

    2012-01-01

    Slow wave oscillations in the electroencephalogram (EEG) during sleep may reflect both sleep need and intensity, which are implied in homeostatic regulation. Adenosine is strongly implicated in sleep homeostasis, and a single nucleotide polymorphism in the adenosine deaminase gene (ADA G22A) has been associated with deeper and more efficient sleep. The present study verified the association between the ADA G22A polymorphism and changes in sleep EEG spectral power (from C3-A2, C4-A1, O1-A2, and O2-A1 derivations) in the Epidemiologic Sleep Study (EPISONO) sample from São Paulo, Brazil. Eight-hundred individuals were subjected to full-night polysomnography and ADA G22A genotyping. Spectral analysis of the EEG was carried out in all individuals using fast Fourier transformation of the signals from each EEG electrode. The genotype groups were compared in the whole sample and in a subsample of 120 individuals matched according to ADA genotype for age, gender, body mass index, caffeine intake status, presence of sleep disturbance, and sleep-disturbing medication. When compared with homozygous GG genotype carriers, A allele carriers showed higher delta spectral power in Stage 1 and Stages 3+4 of sleep, and increased theta spectral power in Stages 1, 2 and REM sleep. These changes were seen both in the whole sample and in the matched subset. The higher EEG spectral power indicates that the sleep of individuals carrying the A allele may be more intense. Therefore, this polymorphism may be an important source of variation in sleep homeostasis in humans, through modulation of specific components of the sleep EEG. PMID:22952909

  3. Elevated erythrocyte adenosine deaminase activity in a patient with primary acquired sideroblastic anemia.

    PubMed

    Kanno, H; Fujii, H; Tani, K; Morisaki, T; Takahashi, K; Horiuchi, N; Kizaki, M; Ogawa, T; Miwa, S

    1988-03-01

    We report a case of primary acquired sideroblastic anemia (PASA) associated with elevated erythrocyte adenosine deaminase (ADA) activity. The patient was an 85-year-old Japanese male. Analysis of the peripheral blood revealed pancytopenia, and the bone marrow findings showed marked ringed sideroblasts and chromosomal deletion (46XY, 11q-). The erythrocyte ADA activity was 17 times higher than that of normal control, the leukocyte ADA activity was within the normal range, and the plasma ADA activity was 2 times higher than the normal mean. The adenine nucleotides in the patient's erythrocytes were within normal range. According to starch gel electrophoresis, ADA isozyme of the patient was ADA 1. Western blotting showed an increased amount of ADA protein in the patient's erythrocytes. Southern blotting revealed no gene amplification or large structural change. Dot blot analysis of the reticulocyte mRNA showed no increase in the amount of ADA mRNA in the patient's reticulocytes compared with those of reticulocyte-rich controls. We considered that the mechanism of elevated ADA activity in this acquired defect was similar to that found in hereditary hemolytic anemia associated with ADA overproduction.

  4. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    PubMed Central

    Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Dias, Ana Sofia; Pelletier, Julie

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders. PMID:25210228

  5. Metabolic and functional consequences of inhibiting adenosine deaminase during renal ischemia in rats.

    PubMed Central

    Stromski, M E; van Waarde, A; Avison, M J; Thulin, G; Gaudio, K M; Kashgarian, M; Shulman, R G; Siegel, N J

    1988-01-01

    The concentrations of renal ATP have been measured by 31P-nuclear magnetic resonance (NMR) before, during, and after bilateral renal artery occlusion. Using in vivo NMR, the initial postischemic recovery of ATP increased with the magnitude of the residual nucleotide pool at the end of ischemia. ATP levels after 120 min of reflow correlated with functional recovery at 24 h. In the present study the effect of blocking the degradation of ATP during ischemia upon the postischemic restoration of ATP was investigated. Inhibition of adenosine deaminase by 80% with the tight-binding inhibitor 2'-deoxycoformycin led to a 20% increase in the residual adenine nucleotide pool. This increased the ATP initial recovery after 45 min of ischemia from 52% (in controls) to 62% (in the treated animals), as compared to the basal levels. The inhibition also caused an accelerated postischemic restoration of cellular ATP so that at 120 min it was 83% in treated rats vs. 63% in untreated animals. There was a corresponding improvement in the functional recovery from the insult (increase of 33% in inulin clearance 24 h after the injury). Inhibition of adenosine deaminase during ischemia results in a injury similar to that seen after a shorter period of insult. PMID:3263396

  6. Expression of a functional human adenosine deaminase in transgenic tobacco plants.

    PubMed

    Singhabahu, Sanjeewa; George, John; Bringloe, David

    2013-06-01

    An inherited disorder, adenosine deaminase deficiency is a form of severe combined immunodeficiency, which is ultimately caused by an absence of adenosine deaminase (ADA), a key enzyme of the purine salvage pathway. The absence of ADA-activity in sufferers eventually results in a dysfunctional immune system due to the build-up of toxic metabolites. To date, this has been treated with mixed success, using PEG-ADA, made from purified bovine ADA coupled to polyethylene glycol. It is likely, however, that an enzyme replacement therapy protocol based on recombinant human ADA would be a more effective treatment for this disease. Therefore, as a preliminary step to produce biologically active human ADA in transgenic tobacco plants a human ADA cDNA has been inserted into a plant expression vector under the control of the CaMV 35S promoter and both human and TMV 5' UTR control regions. Plant vector expression constructs have been used to transform tobacco plants via Agrobacterium-mediated transformation. Genomic DNA, RNA and protein blot analyses have demonstrated the integration of the cDNA construct into the plant nuclear genome and the expression of recombinant ADA mRNA and protein in transgenic tobacco leaves. Western blot analysis has also revealed that human and recombinant ADA have a similar size of approximately 41 kDa. ADA-specific activities of between 0.001 and 0.003 units per mg total soluble protein were measured in crude extracts isolated from transformed tobacco plant leaves.

  7. Regulation of adenosine deaminase (ADA) on induced mouse experimental autoimmune uveitis (EAU) ‡

    PubMed Central

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J.; Sun, Deming

    2016-01-01

    Adenosine is an important regulator of the immune response and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies have shown that adenosine receptor (AR) agonists can be either anti- or pro-inflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1–20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8–14 days post-immunization, shortly before EAU expression, but ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses and this effect was γδ T cell-dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help improve the design of ADA- and AR-targeted therapies. PMID:26856700

  8. [The involvement of adenosine and adenosine deaminase in experimental myocardial infarct].

    PubMed

    Stratone, A; Busuioc, A; Roşca, V; Bazgan, L; Popa, M; Hăulică, I

    1989-01-01

    By the ligature of the left coronary artery in the rat anesthetized with nembutal (10 mg/100 i.p.) a significant increase of the 5'-nucleotidase activity (Wooton method) was noticed 10 minutes after the left ventricle infarction (from an average value of 1038.5 +/- 187 mU/g tissue to 1537 +/- 225 mU/g fresh tissue). The adenosine desaminase levels spectrophotometrically determined by Denstedt technique, do not appear significantly modified 10 or 30 minutes after the left ventricle infarction. The chromatographically determined adenosine levels, by HPLC technique, decrease from the average value of 11.63 +/- 1.4 micrograms/mg PT to 8.60 +/- 1.0 micrograms/mg PT 30 minutes after infarction. The observed changes are explained by the conditions of hypoxia in the infarcted ventricle which lead to the raise in adenosine levels by activating the 5'-nucleotidase and their depression by a very fast metabolism of the same substance.

  9. Adenosine deaminase 1 and concentrative nucleoside transporters 2 and 3 regulate adenosine on the apical surface of human airway epithelia: implications for inflammatory lung diseases.

    PubMed

    Hirsh, Andrew J; Stonebraker, Jaclyn R; van Heusden, Catja A; Lazarowski, Eduardo R; Boucher, Richard C; Picher, Maryse

    2007-09-11

    Adenosine is a multifaceted signaling molecule mediating key aspects of innate and immune lung defenses. However, abnormally high airway adenosine levels exacerbate inflammatory lung diseases. This study identifies the mechanisms regulating adenosine elimination from the apical surface of human airway epithelia. Experiments conducted on polarized primary cultures of nasal and bronchial epithelial cells showed that extracellular adenosine is eliminated by surface metabolism and cellular uptake. The conversion of adenosine to inosine was completely inhibited by the adenosine deaminase 1 (ADA1) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA). The reaction exhibited Km and Vmax values of 24 microM and 0.14 nmol x min(-1) x cm(-2). ADA1 (not ADA2) mRNA was detected in human airway epithelia. The adenosine/mannitol permeability coefficient ratio (18/1) indicated a minor contribution of paracellular absorption. Adenosine uptake was Na+-dependent and was inhibited by the concentrative nucleoside transporter (CNT) blocker phloridzin but not by the equilibrative nucleoside transporter (ENT) blocker dipyridamole. Apparent Km and Vmax values were 17 microM and 7.2 nmol x min(-1) x cm(-2), and transport selectivity was adenosine = inosine = uridine > guanosine = cytidine > thymidine. CNT3 mRNA was detected throughout the airways, while CNT2 was restricted to nasal epithelia. Inhibition of adenosine elimination by EHNA or phloridzin raised apical adenosine levels by >3-fold and stimulated IL-13 and MCP-1 secretion by 6-fold. These responses were reproduced by the adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA) and blocked by the adenosine receptor antagonist, 8-(p-sulfophenyl) theophylline (8-SPT). This study shows that adenosine elimination on human airway epithelia is mediated by ADA1, CNT2, and CNT3, which constitute important regulators of adenosine-mediated inflammation.

  10. The role of plasma adenosine deaminase in chemoattractant-stimulated oxygen radical production in neutrophils.

    PubMed

    Kälvegren, Hanna; Fridfeldt, Jonna; Bengtsson, Torbjörn

    2010-06-01

    Adenosine deaminase (ADA) has a role in many immunity mediated disorders, such as asthma, tuberculosis and coronary artery disease. This study aims to investigate the ability of plasma ADA to modulate reactive oxygen species (ROS) production in neutrophils, and examine the involvement of adenosine and the cyclic AMP signaling pathway in this process. Neutrophils were stimulated, in the absence or presence of plasma, with the chemotactic peptide fMLP (formyl-methionyl-leucyl-phenylalanine), and the ROS production was determined with luminol-enhanced chemiluminescence. Activity of ADA was measured spectrophotometrically. Plasma dose-dependently amplified the ROS generation in fMLP-stimulated neutrophils. In parallel, incubation of neutrophils in plasma elevated the total ADA-activity approximately 10 times from 1.3 U/ml to 12 U/ml. Inhibition of ADA, or type IV phosphodiesterases, significantly lowered the plasma-mediated ROS production. Furthermore, the high-affinity adenosine A(1) receptor antagonists DPCPX and 8-phenyltheophylline markedly inhibited the plasma-induced respiratory burst in neutrophils, suggesting an A(1) receptor-mediated mechanism. This study suggests that plasma ADA amplifies the release of toxic oxygen radicals from neutrophils through a downregulation of the inhibitory adenosine/cAMP-system and an enhanced activation of the stimulatory adenosine A(1)-receptor. This mechanism has probably a crucial role in regulating neutrophil function and in the defence against microbial infections. However, a sustained neutrophil activation could also contribute to inflammatory disorders such as atherosclerosis. 2010 Elsevier GmbH. All rights reserved.

  11. Adenosine ecto-deaminase (ecto-ADA) from porcine cerebral cortex synaptic membrane.

    PubMed

    Romanowska, Małgorzata; Ostrowska, Marta; Komoszyński, Michał A

    2007-07-02

    We have purified and investigated the role of adenosine ecto-deaminase (ecto-ADA) in porcine brain synaptic membranes and found a low activity of ecto-ADA in synaptic preparations from the cerebral cortex, hippocampus, striatum and medulla oblongata in the presence of purine transport inhibitors (NBTI, dipyridamole and papaverine). The purification procedure with affinity chromatography on epoxy-Toyopearl gel/purine riboside column as a crucial step of purification allowed a 214-fold purification of synaptic ecto-ADA with a yield of 30%. Gel filtration chromatography revealed a molecular mass estimated at 42.4+/-3.9 kDa. The enzyme had a broad optimum pH and was not affected by mono- and divalent cations. Ecto-ADA revealed a low affinity to adenosine (Ado) and 2'-deoxyadenosine (2'-dAdo) (K(M)=286.30+/-40.38 microM and 287.14+/-46.50 microM, respectively). We compared the affinity of ecto-ADA to the substrates with the physiological and pathological concentrations of the extracellular Ado in brains that do not exceed a low micromolar range even during ischemia and hypoxia, and with the affinity of adenosine receptors to Ado not exceeding a low nanomolar (A(1) and A(2A) receptors) or low micromolar (A(2B) and A(3)) range. Taken together, our data suggest that the role of synaptic ecto-ADA in the regulation of the ecto-Ado level in the brain and in the termination of adenosine receptor signaling is questionable. The porcine brain synapses must have other mechanisms for the ecto-Ado removal from the synaptic cleft and synaptic ecto-ADA may also play an extra-enzymatic role in cell adhesion and non-enzymatic regulation of adenosine receptor activity.

  12. Gene Duplication in Pseudomonas aeruginosa Improves Growth on Adenosine.

    PubMed

    Toussaint, Jean-Paul; Farrell-Sherman, Anna; Feldman, Tamar Perla; Smalley, Nicole E; Schaefer, Amy L; Greenberg, E Peter; Dandekar, Ajai A

    2017-11-01

    The laboratory strain of Pseudomonas aeruginosa, PAO1, activates genes for catabolism of adenosine using quorum sensing (QS). However, this strain is not well-adapted for growth on adenosine, with doubling times greater than 40 h. We previously showed that when PAO1 is grown on adenosine and casein, variants emerge that grow rapidly on adenosine. To understand the mechanism by which this adaptation occurs, we performed whole-genome sequencing of five isolates evolved for rapid growth on adenosine. All five genomes had a gene duplication-amplification (GDA) event covering several genes, including the quorum-regulated nucleoside hydrolase gene, nuh, and PA0148, encoding an adenine deaminase. In addition, two of the growth variants also exhibited a nuh promoter mutation. We recapitulated the rapid growth phenotype with a plasmid containing six genes common to all the GDA events. We also showed that nuh and PA0148, the two genes at either end of the common GDA, were sufficient to confer rapid growth on adenosine. Additionally, we demonstrated that the variant nuh promoter increased basal expression of nuh but maintained its QS regulation. Therefore, GDA in P. aeruginosa confers the ability to grow efficiently on adenosine while maintaining QS regulation of nucleoside catabolism.IMPORTANCEPseudomonas aeruginosa thrives in many habitats and is an opportunistic pathogen of humans. In these diverse environments, P. aeruginosa must adapt to use myriad potential carbon sources. P. aeruginosa PAO1 cannot grow efficiently on nucleosides, including adenosine; however, it can acquire this ability through genetic adaptation. We show that the mechanism of adaptation is by amplification of a specific region of the genome and that the amplification preserves the regulation of the adenosine catabolic pathway by quorum sensing. These results demonstrate an underexplored mechanism of adaptation by P. aeruginosa, with implications for phenotypes such as development of antibiotic

  13. Carrier frequency of a nonsense mutation in the adenosine deaminase (ADA) gene implies a high incidence of ADA-deficient severe combined immunodeficiency (SCID) in Somalia and a single, common haplotype indicates common ancestry.

    PubMed

    Sanchez, Juan J; Monaghan, Gemma; Børsting, Claus; Norbury, Gail; Morling, Niels; Gaspar, H Bobby

    2007-05-01

    Inherited adenosine deaminase (ADA) deficiency is a rare metabolic disorder that causes immunodeficiency, varying from severe combined immunodeficiency (SCID) in the majority of cases to a less severe form in a small minority of patients. Five patients of Somali origin from four unrelated families, with severe ADA-SCID, were registered in the Greater London area. Patients and their parents were investigated for the nonsense mutation Q3X (ADA c7C>T), two missense mutations K80R (ADA c239A>G) and R142Q (ADA c425G>A), and a TAAA repeat located at the 3' end of an Alu element (AluVpA) positioned 1.1 kb upstream of the ADA transcription start site. All patients were homozygous for the haplotype ADA-7T/ADA-239G/ADA-425G/AluVpA7. Among 207 Somali immigrants to Denmark, the frequency of ADA c7C>T and the maximum likelihood estimate of the frequency of the haplotype ADA-7T/ADA-239G/ADA-425G/AluVpA7 were both 0.012 (carrier frequency 2.4%). Based on the analysis of AluVpA alleles, the ADA c7C/T mutation was estimated to be approximately 7,100 years old. Approximately 1 out of 5 - 10000 Somali children will be born with ADA deficiency due to an ADA c7C/T mutation, although within certain clans the frequency may be significantly higher. ADA-SCID may be a frequent immunodeficiency disorder in Somalia, but will be underdiagnosed due to the prevailing socioeconomic and nutritional deprivation.

  14. Does adenosine deaminase activity play a role in the early diagnosis of ectopic pregnancy?

    PubMed

    Turkmen, G G; Karçaaltıncaba, D; Isık, H; Fidancı, V; Kaayalp, D; Tımur, H; Batıoglu, S

    2016-01-01

    Early diagnosis of ectopic pregnancy (EP) is important due to life-threatening consequences in the first trimester of pregnancy. In this study we aimed to investigate the role of adenosine deaminase (ADA) activity in the prediction of EP. Forty-one patients with unruptured ectopic pregnancy comprised the case group and forty-two first trimester pregnant women with shown foetal heart beating in ultrasound comprised the control group. The mean ADA level in EP (10.9 ± 3.0 IU/L) was higher than that in control group (9.2 ± 3.6 IU/L) (p = 0.018). Receiver operating characteristics or ROC curve identified ADA value of 10.95 IU/L as optimal threshold for the prediction of EP with 56% sensitivity and 67% specificity. High ADA levels are valuable in the early diagnosis of EP. However more comprehensive studies are required.

  15. Non-infectious lung disease in patients with adenosine deaminase deficient severe combined immunodeficiency.

    PubMed

    Booth, C; Algar, V E; Xu-Bayford, J; Fairbanks, L; Owens, C; Gaspar, H B

    2012-06-01

    Adenosine deaminase deficiency is a disorder of purine metabolism manifesting severe combined immunodeficiency (ADA-SCID) and systemic abnormalities. Increased levels of the substrate deoxyadenosine triphosphate (dATP) lead to immunodeficiency and are associated in a murine model with pulmonary insufficiency. We compared a cohort of patients with ADA-SCID and X-linked SCID and found that despite similar radiological and respiratory findings, positive microbiology is significantly less frequent in ADA-SCID patients (p < 0.0005), suggesting a metabolic pathogenesis for the lung disease. Clinicians should be aware of this possibility and correct metabolic abnormalities either through enzyme replacement or haematopoietic stem cell transplant, in addition to treating infectious complications.

  16. Correlation between tumor histology, steroid receptor status, and adenosine deaminase complexing protein immunoreactivity in ovarian cancer.

    PubMed

    Rao, B R; Slotman, B J; Geldof, A A; Dinjens, W N

    1990-01-01

    Adenosine deaminase complexing protein (ADCP) immunoreactivity was investigated in 40 ovarian tumors and correlated with clinicopathologic parameters, including tumor steroid receptor content. Ten (29%) of 34 common epithelial ovarian carcinomas showed ADCP reactivity. Reactivity for ADCP was seen more frequently in mucinous (100%; p less than 0.001), well-differentiated (73%; p less than 0.001) and Stage I (56%; p less than 0.05) ovarian carcinomas. Furthermore, tumors that contained high levels of androgen receptors and tumors that did not contain estrogen receptors were more frequently ADCP positive (p less than 0.05). However, after stratifying for histologic grade, no correlation between ADCP reactivity and receptor status was found. Determination of ADCP reactivity appears to be of limited value in ovarian cancer.

  17. Diagnostic Value of Adenosine Deaminase and Its Isoforms in Type II Diabetes Mellitus

    PubMed Central

    Larijani, Bagher; Heshmat, Ramin; Ebrahimi-Rad, Mina; Khatami, Shohreh; Valadbeigi, Shirin

    2016-01-01

    Background and Aims. In the present study, we have investigated the activity of adenosine deaminase (ADA) as a diagnostic marker in type 2 (or II) diabetes mellitus (T2DM). Design and Methods. The deaminase activity of ADA1 and ADA2 was determined in serum from 33 patients with type 2 (or II) diabetes mellitus and 35 healthy controls. We also determined the proportion of glycated hemoglobin (HbA1c). Results. Our results showed significant differences between total serum ADA (tADA) and ADA2 activities in the diabetic groups with HbA1c < 8 (%) and HbA1c ≥ 8 (%) with respect to the values in healthy individuals (p < 0.001). ADA2 activity in patients with high HbA1c was found to be much higher than that in patients with low HbA1c (p = 0.0001). In addition, total ADA activity showed a significant correlation with HbA1c (r = 0.6, p < 0.0001). Conclusions. Total serum ADA activity, specially that due to ADA2, could be useful test for the diagnosis of type 2 (or II) diabetes mellitus. PMID:28050278

  18. Expression of Drosophila Adenosine Deaminase in Immune Cells during Inflammatory Response

    PubMed Central

    Novakova, Milena; Dolezal, Tomas

    2011-01-01

    Extra-cellular adenosine is an important regulator of inflammatory responses. It is generated from released ATP by a cascade of ectoenzymes and degraded by adenosine deaminase (ADA). There are two types of enzymes with ADA activity: ADA1 and ADGF/ADA2. ADA2 activity originates from macrophages and dendritic cells and is associated with inflammatory responses in humans and rats. Drosophila possesses a family of six ADGF proteins with ADGF-A being the main regulator of extra-cellular adenosine during larval stages. Herein we present the generation of a GFP reporter for ADGF-A expression by a precise replacement of the ADGF-A coding sequence with GFP using homologous recombination. We show that the reporter is specifically expressed in aggregating hemocytes (Drosophila immune cells) forming melanotic capsules; a characteristic of inflammatory response. Our vital reporter thus confirms ADA expression in sites of inflammation in vivo and demonstrates that the requirement for ADA activity during inflammatory response is evolutionary conserved from insects to vertebrates. Our results also suggest that ADA activity is achieved specifically within sites of inflammation by an uncharacterized post-transcriptional regulation based mechanism. Utilizing various mutants that induce melanotic capsule formation and also a real immune challenge provided by parasitic wasps, we show that the acute expression of the ADGF-A protein is not driven by one specific signaling cascade but is rather associated with the behavior of immune cells during the general inflammatory response. Connecting the exclusive expression of ADGF-A within sites of inflammation, as presented here, with the release of energy stores when the ADGF-A activity is absent, suggests that extra-cellular adenosine may function as a signal for energy allocation during immune response and that ADGF-A/ADA2 expression in such sites of inflammation may regulate this role. PMID:21412432

  19. Adenosine deaminase and adenosine kinase expression in human glioma and their correlation with glioma‑associated epilepsy.

    PubMed

    Huang, Jun; He, Yujiao; Chen, Mingna; Du, Juan; Li, Guoliang; Li, Shuyu; Liu, Weiping; Long, Xiaoyan

    2015-11-01

    The aim of the present study was to investigate adenosine deaminase (ADA) and adenosine kinase (ADK) expression in human glioma and to explore its correlation with glioma‑associated epilepsy. Tumor tissues (n=45) and peritumoral tissues (n=14) were obtained from glioma patients undergoing surgery. Normal control tissues (n=8) were obtained from brain trauma patients. The disease grade was determined by histological evaluation and the degree of tumor invasion was evaluated using immunofluorescence analyses. mRNA and protein expression of ADA and ADK were evaluated using reverse transcription quantitative polymerase chain reaction or western blot analysis, respectively. Based on histological evaluations, four cases were classified as Grade I gliomas, 18 cases as Grade II, 17 cases as Grade III and six cases were considered Grade IV. Increased ADA and ADK expression was observed in tumor tissues. ADA was predominantly distributed in the cytoplasm of tumor cells, whereas ADK was detected in the cytoplasm as well as in the nuclei. ADA and ADK levels were upregulated in patients with Grade II and Grade III gliomas compared to those in control subjects (p<0.05). In addition, tumor invasion was detected in peritumoral tissues. The number of ADA‑positive or ADK‑positive cells in tumor tissues was similar between glioma patients with and without epilepsy (p>0.05). However, ADA and ADK expression was upregulated in peritumoral tissues derived from patients with epilepsy compared to that in glioma patients without epilepsy. The results of the present study suggested that ADA and ADK are involved in glioma progression, and that increased ADA and ADK levels in peritumoral tissues may be associated with epilepsy in glioma patients.

  20. The Binding Site of Human Adenosine Deaminase for Cd26/Dipeptidyl Peptidase IV

    PubMed Central

    Richard, Eva; Arredondo-Vega, Francisco X.; Santisteban, Ines; Kelly, Susan J.; Patel, Dhavalkumar D.; Hershfield, Michael S.

    2000-01-01

    Human, but not murine, adenosine deaminase (ADA) forms a complex with the cell membrane protein CD26/dipeptidyl peptidase IV. CD26-bound ADA has been postulated to regulate extracellular adenosine levels and to modulate the costimulatory function of CD26 on T lymphocytes. Absence of ADA–CD26 binding has been implicated in causing severe combined immunodeficiency due to ADA deficiency. Using human–mouse ADA hybrids and ADA point mutants, we have localized the amino acids critical for CD26 binding to the helical segment 126–143. Arg142 in human ADA and Gln142 in mouse ADA largely determine the capacity to bind CD26. Recombinant human ADA bearing the R142Q mutation had normal catalytic activity per molecule, but markedly impaired binding to a CD26+ ADA-deficient human T cell line. Reduced CD26 binding was also found with ADA from red cells and T cells of a healthy individual whose only expressed ADA has the R142Q mutation. Conversely, ADA with the E217K active site mutation, the only ADA expressed by a severely immunodeficient patient, showed normal CD26 binding. These findings argue that ADA binding to CD26 is not essential for immune function in humans. PMID:11067872

  1. Syzygium cumini inhibits adenosine deaminase activity and reduces glucose levels in hyperglycemic patients.

    PubMed

    Bopp, A; De Bona, K S; Bellé, L P; Moresco, R N; Moretto, M B

    2009-08-01

    Syzigium cumini (L.) Skeels from the Myrtaceae family is among the most common medicinal plants used to treat diabetes in Brazil. Leaves, fruits, and barks of S. cumini have been used for their hypoglycemic activity. Adenosine deaminase (ADA) is an important enzyme that plays a relevant role in purine and DNA metabolism, immune responses, and peptidase activity. ADA is suggested to be an important enzyme for modulating the bioactivity of insulin, but its clinical significance in diabetes mellitus (DM) has not yet been proven. In this study, we examined the effect of aqueous leaf extracts of S. cumini (L.) (ASC) on ADA activity of hyperglycemic subjects and the activity of total ADA, and its isoenzymes in serum and erythrocytes. The present study indicates that: (i) the ADA activity in hyperglycemic serum was higher than normoglycemic serum and ADA activity was higher when the blood glucose level was more elevated; (ii) ASC (60-1000 microg/mL) in vitro caused a concentration-dependent inhibition of total ADA activity and a decrease in the blood glucose level in serum; (iii) ADA1 and 2 were reduced both in erythrocytes and in hyperglycemic serum. These results suggest that the decrease of ADA activity provoked by ASC may contribute to control adenosine levels and the antioxidant defense system of red cells and could be related to the complex ADA/DPP-IV-CD26 and the properties of dipeptidyl peptidase IV (DPP-IV) inhibitors which serve as important regulators of blood glucose.

  2. Platelet aggregation and serum adenosine deaminase (ADA) activity in pregnancy associated with diabetes, hypertension and HIV.

    PubMed

    Leal, Claudio A M; Leal, Daniela B R; Adefegha, Stephen A; Morsch, Vera M; da Silva, José E P; Rezer, João F P; Schrekker, Clarissa M L; Abdalla, Faida H; Schetinger, Maria R C

    2016-07-01

    Platelet aggregation and adenosine deaminase (ADA) activity were evaluated in pregnant women living with some disease conditions including hypertension, diabetes mellitus and human immunodeficiency virus infection. The subject population is consisted of 15 non-pregnant healthy women [control group (CG)], 15 women with normal pregnancy (NP), 7 women with hypertensive pregnancy (HP), 10 women with gestational diabetes mellitus (GDM) and 12 women with human immunodeficiency virus-infected pregnancy (HIP) groups. The aggregation of platelets was checked using an optical aggregometer, and serum ADA activity was determined using the colorimetric method. After the addition of 5 µM of agonist adenosine diphosphate, the percentage of platelet aggregation was significantly (p < 0·05) increased in NP, HP, GDM and HIP groups when compared with the CG, while the addition of 10 µM of the same agonist caused significant (p < 0·05) elevations in HP, GDM and HIP groups when compared with CG. Furthermore, ADA activity was significantly (p < 0·05) enhanced in NP, HP, GDM and HIP groups when compared with CG. In this study, the increased platelet aggregation and ADA activity in pregnancy and pregnancy-associated diseases suggest that platelet aggregation and ADA activity could serve as peripheral markers for the development of effective therapy in the maintenance of homeostasis and some inflammatory process in these pathophysiological conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Tad1p, a yeast tRNA-specific adenosine deaminase, is related to the mammalian pre-mRNA editing enzymes ADAR1 and ADAR2.

    PubMed Central

    Gerber, A; Grosjean, H; Melcher, T; Keller, W

    1998-01-01

    We have identified an RNA-specific adenosine deaminase (termed Tad1p/scADAT1) from Saccharomyces cerevisiae that selectively converts adenosine at position 37 of eukaryotic tRNAAla to inosine. The activity of purified recombinant Tad1p depends on the conformation of its tRNA substrate and the enzyme was found to be inactive on all other types of RNA tested. Mutant strains in which the TAD1 gene is disrupted are viable but lack Tad1p enzyme activity and their tRNAAla is not modified at position A37. Transformation of the mutant cells with the TAD1 gene restored enzyme activity. Tad1p has significant sequence similarity with the mammalian editing enzymes which act on specific precursor-mRNAs and on long double-stranded RNA. These findings suggest an evolutionary link between pre-mRNA editing and tRNA modification. PMID:9707437

  4. Long-term expression of human adenosine deaminase in mice transplanted with retrovirus-infected hematopoietic stem cells

    SciTech Connect

    Lim, B.; Apperley, J.F.; Orkin, S.H.; Williams, D.A. )

    1989-11-01

    Long-term stable expression of foreign genetic sequences transferred into hematopoietic stem cells by using retroviral vectors constitutes a relevant model for somatic gene therapy. Such stability of expression may depend on vector design, including the presence or absence of specific sequences within the vector, in combination with the nature and efficiency of infection of the hematopoietic target cells. The authors have previously reported successful transfer of human DNA encoding adenosine deaminase (ADA) into CFU-S (colony-forming unit-spleen) stem cells using simplified recombinant retroviral vectors. Human ADA was expressed in CFU-S-derived spleen colonies at levels near to endogenous enzyme. However, because of the lack of an efficient dominant selectable marker and low recombinant viral titers, stability of long-term expression of human ADA was not examined. They report here the development of an efficient method of infection of hematopoietic stem cells (HSC) without reliance on in vitro selection. Peripheral blood samples of 100% of mice transplanted with HSC infected by this protocol exhibit expression of human ADA 30 days after transplantation. Some mice (6 of 13) continue to express human ADA in all lineages after complete hematopoietic reconstitution (4 months). The use of recombinant retroviral vectors that efficiently transfer human ADA cDNA into HSC leading to stable expression of functional ADA in reconstituted mice, provides an experimental framework for future development of approaches to somatic gene therapy.

  5. Effect of adenosine deaminase, N6-phenylisopropyladenosine and hypothyroidism on the responsiveness of rat brown adipocytes to noradrenaline.

    PubMed

    Woodward, J A; Saggerson, E D

    1986-09-01

    Adenosine deaminase (1 unit/ml) potentiated the lipolytic action of noradrenaline in adipocytes isolated from brown adipose tissue of 1- and 6-week-old rats by decreasing the EC50 (concn. giving 50% of maximal effect) for noradrenaline by 3-4-fold. With cells from neonatal rabbit tissue, adenosine deaminase only had a small, non-significant, effect on the EC50 for noradrenaline. Lipolysis in rat brown adipocytes was inhibited by low concentrations of N6-phenylisopropyladenosine (PIA). Rabbit cells were far less sensitive to PIA. PIA, prostaglandin E1 and nicotinate all inhibited noradrenaline-stimulated respiration in rat brown adipocytes. Hypothyroidism diminished the maximum response of respiration and lipolysis to noradrenaline in rat cells and increased the EC50 for noradrenaline. Responsiveness of lipolysis to noradrenaline was particularly decreased in hypothyroidism and was partially restored by addition of adenosine deaminase. Lipolysis in cells from hypothyroid rats was more sensitive to the anti-lipolytic action of PIA. Bordetella pertussis toxin increased lipolysis in the presence of PIA, suggesting an involvement of the Ni guanine-nucleotide-binding protein in the control of brown-adipocyte metabolism.

  6. Adenosine deaminase activity in serum and lymphocytes of rats infected with Sporothrix schenckii.

    PubMed

    Castro, Verônica S P; Pimentel, Victor C; Da Silva, Aleksandro S; Thomé, Gustavo R; Wolkmer, Patrícia; Castro, Jorge L C; Costa, Márcio M; da Silva, Cássia B; Oliveira, Daniele C; Alves, Sydney H; Schetinger, Maria R C; Lopes, Sonia T A; Mazzanti, Cinthia M

    2012-07-01

    Sporotrichosis is a fungal infection of subcutaneous or chronic evolution, inflammatory lesions characterized by their pyogranulomatous aspect, caused by the dimorphic fungus Sporothrix schenckii. Adenosine deaminase (ADA) is a "key" enzyme in the purine metabolism, promoting the deamination of adenosine, an important anti-inflammatory molecule. The increase in ADA activity has been demonstrated in several inflammatory conditions; however, there are no data in the literature associated with this fungal infection. The objective of this study was to evaluate the activity of serum ADA (S-ADA) and lymphocytes (L-ADA) of rats infected with S. schenckii. We used seventy-eight rats divided into two groups. In the first experiment, rats were infected subcutaneously and in the second experiment, infected intraperitoneally. Blood samples for hematologic evaluation and activities of S-ADA and L-ADA were performed at days 15, 30, and 40 post-infection (PI) to assess disease progression. In the second experiment, it was observed an acute decrease in activity of S-ADA and L-ADA (P < 0.05), suggesting a compensatory mechanism in an attempt to protect the host from excessive tissue damage. With chronicity of disease the rats in the first and second experiment at 30 days PI showed an increased activity of L-ADA (P < 0.05), promoting an inflammatory response in an attempt to combat the spread of the agent. Thus, it is suggested that infection with S. schenckii alters the activities of S-ADA in experimentally infected rats, demonstrating the involvement of this enzyme in the pathogenesis of sporotrichosis.

  7. Host response to polyomavirus infection is modulated by RNA adenosine deaminase ADAR1 but not by ADAR2.

    PubMed

    George, Cyril X; Samuel, Charles E

    2011-08-01

    Adenosine deaminases acting on RNA (ADARs) catalyze the C-6 deamination of adenosine (A) to produce inosine (I), which behaves as guanine (G), thereby altering base pairing in RNAs with double-stranded character. Two genes, adar1 and adar2, are known to encode enzymatically active ADARs in mammalian cells. Furthermore, two size forms of ADAR1 are expressed by alternative promoter usage, a short (p110) nuclear form that is constitutively made and a long (p150) form that is interferon inducible and present in both the cytoplasm and nucleus. ADAR2 is also a constitutively expressed nuclear protein. Extensive A-to-G substitution has been described in mouse polyomavirus (PyV) RNA isolated late times after infection, suggesting modification by ADAR. To test the role of ADAR in PyV infection, we used genetically null mouse embryo fibroblast cells deficient in either ADAR1 or ADAR2. The single-cycle yields and growth kinetics of PyV were comparable between adar1(-/-) and adar2(-/-) genetic null fibroblast cells. While large T antigen was expressed to higher levels in adar1(-/-) cells than adar2(-/-) cells, less difference was seen in VP1 protein expression levels between the two knockout MEFs. However, virus-induced cell killing was greatly enhanced in PyV-infected adar1(-/-) cells compared to that of adar2(-/-) cells. Complementation with p110 protected cells from PyV-induced cytotoxicity. UV-irradiated PyV did not display any enhanced cytopathic effect in adar1(-/-) cells. Reovirus and vesicular stomatitis virus single-cycle yields were comparable between adar1(-/-) and adar2(-/-) cells, and neither reovirus nor VSV showed enhanced cytotoxicity in adar1(-/-)-infected cells. These results suggest that ADAR1 plays a virus-selective role in the host response to infection.

  8. High-yield production of apoplast-directed human adenosine deaminase in transgenic tobacco BY-2 cell suspensions.

    PubMed

    Singhabahu, Sanjeewa; George, John; Bringloe, David

    2015-01-01

    Adenosine deaminase (ADA) deficiency, where a deleterious mutation in the ADA gene of patients results in a dysfunctional immune system, is ultimately caused by an absence of ADA. Over the last 25 years the disease has been treated with PEG-ADA, made from purified bovine ADA coupled with polyethylene glycol (PEG). However, it is thought that an enzyme replacement therapy protocol based on recombinant human ADA would probably be a more effective treatment. With this end in mind, a human ADA cDNA was inserted into plant expression vectors used to transform tobacco plant cell suspensions. Transgenic calli expressing constructs containing apoplast-directing signals showed significantly higher levels of recombinant ADA expression than calli transformed with cytosolic constructs. The most significant ADA activities, however, were measured in the media of transgenic cell suspensions prepared from high expressing transformed calli: where incorporation of a signal for arabinogalactan addition to ADA led to a recombinant protein yield of approximately 16 mg L(-1) , a 336-fold increase over ADA produced by cell suspensions transformed with a cytosolic construct.

  9. Assessment of adenosine deaminase (ADA) activity and oxidative stress in patients with chronic tonsillitis.

    PubMed

    Garca, Mehmet Fatih; Demir, Halit; Turan, Mahfuz; Bozan, Nazım; Kozan, Ahmet; Belli, Şeyda Bayel; Arslan, Ayşe; Cankaya, Hakan

    2014-06-01

    To emphasize the effectiveness of adenosine deaminase (ADA) enzyme, which has important roles in the differentiation of lymphoid cells, and oxidative stress in patients with chronic tonsillitis. Serum and tissue samples were obtained from 25 patients who underwent tonsillectomy due to recurrent episodes of acute tonsillitis. In the control group, which also had 25 subjects, only serum samples were taken as obtaining tissue samples would not have been ethically appropriate. ADA enzyme activity, catalase (CAT), carbonic anhydrase (CA), nitric oxide (NO) and malondialdehyde (MDA) were measured in the serum and tissue samples of patients and control group subjects. The serum values of both groups were compared. In addition, the tissue and serum values of patients were compared. Serum ADA activity and the oxidant enzymes MDA and NO values of the patient group were significantly higher than those of the control group (p < 0.001), the antioxidant enzymes CA and CAT values of the patient group were significantly lower than those of the control group (p < 0.001). In addition, while CA, CAT and NO enzyme levels were found to be significantly higher in the tonsil tissue of the patient group when compared to serum levels (p < 0.05), there was no difference between tissue and serum MDA and ADA activity (p > 0.05). Elevated ADA activity may be effective in the pathogenesis of chronic tonsillitis both by impairing tissue structure and contributing to SOR formation.

  10. Cattle naturally infected by Eurytrema coelomaticum: Relation between adenosine deaminase activity and zinc levels.

    PubMed

    Grosskopf, Hyolanda M; Schwertz, Claiton I; Machado, Gustavo; Bottari, Nathieli B; da Silva, Ester S; Gabriel, Mateus E; Lucca, Neuber J; Alves, Mariana S; Schetinger, Maria Rosa C; Morsch, Vera M; Mendes, Ricardo E; da Silva, Aleksandro S

    2017-02-01

    The enzyme adenosine deaminase (ADA) is critical for modulating the immune system, and in the presence of zinc, its activity is catalyzed. The aim of this study was to evaluate the ADA activity in pancreas of cattle naturally infected by Eurytrema coelomaticum in relation to the results of zinc levels, pathological findings and parasite load. For this study 51 slaughtered cattle were used. The animals were divided into two groups: Group A consisting of animals naturally infected by E. coelomaticum (n=33) and Group B of uninfected animals (n=18). Blood and pancreas were collected of each animal for analysis of zinc and ADA, respectively. Infected cattle showed a reduction on seric levels of zinc, and decreased ADA activity in the pancreas (P>0.05). A positive correlation between zinc levels and ADA activity was observed. Thus, high parasite load and severity of histopathologic lesions affect the ADA activity in pancreas, as well as the zinc levels in serum of infected animals (negative correlation between these variables). Therefore, we can conclude that cattle infected by E. coelomaticum have low ADA activity in pancreas, which can be directly related to zinc reduction, responsible for ADA activation and catalyzes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. PMMA/polysaccharides nanofilm loaded with adenosine deaminase inhibitor for targeted anti-inflammatory drug delivery.

    PubMed

    Redolfi Riva, Eugenio; Desii, Andrea; Sartini, Stefania; La Motta, Concettina; Mazzolai, Barbara; Mattoli, Virgilio

    2013-10-29

    A novel drug delivery vector, a free-standing polymeric ultrathin film (nanofilm) composed of PMMA and a polysaccharides multilayer, is presented. Chitosan and sodium alginate are alternatively deposited by spin-assisted LbL assembly onto a plasma-treated PMMA thin film. Hydrophobic anti-inflammatory drugs, an adenosine deaminase inhibitor (APP) and its fluorescent dansyl derivate (APP-Dns), are encapsulated inside the LbL multilayer using a simple casting deposition procedure. The resulting drug loaded nanofilm can be suspended in water upon dissolution of a PVA sacrificial layer. Morphological characterization of the nanofilm shows that PMMA/LbL nanofilms possess nanometric thickness (<200 nm) and very low surface roughness (1-2 nm for drug loaded nanofilms and <1 nm for blank nanofilm). Drug loaded films exhibit a diffusion controlled release mechanism following the Korsmayer-Peppas release model, confirmed by the fit of release data with a characteristic power law. Drug release is impaired through the PMMA layer, which acts effectively as a barrier for drug transport. This ultrathin polymer film can find application as a nanopatch for targeted inflammatory drug delivery to treat localized pathologies as inflammatory bowel disease.

  12. Role of adenosine deaminase and the influence of age on the diagnosis of pleural tuberculosis.

    PubMed

    Abrao, F C; de Abreu, I R L Bruno; Miyake, D H; Miyaki, D H; Busico, M A M; Younes, R N

    2014-11-01

    1) To determine factors affecting adenosine deaminase (ADA) levels in pleural fluid (PF), and 2) to establish the optimal ADA cut-off level for a Brazilian population. ADA levels in PF of 309 patients were analysed to investigate pleural effusion. All patients were evaluated for age, sex and presence of tuberculosis (TB) based on a positive pleural biopsy. Differences in ADA levels between groups were analysed using Kruskal-Wallis one-way analysis of variance. Logistic regression analysis was also carried out to predict the occurrence of TB. ADA cut-off levels were selected using the receiver operating characteristic (ROC) curve. The mean PF ADA level was significantly higher in the tuberculous pleural group than in non-tuberculous pleural patients (63.3 ± 29 IU/l vs. 19 ± 31 IU/l, P < 0.001). There was a significant correlation between PF ADA levels and age: for patients aged ⩾45 years, the ROC curve for ADA had an area under the curve of 0.91. An ADA level of 29 IU/l resulted in a sensitivity of 88.6% and specificity of 91.5%. There is a significant negative correlation between PF ADA level and age. The use of a lower ADA cut-off reduces the number of false-negative results.

  13. ADENOSINE DEAMINASE ACTIVITY AND SERUM C-REACTIVE PROTEIN AS PROGNOSTIC MARKERS OF CHAGAS DISEASE SEVERITY

    PubMed Central

    BRAVO-TOBAR, Iván Darío; NELLO-PÉREZ, Carlota; FERNÁNDEZ, Alí; MOGOLLÓN, Nora; PÉREZ, Mary Carmen; VERDE, Juan; CONCEPCIÓN, Juan Luis; RODRIGUEZ-BONFANTE, Claudina; BONFANTE-CABARCAS, Rafael

    2015-01-01

    SUMMARY Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA) and C-reactive protein serum levels (CRP) in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35), II (n = 29), and III (n = 18). A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ≥ 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease. PMID:26603224

  14. Kinetic, thermodynamic and statistical studies on the inhibition of adenosine deaminase by aspirin and diclofenac.

    PubMed

    Ajloo, Davood; Saboury, Ali A; Haghi-Asli, Niloofar; Ataei-Jafarai, Ghasem; Moosavi-Movahedi, Ali A; Ahmadi, Mosayeb; Mahnam, Karim; Namaki, Saeed

    2007-08-01

    The kinetic and thermodynamic effects of aspirin and diclofenac on the activity of adenosine deaminase (ADA) were studied in 50 mM phosphate buffer pH = 7.5 at 27 and 37 degrees C, using UV-Vis spectrophotometry and isothermal titration calorimetry (ITC). Aspirin exhibits competitive inhibition at 27 and 37 degrees C and the inhibition constants are 42.8 and 96.8 microM respectively, using spectrophotometry. Diclofenac shows competitive behavior at 27 degrees C and uncompetitive at 37 degrees C with inhibition constants of 56.4 and 30.0 microM, at respectively. The binding constant and enthalpy of binding, at 27 degrees C are 45 microM, - 64.5 kJ/mol and 61 microM, - 34.5 kJ/mol for aspirin and diclofenac. Thermodynamic data revealed that the binding process for these ADA inhibitors is enthalpy driven. QSAR studies by principal component analysis implemented in SPSS show that the large, polar, planar, and aromatic nucleoside and small, aromatic and polar non-nucleoside molecules have lower inhibition constants.

  15. Adenosine Deaminase Acting on RNA-1 (ADAR1) Inhibits HIV-1 Replication in Human Alveolar Macrophages

    PubMed Central

    Levy, David N.; Li, Yonghua; Kumar, Rajnish; Burke, Sean A.; Dawson, Rodney; Hioe, Catarina E.; Borkowsky, William; Rom, William N.; Hoshino, Yoshihiko

    2014-01-01

    While exploring the effects of aerosol IFN-γ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL) of aerosol IFN-γ-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1) in the BAL cells. IFN-γ induced ADAR1 expression in monocyte-derived macrophages (MDM) but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected in vitro. Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells in vitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-γ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages. PMID:25272020

  16. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency.

    PubMed

    Hassan, Amel; Booth, Claire; Brightwell, Alex; Allwood, Zoe; Veys, Paul; Rao, Kanchan; Hönig, Manfred; Friedrich, Wilhelm; Gennery, Andrew; Slatter, Mary; Bredius, Robbert; Finocchi, Andrea; Cancrini, Caterina; Aiuti, Alessandro; Porta, Fulvio; Lanfranchi, Arnalda; Ridella, Michela; Steward, Colin; Filipovich, Alexandra; Marsh, Rebecca; Bordon, Victoria; Al-Muhsen, Saleh; Al-Mousa, Hamoud; Alsum, Zobaida; Al-Dhekri, Hasan; Al Ghonaium, Abdulaziz; Speckmann, Carsten; Fischer, Alain; Mahlaoui, Nizar; Nichols, Kim E; Grunebaum, Eyal; Al Zahrani, Daifulah; Roifman, Chaim M; Boelens, Jaap; Davies, E Graham; Cavazzana-Calvo, Marina; Notarangelo, Luigi; Gaspar, H Bobby

    2012-10-25

    Deficiency of the purine salvage enzyme adenosine deaminase leads to SCID (ADA-SCID). Hematopoietic cell transplantation (HCT) can lead to a permanent cure of SCID; however, little data are available on outcome of HCT for ADA-SCID in particular. In this multicenter retrospective study, we analyzed outcome of HCT in 106 patients with ADA-SCID who received a total of 119 transplants. HCT from matched sibling and family donors (MSDs, MFDs) had significantly better overall survival (86% and 81%) in comparison with HCT from matched unrelated (66%; P < .05) and haploidentical donors (43%; P < .001). Superior overall survival was also seen in patients who received unconditioned transplants in comparison with myeloablative procedures (81% vs 54%; P < .003), although in unconditioned haploidentical donor HCT, nonengraftment was a major problem. Long-term immune recovery showed that regardless of transplant type, overall T-cell numbers were similar, although a faster rate of T-cell recovery was observed after MSD/MFD HCT. Humoral immunity and donor B-cell engraftment was achieved in nearly all evaluable surviving patients and was seen even after unconditioned HCT. These data detail for the first time the outcomes of HCT for ADA-SCID and show that, if patients survive HCT, long-term cellular and humoral immune recovery is achieved.

  17. Adenosine deaminase activity level as a tool for diagnosing tuberculous pleural effusion.

    PubMed

    Khow-Ean, Nathapol; Booraphun, Suchart; Aekphachaisawat, Noppadol; Sawanyawisuth, Kittisak

    2013-07-04

    The yield for using a pleural fluid culture to diagnose tuberculous pleural effusion (TPE) is low. Adenosine deaminase activity (ADA) has been shown to have good diagnostic value for TPE. The ADA cutoff point for the diagnosis of TPE is unclear. We attempted to determine the ADA level cutoff point for diagnosing of TPE in Thailand, where tuberculosis is endemic. We reviewed the medical records of patients with newly diagnosed pleural effusion aged >15 years who had a pleural fluid ADAlevel and who underwent a pleural biopsy. The study period was from March 1, 2010 to January 31, 2011. The diagnoses of TPE and malignant pleural effusion (MPE) were based on pathological findings. The diagnostic cutoff level for using ADA to diagnose TPE was determined. Forty-eight patients met study criteria. Of those, 18 patients (37.5%) were diagnosed with TPE. The mean ADA level was significantly higher among patients in the TPE group than in the MPE group (38.2 vs 14.8 U/l, p < 0.001). The cutoff level of 17.5 U/l gave sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of 88.9%, 73.3%, 3.33, and 0.15, respectively. An ADA level >17.5 U/l had good diagnostic values among TPE patients in our study.

  18. Adenosine deaminase complexing protein (ADCP) expression and metastatic potential in prostatic adenocarcinomas.

    PubMed

    Dinjens, W N; Ten Kate, J; Kirch, J A; Tanke, H J; Van der Linden, E P; Van den Ingh, H F; Van Steenbrugge, G J; Meera Khan, P; Bosman, F T

    1990-03-01

    The expression of the adenosine deaminase complexing protein (ADCP) was investigated by immunohistochemistry in the normal and hyperplastic human prostate, in 30 prostatic adenocarcinomas, and in seven human prostatic adenocarcinoma cell lines grown as xenografts in athymic nude mice. In the normal and hyperplastic prostate, ADCP was localized exclusively in the apical membrane and the apical cytoplasm of the glandular epithelial cells. In prostatic adenocarcinomas, four distinct ADCP expression patterns were observed: diffuse cytoplasmic, membranous, both cytoplasmic and membranous, and no ADCP expression. The expression patterns were compared with the presence of metastases. We found an inverse correlation between membranous ADCP immunoreactivity and metastatic propensity. Exclusively membranous ADCP immunoreactivity occurred only in non-metastatic tumours. In contrast, the metastatic tumours showed no or diffuse cytoplasmic ADCP immunoreactivity. This suggests that immunohistochemical detection of ADCP might predict the biological behaviour of prostatic cancer. However, the occurrence of membranous ADCP immunoreactivity in the xenograft of a cell line (PC-EW), derived from a prostatic carcinoma metastasis, indicates that not only the tendency to metastasize modulates ADCP expression.

  19. Role of adenosine deaminase, ecto-(5'-nucleotidase) and ecto-(non-specific phosphatase) in cyanide-induced adenosine monophosphate catabolism in rat polymorphonuclear leucocytes.

    PubMed Central

    Newby, A C

    1980-01-01

    1. The role of adenosine deaminase (EC 3.5.4.4), ecto-(5'-nucleotidase) (EC 3.1.3.5) and ecto-(non-specific phosphatase) in the CN-induced catabolism of adenine nucleotides in intact rat polymorphonuclear leucocytes was investigated by inhibiting the enzymes in situ. 2. KCN (10mM for 90 min) induced a 20-30% fall in ATP concentration accompanied by an approximately equimolar increase in hypoxanthine, ADP, AMP and adenosine concentrations were unchanged, and IMP and inosine remained undetectable ( less than 0.05 nmol/10(7) cells). 3. Cells remained 98% intact, as judged by loss of the cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27). 4. Pentostatin (30 microM), a specific inhibitor of adenosine deaminase, completely inhibited hypoxanthine production from exogenous adenosine (55 microM), but did not black CN-induced hypoxanthine production or cause adenosine accumulation in intact cells. This implied that IMP rather than adenosine was an intermediate in AMP breakdown in response to cyanide. 5. Antibodies raised against purified plasma-membrane 5'-nucleotidase inhibited the ecto-(5'-nucleotidase) by 95-98%. Non-specific phosphatases were blocked by 10 mM-sodium beta-glycerophosphate. 6. These two agents together blocked hypoxanthine production from exogenous AMP and IMP (200 microM) by more than 90%, but had no effect on production from endogenous substrates. 7. These data suggest that ectophosphatases do not participate in CN-induced catabolism of intracellular AMP in rat polymorphonuclear leucocytes. 8. A minor IMPase, not inhibited by antiserum, was detected in the soluble fraction of disrupted cells. PMID:6249264

  20. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    SciTech Connect

    Sadat Hayatshahi, Sayyed Hamed; Khajeh, Khosro

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, the previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.

  1. Preclinical demonstration of lentiviral vector-mediated correction of immunological and metabolic abnormalities in models of adenosine deaminase deficiency.

    PubMed

    Carbonaro, Denise A; Zhang, Lin; Jin, Xiangyang; Montiel-Equihua, Claudia; Geiger, Sabine; Carmo, Marlene; Cooper, Aaron; Fairbanks, Lynette; Kaufman, Michael L; Sebire, Neil J; Hollis, Roger P; Blundell, Michael P; Senadheera, Shantha; Fu, Pei-Yu; Sahaghian, Arineh; Chan, Rebecca Y; Wang, Xiaoyan; Cornetta, Kenneth; Thrasher, Adrian J; Kohn, Donald B; Gaspar, H Bobby

    2014-03-01

    Gene transfer into autologous hematopoietic stem cells by γ-retroviral vectors (gRV) is an effective treatment for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). However, current gRV have significant potential for insertional mutagenesis as reported in clinical trials for other primary immunodeficiencies. To improve the efficacy and safety of ADA-SCID gene therapy (GT), we generated a self-inactivating lentiviral vector (LV) with a codon-optimized human cADA gene under the control of the short form elongation factor-1α promoter (LV EFS ADA). In ADA(-/-) mice, LV EFS ADA displayed high-efficiency gene transfer and sufficient ADA expression to rescue ADA(-/-) mice from their lethal phenotype with good thymic and peripheral T- and B-cell reconstitution. Human ADA-deficient CD34(+) cells transduced with 1-5 × 10(7) TU/ml had 1-3 vector copies/cell and expressed 1-2x of normal endogenous levels of ADA, as assayed in vitro and by transplantation into immune-deficient mice. Importantly, in vitro immortalization assays demonstrated that LV EFS ADA had significantly less transformation potential compared to gRV vectors, and vector integration-site analysis by nrLAM-PCR of transduced human cells grown in immune-deficient mice showed no evidence of clonal skewing. These data demonstrated that the LV EFS ADA vector can effectively transfer the human ADA cDNA and promote immune and metabolic recovery, while reducing the potential for vector-mediated insertional mutagenesis.

  2. Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing.

    PubMed Central

    Kim, U; Wang, Y; Sanford, T; Zeng, Y; Nishikura, K

    1994-01-01

    We have cloned human cDNA encoding double-stranded RNA adenosine deaminase (DRADA). DRADA is a ubiquitous nuclear enzyme that converts multiple adenosines to inosines in double-helical RNA substrates without apparent sequence specificity. The A --> I conversion activity of the protein encoded by the cloned cDNA was confirmed by recombinant expression in insect cells. Use of the cloned DNA as a molecular probe documented sequence conservation across mammals and detected a single transcript of 7 kb in RNA of all human tissues analyzed. The deduced primary structure of human DRADA revealed a bipartite nuclear localization signal, three repeats of a double-stranded RNA binding motif, and the presence of sequences conserved in the catalytic center of other deaminases, including a cytidine deaminase involved in the RNA editing of apolipoprotein B. These structural properties are consistent with the enzymatic signature of DRADA, and strengthen the hypothesis that DRADA carries out the RNA editing of transcripts encoding glutamate-gated ion channels in brain. Images PMID:7972084

  3. T-cell lines from 2 patients with adenosine deaminase (ADA) deficiency showed the restoration of ADA activity resulted from the reversion of an inherited mutation.

    PubMed

    Ariga, T; Oda, N; Yamaguchi, K; Kawamura, N; Kikuta, H; Taniuchi, S; Kobayashi, Y; Terada, K; Ikeda, H; Hershfield, M S; Kobayashi, K; Sakiyama, Y

    2001-05-01

    Inherited deficiency of adenosine deaminase (ADA) results in one of the autosomal recessive forms of severe combined immunodeficiency. This report discusses 2 patients with ADA deficiency from different families, in whom a possible reverse mutation had occurred. The novel mutations were identified in the ADA gene from the patients, and both their parents were revealed to be carriers. Unexpectedly, established patient T-cell lines, not B-cell lines, showed half-normal levels of ADA enzyme activity. Reevaluation of the mutations in these T-cell lines indicated that one of the inherited ADA gene mutations was reverted in both patients. At least one of the patients seemed to possess the revertant cells in vivo; however, the mutant cells might have overcome the revertant after receiving ADA enzyme replacement therapy. These findings may have significant implications regarding the prospects for stem cell gene therapy for ADA deficiency.

  4. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases.

    PubMed Central

    Lai, F; Chen, C X; Carter, K C; Nishikura, K

    1997-01-01

    Double-stranded (ds) RNA-specific adenosine deaminase converts adenosine residues into inosines in dsRNA and edits transcripts of certain cellular and viral genes such as glutamate receptor (GluR) subunits and hepatitis delta antigen. The first member of this type of deaminase, DRADA1, has been recently cloned based on the amino acid sequence information derived from biochemically purified proteins. Our search for DRADA1-like genes through expressed sequence tag databases led to the cloning of the second member of this class of enzyme, DRADA2, which has a high degree of sequence homology to DRADA1 yet exhibits a distinctive RNA editing site selectivity. There are four differentially spliced isoforms of human DRADA2. These different isoforms of recombinant DRADA2 proteins, including one which is a human homolog of the recently reported rat RED1, were analyzed in vitro for their GluR B subunit (GluR-B) RNA editing site selectivity. As originally reported for rat RED1, the DRADA2a and -2b isoforms edit GluR-B RNA efficiently at the so-called Q/R site, whereas DRADA1 barely edits this site. In contrast, the R/G site of GluR-B RNA was edited efficiently by the DRADA2a and -2b isoforms as well as DRADA1. Isoforms DRADA2c and -2d, which have a distinctive truncated shorter C-terminal structure, displayed weak adenosine-to-inosine conversion activity but no editing activity tested at three known sites of GluR-B RNA. The possible role of these DRADA2c and -2d isoforms in the regulatory mechanism of RNA editing is discussed. PMID:9111310

  5. Adenosine deaminase deficiency: genotype-phenotype correlations based on expressed activity of 29 mutant alleles.

    PubMed Central

    Arredondo-Vega, F X; Santisteban, I; Daniels, S; Toutain, S; Hershfield, M S

    1998-01-01

    Adenosine deaminase (ADA) deficiency causes lymphopenia and immunodeficiency due to toxic effects of its substrates. Most patients are infants with severe combined immunodeficiency disease (SCID), but others are diagnosed later in childhood (delayed onset) or as adults (late onset); healthy individuals with "partial" ADA deficiency have been identified. More than 50 ADA mutations are known; most patients are heteroallelic, and most alleles are rare. To analyze the relationship of genotype to phenotype, we quantitated the expression of 29 amino acid sequence-altering alleles in the ADA-deleted Escherichia coli strain SO3834. Expressed ADA activity of wild-type and mutant alleles ranged over five orders of magnitude. The 26 disease-associated alleles expressed 0.001%-0.6% of wild-type activity, versus 5%-28% for 3 alleles from "partials." We related these data to the clinical phenotypes and erythrocyte deoxyadenosine nucleotide (dAXP) levels of 52 patients (49 immunodeficient and 3 with partial deficiency) who had 43 genotypes derived from 42 different mutations, including 28 of the expressed alleles. We reduced this complexity to 13 "genotype categories," ranked according to the potential of their constituent alleles to provide ADA activity. Of 31 SCID patients, 28 fell into 3 genotype categories that could express <=0.05% of wild-type ADA activity. Only 2 of 21 patients with delayed, late-onset, or partial phenotypes had one of these "severe" genotypes. Among 37 patients for whom pretreatment metabolic data were available, we found a strong inverse correlation between red-cell dAXP level and total ADA activity expressed by each patient's alleles in SO3834. Our system provides a quantitative framework and ranking system for relating genotype to phenotype. PMID:9758612

  6. Adenosine deaminase in CSF and pleural fluid for diagnosis of tubercular meningitis and pulmonary tuberculosis.

    PubMed

    Nepal, A K; Gyawali, N; Poudel, B; Mahato, R V; Lamsal, M; Gurung, R; Baral, N; Majhi, S

    2012-12-01

    Tuberculosis (TB) is one of the most common infectious diseases in developing countries including Nepal. Delay in diagnosis and treatment of tuberculosis results in poor prognosis of the disease. This study was conducted to estimate diagnostic cut off values of Adenosine Deaminase (ADA) in cerebrospinal fluid (CSF) and pleural fluid and to evaluate the sensitivity, specificity, positive and negative predictive values ofADA in pleural fluid and CSF from patients with tuberculous and non-tuberculous disease. A total of 98 body fluid (CSF: 24, Pleural fluid: 74) specimens were received for the estimation of ADA. ADA activity was measured at 37 degrees C by spectrophotometric method of Guisti and Galanti, 1984 at 625nm wavelength. Among the patients enrolled for the study subjects for which CSF were received (n = 24) included 8 tuberculous meningitis (TBM), and 16 non-tubercular meningitis (NTM). Pleural fluid samples (n = 74) were received from 19 pulmonary TB with pleural effusion, 17 PTB without pleural effusion and 37 of non-tuberculous disease patients. CSF ADA activity were (11. 1 +/- 2.03 IU/L) and (5.3 +/- +1.89 IU/L) (p <00001) in TM and non-NTM groups and Pleural fluid ADA activity were (10 +/- 22.18 IU/L) and (23.79 +/- 11.62 IU/L) (p < 0.001) in PTB and non-TB groups respectively. ADA test in body fluids, which is simple, cost-effective and sensitive, specific for the tubercular disease is recommended to perform before forwarding the cumbersome and expensive procedures like culture and PCR for TB diagnosis.

  7. Diagnostic value of sputum adenosine deaminase (ADA) level in pulmonary tuberculosis

    PubMed Central

    Binesh, Fariba; Jalali, Hadi; Zare, Mohammad Reza; Behravan, Farhad; Tafti, Arefeh Dehghani; Behnaz, Fatemah; Tabatabaee, Mohammad; Shahcheraghi, Seyed Hossein

    2016-01-01

    Introduction Tuberculosis is still a considerable health problem in many countries. Rapid diagnosis of this disease is important, and adenosine deaminase (ADA) has been used as a diagnostic test. The aim of this study was to assess the diagnostic value of ADA in the sputum of patients with pulmonary tuberculosis. Methods The current study included 40 patients with pulmonary tuberculosis (culture positive, smear ±) and 42 patients with non tuberculosis pulmonary diseases (culture negative). ADA was measured on all of the samples. Results The median value of ADA in non-tuberculosis patients was 2.94 (4.2) U/L and 4.01 (6.54) U/L in tuberculosis patients, but this difference was not statistically significant (p=0.100). The cut-off point of 3.1 U/L had a sensitivity of 61% and a specificity of 53%, the cut-off point of 2.81 U/L had a sensitivity of 64% and a specificity of 50% and the cut-off point of 2.78 U/L had a sensitivity of 65% and a specificity of 48%. The positive predictive values for cut-off points of 3.1, 2.81 and 2.78 U/L were 55.7%, 57.44% and 69.23%, respectively. The negative predictive values for the abovementioned cut-off points were 56.75%, 57.14% and 55.88%, respectively. Conclusion Our results showed that sputum ADA test is neither specific nor sensitive. Because of its low sensitivity and specificity, determination of sputum ADA for the diagnosis of pulmonary tuberculosis is not recommended. PMID:27482515

  8. Pleural Fluid Adenosine Deaminase (Pfada) in the Diagnosis of Tuberculous Effusions in a Low Incidence Population

    PubMed Central

    Arnold, David T.; Bhatnagar, Rahul; Fairbanks, Lynette D.; Zahan-Evans, Natalie; Clive, Amelia O.; Morley, Anna J.; Medford, Andrew R. L.; Maskell, Nicholas A.

    2015-01-01

    Introduction Previous studies have assessed the diagnostic ability of pleural fluid adenosine deaminase (pfADA) in detecting tuberculous pleural effusions, with good specificity and sensitivity reported. However, in North Western Europe pfADA is not routinely used in the investigation of a patient with an undiagnosed pleural effusion, mainly due to a lack of evidence as to its utility in populations with low mycobacterium tuberculosis (mTB) incidence. Methods Patients presenting with an undiagnosed pleural effusion to a tertiary pleural centre in South-West England over a 3 year period, were prospectively recruited to a pleural biomarker study. Pleural fluid from consecutive patients with robust 12-month follow up data and confirmed diagnosis were sent for pfADA analysis. Results Of 338 patients enrolled, 7 had confirmed tuberculous pleural effusion (2%). All mTB effusions were lymphocyte predominant with a median pfADA of 72.0 IU/L (range- 26.7 to 91.5) compared to a population median of 12.0 IU/L (range- 0.3 to 568.4). The optimal pfADA cut off was 35 IU/L, which had a negative predictive value (NPV) of 99.7% (95% CI; 98.2-99.9%) for the exclusion of mTB, and sensitivity of 85.7% (95% CI; 42.2-97.6%) with an area under the curve of 0.88 (95% CI; 0.732–1.000). Discussion This is the first study examining the diagnostic utility of pfADA in a low mTB incidence area. The chance of an effusion with a pfADA under 35 IU/L being of tuberculous aetiology was negligible. A pfADA of over 35 IU/L in lymphocyte-predominant pleural fluid gives a strong suspicion of mTB. PMID:25647479

  9. Adenosine deaminase activity in serum, erythrocytes and lymphocytes of rats infected with Leptospira icterohaemorrhagiae.

    PubMed

    Tonin, Alexandre A; Pimentel, Victor C; da Silva, Aleksandro S; de Azevedo, Maria Isabel; Souza, Viviane C G; Wolkmer, Patrícia; Rezer, João F P; Badke, Manoel R T; Leal, Daniela B R; Schetinger, Maria Rosa C; Monteiro, Silvia G; Lopes, Sonia T A

    2012-04-01

    Leptospirosis is a systemic disease of humans and domestic animals, mainly dogs, cattle and swine. The course of human leptospirosis varies from mild to severe fatal forms and the most severe form of human leptospirosis is principally caused by Leptospira interrogans serovar icterohaemorrhagiae (L. icterohaemorrhagiae). The enzyme adenosine deaminase (ADA) plays an important role in the production and differentiation of blood cells. The aim of this study was to evaluate the activity of ADA in serum, erythrocytes and lymphocytes of rats infected with L. icterohaemorrhagiae, as compared with non-infected rats. Twenty-four adult rats, divided into two uniform groups (A and B) were used for the enzymatic assays. The animals in Group B were inoculated intraperitoneally with 2×10(8) leptospires/rat, and the rodents in Group A (control) were not-inoculated. Blood collection was performed on days 5 and 15 post-infection (PI) and the blood used to assess the ADA activity. The infection by L.icterohaemorrhagiae altered erythrocyte count, hemoglobin concentration and hematocrit, causing a decrease in all these parameters on day 15 PI. Lymphocytes decreased significantly on day 15 PI, and ADA activity in serum was inhibited in infected rats on days 5 and 15 PI and its activity in erythrocytes were increased on day 5 PI. On day 5 PI, we found an increase in ADA activity in erythrocytes of infected rats. No correlation was observed between hematocrit and erythrocyte ADA activity on days 5 and 15 PI. The ADA activity was inhibited in rats infected on day 15 PI. A positive correlation (r(2)=60) was also observed between the number of lymphocytes and ADA activity in lymphocytes on day 15 PI (P<0.05). In conclusion, our results showed that the ADA activity is altered in serum, lymphocytes and erythrocytes in experimental infection by L.icterohaemorrhagiae in rats, concomitantly with hematological parameters.

  10. Assessment of adenosine deaminase levels in rheumatoid arthritis patients receiving anti-TNF-alpha therapy.

    PubMed

    Erer, Burak; Yilmaz, Gulsen; Yilmaz, Fatma Meric; Koklu, Seyfettin

    2009-04-01

    Anti-TNF-alpha agents are increasingly used in rheumatoid arthritis (RA) treatment and that is known to increase the risk of tuberculosis (TB) reactivation. Adenosine deaminase (ADA) levels are shown to increase to high levels in TB patients. Our aim is to investigate the serum ADA levels in RA patients being treated with anti-TNF-alpha and to compare the results with the patients on DMARD therapy. The study groups comprised of 56 RA patients (45 female, mean age 49) who were treated either with two or three DMARDs, 32 RA patients with anti-TNF-alpha treatment (26 female, mean age 46) and 20 healthy controls (10 female, mean age 48). All patients fulfilled the 1987 ACR criteria for RA. DAS28 score was calculated for all subjects. When compared to healthy controls, ADA levels were measured statistically higher both in patient groups (P = 0.046, 0.002). ADA levels in anti-TNF-alpha group were similar to conventional therapy (11.3 +/- 2.7, 10.9 +/- 4.01; P = 0.76). PPD was positive in 17 RA patients in the anti-TNF-alpha treatment group (%53). The ADA levels were found to be similar in the anti-TNF-alpha group when compared according to the PPD positivity (positive, 12.4 +/- 3.7; negative, 10.5 +/- 2.1; P = 0.02). No correlation was found between the ADA levels and age, disease duration, ESR, CRP, DAS 28 and HAQ score. In this study, we observed that RA patients at remission taking DMARD or anti-TNF-alpha therapy have similar levels of serum ADA. Although serum ADA levels during TB infection increase much higher, in our study, ADA levels of all RA patients were lower than 15 IU/L. Elevated ADA levels may be a clue for diagnosis of TB in patients who were on anti-TNF-alpha therapy.

  11. Correlation study of adenosine deaminase and its isoenzymes in type 2 diabetes mellitus

    PubMed Central

    Sapkota, Lokendra Bahadur; Thapa, Sangita; Subedi, Nuwadatta

    2017-01-01

    Objective Adenosine deaminase (ADA) plays an important role in cell-mediated immunity and modulation of insulin activity. Its clinical and diagnostic significance in Nepalese type 2 diabetes is not yet characterized. So, this study's objective was to determine the isoenzymatic activities of ADA (ADA1, ADA2, and total ADA) and show its correlation with demographic, anthropometric, and biochemical characteristics of type 2 Nepalese subjects with diabetes. Research design and methods This is a hospital-based cross-sectional study including 80 type 2 diabetes mellitus (DM) patients and same number of age-matched and sex-matched healthy controls. Data were collected using preformed set of questionnaires and biochemical data were obtained from the laboratory analysis of the patient's blood samples. Statistical analysis was performed with SPSS V.20. Results A significantly higher (p<0.001) mean values of body mass index (BMI), fasting blood sugar (FBS), postprandial blood sugar (PPBS), glycated hemoglobin (HbA1c), and lipid profiles except high-density lipoprotein cholesterol (HDL-C) were found in type 2 diabetic cases compared with controls. Serum ADA activities were significantly higher in cases compared with controls (p<0.001) showing significant positive correlation (p<0.05) with FBS, PPBS, HbA1c, and alcoholism; while no correlation was found with age, sex, ethnicity, BMI, waist–hip ratio, dietary habits, smoking, and duration of diabetes. Conclusions Serum ADA activities were significantly higher in type 2 diabetic patients compared with controls having significant positive correlation with glycemic parameters. Serum ADA and its isoenzymes could be used as biomarkers for assessing glycemic status in patients with type 2 DM. PMID:28321313

  12. Coccidioidomycosis: adenosine deaminase levels, serologic parameters, culture results, and polymerase chain reaction testing in pleural fluid.

    PubMed

    Thompson, George R; Sharma, Shobha; Bays, Derek J; Pruitt, Rachel; Engelthaler, David M; Bowers, Jolene; Driebe, Elizabeth M; Davis, Michael; Libke, Robert; Cohen, Stuart H; Pappagianis, Demosthenes

    2013-03-01

    In a patient with positive serum serology for coccidioidomycosis, the differential diagnosis of concurrent pleural effusions can be challenging. We, therefore, sought to clarify the performance characteristics of biochemical, serologic, and nucleic-acid-based testing in an attempt to avoid invasive procedures. The utility of adenosine deaminase (ADA), coccidioidal serology, and polymerase chain reaction (PCR) in the evaluation of pleuropulmonary coccidioidomycosis has not been previously reported. Forty consecutive patients evaluated for pleuropulmonary coccidioidomycosis were included. Demographic data, pleural fluid values, culture results, and clinical diagnoses were obtained from patient chart review. ADA testing was performed by ARUP Laboratories, coccidioidal serologic testing was performed by the University of California-Davis coccidioidomycosis serology laboratory, and PCR testing was performed by the Translational Genomics Research Institute using a previously published methodology. Fifteen patients were diagnosed with pleuropulmonary coccidioidomycosis by European Organization for the Research and Treatment of Cancer/Mycoses Study Group criteria. Pleural fluid ADA concentrations were < 40 IU/L in all patients (range, < 1.0-28.6 IU/L; median, 4.7). The sensitivity and specificity of coccidioidal serologic testing was 100% in this study. The specificity of PCR testing was high (100%), although the overall sensitivity remained low, and was comparable to the experience of others in the clinical use of PCR for coccidioidal diagnostics. Contrary to prior speculation, ADA levels in pleuropulmonary coccidioidomycosis were not elevated in this study. The sensitivity and specificity of coccidioidal serologic testing in nonserum samples remained high, but the clinical usefulness of PCR testing in pleural fluid was disappointing and was comparable to pleural fluid culture.

  13. Diagnosis of tuberculosis pleurisy with adenosine deaminase (ADA): a systematic review and meta-analysis.

    PubMed

    Gui, Xuwei; Xiao, Heping

    2014-01-01

    This systematic review and meta-analysis was performed to determine accuracy and usefulness of adenosine deaminase (ADA) in diagnosis of tuberculosis pleurisy. Medline, Google scholar and Web of Science databases were searched to identify related studies until 2014. Two reviewers independently assessed quality of studies included according to standard Quality Assessment of Diagnosis Accuracy Studies (QUADAS) criteria. The sensitivity, specificity, diagnostic odds ratio and other parameters of ADA in diagnosis of tuberculosis pleurisy were analyzed with Meta-DiSC1.4 software, and pooled using the random effects model. Twelve studies including 865 tuberculosis pleurisy patients and 1379 non-tuberculosis pleurisy subjects were identified from 110 studies for this meta-analysis. The sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnosis odds ratio (DOR) of ADA in the diagnosis of tuberculosis pleurisy were 45.25 (95% CI 27.63-74.08), 0.86 (95% CI 0.84-0.88), 0.88 (95% CI 0.86-0.90), 6.32 (95% CI 4.83-8.26) and 0.15 (95% 0.11-0.22), respectively. The area under the summary receiver operating characteristic curve (SROC) was 0.9340. Our results demonstrate that the sensitivity and specificity of ADA are high in the diagnosis of tuberculosis pleurisy especially when ADA≥50 (U/L). Thus, ADA is a relatively sensitive and specific marker for tuberculosis pleurisy diagnosis. However, it is cautious to apply these results due to the heterogeneity in study design of these studies. Further studies are required to confirm the optimal cut-off value of ADA.

  14. Seed specific expression and analysis of recombinant human adenosine deaminase (hADA) in three host plant species.

    PubMed

    Doshi, Ketan M; Loukanina, Natalia N; Polowick, Patricia L; Holbrook, Larry A

    2016-10-01

    The plant seed is a leading platform amongst plant-based storage systems for the production of recombinant proteins. In this study, we compared the activity of human adenosine deaminase (hADA) expressed in transgenic seeds of three different plant species: pea (Pisum sativum L.), Nicotiana benthamiana L. and tarwi (Lupinus mutabilis Sweet). All three species were transformed with the same expression vector containing the hADA gene driven by the seed-specific promoter LegA2 with an apoplast targeting pinII signal peptide. During the study, several independent transgenic lines were generated and screened from each plant species and only lines with a single copy of the gene of interest were used for hADA expression analysis. A stable transgenic canola line expressing the ADA protein, under the control of 35S constitutive promoter was used as both as a positive control and for comparative study with the seed specific promoter. Significant differences were detected in the expression of hADA. The highest activity of the hADA enzyme (Units/g seed) was reported in tarwi (4.26 U/g) followed by pea (3.23 U/g) and Nicotiana benthamiana (1.69 U/g). The expression of mouse ADA in canola was very low in both seed and leaf tissue compared to other host plants, confirming higher activity of seed specific promoter. Altogether, these results suggest that tarwi could be an excellent candidate for the production of valuable recombinant proteins.

  15. Novel deletion and a new missense mutation (Glu 217 Lys) at the catalytic site in two adenosine deaminase alleles of a patient with neonatal onset adenosine deaminase severe combined immunodeficiency

    SciTech Connect

    Hirschhorn, R.; Nicknam, M.N.; Eng, F.; Yang, D.R.; Borkowsky, W. )

    1992-11-01

    Mutations at the adenosine deaminase (ADA) locus result in a spectrum of disorders, encompassing a fulminant neonatal onset severe combined immunodeficiency (SCID) and childhood onset immunodeficiency, as well as apparently normal immune function. The extent of accumulation of the toxic metabolite, deoxyATP, correlates directly with severity of disease. The authors have now determined the mutations on both alleles of a child with fulminant, neonatal onset ADA SCID and accumulation of extremely high concentrations of deoxyATP. The genotype was consistent with the severely affected phenotype. One allele carried a large deletion that arose by non-homologous recombination and included the first five exons and promoter region. The second allele carried a missense mutation (G[sup 649]A) resulting in replacement of Glu[sup 217], an amino acid involved in the catalytic site, by Lys and predicting a major alteration in charge. Expression of the mutant cDNA on Cos cells confirmed that the mutation abolished enzyme activity. The authors have previously reported that a missense mutation at the preceding codon is similarly associated with neonatal onset ADA SCID and accumulation of extremely high deoxyATP. These findings suggest that genotype-phenotype correlations may be apparent for ADA SCID, despite the role that random variation in exposure to environmental pathogens may play in the initial phenotype. Such genotype-phenotype correlations may be important to consider in evaluating results of ongoing trials of [open quotes]gene[close quotes] and enzyme replacement therapy. 50 refs., 5 figs., 2 tabs.

  16. Antigenicity of UV radiation-induced murine tumors correlates positively with the level of adenosine deaminase activity.

    PubMed

    Aukerman, S L; Fidler, I J

    1987-01-01

    The specific activities of adenosine deaminase (ADA) in 16 murine tumor cell lines derived from seven UV light-induced neoplasms (melanoma and fibrosarcoma) were determined. In each case, the specific activity of ADA correlated positively with the antigenicity of the tumor cells. Highly antigenic cell lines that regress upon introduction into syngeneic hosts had on average 4- to 6-fold higher ADA specific activities than cell lines of low antigenicity that grow progressively in syngeneic hosts. The antigenic differences are probably not related to intracellular cAMP levels, as the level of cAMP differed only 2-fold between the two groups of cell lines.

  17. Effects of surfactant, salt and solvent on the structure and activity of adenosine deaminase: molecular dynamic and spectrophotometric studies.

    PubMed

    Ajloo, Davood; Taghizadeh, Elias; Saboury, Ali A; Bazyari, Elahe; Mahnam, Karim

    2008-08-15

    Effects of sodium dodecyl sulfate, dodecyltrimethylammonium bromide, sodium chloride, sodium sulfate, methanol and ethanol, on the structure and activity of adenosine deaminase (ADA) were investigated by UV-Vis, circular dichroism spectrophotometry and molecular dynamics (MDs) studies. Relative activity, experimental and computational helix content, total accessible surface area (ASA) and exposed charged surface area (ECSA) were obtained. The relative activity of ADA in the absence and the presence of denaturants were compared with structural results. It was shown that an increase in the surface area and a decrease in the amount of helicity are associated with a decrease in the activity of ADA.

  18. Mycobacterium tuberculosis ESAT6 and CPF10 Induce Adenosine Deaminase 2 mRNA Expression in Monocyte-Derived Macrophages

    PubMed Central

    Bae, Mi Jung; Ryu, Suyeon; Kim, Ha-Jeong; Cha, Seung Ick

    2017-01-01

    Background Delayed hypersensitivity plays a large role in the pathogenesis of tuberculous pleural effusion (TPE). Macrophages infected with live Mycobacterium tuberculosis (MTB) increase the levels of adenosine deaminase2 (ADA2) in the pleural fluid of TPE patients. However, it is as yet unclear whether ADA2 can be produced by macrophages when challenged with MTB antigens alone. This study therefore evaluated the levels of ADA2 mRNA expression, using monocyte-derived macrophages (MDMs) stimulated with MTB antigens. Methods Purified monocytes from the peripheral blood mononuclear cells of healthy volunteers were differentiated into macrophages using granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). The MDMs were stimulated with early secretory antigenic target protein 6 (ESAT6) and culture filtrate protein 10 (CFP10). The mRNA expression levels for the cat eye syndrome chromosome region, candidate 1 (CECR1) gene encoding ADA2 were then measured. Results CECR1 mRNA expression levels were significantly higher in MDMs stimulated with ESAT6 and CFP10, than in the unstimulated MDMs. When stimulated with ESAT6, M-CSF-treated MDMs showed more pronounced CECR1 mRNA expression than GM-CSF-treated MDMs. Interferon-γ decreased the ESAT6- and CFP10-induced CECR1 mRNA expression in MDMs. CECR1 mRNA expression levels were positively correlated with mRNA expression of tumor necrosis factor α and interleukin 10, respectively. Conclusion ADA2 mRNA expression increased when MDMs were stimulated with MTB antigens alone. This partly indicates that pleural fluid ADA levels could increase in patients with culture-negative TPE. Our results may be helpful in improving the understanding of TPE pathogenesis. PMID:28119750

  19. Mycobacterium tuberculosis ESAT6 and CPF10 Induce Adenosine Deaminase 2 mRNA Expression in Monocyte-Derived Macrophages.

    PubMed

    Bae, Mi Jung; Ryu, Suyeon; Kim, Ha-Jeong; Cha, Seung Ick; Kim, Chang Ho; Lee, Jaehee

    2017-01-01

    Delayed hypersensitivity plays a large role in the pathogenesis of tuberculous pleural effusion (TPE). Macrophages infected with live Mycobacterium tuberculosis (MTB) increase the levels of adenosine deaminase2 (ADA2) in the pleural fluid of TPE patients. However, it is as yet unclear whether ADA2 can be produced by macrophages when challenged with MTB antigens alone. This study therefore evaluated the levels of ADA2 mRNA expression, using monocyte-derived macrophages (MDMs) stimulated with MTB antigens. Purified monocytes from the peripheral blood mononuclear cells of healthy volunteers were differentiated into macrophages using granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). The MDMs were stimulated with early secretory antigenic target protein 6 (ESAT6) and culture filtrate protein 10 (CFP10). The mRNA expression levels for the cat eye syndrome chromosome region, candidate 1 (CECR1) gene encoding ADA2 were then measured. CECR1 mRNA expression levels were significantly higher in MDMs stimulated with ESAT6 and CFP10, than in the unstimulated MDMs. When stimulated with ESAT6, M-CSF-treated MDMs showed more pronounced CECR1 mRNA expression than GM-CSF-treated MDMs. Interferon-γ decreased the ESAT6- and CFP10-induced CECR1 mRNA expression in MDMs. CECR1 mRNA expression levels were positively correlated with mRNA expression of tumor necrosis factor α and interleukin 10, respectively. ADA2 mRNA expression increased when MDMs were stimulated with MTB antigens alone. This partly indicates that pleural fluid ADA levels could increase in patients with culture-negative TPE. Our results may be helpful in improving the understanding of TPE pathogenesis.

  20. Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space

    PubMed Central

    Li, Ruolin; Wang, Junli; Wang, Xinfeng; Wang, Maoshui

    2016-01-01

    OBJECTIVES: Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics. METHODS: A total of 76 patients were enrolled and grouped into subgroups according to Gram staining: 1) patients with Gram-negative bacterial infections, aged 53.2±18.6 years old, of whom 44.7% had empyemas and 2) patients with Gram-positive bacterial infections, aged 53.5±21.5 years old, of whom 63.1% had empyemas. The pleural effusion was sampled by thoracocentesis and then sent for adenosine deaminase testing, biochemical testing and microbiological culture. The Mann-Whitney U test was used to examine the differences in adenosine deaminase levels between the groups. Correlations between adenosine deaminase and specified variables were also quantified using Spearman’s correlation coefficient. Moreover, receiver operator characteristic analysis was performed to evaluate the diagnostic accuracy of pleural effusion adenosine deaminase. RESULTS: Mean pleural adenosine deaminase levels differed significantly between Gram-negative and Gram-positive bacterial infections of the pleural space (191.8±32.1 U/L vs 81.0±16.9 U/L, p<0.01). The area under the receiver operator characteristic curve was 0.689 (95% confidence interval: 0.570, 0.792, p<0.01) at the cutoff value of 86 U/L. Additionally, pleural adenosine deaminase had a sensitivity of 63.2% (46.0-78.2%); a specificity of 73.7% (56.9-86.6%); positive and negative likelihood ratios of 2.18 and 0.50, respectively; and positive and negative predictive values of 70.6% and 66.7%, respectively. CONCLUSIONS: Pleural effusion adenosine deaminase is a helpful alternative biomarker for early and quick discrimination of Gram-negative from Gram-positive bacterial infections of the pleural space

  1. Characterization of an adenosine deaminase-deficient human histiocytic lymphoma cell line (DHL-9) and selection of mutants deficient in adenosir kinase and deoxycytidine kinase.

    PubMed

    Kubota, M; Kamatani, N; Daddona, P E; Carson, D A

    1983-06-01

    The association of adenosine deaminase (ADA) deficiency with immunodeficiency disease has emphasized the importance of this purine metabolic enzyme for human lymphocyte growth and function. This report describes the natural occurrence of ADA deficiency in a human histiocytic lymphoma cell line, DHL-9. The minimal ADA activity in DHL-9 extracts, 0.028 nmol/min/mg protein, was less than 50% of the activity in two B-lymphoblastoid cell lines from ADA-deficient patients and was resistant to the potent ADA inhibitor deoxycoformycin. A sensitive radioimmunoassay failed to detect immunoreactive ADA in DHL-9 cells. Moreover, in DHL-9 cells, deoxycoformycin did not augment either the growth-inhibitory effects of adenosine and deoxyadenosine or the accumulation of deoxyadenosine triphosphate from deoxyadenosine. When compared to six other human hematopoietic cell lines, DHL-9 had 5.6-fold-higher levels of adenosylhomocysteinase. Chromosome 20, which bears the structural gene for ADA and adenosylhomocysteinase, was diploid and had a normal Giemsa banding pattern. The parental DHL-9 cell line was used for the selection and cloning of secondary mutants deficient in deoxycytidine kinase and adenosine kinase.

  2. Crystallization and preliminary X-ray crystallographic analysis of the tRNA-specific adenosine deaminase from Streptococcus pyogenes

    SciTech Connect

    Ku, Min-Je; Lee, Won-Ho; Nam, Ki-hyun; Rhee, Kyeong-hee; Lee, Ki-Seog; Kim, Eunice EunKyung; Yu, Myung-Hee; Hwang, Kwang Yeon

    2005-04-01

    The tRNA-specific adenosine deaminase from the pathogenic bacteria S. pyogenes has been overexpressed and crystallized. The tRNA-specific adenosine deaminase from the pathogenic bacteria Streptococcus pyogenes (spTAD) has been overexpressed in Escherichia coli and crystallized in the presence of Zn{sup 2+} ion at 295 K using ammonium sulfate as a precipitant. Flash-cooled crystals of spTAD diffracted to 2.0 Å using 30%(v/v) glycerol as a cryoprotectant. X-ray diffraction data have been collected to 2.0 Å using synchrotron radiation. The crystal belongs to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 81.042, c = 81.270 Å. The asymmetric unit contains one subunit of spTAD, with a corresponding crystal volume per protein weight (V{sub M}) of 3.3 Å{sup 3} Da{sup −1} and a solvent content of 62.7%.

  3. Effects of the Adenosine Deaminase Polymorphism and Caffeine Intake on Sleep Parameters in a Large Population Sample

    PubMed Central

    Mazzotti, Diego Robles; Guindalini, Camila; Pellegrino, Renata; Barrueco, Karina Fonseca; Santos-Silva, Rogério; Bittencourt, Lia Rita Azeredo; Tufik, Sergio

    2011-01-01

    Study Objectives: To evaluate the association between the adenosine deaminase polymorphism, sleep architecture, and caffeine consumption. Designs: Genetic association study. Setting: NA Patients or Participants: 958 participants who underwent polysomnography and genotyping. Interventions: NA Measurements and Results: Individuals carrying the A allele who consumed caffeine in the day prior to polysomnography demonstrated higher sleep efficiency and REM sleep percentage, after adjustment for potential confounders. No effect was observed in the absence of caffeine. Conclusions: Our data support the role of the ADA G22A polymorphism in sleep, and demonstrate for the first time that caffeine may act as a modulator of its functional effects. Clinical Trial Information: Name: Epidemiology of sleep disturbances among adult population of the Sao Paulo City. URL: http://www.clinicaltrials.gov/ct2/show/NCT00596713?term=NCT00596713&rank=1. Number: NCT00596713 Citation: Mazzotti DR; Guindalini C; Pellegrino R; Barrueco KF; Santos-Silva R; Bittencourt LRA; Tufik S Effects of the adenosine deaminase polymorphism and caffeine intake on sleep parameters in a large population sample. SLEEP 2011;34(3):399-402. PMID:21359089

  4. DNA-templated silver nanoclusters based label-free fluorescent molecular beacon for the detection of adenosine deaminase.

    PubMed

    Zhang, Kai; Wang, Ke; Xie, Minhao; Zhu, Xue; Xu, Lan; Yang, Runlin; Huang, Biao; Zhu, Xiaoli

    2014-02-15

    A general and reliable fluorescent molecular beacon is proposed in this work utilizing DNA-templated silver nanoclusters (AgNCs). The fluorescent molecular beacon has been employed for sensitive determination of the concentration of adenosine deaminase (ADA) and its inhibition. A well-designed oligonucleotide containing three functional regions (an aptamer region for adenosine assembly, a sequence complementary to the region of the adenosine aptamer, and an inserted six bases cytosine-loop) is adopted as the core element in the strategy. The enzymatic reaction of adenosine catalyzed by ADA plays a key role as well in the regulation of the synthesis of the DNA-templated AgNCs, i.e. the signal indicator. The intensity of the fluorescence signal may thereby determine the concentration of the enzyme and its inhibitor. The detection limit of the ADA can be lowered to 0.05 UL(-1). Also, 100 fM of a known inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA) is enough to present distinguishable fluorescence emission. Moreover, since the fluorescent signal indicator is not required to be bound with the oligonucleotide, this fluorescent molecular beacon may integrate the advantages of both the label-free and signal-on strategies.

  5. Arabidopsis tRNA Adenosine Deaminase Arginine Edits the Wobble Nucleotide of Chloroplast tRNAArg(ACG) and Is Essential for Efficient Chloroplast Translation[W

    PubMed Central

    Delannoy, Etienne; Le Ret, Monique; Faivre-Nitschke, Emmanuelle; Estavillo, Gonzalo M.; Bergdoll, Marc; Taylor, Nicolas L.; Pogson, Barry J.; Small, Ian; Imbault, Patrice; Gualberto, José M.

    2009-01-01

    RNA editing changes the coding/decoding information relayed by transcripts via nucleotide insertion, deletion, or conversion. Editing of tRNA anticodons by deamination of adenine to inosine is used both by eukaryotes and prokaryotes to expand the decoding capacity of individual tRNAs. This limits the number of tRNA species required for codon-anticodon recognition. We have identified the Arabidopsis thaliana gene that codes for tRNA adenosine deaminase arginine (TADA), a chloroplast tRNA editing protein specifically required for deamination of chloroplast (cp)-tRNAArg(ACG) to cp-tRNAArg(ICG). Land plant TADAs have a C-terminal domain similar in sequence and predicted structure to prokaryotic tRNA deaminases and also have very long N-terminal extensions of unknown origin and function. Biochemical and mutant complementation studies showed that the C-terminal domain is sufficient for cognate tRNA deamination both in vitro and in planta. Disruption of TADA has profound effects on chloroplast translation efficiency, leading to reduced yields of chloroplast-encoded proteins and impaired photosynthetic function. By contrast, chloroplast transcripts accumulate to levels significantly above those of wild-type plants. Nevertheless, absence of cp-tRNAArg(ICG) is compatible with plant survival, implying that two out of three CGN codon recognition occurs in chloroplasts, though this mechanism is less efficient than wobble pairing. PMID:19602623

  6. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities.

    PubMed

    Marisco, Patricia C; Carvalho, Fabiano B; Rosa, Michelle M; Girardi, Bruna A; Gutierres, Jessié M; Jaques, Jeandre A S; Salla, Ana P S; Pimentel, Víctor C; Schetinger, Maria Rosa C; Leal, Daniela B R; Mello, Carlos F; Rubin, Maribel A

    2013-08-01

    Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.

  7. Purification and characterization of a human RNA adenosine deaminase for glutamate receptor B pre-mRNA editing.

    PubMed

    Yang, J H; Sklar, P; Axel, R; Maniatis, T

    1997-04-29

    The glutamate receptor subunit B (GluR-B) pre-mRNA is edited at two adenosine residues, resulting in amino acid changes that alter the electrophysiologic properties of the glutamate receptor. Previous studies showed that these amino acid changes are due to adenosine to inosine conversions in two codons resulting from adenosine deamination. Here, we describe the purification and characterization of an activity from human HeLa cells that efficiently and accurately edits GluR-B pre-mRNA at both of these sites. The purified activity contains a human homolog of the recently reported rat RED1 (rRED1) protein, a member of the family of double-stranded RNA-dependent deaminase proteins. Recombinant human RED1 (hRED1), but not recombinant dsRAD, another member of the family, efficiently edits both the Q/R and R/G sites of GluR-B RNA. We conclude that the GluR-B editing activity present in HeLa cell extracts and the recombinant hRED1 protein are indistinguishable.

  8. The effect of experimental diabetes on the circadian pattern of adenosine deaminase and myeloperoxidase activities in rat liver.

    PubMed

    Uluoglu, C; Cimen, B; Ozbey, G; Karasu, C; Durakoglugil, D B; Gunes, A; Turkozkan, N; Zengil, H

    2008-03-01

    This study investigated time-dependent variations in the activities of adenosine deaminase (ADA), an adenosine-metabolizing enzyme, and myeloperoxidase (MPO), an oxidation reaction-catalyzing enzyme, in control and streptozotocin (STZ)-induced diabetic rat liver. The animals were sacrificed at six different times of day (1, 5, 9, 13, 17 and 21 hours after lights on - HALO). The hepatic activity of ADA did not change depending on the STZ treatment whereas MPO activity was significantly higher in the diabetics than in the controls. Hepatic ADA activity was dependent on the time of sacrifice with the lowest activity at 21 HALO and the highest activity at 5 HALO. Both enzyme activities failed to show any significant interaction between STZ treatment and time of sacrifice, which means that diabetes does not influence the 24 h pattern of these activities. Since MPO, a heme protein localized in the leukocytes, is involved in the killing of microorganisms, increased MPO activity in diabetic rat liver may reflect leukocyte infiltration secondary to diabetes. A reduction in ADA activity during the dark (activity/feeding) period will presumably lead to high concentrations of adenosine in the liver, possibly contributing to changes in some metabolic processes, such as glycogen turnover and oxygen supply.

  9. Repetitive systemic morphine alters activity-dependent plasticity of Schaffer-collateral-CA1 pyramidal cell synapses: involvement of adenosine A1 receptors and adenosine deaminase.

    PubMed

    Sadegh, Mehdi; Fathollahi, Yaghoub

    2014-10-01

    The effectiveness of O-pulse stimulation (TPS) for the reversal of O-pattern primed bursts (PB)-induced long-term potentiation (LTP) were examined at the Schaffer-collateral-CA1 pyramidal cell synapses of hippocampal slices derived from rats chronically treated with morphine (M-T). The results showed that slices derived from both control and M-T rats had normal field excitatory postsynaptic potential (fEPSP)-LTP, whereas PS-LTP in slices from M-T rats was significantly greater than that from control slices. When morphine was applied in vitro to slices derived from rats chronically treated with morphine, the augmentation of PS-LTP was not seen. TPS given 30 min after LTP induction failed to reverse the fEPSP- or PS-LTP in both groups of slices. However, TPS delivered in the presence of long-term in vitro morphine caused the PS-LTP reversal. This effect was blocked by the adenosine A1 receptor (A1R) antagonist CPX (200 nM) and furthermore was enhanced by the adenosine deaminase (ADA) inhibitor EHNA (10 μM). Interestingly, TPS given 30 min after LTP induction in the presence of EHNA (10 μM) can reverse LTP in morphine-exposed control slices in vitro. These results suggest adaptive changes in the hippocampus area CA1 in particular in adenosine system following repetitive systemic morphine. Chronic in vivo morphine increases A1R and reduces ADA activity in the hippocampus. Consequently, adenosine can accumulate because of a stimulus train-induced activity pattern in CA1 area and takes the opportunity to work as an inhibitory neuromodulator and also to enable CA1 to cope with chronic morphine. In addition, adaptive mechanisms are differentially working in the dendrite layer rather than the somatic layer of hippocampal CA1.

  10. The Effect of Acute Exercise upon Adenosin Deaminase Oxidant and Antioxidant Activity

    ERIC Educational Resources Information Center

    Kafkas, M. Emin; Karabulut, Aysun Bay; Sahin, Armagan; Otlu, Onder; Savas, Seyfi; Aytac, Aylin

    2012-01-01

    The purpose of this study was to determine the changes of MDA, glutation (GSH), Adenozine deaminase (ADA) and superoxidase dismutaze (SOD) levels with exercise training in obese middle-aged women (body mass index, MMI [greater than or equal to] 30.0). Twelve obese middle-aged women participated in this study. The descriptive statistics of some of…

  11. The Effect of Acute Exercise upon Adenosin Deaminase Oxidant and Antioxidant Activity

    ERIC Educational Resources Information Center

    Kafkas, M. Emin; Karabulut, Aysun Bay; Sahin, Armagan; Otlu, Onder; Savas, Seyfi; Aytac, Aylin

    2012-01-01

    The purpose of this study was to determine the changes of MDA, glutation (GSH), Adenozine deaminase (ADA) and superoxidase dismutaze (SOD) levels with exercise training in obese middle-aged women (body mass index, MMI [greater than or equal to] 30.0). Twelve obese middle-aged women participated in this study. The descriptive statistics of some of…

  12. Cryptococcal pleuritis containing a high level of adenosine deaminase in a patient with AIDS: a case report.

    PubMed

    Yoshino, Yusuke; Kitazawa, Takatoshi; Tatsuno, Keita; Ota, Yasuo; Koike, Kazuhiko

    2010-01-01

    Cryptococcal infection is the 4th most common opportunistic infection in patients with acquired immune deficiency syndrome (AIDS). Although pleural effusion alone is an unusual presentation, we present a case of cryptococcal pleuritis in an AIDS patient which was initially difficult to discriminate from tuberculous pleuritis because of the high level of pleural adenosine deaminase (ADA). Cryptococcus neoformans was detected in the culture of the pleural effusion after the initiation of antituberculous treatment. High levels of ADA in the pleural fluid can be observed in patients with cryptococcal pleuritis, and longer incubation of pleural fluid should be performed in all patients who present with pleuritis associated with a high ADA level as the only significant finding.

  13. [Diagnosis of tuberculosis meningitis by detection of adenosine deaminase activity and amplification of nucleotide sequences with PCR].

    PubMed

    Correa, M F; Armas, E; Díaz, D; de Elguezabal, K; De la Rosa, M L; Calles, G; Adjounian, H; Pedroza, R

    2001-01-01

    Tuberculous meningitis (TBM) is the most severe and lethal form of tuberculosis. The rapid bacteriological diagnosis with the conventional techniques is nearly impossible in TBM. There for many patients are treated with anti-TBC drugs without a definitive diagnosis. A more fast and accurate diagnostic method is necessary, in order to initiate the treatment on time to prevent the irreversible neurologic sequel or death. We evaluated the use of two rapid methods: Adenosine deaminase activity (ADA) and polymerase chain reaction (PCR) for IS6110 and mtp40 sequences on cerebrospinal fluid (CSF) from chronic meningitis patients. For ADA activity > 8.0 U/L the sensibility and specificity was 80% and 91%. PCR sensibility was 80% and specificity 97%. ADA activity and PCR on CSF could be specially useful as complementary tools in the early diagnosis of TBM.

  14. Combined immunodeficiency disease associated with adenosine deaminase deficiency. Report on a workshop held in Albany, New York, October 1, 1973.

    PubMed

    Meuwissen, H J; Pollara, B; Pickering, R J

    1975-02-01

    Fifty-five children with CID and known ADA status were studies at a workshop held in Albany, New York. Erythrocyte ADA determinations were performed in 22 of the 55 patients, 13 of whom were ADA negative. The ADA defect appears to be transmitted as an autosomal recessive trait. Some patients with CID and ADA deficiency have characteristic radiologic abnormalities of the skeleton, which are not found in other illnesses. The thymus glands of all patients with CID and ADA deficiency who could be examined have evidence of thymic involution manifested by presence of Hassall's corpuscles and differentiated germinal epithelium; this is in contrast to "classic" thymus findings in CID with normal ADA. Adenosine deaminase probably plays an important, although as yet undefined, role in lymphocyte development and/or function. The deficiency of ADA in CID is the first enzyme defect observed in a deficiency disease of specific immunity.

  15. C-Reactive Protein, Sialic Acid and Adenosine Deaminase Levels in Serum and Pleural Fluid from Patients with Pleural Effusion

    PubMed Central

    Kim, Ji Woon; Yang, In Ae; Oh, Eun A; Rhyoo, Young Gun; Jang, Young Ho; Ryang, Dong Wook; Yoo, JooYong

    1988-01-01

    Laboratory analysis of pleural fluids is essential to determine underlying diseases. The authors evaluated the clinical significance of C-reactive protein (C-RP), sialic acid (SA), and adenosine deaminase (ADA) determinations in sera and pleural fluids from 37 patients with pleural effusion. (FP12)C-RP and sialic acid levels and ADA activities were higher in exudates than in transudates of pleural fluids. Serum and pleural fluid C-RP levels were high in patients with pyothorax. Determinations of serum sialic acid and the pleural fluid to serum ratio were useful for the differential diagnosis of pulmonary tuberculosis and malignancy. ADA activities of pleural fluid and serum are useful for the differentiation of malignancy from tuberculosis and nonspecific pyothorax. C-RP concentrations of pleural fluid correlated to serum levels. However, concentrations of sialic acid and ADA activities were not correlated to serum levels and only correlated to protein concentrations of pleural fluids. PMID:3154188

  16. Effects of the adenosine deaminase polymorphism and caffeine intake on sleep parameters in a large population sample.

    PubMed

    Mazzotti, Diego Robles; Guindalini, Camila; Pellegrino, Renata; Barrueco, Karina Fonseca; Santos-Silva, Rogério; Bittencourt, Lia Rita Azeredo; Tufik, Sergio

    2011-03-01

    To evaluate the association between the adenosine deaminase polymorphism, sleep architecture, and caffeine consumption. Genetic association study. NA. 958 participants who underwent polysomnography and genotyping. NA. Individuals carrying the A allele who consumed caffeine in the day prior to polysomnography demonstrated higher sleep efficiency and REM sleep percentage, after adjustment for potential confounders. No effect was observed in the absence of caffeine. Our data support the role of the ADA G22A polymorphism in sleep, and demonstrate for the first time that caffeine may act as a modulator of its functional effects. Name: Epidemiology of sleep disturbances among adult population of the Sao Paulo City. URL: http://www.clinicaltrials.gov/ct2/show/NCT00596713?term=NCT00596713&rank=1. Number: NCT00596713

  17. Adenosine deaminase inhibitors. Synthesis and biological activity of deaza analogues of erythro-9-(2-hydroxy-3-nonyl)adenine.

    PubMed

    Cristalli, G; Franchetti, P; Grifantini, M; Vittori, S; Lupidi, G; Riva, F; Bordoni, T; Geroni, C; Verini, M A

    1988-02-01

    Two new deaza analogues of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA, 1), 7-deaza-EHNA (6) and 1,3-dideaza-EHNA (11), were synthesized and evaluated for adenosine deaminase (ADA) inhibitory activity and compared with EHNA, 1-deaza-EHNA (2), and 3-deaza-EHNA (3). Substitution of a methine group for a nitrogen atom in the 7-position of the purine moiety of EHNA produces a dramatic drop in the inhibitory activity (Ki = 4 X 10(-4) M) whereas compounds 2 and 3 are still good inhibitors (Ki = 1.2 X 10(-7) M and 6.3 X 10(-9) M respectively). EHNA and its deaza analogues so far synthesized were also tested in vitro for their antiviral and antitumor activity in a range of cellular systems. EHNA and 1-deaza-EHNA are equiactive as inhibitors of human respiratory syncytial virus (HRSV) replication (MIC = 6.25 micrograms/mL) while the other compounds are inactive. On the other hand, all the examined compounds displayed an antitumor activity comparable to that of the reference compound 1-beta-D-arabinofuranosyladenine (ara-A), 7-deaza-EHNA being the most active of all. The results obtained showed that there is no correlation between adenosine deaminase inhibition and antiviral or antitumor activity in this series of compounds. 3-Deaza-EHNA, the most active inhibitor of ADA among the EHNA deaza analogues, greatly potentiates the antitumor activity of ara-A in vitro. In vivo activity was observed only when the two compounds were used in combination.

  18. Evidence that acute taurine treatment alters extracellular AMP hydrolysis and adenosine deaminase activity in zebrafish brain membranes.

    PubMed

    Rosemberg, Denis Broock; Kist, Luiza Wilges; Etchart, Renata Jardim; Rico, Eduardo Pacheco; Langoni, Andrei Silveira; Dias, Renato Dutra; Bogo, Maurício Reis; Bonan, Carla Denise; Souza, Diogo Onofre

    2010-09-06

    Taurine is one of the most abundant free amino acids in excitable tissues. In the brain, extracellular taurine may act as an inhibitory neurotransmitter, neuromodulator, and neuroprotector. Nucleotides are ubiquitous signaling molecules that play crucial roles for brain function. The inactivation of nucleotide-mediated signaling is controlled by ectonucleotidases, which include the nucleoside triphosphate diphosphohydrolase (NTPDase) family and ecto-5'-nucleotidase. These enzymes hydrolyze ATP/GTP to adenosine/guanosine, which exert a modulatory role controlling several neurotransmitter systems. The nucleoside adenosine can be inactivated in extracellular or intracellular milieu by adenosine deaminase (ADA). In this report, we tested whether acute taurine treatment at supra-physiological concentrations alters NTPDase, ecto-5'-nucleotidase, and ADA activities in zebrafish brain. Fish were treated with 42, 150, and 400 mg L(-1) taurine for 1h, the brains were dissected and the enzyme assays were performed. Although the NTPDase activities were not altered, 150 and 400 mg L(-1) taurine increased AMP hydrolysis (128 and 153%, respectively) in zebrafish brain membranes and significantly decreased ecto-ADA activity (29 and 38%, respectively). In vitro assays demonstrated that taurine did not change AMP hydrolysis, whereas it promoted a significant decrease in ecto-ADA activity at 150 and 400 mg L(-1) (24 and 26%, respectively). Altogether, our data provide the first evidence that taurine exposure modulates the ecto-enzymes responsible for controlling extracellular adenosine levels in zebrafish brain. These findings could be relevant to evaluate potential beneficial effects promoted by acute taurine treatment in the central nervous system (CNS) of this species. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR)

    PubMed Central

    Solomon, Oz; Oren, Shirley; Safran, Michal; Deshet-Unger, Naamit; Akiva, Pinchas; Jacob-Hirsch, Jasmine; Cesarkas, Karen; Kabesa, Reut; Amariglio, Ninette; Unger, Ron; Rechavi, Gideon; Eyal, Eran

    2013-01-01

    Alternative mRNA splicing is a major mechanism for gene regulation and transcriptome diversity. Despite the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood. Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes has been linked to splicing regulation in several cases. Here we used bioinformatics approaches, RNA-seq and exon-specific microarray of ADAR knockdown cells to globally examine how ADAR and its A-to-I RNA editing activity influence alternative mRNA splicing. Although A-to-I RNA editing only rarely targets canonical splicing acceptor, donor, and branch sites, it was found to affect splicing regulatory elements (SREs) within exons. Cassette exons were found to be significantly enriched with A-to-I RNA editing sites compared with constitutive exons. RNA-seq and exon-specific microarray revealed that ADAR knockdown in hepatocarcinoma and myelogenous leukemia cell lines leads to global changes in gene expression, with hundreds of genes changing their splicing patterns in both cell lines. This global change in splicing pattern cannot be explained by putative editing sites alone. Genes showing significant changes in their splicing pattern are frequently involved in RNA processing and splicing activity. Analysis of recently published RNA-seq data from glioblastoma cell lines showed similar results. Our global analysis reveals that ADAR plays a major role in splicing regulation. Although direct editing of the splicing motifs does occur, we suggest it is not likely to be the primary mechanism for ADAR-mediated regulation of alternative splicing. Rather, this regulation is achieved by modulating trans-acting factors involved in the splicing machinery. PMID:23474544

  20. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR).

    PubMed

    Solomon, Oz; Oren, Shirley; Safran, Michal; Deshet-Unger, Naamit; Akiva, Pinchas; Jacob-Hirsch, Jasmine; Cesarkas, Karen; Kabesa, Reut; Amariglio, Ninette; Unger, Ron; Rechavi, Gideon; Eyal, Eran

    2013-05-01

    Alternative mRNA splicing is a major mechanism for gene regulation and transcriptome diversity. Despite the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood. Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes has been linked to splicing regulation in several cases. Here we used bioinformatics approaches, RNA-seq and exon-specific microarray of ADAR knockdown cells to globally examine how ADAR and its A-to-I RNA editing activity influence alternative mRNA splicing. Although A-to-I RNA editing only rarely targets canonical splicing acceptor, donor, and branch sites, it was found to affect splicing regulatory elements (SREs) within exons. Cassette exons were found to be significantly enriched with A-to-I RNA editing sites compared with constitutive exons. RNA-seq and exon-specific microarray revealed that ADAR knockdown in hepatocarcinoma and myelogenous leukemia cell lines leads to global changes in gene expression, with hundreds of genes changing their splicing patterns in both cell lines. This global change in splicing pattern cannot be explained by putative editing sites alone. Genes showing significant changes in their splicing pattern are frequently involved in RNA processing and splicing activity. Analysis of recently published RNA-seq data from glioblastoma cell lines showed similar results. Our global analysis reveals that ADAR plays a major role in splicing regulation. Although direct editing of the splicing motifs does occur, we suggest it is not likely to be the primary mechanism for ADAR-mediated regulation of alternative splicing. Rather, this regulation is achieved by modulating trans-acting factors involved in the splicing machinery.

  1. Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma.

    PubMed

    Oakes, Eimile; Anderson, Ashley; Cohen-Gadol, Aaron; Hundley, Heather A

    2017-03-10

    RNA editing is a cellular process that precisely alters nucleotide sequences, thus regulating gene expression and generating protein diversity. Over 60% of human transcripts undergo adenosine to inosine RNA editing, and editing is required for normal development and proper neuronal function of animals. Editing of one adenosine in the transcript encoding the glutamate receptor subunit B, glutamate receptor ionotropic AMPA 2 (GRIA2), modifies a codon, replacing the genomically encoded glutamine (Q) with arginine (R); thus this editing site is referred to as the Q/R site. Editing at the Q/R site of GRIA2 is essential, and reduced editing of GRIA2 transcripts has been observed in patients suffering from glioblastoma. In glioblastoma, incorporation of unedited GRIA2 subunits leads to a calcium-permeable glutamate receptor, which can promote cell migration and tumor invasion. In this study, we identify adenosine deaminase that acts on RNA 3 (ADAR3) as an important regulator of Q/R site editing, investigate its mode of action, and detect elevated ADAR3 expression in glioblastoma tumors compared with adjacent brain tissue. Overexpression of ADAR3 in astrocyte and astrocytoma cell lines inhibits RNA editing at the Q/R site of GRIA2 Furthermore, the double-stranded RNA binding domains of ADAR3 are required for repression of RNA editing. As the Q/R site of GRIA2 is specifically edited by ADAR2, we suggest that ADAR3 directly competes with ADAR2 for binding to GRIA2 transcript, inhibiting RNA editing, as evidenced by the direct binding of ADAR3 to the GRIA2 pre-mRNA. Finally, we provide evidence that both ADAR2 and ADAR3 expression contributes to the relative level of GRIA2 editing in tumors from patients suffering from glioblastoma. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The nadA gene of Aspergillus nidulans, encoding adenine deaminase, is subject to a unique regulatory pattern.

    PubMed

    Oestreicher, Nathalie; Ribard, Carin; Scazzocchio, Claudio

    2008-05-01

    The adenine deaminase of A. nidulans, encoded by nadA, can be considered both as a catabolic and a purine salvage enzyme. We show that its transcriptional regulation reflects this double metabolic role. As all other genes involved in purine utilisation it is induced by uric acid, and this induction is mediated by the UaY transcription factor. However, it is also independently and synergistically induced by adenosine by a UaY-independent mechanism. At variance with all other enzymes of purine catabolism it is not repressed but induced by ammonium. This is at least partly due to the ammonium responsive GATA factor, AreA, acting in the nadA promoter as a competitor rather than in synergy with UaY. The adB gene, encoding adenylo-succinate synthetase, which can be considered both a biosynthetic and a salvage pathway enzyme, shares with nadA both ammonium and adenosine induction.

  3. Influence of prostacyclin on the antilipolytic effect of nicotinic acid in rat fat cells: a comparison with adenosine deaminase and theophylline.

    PubMed

    Gaion, R M; Dorigo, P; Murari, L; Gambarotto, L

    1987-07-01

    Isolated rat fat cells were incubated at pH 8.5 in order to delay PGI2 inactivation. Nicotinic acid, at concentrations lower than 2 mM was ineffective in antagonizing the stimulation of lipolysis induced by norepinephrine (2 microM). The potentiation of norepinephrine effect due to PGI2 (0.1 microM) was abolished by 0.1 mM nicotinic acid and, at higher concentrations of the drug, the rate of the process fell below the one measured in the absence of PGI2, with a resulting decrease of the response to norepinephrine. Nicotinic acid (0.04-0.4 mM) antagonized the stimulation of lipolysis caused by adenosine deaminase (0.5 U/ml) or by theophylline (0.5 mM) and the potentiation of norepinephrine effect due to adenosine deaminase. In cells treated with adenosine deaminase (0.5 U/ml) or with theophylline (0.5 mM), PGI2 (40 nM) inhibited the lipolytic effect of norepinephrine (5 microM) and nicotinic acid acted synergistically with PGI2 at this level. These results indicate that the antilipolytic action of nicotinic acid is influenced by endogenous adenosine and is increased by PGI2.

  4. Syzygium cumini extract decrease adenosine deaminase, 5'nucleotidase activities and oxidative damage in platelets of diabetic patients.

    PubMed

    De Bona, Karine S; Bellé, Luziane P; Sari, Marcel H; Thomé, Gustavo; Schetinger, Maria R C; Morsch, Vera M; Boligon, Aline; Athayde, Margareth L; Pigatto, Aline S; Moretto, Maria B

    2010-01-01

    Diabetes mellitus, a chronic metabolic disorder, has assumed epidemic proportions and its long-term complications can have devastating consequences. The oxidative stress in diabetes was greatly increased due to prolonged exposure to hyperglycemia and impairment of oxidant/antioxidant equilibrium. Syzygium cumini is being widely used to treat diabetes by the traditional practitioners over many centuries. Adenosine deaminase (ADA) and 5'-Nucleotidase (5'NT) are enzymes of purine nucleoside metabolism that play an important role in the regulation of adenosine (Ado) levels. In this study, we investigated the effect of Syzygium cumini aqueous leaves extract (ASc) on ADA and 5'NT activities and on parameters of oxidative stress under in vitro conditions, using platelets of patients with Type 2 diabetes mellitus. Platelet-Rich Plasma (PRP) was assayed by ADA, 5'NT, Catalase (CAT), Superoxide Dismutase (SOD) activities and Thiobarbituric acid reactive substances (TBARS) levels. We observed that ADA, 5'NT activities and TBARS levels were significantly higher when compared to the control group, and ASc (100 and 200 μg/mL) prevented these effects. Our study demonstrates that ASc was able to remove oxidant species generated in diabetic conditions and modulates in the Ado levels. Then, ASc may promote a compensatory response in platelet function, improving the susceptibility-induced by the diabetes mellitus. Copyright © 2010 S. Karger AG, Basel.

  5. Partial resolution of bone lesions. A child with severe combined immunodeficiency disease and adenosine deaminase deficiency after enzyme-replacement therapy

    SciTech Connect

    Yulish, B.S.; Stern, R.C.; Polmar, S.H.

    1980-01-01

    A child with severe combined immunodeficiency disease and adenosine deaminase deficiency, with characteristic bone dysplasia, was treated with transfusions of frozen irradiated RBCs as a means of enzyme replacement. This therapy resulted in restoration of immunologic competence and partial resolution of the bone lesions. Although the natural history of these lesions without therapy is not known, enzyme-replacement therapy may have played a role in the resolution of this patient's bone lesions.

  6. Adenosine Deaminase-2–Induced Hyperpermeability in Human Retinal Vascular Endothelial Cells Is Suppressed by MicroRNA-146b-3p

    PubMed Central

    Samra, Yara A.; Saleh, Heba M.; Hussein, Khaled A.; Elsherbiny, Nehal M.; Ibrahim, Ahmed S.; Elmasry, Khaled; Fulzele, Sadanand; El-Shishtawy, Mamdouh M.; Eissa, Laila A.; Al-Shabrawey, Mohamed; Liou, Gregory I.

    2017-01-01

    Purpose We recently demonstrated that adenosine deaminase-2 (ADA2) contributes to diabetic retinopathy (DR) via up-regulating the production of inflammatory cytokines in macrophages. Also, microRNA (miR)-146b-3p has the ability to inhibit ADA2. The goal of this study was to investigate the potential role of ADA2 and therapeutic benefit of miR-146b-3p in retinal inflammation and endothelial barrier dysfunction during diabetes. Methods Adenosine deaminase-2 activity was determined by colorimetric method in diabetic human vitreous. Human monocyte cell line U937 was differentiated into macrophages and then treated with amadori glycated albumin (AGA), and conditioned medium (CM) was used to assess the changes in ADA2 activity and TNF-α and IL-6 levels by ELISA. Also, macrophages were transfected with miR-146b-3p before treatment with AGA. Permeability of human retinal endothelial cells (hRECs) was assessed by electric cell-substrate impedance sensing (ECIS) after treatment with macrophage CM. Zonula occludens (ZO)-1 was examined by immuno-fluorescence in hRECs. Leukocyte adhesion was assessed in hRECs by measuring myeloperoxidase (MPO) activity and intercellular adhesion molecule-1 (ICAM-1) expression. Results Adenosine deaminase-2 activity was significantly increased in diabetic human vitreous. ADA2 activity and TNF-α and IL-6 levels were significantly increased in human macrophages by AGA treatment. Amadori glycated albumin–treated macrophage CM significantly increased hREC permeability, disrupted ZO-1 pattern, and increased leukocyte adhesion to hRECs through up-regulating ICAM-1. All these changes were reversed by miR-146b-3p. Conclusions Adenosine deaminase-2 is implicated in breakdown of the blood–retinal barrier (BRB) in DR through macrophages-derived cytokines. Therefore, inhibition of ADA2 by miR-146b-3p might be a useful tool to preserve BRB function in DR. PMID:28170537

  7. Deficiency of Adenosine Deaminase 2 (DADA2), an Inherited Cause of Polyarteritis Nodosa and a Mimic of Other Systemic Rheumatologic Disorders.

    PubMed

    Hashem, Hasan; Kelly, Susan J; Ganson, Nancy J; Hershfield, Michael S

    2017-10-05

    A new autoinflammatory disease, deficiency of adenosine deaminase 2 (DADA2), caused by mutations in the CECR1 gene, was first reported in 2014. This review aims to update progress in defining, treating, and understanding this multi-faceted disorder. DADA2 was first described in patients with systemic inflammation, mild immune deficiency, and vasculopathy manifested as recurrent stroke or polyarteritis nodosa (PAN). More than 125 patients have now been reported, and the phenotype has expanded to include children and adults presenting primarily with pure red cell aplasia (PRCA), or with antibody deficiency. Age of onset and clinical severity vary widely, even among related patients, and are not clearly related to CECR1 genotype. Inflammatory features often respond to anti-TNF agents, but marrow failure and severe immune deficiency may require hematopoietic stem cell transplantation. ADA2 is expressed and secreted by monocytes and macrophages, but its biological function and the pathogenesis of DADA2 are uncertain and will remain an important area of research. Pre-clinical investigation of ADA2 replacement therapy and CECR1-directed gene therapy are warranted, but complicated by the absence of a suitable animal model.

  8. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    EPA Science Inventory

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  9. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    EPA Science Inventory

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  10. Photodynamic therapy-driven induction of suicide cytosine deaminase gene.

    PubMed

    Bil, Jacek; Wlodarski, Pawel; Winiarska, Magdalena; Kurzaj, Zuzanna; Issat, Tadeusz; Jozkowicz, Alicja; Wegiel, Barbara; Dulak, Jozef; Golab, Jakub

    2010-04-28

    Photodynamic therapy (PDT) of tumors is associated with induction of hypoxia that results in activation of hypoxia-inducible factors (HIFs). Several observations indicate that increased HIFs transcriptional activity in tumor cells is associated with cytoprotective responses that limit cytotoxic effectiveness of PDT. Therefore, we decided to examine whether this cytoprotective mechanism could be intentionally used for designing more efficient tumor cell cytotoxicity. To this end we transfected tumor cells with a plasmid vector carrying a suicide cytosine deaminase gene driven by a promoter containing hypoxia response elements (HRE). The presence of such a genetic molecular beacon rendered tumor cells sensitive to cytotoxic effects of a non-toxic prodrug 5-fluorocytosine (5-FC). The results of this study provides a proof of concept that inducible cytoprotective mechanisms can be exploited to render tumor cells more susceptible to cytotoxic effects of prodrugs activated by products of suicide genes.

  11. Myeloperoxidase and adenosine-deaminase levels in the pleural fluid leakage induced by carrageenan in the mouse model of pleurisy.

    PubMed Central

    Fröde, T S; Medeiros, Y S

    2001-01-01

    BACKGROUND: Although myeloperoxidase (MPO) and adenosine-deaminase (ADA) levels are markers of activated leukocytes, both enzymes have not been currently addressed in inflammation models. AIMS: This study evaluates whether the concentrations of these enzymes are significantly correlated with the content of leukocytes in a pleurisy model. METHODS: The pleurisy was induced by carrageenan (1%) in mice, and the parameters analyzed 4 and 48 h after. RESULTS: After the induction of inflammation (4h), MPO and ADA levels peaked in parallel to neutrophils (p<0.01). Regarding the second phase of pleurisy (48 h), the highest concentrations of ADA were detected in parallel to the highest levels of mononuclears (p<0.01). At this time, MPO levels and neutrophils remained elevated, although at lower levels than those found at 4 h. A significant positive correlation was found among neutrophiLs and MPO, and mononuclears and ADA (p<0.01). CONCLUSIONS: These findings support the evidence that both enzymes are markers of the inflammatory process, and provide new tools for a better understanding of the immunoregulatory pathways that occur in inflammation. PMID:11577999

  12. A study on the serum adenosine deaminase activity in patients with typhoid Fever and other febrile illnesses.

    PubMed

    Ketavarapu, Sameera; Ramani G, Uma; Modi, Prabhavathi

    2013-04-01

    Adenosine Deaminase (ADA) has been suggested to be an important enzyme which is associated with the cell mediated immunity, but its clinical significance in typhoid fever has not yet been characterized. The present study was taken up to evaluate the serum ADA activity in patients of typhoid fever. The levels of ADA were also measured in the patients who were suffering from other febrile illnesses. This was a case control study. The subjects who were included in this study were divided into 3 groups. Group A consisted of 50 normal healthy individuals who served as the controls. Group B consisted of 50 patients, both males and females of all age groups, who were suffering from culture positive typhoid fever. Group C consisted of 50 patients who were suffering from febrile illnesses other than typhoid fever like viral fever, gastro enteritis, malaria, tonsillitis, upper respiratory tract infections, etc. The serum levels of ADA were estimated in all the subjects who were under study. The serum ADA level was found to be increased in the patients of typhoid fever as compared to that in those with other febrile illnesses and in the controls. From the present study, it can be concluded that there was a statistically significant increase in the serum ADA levels in the patients with typhoid.

  13. Circulating type 1 vaccine-derived poliovirus may evolve under the pressure of adenosine deaminases acting on RNA.

    PubMed

    Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Xu, Ruixue; Wang, Shujing

    2015-01-01

    Poliovirus, the causative agent of poliomyelitis, is a human enterovirus and member of the Picornaviridae family. An effective live-attenuated poliovirus vaccine strain (Sabin 1) has been developed and has protected humans from polio. However, a few cases of vaccine virulence reversion have been documented in several countries. For instance, circulating type 1 vaccine-derived poliovirus is a highly pathogenic poliovirus that evolved from an avirulent strain, but the mechanism by which vaccine strains undergo reversion remains unclear. In this study, vaccine strains exhibited A to G/U to C and G to A/C to U hypermutations in the reversed evolution of Sabin 1. Furthermore, the mutation ratios of U to C and C to U were higher than those of other mutation types. Dinucleotide editing context was then analyzed. Results showed that A to G and U to C mutations exhibited preferences similar to adenosine deaminases acting on RNA (ADAR). Hence, ADARs may participate in poliovirus vaccine evolution.

  14. Dietary Supplementation of Ginger and Turmeric Rhizomes Modulates Platelets Ectonucleotidase and Adenosine Deaminase Activities in Normotensive and Hypertensive Rats.

    PubMed

    Akinyemi, Ayodele Jacob; Thomé, Gustavo Roberto; Morsch, Vera Maria; Bottari, Nathieli B; Baldissarelli, Jucimara; de Oliveira, Lizielle Souza; Goularte, Jeferson Ferraz; Belló-Klein, Adriane; Oboh, Ganiyu; Schetinger, Maria Rosa Chitolina

    2016-07-01

    Hypertension is associated with platelet alterations that could contribute to the development of cardiovascular complications. Several studies have reported antiplatelet aggregation properties of ginger (Zingiber officinale) and turmeric (Curcuma longa) with limited scientific basis. Hence, this study assessed the effect of dietary supplementation of these rhizomes on platelet ectonucleotidase and adenosine deaminase (ADA) activities in Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Animals were divided into seven groups (n = 10): normotensive control rats; induced (l-NAME hypertensive) rats; hypertensive rats treated with atenolol (10 mg/kg/day); normotensive and hypertensive rats treated with 4% supplementation of turmeric or ginger, respectively. After 14 days of pre-treatment, the animals were induced with hypertension by oral administration of l-NAME (40 mg/kg/day). The results revealed a significant (p < 0.05) increase in platelet ADA activity and ATP hydrolysis with a concomitant decrease in ADP and AMP hydrolysis of l-NAME hypertensive rats when compared with the control. However, dietary supplementation with turmeric or ginger efficiently prevented these alterations by modulating the hydrolysis of ATP, ADP and AMP with a concomitant decrease in ADA activity. Thus, these activities could suggest some possible mechanism of the rhizomes against hypertension-derived complications associated to platelet hyperactivity. Copyright © 2016 John Wiley & Sons, Ltd.

  15. A Study on the Serum Adenosine Deaminase Activity in Patients with Typhoid Fever and Other Febrile Illnesses

    PubMed Central

    Ketavarapu, Sameera; Ramani G., Uma; Modi, Prabhavathi

    2013-01-01

    Background: Adenosine Deaminase (ADA) has been suggested to be an important enzyme which is associated with the cell mediated immunity, but its clinical significance in typhoid fever has not yet been characterized. The present study was taken up to evaluate the serum ADA activity in patients of typhoid fever. The levels of ADA were also measured in the patients who were suffering from other febrile illnesses. Material and Method: This was a case control study. The subjects who were included in this study were divided into 3 groups. Group A consisted of 50 normal healthy individuals who served as the controls. Group B consisted of 50 patients, both males and females of all age groups, who were suffering from culture positive typhoid fever. Group C consisted of 50 patients who were suffering from febrile illnesses other than typhoid fever like viral fever, gastro enteritis, malaria, tonsillitis, upper respiratory tract infections, etc. The serum levels of ADA were estimated in all the subjects who were under study. Results: The serum ADA level was found to be increased in the patients of typhoid fever as compared to that in those with other febrile illnesses and in the controls. Conclusion: From the present study, it can be concluded that there was a statistically significant increase in the serum ADA levels in the patients with typhoid. PMID:23730630

  16. Effects of aqueous soybean, mistletoe and red clover extracts on activities of adenosine deaminase and xanthine oxidase enzyme.

    PubMed

    Namuslu, M; Kocaoglu, H; Celik, H T; Avci, A; Devrim, E; Genc, Y; Gocmen, E; Erguder, I B; Durak, I

    2014-01-01

    Soybean (Glycine max), mistletoe (Viscum album) and red clover (Trifolium pratence) have been argued to have anti-cancer effects. In the present study it was aimed to investigate possible effects of these plant extracts on the activities of DNA turn-over enzymes, namely adenosine deaminase (ADA) and xanthine oxidase (XO) in cancerous and non-cancerous gastric and colon tissues. For this aim, 6 cancerous and 6 non-cancerous adjacent human gastric tissues, and 7 cancerous and 7 non-cancerous adjacent colon tissues were obtained by surgical operations. Our results suggest that aqueous soybean, mistletoe and red clover extracts may exhibit anti-tumoral activity by depleting hypoxanthine concentration in the cancer cells through XO activation, which may lead to lowered salvage pathway activity necessary for the cancer cells to proliferate in the cancerous colon tissue. Some foods like soybean, mistletoe and red clover may provide nutritional support to medical cancer therapy through inhibiting and/or activating key enzymes in cancer metabolism (Tab. 4, Ref. 33).

  17. Activity of cholinesterases and adenosine deaminase in blood and serum of rats experimentally infected with Trypanosoma cruzi

    PubMed Central

    DA SILVA, A S; PIMENTEL, V C; FIORENZA, A M; FRANÇA, R T; TONIN, A A; JAQUES, J A; LEAL, C A M; DA SILVA, C B; MORSCH, V; SCHETINGER, M R C; LOPES, S T A; MONTEIRO, S G

    2011-01-01

    This study aimed to evaluate the activity of cholinesterases and adenosine deaminase (ADA) in blood and serum of rats infected with Trypanosoma cruzi. Twelve adult rats were used in the experiment divided into two uniform groups. Rodents from group A (control group) were non-infected and animals from group B served as infected, receiving intraperitoneally 3.3×107 trypomastigotes/each. Blood collection was performed at days 60 and 120 post-infection (PI) in order to evaluate the hemogram, blood activity of acetylcholinesterase, and serum butyrylcholinesterase and ADA activities. Hematological parameters did not differ between groups. A significant increase (P<0.05) of acetylcholinesterase activity was observed in blood while butyrylcholinesterase had a significant reduction (P<0.01) in serum of infected rats at days 60 and 120 PI. ADA activity in serum showed an inhibition in infected animals when compared to non-infected at day 120 PI. Based on these results, it is possible to conclude that the activity of cholinesterases and ADA were changed in animals infected with T. cruzi. The possible causes of these alterations will be discussed in this paper. PMID:21929880

  18. Folic acid and pterin deaminases in Dictyostelium discoideum: kinetic properties and regulation by folic acid, pterin, and adenosine 3',5'-phosphate.

    PubMed Central

    Wurster, B; Bek, F; Butz, U

    1981-01-01

    Kinetic data obtained for deamination of pterin by the extracellular fraction from Dictyostelium discoideum yielded apparently linear Lineweaver-Burk plots for pterin. The Michaelis constant for pterin was 30 microM. The data for folic acid deamination yielded convex Lineweaver-Burk plots. Convex Lineweaver-Burk plots could result from the presence of two types of enzymes with different affinities. The data for folic acid deamination were analyzed mathematically for two types of enzymes. This analysis produced Michaelis constants for folic acid of 1.8 and 23 microM competition studies suggested that an enzyme with low affinity nonspecifically catalyzed the deamination of folic acid and pterin, whereas an enzyme with high affinity was a specific folic acid deaminase. A specific folic acid deaminase with high affinity appeared to be present on the surface of D. discoideum cells. The Michaelis constant for this enzyme was 2.6 microM. Cells growing in nutrient broth and cells starved in phosphate buffer released folic acid and pterin deaminases. The quantity of deaminase activities released by the cells appeared to be controlled by chemoattractants. Starving cells that were supplied with folic acid, pterin, or adenosine 3',5'-phosphate increased their extracellular folic acid and pterin deaminase activities to a larger extent than did cell suspensions to which no chemoattractants were added. Administration of folic acid or pterin to starving cells caused increases of the activity of extracellular adenosine 3',5'-phosphate phosphodiesterase and repressed increases of the activity of phosphodiesterase inhibitor. PMID:6270062

  19. Inhibition of adenosine deaminase (ADA)-mediated metabolism of cordycepin by natural substances.

    PubMed

    Li, Gen; Nakagome, Izumi; Hirono, Shuichi; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-03-01

    Cordycepin, which is an analogue of a nucleoside adenosine, exhibits a wide variety of pharmacological activities including anticancer effects. In this study, ADA1- and ADA2-expressing HEK293 cells were established to determine the major ADA isoform responsible for the deamination of cordycepin. While the metabolic rate of cordycepin deamination was similar between ADA2-expressing and Mock cells, extensive metabolism of cordycepin was observed in the ADA1-expressing cells with K m and V max values of 54.9 μmol/L and 45.8 nmole/min/mg protein. Among five natural substances tested in this study (kaempferol, quercetin, myricetin, naringenin, and naringin), naringin strongly inhibited the deamination of cordycepin with K i values of 58.8 μmol/L in mouse erythrocytes and 168.3 μmol/L in human erythrocytes. A treatment of Jurkat cells with a combination of cordycepin and naringin showed significant cytotoxicity. Our in silico study suggests that not only small molecules such as adenosine derivatives but also bulky molecules like naringin can be a potent ADA1 inhibitor for the clinical usage.

  20. Regulation of 5'-adenosine monophosphate deaminase in the freeze tolerant wood frog, Rana sylvatica

    PubMed Central

    Dieni, Christopher A; Storey, Kenneth B

    2008-01-01

    Background The wood frog, Rana sylvatica, is one of a few vertebrate species that have developed natural freeze tolerance, surviving days or weeks with 65–70% of its total body water frozen in extracellular ice masses. Frozen frogs exhibit no vital signs and their organs must endure multiple stresses, particularly long term anoxia and ischemia. Maintenance of cellular energy supply is critical to viability in the frozen state and in skeletal muscle, AMP deaminase (AMPD) plays a key role in stabilizing cellular energetics. The present study investigated AMPD control in wood frog muscle. Results Wood frog AMPD was subject to multiple regulatory controls: binding to subcellular structures, protein phosphorylation, and effects of allosteric effectors, cryoprotectants and temperature. The percentage of bound AMPD activity increased from 20 to 35% with the transition to the frozen state. Bound AMPD showed altered kinetic parameters compared with the free enzyme (S0.5 AMP was reduced, Hill coefficient fell to ~1.0) and the transition to the frozen state led to a 3-fold increase in S0.5 AMP of the bound enzyme. AMPD was a target of protein phosphorylation. Bound AMPD from control frogs proved to be a low phosphate form with a low S0.5 AMP and was phosphorylated in incubations that stimulated PKA, PKC, CaMK, or AMPK. Bound AMPD from frozen frogs was a high phosphate form with a high S0.5 AMP that was reduced under incubation conditions that stimulated protein phosphatases. Frog muscle AMPD was activated by Mg·ATP and Mg·ADP and inhibited by Mg·GTP, KCl, NaCl and NH4Cl. The enzyme product, IMP, uniquely inhibited only the bound (phosphorylated) enzyme from muscle of frozen frogs. Activators and inhibitors differentially affected the free versus bound enzyme. S0.5 AMP of bound AMPD was also differentially affected by high versus low assay temperature (25 vs 5°C) and by the presence/absence of the natural cryoprotectant (250 mM glucose) that accumulates during freezing

  1. Crystallization and preliminary X-ray crystallographic analysis of adenosine 5′-monophosphate deaminase (AMPD) from Arabidopsis thaliana in complex with coformycin 5′-phosphate

    SciTech Connect

    Han, Byung Woo; Bingman, Craig A.; Mahnke, Donna K.; Sabina, Richard L.; Phillips, George N. Jr

    2005-08-01

    Adenosine 5′-monophosphate deaminase from A. thaliana has been crystallized in complex with coformycin 5′-phosphate. Diffraction data have been collected to 3.34 Å resolution. Adenosine 5′-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5′-monophosphate (AMP) to inosine 5′-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5′-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6{sub 2}22, with unit-cell parameters a = b = 131.325, c = 208.254 Å, α = β = 90, γ = 120°. Diffraction data were collected to 3.34 Å resolution from a crystal in complex with coformycin 5′-phosphate and to 4.05 Å resolution from a crystal of a mercury derivative.

  2. The comparative value of pleural fluid adenosine deaminase and neopterin levels in diagnostic utility of pleural tuberculosis.

    PubMed

    Koşar, Filiz; Yurt, Sibel; Arpınar Yiğitbaş, Burcu; Şeker, Barış; Kutbay Özçelik, Hatice; Uzun, Hafize

    2015-01-01

    The aim of the present study was to evaluate and compare the diagnostic accuracy of pleura levels of adenosine deaminase (ADA) and neopterin for the differential diagnosis of pleural tuberculosis (TP). The study included 50 patients with TB, 27 patients with malignancies, and 24 patients with pleural effusion of non-tuberculous and non-malignant origin as controls. ADA and neopterin levels in pleural fluid were measured by spectrofotometric and ELISA method, respectively. Pleural neopterin levels were significantly higher in patients with pleural TB than patients with malignancy (p< 0.001). Pleural ADA levels were significantly higher in patients with pleural TB than patients with malignancy (p< 0.001) and patients with benign non-tuberculosis effusions (p< 0.001). The mean levels of ADA and neopterin in pleural effusion were evaluated according to their underlying diseases for the diagnostic accuracy. As for pleural TB receiving operating characteristic curves identified the following results; The best cut-off value for pleural neopterin was 4.7 U/L and yielded a sensitivity and specificity of 86% and 72.55%, respectively. Taking a cut-off value of 42 U/L for pleural ADA, the sensitivity and the specificity were found to be 88% and 68.63%, respectively. In the diagnosis of pleural TB pleural neopterin level has a comparable sensitivity to pleural ADA activity. Both markers may find a place as a routine investigation in the coming days for early detection of TB. However, these tests should not be considered an alternative to biopsy and culture.

  3. Pleural fluid adenosine deaminase (pfADA) in the diagnosis of tuberculous effusions in a low incidence population.

    PubMed

    Arnold, David T; Bhatnagar, Rahul; Fairbanks, Lynette D; Zahan-Evans, Natalie; Clive, Amelia O; Morley, Anna J; Medford, Andrew R L; Maskell, Nicholas A

    2015-01-01

    Previous studies have assessed the diagnostic ability of pleural fluid adenosine deaminase (pfADA) in detecting tuberculous pleural effusions, with good specificity and sensitivity reported. However, in North Western Europe pfADA is not routinely used in the investigation of a patient with an undiagnosed pleural effusion, mainly due to a lack of evidence as to its utility in populations with low mycobacterium tuberculosis (mTB) incidence. Patients presenting with an undiagnosed pleural effusion to a tertiary pleural centre in South-West England over a 3 year period, were prospectively recruited to a pleural biomarker study. Pleural fluid from consecutive patients with robust 12-month follow up data and confirmed diagnosis were sent for pfADA analysis. Of 338 patients enrolled, 7 had confirmed tuberculous pleural effusion (2%). All mTB effusions were lymphocyte predominant with a median pfADA of 72.0 IU/L (range- 26.7 to 91.5) compared to a population median of 12.0 IU/L (range- 0.3 to 568.4). The optimal pfADA cut off was 35 IU/L, which had a negative predictive value (NPV) of 99.7% (95% CI; 98.2-99.9%) for the exclusion of mTB, and sensitivity of 85.7% (95% CI; 42.2-97.6%) with an area under the curve of 0.88 (95% CI; 0.732-1.000). This is the first study examining the diagnostic utility of pfADA in a low mTB incidence area. The chance of an effusion with a pfADA under 35 IU/L being of tuberculous aetiology was negligible. A pfADA of over 35 IU/L in lymphocyte-predominant pleural fluid gives a strong suspicion of mTB.

  4. Nucleotide pool imbalance and adenosine deaminase deficiency induce alterations of N-region insertions during V(D)J recombination

    PubMed Central

    Gangi-Peterson, Lisa; Sorscher, David H.; Reynolds, Jon W.; Kepler, Thomas B.; Mitchell, Beverly S.

    1999-01-01

    Template-independent nucleotide additions (N regions) generated at sites of V(D)J recombination by terminal deoxynucleotidyl transferase (TdT) increase the diversity of antigen receptors. Two inborn errors of purine metabolism, deficiencies of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP), result in defective lymphoid development and aberrant pools of 2′-deoxynucleotides that are substrates for TdT in lymphoid precursors. We have asked whether selective increases in dATP or dGTP pools result in altered N regions in an extrachromosomal substrate transfected into T-cell or pre–B-cell lines. Exposure of the transfected cells to 2′-deoxyadenosine and an ADA inhibitor increased the dATP pool and resulted in a marked increase in A–T insertions at recombination junctions, with an overall decreased frequency of V(D)J recombination. Sequence analysis of VH-DH-JH junctions from the IgM locus in B-cell lines from ADA-deficient patients demonstrated an increase in A–T insertions equivalent to that found in the transfected cells. In contrast, elevation of dGTP pools, as would occur in PNP deficiency, did not alter the already rich G–C content of N regions. We conclude that the frequency of V(D)J recombination and the composition of N-insertions are influenced by increases in dATP levels, potentially leading to alterations in antigen receptors and aberrant lymphoid development. Alterations in N-region insertions may contribute to the B-cell dysfunction associated with ADA deficiency. PMID:10079104

  5. RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis

    PubMed Central

    Ward, Simone V.; George, Cyril X.; Welch, Megan J.; Liou, Li-Ying; Hahm, Bumsuk; Lewicki, Hanna; de la Torre, Juan C.; Samuel, Charles E.; Oldstone, Michael B.

    2011-01-01

    Measles virus (MV), a member of the family Paramyxoviridae and an exclusively human pathogen, is among the most infectious viruses. A progressive fatal neurodegenerative complication, subacute sclerosing panencephalitis (SSPE), occurs during persistent MV infection of the CNS and is associated with biased hypermutations of the viral genome. The observed hypermutations of A-to-G are consistent with conversions catalyzed by the adenosine deaminase acting on RNA (ADAR1). To evaluate the role of ADAR1 in MV infection, we selectively disrupted expression of the IFN-inducible p150 ADAR1 isoform and found it caused embryonic lethality at embryo day (E) 11–E12. We therefore generated p150-deficient and WT mouse embryo fibroblast (MEF) cells stably expressing the MV receptor signaling lymphocyte activation molecule (SLAM or CD150). The p150−/− but not WT MEF cells displayed extensive syncytium formation and cytopathic effect (CPE) following infection with MV, consistent with an anti-MV role of the p150 isoform of ADAR1. MV titers were 3 to 4 log higher in p150−/− cells compared with WT cells at 21 h postinfection, and restoration of ADAR1 in p150−/− cells prevented MV cytopathology. In contrast to infection with MV, p150 disruption had no effect on vesicular stomatitis virus, reovirus, or lymphocytic choriomeningitis virus replication but protected against CPE resulting from infection with Newcastle disease virus, Sendai virus, canine distemper virus, and influenza A virus. Thus, ADAR1 is a restriction factor in the replication of paramyxoviruses and orthomyxoviruses. PMID:21173229

  6. [A comparative study for adenosine deaminase and anti-antigen A-60 antibodies detection for the diagnosis of tuberculous meningitis].

    PubMed

    García, Patricia; Bahamondes, Laura; Reyes, Paula; Román, Juan C; Poblete, Haydé; Balcells, M Elvira

    2012-10-01

    Diagnosis of tuberculous meningitis (TBM) is hampered by the lack of rapid and accurate diagnostic tools. We evaluated the immunological response to Mycobacterium tuberculosis anti-A60 antibodies in cerebrospinal fluid (CSF) in comparison to adenosine deaminase (ADA) determination, for the diagnosis of TBM. A total of 63 CSF samples were analyzed by indirect ELISA for the detection of anti- A60 IgG, IgM and IgA. These include samples from 17 patients with confirmed TBM and 46 control patients with other infections. The mean individual anti-A60 IgM, IgG and IgA CSF antibody titers were significantly higher in TBM in comparison with control groups (p < 0.01). The best discriminatory CSF antibody for confirming TBM diagnosis was IgM, with an area under the receiver operating characteristic curve of 0.928 (95%CI 0.834-0.978), compared to 0.863 (95% CI: 0.752-0.936) for ADA testing (p = NS). The sensitivity of anti- A60 IgM CSF antibody titers (cutoff > 0.06 U/ml) was 94.1% compared to 88.2% for ADA (cutoff > 6.2 U/ml), p = NS. Both anti A60 IgM and ADA showed the same moderate specificity (80.4%). Two cases of TBM were correctly identified by anti-A60 IgM but missed by ADA. The ELISA test for anti-antigen A60 antibodies (IgM) is a rapid and sensitive tool for the rapid diagnosis of TBM that can be a complement to ALDA determination. The specificity of both tests is still a limitation in TBM diagnosis.

  7. Double-stranded-RNA-specific adenosine deaminase 1 (ADAR1) is proposed to contribute to the adaptation of equine infectious anemia virus from horses to donkeys.

    PubMed

    Tang, Yan-Dong; Zhang, Xiang; Na, Lei; Wang, Xue-Feng; Fu, Li-Hua; Zhu, Chun-Hui; Wang, Xiaojun; Zhou, Jian-Hua

    2016-10-01

    Equine infectious anemia virus (EIAV) is a member of the genus Lentivirus of the family Retroviridae. Horses are the most susceptible equids to EIAV infection and are therefore the primary hosts of this virus. In contrast, infected donkeys do not develop clinically active equine infectious anemia (EIA). This phenomenon is similar to what has been observed with HIV-1, which fails to induce AIDS in non-human primates. Interestingly, Shen et al. developed a donkey-tropic pathogenic virus strain (EIAVDV117, DV117) by serially passaging a horse-tropic pathogenic strain, EIAVLN40 (LN40), in donkeys. LN40, which was generated by passaging a field isolate in horses, displayed enhanced virulence in horses but caused no clinical symptoms in donkeys. Infection with DV117 induced acute EIA in nearly 100 % of donkeys. Genomic analysis of DV117 revealed a significantly higher frequency of A-to-G substitutions when compared to LN40. Furthermore, detailed analysis of dinucleotide editing showed that A-to-G mutations had a preference for 5'TpA and 5'ApA. These results strongly implicated the activity of the adenosine deaminase, ADAR1, in this type of mutation. Further investigation demonstrated that overexpression of donkey ADAR1 increased A-to-G mutations within the genome of EIAV. Together with our previous finding that multiple mutations in multiple genes are generated in DV117 during its adaptation from horses to donkeys, the present study suggests that ADAR1-induced A-to-G mutations occur during virus adaption to related new hosts contributing to the alteration of EIAV host tropism.

  8. Mixed inhibition of adenosine deaminase activity by 1,3-dinitrobenzene: a model for understanding cell-selective neurotoxicity in chemically-induced energy deprivation syndromes in brain.

    PubMed

    Wang, Yipei; Liu, Xin; Schneider, Brandon; Zverina, Elaina A; Russ, Kristen; Wijeyesakere, Sanjeeva J; Fierke, Carol A; Richardson, Rudy J; Philbert, Martin A

    2012-02-01

    Astrocytes are acutely sensitive to 1,3-dinitrobenzene (1,3-DNB) while adjacent neurons are relatively unaffected, consistent with other chemically-induced energy deprivation syndromes. Previous studies have investigated the role of astrocytes in protecting neurons from hypoxia and chemical injury via adenosine release. Adenosine is considered neuroprotective, but it is rapidly removed by extracellular deaminases such as adenosine deaminase (ADA). The present study tested the hypothesis that ADA is inhibited by 1,3-DNB as a substrate mimic, thereby preventing adenosine catabolism. ADA was inhibited by 1,3-DNB with an IC(50) of 284 μM, Hill slope, n = 4.8 ± 0.4. Native gel electrophoresis showed that 1,3-DNB did not denature ADA. Furthermore, adding Triton X-100 (0.01-0.05%, wt/vol), Nonidet P-40 (0.0015-0.0036%, wt/vol), or bovine serum albumin (0.05 mg/ml or changing [ADA] (0.2 and 2 nM) did not substantially alter the 1,3-DNB IC(50) value. Likewise, dynamic light scattering showed no particle formation over a (1,3-DNB) range of 149-1043 μM. Kinetics revealed mixed inhibition with 1,3-DNB binding to ADA (K(I) = 520 ± 100 μM, n = 1 ± 0.6) and the ADA-adenosine complex (K(IS) = 262 ± 7 μM, n = 6 ± 0.6, indicating positive cooperativity). In accord with the kinetics, docking predicted binding of 1,3-DNB to the active site and three peripheral sites. In addition, exposure of DI TNC-1 astrocytes to 10-500 μM 1,3-DNB produced concentration-dependent increases in extracellular adenosine at 24 h. Overall, the results demonstrate that 1,3-DNB is a mixed inhibitor of ADA and may thus lead to increases in extracellular adenosine. The finding may provide insights to guide future work on chemically-induced energy deprivation.

  9. Effects of enrofloxacin, flunixin meglumine and dexamethasone on disseminated intravascular coagulation, cytokine levels and adenosine deaminase activity in endotoxaemia in rats.

    PubMed

    Yazar, Enver; Bulbul, Aziz; Avci, Gulcan Erbil; Er, Ayse; Uney, Kamil; Elmas, Muammer; Tras, Bunyamin

    2010-09-01

    The aim of this study was to determine the effects of drugs used in the treatment of endotoxaemia on disseminated intravascular coagulation, cytokine levels and adenosine deaminase activities in endotoxaemic rats. Rats were divided into seven groups. Lipopolysaccharide (LPS) was injected into all groups, including the positive control group. The other six groups received the following drugs: enrofloxacin (ENR), flunixin meglumine (FM), low-dose dexamethasone (DEX), high-dose DEX, ENR + FM + low-dose DEX, and ENR + FM + high-dose DEX. After the treatments, serum and plasma samples were collected at 0, 1, 2, 4, 6, 8, 12, 24 and 48 hours (h). A coagulometer was used to determine the levels of coagulation values, while ELISA was used to assay serum cytokines and adenosine deaminase (ADA). Low-dose DEX alone and combined treatments depressed the levels of cytokines and ADA (from 371 to 70 IU/L at 6 h) significantly and inhibited the decrease of coagulation values (antithrombin from 67 to 140% at 6 h, fibrinogen from 54 to 252 mg/dL at 6 h). In summary, FM + high-dose DEX may be the preferred treatment of endotoxaemia because of its highest effectiveness. FM plus high-dose DEX may be a new therapy for endotoxaemic domestic animals.

  10. Structures of Substrate-And Inhibitor-Bound Adenosine Deaminase From a Human Malaria Parasite Show a Dramatic Conformational Change And Shed Light on Drug Selectivity

    SciTech Connect

    Larson, E.T.; Deng, W.; Krumm, B.E.; Napuli, A.; Mueller, N.; Voorhis, W.C.Van; Buckner, F.S.; Fan, E.; Lauricella, A.; DeTitta, G.; Luft, J.; Zucker, F.; Hol, W.G.J.; Verlinde, C.L.M.J.; Merritt, E.A.

    2009-05-20

    Plasmodium and other apicomplexan parasites are deficient in purine biosynthesis, relying instead on the salvage of purines from their host environment. Therefore, interference with the purine salvage pathway is an attractive therapeutic target. The plasmodial enzyme adenosine deaminase (ADA) plays a central role in purine salvage and, unlike mammalian ADA homologs, has a further secondary role in methylthiopurine recycling. For this reason, plasmodial ADA accepts a wider range of substrates, as it is responsible for deamination of both adenosine and 5{prime}-methylthioadenosine. The latter substrate is not accepted by mammalian ADA homologs. The structural basis for this natural difference in specificity between plasmodial and mammalian ADA has not been well understood. We now report crystal structures of Plasmodium vivax ADA in complex with adenosine, guanosine, and the picomolar inhibitor 2{prime}-deoxycoformycin. These structures highlight a drastic conformational change in plasmodial ADA upon substrate binding that has not been observed for mammalian ADA enzymes. Further, these complexes illuminate the structural basis for the differential substrate specificity and potential drug selectivity between mammalian and parasite enzymes.

  11. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase.

    PubMed

    Ajloo, Davood; Mahmoodabadi, Najmeh; Ghadamgahi, Maryam; Saboury, Ali Akbar

    2016-07-01

    Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.

  12. HLA-haploidentical bone marrow transplantation in three infants with adenosine deaminase deficiency: stable immunological reconstitution and reversal of skeletal abnormalities.

    PubMed

    Bluetters-Sawatzki, R; Friedrich, W; Ebell, W; Vetter, U; Stoess, H; Goldmann, S F; Kleihauer, E

    1989-11-01

    Three infants with severe combined immunodeficiency and adenosine deaminase (ADA) deficiency were treated by T-cell depleted bone marrow transplantation (BMT), using human leukocyte antigen (HLA)-haploidentical parents as donors. In the first patient, two initial transplants failed to engraft and no change of the immunodeficiency was observed. In order to overcome this graft resistance, cytoreductive conditioning was used prior to a third transplant. In the other two patients, similar conditioning was used prior to initial transplants. In all three patients, complete and permanent immunological reconstitution was observed and they survive from 3.5 to 5 years after transplantation. In biopsies obtained from iliac bones prior to BMT, osteochondral abnormalities characteristic of ADA-deficiency were noted in all three patients. After successful transplantation, these abnormalities had completely resolved. Our results demonstrate that cytoreductive conditioning prior to HLA-haploidentical BMT is useful in order to obtain stable engraftment and reversal of abnormalities associated with ADA deficiency.

  13. Ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) activities in prostate cancer patients: influence of Gleason score, treatment and bone metastasis.

    PubMed

    Battisti, Vanessa; Maders, Liési D K; Bagatini, Margarete D; Battisti, Iara E; Bellé, Luziane P; Santos, Karen F; Maldonado, Paula A; Thomé, Gustavo R; Schetinger, Maria R C; Morsch, Vera M

    2013-04-01

    The relation between adenine nucleotides and cancer has already been described in literature. Considering that the enzymes ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) act together to control nucleotide levels, we aimed to investigate the role of these enzymes in prostate cancer (PCa). E-NPP and ADA activities were determined in serum and platelets of PCa patients and controls. We also verified the influence of the Gleason score, bone metastasis and treatment in the enzyme activities. Platelets and serum E-NPP activity increased, whereas ADA activity in serum decreased in PCa patients. In addition, Gleason score, metastasis and treatment influenced E-NPP and ADA activities. We may propose that E-NPP and ADA are involved in the development of PCa. Moreover, E-NPP and ADA activities are modified in PCa patients with distinct Gleason score, with bone metastasis, as well as in patients under treatment.

  14. A 30-year-old female Behçet’s disease patient with recurrent pleural and pericardial effusion and elevated adenosine deaminase levels: case report

    PubMed Central

    Choi, Joon Young; Kim, Sung-Hwan; Kwok, Seung-Ki; Jung, Jung Im; Lee, Kyo-Young; Kim, Tae-Jung

    2016-01-01

    Behçet’s disease is a systemic disease which may involve various organs. We describe a case of a patient diagnosed as pleuropericardial involvement of Behçet’s disease. A 30-year-old woman visited our clinic presented with left pleuritic chest pain for s days. She had been diagnosed as Behçet’s disease and admitted to our clinic due to pericardial and pleural effusion repeatedly in past two years. In the previous studies, effusion analysis revealed to be lympho-dominant exudate with high adenosine deaminase level. Acid-fast bacilli (AFB) culture and polymerase chain reaction (PCR) for mycobacterial tuberculosis (M.TB) were negative in the pericardial tissue, and pathologic finding showed mild endothelitis with micro-thrombi formation in the lumen. The patient had been treated with antituberculous medication for a year. In the current admission, chest computed tomography (CT) again showed left pleural effusion without other significant lesion. Pleural fluid analysis was similar with the previous study. Video-assisted thoracoscopic pleural biopsy was performed to obtain the definite diagnosis. Pathology confirmed the diagnosis as pleuropericardial involvement of Behçet’s disease, and we treated the patient with oral steroid in the out-patient department. Pleuropericardial involvement of Behçet’s disease may mimic TB pleurisy or pericarditis due to high adenosine deaminase (ADA) level in effusion analysis. Clinicians should keep in mind that Behçet’s disease may manifest as pleural or pericardial effusion, and pathologic confirmation could be helpful for the definite diagnosis. PMID:27499994

  15. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    PubMed

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  16. Syzygium cumini seed extract ameliorates adenosine deaminase activity and biochemical parameters but does not alter insulin sensitivity and pancreas architecture in a short-term model of diabetes.

    PubMed

    Bitencourt, Paula Eliete Rodrigues; Bona, Karine Santos De; Cargnelutti, Lariane Oliveira; Bonfanti, Gabriela; Pigatto, Aline; Boligon, Aline; Athayde, Margareth L; Pierezan, Felipe; Zanette, Régis Adriel; Moretto, Maria Beatriz

    2015-09-01

    The effects of the aqueous seed extract of Syzygium cumini (ASc) in a short-term model of diabetes in rats are little explored. The present study was designed to evaluate the effect of the ASc on adenosine deaminase (ADA) activity and on biochemical and histopathological parameters in diabetic rats. ASc (100 mg/kg) was administered for 21 days in control and streptozotocin (STZ)-induced (60 mg/kg) diabetic rats. ADA activity, lipoperoxidation (cerebral cortex, kidney, liver and pancreas) and biochemical (serum) and histopathological (pancreas) parameters were evaluated. The main findings in this short-term model of Diabetes mellitus (DM) were that the ASc (i) significantly reverted the increase of ADA activity in serum and kidney; (ii) ameliorated the lipoperoxidation in the cerebral cortex and pancreas of the diabetic group; (iii) demonstrated hypolipidemic and hypoglycemic properties and recovered the liver glycogen; and iv) prevented the HOMA-IR index increase in the diabetic group. Therefore, the ASc can be a positive factor for increasing the availability of substrates with significant protective actions, such as adenosine. Moreover, by maintaining glycogen and HOMA-IR levels, the extract could modulate the hyperglycemic state through the direct peripheral glucose uptake. Our data revealed that the short-term treatment with ASc has an important protective role under pathophysiological conditions caused by the early stage of DM. These results enhance our understanding of the effect of the ASc on the purinergic system in DM.

  17. CL316243 induces phosphatidylinositol 3,4,5-triphosphate production in rat adipocytes in an adenosine deaminase-, pertussis toxin-, or wortmannin-sensitive manner.

    PubMed

    Ohsaka, Y; Nomura, Y

    2016-07-18

    The effect of beta(3)-adrenoceptor (beta(3)-AR) agonists on adipocytes treated or not treated with signaling modulators has not been sufficiently elucidated. Using rat epididymal adipocytes (adipocytes) labeled with [(32)P]orthophosphate, we found that treatment with the selective beta(3)-AR agonist CL316243 (CL; 1 microM) induces phosphatidylinositol (PI) 3,4,5-triphosphate (PI[3,4,5]P(3)) production and that this response is inhibited by adenosine deaminase (ADA, an adenosine-degrading enzyme; 2 U/ml), pertussis toxin (PTX, an inactivator of inhibitory guanine-nucleotide-binding protein; 1 microg/ml), or wortmannin (WT, a PI-kinase inhibitor; 3 microM). The results showed that CL induced PI(3,4,5)P(3) production in intact adipocytes and that this production was affected by signaling modulators. Taken together, our findings indicate that CL produces PI(3,4,5)P(3) in an ADA-sensitive, PTX-sensitive, or WT-sensitive manner and will advance understanding of the effect of beta(3)-AR agonists on adipocytes.

  18. Molecular characterization of adenosine 5'-monophosphate deaminase--the key enzyme responsible for the umami taste of nori (Porphyra yezoensis Ueda, Rhodophyta).

    PubMed

    Minami, Seiko; Sato, Minoru; Shiraiwa, Yoshihiro; Iwamoto, Koji

    2011-12-01

    The enzyme adenosine 5'-monophosphate deaminase (AMPD, EC 3.5.4.6) catalyzes the conversion of adenosine 5'-monophosphate to inosine 5'-mononucleotide (IMP). IMP is generally known as the compound responsible for the umami taste of the edible red alga Porphyra yezoensis Ueda that is known in Japan as nori. Therefore, we suspect that AMPD plays a key role in providing a favorable nori taste. In this study, we undertake the molecular characterization of nori-derived AMPD. The nori AMPD protein has a molecular mass of 55 kDa as estimated from both gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The calculated molecular mass from the amino acid sequence deduced from cDNA is 57.1 kDa. The isoelectric point is 5.71. The coding region of AMPD consists of 1,566 bp encoding 522 amino acids and possesses a transmembrane domain and two N-glycosylation sites. The sequence identity of nori AMPD in human and yeast AMPDs was found to be less than 50% and 20% in DNA and amino acid sequences, respectively. Proline in the conserved motif of [SA]-[LIVM]-[NGS]-[STA]-D-D-P was found to be converted to glutamate. These results indicate that nori AMPD is a novel type of AMPD.

  19. A genome-wide identification and analysis of the DYW-deaminase genes in the pentatricopeptide repeat gene family in cotton (Gossypium spp.).

    PubMed

    Zhang, Bingbing; Liu, Guoyuan; Li, Xue; Guo, Liping; Zhang, Xuexian; Qi, Tingxiang; Wang, Hailin; Tang, Huini; Qiao, Xiuqin; Zhang, Jinfa; Xing, Chaozhu; Wu, Jianyong

    2017-01-01

    The RNA editing occurring in plant organellar genomes mainly involves the change of cytidine to uridine. This process involves a deamination reaction, with cytidine deaminase as the catalyst. Pentatricopeptide repeat (PPR) proteins with a C-terminal DYW domain are reportedly associated with cytidine deamination, similar to members of the deaminase superfamily. PPR genes are involved in many cellular functions and biological processes including fertility restoration to cytoplasmic male sterility (CMS) in plants. In this study, we identified 227 and 211 DYW deaminase-coding PPR genes for the cultivated tetraploid cotton species G. hirsutum and G. barbadense (2n = 4x = 52), respectively, as well as 126 and 97 DYW deaminase-coding PPR genes in the ancestral diploid species G. raimondii and G. arboreum (2n = 26), respectively. The 227 G. hirsutum PPR genes were predicted to encode 52-2016 amino acids, 203 of which were mapped onto 26 chromosomes. Most DYW deaminase genes lacked introns, and their proteins were predicted to target the mitochondria or chloroplasts. Additionally, the DYW domain differed from the complete DYW deaminase domain, which contained part of the E domain and the entire E+ domain. The types and number of DYW tripeptides may have been influenced by evolutionary processes, with some tripeptides being lost. Furthermore, a gene ontology analysis revealed that DYW deaminase functions were mainly related to binding as well as hydrolase and transferase activities. The G. hirsutum DYW deaminase expression profiles varied among different cotton tissues and developmental stages, and no differentially expressed DYW deaminase-coding PPRs were directly associated with the male sterility and restoration in the CMS-D2 system. Our current study provides an important piece of information regarding the structural and evolutionary characteristics of Gossypium DYW-containing PPR genes coding for deaminases and will be useful for characterizing the DYW deaminase gene

  20. A genome-wide identification and analysis of the DYW-deaminase genes in the pentatricopeptide repeat gene family in cotton (Gossypium spp.)

    PubMed Central

    Liu, Guoyuan; Li, Xue; Guo, Liping; Zhang, Xuexian; Qi, Tingxiang; Wang, Hailin; Tang, Huini; Qiao, Xiuqin; Zhang, Jinfa; Xing, Chaozhu; Wu, Jianyong

    2017-01-01

    The RNA editing occurring in plant organellar genomes mainly involves the change of cytidine to uridine. This process involves a deamination reaction, with cytidine deaminase as the catalyst. Pentatricopeptide repeat (PPR) proteins with a C-terminal DYW domain are reportedly associated with cytidine deamination, similar to members of the deaminase superfamily. PPR genes are involved in many cellular functions and biological processes including fertility restoration to cytoplasmic male sterility (CMS) in plants. In this study, we identified 227 and 211 DYW deaminase-coding PPR genes for the cultivated tetraploid cotton species G. hirsutum and G. barbadense (2n = 4x = 52), respectively, as well as 126 and 97 DYW deaminase-coding PPR genes in the ancestral diploid species G. raimondii and G. arboreum (2n = 26), respectively. The 227 G. hirsutum PPR genes were predicted to encode 52–2016 amino acids, 203 of which were mapped onto 26 chromosomes. Most DYW deaminase genes lacked introns, and their proteins were predicted to target the mitochondria or chloroplasts. Additionally, the DYW domain differed from the complete DYW deaminase domain, which contained part of the E domain and the entire E+ domain. The types and number of DYW tripeptides may have been influenced by evolutionary processes, with some tripeptides being lost. Furthermore, a gene ontology analysis revealed that DYW deaminase functions were mainly related to binding as well as hydrolase and transferase activities. The G. hirsutum DYW deaminase expression profiles varied among different cotton tissues and developmental stages, and no differentially expressed DYW deaminase-coding PPRs were directly associated with the male sterility and restoration in the CMS-D2 system. Our current study provides an important piece of information regarding the structural and evolutionary characteristics of Gossypium DYW-containing PPR genes coding for deaminases and will be useful for characterizing the DYW deaminase gene

  1. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression

    PubMed Central

    Ning, Chen; Wen, Jiaming; Zhang, Yujin; Dai, Yingbo; Wang, Wei; Zhang, Weiru; Qi, Lin; Grenz, Almut; Eltzschig, Holger K.; Blackburn, Michael R.; Kellems, Rodney E.; Xia, Yang

    2014-01-01

    Priapism is featured with prolonged and painful penile erection and is prevalent among males with sickle cell disease (SCD). The disorder is a dangerous urological and hematological emergency since it is associated with ischemic tissue damage and erectile disability. Here we report that phosphodiesterase-5 (PDE5) gene expression and PDE activity is significantly reduced in penile tissues of two independent priapic models: SCD mice and adenosine deaminase (ADA)-deficient mice. Moreover, using ADA enzyme therapy to reduce adenosine or a specific antagonist to block A2B adenosine receptor (ADORA2B) signaling, we successfully attenuated priapism in both ADA−/− and SCD mice by restoring penile PDE5 gene expression to normal levels. This finding led us to further discover that excess adenosine signaling via ADORA2B activation directly reduces PDE5 gene expression in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. Overall, we reveal that excess adenosine-mediated ADORA2B signaling underlies reduced penile PDE activity by decreasing PDE5 gene expression in a HIF-1α-dependent manner and provide new insight for the pathogenesis of priapism and novel therapies for the disease.—Ning, C., Wen, J., Zhang, Y., Dai, Y., Wang, W., Zhang, W., Qi, L., Grenz, A., Eltzschig, H. K., Blackburn, M. R., Kellems, R. E., Xia, Y. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression. PMID:24614760

  2. Maize haplotype with a helitron-amplified cytidine deaminase gene copy

    PubMed Central

    Xu, Jian-Hong; Messing, Joachim

    2006-01-01

    Background Genetic maps are based on recombination of orthologous gene sequences between different strains of the same species. Therefore, it was unexpected to find extensive non-collinearity of genes between different inbred strains of maize. Interestingly, disruption of gene collinearity can be caused among others by a rolling circle-type copy and paste mechanism facilitated by Helitrons. However, understanding the role of this type of gene amplification has been hampered by the lack of finding intact gene sequences within Helitrons. Results By aligning two haplotypes of the z1C1 locus of maize we found a Helitron that contains two genes, one encoding a putative cytidine deaminase and one a hypothetical protein with part of a 40S ribosomal protein. The cytidine deaminase gene, called ZmCDA3, has been copied from the ZmCDA1 gene on maize chromosome 7 about 4.5 million years ago (mya) after maize was formed by whole-genome duplication from two progenitors. Inbred lines contain gene copies of both progenitors, the ZmCDA1 and ZmCDA2 genes. Both genes diverged when the progenitors of maize split and are derived from the same progenitor as the rice OsCDA1 gene. The ZmCDA1 and ZmCDA2 genes are both transcribed in leaf and seed tissue, but transcripts of the paralogous ZmCDA3 gene have not been found yet. Based on their protein structure the maize CDA genes encode a nucleoside deaminase that is found in bacterial systems and is distinct from the mammalian RNA and/or DNA modifying enzymes. Conclusion The conservation of a paralogous gene sequence encoding a cytidine deaminase gene over 4.5 million years suggests that Helitrons could add functional gene sequences to new chromosomal positions and thereby create new haplotypes. However, the function of such paralogous gene copies cannot be essential because they are not present in all maize strains. However, it is interesting to note that maize hybrids can outperform their inbred parents. Therefore, certain haplotypes may

  3. Tandem mass spectrometry, but not T-cell receptor excision circle analysis, identifies newborns with late-onset adenosine deaminase deficiency.

    PubMed

    la Marca, Giancarlo; Canessa, Clementina; Giocaliere, Elisa; Romano, Francesca; Duse, Marzia; Malvagia, Sabrina; Lippi, Francesca; Funghini, Silvia; Bianchi, Leila; Della Bona, Maria Luisa; Valleriani, Claudia; Ombrone, Daniela; Moriondo, Maria; Villanelli, Fabio; Speckmann, Carsten; Adams, Stuart; Gaspar, Bobby H; Hershfield, Michael; Santisteban, Ines; Fairbanks, Lynette; Ragusa, Giovanni; Resti, Massimo; de Martino, Maurizio; Guerrini, Renzo; Azzari, Chiara

    2013-06-01

    Adenosine deaminase (ADA)-severe combined immunodeficiency (SCID) is caused by genetic variants that disrupt the function of ADA. In its early-onset form, it is rapidly fatal to infants. Delayed or late-onset ADA-SCID is characterized by insidious progressive immunodeficiency that leads to permanent organ damage or death. Quantification of T-cell receptor excision circles (TRECs) or tandem mass spectrometry (tandem-MS) analysis of dried blood spots (DBSs) collected at birth can identify newborns with early-onset ADA-SCID and are used in screening programs. However, it is not clear whether these analyses can identify newborns who will have delayed or late-onset ADA-SCID before symptoms appear. We performed a retrospective study to evaluate whether tandem-MS and quantitative TREC analyses of DBSs could identify newborns who had delayed-onset ADA-SCID later in life. We tested stored DBSs collected at birth from 3 patients with delayed-onset ADA-SCID using tandem-MS (PCT EP2010/070517) to evaluate levels of adenosine and 2'-deoxyadenosine and real-time PCR to quantify TREC levels. We also analyzed DBSs from 3 newborns with early-onset ADA-SCID and 2 healthy newborn carriers of ADA deficiency. The DBSs taken at birth from the 3 patients with delayed-onset ADA-SCID had adenosine levels of 10, 25, and 19 μmol/L (normal value, <1.5 μmol/L) and 2'-deoxyadenosine levels of 0.7, 2.7, and 2.4 μmol/L (normal value, <0.07 μmol/L); the mean levels of adenosine and 2'-deoxyadenosine were respectively 12.0- and 27.6-fold higher than normal values. DBSs taken at birth from all 3 patients with delayed-onset ADA deficiency had normal TREC levels, but TRECs were undetectable in blood samples taken from the same patients at the time of diagnosis. Tandem-MS but not TREC quantification identifies newborns with delayed- or late-onset ADA deficiency. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. Differential effects of organic and inorganic selenium compounds on adenosine deaminase activity and scavenger capacity in cerebral cortex slices of young rats.

    PubMed

    Bitencourt, P E R; Bellé, L P; Bonfanti, G; Cargnelutti, L O; de Bona, K S; Silva, P S; Abdalla, F H; Zanette, R A; Guerra, R B; Funchal, C; Moretto, M B

    2013-09-01

    Selenium (Se) has anti-inflammatory and antioxidant properties and is necessary for the development and normal function of the central nervous system. This study was aimed to compare the in vitro effects of 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one (C21H2HOSe; organoselenium) and sodium selenate (inorganic Se) on adenosine deaminase (ADA) activity, cell viability, lipid peroxidation, scavenger of nitric oxide (NO) and nonprotein thiols (NP-SH) content in the cerebral cortex slices of the young rats. A decrease in ADA activity was observed when the slices were exposed to organoselenium at the concentrations of 1, 10 and 30 µM. The same compound showed higher scavenger capacity of NO than the inorganic compound. Inorganic Se was able to protect against sodium nitroprusside-induced oxidative damage and increased the NP-SH content. Both the compounds displayed distinctive antioxidant capacities and were not cytotoxic for the cerebral cortex slices in the conditions tested. These findings are likely to be related to immunomodulatory and antioxidant properties of this compound.

  5. Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: Influences of these enzymes on inflammatory response and pathological findings.

    PubMed

    Baldissera, Matheus D; Bottari, Nathieli B; Mendes, Ricardo E; Schwertz, Claiton I; Lucca, Neuber J; Dalenogare, Diessica; Bochi, Guilherme V; Moresco, Rafael N; Morsch, Vera M; Schetinger, Maria R C; Rech, Virginia C; Jaques, Jeandre A; Da Silva, Aleksandro S

    2015-11-01

    The aim of this study was to investigate acetylcholinesterase (AChE) in total blood and liver tissue; butyrylcholinesterase (BChE) in serum and liver tissue; adenosine deaminase (ADA) in serum and liver tissue; and pyruvate kinase (PK) in liver tissue of rats experimentally infected by Fasciola hepatica. Animals were divided into two groups with 12 animals each, as follows: group A (uninfected) and group B (infected). Samples were collected at 20 (A1 and B1;n=6 each) and 150 (A2 and B2; n=6 each) days post-infection (PI). Infected animals showed an increase in AChE activity in whole blood and a decrease in AChE activity in liver homogenates (P<0.05) at 20 and 150 days PI. BChE and PK activities were decreased (P<0.05) in serum and liver homogenates of infected animals at 150 days PI. ADA activity was decreased in serum at 20 and 150 days PI, while in liver homogenates it was only decreased at 150 days PI (P<0.05). Aspartate aminotransferase and alanine aminotransferase activities in serum were increased (P<0.05), while concentrations of total protein and albumin were decreased (P<0.05) when compared to control. The histological analysis revealed fibrous perihepatitis and necrosis. Therefore, we conclude that the liver fluke is associated with cholinergic and purinergic dysfunctions, which in turn may influence the pathogenesis of the disease.

  6. Novel splicing, missense, and deletion mutations in seven adenosine deaminase-deficient patients with late/delayed onset of combined immunodeficiency disease. Contribution of genotype to phenotype.

    PubMed Central

    Santisteban, I; Arredondo-Vega, F X; Kelly, S; Mary, A; Fischer, A; Hummell, D S; Lawton, A; Sorensen, R U; Stiehm, E R; Uribe, L

    1993-01-01

    We examined the genetic basis for adenosine deaminase (ADA) deficiency in seven patients with late/delayed onset of immunodeficiency, an underdiagnosed and relatively unstudied condition. Deoxyadenosine-mediated metabolic abnormalities were less severe than in the usual, early-onset disorder. Six patients were compound heterozygotes; 7 of 10 mutations found were novel, including one deletion (delta 1019-1020), three missense (Arg156 > His, Arg101 > Leu, Val177 > Met), and three splicing defects (IVS 5, 5'ss T+6 > A; IVS 10, 5'ss G+1 > A; IVS 10, 3'ss G-34 > A). Four of the mutations generated stop signals at codons 131, 321, 334, and 348; transcripts of all but the last, due to delta 1019-1020, were severely reduced. delta 1019-1020 (like delta 955-959, found in one patient and apparently recurrent) is at a short deletional hot spot. Arg156 > His, the product of which had detectable activity, was found in three patients whose second alleles were unlikely to yield active ADA. The oldest patient diagnosed was homozygous for a single base change in intron 10, which activates a cryptic splice acceptor, resulting in a protein with 100 extra amino acids. We speculate that this "macro ADA," as well as the Arg156 > His, Arg101 > Leu, Ser291 > Leu, and delta 1019-1020 products, may contribute to mild phenotype. Tissue-specific variation in splicing efficiency may also ameliorate disease severity in patients with splicing mutations. Images PMID:8227344

  7. Adenosine deaminase, 5'-nucleotidase, xanthine oxidase, superoxide dismutase, and catalase activities in gastric juices from patients with gastric cancer, ulcer, and atrophic gastritis.

    PubMed

    Durak, I; Ormeci, N; Akyol, O; Canbolat, O; Kavutçu, M; Bülbül, M

    1994-04-01

    Adenosine deaminase (ADA), 5'-Nucleotidase (5NT), Xanthine oxidase (XO), Cu-Zn Superoxide dismutase (SOD) and Catalase (CAT) activities were determined in gastric juices from patients with gastric cancer, ulcer, gastritis and from healthy subjects. Enzyme activities were given as units per ml gastric juice and units per mg protein in gastric juice. ADA, 5NT and XO activities were found lower and protein concentrations were found higher in the cancer group than controls. There was however no significant difference between Cu-Zn SOD activities of the cancer and control groups. In all groups including control one, we could not find catalase activities in most of the samples. On the other hand, ADA, 5NT activities and protein concentrations in the gastric juice were lower in the gastritis group than control group. In the ulcer group, we found higher Cu-Zn SOD and XO activities and lower 5NT activity and protein concentrations compared with control values. In an attempt to establish statistical correlations between mean enzyme activities, pH and protein concentrations in the gastric juices of the groups, we found noticeable intra and inter-correlations, which indicated possible relations between DNA and free radical metabolizing enzymes.

  8. Aqueous seed extract of Syzygium cumini inhibits the dipeptidyl peptidase IV and adenosine deaminase activities, but it does not change the CD26 expression in lymphocytes in vitro.

    PubMed

    Bellé, Luziane Potrich; Bitencourt, Paula Eliete Rodrigues; Abdalla, Faida Husein; Bona, Karine Santos de; Peres, Alessandra; Maders, Liési Diones Konzen; Moretto, Maria Beatriz

    2013-03-01

    Syzygium cumini (Sc) have been intensively studied in the last years due its beneficial effects including anti-diabetic and anti-inflammatory potential. Thus, the aim of this study was to evaluate the effect of aqueous seed extract of Sc (ASc) in the activity of enzymes involved in lymphocyte functions. To perform this study, we isolated lymphocytes from healthy donors. Lymphocytes were exposed to 10, 30, and 100 mg/mL of ASc during 4 and 6 h and adenosine deaminase (ADA), dipeptidyl peptidase IV (DPP-IV), and acetylcholinesterase (AChE) activities as well as CD26 expression and cellular viability were evaluated. ASc inhibited the ADA and DPP-IV activities without alteration in the CD26 expression (DPP-IV protein). No alterations were observed in the AChE activity or in the cell viability. These results indicate that the inhibition of the DPP-IV and ADA activities was dependent on the time of exposition to ASc. We suggest that ASc exhibits immunomodulatory properties probably via the pathway of DPP-IV-ADA complex, contributing to the understanding of these proceedings in the purinergic signaling.

  9. Modifications of flexible nonyl chain and nucleobase head group of (+)-erythro-9-(2's-hydroxy-3's-nonyl)adenine [(+)-EHNA] as adenosine deaminase inhibitors.

    PubMed

    Kandalkar, Sachin R; Ramaiah, Parimi Atchuta; Joshi, Manoj; Wavhal, Atul; Waman, Yogesh; Raje, Amol A; Tambe, Ashwini; Ansari, Shariq; De, Siddhartha; Palle, Venkata P; Mookhtiar, Kasim A; Deshpande, Anil M; Barawkar, Dinesh A

    2017-10-15

    A series of terminal nonyl chain and nucleobase modified analogues of (+)-EHNA (III) were synthesized and evaluated for their ability to inhibit adenosine deaminase (ADA). The constrained carbon analogues of (+)-EHNA, 7a-7h, 10a-c, 12, 13, 14 and 17a-c appeared very potent with Ki values in the low nanomolar range. Thio-analogues of (+)-EHNA 24a-e wherein 5'C of nonyl chain replaced by sulfur atom found to be less potent compared to (+)-EHNA. Docking of the representative compounds into the active site of ADA was performed to understand structure-activity relationships. Compounds 7a (Ki: 1.1nM) 7b (Ki: 5.2nM) and 26a (Ki: 5.9nM) showed suitable balance of potency, microsomal stability and demonstrated better pharmacokinetic properties as compared to (+)-EHNA and therefore may have therapeutic potential for various inflammatory diseases, hypertension and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Pathologic findings in adenosine deaminase deficient-severe combined immunodeficiency. II. Thymus, spleen, lymph node, and gastrointestinal tract lymphoid tissue alterations.

    PubMed Central

    Ratech, H.; Hirschhorn, R.; Greco, M. A.

    1989-01-01

    Eight autopsies of patients with adenosine deaminase deficient-severe combined immunodeficiency disease (ADA-SCID) were reviewed with special emphasis on the lymphoid tissues. The thymus histology in five cases was remarkably uniform, whether or not prior ADA enzyme replacement or immunologic reconstitution therapy had been administered. Lymph nodes and spleens in all cases examined showed a residual nonlymphoid architectural framework corresponding to usual T and B cell zones found in normals. The development of an extranodal, monoclonal IgA lambda B cell immunoblastic lymphoma as a terminal event in one patient after several years of successful ADA enzyme replacement therapy through multiple red blood cell transfusions is described. In another patient with long-term ADA enzyme replacement, a terminal autoimmune hemolytic anemia developed. Autopsy revealed severe deposits of iron in the B cell zones of the lymph nodes, which is an unusual location. In addition, iron deposits outlined the splenic trabeculae, as well as the ring fibers and bridging fibers of the splenic sinuses. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:2596574

  11. Molecular basis for paradoxical carriers of adenosine deaminase (ADA) deficiency that show extremely low levels of ADA activity in peripheral blood cells without immunodeficiency.

    PubMed

    Ariga, T; Oda, N; Sanstisteban, I; Arredondo-Vega, F X; Shioda, M; Ueno, H; Terada, K; Kobayashi, K; Hershfield, M S; Sakiyama, Y

    2001-02-01

    Adenosine deaminase (ADA) deficiency causes an autosomal recessive form of severe combined immunodeficiency and also less severe phenotypes, depending to a large degree on genotype. In general, ADA activity in cells of carriers is approximately half-normal. Unexpectedly, healthy first-degree relatives of two unrelated ADA-deficient severe combined immunodeficient patients (mother and brother in family I; mother in family II) had only 1-2% of normal ADA activity in PBMC, lower than has previously been found in PBMC of healthy individuals with so-called "partial ADA deficiency." The level of deoxyadenosine nucleotides in erythrocytes of these paradoxical carriers was slightly elevated, but much lower than levels found in immunodeficient patients with ADA deficiency. ADA activity in EBV-lymphoblastoid cell lines (LCL) and T cell lines established from these carriers was 10-20% of normal. Each of these carriers possessed two mutated ADA alleles. Expression of cloned mutant ADA cDNAs in an ADA-deletion strain of Escherichia coli indicated that the novel mutations G239S and M310T were responsible for the residual ADA activity. ADA activity in EBV-LCL extracts of the paradoxical carriers was much more labile than ADA from normal EBV-LCL. Immunoblotting suggested that this lability was due to denaturation rather than to degradation of the mutant protein. These results further define the threshold level of ADA activity necessary for sustaining immune function.

  12. Role of caffeic acid phenethyl ester on mitomycin C induced clastogenesis: analysis of chromosome aberrations, micronucleus, mitotic index and adenosine deaminase activity in vivo.

    PubMed

    Sulaiman, Ghassan Mohammad

    2012-05-01

    The aim of the present investigation is to determine whether the caffeic acid phenethyl ester (CAPE) in combination with mitomycine-C (MMC) can ameliorate MMC-induced clastogenesis in the bone marrow cells of mice. The scoring of chromosomal aberrations, mitotic activity and micronuclei were undertaken in the current study as markers of clastogenicity. The action of CAPE in adenosine deaminase enzyme (ADA) activities of serum, thymus and spleen were also investigated. The animals were orally administered CAPE alone at the doses 5 or 10 mg kg b.wt.(-1) for 5 days then sacrificed 24 hours after the CAPE administration. MMC was administered to mice either alone at a single dose (2 mg kg b.wt.(-1)) by intraperitoneal injection, before or after CAPE treatment. Pre or post - treatment with two doses of CAPE significantly decreased the number of chromosomal aberrations, micronuclei and adapted the mitotic activity reduction in the bone marrow cells of mice induced by MMC when compared with only MMC given group. In addition, combination treatment with MMC caused a significant decrease in the activities of ADA in serum, thymus and spleen. The results of this study showed that ADA activity probably related to high levels of reactive oxygen species. This study concluded that the protective effect of CAPE against MMC clastogenesis resides at least in part, in its antioxidant effects.

  13. Chicken embryo fibroblasts exposed to weak, time-varying magnetic fields share cell proliferation, adenosine deaminase activity, and membrane characteristics of transformed cells

    SciTech Connect

    Parola, A.H.; Porat, N.; Kiesow, L.A. )

    1993-01-01

    Chicken embryo fibroblasts (CEF) exposed to a sinusoidally varying magnetic field (SVMF) (100 Hz, 700 microT, for 24 h) showed a remarkable rise of segmental rotational relaxation rate of adenosine deaminase (ADA, EC 3.5.4.4) as determined by multifrequency phase fluorometry. Pyrene-labeled, small subunit ADA was applied to cultured (normal) CEF, which have available and abundant ADA complexing protein (ADCP) on their plasma membranes. Sine-wave-modulated fluorometry of the pyrene yielded a profile of phase angle vs. modulation frequency. In SVMF-treated cells and in Rous-sarcoma-virus (RSV) transformed cells the differential phase values at low modulation frequencies of the excitation are remarkably reduced. This effect is magnetic rather than thermal, because the temperature was carefully controlled and monitored; nevertheless to further check this matter we studied CEF, infected by the RSV-Ts68 temperature-sensitive mutant (36 degrees C transformed, 41 degrees C revertant). When grown at 36 degrees C in the SVMF, cells did not show the slightest trend towards reversion, as would be expected had there been local heating. Concomitant with the increased segmental rotational relaxation rate of ADA, there was a decrease in fluorescence lifetime and a slight, yet significant, increase in membrane lipid microfluidity. These biophysical observations prompted us to examine the effect of SVMF on cell proliferation and ADA activity (a malignancy marker): higher rates of cell proliferation and reduced specific activity of ADA were observed.

  14. Immunohistochemical localization of adenosine deaminase complexing protein in intestinal mucosa and in colorectal adenocarcinoma as a marker for tumour cell heterogeneity.

    PubMed

    Ten Kate, J; Wijnen, J T; Boldewijn, J; Khan, P M; Bosman, F T

    1985-01-01

    Adenosine deaminase complexing protein (ADCP), a dimeric glycoprotein, has been reported to be decreased or deficient in transformed or cancer-derived cell lines, indicating its potential significance as an indicator of malignant transformation. A similar deficiency was reported in total homogenates of tumours of colon, kidney, lung and liver. In previous biochemical studies we failed to confirm the consistent reduction in ADCP concentration in cancer tissues. A possible explanation for our findings was thought to be intercellular heterogeneity in ADCP expression in individual tumour cells. To study ADCP expression in individual cells, we developed an immunohistochemical method which was applied to tissue sections. Paraformaldehyde--lysine--periodate (PLP) solution was found to be a suitable fixative. Fixed tissue samples were paraffin-embedded, sectioned and stained for ADCP, using an indirect peroxidase-labelled antibody procedure. The protein was localized in normal colonic mucosa, mainly in the brush border region of the luminal epithelium and in cytoplasmic granules. Intense ADCP immunoreactivity was found also in the basal part of some cells. In cancer cells, three staining patterns were observed: membranous, diffuse cytoplasmic and granular cytoplasmic. The adenocarcinomas exhibited significant intratumour and intertumour heterogeneity in their staining types. Further studies on ADCP expression in colorectal cancer in relation to clinical and histopathological characteristics are warranted in order to fully evaluate the potential significance of ADCP as a cancer associated antigen.

  15. Cloning of the cDNA encoding adenosine 5'-monophosphate deaminase 1 and its mRNA expression in Japanese flounder Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Jiang, Keyong; Sun, Shujuan; Liu, Mei; Wang, Baojie; Meng, Xiaolin; Wang, Lei

    2013-01-01

    AMP deaminase catalyzes the conversion of AMP into IMP and ammonia. In the present study, a full-length cDNA of AMPD1 from skeletal muscle of Japanese flounder Paralichthys olivaceus was cloned and characterized. The 2 526 bp cDNA contains a 5'-UTR of 78 bp, a 3'-UTR of 237 bp and an open reading frame (ORF) of 2 211 bp, which encodes a protein of 736 amino acids. The predicted protein contains a highly conserved AMP deaminase motif (SLSTDDP) and an ATP-binding site sequence (EPLMEEYAIAAQVFK). Phylogenetic analysis showed that the AMPD1 and AMPD3 genes originate from the same branch, but are evolutionarily distant from the AMPD2 gene. RT-PCR showed that the flounder AMPD1 gene was expressed only in skeletal muscle. QRT-PCR analysis revealed a statistically significant 2.54 fold higher level of AMPD1 mRNA in adult muscle (750±40 g) compared with juvenile muscle (7.5±2 g) ( P<0.05). HPLC analysis showed that the IMP content in adult muscle (3.35±0.21 mg/g) was also statistically significantly higher than in juvenile muscle (1.08±0.04 mg/g) ( P<0.05). There is a direct relationship between the AMPD1 gene expression level and IMP content in the skeletal muscle of juvenile and adult flounders. These results may provide useful information for quality improvement and molecular breeding of aquatic animals.

  16. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression.

    PubMed

    Ning, Chen; Wen, Jiaming; Zhang, Yujin; Dai, Yingbo; Wang, Wei; Zhang, Weiru; Qi, Lin; Grenz, Almut; Eltzschig, Holger K; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2014-06-01

    Priapism is featured with prolonged and painful penile erection and is prevalent among males with sickle cell disease (SCD). The disorder is a dangerous urological and hematological emergency since it is associated with ischemic tissue damage and erectile disability. Here we report that phosphodiesterase-5 (PDE5) gene expression and PDE activity is significantly reduced in penile tissues of two independent priapic models: SCD mice and adenosine deaminase (ADA)-deficient mice. Moreover, using ADA enzyme therapy to reduce adenosine or a specific antagonist to block A(2B) adenosine receptor (ADORA2B) signaling, we successfully attenuated priapism in both ADA(-/-) and SCD mice by restoring penile PDE5 gene expression to normal levels. This finding led us to further discover that excess adenosine signaling via ADORA2B activation directly reduces PDE5 gene expression in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. Overall, we reveal that excess adenosine-mediated ADORA2B signaling underlies reduced penile PDE activity by decreasing PDE5 gene expression in a HIF-1α-dependent manner and provide new insight for the pathogenesis of priapism and novel therapies for the disease.

  17. A 9-yr evaluation of carrier erythrocyte encapsulated adenosine deaminase (ADA) therapy in a patient with adult-type ADA deficiency.

    PubMed

    Bax, Bridget E; Bain, Murray D; Fairbanks, Lynette D; Webster, A David B; Ind, Philip W; Hershfield, Michael S; Chalmers, Ronald A

    2007-10-01

    Adenosine deaminase (ADA) deficiency is an inherited disorder which leads to elevated cellular levels of deoxyadenosine triphosphate (dATP) and systemic accumulation of its precursor, 2-deoxyadenosine. These metabolites impair lymphocyte function, and inactivate S-adenosylhomocysteine hydrolase (SAHH) respectively, leading to severe immunodeficiency. Enzyme replacement therapy with polyethylene glycol-conjugated ADA is available, but its efficacy is reduced by anti-ADA neutralising antibody formation. We report here carrier erythrocyte encapsulated native ADA therapy in an adult-type ADA deficient patient. Encapsulated enzyme is protected from antigenic responses and therapeutic activities are sustained. ADA-loaded autologous carrier erythrocytes were prepared using a hypo-osmotic dialysis procedure. Over a 9-yr period 225 treatment cycles were administered at 2-3 weekly intervals. Therapeutic efficacy was determined by monitoring immunological and metabolic parameters. After 9 yr of therapy, erythrocyte dATP concentration ranged between 24 and 44 micromol/L (diagnosis, 234) and SAHH activity between 1.69 and 2.29 nmol/h/mg haemoglobin (diagnosis, 0.34). Erythrocyte ADA activities were above the reference range of 40-100 nmol/h/mg haemoglobin (0 at diagnosis). Initial increases in absolute lymphocyte counts were not sustained; however, despite subnormal circulating CD20(+) cell numbers, serum immunoglobulin levels were normal. The patient tolerated the treatment well. The frequency of respiratory problems was reduced and the decline in the forced expiratory volume in 1 s and vital capacity reduced compared with the 4 yr preceding carrier erythrocyte therapy. Carrier erythrocyte-ADA therapy in an adult patient with ADA deficiency was shown to be metabolically and clinically effective.

  18. Somatic mosaicism for a newly identified splice-site mutation in a patient with adenosine deaminase-deficient immunodeficiency and spontaneous clinical recovery

    SciTech Connect

    Hirschhorn, R.; Yang, D.R.; Israni, A.; Huie, M.L. ); Ownby, D.R. )

    1994-07-01

    Absent or severely reduced adenosine deaminase (ADA) activity produces inherited immunodeficiency of varying severity, with defects of both cellular and humoral immunity. The authors report somatic mosaicism as the basis for a delayed presentation and unusual course of a currently healthy young adult receiving no therapy. He was diagnosed at age 2[1/2] years because of life-threatening pneumonia, recurrent infections, failure of normal growth, and lymphopenia, but he retained significant cellular immune function. A fibroblast cell line and a B cell line, established at diagnosis, lacked ADA activity and were heteroallelic for a splice-donor-site mutation in IVS 1 (+1GT[yields]CT) and a missense mutation (Arg101Gln). All clones (17/17) isolated from the B cell mRNA carried the missense mutation, indicating that the allele with the splice-site mutation produced unstable mRNA. In striking contrast, a B cell line established at age 16 years expressed 50% of normal ADA; 50% had the missense mutation. Genomic DNA contained the missense mutation but not the splice-site mutation. All three cell lines were identical for multiple polymorphic markers and the presence of a Y chromosome. In vivo somatic mosaicism was demonstrated in genomic DNA from peripheral blood cells obtained at 16 years of age, in that less than half the DNA carried the splice-site mutation (P<.0.02, vs. original B cell line). Consistent with mosaicism, erythrocyte content of the toxic metabolite deoxyATP was only minimally elevated. Somatic mosaicism could have arisen either by somatic mutation or by reversion at the site of mutation. Selection in vivo for ADA normal hematopoietic cells may have played a role in the return to normal health, in the absence of therapy. 57 refs., 4 figs., 2 tabs.

  19. A combination of the QuantiFERON-TB Gold In-Tube assay and the detection of adenosine deaminase improves the diagnosis of tuberculous pleural effusion.

    PubMed

    Liu, Yuanyuan; Ou, Qinfang; Zheng, Jian; Shen, Lei; Zhang, Bingyan; Weng, Xinhua; Shao, Lingyun; Gao, Yan; Zhang, Wenhong

    2016-08-03

    The differential diagnosis of tuberculous pleural effusion (TPE) and malignant pleural effusion (MPE) remains difficult despite the availability of numerous diagnostic tools. The current study aimed to evaluate the performance of the whole blood QuantiFERON-TB Gold In-Tube (QFT-GIT) assay and conventional laboratory biomarkers in differential diagnosis of TPE and MPE in high tuberculosis prevalence areas. A total of 117 patients with pleural effusions were recruited, including 91 with TPE and 26 with MPE. All of the patients were tested with QFT-GIT, and the conventional biomarkers in both blood and pleural effusion were detected. The level of antigen-stimulated QFT-GIT in the whole blood of TPE patients was significantly higher than that of MPE (2.89 vs 0.33 IU/mL, P<0.0001). The sensitivity and specificity of QFT-GIT for the diagnosis of TPE were 93.0% and 60.0%, respectively. Among the biomarkers in blood and pleural effusion, pleural adenosine deaminase (ADA) was the most prominent biomarker, with a cutoff value of 15.35 IU/L. The sensitivity and specificity for the diagnosis of TPE were 93.4% and 96.2%, respectively. The diagnostic classification tree from the combination of these two biomarkers was 97.8% sensitive and 92.3% specific. Ultimately, the combination of whole blood QFT-GIT with pleural ADA improved both the specificity and positive predictive value to 100%. Thus, QFT-GIT is not superior to pleural ADA in the differential diagnosis of TPE and MPE. Combined whole blood QFT-GIT and pleural ADA detection can improve the diagnosis of TPE.

  20. Screening of 181 Patients With Antibody Deficiency for Deficiency of Adenosine Deaminase 2 Sheds New Light on the Disease in Adulthood.

    PubMed

    Schepp, Johanna; Proietti, Michele; Frede, Natalie; Buchta, Mary; Hübscher, Katrin; Rojas Restrepo, Jessica; Goldacker, Sigune; Warnatz, Klaus; Pachlopnik Schmid, Jana; Duppenthaler, Andrea; Lougaris, Vassilios; Uriarte, Ignacio; Kelly, Susan; Hershfield, Michael; Grimbacher, Bodo

    2017-08-01

    We aimed to test the relevance of deficiency of adenosine deaminase 2 (DADA2) in patients with antibody deficiency and describe the clinical picture of the disease in adulthood. We screened for DADA2 in a cohort of 181 patients with antibody deficiency with or without vascular lesions using next-generation sequencing and targeted Sanger sequencing. All mutations were confirmed by determining the ADA2 enzymatic activity levels in dried plasma spots. Clinical data and laboratory values were collected in a standardized format. Following the diagnosis of 2 siblings in the index family, we identified 9 additional affected patients with compound heterozygous or homozygous CECR1 mutations, containing 6 novel and 4 previously published mutations. The patients' age at evaluation ranged from 13 to 51 years, with a median age of 22 years. Clinically, we saw a broad phenotype, ranging from isolated antibody deficiency to recurrent strokes. All but 1 patient had low numbers of memory B cells. Moreover, B cell function seemed to correlate with inflammation. Taken together, our findings indicate that DADA2 presents not only with vasculopathy but also with an immunodeficiency of the B cell compartment. Therefore, patients with antibody deficiency should be screened for DADA2. Anti-tumor necrosis factor treatment might improve immunologic features over time and might be considered in patients without vascular manifestations but with elevated inflammation markers. Conservative management has so far proven to be the choice for our less severely affected adolescent and adult DADA2 patients; however, in patients with severe cytopenias and bone marrow failure, hematopoietic stem cell transplantation should be considered. © 2017, American College of Rheumatology.

  1. Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model.

    PubMed

    Akinyemi, Ayodele Jacob; Okonkwo, Princess Kamsy; Faboya, Opeyemi Ayodeji; Onikanni, Sunday Amos; Fadaka, Adewale; Olayide, Israel; Akinyemi, Elizabeth Olufisayo; Oboh, Ganiyu

    2017-02-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes has been reported to exert cognitive enhancing potential with limited scientific basis. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) and adenosine deaminase (ADA) activities in cadmium (Cd)-induced memory impairment in rats. Animals were divided into six groups (n = 6): saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. Rats received Cd (2.5 mg/kg) and curcumin (12.5 and 25 mg/kg, respectively) by gavage for 7 days. The results of this study revealed that cerebral cortex AChE and ADA activities were increased in Cd-poisoned rats, and curcumin co-treatment reversed these activities to the control levels. Furthermore, Cd intoxication increased the level of lipid peroxidation in cerebral cortex with a concomitant decreased in functional sulfuhydryl (-SH) group and nitric oxide (NO), a potent neurotransmitter and neuromodulatory agent. However, the co-treatment with curcumin at 12.5 and 25 mg/kg, respectively increased the non-enzymatic antioxidant status and NO in cerebral cortex with a decreased in malondialdehyde (MDA) level. Therefore, inhibition of AChE and ADA activities as well as increased antioxidant status by curcumin in Cd-induced memory dysfunction could suggest some possible mechanism of action for their cognitive enhancing properties.

  2. Combined evaluation of adenosine deaminase level and histopathological findings from pleural biopsy with Cope’s needle for the diagnosis of tuberculous pleurisy

    PubMed Central

    Behrsin, Rodolfo Fred; Junior, Cyro Teixeira da Silva; Cardoso, Gilberto Perez; Barillo, Jorge Luiz; de Souza, Joeber Bernardo Soares; de Araújo, Elizabeth Giestal

    2015-01-01

    Introduction: Closed needle pleural biopsy (CNPB) has historically been the gold standard procedure for the diagnosis of pleural tuberculosis. Adenosine deaminase (ADA) is an efficient biomarker for tuberculosis that is measurable in pleural fluids. Objective: We compared the diagnostic accuracy of the pleural ADA (P-ADA) level and histopathological findings of CNPB specimens in patients with pleural tuberculosis. Methods: This prospective study consisted of two groups of examinations with a proven diagnosis of pleural effusion. The P-ADA level was measured in 218 patients with pleural effusion due to a number of causes, and 157 CNPB specimens underwent histopathological analysis. Results: CNPBs were performed in patients with tuberculosis (n=122) and other diseases: adenocarcinoma (n=23), lymphoma (n=5), systemic lupus erythematosus (n=4), squamous cell carcinoma (n=2), and small cell lung cancer (n=1). According to the ROC curve, the optimal cut-off value of the P-ADA level (Giusti and Galanti colorimetric method) was equal to or greater than 40.0 U/L. The diagnostic accuracy of the P-ADA test was 83.0%, and that of histopathological examination of the CNPB tissue, was 78.8% (AUC=0.293, P=0.7695). The association between the P-ADA assay and pleural histopathology was 24.41 (P<0.0001). The tetrachoric correlation coefficient was 0.563 (high correlation). Conclusion: In Brazil and other countries with a high incidence of tuberculosis, P-ADA activity is an accurate test for the diagnosis of tuberculous pleural effusions, and its use should be encouraged. The high diagnostic performance of the P-ADA test could to aid the diagnosis of pleural tuberculosis and render CNPB unnecessary. PMID:26261621

  3. Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other actinobacteria.

    PubMed

    Dubeau, Marie-Pierre; Ghinet, Mariana Gabriela; Jacques, Pierre-Etienne; Clermont, Nancy; Beaulieu, Carole; Brzezinski, Ryszard

    2009-02-01

    We developed a novel negative selection system for actinobacteria based on cytosine deaminase (CodA). We constructed vectors that include a synthetic gene encoding the CodA protein from Escherichia coli optimized for expression in Streptomyces species. Gene disruption and the introduction of an unmarked in-frame deletion were successfully achieved with these vectors.

  4. Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria.

    PubMed

    Govindasamy, Venkadasamy; Senthilkumar, Murugesan; Gaikwad, Kishore; Annapurna, Kannepalli

    2008-10-01

    Lowering of plant ethylene by deamination of its immediate precursor 1-aminocyclopropane-1-carboxylate (ACC) is a key trait found in many rhizobacteria. We isolated and screened bacteria from the rhizosphere of wheat for their ACC-degrading ability. The ACC deaminase gene (acdS) isolated from two bacterial isolates through PCR amplification was cloned and sequenced. Nucleotide sequence alignment of these genes with previously reported genes of Pseudomonas sp. strain ACP and Enterobacter cloacae strain UW4 showed variation in their sequences. In the phylogenetic analysis, distinctness of these two genes was observed as a separate cluster. 16S rDNA sequencing of two isolates identified them to be Achromobacter sp. and Pseudomonas stutzeri.

  5. Effect of a chemical modification on the hydrated adenosine intermediate produced by adenosine deaminase and a model reaction for a potential mechanism of action of 5-aminoimidazole ribonucleotide carboxylase.

    PubMed

    Groziak, M P; Huan, Z W; Ding, H; Meng, Z; Stevens, W C; Robinson, P D

    1997-10-10

    Using the hydrated adenosine intermediate (6R)-6-amino-1, 6-dihydro-6-hydroxy-9-(beta-D-ribofuranosyl)purine (2) produced by adenosine deaminase (ADA, EC 3.5.4.4) as a starting point, the active site probe and inhibitor platform 5-(formylamino)imidazole riboside (FAIRs, 4) was designed by removal of the-C6(OH)(NH2)-molecular fragment of 2 generated by the early events of the enzyme-catalyzed hydrolysis. FAIRs was synthesized directly from the sodium salt of 5-amino-1-(beta-D-ribofuranosyl)imidazole-4-carboxylic acid (CAIR) along a reaction sequence involving a tandem N-formylation/decarboxylation that may have a mechanistic connection to the Escherichia coli purE-catalyzed constitutional isomerization of N5-CAIR to CAIR. The physical and spectral properties of FAIRs were elucidated, its X-ray crystal and NMR solution structures were determined, and its interaction with ADA was investigated. Crystalline FAIRs exists solely as the Z-formamide rotamer and exhibits many of the same intramolecular hydrogen bonding events known to contribute to the association of Ado to ADA. In water and various organic solvents, however, FAIRs exists as NMR-distinct, slowly interconverting Z and E rotamers. This truncated enzymatic tetrahedral intermediate analog was determined to be a competitive inhibitor of ADA with an apparent Ki binding constant of 40 microM, a value quite close to that (33 microM) of the natural substrate's K(m). The actual species selected for binding by ADA, though, is likely the minor hydroxyimino prototropic form of Z-FAIRs possessing a far lower true Ki value. As the structural features of FAIRs appear well-suited to support its use as a template for constructing active site probes of both ADA and AIR carboxylases, a variety of carbohydrate-protected versions of FAIRs suitable for facile aglycon elaborations were synthesized. The N3-alkylation, N3-borane complexation, and C4-iodination of some of these were investigated in order to assess physicochemical

  6. Cloning of L-amino acid deaminase gene from Proteus vulgaris.

    PubMed

    Takahashi, E; Ito, K; Yoshimoto, T

    1999-12-01

    The L-amino acid degrading enzyme gene from Proteus vulgaris was cloned and the nucleotide sequence of the enzyme gene was clarified. An open reading frame of 1,413 bp starting at an ATG methionine codon was found, which encodes a protein of 471 amino acid residues, the calculated molecular weight of which is 51,518. The amino acid sequence of P. vulgaris was 58.6% identical with the L-amino acid deaminase of P. mirabilis. A significantly conserved sequence was found around the FAD-binding sequence of flavo-proteins. The partially purified wild and recombinant enzymes had the same substrate specificity for L-amino acids to form the respective keto-acids, however not for D-amino acids.

  7. Markerless Gene Deletion with Cytosine Deaminase in Thermus thermophilus Strain HB27

    PubMed Central

    Wang, Lei; Hoffmann, Jana; Watzlawick, Hildegard

    2015-01-01

    We developed a counterselectable deletion system for Thermus thermophilus HB27 based on cytosine deaminase (encoded by codA) from Thermaerobacter marianensis DSM 12885 and the sensitivity of T. thermophilus HB27 to the antimetabolite 5-fluorocytosine (5-FC). The deletion vector comprises the pUC18 origin of replication, a thermostable kanamycin resistance marker functional in T. thermophilus HB27, and codA under the control of a constitutive putative trehalose promoter from T. thermophilus HB27. The functionality of the system was demonstrated by deletion of the bglT gene, encoding a β-glycosidase, and three carotenoid biosynthesis genes, CYP175A1, crtY, and crtI, from the genome of T. thermophilus HB27. PMID:26655764

  8. Markerless Gene Deletion with Cytosine Deaminase in Thermus thermophilus Strain HB27.

    PubMed

    Wang, Lei; Hoffmann, Jana; Watzlawick, Hildegard; Altenbuchner, Josef

    2015-12-11

    We developed a counterselectable deletion system for Thermus thermophilus HB27 based on cytosine deaminase (encoded by codA) from Thermaerobacter marianensis DSM 12885 and the sensitivity of T. thermophilus HB27 to the antimetabolite 5-fluorocytosine (5-FC). The deletion vector comprises the pUC18 origin of replication, a thermostable kanamycin resistance marker functional in T. thermophilus HB27, and codA under the control of a constitutive putative trehalose promoter from T. thermophilus HB27. The functionality of the system was demonstrated by deletion of the bglT gene, encoding a β-glycosidase, and three carotenoid biosynthesis genes, CYP175A1, crtY, and crtI, from the genome of T. thermophilus HB27. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Correct splicing despite mutation of the invariant first nucleotide of a 5' splice site: a possible basis for disparate clinical phenotypes in siblings with adenosine deaminase deficiency.

    PubMed Central

    Arredondo-Vega, F. X.; Santisteban, I.; Kelly, S.; Schlossman, C. M.; Umetsu, D. T.; Hershfield, M. S.

    1994-01-01

    Adenosine deaminase (ADA) deficiency usually causes severe combined immune deficiency in infancy. Milder phenotypes, with delayed or late onset and gradual decline in immune function, also occur and are associated with less severely impaired deoxyadenosine (dAdo) catabolism. We have characterized the mutations responsible for ADA deficiency in siblings with striking disparity in clinical phenotype. Erythrocyte dAdo nucleotide pool size, which reflects total residual ADA activity, was lower in the older, more mildly affected sib (RG) than in her younger, more severely affected sister (EG). Cultured T cells, fibroblasts, and B lymphoblasts of RG had detectable residual ADA activity, while cells of EG did not. ADA mRNA was undetectable by northern analysis in these cells of both patients. Both sibs were found to be compound heterozygotes for the following novel splicing defects: (1) a G+1-->A substitution at the 5' splice site of IVS 2 and (2) a complex 17-bp rearrangement of the 3' splice site of IVS 8, which inserted a run of seven purines into the polypyrimidine tract and altered the reading frame of exon 9. PCR-amplified ADA cDNA clones with premature translation stop codons arising from aberrant pre-mRNA splicing were identified, which were consistent with these mutations. However, some cDNA clones from T cells of both patients and from fibroblasts and Epstein-Barr virus (EBV)-transformed B cells of RG, were normally spliced at both the exon 2/3 and exon 8/9 junctions. A normal coding sequence was documented for clones from both sibs. The normal cDNA clones did not appear to arise from either contamination or PCR artifact, and mosaicism seems unlikely to have been involved. These findings suggest (1) that a low level of normal pre-mRNA splicing may occur despite mutation of the invariant first nucleotide of the 5' splice donor sequence and (2) that differences in efficiency of such splicing may account for the difference in residual ADA activity, immune

  10. Correct splicing despite mutation of the invariant first nucleotide of a 5[prime] splice site: A possible basis for disparate clinical phenotypes in siblings with adenosine deaminase deficiency

    SciTech Connect

    Arredondo-Vega, F.X.; Santisteban, I.; Kelly, S.; Hershfield, M.S. ); Umetsu, D.T. ); Schlossman, C.M.

    1994-05-01

    Adenosine deaminase (ADA) deficiency usually causes severe combined immune deficiency in infancy. Milder phenotypes also occur and are associated with less severely impaired deoxyadenosine (dAdo) catabolism. The authors have characterized the mutations responsible for ADA deficiency in siblings with disparity in clinical phenotype. Erythrocyte dAdo nucleotide pool size, which reflects total residual ADA activity, was lower in the older, more mildly affected sib (RG) than in her younger, more severely affected sister (EG). Cultured T cells, fibroblasts, and B lymphoblasts of RG had detectable residual ADA activity, while cells of EG did not. ADA mRNA was undetectable by northern analysis in cells of both patients. Both sibs were found to be compound heterozygotes for the following novel splicing defects: (1) a G[sup +1][yields]A substitution at the 5' splice site of IVS 2 and (2) a complex 17-bp rearrangement of the 3' splice site of IVS 8, which inserted a run of seven purines into the polypyrimidine tract and altered the reading frame of exon 9. PCR-amplified ADA cDNA clones with premature translation stop codons arising from aberrant pre-mRNA splicing were identified, which were consistent with these mutations. However, some cDNA clones from T cells of both patients and from fibroblasts and Epstein-Barr virus (EBV)-transformed B cells of RG, were normally spliced at both the exon 2/3 and exon 8/9 junctions. A normal coding sequence was documented for clones from both sibs. The normal cDNA clones did not appear to arise from either contamination or PCR artifact, and mosaicism seems unlikely to have been involved. These findings suggest (1) that a low level of normal pre-mRNA splicing may occur despite mutation of the invariant first nucleotide of the 5' splice sequence and (2) that differences in efficiency of such splicing may account for the difference in residual ADA activity, immune dysfunction, and clinical severity in these siblings. 66 refs., 6 figs., 1 tab.

  11. Value of adenosine deaminase in the diagnosis of tuberculous pleural effusions in young patients in a region of high prevalence of tuberculosis.

    PubMed Central

    Valdés, L.; Alvarez, D.; San José, E.; Juanatey, J. R.; Pose, A.; Valle, J. M.; Salgueiro, M.; Suárez, J. R.

    1995-01-01

    BACKGROUND--Pleural biopsy is usually considered important for the diagnosis of pleural effusions, especially for distinguishing between tuberculosis and neoplasia, even though tuberculous pleural fluid contains sensitive biochemical markers. In regions with a high prevalence of tuberculosis, and in patient groups with a low risk of other causes of pleurisy, the positive predictive value of these markers is increased. The criteria for performing a pleural biopsy under these circumstances have been investigated, using adenosine deaminase (ADA) as a pleural fluid marker for tuberculosis. METHODS--One hundred and twenty nine patients with a pleural effusion aged < or = 35 years (mean (SD) 25.2 (4.9) years) were studied. Seventy three were men. Eighty one effusions (62.8%) were tuberculous, 12 (9.3%) parapneumonic, and 10 (7.7%) neoplastic, five were caused by pulmonary thromboembolism, four by systemic lupus erythematosus, seven by empyema, three following surgery, one was the result of asbestosis, and one of nephrotic syndrome. In five cases no definitive diagnosis was reached. ADA levels were determined by the method of Galanti and Giusti. RESULTS--The diagnostic yield of procedures not involving biopsy was 94.5% (122/129). Pleural biopsy provided a diagnosis in a further two cases, but not in the remaining five. All tuberculous cases had pleural fluid levels of ADA of > 47 U/l (mean (SD) 111.1 (36.6) U/l). The only other cases in which ADA exceeded this level were six of the seven patients with empyema. Cytological examination of the pleural fluid diagnosed eight of the 10 neoplastic cases, compared with six diagnosed by pleural biopsy. CONCLUSIONS--In a region with a high prevalence of tuberculosis procedures not involving pleural biopsy have a very high diagnostic yield in patients with a pleural effusion aged < or = 35 years, making biopsy necessary only in cases in which pleural levels of ADA are below 47 U/l, pleural fluid cytology is negative and, in the

  12. [Diagnostic performance of T-SPOT.TB on peripheral blood in combination with adenosine deaminase on pleural fluid for the diagnosis of tuberculous pleurisy within different age group].

    PubMed

    Xu, H Y; Zhang, D Q; Ye, J R; Su, S S; Xie, Y P; Chen, C S; Li, Y P

    2017-06-27

    Objective: To evaluate the performance of T cell enzyme-linked immuno-spot assay (T-SPOT) on peripheral blood in combination with adenosine deaminase (ADA) on pleural fluid for diagnosis of tuberculous (TB) pleurisy within different age groups. Methods: The data of patients with pleural effusion from the Department of Pulmonary and Critical Care Medicine of the First Affiliated Hospital of Wenzhou Medical University from April 2012 to November 2016 were retrospectively analyzed, and the diagnoses of these patients were histopathologically confirmed through medical thoracoscopy. The cases who had confirmed diagnosis, in the same time, received peripheral blood T-SPOT.TB were enrolled. The performance of peripheral blood T-SPOT.TB in combination with pleural fluid ADA on diagnosing TB pleurisy in the younger patients (16-59 years old) and elderly patients (≥60 years old) were analyzed respectively. The sensitivity, specificity and the receiver operating characteristic (ROC) curve were adopted for statistical analysis. Results: A total of 448 cases were finally enrolled, 341(76.1%) confirmed with TB pleurisy, 224 males, 117 females, (47±19) years old; and 107 (23.9%) classified as non-TB pleurisy, 65 males, 42 females, (61±14) years old. There were 285 cases who were classified as younger group, and the other 163 cases were classified as elderly group. The sensitivity and specificity of peripheral blood T-SPOT.TB were 85.4% (204/239) and 71.7% (33/46) in the younger patients, 76.5% (78/102) and 59.0% (36/61) respectively in the elderly patients. The sensitivity of peripheral blood T-SPOT.TB in the younger patients was significantly higher than that in the elderly patients (P=0.047). The sensitivity and specificity were 99.2% and 95.7% in combination with peripheral blood T-SPOT.TB and pleural fluid ADA respectively in the younger patients. The area under ROC curve (AUC) of T-SPOT.TB in the younger patients was 0.833, AUC of T-SPOT.TB combined with ADA was 0

  13. Effect of zinc supplementation on ecto-adenosine deaminase activity in lambs infected by Haemonchus contortus: highlights on acute phase of disease.

    PubMed

    Baldissera, Matheus D; Pivoto, Felipe L; Bottari, Nathieli B; Tonin, Alexandre A; Machado, Gustavo; Aires, Adelina R; Rocha, José F X; Pelinson, Luana P; Dalenogare, Diéssica P; Schetinger, Maria Rosa C; Morsch, Vera M; Leal, Marta L R; Da Silva, Aleksandro S

    2015-01-01

    Haemonchus contortus (order Strongylida) is a common parasitic nematode infecting small ruminants and causing significant economic losses worldwide. It induces innate and adaptive immune responses, which are essential for the clearance of this nematode from the host. Ecto-adenosine deaminase (E-ADA) is an enzyme that plays an important role in the immune system, while Zinc (Zn) has been found playing a critical role in E-ADA catalysis. Therefore, the aim of this study was to assess the effect of Zn supplementation on E-ADA activity in serum of lambs experimentally infected with H.contortus. To reach this purpose 28 male lambs (in average 25 kg) were used. The animals were divided into four groups: A and B composed of healthy animals (uninfected); C and D, infected with H.contortus. Groups B and D were supplemented with Zn Edetate, subcutaneously with 3 mg kg of live weight, on days 11 and 25 post-infection (PI). Blood and fecal samples were collected on the days 11, 25 and 39 PI, in order to assess hematocrit, seric E-ADA, and eggs per gram (EPG) counting, respectively. The animals of groups C and D showed severe hematocrit reduction (days 25 and 39 PI) and were EPG positive (days 11, 25 and 39 PI). On day 41 PI, three animals each group were subjected to necropsy. This procedure showed that animals of groups A and B did not have helminths in abomasum and intestines, while H.contortus were observed in groups C (5782.5 ± 810.9) and D (6185.0 ± 150.0). Infected and untreated animals (group C) showed a reduction in E-ADA activity, but this was not observed when the animals were supplemented with Zn (Group D). Therefore, based on our results, it was possible to observe that Zn supplementation exercised a positive effect on E-ADA activity in lambs infected with H.contortus, and did not allow a reduction in E-ADA activity, as occurred in the group infected and without supplementation. However, Zn supplementation was not able to prevent the worm burden.

  14. Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells.

    PubMed

    Someya, Tatsuhiko; Nonaka, Satoko; Nakamura, Kouji; Ezura, Hiroshi

    2013-10-01

    Agrobacterium-mediated transformation is a useful tool for the genetic modification in plants, although its efficiency is low for several plant species. Agrobacterium-mediated transformation has three major steps in laboratory-controlled experiments: the delivery of T-DNA into plant cells, the selection of transformed plant cells, and the regeneration of whole plants from the selected cells. Each of these steps must be optimized to improve the efficiency of Agrobacterium-mediated plant transformation. It has been reported that increasing the number of cells transformed by T-DNA delivery can improve the frequency of stable transformation. Previously, we demonstrated that a reduction in ethylene production by plant cells during cocultivation with A. tumefaciens-expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase resulted in increased T-DNA delivery into the plant cells. In this study, to further improve T-DNA delivery by A. tumefaciens, we modified the expression cassette of the ACC deaminase gene using vir gene promoter sequences. The ACC deaminase gene driven by the virD1 promoter was expressed at a higher level, resulting in a higher ACC deaminase activity in this A. tumefaciens strain than in the strain with the lac promoter used in a previous study. The newly developed A. tumefaciens strain improves the delivery of T-DNA into Solanum lycopersicum (tomato) and Erianthus ravennae plants and thus may be a powerful tool for the Agrobacterium-mediated genetic engineering of plants.

  15. Adenoviral-Mediated Imaging of Gene Transfer Using a Somatostatin Receptor-Cytosine Deaminase Fusion Protein

    PubMed Central

    Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.

    2015-01-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  16. Adenoviral-mediated imaging of gene transfer using a somatostatin receptor-cytosine deaminase fusion protein.

    PubMed

    Lears, K A; Parry, J J; Andrews, R; Nguyen, K; Wadas, T J; Rogers, B E

    2015-03-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy owing to the enzyme's ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that both the SSTR2 and yCD were functional in binding assays, conversion assays and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy.

  17. Homozygosity for a novel adenosine deaminase (ADA) nonsense mutation (Q3>X) in a child with severe combined immunodeficiency (SCID)

    SciTech Connect

    Santisteban, I.; Arrendondo-Vega, F.X.; Kelly, S. |

    1994-09-01

    A Somali girl was diagnosed with ADA-deficient SCID at 7 mo; she responded well to PEG-ADA replacement and is now 3.3 yr old. ADA mRNA was undetectable (Northern) in her cultured T cells, but was present in T cells of her parents and two sibs. All PCR-amplified exon 1 genomic clones from the patient had a C>T transition at bp 7 relative to the start of translation, replacing Gln at codon 3 (AGA) with a termination codon (TGA, Q3>X). Patient cDNA (prepared by RT-PCR with a 5{prime} primer that covered codons 1-7) had a previously described polymorphism, K80>R, but was otherwise normal, indicating that no other coding mutations were present. A predicted new genomic BfaI restriction site was used to establish her homozygosity for Q3>X and to analyze genotypes of family members. We also analyzed the segregation of a variable Alu polyA-associated TAAA repeat (AluVpA) situated 5{prime} of the ADA gene. Three different AluVpA alleles were found, one of which was only present in the father and was not associated with his Q3>X allele. Because the father`s RBCs had only {approximately}15% of normal ADA activity, we analyzed his ADA cDNA. We found a G>A transition at bp 425 that substitutes Gln for Arg142, a solvent-accessible residue, and eliminates a BsmAI site in exon 5. ADA activity of the R142>Q in vitro translation product was 20-25% of wild type ADA translation product, suggesting that R142>Q is a new {open_quote}partial{close_quote} ADA deficiency mutation. As expected, Q3>X mRNA did not yield a detectable in vitro translation product. We conclude that the patient`s father is a compound heterozygote carrying the ADA Q3>X/R142>Q genotype. {open_quote}Partial{close_quote} ADA deficiency unassociated with immunodeficiency is relatively common in individuals of African descent. The present findings and previous observations suggest that {open_quote}partial{close_quote} ADA deficiency may have had an evolutionary advantage.

  18. Identification of Two Pentatricopeptide Repeat Genes Required for RNA Editing and Zinc Binding by C-terminal Cytidine Deaminase-like Domains*

    PubMed Central

    Hayes, Michael L.; Giang, Karolyn; Berhane, Beniam; Mulligan, R. Michael

    2013-01-01

    Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome. PMID:24194514

  19. Identification of two pentatricopeptide repeat genes required for RNA editing and zinc binding by C-terminal cytidine deaminase-like domains.

    PubMed

    Hayes, Michael L; Giang, Karolyn; Berhane, Beniam; Mulligan, R Michael

    2013-12-20

    Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome.

  20. Retrovirus-mediated transduction of a cytosine deaminase gene preserves the stemness of mesenchymal stem cells.

    PubMed

    Park, Jin Sung; Chang, Da-Young; Kim, Ji-Hoi; Jung, Jin Hwa; Park, JoonSeong; Kim, Se-Hyuk; Lee, Young-Don; Kim, Sung-Soo; Suh-Kim, Haeyoung

    2013-02-22

    Human mesenchymal stem cells (MSCs) have emerged as attractive cellular vehicles to deliver therapeutic genes for ex-vivo therapy of diverse diseases; this is, in part, because they have the capability to migrate into tumor or lesion sites. Previously, we showed that MSCs could be utilized to deliver a bacterial cytosine deaminase (CD) suicide gene to brain tumors. Here we assessed whether transduction with a retroviral vector encoding CD gene altered the stem cell property of MSCs. MSCs were transduced at passage 1 and cultivated up to passage 11. We found that proliferation and differentiation potentials, chromosomal stability and surface antigenicity of MSCs were not altered by retroviral transduction. The results indicate that retroviral vectors can be safely utilized for delivery of suicide genes to MSCs for ex-vivo therapy. We also found that a single retroviral transduction was sufficient for sustainable expression up to passage 10. The persistent expression of the transduced gene indicates that transduced MSCs provide a tractable and manageable approach for potential use in allogeneic transplantation.

  1. Gene therapy for adenosine deaminase–deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans

    PubMed Central

    Candotti, Fabio; Shaw, Kit L.; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H.; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G. Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F.; Weinberg, Kenneth I.; Crooks, Gay M.; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S.; Rosenblatt, Howard M.; Davis, Carla M.; Hanson, Celine; Rishi, Radha G.; Wang, Xiaoyan; Gjertson, David; Yang, Otto O.; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A.; Engel, Barbara C.; Podsakoff, Gregory M.; Hershfield, Michael S.; Blaese, R. Michael; Parkman, Robertson

    2012-01-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)–deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34+ cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m2). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency. PMID:22968453

  2. Targeted endostatin-cytosine deaminase fusion gene therapy plus 5-fluorocytosine suppresses ovarian tumor growth.

    PubMed

    Sher, Y-P; Chang, C-M; Juo, C-G; Chen, C-T; Hsu, J L; Lin, C-Y; Han, Z; Shiah, S-G; Hung, M-C

    2013-02-28

    There are currently no effective therapies for cancer patients with advanced ovarian cancer, therefore developing an efficient and safe strategy is urgent. To ensure cancer-specific targeting, efficient delivery, and efficacy, we developed an ovarian cancer-specific construct (Survivin-VISA-hEndoyCD) composed of the cancer specific promoter survivin in a transgene amplification vector (VISA; VP16-GAL4-WPRE integrated systemic amplifier) to express a secreted human endostatin-yeast cytosine deaminase fusion protein (hEndoyCD) for advanced ovarian cancer treatment. hEndoyCD contains an endostatin domain that has tumor-targeting ability for anti-angiogenesis and a cytosine deaminase domain that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic drug, 5-fluorouracil. Survivin-VISA-hEndoyCD was found to be highly specific, selectively express secreted hEndoyCD from ovarian cancer cells, and induce cancer-cell killing in vitro and in vivo in the presence of 5-FC without affecting normal cells. In addition, Survivin-VISA-hEndoyCD plus 5-FC showed strong synergistic effects in combination with cisplatin in ovarian cancer cell lines. Intraperitoneal (i.p.) treatment with Survivin-VISA-hEndoyCD coupled with liposome attenuated tumor growth and prolonged survival in mice bearing advanced ovarian tumors. Importantly, there was virtually no severe toxicity when hEndoyCD is expressed by Survivin-VISA plus 5-FC compared with CMV plus 5-FC. Thus, the current study demonstrates an effective cancer-targeted gene therapy that is worthy of development in clinical trials for treating advanced ovarian cancer.

  3. Regulation of activation-induced deaminase stability and antibody gene diversification by Hsp90

    PubMed Central

    Orthwein, Alexandre; Patenaude, Anne-Marie; Affar, El Bachir; Lamarre, Alain; Young, Jason C.

    2010-01-01

    Activation-induced deaminase (AID) is the mutator enzyme that initiates somatic hypermutation and isotype switching of the antibody genes in B lymphocytes. Undesired byproducts of AID function are oncogenic mutations. AID expression levels seem to correlate with the extent of its physiological and pathological functions. In this study, we identify AID as a novel Hsp90 (heat shock protein 90 kD) client. We find that cytoplasmic AID is in a dynamic equilibrium regulated by Hsp90. Hsp90 stabilizes cytoplasmic AID, as specific Hsp90 inhibition leads to cytoplasmic polyubiquitination and proteasomal degradation of AID. Consequently, Hsp90 inhibition results in a proportional reduction in antibody gene diversification and off-target mutation. This evolutionarily conserved regulatory mechanism determines the functional steady-state levels of AID in normal B cells and B cell lymphoma lines. Thus, Hsp90 assists AID-mediated antibody diversification by stabilizing AID. Hsp90 inhibition provides the first pharmacological means to down-regulate AID expression and activity, which could be relevant for therapy of some lymphomas and leukemias. PMID:21041454

  4. Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy.

    PubMed

    Leveille, S; Samuel, S; Goulet, M-L; Hiscott, J

    2011-06-01

    Oncolytic viruses (OVs) are promising therapeutic agents for cancer treatment, with recent studies emphasizing the combined use of chemotherapeutic compounds and prodrug suicide gene strategies to improve OV efficacy. In the present study, the synergistic activity of recombinant vesicular stomatitis virus (VSV)-MΔ51 virus expressing the cytosine deaminase/uracil phosphoribosyltransferase (CD::UPRT) suicide gene and 5-fluorocytosine (5FC) prodrug was investigated in triggering tumor cell oncolysis. In a panel of VSV-sensitive and -resistant cells-prostate PC3, breast MCF7 and TSA, B-lymphoma Karpas and melanoma B16-F10-the combination treatment increased killing of non-infected bystander cells in vitro via the release of 5FC toxic derivatives. In addition, we showed a synergistic effect on cancer cell killing with VSV-MΔ51 and the active form of the drug 5-fluorouracil. Furthermore, by monitoring VSV replication at the tumor site and maximizing 5FC bioavailability, we optimized the treatment regimen and improved survival of animals bearing TSA mammary adenocarcinoma. Altogether, this study emphasizes the potency of the VSV-CD::UPRT and 5FC combination, and demonstrates the necessity of optimizing each step of a multicomponent therapy to design efficient treatment.

  5. Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes

    PubMed Central

    Taylor, Benjamin JM; Wu, Yee Ling; Rada, Cristina

    2014-01-01

    Cytidine deaminases are single stranded DNA mutators diversifying antibodies and restricting viral infection. Improper access to the genome leads to translocations and mutations in B cells and contributes to the mutation landscape in cancer, such as kataegis. It remains unclear how deaminases access double stranded genomes and whether off-target mutations favor certain loci, although transcription and opportunistic access during DNA repair are thought to play a role. In yeast, AID and the catalytic domain of APOBEC3G preferentially mutate transcriptionally active genes within narrow regions, 110 base pairs in width, fixed at RNA polymerase initiation sites. Unlike APOBEC3G, AID shows enhanced mutational preference for small RNA genes (tRNAs, snoRNAs and snRNAs) suggesting a putative role for RNA in its recruitment. We uncover the high affinity of the deaminases for the single stranded DNA exposed by initiating RNA polymerases (a DNA configuration reproduced at stalled polymerases) without a requirement for specific cofactors. DOI: http://dx.doi.org/10.7554/eLife.03553.001 PMID:25237741

  6. Antitumor activity of mutant bacterial cytosine deaminase gene for colon cancer

    PubMed Central

    Deng, Long-Ying; Wang, Jian-Ping; Gui, Zhi-Fu; Shen, Li-Zong

    2011-01-01

    AIM: To evaluate bacterial cytosine deaminase (bCD) mutant D314A and 5-fluorocytosine (5-FC) for treatment of colon cancer in a mouse model. METHODS: Recombinant lentivirus vectors that contained wild-type bCD gene (bCDwt), and bCD mutant D314A gene (bCD-D314A) with green fluorescence protein gene were constructed and used to infect human colon carcinoma LoVo cells, to generate stable transfected cells, LoVo/null, LoVo/bCDwt or LoVo/bCD-D314A. These were injected subcutaneously into Balb/c nude mice to establish xenograft models. Two weeks post-LoVo cell inoculation, PBS or 5-FC (500 mg/kg) was administered by intraperitoneal (i.p.) injection once daily for 14 d. On the day after LoVo cell injection, mice were monitored daily for tumor volume and survival. RESULTS: Sequence analyses confirmed the construction of recombinant lentiviral plasmids that contained bCDwt or bCD-D314A. The lentiviral vector had high efficacy for gene delivery, and RT-PCR showed that bCDwt or bCD-D314A gene was transferred to LoVo cells. Among these treatment groups, gene delivery or 5-FC administration alone had no effect on tumor growth. However, bCDwt/5-FC or bCD-D314A/5-FC treatment inhibited tumor growth and prolonged survival of mice significantly (P < 0.05). Importantly, the tumor volume in the bCD-D314A/5-FC-treated group was lower than that in the bCDwt/5-FC group (P < 0.05), and bCD-D314A plus 5-FC significantly prolonged survival of mice in comparison with bCDwt plus 5-FC (P < 0.05). CONCLUSION: The bCD mutant D314A enhanced significantly antitumor activity in human colon cancer xenograft models, which provides a promising approach for human colon carcinoma therapy. PMID:21734808

  7. Molecular chemotherapy of pancreatic cancer using novel mutant bacterial cytosine deaminase gene.

    PubMed

    Kaliberova, Lyudmila N; Della Manna, Debbie L; Krendelchtchikova, Valentina; Black, Margaret E; Buchsbaum, Donald J; Kaliberov, Sergey A

    2008-09-01

    The combination of molecular chemotherapy with radiation therapy has the potential to become a powerful approach for treatment of pancreatic cancer. We have developed an adenoviral vector (AdbCD-D314A) encoding a mutant bacterial cytosine deaminase (bCD) gene, which converts the prodrug 5-fluorocytosine (5-FC) into the active drug 5-fluorouracil. The aim of this study was to investigate AdbCD-D314A/5-FC-mediated cytotoxicity in vitro and therapeutic efficacy in vivo alone and in combination with radiation against human pancreatic cancer cells and xenografts. AdbCD-D314A/5-FC-mediated cytotoxicity alone and in combination with radiation was analyzed using crystal violet inclusion and clonogenic survival assays. CD enzyme activity was determined by measuring conversion of [3H]5-FC to [3H]5-fluorouracil after adenoviral infection of pancreatic cancer cells in vitro and pancreatic tumor xenografts by TLC. S.c. pancreatic tumor xenografts were used to evaluate the therapeutic efficacy of AdbCD-D314A/5-FC molecular chemotherapy in combination with radiation therapy. AdbCD-D314A infection resulted in increased 5-FC-mediated pancreatic cancer cell killing that correlated with significantly enhanced CD enzyme activity compared with AdbCDwt encoding wild-type of bCD. Animal studies showed significant inhibition of growth of human pancreatic tumors treated with AdbCD-D314A/5-FC in comparison with AdbCDwt/5-FC. Also, a significantly greater inhibition of growth of Panc2.03 and MIA PaCA-2 tumor xenografts was produced by the combination of AdbCD-D314A/5-FC with radiation compared with either agent alone. The results indicate that the combination of AdbCD-D314A/5-FC molecular chemotherapy with radiation therapy significantly enhanced cytotoxicity of pancreatic cancer cells in vitro and increased therapeutic efficacy against human pancreatic tumor xenografts.

  8. Mutation in the Drosophila melanogaster adenosine receptor gene selectively decreases the mosaic hyperplastic epithelial outgrowth rates in wts or dco heterozygous flies.

    PubMed

    Sidorov, Roman; Kucerova, Lucie; Kiss, Istvan; Zurovec, Michal

    2015-03-01

    Adenosine (Ado) is a ubiquitous metabolite that plays a prominent role as a paracrine homeostatic signal of metabolic imbalance within tissues. It quickly responds to various stress stimuli by adjusting energy metabolism and influencing cell growth and survival. Ado is also released by dead or dying cells and is present at significant concentrations in solid tumors. Ado signaling is mediated by Ado receptors (AdoR) and proteins modulating its concentration, including nucleoside transporters and Ado deaminases. We examined the impact of genetic manipulations of three Drosophila genes involved in Ado signaling on the incidence of somatic mosaic clones formed by the loss of heterozygosity (LOH) of tumor suppressor and marker genes. We show here that genetic manipulations with the AdoR, equilibrative nucleoside transporter 2 (Ent2), and Ado deaminase growth factor-A (Adgf-A) cause dramatic changes in the frequency of hyperplastic outgrowth clones formed by LOH of the warts (wts) tumor suppressor, while they have almost no effect on control yellow (y) clones. In addition, the effect of AdoR is dose-sensitive and its overexpression leads to the increase in wts hyperplastic epithelial outgrowth rates. Consistently, the frequency of mosaic hyperplastic outgrowth clones generated by the LOH of another tumor suppressor, discs overgrown (dco), belonging to the wts signaling pathway is also dependent on AdoR. Our results provide interesting insight into the maintenance of tissue homeostasis at a cellular level.

  9. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients.

    PubMed

    Nemunaitis, John; Cunningham, Casey; Senzer, Neil; Kuhn, Joseph; Cramm, Jennifer; Litz, Craig; Cavagnolo, Robert; Cahill, Ann; Clairmont, Caroline; Sznol, Mario

    2003-10-01

    We performed a pilot trial in refractory cancer patients to investigate the feasibility of intratumoral injection of TAPET-CD, an attenuated Salmonella bacterium expressing the E. coli cytosine deaminase gene. A total of three patients received three dose levels of TAPET-CD (3 x 10(6)-3 x 10(7) CFU/m(2)) via intratumoral injection once every 28 days as long as progression of disease or intolerable toxicity was not observed. From days 4 to 14 of each 28 day cycle, patients also received 5-fluorocytosine (5-FC) at a dose of 100 mg/kg/day p.o. divided three times daily. Six cycles of treatment were administered. No significant adverse events clearly attributable to TAPET-CD were demonstrated. Two patients had intratumor evidence of bacterial colonization with TAPET-CD, which persisted for at least 15 days after initial injection. Conversion of 5-FC to 5-fluorouracil (5-FU) as a result of cytosine deaminase expression was demonstrated in these two patients. The tumor to plasma ratio of 5-FU for these two colonized patients was 3.0, demonstrating significantly increased levels of 5-FU at the site of TAPET-CD colonization and insignificant systemic spread of the bacteria. In contrast, the tumor to plasma ratio of 5-FU of the patient who did not show colonization of TAPET-CD was less than 1.0. These results support the principle that a Salmonella bacterium can be utilized as a delivery vehicle of the cytosine deaminase gene to malignant tissue and that the delivered gene is functional (i.e. able to convert 5-FC to 5-FU) at doses at or below 3 x 10(7) CFU/m(2).

  10. Characterization of ACC deaminase gene in Pseudomonas entomophila strain PS-PJH isolated from the rhizosphere soil.

    PubMed

    Kamala-Kannan, Seralathan; Lee, Kui-Jae; Park, Seung-Moon; Chae, Jong-Chan; Yun, Bong-Sik; Lee, Yong Hoon; Park, Yool-Jin; Oh, Byung-Taek

    2010-04-01

    The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase cleaves the ethylene precursor ACC into alpha-ketobutyrate and ammonia. The decreased level of ethylene allows the plant to be more resistant to a wide environmental stress including plant pathogens. In the present study, we characterized the ACC deaminase activity of a Pseudomonas entomophila strain PS-PJH isolated from the red pepper rhizosphere region of red pepper grown at Jinan, Korea. The isolate produced 23.8 +/- 0.4 micromol of alpha-ketobutyrate/mg of protein/h during ACC deamination under in vitro conditions. Polymerase chain reaction for acdS gene showed that the isolated P. entomophila strain PS-PJH carry sequences similar to the known acdS genes. Results of the multiple sequence alignment revealed >99% identity (nucleotide and amino acid) with acdS gene of Pseudomonas putida strains AM15 and UW4. The isolated bacteria promoted 43.3 and 34.1% of growth in Raphanus sativus and Lactuca sativa plants, respectively. Based on the 16S-23S internal transcribed spacer region sequences, the isolate was identified as P. entomophila. To the best of our knowledge this is the first study to report the acdS gene in P. entomophila.

  11. [Cytotoxicity of cytosine deaminase and herpes simplex virus thymidine kinase genes in melanoma cells is independent on promoter strength].

    PubMed

    Alekseenko, I V; Kuz'min, D V; Pleshkan, V V; Zinov'eva, M V; Sverdlov, E D

    2013-01-01

    In preparation of the therapeutic genetic constructs aimed to the gene-programmed enzymatic transformation of the non-toxic prodrug into toxin within cancer cells the right choice of regulatory elements (promoters and enhancers) is essential. This is widely accepted that the efficiency of the gene therapy constructions is dependent, in particular, on the strength of promoters driving the expression of the therapeutic genes. In this work we demonstrated, using the melanoma-specific promoters and enhancers of human melanoma inhibitory activity and mouse tyrosinase gene, that for the development of cytotoxic effect the promoter strength is not of primary importance. In the case of HSVtk, coding for the herpes simplex virus thymidine kinase, and FCU1, coding for cytosine deaminase/uracil phosphoribosyltransferase hybrid protein genes, their cytotoxic activity was determined by the quantity of the added prodrug.

  12. Specific CEA-producing colorectal carcinoma cell killing with recombinant adenoviral vector containing cytosine deaminase gene

    PubMed Central

    Shen, Li-Zong; Wu, Wen-Xi; Xu, De-Hua; Zheng, Zhong-Cheng; Liu, Xin-Yuan; Ding, Qiang; Hua, Yi-Bing; Yao, Kun

    2002-01-01

    AIM: To kill CEA positive colorectal carcinoma cells specifically using the E coli cytosine deaminase (CD) suicide gene, a new replication-deficient recombinant adenoviral vector was constructed in which CD gene was controlled under CEA promoter and its in vitro cytotoxic effects were evaluated. METHODS: Shuttle plasmid containing CD gene and regulatory sequence of the CEA gene was constructed and recombined with the right arm of adenovirus genome DNA in 293 cell strain. Dot blotting and PCR were used to identify positive plaques. The purification of adenovirus was performed with ultra-concentration in CsCl step gradients and the titration was measured with plaque formation assay. Cytotoxic effects were assayed with MTT method, The fifty percent inhibition concentration (IC50) of 5-FC was calculated using a curve-fitting parameter. The human colorectal carcinoma cell line, which was CEA-producing, and the CEA-nonproducing Hela cell line were applied in cytological tests. An established recombinant adenovirus vector AdCMVCD, in which the CD gene was controlled under CMV promoter, was used as virus control. Quantitative results were expressed as the mean ± SD of the mean. Statistical analysis was performed using ANOVA test. RESULTS: The desired recombinant adenovirus vector was named AdCEACD. The results of dot blotting and PCR showed that the recombinant adenovirus contained CEA promoter and CD gene. Virus titer was about 5.0 × 1014 pfu/L-1 after purification. The CEA-producing Lovo cells were sensitive to 5-FC and had the same cytotoxic effect after infection with AdCEACD and AdCMVCD (The IC50 values of 5-FC in parent Lovo cells, Lovo cells infected with 100 M.O.I AdCEACD and Lovo cells infected with 10 M.O.I AdCMVCD were > 15000, 216.5 ± 38.1 and 128.8 ± 25.4 μmol•L⁻¹, P < 0.001, respectively), and the cytotoxicity of 5-FC increased accordingly when the M.O.I of adenoviruses were enhanced (The value of IC50 of 5-FC was reduced to 27.9 ± 4.2 μmol•L-1

  13. The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala.

    PubMed

    Tittabutr, Panlada; Awaya, Jonathan D; Li, Qing X; Borthakur, Dulal

    2008-06-01

    The objective of this study was to determine the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase of symbionts in nodulation and growth of Leucaena leucocephala. The acdS genes encoding ACC deaminase were cloned from Rhizobium sp. strain TAL1145 and Sinorhizobium sp. BL3 in multicopy plasmids, and transferred to TAL1145. The BL3-acdS gene greatly enhanced ACC deaminase activity in TAL1145 compared to the native acdS gene. The transconjugants of TAL1145 containing the native or BL3 acdS gene could grow in minimal media containing 1.5mM ACC, whereas BL3 could tolerate up to 3mM ACC. The TAL1145 acdS gene was inducible by mimosine and not by ACC, while the BL3 acdS gene was highly inducible by ACC and not by mimosine. The transconjugants of TAL1145 containing the native- and BL3-acdS genes formed nodules with greater number and sizes, and produced higher root mass on L. leucocephala than by TAL1145. This study shows that the introduction of multiple copies of the acdS gene increased ACC deaminase activities of TAL1145 and enhanced its symbiotic efficiency on L. leucocephala.

  14. Measles Virus Defective Interfering RNAs Are Generated Frequently and Early in the Absence of C Protein and Can Be Destabilized by Adenosine Deaminase Acting on RNA-1-Like Hypermutations

    PubMed Central

    Pfaller, Christian K.; Mastorakos, George M.; Matchett, William E.; Ma, Xiao; Samuel, Charles E.

    2015-01-01

    ABSTRACT Defective interfering RNAs (DI-RNAs) of the viral genome can form during infections of negative-strand RNA viruses and outgrow full-length viral genomes, thereby modulating the severity and duration of infection. Here we document the frequent de novo generation of copy-back DI-RNAs from independent rescue events both for a vaccine measles virus (vac2) and for a wild-type measles virus (IC323) as early as passage 1 after virus rescue. Moreover, vaccine and wild-type C-protein-deficient (C-protein-knockout [CKO]) measles viruses generated about 10 times more DI-RNAs than parental virus, suggesting that C enhances the processivity of the viral polymerase. We obtained the nucleotide sequences of 65 individual DI-RNAs, identified breakpoints and reinitiation sites, and predicted their structural features. Several DI-RNAs possessed clusters of A-to-G or U-to-C transitions. Sequences flanking these mutation sites were characteristic of those favored by adenosine deaminase acting on RNA-1 (ADAR1), which catalyzes in double-stranded RNA the C-6 deamination of adenosine to produce inosine, which is recognized as guanosine, a process known as A-to-I RNA editing. In individual DI-RNAs the transitions were of the same type and occurred on both sides of the breakpoint. These patterns of mutations suggest that ADAR1 edits unencapsidated DI-RNAs that form double-strand RNA structures. Encapsidated DI-RNAs were incorporated into virus particles, which reduced the infectivity of virus stocks. The CKO phenotype was dominant: DI-RNAs derived from vac2 with a CKO suppressed the replication of vac2, as shown by coinfections of interferon-incompetent lymphatic cells with viruses expressing different fluorescent reporter proteins. In contrast, coinfection with a C-protein-expressing virus did not counteract the suppressive phenotype of DI-RNAs. IMPORTANCE Recombinant measles viruses (MVs) are in clinical trials as cancer therapeutics and as vectored vaccines for HIV-AIDS and

  15. Elucidation of the time course of adenosine deaminase APOBEC3G and viral infectivity factor vif in HIV-2287-infected infant macaques

    PubMed Central

    Endsley, Aaron N.; Ho, Rodney J.Y.

    2012-01-01

    Background Although the interactions of cellular cytidine deaminase A3G and viral infection factor (vif) of human immunodeficiency virus (HIV) were reported, regulation of A3G after in vivo HIV infection and disease progression is not known. Methods Time courses of plasma virus, CD4+ T lymphocyte Macaca levels, and concentrations of A3G and vif transcripts were determined in infant macaques infected with HIV-2287. These in vivo results were compared with those collected in vitro in HIV-2-infected T cells. Results Human immunodeficiency virus-infected macaques exhibited plasma viremia (≥108 copies/ml) followed by a precipitous CD4+ T-cell (from 40–70 to ≤5%) decline. An initial increase in A3G transcripts coincides with early increases in virus and vif RNA. As virus load continues to increase, A3G RNA decreases but recovers at a later phase as virus level stabilizes. Pearson correlation analysis revealed strong interactions of A3G–CD4, vif–CD4, and A3G–vif. Conclusions There is a time-dependent A3G and vif RNA interaction throughout the course of HIV infection. PMID:22017399

  16. DsdA (D-serine deaminase): a new heterologous MX cassette for gene disruption and selection in Saccharomyces cerevisiae.

    PubMed

    Vorachek-Warren, Mara K; McCusker, John H

    2004-01-30

    Dominant drug resistance markers offer experimental flexibility in the study of Saccharomyces cerevisiae by eliminating the dependence on auxotrophic mutations and, because they are phenotypically neutral, avoid the deleterious effects of auxotrophic mutations. We have developed a new dominant resistance marker, dsdAMX4, for use in the genetic manipulation of S. cerevisiae. The dsdA gene, which is derived from Escherichia coli and encodes a D-serine deaminase, confers to S. cerevisiae resistance to D-serine and the ability to use D-serine as a nitrogen source. Here we describe the construction of a dsdAMX4 cassette, capable of expression in S. cerevisiae, and the characterization of this new marker for use in chromosomal gene disruption. The unique selection properties of the dsdAMX4 cassette make it an important addition to the existing array of S. cerevisiae genetic tools. Copyright 2004 John Wiley & Sons, Ltd.

  17. Assignment of the human cytidine deaminase (CDA) gene to chromosome 1 band p35-p36.2

    SciTech Connect

    Saccone, S.; Andreozzi, L.; Della Valle, G.

    1994-08-01

    The enzyme cytidine deaminase (EC 3.5.4.12; CDA) catalyzes the hydrolytic deamination of cytidine or deoxycytidine to uridine or deoxyuridine, respectively. It can also catalyze the deamination of cytosine nucleoside analogues such as cytosine arabinoside and 5-azacytidine, which results in a loss of their cytotoxic and antitumor activity. Cytosine arabinoside is used in the treatment of acute myeloid leukemia, and the antileukemic activity of the drug is dependent on phosphorylation by deoxycytidine kinase. The occurrence of clinical cytosine arabinoside resistance is one of the main problems in the successful treatment of acute myeloid leukemia. Resistance to the drug has been ascribed to functional deoxycytidine kinase deficiency and to increased expression of the CDA gene. In this study, we report on the isolation of a CDA genomic fragment and its use as a probe for the chromosomal localization of the human CDA gene by in situ hybridization. 9 refs., 1 fig.

  18. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?

    PubMed

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; De Carlo, Anna; Emiliani, Giovanni; Mancuso, Stefano; Spini, Giulia; Viti, Carlo; Mengoni, Alessio

    2017-01-01

    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior.

  19. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?

    PubMed Central

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; De Carlo, Anna; Emiliani, Giovanni; Mancuso, Stefano; Spini, Giulia; Viti, Carlo; Mengoni, Alessio

    2017-01-01

    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior. PMID:28194158

  20. Antitumor effects and radiosensitization of cytosine deaminase and thymidine kinase fusion suicide gene on colorectal carcinoma cells

    PubMed Central

    Wu, De-Hua; Liu, Li; Chen, Long-Hua

    2005-01-01

    AIM: To investigate the killing effect and radiosensitization of double suicide gene mediated by adenovirus on colorectal carcinoma cells. METHODS: Colorectal carcinoma cell line SW480 was transfected with adenovirus expression vector containing cytosine deaminase (CD) and thymidine kinase (TK) fusion gene. The expression of CD-TK fusion gene was detected by reverse transcriptase-polymerase chain reaction. The toxic effect of ganciclovir (GCV) and 5-fluorocytosine (5-FC) on infected cells was determined by MTT assay. The radiosensitization of double suicide gene was evaluated by clonogenic assay. RESULTS: After prodrugs were used, the survival rate of colorectal carcinoma cells was markedly decreased. When GCV and 5-FC were used in combination, the cytotoxicity and bystander effect were markedly superior to a single prodrug (χ2 = 30.371, P<0.01). Both GCV and 5-FC could sensitize colorectal carcinoma cells to the toxic effect of radiation, and greater radiosensitization was achieved when both prodrug were used in combination. CONCLUSION: CD-TK double suicide gene can kill and radiosensitize colorectal carcinoma cells. PMID:15918188

  1. Human neural stem cells transduced with IFN-beta and cytosine deaminase genes intensify bystander effect in experimental glioma.

    PubMed

    Ito, S; Natsume, A; Shimato, S; Ohno, M; Kato, T; Chansakul, P; Wakabayashi, T; Kim, S U

    2010-05-01

    Previously, we have shown that the genetically modified human neural stem cells (NSCs) show remarkable migratory and tumor-tropic capability to track down brain tumor cells and deliver therapeutic agents with significant therapeutic benefit. Human NSCs that were retrovirally transduced with cytosine deaminase (CD) gene showed remarkable 'bystander killer effect' on the glioma cells after application of the prodrug, 5-fluorocytosine (5-FC). Interferon-beta (IFN-beta) is known for its antiproliferative effects in a variety of cancers. In our pilot clinical trial in glioma, the IFN-beta gene has shown potent antitumor activity in patients with malignant glioma. In the present study, we sought to examine whether human NSCs genetically modified to express both CD and IFN-beta genes intensified antitumor effect on experimental glioma. In vitro studies showed that CD/IFN-beta-expressing NSCs exerted a remarkable bystander effect on human glioma cells after the application of 5-FC, as compared with parental NSCs and CD-expressing NSCs. In animal models with human glioma orthotopic xenograft, intravenously infused CD/IFN-beta-expressing NSCs produced striking antitumor effect after administration of the prodrug 5-FC. Furthermore, the same gene therapy regimen prolonged survival periods significantly in the experimental animals. The results of the present study indicate that the multimodal NSC-based treatment strategy might have therapeutic potential against gliomas.

  2. Dynamic Regulation of the Adenosine Kinase Gene during Early Postnatal Brain Development and Maturation

    PubMed Central

    Kiese, Katharina; Jablonski, Janos; Boison, Detlev; Kobow, Katja

    2016-01-01

    The ubiquitous metabolic intermediary and nucleoside adenosine is a “master regulator” in all living systems. Under baseline conditions adenosine kinase (ADK) is the primary enzyme for the metabolic clearance of adenosine. By regulating the availability of adenosine, ADK is a critical upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. ADK protein exists in the two isoforms nuclear ADK-L, and cytoplasmic ADK-S, which are subject to dynamic expression changes during brain development and in response to brain injury; however, gene expression changes of the Adk gene as well as regulatory mechanisms that direct the cell-type and isoform specific expression of ADK have never been investigated. Here we analyzed potential gene regulatory mechanisms that may influence Adk expression including DNA promoter methylation, histone modifications and transcription factor binding. Our data suggest binding of transcription factor SP1 to the Adk promoter influences the regulation of Adk expression. PMID:27812320

  3. A bacterial gene codA encoding cytosine deaminase is an effective conditional negative selectable marker in Glycine max.

    PubMed

    Shao, Min; Michno, Jean-Michel; Hotton, Sara K; Blechl, Ann; Thomson, James

    2015-10-01

    Research describes the practical application of the codA negative selection marker in Soybean. Conditions are given for codA selection at both the shooting and rooting stages of regeneration. Conditional negative selection is a powerful technique whereby the absence of a gene product allows survival in otherwise lethal conditions. In plants, the Escherichia coli gene codA has been employed as a negative selection marker. Our research demonstrates that codA can be used as a negative selection marker in soybean, Glycine max. Like most plants, soybean does not contain cytosine deaminase activity and we show here that wild-type seedlings are not affected by inclusion of 5-FC in growth media. In contrast, transgenic G. max plants expressing codA and grown in the presence of more than 200 μg/mL 5-FC exhibit reductions in hypocotyl and taproot lengths, and severe suppression of lateral root development. We also demonstrate a novel negative selection-rooting assay in which codA-expressing aerial tissues or shoot cuttings are inhibited for root formation in media containing 5-FC. Taken together these techniques allow screening during either the regeneration or rooting phase of tissue culture.

  4. Thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell apoptosis in breast cancer cells.

    PubMed

    Kong, H; Tao, L; Qi, K; Wang, Y; Li, Q; Du, J; Huang, Z

    2013-09-01

    The present study was conducted to explore the efficacy of suicide gene therapy with thymidine kinase (TK) in combination with cytosine deaminase (CD) for breast cancer. The expression of CD/TK was detected in the infected cells by RT-PCR. The killing effect on MCF-7 cells following treatment was analyzed by MTT assay. The morphological characteristics of the cells were observed by electron microscopy, and the distribution of the cell cycle was analyzed by flow cytometry. Caspase‑3 and -8 activities were detected by absorption spectrometry. Cytotoxic assays showed that cells transfected with CD/TK became more sensitive to the prodrugs. Morphological features characteristic of apoptosis were noted in the MCF‑7 cells via electron microscopy. The experimental data showed that the proportion of MCF-7 cells during the different phases of the cell cycle varied significantly following treatment with the prodrugs. The activity of caspase‑3 gradually increased following treatment with increasing concentrations of the prodrugs. We conclude that the TK/ganciclovir and CD/5-fluorocytosine suicide gene system used here induces apoptosis in breast cancer cells, and provides a promising treatment modality for breast cancer.

  5. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene.

    PubMed

    Chalikonda, S; Kivlen, M H; O'Malley, M E; Eric Dong, X D; McCart, J A; Gorry, M C; Yin, X-Y; Brown, C K; Zeh, H J; Guo, Z S; Bartlett, D L

    2008-02-01

    In this study, we assessed the ability of a highly tumor-selective oncolytic vaccinia virus armed with a yeast cytosine deaminase gene to infect and lyse human and murine ovarian tumors both in vitro and in vivo. The virus vvDD-CD could infect, replicate in and effectively lyse both human and mouse ovarian cancer cells in vitro. In two different treatment schedules involving either murine MOSEC or human A2780 ovarian carcinomatosis models, regional delivery of vvDD-CD selectively targeted tumor cells and ovarian tissue, effectively delaying the development of either tumor or ascites and leading to significant survival advantages. Oncolytic virotherapy using vvDD-CD in combination with the prodrug 5-fluorocytosine conferred an additional long-term survival advantage upon tumor-bearing immunocompetent mice. These findings demonstrate that a tumor-selective oncolytic vaccinia combined with gene-directed enzyme prodrug therapy is a highly effective strategy for treating advanced ovarian cancers in both syngeneic mouse and human xenograft models. Given the biological safety, tumor selectivity and oncolytic potency of this armed oncolytic virus, this dual therapy merits further investigation as a promising new treatment for metastatic ovarian cancer.

  6. A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity.

    PubMed

    Yue, Lijie; Saikawa, Yutaka; Ota, Kazuhisa; Tanaka, Motohiro; Nishimura, Ryosei; Uehara, Takahiro; Maeba, Hideaki; Ito, Takashi; Sasaki, Takuma; Koizumi, Shoichi

    2003-01-01

    To test the hypothesis that analyses of drug targets for polymorphism will help to establish gene-based information for the treatment of cancer patients, we investigated the functional single-nucleotide polymorphisms in the human cytidine deaminase (HDCA) gene. The cDNAs from 52 leukaemia/lymphoma samples and 169 control blood samples were direct-sequenced and analysed for the polymorphisms. Three different polymorphisms (A79C, G208A and T435C) were identified in the coding region of the HDCA gene and displayed allelic frequencies of 20.1%, 4.3% and 70.1%, respectively. No association with susceptibility to disease was observed. A novel polymorphism, G208A produced an alanine to threonine substitution (A70T) within the conserved catalytic domain. By introduction of the polymorphic HCDA genes into the yeast CDA-null mutants, the HCDA-70T showed 40% and 32% activity of prototype for cytidine and ara-C substrates, respectively (P < 0.01). The ara-C IC50 value of the yeast transformants carrying HCDA-70T was 757 +/- 33 micromol and was significantly lower (P < 0.01) than that of prototype (941 +/- 58 micromol). This study demonstrated a population characterized with 208A genotype for, which potentially leads one more sensitive to ara-C treatment than prototype. Accumulation of polymorphisms in the genes responsible for drug metabolism and determination of polymorphism-induced biological variations could provide the additional therapeutic strategies in risk-stratified protocols for the treatment of childhood malignancies.

  7. Hypoxia imaging predicts success of hypoxia-induced cytosine deaminase/5-fluorocytosine gene therapy in a murine lung tumor model.

    PubMed

    Lee, B-F; Lee, C-H; Chiu, N-T; Hsia, C-C; Shen, L-H; Shiau, A-L

    2012-04-01

    Tc-99m-HL91 is a hypoxia imaging biomarker. The aim of this study was to investigate the value of Tc-99m-HL91 imaging for hypoxia-induced cytosine deaminase (CD)/5-fluorocytosine (5-FC) gene therapy in a murine lung tumor model. C57BL/6 mice were implanted with Lewis lung carcinoma cells transduced with the hypoxia-inducible promoter-driven CD gene (LL2/CD) or luciferase gene (LL2/Luc) serving as the control. When tumor volumes reached 100 mm(3), pretreatment images were acquired after injection of Tc-99m-HL91. The mice were divided into low and high hypoxic groups based on the tumor-to-non-tumor ratio of Tc-99m-HL91. They were injected daily with 5-FC (500 mg kg(-1)) or the vehicle for 1 week. When tumor volumes reached 1000 mm(3), autoradiography and histological examinations were performed. Treatment with 5-FC delayed tumor growth and enhanced the survival of mice bearing high hypoxic LL2/CD tumors. The therapeutic effect of hypoxia-induced CD/5-FC gene therapy was more pronounced in high hypoxic tumors than in low hypoxic tumors. This study provides the first evidence that Tc-99m-HL91 can serve as an imaging biomarker for predicting the treatment responses of hypoxia-regulated CD/5-FC gene therapy in animal tumor models. Our results suggest that hypoxia imaging using Tc-99m-HL91 has the predictive value for the success of hypoxia-directed treatment regimens.

  8. Bacterial Ammeline Metabolism via Guanine Deaminase

    PubMed Central

    Seffernick, Jennifer L.; Dodge, Anthony G.; Sadowsky, Michael J.; Bumpus, John A.; Wackett, Lawrence P.

    2010-01-01

    Melamine toxicity in mammals has been attributed to the blockage of kidney tubules by insoluble complexes of melamine with cyanuric acid or uric acid. Bacteria metabolize melamine via three consecutive deamination reactions to generate cyanuric acid. The second deamination reaction, in which ammeline is the substrate, is common to many bacteria, but the genes and enzymes responsible have not been previously identified. Here, we combined bioinformatics and experimental data to identify guanine deaminase as the enzyme responsible for this biotransformation. The ammeline degradation phenotype was demonstrated in wild-type Escherichia coli and Pseudomonas strains, including E. coli K12 and Pseudomonas putida KT2440. Bioinformatics analysis of these and other genomes led to the hypothesis that the ammeline deaminating enzyme was guanine deaminase. An E. coli guanine deaminase deletion mutant was deficient in ammeline deaminase activity, supporting the role of guanine deaminase in this reaction. Two guanine deaminases from disparate sources (Bradyrhizobium japonicum USDA 110 and Homo sapiens) that had available X-ray structures were purified to homogeneity and shown to catalyze ammeline deamination at rates sufficient to support bacterial growth on ammeline as a sole nitrogen source. In silico models of guanine deaminase active sites showed that ammeline could bind to guanine deaminase in a similar orientation to guanine, with a favorable docking score. Other members of the amidohydrolase superfamily that are not guanine deaminases were assayed in vitro, and none had substantial ammeline deaminase activity. The present study indicated that widespread guanine deaminases have a promiscuous activity allowing them to catalyze a key reaction in the bacterial transformation of melamine to cyanuric acid and potentially contribute to the toxicity of melamine. PMID:20023034

  9. Feedback Effects of Host-Derived Adenosine on Enteropathogenic Escherichia coli

    PubMed Central

    Crane, John K.; Shulgina, Irina

    2009-01-01

    Enteropathogenic Escherichia coli (EPEC) is a common cause of watery diarrhea in children in developing countries. After adhering intimately to small intestinal cells, EPEC secretes effector proteins into host cells, altering host cell functions and causing cell damage and death. We previously showed that EPEC infection triggers the release of adenosine triphosphate (ATP) from host cells and that ATP is broken down to ADP, AMP, and adenosine. Adenosine produced from the breakdown of extracellular ATP triggers fluid secretion in cultured intestinal monolayers and may be an important mediator of EPEC-induced diarrhea. In this study we examined whether adenosine has any effects on EPEC bacteria themselves. Adenosine stimulated EPEC growth in several types of media in vitro. Adenosine also altered the pattern of EPEC adherence to cultured cells from a classic localized adherence pattern to a more diffuse adherence pattern. Adenosine changed the pattern of expression of virulence factors in EPEC, inhibiting the expression of the bundle-forming pilus (BFP) and enhancing expression of the EPEC secreted proteins (Esps). The ability of adenosine to inhibit BFP was dependent on the Plasmid-encoded Regulator (Per). In vivo, experimental manipulations of adenosine levels had strong effects on the outcome of EPEC infection in rabbit intestinal loops. Reduction in adenosine levels by addition of exogenous adenosine deaminase (ADA) reduced numbers of EPEC bacteria recovered by over 10-fold in rabbit intestine in vivo. Conversely, inhibitors of ADA increased EPEC-induced fluid secretion, the number of EPEC bacteria recovered from intestinal fluid, and increased the in vivo expression of espA and espB. In addition to its previously reported effects on host cells and tissues, adenosine also has strong effects on EPEC bacteria, stimulating EPEC growth, altering its adherence pattern, and changing the expression of several important virulence genes. Adenosine is released from host

  10. APOBEC3B cytidine deaminase targets the non-transcribed strand of tRNA genes in yeast.

    PubMed

    Saini, Natalie; Roberts, Steven A; Sterling, Joan F; Malc, Ewa P; Mieczkowski, Piotr A; Gordenin, Dmitry A

    2017-05-01

    Variations in mutation rates across the genome have been demonstrated both in model organisms and in cancers. This phenomenon is largely driven by the damage specificity of diverse mutagens and the differences in DNA repair efficiency in given genomic contexts. Here, we demonstrate that the single-strand DNA-specific cytidine deaminase APOBEC3B (A3B) damages tRNA genes at a 1000-fold higher efficiency than other non-tRNA genomic regions in budding yeast. We found that A3B-induced lesions in tRNA genes were predominantly located on the non-transcribed strand, while no transcriptional strand bias was observed in protein coding genes. Furthermore, tRNA gene mutations were exacerbated in cells where RNaseH expression was completely abolished (Δrnh1Δrnh35). These data suggest a transcription-dependent mechanism for A3B-induced tRNA gene hypermutation. Interestingly, in strains proficient in DNA repair, only 1% of the abasic sites formed upon excision of A3B-deaminated cytosines were not repaired leading to mutations in tRNA genes, while 18% of these lesions failed to be repaired in the remainder of the genome. A3B-induced mutagenesis in tRNA genes was found to be efficiently suppressed by the redundant activities of both base excision repair (BER) and the error-free DNA damage bypass pathway. On the other hand, deficiencies in BER did not have a profound effect on A3B-induced mutations in CAN1, the reporter for protein coding genes. We hypothesize that differences in the mechanisms underlying ssDNA formation at tRNA genes and other genomic loci are the key determinants of the choice of the repair pathways and consequently the efficiency of DNA damage repair in these regions. Overall, our results indicate that tRNA genes are highly susceptible to ssDNA-specific DNA damaging agents. However, increased DNA repair efficacy in tRNA genes can prevent their hypermutation and maintain both genome and proteome homeostasis. Published by Elsevier B.V.

  11. Porphobilinogen deaminase gene in African and Afro-Caribbean ethnic groups: mutations causing acute intermittent porphyria and specific intragenic polymorphisms.

    PubMed

    Robreau-Fraolini, A M; Puy, H; Aquaron, C; Bogard, C; Traore, M; Nordmann, Y; Aquaron, R; Deybach, J C

    2000-08-01

    Acute intermittent porphyria (AIP), the most common acute hepatic porphyria, is a low-penetrant autosomal dominant disorder caused by mutations in the porphobilinogen deaminase (PBGD) or hydroxymethylbilane synthase (HMBS) gene. Although AIP has been identified in all the main ethnic groups, little is known about PBGD gene defects in Africans, Afro-Caribbean and Afro-Americans. We have carried out PBGD gene screening among seven unrelated AIP families and 98 controls belonging to the Afro-Caribbean (French West Indies) and the sub-Saharan African (Morocco, Algeria, Cameroon, Mali, and Burkina Faso) populations. Using denaturing-gradient gel electrophoresis (DGGE) and direct sequencing we characterized six different mutations, including four novel, from the seven AIP families: three splicing defects (IVS 5+2 Ins G; IVS 7+1 G to A in two families; IVS 10-1 G to T); a small deletion (1004 Del G); and two missense mutations (R116 W; A270G). The allele frequencies of the 14 polymorphic sites, previously known in the normal Caucasian population, were similar in Africans and Afro-Caribbean control populations. Interestingly, two common new intragenic polymorphic sites, close to intron/junction boundaries, were identified only in blacks: 1) in intron 2, a single base-pair G deletion at position 3167 (G:0.88; delG:0.12); 2) in intron 10, a A/G dimorphism at position 7052 (A:0.56; G:0.44). These two single nucleotide polymorphisms (SNPs) were never encountered in 750 unrelated Caucasian subjects. The allele frequency distributions of populations within black ethnic groups (Africans and Afro-Caribbean) are similar. This study highlights differences both in PBGD gene mutations causing AIP and in SNPs between white and black peoples; the allele frequencies provided contribute to a better knowledge of the variability of these markers among the major population groups, especially in sub-Saharan West African and Afro-Caribbean populations.

  12. Contribution of adenosine related genes to the risk of depression with disturbed sleep.

    PubMed

    Gass, Natalia; Ollila, Hanna M; Utge, Siddheshwar; Partonen, Timo; Kronholm, Erkki; Pirkola, Sami; Suhonen, Johanna; Silander, Kaisa; Porkka-Heiskanen, Tarja; Paunio, Tiina

    2010-10-01

    Most patients with major depression report problems in their sleep: insomnia, early morning awakenings and fatigue correlating with poor sleep quality. One of the key substances regulating sleep is adenosine. We hypothesized that variations in polymorphic sites of adenosine related genes may predispose to depression with sleep disturbances. We selected 117 single nucleotide polymorphisms from 13 genes and analyzed their association with depression and specific sleep problems (early morning awakenings and fatigue). Data were collected as part of the Health 2000 Study based on Finnish population and included 1423 adult subjects. Our major finding herein was, among women, the association of SLC29A3 polymorphism rs12256138 with depressive disorder (p=0.0004, odds ratio=0.68, 95% CI 0.55-0.84, p<0.05 after Bonferonni correction for multiple testing). Only one gene showing any evidence for association was common to women and men (ADA). Relatively small size of the case samples. Our results suggest that compromised adenosine transport due to variation in nucleoside transporter gene SLC29A3 in women, could predispose to depression, and could suggest new directions in treatment research. The shortage of overlapping genes between the genders indicates that the genetics of mood regulation may vary between the sexes. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Physical mapping of the Escherichia coli D-serine deaminase region: contiguity of the dsd structural and regulatory genes.

    PubMed Central

    Carothers, A M; McFall, E; Palchaudhuri, S

    1980-01-01

    The genes dsdA, dsdO, and dsdC have been located on a 3.0-kilobase pair (kb) fragment of the Escherichia coli chromosome by a combination of techniques. The loci were first cloned onto lambda and various plasmid vectors. dsd hybrid plasmids were then digested with restriction enzymes, and the fragments were recloned to test for the presence of dsdC or dsdA. In one case, a 4.2-kb restriction fragment containing the dsdA operon was used to form a heteroduplex with a well-defined lambda dsd deoxyribonucleic acid. The results show that dsdA, dsdO, and at least 0.6 kb of dsdC are present on this piece of deoxyribonucleic acid. On the basis of the mapping analysis and the molecular weight of D-serine deaminase, 1.9 kb of the 4.2-kb fragment is accounted for by the three dsd loci. We conclude that dsdO and dsdC are contiguous. A detailed dsd restriction map is presented. Images PMID:6246062

  14. Physical mapping of the Escherichia coli D-serine deaminase region: contiguity of the dsd structural and regulatory genes.

    PubMed

    Carothers, A M; McFall, E; Palchaudhuri, S

    1980-04-01

    The genes dsdA, dsdO, and dsdC have been located on a 3.0-kilobase pair (kb) fragment of the Escherichia coli chromosome by a combination of techniques. The loci were first cloned onto lambda and various plasmid vectors. dsd hybrid plasmids were then digested with restriction enzymes, and the fragments were recloned to test for the presence of dsdC or dsdA. In one case, a 4.2-kb restriction fragment containing the dsdA operon was used to form a heteroduplex with a well-defined lambda dsd deoxyribonucleic acid. The results show that dsdA, dsdO, and at least 0.6 kb of dsdC are present on this piece of deoxyribonucleic acid. On the basis of the mapping analysis and the molecular weight of D-serine deaminase, 1.9 kb of the 4.2-kb fragment is accounted for by the three dsd loci. We conclude that dsdO and dsdC are contiguous. A detailed dsd restriction map is presented.

  15. Sulfur availability and the SAC1 gene control adenosine triphosphate sulfurylase gene expression in Chlamydomonas reinhardtii.

    PubMed Central

    Yildiz, F H; Davies, J P; Grossman, A

    1996-01-01

    A Chlamydomonas reinhardtii adenosine triphosphate (ATP) sulfurylase cDNA clone (pATS1) was selected by complementing a mutation in the ATP sulfurylase gene (cysD) of Escherichia coli. E. coli cysD strains harboring pATS1 grow on medium containing sulfate as the sole sulfur source and exhibit ATP sulfurylase activity. The amino acid sequence of the C. reinhardtii ATP sulfurylase, derived from the nucleotide sequence of the complementing gene (ATS1), is 25 to 40% identical to that of ATP sulfurylases in other eukaryotic organisms and has a putative transit peptide at its amino terminus. ATP sulfurylase mRNA was present when cells were grown in sulfur-replete medium, but accumulated to higher levels when the cells were exposed to sulfur-limiting conditions. Furthermore, sulfur-stress-induced accumulation of the ATS1 transcript was reduced in a strain defective in SAC1, a gene that is critical for acclimation to sulfur-limited growth. PMID:8883379

  16. Genetics Home Reference: adenosine deaminase deficiency

    MedlinePlus

    ... are produced in specialized lymphoid tissues including the thymus, which is a gland located behind the breastbone, and lymph nodes, which are found throughout the body. Lymphocytes in the blood and in lymphoid ... lymphocytes in the thymus are particularly vulnerable to a toxic buildup of ...

  17. Adenosine deaminase complexing protein in cancer studies.

    PubMed

    Ten Kate, J; Dinjens, W N; Meera Khan, P; Bosman, F T

    1986-01-01

    ADCP is a dimeric glycoprotein of about 200KD, for which the physiological role is still obscure. This protein occurs mainly in a membrane bound form in various human tissues. In this paper we review the current literature on ADCP in cancer studies. Soluble ADCP was described to be consistently decreased or absent in cancers of lung, liver, kidney and colon. These findings could not be confirmed by immunohistochemical and quantitative biochemical studies in a series of colorectal-, prostatic-, and renal carcinomas. Only in a third of these tumors a decrease could be demonstrated, whereas in the other cases unaltered or even increased amounts were observed. However, in virally transformed human fibroblasts a consistent decrease or complete absence of ADCP was seen, while primary fibroblasts were found to contain high amounts of this protein. Recently, the use of ADCP as a differentiation marker in colonic cancer has been advocated. Furthermore the presence of ADCP in the serum of renal adenocarcinoma patients was found to be indicative of a better chance of five year survival. These studies suggest that ADCP may be a differentiation marker useful for immunohistochemical characterization of colonic and renal carcinomas as well as a serum marker useful for follow-up studies of these types of cancer, analogous to CEA. Finally, ADCP has been found to be selectively expressed by certain T-cell subsets and henceforth may be useful in the studies on leukemias.

  18. Towards a rAAV-based gene therapy for ADA-SCID: from ADA deficiency to current and future treatment strategies.

    PubMed

    Silver, Jared N; Flotte, Terence R

    2008-07-01

    Adenosine deaminase deficiency fosters a rare, devastating pediatric immune deficiency with concomitant opportunistic infections, metabolic anomalies and multiple organ system pathology. The standard of care for adenosine deaminase deficient severe combined immune deficiency (ADA-SCID) includes enzyme replacement therapy or bone marrow transplantation. Gene therapies for ADA-SCID over nearly two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoetic progenitors. These groundbreaking gene therapies represent a revolution in clinical medicine, but come with several challenges, including the risk of insertional mutagenesis. An alternative gene therapy for ADA-SCID may utilize recombinant adeno-associated virus vectors in vivo, with numerous target tissues, to foster ectopic expression and secretion of adenosine deaminase. This review endeavors to describe ADA-SCID, the traditional treatments, previous retroviral gene therapies, and primarily, alternative recombinant adeno-associated virus-based strategies to remedy this potentially fatal genetic disease.

  19. A mutated cytosine deaminase gene, codA (D314A), as an efficient negative selection marker for gene targeting in rice.

    PubMed

    Osakabe, Keishi; Nishizawa-Yokoi, Ayako; Ohtsuki, Namie; Osakabe, Yuriko; Toki, Seiichi

    2014-03-01

    Gene targeting (GT) is a powerful tool manipulating a gene of interest in a given genome specifically and precisely. To achieve efficient GT in higher plants, both positive and negative selection markers are required. In particular, a strong negative selection system is needed for enrichment of cells to eliminate those cells in which random integration of the introduced DNA has occurred in GT experiments. Currently, non-conditional negative selection marker genes are used for GT experiments in rice plants, and no conditional negative selection system is available. In this study, we describe the development of an efficient conditional negative selection system in rice plants using Escherichia coli cytosine deaminase (codA). We found that a mutant codA gene, codA(D314A), acts more efficiently than the wild-type codA for negative selection in rice plants. The codA(D314A) marker was further used as a negative selection marker for GT experiments in rice. Our conditional negative selection system effectively eliminated the cells in which random integration event(s) occurred; the enrichment factor was approximately 100-fold. This enrichment factor was similar to that found when Corynebacterium diphtheriae toxin fragment A was used. Our results suggest the codA(D314A) marker gene as a promising negative selection marker for GT of rice.

  20. Gene Therapy for "Bubble Boy" Disease.

    PubMed

    Hoggatt, Jonathan

    2016-07-14

    Adenosine deaminase (ADA) deficiency results in the accumulation of toxic metabolites that destroy the immune system, causing severe combined immunodeficiency (ADA-SCID), often referred to as the "bubble boy" disease. Strimvelis is a European Medicines Agency approved gene therapy for ADA-SCID patients without a suitable bone marrow donor.

  1. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis.

  2. Autosomal recessive hyper IgM syndrome associated with activation-induced cytidine deaminase gene in three Turkish siblings presented with tuberculosis lymphadenitis - Case report.

    PubMed

    Patiroglu, Turkan; Akar, H Haluk; van der Burg, Mirjam; Unal, Ekrem

    2015-09-01

    The hyper-immunoglobulin M (HIGM) syndrome is a heterogeneous group of genetic disorders characterized by recurrent infections, decreased serum levels of immunoglobulin G (IgG) and IgA, and normal/increased serum levels of IgM. Herein, we describe three Turkish siblings with HIGM syndrome who had a homozygous missense mutation (c.70C>T, p.Arg24Trp) in the activation-induced cytidine deaminase gene which results in autosomal recessive HIGM syndrome. Two of the siblings, sibling 1 and sibling 3, presented with cervical deep abscess and cervical tuberculosis lymphadenitis, respectively.

  3. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in psychrotolerant bacteria modulates ethylene metabolism and cold induced genes in tomato under chilling stress.

    PubMed

    Subramanian, Parthiban; Krishnamoorthy, Ramasamy; Chanratana, Mak; Kim, Kiyoon; Sa, Tongmin

    2015-04-01

    The role of stress induced ethylene under low temperature stress has been controversial and hitherto remains unclear. In the present study, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) gene, acdS expressing mutant strains were generated from ACCD negative psychrotolerant bacterial strains Flavobacterium sp. OR306 and Pseudomonas frederiksbergensis OS211, isolated from agricultural soil during late winter. After transformation with plasmid pRKACC which contained the acdS gene, both the strains were able to exhibit ACCD activity in vitro. The effect of this ACCD under chilling stress with regards to ethylene was studied in tomato plants inoculated with both acdS expressing and wild type bacteria. On exposing the plants to one week of chilling treatment at 12/10 °C, it was found that stress ethylene, ACC accumulation and ACO activity which are markers of ethylene stress, were significantly reduced in plants inoculated with the acdS gene transformed mutants. In case of plants inoculated with strain OS211-acdS, ethylene emission, ACC accumulation and ACO activity was significantly reduced by 52%, 75.9% and 23.2% respectively compared to uninoculated control plants. Moreover, expression of cold induced LeCBF1 and LeCBF3 genes showed that these genes were significantly induced by the acdS transformed mutants in addition to reduced expression of ethylene-responsive transcription factor 13 (ETF-13) and ACO genes. Induced expression of LeCBF1 and LeCBF3 in plants inoculated with acdS expressing mutants compared to wild type strains show that physiologically evolved stress ethylene and its transcription factors play a role in regulation of cold induced genes as reported earlier in the literature.

  4. Selective killing of lung cancer cells using carcinoembryonic antigen promoter and double suicide genes, thymidine kinase and cytosine deaminase (pCEA-TK/CD).

    PubMed

    Qiu, Yuan; Peng, Gui-Lin; Liu, Qi-Cai; Li, Fu-Li; Zou, Xu-Sen; He, Jian-Xing

    2012-03-01

    The application of gene therapy in cancer treatment is limited by non-specific targeting. In the present study, we constructed a recombinant plasmid, containing a carcinoembryonic antigen (CEA) promoter and double suicide genes thymidine kinase (TK) and cytosine deaminase (CD), henceforth referred to as pCEA-TK/CD. Our results showed that the CEA promoter can specifically drive target gene expression in CEA-positive lung cancer cells. In the presence of prodrugs 5-flucytosine and ganciclovir, pCEA-TK/CD transfection decreased inhibitory concentration 50 and increased apoptosis and cyclomorphosis. Our result suggests that gene therapy using pCEA-TK/CD may be a promising new approach for treating lung cancer.

  5. Control of basal extracellular adenosine concentration in rat cerebellum

    PubMed Central

    Wall, Mark J; Atterbury, Alison; Dale, Nicholas

    2007-01-01

    To re-examine how the basal extracellular concentration of adenosine is regulated in acutely isolated cerebellar slices we have combined electrophysiological and microelectrode biosensor measurements. In almost all cases, synaptic transmission was tonically inhibited by adenosine acting via A1 receptors. By contrast, in most slices, the biosensors did not measure an adenosine tone but did record a spatially non-uniform extracellular tone of the downstream metabolites (inosine and hypoxanthine). Most of the extracellular hypoxanthine arose from the metabolism of inosine by ecto-purine nucleoside phosphorylase (PNP). Adenosine kinase was the major determinant of adenosine levels, as its inhibition increased both adenosine concentration and A1 receptor-mediated synaptic inhibition. Breakdown of adenosine by adenosine deaminase was the major source of the inosine/hypoxanthine tone. However adenosine deaminase played a minor role in determining the level of adenosine at synapses, suggesting a distal location. Blockade of adenosine transport (by NBTI/dipyridamole) had inconsistent effects on basal levels of adenosine and synaptic transmission. Unexpectedly, application of NBTI/dipyridamole prevented the efflux of adenosine resulting from block of adenosine kinase at only a subset of synapses. We conclude that there is spatial variation in the functional expression of NBTI/dipyridamole-sensitive transporters. The increased spatial and temporal resolution of the purine biosensor measurements has revealed the complexity of the control of adenosine and purine tone in the cerebellum. PMID:17446223

  6. Differentiation of 1-aminocyclopropane-1-carboxylate (ACC) deaminase from its homologs is the key for identifying bacteria containing ACC deaminase.

    PubMed

    Li, Zhengyi; Chang, Siping; Ye, Shuting; Chen, Mingyue; Lin, Li; Li, Yuanyuan; Li, Shuying; An, Qianli

    2015-10-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase-mediated reduction of ethylene generation in plants under abiotic stresses is a key mechanism by which bacteria can promote plant growth. Misidentification of ACC deaminase and the ACC deaminase structure gene (acdS) can lead to overestimation of the number of bacteria containing ACC deaminase and their function in ecosystems. Previous non-specific amplification of acdS homologs has led to an overestimation of the horizontal transfer of acdS genes. Here, we designed consensus-degenerate hybrid oligonucleotide primers (acdSf3, acdSr3 and acdSr4) based on differentiating the key residues in ACC deaminases from those of homologs for specific amplification of partial acdS genes. PCR amplification, sequencing and phylogenetic analysis identified acdS genes from a wide range of proteobacteria and actinobacteria. PCR amplification and a genomic search did not find the acdS gene in bacteria belonging to Pseudomonas stutzeri or in the genera Enterobacter, Klebsiella or Bacillus. We showed that differentiating the acdS gene and ACC deaminase from their homologs was crucial for the molecular identification of bacteria containing ACC deaminase and for understanding the evolution of the acdS gene. We provide an effective method for screening and identifying bacteria containing ACC deaminase.

  7. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography.

    PubMed

    Blaha, Didier; Prigent-Combaret, Claire; Mirza, Muhammad Sajjad; Moënne-Loccoz, Yvan

    2006-06-01

    Deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is a key plant-beneficial trait found in plant growth-promoting rhizobacteria (PGPR) and phytosymbiotic bacteria, but the diversity of the corresponding gene (acdS) is poorly documented. Here, acdS sequences were obtained by screening putative ACC deaminase sequences listed in databases, based on phylogenetic properties and key residues. In addition, acdS was sought in 71 proteobacterial strains by PCR amplification and/or hybridization using colony dot blots. The presence of acdS was confirmed in established AcdS+ bacteria and evidenced noticeably in Azospirillum (previously reported as AcdS-), in 10 species of Burkholderia and six Burkholderia cepacia genomovars (which included PGPR, phytopathogens and opportunistic human pathogens), and in five Agrobacterium genomovars. The occurrence of acdS in true and opportunistic pathogens raises new questions concerning their ecology in plant-associated habitats. Many (but not all) acdS+ bacteria displayed ACC deaminase activity in vitro, including two Burkholderia clinical isolates. Phylogenetic analysis of partial acdS and deduced AcdS sequences evidenced three main phylogenetic clusters, each gathering pathogens and plant-beneficial strains of contrasting geographic and habitat origins. The acdS phylogenetic tree was only partly congruent with the rrs tree. Two clusters gathered both Betaprotobacteria and Gammaproteobacteria, suggesting extensive horizontal transfers of acdS, noticeably between plant-associated Proteobacteria.

  8. Functions and Regulation of RNA Editing by ADAR Deaminases

    PubMed Central

    Nishikura, Kazuko

    2010-01-01

    One type of RNA editing converts adenosines to inosines (A→I editing) in double-stranded RNA (dsRNA) substrates. A→I RNA editing is mediated by adenosine deaminase acting on RNA (ADAR) enzymes. A→I RNA editing of protein-coding sequences of a limited number of mammalian genes results in recoding and subsequent alterations of their functions. However, A→I RNA editing most frequently targets repetitive RNA sequences located within introns and 5′ and 3′ untranslated regions (UTRs). Although the biological significance of noncoding RNA editing remains largely unknown, several possibilities, including its role in the control of endogenous short interfering RNAs (esiRNAs), have been proposed. Furthermore, recent studies have revealed that the biogenesis and functions of certain microRNAs (miRNAs) are regulated by the editing of their precursors. Here, I review the recent findings that indicate new functions for A→I editing in the regulation of noncoding RNAs and for interactions between RNA editing and RNA interference mechanisms. PMID:20192758

  9. Increased sensitivity of glioma cells to 5-fluorocytosine following photo-chemical internalization enhanced nonviral transfection of the cytosine deaminase suicide gene.

    PubMed

    Wang, Frederick; Zamora, Genesis; Sun, Chung-Ho; Trinidad, Anthony; Chun, Changho; Kwon, Young Jik; Berg, Kristian; Madsen, Steen J; Hirschberg, Henry

    2014-05-01

    Despite advances in surgery, chemotherapy and radiotherapy, the outcomes of patients with GBM have not significantly improved. Tumor recurrence in the resection margins occurs in more than 80% of cases indicating aggressive treatment modalities, such as gene therapy are warranted. We have examined photochemical internalization (PCI) as a method for the non-viral transfection of the cytosine deaminase (CD) suicide gene into glioma cells. The CD gene encodes an enzyme that can convert the nontoxic antifungal agent, 5-fluorocytosine, into the chemotherapeutic drug, 5-fluorouracil. Multicell tumor spheroids derived from established rat and human glioma cell lines were used as in vitro tumor models. Plasmids containing either the CD gene alone or together with the uracil phosphoribosyl transferase (UPRT) gene combined with the gene carrier protamine sulfate were employed in all experiments.PCI was performed with the photosensitizer AlPcS2a and 670 nm laser irradiance. Protamine sulfate/CD DNA polyplexes proved nontoxic but inefficient transfection agents due to endosomal entrapment. In contrast, PCI mediated CD gene transfection resulted in a significant inhibition of spheroid growth in the presence of, but not in the absence of, 5-FC. Repetitive PCI induced transfection was more efficient at low CD plasmid concentration than single treatment. The results clearly indicate that AlPcS2a-mediated PCI can be used to enhance transfection of a tumor suicide gene such as CD, in malignant glioma cells and cells transfected with both the CD and UPRT genes had a pronounced bystander effect.

  10. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa

    PubMed Central

    Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R.; Zhou, Rong; Hegedus, Dwayne D.

    2016-01-01

    Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30–50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content. PMID:28018305

  11. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa.

    PubMed

    Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R; Zhou, Rong; Hegedus, Dwayne D

    2016-01-01

    Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30-50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content.

  12. Phosphodiesterase 2 negatively regulates adenosine-induced transcription of the tyrosine hydroxylase gene in PC12 rat pheochromocytoma cells.

    PubMed

    Makuch, Edyta; Kuropatwa, Marianna; Kurowska, Ewa; Ciekot, Jaroslaw; Klopotowska, Dagmara; Matuszyk, Janusz

    2014-07-05

    Adenosine induces expression of the tyrosine hydroxylase (TH) gene in PC12 cells. However, it is suggested that atrial natriuretic peptide (ANP) inhibits expression of this gene. Using real-time PCR and luciferase reporter assays we found that ANP significantly decreases the adenosine-induced transcription of the TH gene. Results of measurements of cyclic nucleotide concentrations indicated that ANP-induced accumulation of cGMP inhibits the adenosine-induced increase in cAMP level. Using selective phosphodiesterase 2 (PDE2) inhibitors and a synthetic cGMP analog activating PDE2, we found that PDE2 is involved in coupling the ANP-triggered signal to the cAMP metabolism. We have established that ANP-induced elevated levels of cGMP as well as cGMP analog stimulate hydrolytic activity of PDE2, leading to inhibition of adenosine-induced transcription of the TH gene. We conclude that ANP mediates negative regulation of TH gene expression via stimulation of PDE2-dependent cAMP breakdown in PC12 cells.

  13. Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies

    PubMed Central

    Boison, Detlev

    2009-01-01

    Deficiencies in the brain’s own adenosine-based seizure control system contribute to seizure generation. Consequently, reconstitution of adenosinergic neuromodulation constitutes a rational approach for seizure control. This review will critically discuss focal adenosine augmentation strategies and their potential for antiepileptic and disease modifying therapy. Due to systemic side effects of adenosine focal adenosine augmentation – ideally targeted to an epileptic focus – becomes a therapeutic necessity. This has experimentally been achieved in kindled seizure models as well as in post status epilepticus models of spontaneous recurrent seizures using three different therapeutic strategies that will be discussed here: (i) Polymer-based brain implants that were loaded with adenosine; (ii) Brain implants comprised of cells engineered to release adenosine and embedded in a cell-encapsulation device; (iii) Direct transplantation of stem cells engineered to release adenosine. To meet the therapeutic goal of focal adenosine augmentation, genetic disruption of the adenosine metabolizing enzyme adenosine kinase (ADK) in rodent and human cells was used as a molecular strategy to induce adenosine release from cellular brain implants, which demonstrated antiepileptic and neuroprotective properties. New developments and therapeutic challenges in using AATs for epilepsy therapy will critically be evaluated. PMID:19428218

  14. Absence of a gene encoding cytosine deaminase in the genome of the agaricomycete Coprinopsis cinerea enables simple marker recycling through 5-fluorocytosine counterselection.

    PubMed

    Nakazawa, Takehito; Honda, Yoichi

    2015-08-01

    Coprinopsis cinerea is a model species for molecular genetics studies of sexual development in agaricomycetes or homobasidiomycetes. Recently, efficient gene targeting was established in this fungus by generating Cc.ku70 or Cc.lig4 disruptants. To determine the molecular mechanisms underlying sexual development, which involves many genes, generating multiple gene disruptants is required. However, the number of transformation markers available for C. cinerea is limited. This problem would be solved by establishing marker recycling. In this study, we found that C. cinerea lacks a gene encoding a homolog of Saccharomyces cerevisiae cytosine deaminase (Fcy1p) in its genome, which is present in many other fungi. We also observed that C. cinerea is resistant to 5-fluorocytosine. Based on these findings, we established a simple marker recycling method in this fungus using 5-fluorocytosine counterselection after heterologous expression of FCY1 derived from Pleurotus ostreatus, together with the hygromycin resistance gene. This study proposes a simple genetic manipulation system that can be performed using wild-type strains of several fungi that lack a gene homologous to S. cerevisiae FCY1 in their genomes.

  15. Enhanced EJ Cell Killing of 125I Radiation by Combining with Cytosine Deaminase Gene Therapy Regulated by Synthetic Radio-Responsive Promoter

    PubMed Central

    Li, Ling; Kang, Lei; Wang, Rong-Fu; Yan, Ping; Zhao, Qian; Yin, Lei; Guo, Feng-qin

    2015-01-01

    Abstract Aim: To investigate the enhancing effect of radionuclide therapy by the therapeutic gene placed under the control of radio-responsive promoter. Methods: The recombinant lentivirus E8-codA-GFP, including a synthetic radiation-sensitive promoter E8, cytosine deaminase (CD) gene, and green fluorescent protein gene, was constructed. The gene expression activated by 125I radiation was assessed by observation of green fluorescence. The ability of converting 5-fluorocytosine (5-FC) to 5-fluorourial (5-FU) by CD enzyme was assessed by high-performance liquid chromatography. The viability of the infected cells exposed to 125I in the presence of 5-FC was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the infected cells exposed to 125I alone served as negative control and 5-FU as positive control. Results: The recombinant lentiviral vector was constructed successfully. On exposure of infected cells to 125I, green fluorescence can be observed and 5-FU can be detected. MTT assay showed that the survival rate for infected cells treated with 125I was lower compared with the 125I control group, but higher than the positive control group. Conclusion: The synthetic promoter E8 can induce the expression of downstream CD gene under 125I radiation, and the tumor killing effect of 125I can be enhanced by combining CD gene therapy with radiosensitive promoter. PMID:26382009

  16. Reversible MRI findings in a case of acute intermittent porphyria with a novel mutation in the porphobilinogen deaminase gene.

    PubMed

    Yang, Jing; Yang, Hang; Chen, Qianlong; Hua, Baolai; Zhu, Tienan; Zhao, Yongqiang; Yu, Xuezhong; Zhu, Huadong; Zhou, Zhou

    2017-03-01

    Acute intermittent porphyria (AIP) is an autosomal dominant disorder caused by a partial deficiency of porphobilinogen deaminase (PBGD), the third enzyme in the of heme biosynthetic pathway. It can affect the autonomic, peripheral, and central nervous system. Posterior reversible encephalopathy syndrome is a clinicoradiological entity characterized by headache, seizures, altered consciousness, and visual disorder associated with potentially reversible neuroradiological abnormalities predominantly in the parieto-occipital lobes. Establishing accurate diagnoses of the patient and asymptomatic family members with AIP involves identifying the PBGD enzyme mutations directly. In this study, we report a 28-year-old woman with acute intermittent porphyria who presented with radiological manifestations suggestive of posterior reversible encephalopathy syndrome, she had a novel PBGD frame shift mutation, base 875 and 876 have been deleted resulting in glutamine to a stop codon (Gln292fs), in a Chinese family.

  17. Engineering and optimising deaminase fusions for genome editing

    PubMed Central

    Yang, Luhan; Briggs, Adrian W.; Chew, Wei Leong; Mali, Prashant; Guell, Marc; Aach, John; Goodman, Daniel Bryan; Cox, David; Kan, Yinan; Lesha, Emal; Soundararajan, Venkataramanan; Zhang, Feng; Church, George

    2016-01-01

    Precise editing is essential for biomedical research and gene therapy. Yet, homology-directed genome modification is limited by the requirements for genomic lesions, homology donors and the endogenous DNA repair machinery. Here we engineered programmable cytidine deaminases and test if we could introduce site-specific cytidine to thymidine transitions in the absence of targeted genomic lesions. Our programmable deaminases effectively convert specific cytidines to thymidines with 13% efficiency in Escherichia coli and 2.5% in human cells. However, off-target deaminations were detected more than 150 bp away from the target site. Moreover, whole genome sequencing revealed that edited bacterial cells did not harbour chromosomal abnormalities but demonstrated elevated global cytidine deamination at deaminase intrinsic binding sites. Therefore programmable deaminases represent a promising genome editing tool in prokaryotes and eukaryotes. Future engineering is required to overcome the processivity and the intrinsic DNA binding affinity of deaminases for safer therapeutic applications. PMID:27804970

  18. Role of Adenosine Signaling on Pentylenetetrazole-Induced Seizures in Zebrafish

    PubMed Central

    Siebel, Anna Maria; Menezes, Fabiano Peres; Capiotti, Katiucia Marques; Kist, Luiza Wilges; Schaefer, Isabel da Costa; Frantz, Juliana Zanetti; Bogo, Maurício Reis; Da Silva, Rosane Souza

    2015-01-01

    Abstract Adenosine is a well-known endogenous modulator of neuronal excitability with anticonvulsant properties. Thus, the modulation exerted by adenosine might be an effective tool to control seizures. In this study, we investigated the effects of drugs that are able to modulate adenosinergic signaling on pentylenetetrazole (PTZ)-induced seizures in adult zebrafish. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) decreased the latency to the onset of the tonic-clonic seizure stage. The adenosine A1 receptor agonist cyclopentyladenosine (CPA) increased the latency to reach the tonic-clonic seizure stage. Both the adenosine A2A receptor agonist and antagonist, CGS 21680 and ZM 241385, respectively, did not promote changes in seizure parameters. Pretreatment with the ecto-5′nucleotidase inhibitor adenosine 5′-(α,β-methylene) diphosphate (AMPCP) decreased the latency to the onset of the tonic-clonic seizure stage. However, when pretreated with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), or with the nucleoside transporter (NT) inhibitors, dipyridamole and S-(4-Nitrobenzyl)-6-thioinosine (NBTI), animals showed longer latency to reach the tonic-clonic seizure status. Finally, our molecular analysis of the c-fos gene expression corroborates these behavioral results. Our findings indicate that the activation of adenosine A1 receptors is an important mechanism to control the development of seizures in zebrafish. Furthermore, the actions of ecto-5′-nucleotidase, ADA, and NTs are directly involved in the control of extracellular adenosine levels and have an important role in the development of seizure episodes in zebrafish. PMID:25560904

  19. Role of adenosine signaling on pentylenetetrazole-induced seizures in zebrafish.

    PubMed

    Siebel, Anna Maria; Menezes, Fabiano Peres; Capiotti, Katiucia Marques; Kist, Luiza Wilges; da Costa Schaefer, Isabel; Frantz, Juliana Zanetti; Bogo, Maurício Reis; Da Silva, Rosane Souza; Bonan, Carla Denise

    2015-04-01

    Adenosine is a well-known endogenous modulator of neuronal excitability with anticonvulsant properties. Thus, the modulation exerted by adenosine might be an effective tool to control seizures. In this study, we investigated the effects of drugs that are able to modulate adenosinergic signaling on pentylenetetrazole (PTZ)-induced seizures in adult zebrafish. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) decreased the latency to the onset of the tonic-clonic seizure stage. The adenosine A1 receptor agonist cyclopentyladenosine (CPA) increased the latency to reach the tonic-clonic seizure stage. Both the adenosine A2A receptor agonist and antagonist, CGS 21680 and ZM 241385, respectively, did not promote changes in seizure parameters. Pretreatment with the ecto-5'nucleotidase inhibitor adenosine 5'-(α,β-methylene) diphosphate (AMPCP) decreased the latency to the onset of the tonic-clonic seizure stage. However, when pretreated with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), or with the nucleoside transporter (NT) inhibitors, dipyridamole and S-(4-Nitrobenzyl)-6-thioinosine (NBTI), animals showed longer latency to reach the tonic-clonic seizure status. Finally, our molecular analysis of the c-fos gene expression corroborates these behavioral results. Our findings indicate that the activation of adenosine A1 receptors is an important mechanism to control the development of seizures in zebrafish. Furthermore, the actions of ecto-5'-nucleotidase, ADA, and NTs are directly involved in the control of extracellular adenosine levels and have an important role in the development of seizure episodes in zebrafish.

  20. Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy.

    PubMed

    Young, D; Fong, D M; Lawlor, P A; Wu, A; Mouravlev, A; McRae, M; Glass, M; Dragunow, M; During, M J

    2014-12-01

    Astrocytes are an attractive cell target for gene therapy, but the validation of new therapeutic candidates is needed. We determined whether adeno-associated viral (AAV) vector-mediated overexpression of glutamine synthetase (GS) or excitatory amino-acid transporter 2 (EAAT2), or expression of microRNA targeting adenosine kinase (miR-ADK) in hippocampal astrocytes in the rat brain could modulate susceptibility to kainate-induced seizures and neuronal cell loss. Transgene expression was found predominantly in astrocytes following direct injection of glial-targeting AAV9 vectors by 3 weeks postinjection. ADK expression in miR-ADK vector-injected rats was reduced by 94-96% and was associated with an ~50% reduction in the duration of kainate-induced seizures and greater protection of dentate hilar neurons but not CA3 neurons compared with miR-control vector-injected rats. In contrast, infusion of AAV-GS and EAAT2 vectors did not afford any protection against seizures or neuronal damage as the level of transcriptional activity of the glial fibrillary acidic promoter was too low to drive any significant increase in transgenic GS or EAAT2 relative to the high endogenous levels of these proteins. Our findings support ADK as a prime therapeutic target for gene therapy of temporal lobe epilepsy and suggest that alternative approaches including the use of stronger glial promoters are needed to increase transgenic GS and EAAT2 expression to levels that may be required to affect seizure induction and propagation.

  1. Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: a strategy for the isolation of nuclear mutations that affect chloroplast gene expression.

    PubMed

    Young, Rosanna E B; Purton, Saul

    2014-12-01

    Negative selectable markers are useful tools for forward-genetic screens aimed at identifying trans-acting factors that are required for expression of specific genes. Transgenic lines harbouring the marker fused to a gene element, such as a promoter, may be mutagenized to isolate loss-of-function mutants able to survive under selection. Such a strategy allows the molecular dissection of factors that are essential for expression of the gene. Expression of individual chloroplast genes in plants and algae typically requires one or more nuclear-encoded factors that act at the post-transcriptional level, often through interaction with the 5' UTR of the mRNA. To study such nuclear control further, we have developed the Escherichia coli cytosine deaminase gene codA as a conditional negative selectable marker for use in the model green alga Chlamydomonas reinhardtii. We show that a codon-optimized variant of codA with three amino acid substitutions confers sensitivity to 5-fluorocytosine (5-FC) when expressed in the chloroplast under the control of endogenous promoter/5' UTR elements from the photosynthetic genes psaA or petA. UV mutagenesis of the psaA transgenic line allowed recovery of 5-FC-resistant, photosynthetically deficient lines harbouring mutations in the nuclear gene for the factor TAA1 that is required for psaA translation. Similarly, the petA line was used to isolate mutants of the petA mRNA stability factor MCA1 and the translation factor TCA1. The codA marker may be used to identify critical residues in known nuclear factors and to aid the discovery of additional factors required for expression of chloroplast genes.

  2. [60]Fullerene derivative modulates adenosine and metabotropic glutamate receptors gene expression: a possible protective effect against hypoxia

    PubMed Central

    2014-01-01

    Background Glutamate, the main excitatory neurotransmitter, is involved in learning and memory processes but at higher concentration results excitotoxic causing degeneration and neuronal death. Adenosine is a nucleoside that exhibit neuroprotective effects by modulating of glutamate release. Hypoxic and related oxidative conditions, in which adenosine and metabotropic glutamate receptors are involved, have been demonstrated to contribute to neurodegenerative processes occurring in certain human pathologies. Results Human neuroblastoma cells (SH-SY5Y) were used to evaluate the long time (24, 48 and 72 hours) effects of a [60]fullerene hydrosoluble derivative (t3ss) as potential inhibitor of hypoxic insult. Low oxygen concentration (5% O2) caused cell death, which was avoided by t3ss exposure in a concentration dependent manner. In addition, gene expression analysis by real time PCR of adenosine A1, A2A and A2B and metabotropic glutamate 1 and 5 receptors revealed that t3ss significantly increased A1 and mGlu1 expression in hypoxic conditions. Moreover, t3ss prevented the hypoxia-induced increase in A2A mRNA expression. Conclusions As t3ss causes overexpression of adenosine A1 and metabotropic glutamate receptors which have been shown to be neuroprotective, our results point to a radical scavenger protective effect of t3ss through the enhancement of these neuroprotective receptors expression. Therefore, the utility of these nanoparticles as therapeutic target to avoid degeneration and cell death of neurodegenerative diseases is suggested. PMID:25123848

  3. Role of adenosine in postprandial and reactive hyperemia in canine jejunum.

    PubMed

    Sawmiller, D R; Chou, C C

    1992-10-01

    The role of adenosine in postprandial jejunal hyperemia was investigated by determining the effect of placement of predigested food into the jejunal lumen on blood flow and oxygen consumption before and during intra-arterial infusion of dipyridamole (1.5 microM arterial concn) or adenosine deaminase (9 U/ml arterial concn) in anesthetized dogs. Neither drug significantly altered resting jejunal blood flow and oxygen consumption. Before dipyridamole or deaminase, food placement increased blood flow by 30-36%, 26-42%, and 21-46%, and oxygen consumption by 13-22%, 21-22%, and 26-29%, during 0- to 3-, 4- to 7-, and 8- to 11-min placement periods, respectively. Adenosine deaminase abolished the entire 11-min hyperemia, whereas dipyridamole significantly enhanced the initial 7-min hyperemia (45-49%). Both drugs abolished the initial 7-min food-induced increase in oxygen consumption. Dipyridamole attenuated (14%), whereas deaminase did not alter (28%), the increased oxygen consumption that occurred at 8-11 min. Adenosine deaminase also prevented the food-induced increase in venoarterial adenosine concentration difference. In separate series of experiments, luminal placement of food significantly increased jejunal lymphatic adenosine concentration and release. Also, reactive hyperemia was accompanied by an increase in venous adenosine concentration and release. This study provides further evidence to support the thesis that adenosine plays a role in postprandial and reactive hyperemia in the canine jejunum.

  4. PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes.

    PubMed

    Siebel, Anna Maria; Piato, Angelo Luis; Capiotti, Katiucia Marques; Seibt, Kelly Juliana; Bogo, Maurício Reis; Bonan, Carla Denise

    2011-11-25

    Adenosine exerts neuromodulatory functions with mostly inhibitory effects, being considered an endogenous anticonvulsant. The hydrolysis of ATP by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the regulation of this nucleoside concentration through its deamination. In this study, we tested the effect of pentylenetetrazole (PTZ)-induced seizures on ectonucleotidase and ADA activities in adult zebrafish brain. Our results have demonstrated that PTZ treatments did not alter ectonucleotidase and ADA activities in membranes and soluble fraction, respectively. However, ecto-ADA activity was significantly decreased in brain membranes of animals exposed to 5mM and 15 mM PTZ treatments (22.4% and 29.5%, respectively) when compared to the control group. Semiquantitative RT-PCR analysis did not show significant changes after the PTZ exposure on ADA gene expression. The decreased adenosine deamination observed in this study suggests a modulation of extracellular adenosine levels during PTZ-induced seizures in zebrafish. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. In silico structural and functional analysis of Mesorhizobium ACC deaminase.

    PubMed

    Pramanik, Krishnendu; Soren, Tithi; Mitra, Soumik; Maiti, Tushar Kanti

    2017-02-11

    Nodulation is one of the very important processes of legume plants as it is the initiating event of fixing nitrogen. Although ethylene has essential role in normal plant metabolism but it has also negative impact on plants particularly in nodule formation in legume plants. It is also produced due to a variety of biotic or abiotic stresses. 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase is a rhizobial enzyme which cleaves ACC (immediate precursor of ethylene) into α-ketobutyrate and ammonia. As a result, the level of ethylene from the plant cells is decreased and the negative impact of ethylene on nodule formation is reduced. ACC deaminase is widely studied in several plant growth promoting rhizobacterial (PGPR) strains including many legume nodulating bacteria like Mesorhizobium sp. It is an important symbiotic nitrogen fixer belonging to the class - alphaproteobacteria under the order Rhizobiales. ACC deaminase has positive role in Legume-rhizobium symbiosis. Rhizobial ACC deaminase has the potentiality to reduce the adverse effects of ethylene, thereby triggering the nodulation process. The present study describes an in silico comparative structural (secondary structure prediction, homology modeling) and functional analysis of ACC deaminase from Mesorhizobium spp. to explore physico-chemical properties using a number of bio-computational tools. M. loti was selected as a representative species of Mesorhizobium genera for 3D modelling of ACC deaminase protein. Correlation by the phylogenetic relatedness on the basis of both ACC deaminase enzymes and respective acdS genes of different strains of Mesorhizobium has also studied.

  6. Decreased survival in normal karyotype AML with single-nucleotide polymorphisms in genes encoding the AraC metabolizing enzymes cytidine deaminase and 5'-nucleotidase.

    PubMed

    Falk, Ingrid Jakobsen; Fyrberg, Anna; Paul, Esbjörn; Nahi, Hareth; Hermanson, Monica; Rosenquist, Richard; Höglund, Martin; Palmqvist, Lars; Stockelberg, Dick; Wei, Yuan; Gréen, Henrik; Lotfi, Kourosh

    2013-12-01

    De novo acute myeloid leukemia with normal karyotype (NK-AML) comprises a large group of patients with no common cytogenetic alterations and with a large variation in treatment response. Single-nucleotide polymorphisms (SNPs) in genes related to the metabolism of the nucleoside analogue AraC, the backbone in AML treatment, might affect drug sensitivity and treatment outcome. Therefore, SNPs may serve as prognostic biomarkers aiding clinicians in individualized treatment decisions, with the aim of improving patient outcomes. We analyzed polymorphisms in genes encoding cytidine deaminase (CDA 79A>C rs2072671 and -451C>T rs532545), 5'-nucleotidase (cN-II 7A>G rs10883841), and deoxycytidine kinase (DCK 3'UTR 948T>C rs4643786) in 205 de novo NK-AML patients. In FLT3-internal tandem duplication (ITD)-positive patients, the CDA 79C/C and -451T/T genotypes were associated with shorter overall survival compared to other genotypes (5 vs. 24 months, P < 0.001 and 5 vs. 23 months, P = 0.015, respectively), and this was most pronounced in FLT3-ITD-positive/NPM1-positive patients. We observed altered in vitro sensitivity to topoisomerase inhibitory drugs, but not to nucleoside analogues, and a decrease in global DNA methylation in cells carrying both CDA variant alleles. A shorter survival was also observed for the cN-II variant allele, but only in FLT3-ITD-negative patients (25 vs. 31 months, P = 0.075). Our results indicate that polymorphisms in genes related to nucleoside analog drug metabolism may serve as prognostic markers in de novo NK-AML.

  7. Adenosine-to-Inosine RNA Editing in Health and Disease.

    PubMed

    Gatsiou, Aikaterini; Vlachogiannis, Nikolaos; Lunella, Federica Francesca; Sachse, Marco; Stellos, Konstantinos

    2017-09-26

    Adenosine deamination in transcriptome results in the formation of inosine, a process that is called A-to-I RNA editing. Adenosine deamination is one of the more than 140 described RNA modifications. A-to-I RNA editing is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes and is essential for life. Recent Advances: Accumulating evidence supports a critical role of RNA editing in all aspects of RNA metabolism, including mRNA stability, splicing, nuclear export, and localization, as well as in recoding of proteins. These advances have significantly enhanced the understanding of mechanisms involved in development and in homeostasis. Furthermore, recent studies have indicated that RNA editing may be critically involved in cancer, aging, neurological, autoimmune, or cardiovascular diseases. This review summarizes recent and significant achievements in the field of A-to-I RNA editing and discusses the importance and translational value of this RNA modification for gene expression, cellular, and organ function, as well as for disease development. Elucidation of the exact RNA editing-dependent mechanisms in a single-nucleotide level may pave the path toward the development of novel therapeutic strategies focusing on modulation of ADAR function in the disease context. Antioxid. Redox Signal. 00, 000-000.

  8. A bacterial gene codA encoding cytosine deaminase is an effective conditional negative selectable marker in Glycine max

    USDA-ARS?s Scientific Manuscript database

    Background Conditional negative selection is a powerful technique whereby the absence of a gene product allows survival in otherwise lethal conditions. In plants, the Escherichia coli gene codA has been employed as a negative selection marker. CodA is a conditionally lethal dominant gene encoding cy...

  9. [Values and limits of adenoviral vectors for gene transfer in vivo].

    PubMed

    Briand, P; Kahn, A

    1993-10-01

    Review of the therapeutic use of DNA transfer to treat a certain number of hereditary diseases (such as adenosine deaminase deficiency) or acquired diseases. The strategies (ex vivo manipulation or direct in vivo transfer of the corrective gene), vectors (retrovirus, adenovirus, nonviral vectors), and diseases which can benefit from gene therapy are considered and discussed together with an evaluation of the risk of gene therapy.

  10. Localization of the A{sub 3} adenosine receptor gene (ADORA3) to human chromosome 1p

    SciTech Connect

    Monitto, C.L.; Levitt, R.C.; Holroyd, K.J.

    1995-04-10

    Adenosine modulates important physiologic functions involving the cardiovascular system, brain, kidneys, lungs, GI tract, and immune system. To date four adenosine receptors have been identified: A{sub 1}, A{sub 2a}, A{sub 2b}, and A{sub 3}. Activation of these receptors results in inhibition (A{sub 1} and A{sub 3}) or stimulation (A{sub 2a} and A{sub 2b}) of intracellular adenyl cyclase activity, stimulation of K{sup +} flux, inhibition of Ca{sup 2+} flux, and modulation of inositol phospholipid turnover. A{sub 3} receptors have been identified and sequenced in the testes, brain, lung, liver, kidney, and heart of various species, including the rat, mouse, and human. A{sub 3} receptor activation is responsible for release of inflammatory mediators from mast cells, which can cause allergic bronchoconstriction. In addition, they can produce systemic vasodilation and locomotor depression via activation of A{sub 3} receptors in the brain. Given the potential importance of A{sub 3} receptor activity in the pathogenesis of pulmonary, cardiovascular, and central nervous system disease states, we set out to localize the human A{sub 3} adenosine receptor gene (ADORA3). 9 refs., 1 fig.

  11. Three genes coding for subunits of the membrane sector (F0) of the Escherichia coli adenosine triphosphatase complex.

    PubMed Central

    Downie, J A; Cox, G B; Langman, L; Ash, G; Becker, M; Gibson, F

    1981-01-01

    Two mutant unc alleles, unc-469 and unc-476, have been characterized as affecting a previously undescribed gene, designated uncF. The uncF gene is part of the unc operon (with the gene order being uncBFEAGDC), although some uncertainty remains as to the relative order of the uncF and uncE genes. Mutant strains carrying the uncF469 or uncF476 allele lack the 18,000-molecular-weight component of the F0 sector of the adenosine triphosphatase in the cell membrane but retain the dicyclohexylcarbodiimide-binding protein (molecular weight, 8,400). Conversely, strains carrying mutations in the uncE gene lack the dicyclohexylcarbodiimide-binding protein but retain the 18,000-molecular-weight protein in the cell membrane. Strains carrying mutations in the uncB gene have both the 18,000-molecular-weight protein and the dicyclohexylcarbodiimide-binding protein present in the cell membranes. The three proteins of the F0 portion of the adenosine triphosphatase, viz., 24,000, 18,000, and 8,400 molecular weights, became membrane associated after in vitro transcription-translation with plasmid pAN51 as template. Plasmids carrying deletions which affected the UncBFE region were isolated from plasmid pAN51 and characterized genetically. A comparison of the genes that were absent from the various deletion plasmids with the membrane-associated products formed after in vitro transcription-translation indicated that the uncB gene coded for the 24,000-molecular-weight protein and that the gene order was probably uncBFE. A correlation between length of deoxyribonucleic acid, genes present, and their products is presented in relation to plasmid pAN51. Images PMID:6450744

  12. Activation of the CMV-IE promoter by hyperthermia in vitro and in vivo: biphasic heat induction of cytosine deaminase suicide gene expression.

    PubMed

    Kobelt, Dennis; Aumann, Jutta; Fichtner, Iduna; Stein, Ulrike; Schlag, Peter M; Walther, Wolfgang

    2010-10-01

    The cytomegalovirus-immediate early (CMV-IE) promoter is widely used as a strong and constitutively active promoter. Although the CMV-IE promoter does not harbor heat-responsive sequences, we determined its heat inducibility. We analyzed in vitro and in vivo heat responsiveness and possible mechanisms of heat induction of the CMV-IE promoter. We used transfected SW480 human colon carcinoma cells (SW480/CMVCD), expressing CMV-IE promoter-driven bacterial cytosine deaminase (CD) gene. These cells were heated at 42 degrees C. The SW480/CMVCD cells were also used for in vivo studies, in which tumor-bearing animals were treated with hyperthermia at 41.5 degrees C. As controls, SW480 (SW480/HSPCD) cells were used, in which CD expression is driven by the HSP70-promoter. In vitro, we observed a biphasic, up to 25-fold heat induction of CMV-IE-driven CD expression after hyperthermia in SW480/CMVCD cells. In vivo, we found a 2.5-fold induction of CD expression after hyperthermia in SW480/CMVCD tumor-bearing animals. The analysis of the CMV-IE promoter sequence revealed several transcription factor-binding sites, which mediate stress responsiveness. YB-1 and C/EBP-beta might mediate heat responsiveness of the CMV-IE promoter. These data point to limitations in heat-induction gene therapy studies, in which the CMV-IE promoter is used as control system. In addition, the CMV-IE promoter itself could well be used for construction of heat-inducible vectors.

  13. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas.

    PubMed

    Chung, Taemoon; Na, Juri; Kim, Young-Il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy.

  14. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas

    PubMed Central

    Chung, Taemoon; Na, Juri; Kim, Young-il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy. PMID:27446484

  15. Halogenated pyrrolopyrimidine analogues of adenosine from marine organisms: pharmacological activities and potent inhibition of adenosine kinase.

    PubMed

    Davies, L P; Jamieson, D D; Baird-Lambert, J A; Kazlauskas, R

    1984-02-01

    Two novel halogenated pyrrolopyrimidine analogues of adenosine, isolated from marine sources, have been examined for pharmacological and biochemical activities. 4-Amino-5-bromo-pyrrolo[2,3-d]pyrimidine, from a sponge of the genus Echinodictyum, had bronchodilator activity at least as potent as theophylline but with a different biochemical profile; unlike theophylline it had no antagonist activity at CNS adenosine receptors and it was quite a potent inhibitor of adenosine uptake and adenosine kinase in brain tissue. 5'-Deoxy-5-iodotubercidin, isolated from the red alga Hypnea valentiae, caused potent muscle relaxation and hypothermia when injected into mice. This compound was a very potent inhibitor of adenosine uptake into rat and guinea-pig brain slices and an extremely potent inhibitor of adenosine kinase from guinea-pig brain and rat brain and liver. Neither of these two pyrrolopyrimidine analogues was a substrate for, or an inhibitor of, adenosine deaminase. Neither compound appeared to have any direct agonist activity on guinea-pig brain adenosine-stimulated adenylate cyclase (A2 adenosine receptors). 5'-Deoxy-5-iodotubercidin is unique in two respects: it appears to be the first naturally-occurring example of a 5'-deoxyribosyl nucleoside and is the first example of a specifically iodinated nucleoside from natural sources. It may be the most potent adenosine kinase inhibitor yet described and, by virtue of its structure, may prove to be the most specific.

  16. Studies on Plant Growth Promoting Properties of Fruit-Associated Bacteria from Elettaria cardamomum and Molecular Analysis of ACC Deaminase Gene.

    PubMed

    Jasim, B; Anish, Mathew Chacko; Shimil, Vellakudiyan; Jyothis, Mathew; Radhakrishnan, E K

    2015-09-01

    Endophytic microorganisms have been reported to have diverse plant growth promoting mechanisms including phosphate solubilization, N2 fixation, production of phyto-hormones and ACC (1-aminocyclopropane-1-carboxylate) deaminase and antiphyto-pathogenic properties. Among these, ACC deaminase production is very important because of its regulatory effect on ethylene which is a stress hormone with precise role in the control of fruit development and ripening. However, distribution of these properties among various endophytic bacteria associated with fruit tissue and its genetic basis is least investigated. In the current study, 11 endophytic bacteria were isolated and identified from the fruit tissue of Elettaria cardamomum and were studied in detail for various plant growth promoting properties especially ACC deaminase activity using both culture-based and PCR-based methods. PCR-based screening identified the isolates EcB 2 (Pantoea sp.), EcB 7 (Polaromonas sp.), EcB 9 (Pseudomonas sp.), EcB 10 (Pseudomonas sp.) and EcB 11 (Ralstonia sp.) as positive for ACC deaminase. The PCR products were further subjected to sequence analysis which proved the similarity of the sequences identified in the study with ACC deaminase sequences reported from other sources. The detailed bioinformatic analysis of the sequence including homology-based modelling and molecular docking confirmed the sequences to have ACC deaminase activity. The docking of the modelled proteins was done using patch dock, and the detailed scrutiny of the protein ligand interaction revealed conservation of key amino acids like Lys51, Ser78, Tyr268 and Tyr294 which play important role in the enzyme activity. These suggest the possible regulatory effect of these isolates on fruit physiology.

  17. [Cloning of the gene controlling catabolite repression with the participation of cyclic adenosine monophosphate in Escherichia coli K-12].

    PubMed

    Lisenkov, A F; Smirnov, Iu V; Sukhodolets, V V

    1983-05-01

    The crp gene coding for cyclic adenosine monophosphate receptor protein has been cloned on the vehicle pBR325 using restriction endonuclease PstI and the recipient strain C600 crp. The pCAP2 hybrid plasmid obtained has a molecular weight 7.0 MD and in the pBR325 with the insertion into a PstI site. Bacterial clones carrying pCAP2 restore Crp+ phenotype, as judged by the capacity of bacteria for utilization of various carbohydrates and by the activity of catabolite sensitive enzymes.

  18. Activation of neuronal adenosine A1 receptors suppresses secretory reflexes in the guinea pig colon.

    PubMed

    Cooke, H J; Wang, Y; Liu, C Y; Zhang, H; Christofi, F L

    1999-02-01

    The role of adenosine A1 receptors (A1R) in reflex-evoked short-circuit current (Isc) indicative of chloride secretion was studied in the guinea pig colon. The A1R antagonist 8-cyclopentyltheophylline (CPT) enhanced reflex-evoked Isc. Adenosine deaminase and the nucleoside transport inhibitor S-(4-nitrobenzyl)-6-thioinosine enhanced and reduced reflex-induced Isc, respectively. The A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA) inhibited reflex-evoked Isc at nanomolar concentrations, and its action was antagonized by CPT. In the presence of either N-acetyl-5-hydroxytryptophyl-5-hydroxytryptophan amide to block the 5-hydroxytryptamine (5-HT)-mediated pathway or piroxicam to block the prostaglandin-mediated pathway, CCPA reduced the residual reflex-evoked Isc. CCPA reduced the response to a 5-HT pulse without affecting the tetrodotoxin-insensitive Isc responses to carbachol or forskolin. Immunoreactivity for A1R was detected in the membrane (10% of neurons) and cytoplasm (90% of neurons) of neural protein gene product 9.5-immunoreactive (or S-100-negative) submucosal neurons, in glia, and in the muscularis mucosa. A1R immunoreactivity in a majority of neurons remained elevated in the cytoplasm despite preincubation with adenosine deaminase or CPT. A1R immunoreactivity colocalized in synaptophysin-immunoreactive presynaptic varicose nerve terminals. The results indicate that endogenous adenosine binding to high-affinity A1R on submucosal neurons acts as a physiological brake to suppress reflex-evoked Isc indicative of chloride secretion.

  19. Cytotoxic effect of a replication-incompetent adenoviral vector with cytosine deaminase gene driven by L-plastin promoter in hepatocellular carcinoma cells.

    PubMed

    Jung, Kihwa; Kim, Sunja; Lee, Kyumhyang; Kim, Changmin; Chung, Injae

    2007-06-01

    Great expectations are set on gene therapy for the treatment of malignant hepatocellular carcinomas (HCC) in East Asia. Recombinant adenoviral vectors (AV) have been developed in which the L-plastin promoter (LP) regulates the expression of transgenes, in a tumor cell specific manner, resulting in an increase in the therapeutic index. The development of the AdLPCD vector, a replication-incompetent AV, containing a transcription unit of LP and E. coli cytosine deaminase (CD), was reported in our previous work. In the present study, the AdLPCD vector combined with 5-fluorocytosine (5-FC) administration was tested to see if it might have significant utility in the chemosensitization of L-plastin positive HCC. Four HCC cell lines (HepG2, Chang Liver, Huh-7 and SK-Hep-1 cells) were investigated for the expression of LacZ after infecting the cells with the AdLPLacZ vector containing a 2.4 kb fragment of LP and the LacZ gene. Relatively high levels of LP activity were detected in HepG2, followed by Chang Liver cells; whereas, no promoter activity was found in Huh-7 and SK-Hep-1 cells, as determined by AdLPLacZ infection followed by the beta-galactosidase assay. In addition, the results of RT-PCR assays for the detection of endogenous L-plastin mRNA in these cells lines correlated well with those of the beta-galactosidase activity after infection with AdLPLacZ. Based on these data, the cytotoxic effect of AdLPCD/5-FC was evaluated in HepG2 cells. These results indicate that the CD gene delivered by AV could sensitize HepG2 cells to the prodrug, 5-FC. However, the observed effects were insufficient to cause the death of most of cells. This suggests that the screening of patients for an AdLP/5-FC strategy based on AdLPLacZ data might not always guarantee a good therapeutic outcome.

  20. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder.

    PubMed

    Freitag, Christine M; Agelopoulos, Konstantin; Huy, Ellen; Rothermundt, Matthias; Krakowitzky, Petra; Meyer, Jobst; Deckert, Jürgen; von Gontard, Alexander; Hohoff, Christa

    2010-01-01

    Autism spectrum disorders (ASDs) are heterogeneous disorders presenting with increased rates of anxiety. The adenosine A(2A) receptor gene (ADORA2A) is associated with panic disorder and is located on chromosome 22q11.23. Its gene product, the adenosine A(2A) receptor, is strongly expressed in the caudate nucleus, which also is involved in ASD. As autistic symptoms are increased in individuals with 22q11.2 deletion syndrome, and large 22q11.2 deletions and duplications have been observed in ASD individuals, in this study, 98 individuals with ASD and 234 control individuals were genotyped for eight single-nucleotide polymorphisms in ADORA2A. Nominal association with the disorder was observed for rs2236624-CC, and phenotypic variability in ASD symptoms was influenced by rs3761422, rs5751876 and rs35320474. In addition, association of ADORA2A variants with anxiety was replicated for individuals with ASD. Findings point toward a possible mediating role of ADORA2A variants on phenotypic expression in ASD that need to be replicated in a larger sample.

  1. Antiepileptic drugs prevent changes in adenosine deamination during acute seizure episodes in adult zebrafish.

    PubMed

    Siebel, Anna Maria; Piato, Angelo Luis; Schaefer, Isabel Costa; Nery, Laura Roesler; Bogo, Maurício Reis; Bonan, Carla Denise

    2013-03-01

    Adenosine is an endogenous modulator of brain functions, which presents anticonvulsant properties. In addition, its levels can be increased during neural injury. The modulation of extracellular adenosine levels by ectonucleotidase and adenosine deaminase (ADA) activities may represent a key mechanism in the control of epileptogenesis. In the present study, we investigated the effects of acute seizure episodes and antiepileptic drug (AED) treatments on ectonucleotidases and ADA activities in adult zebrafish brain. Our data have demonstrated that pentylenetetrazole (PTZ)-induced seizures did not alter ATP, ADP, and AMP hydrolysis in brain membrane fractions. However, there was a significant increase on ecto-ADA and soluble ADA activities in PTZ-treated animals immediately after a clonus-like convulsion and loss of posture, which are typical behavioral changes observed in Stage 3. Furthermore, our results have demonstrated that AED pretreatments prevented the stimulatory effect promoted by PTZ exposure on ADA activities. The PTZ and AED treatments did not promote alterations on ADA gene expression. Interestingly, when exposed to PTZ, animals pretreated with AEDs showed longer latency to reach the clonus-like seizure status, which is an effect that matches the suppression of the increase of ADA activity promoted by the AEDs. These data suggest that the adenosine deamination could be involved in the control of seizure development in zebrafish and may be modulated by AED treatments. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A study of three polymorphic sites of ADA gene in colon cancer.

    PubMed

    Spina, C; Saccucci, P; Cozzoli, E; Bottini, E; Gloria-Bottini, F

    2010-12-01

    Adenosine inhibits the immune response in tumors. Adenosine deaminase (ADA) controls adenosine level and as ecto-enzyme acts as costimulatory molecule of adenosine receptors and/or CD26. We examined ADA₁, ADA₂, ADA₆ polymorphic sites of ADA gene in 109 subjects with colon cancer from Rome's population and in 246 blood donors as controls from the same population. In colon cancer ADA₁*2/ADA₂*1 haplotype is more represented, while ADA₁*2/ADA₂*2 is less represented than in controls. ADA₂*2/ADA₆*2 is less represented in patients than in controls. Polymorphic sites of ADA might influence cell-mediated anti-tumor immune responses controlling adenosine level and extraenzymatic protein functions.

  3. Rhodium Complex and Enzyme Couple Mediated Electrochemical Detection of Adenosine.

    PubMed

    Han, Dawoon; Kim, Hyeong-Mook; Chand, Rohit; Kim, Gyumin; Shin, Ik-Soo; Kim, Yong-Sang

    2015-10-01

    Adenosine is one of the nucleoside which plays an important role in signal transduction and neuromodulation. This work proposes a simple electrochemical assay, comprising two enzymes and rhodium complex based electron transfer mediator, for the detection of adenosine. Sequential reaction of adenosine deaminase and L-glutamic dehydrogenase and the supporting cycle between β-NADH and mediator enable quantitative analysis of adenosine. Role of electron transfer mediator is the conveyance of proton from electrode to β-NAD(+) for regeneration of β-NADH. The electrochemical characteristics of electron transfer mediator were also studied. Real-time adenosine detection was carried out using this multiple enzyme based chronoamperometric assay. The analysis results show a low limit of detection (140 μM) and good correspondence between current signal and the adenosine concentration (R (2) = 0.997).

  4. Isolated cerebellar variant of adrenoleukodystrophy with a de novo adenosine triphosphate-binding cassette D1 (ABCD1) gene mutation.

    PubMed

    Kang, Joon Won; Lee, Sang Mi; Koo, Kyo Yeon; Lee, Young-Mock; Nam, Hyo Suk; Quan, Zhejiu; Kang, Hoon-Chul

    2014-07-01

    X-linked adrenoleukodystrophy (X-ALD) shows a wide range of phenotypic expression, but clinical presentation as an isolated lesion of the cerebellar white matter and dentate nuclei has not been reported. We report an unusual presentation of X-ALD only with an isolated lesion of the cerebellar white matter and dentate nuclei. The proband, a 37-year-old man presented with bladder incontinence, slurred speech, dysmetria in all limbs, difficulties in balancing, and gait ataxia. Brain magnetic resonance imaging showed an isolated signal change of white matter around the dentate nucleus in cerebellum. With high level of very long chain fatty acid, gene study showed a de novo mutation in exon 1 at nucleotide position c.277_296dup20 (p.Ala100Cysfs*10) of the adenosine triphosphate-binding cassette D1 gene. It is advised to consider X-ALD as a differential diagnosis in patients with isolated cerebellar degeneration symptoms.

  5. Isolated Cerebellar Variant of Adrenoleukodystrophy with a de novo Adenosine Triphosphate-Binding Cassette D1 (ABCD1) Gene Mutation

    PubMed Central

    Kang, Joon Won; Lee, Sang Mi; Koo, Kyo Yeon; Lee, Young-Mock; Nam, Hyo Suk; Quan, Zhejiu

    2014-01-01

    X-linked adrenoleukodystrophy (X-ALD) shows a wide range of phenotypic expression, but clinical presentation as an isolated lesion of the cerebellar white matter and dentate nuclei has not been reported. We report an unusual presentation of X-ALD only with an isolated lesion of the cerebellar white matter and dentate nuclei. The proband, a 37-year-old man presented with bladder incontinence, slurred speech, dysmetria in all limbs, difficulties in balancing, and gait ataxia. Brain magnetic resonance imaging showed an isolated signal change of white matter around the dentate nucleus in cerebellum. With high level of very long chain fatty acid, gene study showed a de novo mutation in exon 1 at nucleotide position c.277_296dup20 (p.Ala100Cysfs*10) of the adenosine triphosphate-binding cassette D1 gene. It is advised to consider X-ALD as a differential diagnosis in patients with isolated cerebellar degeneration symptoms. PMID:24954351

  6. A Single Zinc Ion Is Sufficient for an Active Trypanosoma brucei tRNA Editing Deaminase*

    PubMed Central

    Spears, Jessica L.; Rubio, Mary Anne T.; Gaston, Kirk W.; Wywial, Ewa; Strikoudis, Alexandros; Bujnicki, Janusz M.; Papavasiliou, F. Nina; Alfonzo, Juan D.

    2011-01-01

    Editing of adenosine (A) to inosine (I) at the first anticodon position in tRNA is catalyzed by adenosine deaminases acting on tRNA (ADATs). This essential reaction in bacteria and eukarya permits a single tRNA to decode multiple codons. Bacterial ADATa is a homodimer with two bound essential Zn2+. The ADATa crystal structure revealed residues important for substrate binding and catalysis; however, such high resolution structural information is not available for eukaryotic tRNA deaminases. Despite significant sequence similarity among deaminases, we continue to uncover unexpected functional differences between Trypanosoma brucei ADAT2/3 (TbADAT2/3) and its bacterial counterpart. Previously, we demonstrated that TbADAT2/3 is unique in catalyzing two different deamination reactions. Here we show by kinetic analyses and inductively coupled plasma emission spectrometry that wild type TbADAT2/3 coordinates two Zn2+ per heterodimer, but unlike any other tRNA deaminase, mutation of one of the key Zn2+-coordinating cysteines in TbADAT2 yields a functional enzyme with a single-bound zinc. These data suggest that, at least, TbADAT3 may play a role in catalysis via direct coordination of the catalytic Zn2+. These observations raise the possibility of an unusual Zn2+ coordination interface with important implications for the function and evolution of editing deaminases. PMID:21507956

  7. Loss of Myocardial Ischemic Postconditioning in Adenosine A1 and Bradykinin B2 Receptors Gene Knockout Mice

    PubMed Central

    Xi, Lei; Das, Anindita; Zhao, Zhi-Qing; Merino, Vanessa F.; Bader, Michael; Kukreja, Rakesh C.

    2011-01-01

    Background Ischemic postconditioning (PostC) is a recently described cardioprotective modality against reperfusion injury, through series of brief re-flow interruptions applied at the very onset of reperfusion. It is proposed that PostC can activate a complex cellular signaling cascade, in which cell membrane receptors could serve as the upstream triggers of PostC. However, the exact subtypes of such receptors remain controversial or uninvestigated. To this context, the purpose of present study was to determine the definitive role of adenosine A1, bradykinin B1 and B2 receptors in PostC. Methods and Results The hearts isolated from adult male C57BL/6J wild-type mice or the mice lacking adenosine A1, or bradykinin B1 or B2 receptors subjected to zero-flow global ischemia and reperfusion in a Langendorff model. PostC, consisting of 6 cycles of 10 sec of reperfusion and 10 sec of ischemia, demonstrated significantly reduced myocardial infarct size (22.8±3.1%, Mean±SEM) as compared with the non-PostC wild-type controls (35.1±2.8%, P<0.05). The infarct-limiting protection of PostC was absent in adenosine A1 receptor knockout mice (34.9±2.7%) or bradykinin B2 receptor knockout mice (33.3±1.7%) and was partially attenuated in bradykinin B1 receptor deficient mice (25.6±2.9%; P>0.05). On the other hand, PostC did not significantly alter post-ischemic cardiac contractile function and coronary flow. Conclusions With the use of three distinctive strains of gene knockout mice, the current study has provided the first conclusive evidence showing PostC-induced infarct-limiting cardioprotection could be triggered by activation of multiple types of cell membrane receptors, which include adenosine A1 and bradykinin B2 receptors. PMID:18824766

  8. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings.

    PubMed Central

    Correia-de-Sá, P.; Ribeiro, J. A.

    1994-01-01

    1. The effect of calcitonin gene-related peptide (CGRP) on [3H]-acetylcholine ([3H]-ACh) release from motor nerve endings and its interaction with presynaptic facilitatory A2a-adenosine and nicotinic acetylcholine receptors was studied on rat phrenic nerve-hemidiaphragm preparations loaded with [3H]-choline. 2. CGRP (100-400 nM) increased electrically evoked [3H]-ACh release from phrenic nerve endings in a concentration-dependent manner. 3. The magnitude of CGRP excitation increased with the increase of the stimulation pulse duration from 40 microseconds to 1 ms, keeping the frequency, the amplitude and the train length constants. With 1 ms pulses, the evoked [3H]-ACh release was more intense than with 40 microseconds pulse duration. 4. Both the nicotinic acetylcholine receptor agonist, 1,1-dimethyl-4-phenylpiperazinium, and the A2a adenosine receptor agonist, CGS 21680C, increased evoked [3H]-ACh release, but only CGS 21680C potentiated the facilitatory effect of CGRP. This potentiation was prevented by the A2a adenosine receptor antagonist, PD 115,199. 5. Adenosine deaminase prevented the excitatory effect of CGRP (400 nM) on [3H]-ACh release. This effect was reversed by the non-hydrolysable A2a-adenosine receptor agonist, CGS 21680C. 6. The nicotinic antagonist, tubocurarine, did not significantly change, whereas the A2-adenosine receptor antagonist, PD 115,199, blocked the CGRP facilitation. The A1-adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine, potentiated the CGRP excitatory effect. 7. The results suggest that the facilitatory effect of CGRP on evoked [3H]-ACh release from rat phrenic motor nerve endings depends on the presence of endogenous adenosine which tonically activates A2a-adenosine receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004402

  9. Different mechanisms of extracellular adenosine accumulation by reduction of the external Ca(2+) concentration and inhibition of adenosine metabolism in spinal astrocytes.

    PubMed

    Eguchi, Ryota; Akao, Sanae; Otsuguro, Ken-ichi; Yamaguchi, Soichiro; Ito, Shigeo

    2015-05-01

    Extracellular adenosine is a neuromodulator in the central nervous system. Astrocytes mainly participate in adenosine production, and extracellular adenosine accumulates under physiological and pathophysiological conditions. Inhibition of intracellular adenosine metabolism and reduction of the external Ca(2+) concentration ([Ca(2+)]e) participate in adenosine accumulation, but the precise mechanisms remain unclear. This study investigated the mechanisms underlying extracellular adenosine accumulation in cultured rat spinal astrocytes. The combination of adenosine kinase and deaminase (ADK/ADA) inhibition and a reduced [Ca(2+)]e increased the extracellular adenosine level. ADK/ADA inhibitors increased the level of extracellular adenosine but not of adenine nucleotides, which was suppressed by inhibition of equilibrative nucleoside transporter (ENT) 2. Unlike ADK/ADA inhibition, a reduced [Ca(2+)]e increased the extracellular level not only of adenosine but also of ATP. This adenosine increase was enhanced by ENT2 inhibition, and suppressed by sodium polyoxotungstate (ecto-nucleoside triphosphate diphosphohydrolase inhibitor). Gap junction inhibitors suppressed the increases in adenosine and adenine nucleotide levels by reduction of [Ca(2+)]e. These results indicate that extracellular adenosine accumulation by ADK/ADA inhibition is due to the adenosine release via ENT2, while that by reduction of [Ca(2+)]e is due to breakdown of ATP released via gap junction hemichannels, after which ENT2 incorporates adenosine into the cells.

  10. Adenosine-to-inosine RNA editing meets cancer.

    PubMed

    Dominissini, Dan; Moshitch-Moshkovitz, Sharon; Amariglio, Ninette; Rechavi, Gideon

    2011-11-01

    The role of epigenetics in tumor onset and progression has been extensively addressed. Discoveries in the last decade completely changed our view on RNA. We now realize that its diversity lies at the base of biological complexity. Adenosine-to-inosine (A-to-I) RNA editing emerges a central generator of transcriptome diversity and regulation in higher eukaryotes. It is the posttranscriptional deamination of adenosine to inosine in double-stranded RNA catalyzed by enzymes of the adenosine deaminase acting on RNA (ADAR) family. Thought at first to be restricted to coding regions of only a few genes, recent bioinformatic analyses fueled by high-throughput sequencing revealed that it is a widespread modification affecting mostly non-coding repetitive elements in thousands of genes. The rise in scope is accompanied by discovery of a growing repertoire of functions based on differential decoding of inosine by the various cellular machineries: when recognized as guanosine, it can lead to protein recoding, alternative splicing or altered microRNA specificity; when recognized by inosine-binding proteins, it can result in nuclear retention of the transcript or its degradation. An imbalance in expression of ADAR enzymes with consequent editing dysregulation is a characteristic of human cancers. These alterations may be responsible for activating proto-oncogenes or inactivating tumor suppressors. While unlikely to be an early initiating 'hit', editing dysregulation seems to contribute to tumor progression and thus should be considered a 'driver mutation'. In this review, we examine the contribution of A-to-I RNA editing to carcinogenesis.

  11. Adenine and adenosine salvage in Leishmania donovani.

    PubMed

    Boitz, Jan M; Ullman, Buddy

    2013-08-01

    6-aminopurine metabolism in Leishmania is unique among trypanosomatid pathogens since this genus expresses two distinct routes for adenine salvage: adenine phosphoribosyltransferase (APRT) and adenine deaminase (AAH). To evaluate the relative contributions of APRT and AAH, adenine salvage was evaluated in Δaprt, Δaah, and Δaprt/Δaah null mutants of L. donovani. The data confirm that AAH plays the dominant role in adenine metabolism in L. donovani, although either enzyme alone is sufficient for salvage. Adenosine salvage was also evaluated in a cohort of null mutants. Adenosine is also primarily converted to hypoxanthine, either intracellularly or extracellularly, but can also be phosphorylated to the nucleotide level by adenosine kinase when the predominant pathways are genetically or pharmacologically blocked. These data provide genetic verification for the relative contributions of 6-aminopurine metabolizing pathways in L. donovani and demonstrate that all of the pathways can function under appropriate conditions of genetic or pharmacologic perturbation.

  12. Serum adenosine deaminase and its isoenzyme activities in pregnancy

    PubMed Central

    Bahadır, Göksel; Döventaş, Yasemin Erdoğan; Turkal, Rana; Koldaş, Macit; Basınoğlu, Filiz; Dane, Banu; Altunkaynak, Emine

    2011-01-01

    Objective ADA is widely distributed in human tissues, which may contribute to the maturation of the immunological system, especially the proliferation and differentiation of lymphoid cells, and seems to be critical at different stages of the maturation process. The activity of ADA changes in diseases characterized by the alteration of cell-mediated immunity. In this study we examined changes in serum total ADA activity and the patterns of two ADA isoenzymes, ADA-1 and ADA-2, in healthy pregnant women, and evaluated the possible role of the alteration of cell-mediated immunity during pregnancy as causes of changes in ADA activity. Materials and Methods: We measured serum activities of total ADA, ADA-1 and ADA-2 in healthy pregnant women (n=129) and age-matched healthy nonpregnant women (n=42). We divided the study group into three different subgroups: first trimester, second trimester and third trimester. Results Serum ADA, ADA-1 and ADA-2 activities in healthy pregnant women were significantly lower than in nonpregnant women (p<0.001, p<0.001 and p<0.01 respectively). ADA (p<0.001) and ADA-2 (p<0.001) activities in the first trimester were significantly lower than in the control group. However, there were no significant differences between the first trimester and control group according to their ADA-1 activities (p=0.016). ADA (p<0.001), ADA-1 (p<0.001) and ADA-2 (p<0.008) activities in the second trimester were significantly lower than in the control group. Combined trisomy 21 risk, biochemical trisomy 21 risk, age risk and trisomy 18 + Nuchal translucency (NT) risk were calculated using a first trimester screening test in 63 pregnant women. Furthermore, trisomy 21 risk, age risk and trisomy 18 risk were calculated by triple test in 52 pregnant women. ADA, ADA-1 and ADA-2 activities were not significantly correlated with risks in the first trimester screening test. ADA-1 activity was slightly significantly negative correlated with age risk (r= −0.314, p<0.05) and trisomy 18 risk (p<0.05) in the triple test. ADA (p<0.05) and ADA-2 (p<0.05) activities were slightly significantly correlated with gestational age, while there was no significant correlation between ADA-1 activity and gestational age. Conclusion Serum ADA activity may be useful for clinical diagnosis and observation of high-risk pregnancies in which cell-mediated immunity has been altered. PMID:24591996

  13. Serum adenosine deaminase and its isoenzyme activities in pregnancy.

    PubMed

    Bahadır, Göksel; Döventaş, Yasemin Erdoğan; Turkal, Rana; Koldaş, Macit; Basınoğlu, Filiz; Dane, Banu; Altunkaynak, Emine

    2011-01-01

    ADA is widely distributed in human tissues, which may contribute to the maturation of the immunological system, especially the proliferation and differentiation of lymphoid cells, and seems to be critical at different stages of the maturation process. The activity of ADA changes in diseases characterized by the alteration of cell-mediated immunity. In this study we examined changes in serum total ADA activity and the patterns of two ADA isoenzymes, ADA-1 and ADA-2, in healthy pregnant women, and evaluated the possible role of the alteration of cell-mediated immunity during pregnancy as causes of changes in ADA activity. We measured serum activities of total ADA, ADA-1 and ADA-2 in healthy pregnant women (n=129) and age-matched healthy nonpregnant women (n=42). We divided the study group into three different subgroups: first trimester, second trimester and third trimester. Serum ADA, ADA-1 and ADA-2 activities in healthy pregnant women were significantly lower than in nonpregnant women (p<0.001, p<0.001 and p<0.01 respectively). ADA (p<0.001) and ADA-2 (p<0.001) activities in the first trimester were significantly lower than in the control group. However, there were no significant differences between the first trimester and control group according to their ADA-1 activities (p=0.016). ADA (p<0.001), ADA-1 (p<0.001) and ADA-2 (p<0.008) activities in the second trimester were significantly lower than in the control group. Combined trisomy 21 risk, biochemical trisomy 21 risk, age risk and trisomy 18 + Nuchal translucency (NT) risk were calculated using a first trimester screening test in 63 pregnant women. Furthermore, trisomy 21 risk, age risk and trisomy 18 risk were calculated by triple test in 52 pregnant women. ADA, ADA-1 and ADA-2 activities were not significantly correlated with risks in the first trimester screening test. ADA-1 activity was slightly significantly negative correlated with age risk (r= -0.314, p<0.05) and trisomy 18 risk (p<0.05) in the triple test. ADA (p<0.05) and ADA-2 (p<0.05) activities were slightly significantly correlated with gestational age, while there was no significant correlation between ADA-1 activity and gestational age. Serum ADA activity may be useful for clinical diagnosis and observation of high-risk pregnancies in which cell-mediated immunity has been altered.

  14. RNA Editing by Adenosine Deaminases That Act on RNA

    PubMed Central

    Bass, Brenda L.

    2007-01-01

    ADARs are RNA editing enzymes that target double-stranded regions of nuclear-encoded RNA and viral RNA. These enzymes are particularly abundant in the nervous system, where they diversify the information encoded in the genome, for example, by altering codons in mRNAs. The functions of ADARs in known substrates suggest that the enzymes serve to fine-tune and optimize many biological pathways, in ways that we are only starting to imagine. ADARs are also interesting in regard to the remarkable double-stranded structures of their substrates and how enzyme specificity is achieved with little regard to sequence. This review summarizes ongoing investigations of the enzyme family and their substrates, focusing on biological function as well as biochemical mechanism. PMID:12045112

  15. Adenosine receptor neurobiology: overview.

    PubMed

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases. © 2014 Elsevier Inc. All rights reserved.

  16. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance

    PubMed Central

    Nascimento, Francisco X.; Rossi, Márcio J.; Soares, Cláudio R. F. S.; McConkey, Brendan J.; Glick, Bernard R.

    2014-01-01

    The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications. PMID:24905353

  17. Phosphorylation of Cytokinin by Adenosine Kinase from Wheat Germ 1

    PubMed Central

    Chen, Chong-Maw; Eckert, Richard L.

    1977-01-01

    Adenosine kinase was partially purified from wheat germ. This enzyme preparation, which was devoid of adenine phosphoribosyltransferase and nearly free of adenosine deaminase but contained adenylate kinase, rapidly phosphorylated adenosine and a cytokinin, N6-(δ2-isopentenyl)adenosine. Electrophoretic analysis indicated that only N6-(δ2-isopentenyl)adenosine-monophosphate was formed from the cytokinin while about 55% AMP, 45% ADP, and a trace of ATP were formed from adenosine. The biosynthesized nucleoside monophosphates were quantitatively hydrolyzed to the corresponding nucleosides by 5′-nucleotidase and the isopentenyl side chain of the phosphorylated cytokinin was not cleaved. The enzyme did not catalyze phosphorylation of inosine. The phosphorylation of the cytokinin and adenosine required ATP and Mg2+. The pH optimum was from 6.8 to 7.2 for both the cytokinin and adenosine. At pH 7 and 37 C the Km and Vmax for the cytokinin were 31 μm and 8.3 nmoles per mg protein per minute, and the values for adenosine were 8.7 μm and 46 nmoles per mg protein per minute. Crude enzyme preparations from tobacco callus tissue and wheat germ phosphorylated N6-(δ2-isopentenyl)adenosine. These preparations also phosphorylated N6-(δ2-isopentenyl)adenine when 5-phosphorylribose-1-pyrophosphate was present. PMID:16659870

  18. Identification, expression, and characterization of Escherichia coli guanine deaminase.

    PubMed

    Maynes, J T; Yuan, R G; Snyder, F F

    2000-08-01

    Using the human cDNA sequence corresponding to guanine deaminase, the Escherichia coli genome was scanned using the Basic Local Alignment Search Tool (BLAST), and a corresponding 439-residue open reading frame of unknown function was identified as having 36% identity to the human protein. The putative gene was amplified, subcloned into the pMAL-c2 vector, expressed, purified, and characterized enzymatically. The 50.2-kDa protein catalyzed the conversion of guanine to xanthine, having a K(m) of 15 microM with guanine and a k(cat) of 3.2 s(-1). The bacterial enzyme shares a nine-residue heavy metal binding site with human guanine deaminase, PG[FL]VDTHIH, and was found to contain approximately 1 mol of zinc per mol of subunit of protein. The E. coli guanine deaminase locus is 3' from an open reading frame which shows homology to a bacterial purine base permease.

  19. Identification, Expression, and Characterization of Escherichia coli Guanine Deaminase

    PubMed Central

    Maynes, Jason T.; Yuan, Richard G.; Snyder, Floyd F.

    2000-01-01

    Using the human cDNA sequence corresponding to guanine deaminase, the Escherichia coli genome was scanned using the Basic Local Alignment Search Tool (BLAST), and a corresponding 439-residue open reading frame of unknown function was identified as having 36% identity to the human protein. The putative gene was amplified, subcloned into the pMAL-c2 vector, expressed, purified, and characterized enzymatically. The 50.2-kDa protein catalyzed the conversion of guanine to xanthine, having a Km of 15 μM with guanine and a kcat of 3.2 s−1. The bacterial enzyme shares a nine-residue heavy metal binding site with human guanine deaminase, PG[FL]VDTHIH, and was found to contain approximately 1 mol of zinc per mol of subunit of protein. The E. coli guanine deaminase locus is 3′ from an open reading frame which shows homology to a bacterial purine base permease. PMID:10913105

  20. Hydroxycarbamide modulates components involved in the regulation of adenosine levels in blood cells from sickle-cell anemia patients.

    PubMed

    Silva-Pinto, Ana C; Dias-Carlos, Carolina; Saldanha-Araujo, Felipe; Ferreira, Flávia I S; Palma, Patrícia V B; Araujo, Amélia G; Queiroz, Regina H C; Elion, Jacques; Covas, Dimas T; Zago, Marco A; Panepucci, Rodrigo A

    2014-09-01

    Recent studies have demonstrated the role of adenosine (ADO) in sickle-cell anemia (SCA). ADO is produced by CD39 and CD73 and converted to inosine by adenosine deaminase (ADA). We evaluated the effects of hydroxycarbamide (HU) treatment on the modulation of adenosine levels in SCA patients. The expressions of CD39, CD73, and CD26 were evaluated by flow cytometry on blood cells in 15 HU-treated and 17 untreated patients and 10 healthy individuals. RNA was extracted from monocytes, and ADA gene expression was quantified by real-time PCR. ADA activity was also evaluated. We found that ADA transcripts were two times higher in monocytes of HU-treated patients, compared with untreated (P = 0.039). Monocytes of HU-treated patients expressed CD26, while monocytes of controls and untreated patients did not (P = 0.023). In treated patients, a lower percentage of T lymphocytes expressed CD39 compared with untreated (P = 0.003), and the percentage of T regulatory (Treg) cells was reduced in the treated group compared with untreated (P = 0.017) and controls (P = 0.0009). Besides, HU-treated patients displayed increased ADA activity, compared with untreated. Our results indicate a novel mechanism of action of HU mediated by the reduction of adenosine levels and its effects on pathophysiological processes in SCA.

  1. High frequency of mutations in exon 10 of the porphobilinogen deaminase gene in patients with a CRIM-positive subtype of acute intermittent porphyria

    SciTech Connect

    Gu, X.F.; Rooij, F. de; Voortman, G.; Velde, K.T.; Nordmann, Y.; Grandchamp, B.

    1992-09-01

    Acute intermittent porphyria (AIP) is an autosomal dominant disease characterized by a partial deficiency of porphobilinogen (PBG) deaminase. Different subtypes of the disease have been defined, and more than 10 different mutations have been described. The authors focused their study on exon 10, since they previously found that three different mutations were located in this exon and that two of them seemed to be relatively common. They used denaturing gradient gel electrophoresis (DGGE) after in vitro amplification to detect all possible mutations in exon 10 in 41 unrelated AIP patients. In about one-fourth of these patients they could distinguish three abnormal migration patterns, indicating the presence of various mutations. Additional sequencing demonstrated the presence of three different single-base substitutions. Two of these mutations had already been described. A third one consisted of a C-to-T transition located at position 499 of the PBG deaminase mRNA and resulted in an Arg-to-Trp substitution. All three mutations were found in patients with crossreacting immunological material (CRIM)-positive forms of AlP. The high frequency of these mutations make DGGE analysis of exon 10 a useful approach allowing the direct detection of the DNA abnormality in most of the families with the CRIM-positive subtype of AlP. 23 refs., 3 figs., 1 tab.

  2. Adenosine signaling: good or bad in erectile function?

    PubMed

    Wen, Jiaming; Xia, Yang

    2012-04-01

    The erectile status of penile tissue is governed largely by the tone of cavernosal smooth muscle cells, which is determined by the balance of vascular relaxants and constrictors. Vascular relaxants play a key role in regulating the tone of cavernosal smooth muscle and thus the initiation and maintenance of penile erection. Early studies drew attention to the potential role of adenosine signaling in this process. However, the serendipitous discovery of the effect of sildenafil on erectile physiology drew more attention toward nitric oxide (NO) as a vasodilator in the process of penile erection, and a recently discovered, unexpected erectile phenotype of adenosine deaminase-deficient mice reemphasizes the importance of adenosine as a key regulatory of erectile status. Adenosine, like NO, is a potent and short-lived vasorelaxant that functions via cyclic nucleotide second messenger signaling to promote smooth muscle relaxation. Recent studies reviewed here show that adenosine functions to relax the corpus cavernosum and promote penile erection. Excess adenosine in penile tissue contributes to the disorder called priapism, and impaired adenosine signaling is associated with erectile dysfunction. More recent research summarized in this review reveals that adenosine functions as a key endogenous vasodilator in the initiation and maintenance of normal penile erection. This new insight highlights adenosine signaling pathways operating in penile tissue as significant therapeutic targets for the treatment of erectile disorders.

  3. Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity.

    PubMed

    Sun, Kaiqi; Zhang, Yujin; Bogdanov, Mikhail V; Wu, Hongyu; Song, Anren; Li, Jessica; Dowhan, William; Idowu, Modupe; Juneja, Harinder S; Molina, Jose G; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-03-05

    Erythrocyte possesses high sphingosine kinase 1 (SphK1) activity and is the major cell type supplying plasma sphingosine-1-phosphate, a signaling lipid regulating multiple physiological and pathological functions. Recent studies revealed that erythrocyte SphK1 activity is upregulated in sickle cell disease (SCD) and contributes to sickling and disease progression. However, how erythrocyte SphK1 activity is regulated remains unknown. Here we report that adenosine induces SphK1 activity in human and mouse sickle and normal erythrocytes in vitro. Next, using 4 adenosine receptor-deficient mice and pharmacological approaches, we determined that the A2B adenosine receptor (ADORA2B) is essential for adenosine-induced SphK1 activity in human and mouse normal and sickle erythrocytes in vitro. Subsequently, we provide in vivo genetic evidence that adenosine deaminase (ADA) deficiency leads to excess plasma adenosine and elevated erythrocyte SphK1 activity. Lowering adenosine by ADA enzyme therapy or genetic deletion of ADORA2B significantly reduced excess adenosine-induced erythrocyte SphK1 activity in ADA-deficient mice. Finally, we revealed that protein kinase A-mediated extracellular signal-regulated kinase 1/2 activation functioning downstream of ADORA2B underlies adenosine-induced erythrocyte SphK1 activity. Overall, our findings reveal a novel signaling network regulating erythrocyte SphK1 and highlight innovative mechanisms regulating SphK1 activity in normal and SCD.

  4. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID.

    PubMed

    Sauer, Aisha V; Brigida, Immacolata; Carriglio, Nicola; Hernandez, Raisa Jofra; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna; Aiuti, Alessandro

    2012-02-09

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.

  5. Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma.

    PubMed

    Qin, Yan-Ru; Qiao, Jun-Jing; Chan, Tim Hon Man; Zhu, Ying-Hui; Li, Fang-Fang; Liu, Haibo; Fei, Jing; Li, Yan; Guan, Xin-Yuan; Chen, Leilei

    2014-02-01

    Esophageal squamous cell carcinoma (ESCC), the major histologic form of esophageal cancer, is a heterogeneous tumor displaying a complex variety of genetic and epigenetic changes. Aberrant RNA editing of adenosine-to-inosine (A-to-I), as it is catalyzed by adenosine deaminases acting on RNA (ADAR), represents a common posttranscriptional modification in certain human diseases. In this study, we investigated the status and role of ADARs and altered A-to-I RNA editing in ESCC tumorigenesis. Among the three ADAR enzymes expressed in human cells, only ADAR1 was overexpressed in primary ESCC tumors. ADAR1 overexpression was due to gene amplification. Patients with ESCC with tumoral overexpression of ADAR1 displayed a poor prognosis. In vitro and in vivo functional assays established that ADAR1 functions as an oncogene during ESCC progression. Differential expression of ADAR1 resulted in altered gene-specific editing activities, as reflected by hyperediting of FLNB and AZIN1 messages in primary ESCC. Notably, the edited form of AZIN1 conferred a gain-of-function phenotype associated with aggressive tumor behavior. Our findings reveal that altered gene-specific A-to-I editing events mediated by ADAR1 drive the development of ESCC, with potential implications in diagnosis, prognosis, and treatment of this disease.

  6. Melamine Deaminase and Atrazine Chlorohydrolase: 98 Percent Identical but Functionally Different

    PubMed Central

    Seffernick, Jennifer L.; de Souza, Mervyn L.; Sadowsky, Michael J.; Wackett, Lawrence P.

    2001-01-01

    The gene encoding melamine deaminase (TriA) from Pseudomonas sp. strain NRRL B-12227 was identified, cloned into Escherichia coli, sequenced, and expressed for in vitro study of enzyme activity. Melamine deaminase displaced two of the three amino groups from melamine, producing ammeline and ammelide as sequential products. The first deamination reaction occurred more than 10 times faster than the second. Ammelide did not inhibit the first or second deamination reaction, suggesting that the lower rate of ammeline hydrolysis was due to differential substrate turnover rather than product inhibition. Remarkably, melamine deaminase is 98% identical to the enzyme atrazine chlorohydrolase (AtzA) from Pseudomonas sp. strain ADP. Each enzyme consists of 475 amino acids and differs by only 9 amino acids. AtzA was shown to exclusively catalyze dehalogenation of halo-substituted triazine ring compounds and had no activity with melamine and ammeline. Similarly, melamine deaminase had no detectable activity with the halo-triazine substrates. Melamine deaminase was active in deamination of a substrate that was structurally identical to atrazine, except for the substitution of an amino group for the chlorine atom. Moreover, melamine deaminase and AtzA are found in bacteria that grow on melamine and atrazine compounds, respectively. These data strongly suggest that the 9 amino acid differences between melamine deaminase and AtzA represent a short evolutionary pathway connecting enzymes catalyzing physiologically relevant deamination and dehalogenation reactions, respectively. PMID:11274097

  7. Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo

    PubMed Central

    Yang, Xiao-Ping; Liu, Ling; Wang, Ping; Ma, Sheng-Lin

    2015-01-01

    Background: Human sulfatase-1 (Hsulf-1) is an endosulfatase that selectively removes sulfate groups from heparan sulfate proteoglycans (HSPGs), altering the binding of several growth factors and cytokines to HSPG to regulate cell proliferation, cell motility, and apoptosis. We investigated the role of combined cancer gene therapy with Hsulf-1 and cytosine deaminase/5-fluorocytosine (CD/5-FC) suicide gene on a hepatocellular carcinoma (HCC) cell line, HepG2, in vitro and in vivo. Methods: Reverse transcription polymerase chain reaction and immunohistochemistry were used to determine the expression of Hsulf-1 in HCC. Cell apoptosis was observed through flow cytometry instrument and mechanism of Hsulf-1 to enhance the cytotoxicity of 5-FC against HCC was analyzed in HCC by confocal microscopy. We also establish a nude mice model of HCC to address the effect of Hsulf-1 expression on the CD/5-FC suicide gene therapy in vivo. Results: A significant decrease in HepG2 cell proliferation and an increase in HepG2 cell apoptosis were observed when Hsulf-1 expression was combined with the CD/5-FC gene suicide system. A noticeable bystander effect was observed when the Hsulf-1 and CD genes were co-expressed. Intracellular calcium was also increased after HepG2 cells were infected with the Hsulf-1 gene. In vivo studies showed that the suppression of tumor growth was more pronounced in animals treated with the Hsulf-1 plus CD than those treated with either gene therapy alone, and the combined treatment resulted in a significant increase in survival. Conclusions: Hsulf-1 expression combined with the CD/5-FC gene suicide system could be an effective treatment approach for HCC. PMID:25963362

  8. Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria.

    PubMed

    Prigent-Combaret, Claire; Blaha, Didier; Pothier, Joël F; Vial, Ludovic; Poirier, Marie-Andrée; Wisniewski-Dyé, Florence; Moënne-Loccoz, Yvan

    2008-08-01

    The phytostimulatory alphaproteobacterium Azospirillum lipoferum 4B exhibits the plant-beneficial gene acdS, which enables deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Here, we show that acdS is in the vicinity of acdR, a homolog to leucine-responsive regulator lrp, in A. lipoferum 4B and most other acdS+ Proteobacteria. Unlike in Beta- and Gammaproteobacteria, acdS (and acdR) is preferentially located on symbiotic islands and plasmids in Alphaproteobacteria. In A. lipoferum 4B, acdS was mapped on a 750-kb plasmid that is lost during phenotypic variation, whereas other phytobeneficial genes such as nifH (associative nitrogen fixation) are maintained. In Proteobacteria, the phylogenies of acdR and acdS were largely but not totally congruent, despite physical proximity of the genes, regardless of whether DNA or deduced protein sequences were used. Potential Lrp, cAMP receptor protein (CRP) and fumarate-nitrate reduction regulator (FNR) binding sites were evidenced in the acdS promoter regions of strain 4B and most of 46 other acdS+ Proteobacteria. Indeed, transcriptional and enzymatic analyses done in vitro pointed to the involvement of Lrp- and FNR-like transcriptional up-regulation of ACC deaminase activity in A. lipoferum 4B. This is the first synteny, phylogenetic, and functional analysis of factors modulating acdS expression in Azospirillum plant growth-promoting rhizobacterium.

  9. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep.

    PubMed

    Rétey, J V; Adam, M; Khatami, R; Luhmann, U F O; Jung, H H; Berger, W; Landolt, H-P

    2007-05-01

    Caffeine is the most widely used stimulant in Western countries. Some people voluntarily reduce caffeine consumption because it impairs the quality of their sleep. Studies in mice revealed that the disruption of sleep after caffeine is mediated by blockade of adenosine A2A receptors. Here we show in humans that (1) habitual caffeine consumption is associated with reduced sleep quality in self-rated caffeine-sensitive individuals, but not in caffeine-insensitive individuals; (2) the distribution of distinct c.1083T>C genotypes of the adenosine A2A receptor gene (ADORA2A) differs between caffeine-sensitive and -insensitive adults; and (3) the ADORA2A c.1083T>C genotype determines how closely the caffeine-induced changes in brain electrical activity during sleep resemble the alterations observed in patients with insomnia. These data demonstrate a role of adenosine A2A receptors for sleep in humans, and suggest that a common variation in ADORA2A contributes to subjective and objective responses to caffeine on sleep.

  10. Adenosine-uridine-rich element is one of the required cis-elements for epimastigote form stage-specific gene expression of the congolense epimastigote specific protein.

    PubMed

    Suganuma, Keisuke; Mochabo, Kennedy Miyoro; Hakimi, Hassan; Yamasaki, Shino; Yamagishi, Junya; Asada, Masahito; Kawazu, Shin-Ichiro; Inoue, Noboru

    2013-09-01

    It is known that gene expression in kinetoplastida is regulated post-transcriptionally. Several previous studies have shown that stage-specific gene expression in trypanosomes is regulated by cis-elements located in the 3' untranslated region (UTR) of each mRNA and also by RNA binding proteins. Our previous study revealed that gene expression of congolense epimastigote specific protein (cesp) was regulated by cis-elements located in the 3'UTR. In the present study, we identified the adenosine and uridine rich region in the cesp 3'UTR. Using transgenic trypanosome cell lines with different egfp expression cassettes, we showed that this adenosine and uridine rich region is one of the regulatory elements for epimastigote form (EMF) stage-specific gene expression via the regulatory cis-element of the eukaryotic AU rich element (ARE). Therefore this required element within the cesp 3'UTR was designated as T. congolense ARE. This required cis-element might selectively stabilize mRNA in the EMF stage and destabilize mRNA in other stages. By RNA electro mobility shift assay, unknown stage-specific RNA binding proteins (RBPs) whose sequences specifically interacted with the required cis-element were found. These results indicate that EMF stage specific cis-element and RBP complexes might specifically stabilize cesp mRNA in EMF. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients

    PubMed Central

    Sauer, Aisha V.; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L.; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S.; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D.; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D’Adamo, Patrizia; Aiuti, Alessandro

    2017-01-01

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency. PMID:28074903

  12. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients.

    PubMed

    Sauer, Aisha V; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D'Adamo, Patrizia; Aiuti, Alessandro

    2017-01-11

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency.

  13. Inhibition of AMP deaminase as therapeutic target in cardiovascular pathology.

    PubMed

    Zabielska, Magdalena A; Borkowski, Tomasz; Slominska, Ewa M; Smolenski, Ryszard T

    2015-08-01

    AMP deaminase (AMPD; EC 3.5.4.6) catalyzes hydrolysis of the amino group from the adenine ring of AMP resulting in production of inosine 5'-monophosphate (IMP) and ammonia. This reaction helps to maintain healthy cellular energetics by removing excess AMP that accumulates in energy depleted cells. Furthermore, AMPD permits the synthesis of guanine nucleotides from the larger adenylate pool. This enzyme competes with cytosolic 5'-nucleotidases (c5NT) for AMP. Adenosine, a product of c5NT is a vasodilator, antagonizes inotropic effects of catecholamines and exerts anti-platelet, anti-inflammatory and immunosuppressive activities. The ratio of AMPD/c5NT defines the amount of adenosine produced in adenine nucleotide catabolic pathway. Inhibition of AMPD could alter this ratio resulting in increased adenosine production. Besides the potential effect on adenosine production, elevation of AMP due to inhibition of AMPD could also lead to activation of AMP regulated protein kinase (AMPK) with myriad of downstream events including enhanced energetic metabolism, mitochondrial biogenesis and cytoprotection. While the benefits of these processes are well appreciated in cells such as skeletal or cardiac myocytes its role in protection of endothelium could be even more important. Therapeutic use of AMPD inhibition has been limited due to difficulties with obtaining compounds with adequate characteristics. However, endothelium seems to be the easiest target as effective inhibition of AMPD could be achieved at much lower concentration than in the other types of cells. New generation of AMPD inhibitors has recently been established and its testing in context of endothelial and organ protection could provide important basic knowledge and potential therapeutic tools.

  14. Temporal variations of adenosine metabolism in human blood.

    PubMed

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yáñez, L; Aguilar-Roblero, R; Oksenberg, A; Vega-González, A; Villalobos, L; Rosenthal, L; Fernández-Cancino, F; Drucker-Colín, R; Díaz-Muñoz, M

    1996-08-01

    Eight diurnally active (06:00-23:00 h) subjects were adapted for 2 days to the room conditions where the experiments were performed. Blood sampling for adenosine metabolites and metabolizing enzymes was done hourly during the activity span and every 30 min during sleep. The results showed that adenosine and its catabolites (inosine, hypoxanthine, and uric acid), adenosine synthesizing (S-adenosylhomocysteine hydrolase and 5'-nucleotidase), degrading (adenosine deaminase) and nucleotide-forming (adenosine kinase) enzymes as well as adenine nucleotides (AMP, ADP, and ATP) undergo statistically significant fluctuations (ANOVA) during the 24 h. However, energy charge was invariable. Glucose and lactate chronograms were determined as metabolic indicators. The same data analyzed by the chi-square periodogram and Fourier series indicated ultradian oscillatory periods for all the metabolites and enzymatic activities determined, and 24-h oscillatory components for inosine, hypoxanthine, adenine nucleotides, glucose, and the activities of SAH-hydrolase, 5'-nucleotidase, and adenosine kinase. The single cosinor method showed significant oscillatory components exclusively for lactate. As a whole, these results suggest that adenosine metabolism may play a role as a biological oscillator coordinating and/or modulating the energy homeostasis and physiological status of erythrocytes in vivo and could be an important factor in the distribution of purine rings for the rest of the organism.

  15. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

    PubMed Central

    Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2008-01-01

    Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377

  16. Acute intermittent porphyria: characterization of two novel mutations in the porphobilinogen deaminase gene, one amino acid deletion (453-455delAGC) and one splicing aceptor site mutation (IVS8-1G>T).

    PubMed

    De Siervi, A; Mendez, M; Parera, V E; Varela, L; Batlle, A M; Rossetti, M V

    1999-10-01

    A partial deficiency of Porphobilinogen deaminase (PBG-D) is responsible for acute intermittent porphyria (AIP). AIP is inherited in an autosomal dominant fashion, and the prevalence in the Argentinean population is about 1:125,000. Here, two new mutations and three previously reported were found in the PBG-D gene in 12 Argentinean AIP patients corresponding to 5 different families. To screen for AIP mutations in symptomatic patients, genomic DNA isolated was amplified in 2 Multiplex PCR reactions, then all coding exons and flanking intronic regions were sequenced. The new mutations are 453-455delAGC in exon 9 which results in the loss of an alanine residue at position 152, and one new point mutation in the splicing aceptor site in the last position of intron 8 (IVS8-1G>T) which leds to a 15 bp deletion because a cryptic site (first AG upstream) is used. Both mutations produce amino acid deletion without frameshift effect. To further characterize the 453-455delAGC mutation, the pKK-PBGD construct for the mutant allele was expressed in E. coli, the enzymatic activity of the recombinant protein was 1.3% of the mean level expressed by the normal allele. Finally, three missense mutations, previously reported, were identified in three unrelated families. Copyright 1999 Wiley-Liss, Inc.

  17. Positive control of D-serine deaminase synthesis in vitro.

    PubMed

    Heincz, M C; Kelker, N E; McFall, E

    1978-04-01

    Efficient constitutive synthesis of D-serine deaminase [D-serine hydro-lyase (deaminating); EC 4.2.1.14] is obtained in vitro by using a slightly modified Zubay system programmed with dsdO6 dsdA+DNA. Synthesis from a dsdO+ dsdA+ template requires active dsdC gene product and 3':5'-cyclic AMP. In vitro synthesis of dsdC product is obtained with a dsdC+ dsdO+ dsdA+ or a dsdCc dsdO+ dsdA+ template; this synthesis is thermosensitive and can be uncoupled from D-serine deaminase synthesis by temperature shift.

  18. Positive control of D-serine deaminase synthesis in vitro.

    PubMed Central

    Heincz, M C; Kelker, N E; McFall, E

    1978-01-01

    Efficient constitutive synthesis of D-serine deaminase [D-serine hydro-lyase (deaminating); EC 4.2.1.14] is obtained in vitro by using a slightly modified Zubay system programmed with dsdO6 dsdA+DNA. Synthesis from a dsdO+ dsdA+ template requires active dsdC gene product and 3':5'-cyclic AMP. In vitro synthesis of dsdC product is obtained with a dsdC+ dsdO+ dsdA+ or a dsdCc dsdO+ dsdA+ template; this synthesis is thermosensitive and can be uncoupled from D-serine deaminase synthesis by temperature shift. PMID:347444

  19. ACC deaminase from plant growth-promoting bacteria affects crown gall development.

    PubMed

    Hao, Youai; Charles, Trevor C; Glick, Bernard R

    2007-12-01

    In addition to the well-known roles of indoleacetic acid and cytokinin in crown gall formation, the plant hormone ethylene also plays an important role in this process. Many plant growth-promoting bacteria (PGPB) encode the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which can degrade ACC, the immediate precursor of ethylene in plants, to alpha-ketobutyrate and ammonia and thereby lower plant ethylene levels. To study the effect of ACC deaminase on crown gall development, an ACC deaminase gene from the PGPB Pseudomonas putida UW4 was introduced into Agrobacterium tumefaciens C58, so that the effect of ACC deaminase activity on tumour formation in tomato and castor bean plants could be assessed. Plants were also coinoculated with A. tumefaciens C58 and P. putida UW4 or P. putida UW4-acdS- (an ACC deaminase minus mutant strain). In both types of experiments, it was observed that the presence of ACC deaminase generally inhibited tumour development on both tomato and castor bean plants.

  20. Regulatory factors governing adenosine-to-inosine (A-to-I) RNA editing.

    PubMed

    Hong, HuiQi; Lin, Jaymie Siqi; Chen, Leilei

    2015-03-31

    Adenosine-to-inosine (A-to-I) RNA editing, the most prevalent mode of transcript modification in higher eukaryotes, is catalysed by the adenosine deaminases acting on RNA (ADARs). A-to-I editing imposes an additional layer of gene regulation as it dictates various aspects of RNA metabolism, including RNA folding, processing, localization and degradation. Furthermore, editing events in exonic regions contribute to proteome diversity as translational machinery decodes inosine as guanosine. Although it has been demonstrated that dysregulated A-to-I editing contributes to various diseases, the precise regulatory mechanisms governing this critical cellular process have yet to be fully elucidated. However, integration of previous studies revealed that regulation of A-to-I editing is multifaceted, weaving an intricate network of auto- and transregulations, including the involvement of virus-originated factors like adenovirus-associated RNA. Taken together, it is apparent that tipping of any regulatory components will have profound effects on A-to-I editing, which in turn contributes to both normal and aberrant physiological conditions. A complete understanding of this intricate regulatory network may ultimately be translated into new therapeutic strategies against diseases driven by perturbed RNA editing events. Herein, we review the current state of knowledge on the regulatory mechanisms governing A-to-I editing and propose the role of other co-factors that may be involved in this complex regulatory process.

  1. Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use.

    PubMed

    Kim, Kyoung-Yoon; Yi, Bo-Rim; Lee, Hye-Rim; Kang, Nam-Hee; Jeung, Eui-Bae; Kim, Seung U; Choi, Kyung-Chul

    2012-04-01

    Genetically engineered stem cells (GESTECs) producing suicide enzymes and immunotherapeutic cytokines have therapeutic effects on tumors, and may possibly reduce the side effects of toxic drugs used for treatments. Suicide enzymes can convert non-toxic pro-drugs to toxic metabolites that can reduce tumor growth. Cytosine deaminase (CD) is a suicide enzyme that metabolizes a non-toxic pro-drug, 5-fluorocytosine (5-FC), into the cytotoxic agent, 5-fluorouracil (5-FU). As an immunotherapeutic agent, human interferon-β (IFN-β) has anticancer effects. In this study, we used modified human neural stem cells (HB1.F3) expressing the Escherichia coli (E. coli) CD gene (HB1.F3.CD) or both the CD and human IFN-β genes (HB1.F3.CD.IFN-β) and evaluated their effectiveness on gastric carcinoma cells (AGS); migration of GESTECs to AGS was analyzed as well as formation of 5-FU and IFN-β. Reverse transcription-polymerase chain reaction (RT-PCR) was used to confirm the expression of CD and IFN-β genes in GESTECs along with confirming the production of chemoattractant molecules such as stem cell factor (SCF), CXCR4, c-Kit, vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). In addition, by co-culturing GESTECs with AGS in the presence of 5-FC, we were able to confirm that cancer growth was inhibited, along with a synergistic effect when the CD and IFN-β genes (HB1.F3.CD.IFN-β) were co-expressed. Indeed a marked anticancer effect was demonstrated when the CD and IFN-β genes were expressed together compared to expression of the CD gene alone (HB1.F3.CD). According to a modified transwell migration assay, the migration of GESTECs toward AGS was confirmed. In conclusion, these data suggest potential application of GESTECs to gastric cancer therapy, due to a remarkable synergistic effect of CD and IFN-β genes in the presence of 5-FC. Additionally, the tumor-selective migration capability in vitro suggests that GESTECs are a potential anticancer therapy

  2. The RNA-editing deaminase ADAR is involved in stress resistance of Artemia diapause embryos.

    PubMed

    Dai, Li; Liu, Xue-Chen; Ye, Sen; Li, Hua-Wei; Chen, Dian-Fu; Yu, Xiao-Jian; Huang, Xue-Ting; Zhang, Li; Yang, Fan; Yang, Jin-Shu; Yang, Wei-Jun

    2016-11-01

    The most widespread type of RNA editing, conversion of adenosine to inosine (A→I), is catalyzed by two members of the adenosine deaminase acting on RNA (ADAR) family, ADAR1 and ADAR2. These enzymes edit transcripts for neurotransmitter receptors and ion channels during adaption to changes in the physical environment. In the primitive crustacean Artemia, when maternal adults are exposed to unfavorable conditions, they release diapause embryos to withstand harsh environments. The aim of the current study was therefore to elucidate the role of ADAR of Artemia diapause embryos in resistance to stress. Here, we identified Artemia ADAR (Ar-ADAR), which harbors a putative nuclear localization sequence (NLS) and two double-stranded RNA-binding motifs (dsRBMs) in the amino-terminal region and an adenosine deaminase (AD) domain in the carboxyl-terminal region. Western blot and immunofluorescence analysis revealed that Ar-ADAR is expressed abundantly in post-diapause embryos. Artemia (n = 200, three replicates) were tested under basal and stress conditions. We found that Ar-ADAR was significantly induced in response to the stresses of salinity and heat-shock. Furthermore, in vivo knockdown of Ar-ADAR (n = 100, three replicates) by RNA interference induced formation of pseudo-diapause embryos, which lack resistance to the stresses and exhibit high levels of apoptosis. These results indicate that Ar-ADAR contributes to resistance to stress in Artemia diapause embryos.

  3. Identification of a 5′-Deoxyadenosine Deaminase in Methanocaldococcus jannaschii and Its Possible Role in Recycling the Radical S-Adenosylmethionine Enzyme Reaction Product 5′-Deoxyadenosine

    PubMed Central

    Miller, Danielle; O'Brien, Kaitlin; Xu, Huimin

    2014-01-01

    We characterize here the MJ1541 gene product from Methanocaldococcus jannaschii, an enzyme that was annotated as a 5′-methylthioadenosine/S-adenosylhomocysteine deaminase (EC 3.5.4.31/3.5.4.28). The MJ1541 gene product catalyzes the conversion of 5′-deoxyadenosine to 5′-deoxyinosine as its major product but will also deaminate 5′-methylthioadenosine, S-adenosylhomocysteine, and adenosine to a small extent. On the basis of these findings, we are naming this new enzyme 5′-deoxyadenosine deaminase (DadD). The Km for 5′-deoxyadenosine was found to be 14.0 ± 1.2 μM with a kcat/Km of 9.1 × 109 M−1 s−1. Radical S-adenosylmethionine (SAM) enzymes account for nearly 2% of the M. jannaschii genome, where the major SAM derived products is 5′-deoxyadenosine. Since 5′-dA has been demonstrated to be an inhibitor of radical SAM enzymes; a pathway for removing this product must be present. We propose here that DadD is involved in the recycling of 5′-deoxyadenosine, whereupon the 5′-deoxyribose moiety of 5′-deoxyinosine is further metabolized to deoxyhexoses used for the biosynthesis of aromatic amino acids in methanogens. PMID:24375099

  4. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome.

    PubMed

    Lemaire, Benny; Van Cauwenberghe, Jannick; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Muasya, A Muthama

    2015-11-01

    The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types.

  5. Association of G22A and A4223C ADA1 gene polymorphisms and ADA activity with PCOS.

    PubMed

    Salehabadi, Mahshid; Farimani, Marzieh; Tavilani, Heidar; Ghorbani, Marzieh; Poormonsefi, Faranak; Poorolajal, Jalal; Shafiei, Gholamreza; Ghasemkhani, Neda; Khodadadi, Iraj

    2016-06-01

    Adenosine deaminase-1 (ADA1) regulates the concentration of adenosine as the main modulator of oocyte maturation. There is compelling evidence for the association of ADA1 gene polymorphisms with many diseases but the importance of ADA1 polymorphisms in polycystic ovary syndrome (PCOS) has not been studied before. This study investigates serum total ADA activity (tADA), ADA1 and ADA2 isoenzyme activities, and genotype and allele frequencies of G22A and A4223C polymorphisms in healthy and PCOS women. In this case-control study 200 PCOS patients and 200 healthy women were enrolled. Genomic DNA was extracted from whole blood and the PCR-RFLP technique was used to determine the G22A and A4223C variants. The genotype frequencies were calculated and the association between polymorphic genotypes and enzyme activities were determined. tADA activity was significantly lower in the PCOS group compared with the control group (27.76±6.0 vs. 39.63±7.48, respectively). PCOS patients also showed reduced activity of ADA1 and ADA2. PCOS was not associated with G22A polymorphism whereas AA, AC, and CC genotypes of A4223C polymorphism were found distributed differently between the control and the PCOS women where the C allele showed a strong protective role for PCOS (odds ratio=1.876, p=0.033). The present study for the first time showed that lower ADA activity may be involved in pathogenesis of PCOS by maintaining a higher concentration of adenosine affecting follicular growth. As a novel finding, we also showed great differences in genotype distribution and allele frequencies of A4223C polymorphism between groups indicating a protective role for C allele against PCOS. AbbreviationsADA: adenosine deaminase PCOS: polycystic ovary syndrome PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism tADA: total adenosine deaminase.

  6. Lymphocytes as cellular vehicles for gene therapy in mouse and man

    SciTech Connect

    Culver, K.; Cornetta, K.; Morgan, R.; Morecki, S.; Aebersold, P.; Kasid, A.; Lotze, M.; Rosenberg, S.A.; Anderson, W.F.; Blaese, R.M. )

    1991-04-15

    The application of bone marrow gene therapy has been stalled by the inability to achieve stable high-level gene transfer and expression in the totipotent stem cells. The authors that retroviral vectors can stably introduce genes into antigen-specific murine and human T lymphocytes in culture. Murine helper T cells were transduced with the retroviral vector SAX to express both neomycin-resistance and human adenosine deaminase genes. To determine if cultured T cells might be used for gene therapy, their persistence and continued expression of the introduced genes was evaluated in nude mice transplanted with the SAX-transduced T cells. They studied cultured human tumor-infiltrating lymphocytes as a candidate cell for a trial of gene transfer in man. Gene insertion and subsequent G418 selection did not substantially alter the growth characteristics, interleukin 2 dependence, membrane phenotype, or cytotoxicity profile of the transduced T cells. These studies provided a portion of the experimental evidence supporting the feasibility of the presently ongoing clinical trials of lymphocyte gene therapy in cancer as well as in patients with adenosine deaminase deficiency.

  7. Adenosine and Ischemic Preconditioning

    PubMed Central

    Liang, Bruce T.; Swierkosz, Tomasz A.; Herrmann, Howard C.; Kimmel, Stephen; Jacobson, Kenneth A.

    2012-01-01

    Adenosine is released in large amounts during myocardial ischemia and is capable of exerting potent cardioprotective effects in the heart. Although these observations on adenosine have been known for a long time, how adenosine acts to achieve its anti-ischemic effect remains incompletely understood. However, recent advances on the chemistry and pharmacology of adenosine receptor ligands have provided important and novel information on the function of adenosine receptor subtypes in the cardiovascular system. The development of model systems for the cardiac actions of adenosine has yielded important insights into its mechanism of action and have begun to elucidate the sequence of signalling events from receptor activation to the actual exertion of its cardioprotective effect. The present review will focus on the adenosine receptors that mediate the potent anti-ischemic effect of adenosine, new ligands at the receptors, potential molecular signalling mechanisms downstream of the receptor, mediators for cardioprotection, and possible clinical applications in cardiovascular disorders. PMID:10607860

  8. Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides.

    PubMed Central

    Cunha, R. A.; Correia-de-Sá, P.; Sebastião, A. M.; Ribeiro, J. A.

    1996-01-01

    1. In the present work, we investigated the action of adenosine originating from extracellular catabolism of adenine nucleotides, in two preparations where synaptic transmission is modulated by both inhibitory A1 and excitatory A(2a)-adenosine receptors, the rat hippocampal Schaffer fibres/CA1 pyramid synapses and the rat innervated hemidiaphragm. 2. Endogenous adenosine tonically inhibited synaptic transmission, since 0.5-2 u ml-1 of adenosine deaminase increased both the population spike amplitude (30 +/- 4%) and field excitatory post-synaptic potential (f.e.p.s.p.) slope (27 +/- 4%) recorded from hippocampal slices and the evoked [3H]-acetylcholine ([3H]-ACh) release from the motor nerve terminals (25 +/- 2%). 3. alpha, beta-Methylene adenosine diphosphate (AOPCP) in concentrations (100-200 microM) that almost completely inhibited the formation of adenosine from the extracellular catabolism of AMP, decreased population spike amplitude by 39 +/- 5% and f.e.p.s.p. slope by 32 +/- 3% in hippocampal slices and [3H]-ACh release from motor nerve terminals by 27 +/- 3%. 4. Addition of exogenous 5'-nucleotidase (5 u ml-1) prevented the inhibitory effect of AOPCP on population spike amplitude and f.e.p.s.p. slope by 43-57%, whereas the P2 antagonist, suramin (100 microM), did not modify the effect of AOPCP. 5. In both preparations, the effect of AOPCP resulted from prevention of adenosine formation since it was no longer evident when accumulation of extracellular adenosine was hindered by adenosine deaminase (0.5-2 u ml-1). The inhibitory effect of AOPCP was still evident when A1 receptors were blocked by 1,3-dipropyl-8-cyclopentylxanthine (2.5-5 nM), but was abolished by the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (10 microM). 6. These results suggest that adenosine originating from catabolism of released adenine nucleotides preferentially activates excitatory A2 receptors in hippocampal CAI pyramid synapses and in phrenic motor nerve endings. PMID:8886406

  9. Adenosine Kinase of Trypanosoma brucei and Its Role in Susceptibility to Adenosine Antimetabolites▿ †

    PubMed Central

    Lüscher, Alexandra; Önal, Pinar; Schweingruber, Anne-Marie; Mäser, Pascal

    2007-01-01

    Trypanosoma brucei cannot synthesize purines de novo and relies on purine salvage from its hosts to build nucleic acids. With adenosine being a preferred purine source of bloodstream-form trypanosomes, adenosine kinase (AK; EC 2.7.1.20) is likely to be a key player in purine salvage. Adenosine kinase is also of high pharmacological interest, since for many adenosine antimetabolites, phosphorylation is a prerequisite for activity. Here, we cloned and functionally characterized adenosine kinase from T. brucei (TbAK). TbAK is a tandem gene, expressed in both procyclic- and bloodstream-form trypanosomes, whose product localized to the cytosol of the parasites. The RNA interference-mediated silencing of TbAK suggested that the gene is nonessential under standard growth conditions. Inhibition or downregulation of TbAK rendered the trypanosomes resistant to cordycepin (3′-deoxyadenosine), demonstrating a role for TbAK in the activation of adenosine antimetabolites. The expression of TbAK in Saccharomyces cerevisiae complemented a null mutation in the adenosine kinase gene ado1. The concomitant expression of TbAK with the T. brucei adenosine transporter gene TbAT1 allowed S. cerevisiae ado1 ade2 double mutants to grow on adenosine as the sole purine source and, at the same time, sensitized them to adenosine antimetabolites. The coexpression of TbAK and TbAT1 in S. cerevisiae ado1 ade2 double mutants proved to be a convenient tool for testing nucleoside analogues for uptake and activation by T. brucei adenosine salvage enzymes. PMID:17698621

  10. Rescue of the Orphan Enzyme Isoguanine Deaminase

    PubMed Central

    Hitchcock, Daniel S.; Fedorov, Alexander A.; Fedorov, Elena V.; Dangott, Lawrence J.; Almo, Steven C.; Raushel, Frank M.

    2011-01-01

    Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are kcat = 49 s-1, Km = 72 μM, and kcat/Km = 6.7 × 105 M-1 s-1. The kinetic constant for the deamination of cytosine are kcat = 45 s-1, Km = 302 μM, and kcat/Km = 1.5 × 105 M-1 s-1. Under these reaction conditions isoguanine is the better substrate for cytosine deaminase. The three dimensional structure of CDA was determined with isoguanine in the active site. PMID:21604715

  11. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture.

    PubMed

    Saleem, Muhammad; Arshad, Muhammad; Hussain, Sarfraz; Bhatti, Ahmad Saeed

    2007-10-01

    Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into alpha-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.

  12. Extracellular adenosine triphosphate and adenosine in cancer.

    PubMed

    Stagg, J; Smyth, M J

    2010-09-30

    Adenosine triphosphate (ATP) is actively released in the extracellular environment in response to tissue damage and cellular stress. Through the activation of P2X and P2Y receptors, extracellular ATP enhances tissue repair, promotes the recruitment of immune phagocytes and dendritic cells, and acts as a co-activator of NLR family, pyrin domain-containing 3 (NLRP3) inflammasomes. The conversion of extracellular ATP to adenosine, in contrast, essentially through the enzymatic activity of the ecto-nucleotidases CD39 and CD73, acts as a negative-feedback mechanism to prevent excessive immune responses. Here we review the effects of extracellular ATP and adenosine on tumorigenesis. First, we summarize the functions of extracellular ATP and adenosine in the context of tumor immunity. Second, we present an overview of the immunosuppressive and pro-angiogenic effects of extracellular adenosine. Third, we present experimental evidence that extracellular ATP and adenosine receptors are expressed by tumor cells and enhance tumor growth. Finally, we discuss recent studies, including our own work, which suggest that therapeutic approaches that promote ATP-mediated activation of inflammasomes, or inhibit the accumulation of tumor-derived extracellular adenosine, may constitute effective new means to induce anticancer activity.

  13. Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5'-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes.

    PubMed

    Meyer, Birte; Kuever, Jan

    2007-10-01

    Dissimilatory adenosine-5'-phosphosulfate (APS) reductase (AprBA) is a key enzyme of the dissimilatory sulfate-reduction pathway. Homologues have been found in photo- and chemotrophic sulfur-oxidizing prokaryotes (SOP), in which they are postulated to operate in the reverse direction, oxidizing sulfite to APS. Newly developed PCR assays allowed the amplification of 92-93 % (2.1-2.3 kb) of the APS reductase locus aprBA. PCR-based screening of 116 taxonomically divergent SOP reference strains revealed a distribution of aprBA restricted to photo- and chemotrophs with strict anaerobic or at least facultative anaerobic lifestyles, including Chlorobiaceae, Chromatiaceae, Thiobacillus, Thiothrix and invertebrate symbionts. In the AprBA-based tree, the SOP diverge into two distantly related phylogenetic lineages, Apr lineages I and II, with the proteins of lineage II (Chlorobiaceae and others) in closer affiliation to the enzymes of the sulfate-reducing prokaryotes (SRP). This clustering is discordant with the dissimilatory sulfite reductase (DsrAB) phylogeny and indicates putative lateral aprBA gene transfer from SRP to the respective SOB lineages. In support of lateral gene transfer (LGT), several beta- and gammaproteobacterial species harbour both aprBA homologues, the DsrAB-congruent 'authentic' and the SRP-related, LGT-derived gene loci, while some relatives possess exclusively the SRP-related apr genes as a possible result of resident gene displacement by the xenologue. The two-gene state might be an intermediate in the replacement of the resident essential gene. Collected genome data demonstrate the correlation between the AprBA tree topology and the composition/arrangement of the apr gene loci (occurrence of qmoABC or aprM genes) from SRP and SOP of lineages I and II. The putative functional role of the SRP-related APS reductases in photo- and chemotrophic SOP is discussed.

  14. The Role of Gene Duplication in the Evolution of Purine Nucleotide Salvage Pathways

    NASA Astrophysics Data System (ADS)

    Becerra, Arturo; Lazcano, Antonio

    1998-10-01

    Purine nucleotides are formed de novo by a widespread biochemical route that may be of monophyletic origin, or are synthesized from preformed purine bases and nucleosides through different salvage pathways. Three monophyletic sets of purine salvage enzymes, each of which catalyzes mechanistically similar reactions, can be identified: (a) adenine-, xanthine-, hypoxanthine- and guanine-phosphoribosyltransferases, which are all homologous among themselves, as well as to nucleoside phosphorylases; (b) adenine deaminase, adenosine deaminase, and adenosine monophophate deaminase; and (c) guanine reductase and inosine monophosphate dehydrogenase. These homologies support the idea that substrate specificity is the outcome of gene duplication, and that the purine nucleotide salvage pathways were assembled by a patchwork process that probably took place before the divergence of the three cell domains (Bacteria, Archaea, and Eucarya). Based on the ability of adenine PRTase to catalyze the condensation of PRPP with 4-aminoimidazole-5-carboxamide (AICA), a simpler scheme of purine nucleotide biosynthesis is presented. This hypothetical route requires the prior evolution of PRPP biosynthesis. Since it has been argued that PRPP, nucleosides, and nucleotides are susceptible to hydrolysis, they are very unlikely prebiotic compounds. If this is the case, it implies that many purine salvage pathways appeared only after the evolution of phosphorylated sugar biosynthetic pathways made ribosides available.

  15. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish.

    PubMed

    Bortolotto, Josiane Woutheres; Melo, Gabriela Madalena de; Cognato, Giana de Paula; Vianna, Mônica Ryff Moreira; Bonan, Carla Denise

    2015-02-01

    Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A rapid enzymatic assay for high-throughput screening of adenosine-producing strains

    PubMed Central

    Dong, Huina; Zu, Xin; Zheng, Ping; Zhang, Dawei

    2015-01-01

    Adenosine is a major local regulator of tissue function and industrially useful as precursor for the production of medicinal nucleoside substances. High-throughput screening of adenosine overproducers is important for industrial microorganism breeding. An enzymatic assay of adenosine was developed by combined adenosine deaminase (ADA) with indophenol method. The ADA catalyzes the cleavage of adenosine to inosine and NH3, the latter can be accurately determined by indophenol method. The assay system was optimized to deliver a good performance and could tolerate the addition of inorganic salts and many nutrition components to the assay mixtures. Adenosine could be accurately determined by this assay using 96-well microplates. Spike and recovery tests showed that this assay can accurately and reproducibly determine increases in adenosine in fermentation broth without any pretreatment to remove proteins and potentially interfering low-molecular-weight molecules. This assay was also applied to high-throughput screening for high adenosine-producing strains. The high selectivity and accuracy of the ADA assay provides rapid and high-throughput analysis of adenosine in large numbers of samples. PMID:25580842

  17. Endogenous adenosine is an autacoid feedback inhibitor of chloride transport in the shark rectal gland.

    PubMed Central

    Kelley, G G; Aassar, O S; Forrest, J N

    1991-01-01

    The present studies define the physiologic role of endogenous adenosine in the perfused shark rectal gland, a model epithelia for hormone-stimulated chloride transport. Chloride ion secretion, and venous adenosine and inosine concentrations increased in parallel in response to hormone stimulation. From a basal rate of 157 +/- 26 mu eq/h per g, chloride secretion increased to 836 +/- 96 and 2170 +/- 358 with 1 and 10 microM forskolin, venous adenosine increased from 5.0 +/- 1 to 126 +/- 29 and 896 +/- 181 nM, and inosine increased from 30 +/- 9 to 349 +/- 77 and 1719 +/- 454 nM (all P less than 0.01). Nitrobenzylthioinosine (NBTI), a nucleoside transport inhibitor, completely blocked the release of adenosine and inosine. Inhibition of chloride transport with bumetanide, an inhibitor of the Na+/K+/2Cl- cotransporter, or ouabain, an inhibitor of Na+/K+ ATPase activity, reduced venous adenosine and inosine to basal values. When the interaction of endogenous adenosine with extracellular receptors was prevented by adenosine deaminase, NBTI, or 8-phenyltheophylline, the chloride transport response to secretagogues increased by 1.7-2.3-fold. These studies demonstrate that endogenous adenosine is released in response to hormone-stimulated cellular work and acts at A1 adenosine receptors as a feedback inhibitor of chloride transport. Images PMID:1752953

  18. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    PubMed

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A study of the possible association between adenosine A2A receptor gene polymorphisms and attention-deficit hyperactivity disorder traits.

    PubMed

    Molero, Y; Gumpert, C; Serlachius, E; Lichtenstein, P; Walum, H; Johansson, D; Anckarsäter, H; Westberg, L; Eriksson, E; Halldner, L

    2013-04-01

    The adenosine A2A receptor (ADORA2A) is linked to the dopamine neurotransmitter system and is also implicated in the regulation of alertness, suggesting a potential association with attention-deficit hyperactivity disorder (ADHD) traits. Furthermore, animal studies suggest that the ADORA2A may influence ADHD-like behavior. For that reason, the ADORA2A gene emerges as a promising candidate for studying the etiology of ADHD traits. The aim of this study was to examine the relationship between ADORA2A gene polymorphisms and ADHD traits in a large population-based sample. This study was based on the Child and Adolescent Twin Study in Sweden (CATSS), and included 1747 twins. Attention-deficit hyperactivity disorder traits were assessed through parental reports, and samples of DNA were collected. Associations between six single nucleotide polymorphisms (SNPs) and ADHD traits were examined, and results suggested a nominal association between ADHD traits and three of these SNPs: rs3761422, rs5751876 and rs35320474. For one of the SNPs, rs35320474, results remained significant after correction for multiple comparisons. These results indicate the possibility that the ADORA2A gene may be involved in ADHD traits. However, more studies replicating the present results are warranted before this association can be confirmed. Genes, Brain and Behavior © 2013 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  20. Role of adenosine in the depolarization of hypoxic hamster diaphragm membrane in vitro.

    PubMed

    Esau, S A

    1994-04-01

    The resting membrane potential of in vitro hamster diaphragm muscle fibers is depolarized on exposure to hypoxia. It was hypothesized that this depolarization was mediated by adenosine. It was predicted that the treatment of well-oxygenated hamster diaphragm muscle strips in vitro with adenosine or adenosine agonists would depolarize the diaphragm fiber membrane. Furthermore, resting membrane potential of hypoxic diaphragm fibers would be repolarized by (1) the removal of adenosine by the enzyme adenosine deaminase (ADA), or (2) the addition of an adenosine antagonist, BW A1433. Adenosine (10(-4) M) depolarized the membrane by 8 +/- 1 mV (p < 0.001). The adenosine agonist cyclopentyladenosine, which has predominantly A1 receptor affinity, depolarized the membrane from -75.4 +/- 5.6 mV to -68.9 +/- 5.7 mV (p < 0.001). The A2 adenosine receptor agonist 5'-N-ethylcarboxamide adenosine did not cause a significant depolarization. The addition of ADA (2 unit/ml) to hypoxic muscle returned the resting membrane potential to that of well-oxygenated fibers, p < 0.001 versus hypoxia. BW A1433 (3 x 10(-7)) also restored the membrane potential of hypoxic muscle fibers from -72 +/- 1 mV to -79 +/- 1 mV (p < 0.001). These observations suggest that adenosine via the A1 adenosine receptor mediates the hypoxic depolarization of in vitro hamster diaphragm muscle. A direct effect of adenosine on muscle membrane has not been described previously.

  1. Gene therapy for primary immunodeficiencies: Part 1.

    PubMed

    Cavazzana-Calvo, Marina; Fischer, Alain; Hacein-Bey-Abina, Salima; Aiuti, Alessandro

    2012-10-01

    Over 60 patients affected by SCID due to IL2RG deficiency (SCID-X1) or adenosine deaminase (ADA)-SCID have received hematopoietic stem cell gene therapy in the past 15 years using gammaretroviral vectors, resulting in immune reconstitution and clinical benefit in the majority of them. However, the occurrence of insertional oncogenesis in the SCID-X1 trials has led to the development of new clinical trials based on integrating vectors with improved safety design as well as investigation on new technologies for highly efficient gene targeting and site-specific gene editing. Here we will present the experience and perspectives of gene therapy for SCID-X1 and ADA-SCID and discuss the pros and cons of gene therapy in comparison to allogeneic transplantation.

  2. Adenosine triphosphate-binding cassette transporter genes up-regulation in untreated hepatocellular carcinoma is mediated by cellular microRNAs.

    PubMed

    Borel, Florie; Han, Ruiqi; Visser, Allerdien; Petry, Harald; van Deventer, Sander J H; Jansen, Peter L M; Konstantinova, Pavlina

    2012-03-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are drug efflux pumps responsible for the multidrug resistance phenotype causing hepatocellular carcinoma (HCC) treatment failure. Here we studied the expression of 15 ABC transporters relevant for multidrug resistance in 19 paired HCC patient samples (16 untreated, 3 treated by chemotherapeutics). Twelve ABC transporters showed up-regulation in HCC compared with adjacent healthy liver. These include ABCA2, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, ABCC10, ABCC11, ABCC12, and ABCE1. The expression profile and function of some of these transporters have not been associated with HCC thus far. Because cellular microRNAs (miRNAs) are involved in posttranscriptional gene silencing, we hypothesized that regulation of ABC expression in HCC might be mediated by miRNAs. To study this, miRNAs were profiled and dysregulation of 90 miRNAs was shown in HCC compared with healthy liver, including up-regulation of 11 and down-regulation of 79. miRNA target sites in ABC genes were bioinformatically predicted and experimentally verified in vitro using luciferase reporter assays. In total, 13 cellular miRNAs were confirmed that target ABCA1, ABCC1, ABCC5, ABCC10, and ABCE1 genes and mediate changes in gene expression. Correlation analysis between ABC and miRNA expression in individual patients revealed an inverse relationship, providing an indication for miRNA regulation of ABC genes in HCC. Up-regulation of ABC transporters in HCC occurs prior to chemotherapeutic treatment and is associated with miRNA down-regulation. Up-regulation of five ABC genes appears to be mediated by 13 cellular miRNAs in HCC patient samples. miRNA-based gene therapy may be a novel and promising way to affect the ABC profile and overcome clinical multidrug resistance. Copyright © 2011 American Association for the Study of Liver Diseases.

  3. Maintaining Genome Stability: The Role of Helicases and Deaminases

    DTIC Science & Technology

    2007-07-01

    of Helicases and Deaminases PRINCIPAL INVESTIGATOR: XiaoJiang Chen CONTRACTING ORGANIZATION: University of Southern...SUBTITLE 5a. CONTRACT NUMBER Maintaining Genome Stability: The Role of Helicases and Deaminases 5b. GRANT NUMBER W81XWH-05-1-0391 5c... deaminases . We will focus on AID and APOBEC3G to obtain purified deaminase proteins for the in vitro biochemical, functional, and structural

  4. Maintaining Genome Stability: The Role of Helicases and Deaminases

    DTIC Science & Technology

    2006-07-01

    W81XWH-05-1-0391 TITLE: Maintaining Genome Stability: The Role of Helicases and Deaminases PRINCIPAL INVESTIGATOR: Xiaojiang Chen...Helicases and Deaminases 5b. GRANT NUMBER W81XWH-05-1-0391 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Xiaojiang Chen 5e...crystallize the proteins of deaminases . We will focus on AID and APOBEC3G to obtain purified deaminase proteins for the in vitro biochemical

  5. An adenosine derivative compound, IFC305, reverses fibrosis and alters gene expression in a pre-established CCl(4)-induced rat cirrhosis.

    PubMed

    Pérez-Carreón, Julio Isael; Martínez-Pérez, Lidia; Loredo, María Lilia; Yañez-Maldonado, Lucia; Velasco-Loyden, Gabriela; Vidrio-Gómez, Susana; Ramírez-Salcedo, Jorge; Hernández-Luis, Francisco; Velázquez-Martínez, Israel; Suárez-Cuenca, Juan Antonio; Hernández-Muñoz, Rolando; de Sánchez, Victoria Chagoya

    2010-02-01

    Cirrhosis is a complex process that involves a dynamic modification of liver cell phenotype associated to gene expression changes. This study investigates the reversing capacity of an adenosine derivative compound (IFC305) on a rat model of liver cirrhosis and gene expression changes associated with it. Rats were treated with IFC305 or saline for 5 or 10 weeks after cirrhosis induction (CCl(4) treatment for 10 weeks). Fibrosis score, collagenase activity and amount of hepatic stellate cells (HSC, activated and with a lipid-storing phenotype) were measured in livers. In addition, gene expression analysis was performed using 5K DNA microarrays and quantitative RT-PCR. Treatment of cirrhotic rats with IFC305 for 5 or 10 weeks compared to saline control, induced: (1) reduction of fibrosis (50-70%) and of collagen, of alpha-SMA and desmin proteins, as well as of activated HSCs in liver, (2) increased collagenase activity and cell number of lipid-storing HSC, (3) improved serum parameters of liver function, such as reduced activity of aminotransferases and bilirubin. Expression of 413 differential genes, deregulated in cirrhotic samples, tended to be normalized by IFC305 treatment. Some genes modulated at transcript level by IFC305 were Tgfb1, Fn1, Col1a1, C9, Apoa1, Ass1, Cps1, and Pparg. The present study shows that IFC305 reverses liver fibrosis through modulation of adipogenic and fibrosis-related genes and by ameliorating hepatic function. Thus, understanding of the anti-cirrhotic effect of IFC305 might have therapeutical potential in patients with cirrhosis. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. Adenosine and preeclampsia.

    PubMed

    Salsoso, Rocío; Farías, Marcelo; Gutiérrez, Jaime; Pardo, Fabián; Chiarello, Delia I; Toledo, Fernando; Leiva, Andrea; Mate, Alfonso; Vázquez, Carmen M; Sobrevia, Luis

    2017-06-01

    Adenosine is an endogenous nucleoside with pleiotropic effects in different physiological processes including circulation, renal blood flow, immune function, or glucose homeostasis. Changes in adenosine membrane transporters, adenosine receptors, and corresponding intracellular signalling network associate with development of pathologies of pregnancy, including preeclampsia. Preeclampsia is a cause of maternal and perinatal morbidity and mortality affecting 3-5% of pregnancies. Since the proposed mechanisms of preeclampsia development include adenosine-dependent biological effects, adenosine membrane transporters and receptors, and the associated signalling mechanisms might play a role in the pathophysiology of preeclampsia. Preeclampsia associates with increased adenosine concentration in the maternal blood and placental tissue, likely due to local hypoxia and ischemia (although not directly demonstrated), microthrombosis, increased catecholamine release, and platelet activation. In addition, abnormal expression and function of equilibrative nucleoside transporters is described in foetoplacental tissues from preeclampsia; however, the role of adenosine receptors in the aetiology of this disease is not well understood. Adenosine receptors activation may be related to abnormal trophoblast invasion, angiogenesis, and ischemia/reperfusion mechanisms in the placenta from preeclampsia. These mechanisms may explain only a low fraction of the associated abnormal transformation of spiral arteries in preeclampsia, triggering cellular stress and inflammatory mediators release from the placenta to the maternal circulation. Although increased adenosine concentration in preeclampsia may be a compensatory or adaptive mechanism favouring placental angiogenesis, a poor angiogenic state is found in preeclampsia. Thus, preeclampsia-associated complications might affect the cell response to adenosine due to altered expression and activity of adenosine receptors, membrane transporters

  7. Isolation and properties of AMP deaminase from jumbo squid (Dosidicus gigas) mantle muscle from the Gulf of California, Mexico.

    PubMed

    Marquez-Rios, E; Pacheco-Aguilar, R; Castillo-Yañez, F J; Figueroa-Soto, C G; Ezquerra-Brauer, J M; Gollas-Galvan, T

    2008-09-01

    Adenosine monophosphate (AMP) deaminase was purified from jumbo squid mantle muscle by chromatography in cellulose phosphate, Q-Fast and 5'-AMP sepharose. Specific activity of 2.5U/mg protein, 4.5% recovery and 133.68 purification fold were obtained at the end of the experiment. SDS-PAGE showed a single band with 87kDa molecular mass, native PAGE proved a band of 178kDa, whereas gel filtration detected a 180kDa protein, suggesting the homodimeric nature of this enzyme, in which subunits are not linked by covalent forces. Isoelectric focusing of this enzyme showed a pI of 5.76, which agrees with pI values of AMP deaminase from other invertebrate organisms. AMP deaminase presented a kinetic sigmoidal plot with Vmax of 1.16μM/min/mg, Km of 13mM, Kcat of 3.48μM.s(-1) and a Kcat/Km of 267 (mol/L)(-1).s(-1). The apparent relative low catalytic activity of jumbo squid muscle AMP deaminase in the absence of positive effectors is similar to that reported for homologous enzymes in other invertebrate organisms.

  8. Cytotoxic effect of replication-competent adenoviral vectors carrying L-plastin promoter regulated E1A and cytosine deaminase genes in cancers of the breast, ovary and colon.

    PubMed

    Akbulut, Hakan; Zhang, Lixin; Tang, Yucheng; Deisseroth, Albert

    2003-05-01

    Prodrug activating transcription unit gene therapy is one of several promising approaches to cancer gene therapy. Combining that approach with conditionally replication-competent viral vectors that are truly tumor specific has been an important objective of recent work. In this study, we report the construction of a new conditionally replication-competent bicistronic adenoviral vector in which the cytosine deaminase (CD) gene and the E1a gene are driven by the L-plastin tumor-specific promoter (AdLpCDIRESE1a). A similar vector driven by the CMV promoter has also been constructed (AdCMVCDIRESE1a) as a control. We have carried out in vitro cytotoxicity in carcinomas of the breast, ovary and colon, and in vivo efficacy studies with these vectors in an animal model of colon cancer. While the addition of the AdLpCDIRESE1a vector to established cancer cell lines showed significant cytotoxicity in tumor cells derived from carcinomas of the breast (MCF-7), colon (HTB-38) and ovary (Ovcar 5), no significant toxicity was seen in explant cultures of normal human mammary epithelial cells (HMEC) exposed to this vector. The addition of 5-fluorocytosine (5FC) significantly increased the cytotoxicity in an additive fashion of both the AdLpCDIRESE1a and AdCMVCDIRESE1a vectors as well as that of the AdLpCD replication incompetent vector to established tumor cell lines. However, no significant cytotoxicity was observed with the addition of 5FC to explant cultures of normal human mammary epithelial cells that had been exposed to the L-plastin-driven vectors. Studies with mixtures of infected and uninfected tumor cell lines showed that the established cancer cell lines infected with the AdLpCDIRESE1a vector generated significant toxicity to surrounding uninfected cells (the "bystander effect") even at a ratio of 0.25 of infected cells to infected + uninfected cells in the presence of 5FC. The injection of the AdLpCDIRESE1a vector into subcutaneous deposits of human tumor nodules in the

  9. The Regulation of Blood Flow and Metabolism in Adipose Tissue: Evidence for a Role of Adenosine

    DTIC Science & Technology

    1984-10-17

    adenosine 86 deaminase groups. xi LIST OF FIGURES BACKGROUND Figure 1. Pathways of adipoae tissue metabolism. 3 MATERIALS AND METHODS Figure 2...Subcutaneous, inguinal fat pad of dogs in situ. 32 Figure 3 . The time course of the experiments with theophylline. 37 Figure 4. The time course of...Thua, glycerol cannot serve as a aource of glycerol 3 -phosphate which is required for esteriflcation (Shapiro, 1963). The glycerol 3 -phosphate la

  10. Update on gene therapy for immunodeficiencies.

    PubMed

    Kohn, Donald B

    2010-05-01

    Primary immune deficiencies (PID) are due to blood cell defects and can be treated with transplantation of normal hematopoietic stem cells (HSC) from another person (allogeneic). Gene therapy in which a patient's autologous HSC are genetically corrected represents an alternative treatment for patients with PID, which could avoid the immunologic risks of allogeneic HSCT and confer similar benefits. Recent clinical trials using gene therapy have led to immune restoration in patients with X-linked severe combined immune deficiency (XSCID), adenosine deaminase (ADA)-deficient SCID and chronic granulomatous disease (CGD). However, severe complications arose in several of the patients in whom the integrated retroviral vectors led to leukoproliferative disorders. New approaches using safer integrating vectors or direct correction of the defective gene underlying the PID are being developed and may lead to safer and effective gene therapy for PID.

  11. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  12. Advances in gene therapy for ADA-deficient SCID.

    PubMed

    Aiuti, Alessandro

    2002-10-01

    Adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID) was the first inherited disease treated with gene therapy. The pilot gene therapy studies demonstrated the safety, therapeutic potential and limitations of ADA gene transfer into hematopoietic cells using retroviral vectors. This review describes the latest progress in ADA-SCID dinical trials using peripheral blood lymphocytes (PBLs) and hematopoietic stem cells (HSCs). PBL gene therapy was able to restore T-cell functions after discontinuation of ADA enzyme replacement therapy, but only partially corrected the purine metabolic defect. The development of improved HSC gene transfer protocols, combined with low intensity conditioning, allowed full correction of the immunological and metabolic ADA defects, with clinic benefit. These results have important implications for future applications of gene therapy in other disorders involving the hemapoietic system.

  13. Improved cytotoxic effects of Salmonella-producing cytosine deaminase in tumour cells.

    PubMed

    Mesa-Pereira, Beatriz; Medina, Carlos; Camacho, Eva María; Flores, Amando; Santero, Eduardo

    2015-01-01

    In order to increase the cytotoxic activity of a Salmonella strain carrying a salicylate-inducible expression system that controls cytosine deaminase production, we have modified both, the vector and the producer bacterium. First, the translation rates of the expression module containing the Escherichia coli codA gene cloned under the control of the Pm promoter have been improved by using the T7 phage gene 10 ribosome binding site sequence and replacing the original GUG start codon by AUG. Second, to increase the time span in which cytosine deaminase may be produced by the bacteria in the presence of 5-fluorocytosine, a 5-fluorouracyl resistant Salmonella strain has been constructed by deleting its upp gene sequence. This new Salmonella strain shows increased cytosine deaminase activity and, after infecting tumour cell cultures, increased cytotoxic and bystander effects under standard induction conditions. In addition, we have generated a purD mutation in the producer strain to control its intracellular proliferation by the presence of adenine and avoid the intrinsic Salmonella cell death induction. This strategy allows the analysis and comparison of the cytotoxic effects of cytosine deaminase produced by different Salmonella strains in tumour cell cultures. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats.

    PubMed

    Zou, A P; Wu, F; Li, P L; Cowley, A W

    1999-01-01

    Previous studies have shown that chronic salt loading increased renal interstitial adenosine concentrations and desensitized renal effects of adenosine, a phenomenon that could facilitate sodium excretion. However, the mechanisms responsible for the increased adenosine production and decreased adenosine response are poorly understood. This study examined the effects of the dietary high salt intake on adenosine metabolism and receptor expression in the renal cortex and medulla in Sprague Dawley rats. Fluorescent high-performance liquid chromatography analyses were performed to determine adenosine levels in snap-frozen kidney tissues. Comparing rats fed a normal (1% NaCl) versus high salt (4% NaCl) diet, renal adenosine concentrations in rats fed a high salt diet were significantly higher (cortex: 43+/-3 versus 85+/-4, P<0.05; medulla: 183+/-4 versus 302+/-8 nmol/g wet tissue, P<0.05). Increased adenosine concentrations were not associated with changes in the 5'-nucleotidase or adenosine deaminase activity, as determined by quantitative isoelectric focusing and gel electrophoresis. Western blot analyses showed that a high salt diet (4% NaCl for 3 weeks) downregulated A1 receptors (antinatriuretic type), did not alter A2A and A2B receptors (natriuretic type), and upregulated A3 receptors (function unknown) in both renal cortex and medulla. The data show that stimulation of adenosine production and downregulation of A1 receptors with salt loading may play an important role in adaptation in the kidney to promote sodium excretion.

  15. Effects of different concentrations of metal ions on degradation of adenosine triphosphate in common carp (Cyprinus carpio) fillets stored at 4°C: An in vivo study.

    PubMed

    Li, Dapeng; Qin, Na; Zhang, Longteng; Lv, Jian; Li, Qingzheng; Luo, Yongkang

    2016-11-15

    The impact of different concentrations of Na(+), K(+), Ca(2+), Mg(2+), Fe(2+), and Zn(2+) on the degradation of adenosine triphosphate (ATP) and the influence of these ions on the activity of adenosine monophosphate deaminase (AMP-deaminase) and acid phosphatase (ACP) in common carp fillets (in vivo) during 4°C storage was examined. The content of ATP, inosine monophosphate (IMP), and hypoxanthine (Hx), and the activity of AMP-deaminase and ACP were determined. Results indicated that the effects of different concentrations of six kinds of metal ions on AMP-deaminase and ACP were not the same. Na(+), K(+), Fe(2+), and Zn(2+) enhanced AMP-deaminase activity, which led to the rapid degradation of ATP and to the generation of a large quantity of IMP within a short time. Ca(2+) and Mg(2+) delayed the change in AMP-deaminase and ACP activity in carp and caused a further delay in the degradation of ATP. Fe(2+) and Zn(2+) inhibited ACP activity, which reduced the decomposition of IMP and the formation of Hx.

  16. Unique properties of Plasmodium falciparum porphobilinogen deaminase.

    PubMed

    Nagaraj, Viswanathan Arun; Arumugam, Rajavel; Gopalakrishnan, Bulusu; Jyothsna, Yeleswarapu Sri; Rangarajan, Pundi N; Padmanaban, Govindarajan

    2008-01-04

    The hybrid pathway for heme biosynthesis in the malarial parasite proposes the involvement of parasite genome-coded enzymes of the pathway localized in different compartments such as apicoplast, mitochondria, and cytosol. However, knowledge on the functionality and localization of many of these enzymes is not available. In this study, we demonstrate that porphobilinogen deaminase encoded by the Plasmodium falciparum genome (PfPBGD) has several unique biochemical properties. Studies carried out with PfPBGD partially purified from parasite membrane fraction, as well as recombinant PfPBGD lacking N-terminal 64 amino acids expressed and purified from Escherichia coli cells (DeltaPfPBGD), indicate that both the proteins are catalytically active. Surprisingly, PfPBGD catalyzes the conversion of porphobilinogen to uroporphyrinogen III (UROGEN III), indicating that it also possesses uroporphyrinogen III synthase (UROS) activity, catalyzing the next step. This obviates the necessity to have a separate gene for UROS that has not been so far annotated in the parasite genome. Interestingly, DeltaPfP-BGD gives rise to UROGEN III even after heat treatment, although UROS from other sources is known to be heat-sensitive. Based on the analysis of active site residues, a DeltaPfPBGDL116K mutant enzyme was created and the specific activity of this recombinant mutant enzyme is 5-fold higher than DeltaPfPBGD. More interestingly, DeltaPfPBGDL116K catalyzes the formation of uroporphyrinogen I (UROGEN I) in addition to UROGEN III, indicating that with increased PBGD activity the UROS activity of PBGD may perhaps become rate-limiting, thus leading to non-enzymatic cyclization of preuroporphyrinogen to UROGEN I. PfPBGD is localized to the apicoplast and is catalytically very inefficient compared with the host red cell enzyme.

  17. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle.

    PubMed Central

    Sabina, R L; Swain, J L; Olanow, C W; Bradley, W G; Fishbein, W N; DiMauro, S; Holmes, E W

    1984-01-01

    To assess the role of the purine nucleotide cycle in human skeletal muscle function, we evaluated 10 patients with AMP deaminase deficiency (myoadenylate deaminase deficiency; MDD). 4 MDD and 19 non-MDD controls participated in an exercise protocol. The latter group was composed of a patient cohort (n = 8) exhibiting a constellation of symptoms similar to those of the MDD patients, i.e., postexertional aches, cramps, and pains; as well as a cohort of normal, unconditioned volunteers (n = 11). The individuals with MDD fatigued after performing only 28% as much work as their non-MDD counterparts. Muscle biopsies were obtained from the four MDD patients and the eight non-MDD patients at rest and following exercise to the point of fatigue. Creatine phosphate content fell to a comparable extent in the MDD (69%) and non-MDD (52%) patients at the onset of fatigue. Following exercise the 34% decrease in ATP content of muscle from the non-MDD subjects was significantly greater than the 6% decrease in ATP noted in muscle from the MDD patients (P = 0.048). Only one of four MDD patients had a measurable drop in ATP compared with seven of eight non-MDD patients. At end-exercise the muscle content of inosine 5'-monophosphate (IMP), a product of AMP deaminase, was 13-fold greater in the non-MDD patients than that observed in the MDD group (P = 0.008). Adenosine content of muscle from the MDD patients increased 16-fold following exercise, while there was only a twofold increase in adenosine content of muscle from the non-MDD patients (P = 0.028). Those non-MDD patients in whom the decrease in ATP content following exercise was measurable exhibited a stoichiometric increase in IMP, and total purine content of the muscle did not change significantly. The one MDD patient in whom the decrease in ATP was measurable, did not exhibit a stoichiometric increase in IMP. Although the adenosine content increased 13-fold in this patient, only 48% of the ATP catabolized could be accounted for

  18. Drug evaluation: ADA-transduced hematopoietic stem cell therapy for ADA-SCID.

    PubMed

    Taupin, Phillippe

    2006-06-01

    San Raffaele Telethon Institute for Gene Therapy is developing an adenosine deaminase-transduced hematopoietic stem cell therapy for the potential intravenous treatment of adenosine deaminase deficiency in severe combined immunocompromised individuals.

  19. Rescue of the Orphan Enzyme Isoguanine Deaminase

    SciTech Connect

    D Hitchcock; A Fedorov; E Fedorov; L Dangott; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration, and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are as follows: k{sub cat} = 49 s{sup -1}, K{sub m} = 72 {micro}M, and k{sub cat}/K{sub m} = 6.7 x 10{sup 5} M{sup -1} s{sup -1}. The kinetic constants for the deamination of cytosine are as follows: k{sub cat} = 45 s{sup -1}, K{sub m} = 302 {micro}M, and k{sub cat}/K{sub m} = 1.5 x 10{sup 5} M{sup -1} s{sup -1}. Under these reaction conditions, isoguanine is the better substrate for cytosine deaminase. The three-dimensional structure of CDA was determined with isoguanine in the active site.

  20. Rescue of the orphan enzyme isoguanine deaminase.

    PubMed

    Hitchcock, Daniel S; Fedorov, Alexander A; Fedorov, Elena V; Dangott, Lawrence J; Almo, Steven C; Raushel, Frank M

    2011-06-28

    Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration, and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are as follows: k(cat) = 49 s(-1), K(m) = 72 μM, and k(cat)/K(m) = 6.7 × 10(5) M(-1) s(-1). The kinetic constants for the deamination of cytosine are as follows: k(cat) = 45 s(-1), K(m) = 302 μM, and k(cat)/K(m) = 1.5 × 10(5) M(-1) s(-1). Under these reaction conditions, isoguanine is the better substrate for cytosine deaminase. The three-dimensional structure of CDA was determined with isoguanine in the active site.

  1. Eliminating the antilipolytic adenosine A1 receptor does not lead to compensatory changes in the antilipolytic actions of PGE2 and nicotinic acid.

    PubMed

    Johansson, S M; Yang, J-N; Lindgren, E; Fredholm, B B

    2007-05-01

    We examined whether compensatory changes after adenosine A(1) receptor knockout [A(1)R (-/-)] eliminate the antilipolytic actions mediated by this receptor. Lipolysis experiments were performed on adipocytes prepared from the wild type A(1)R (+/+), A(1)R (-/-) and heterozygous mice. Gene expression was assayed with cDNA microarray technique and real-time PCR; protein expression with immunoblotting. The A(1)R was the only adenosine receptor involved in lipolysis. The effects of adenosine deaminase and 2-chloroadenosine were abolished in A(1)R (-/-) mice. The IC(50) value of 2-chloroadenosine doubled from 16.6 to 33.6 nm when half of the A(1)Rs were eliminated. Adrenergic alpha(2) agonists had no effects on lipolysis. Prostaglandin E(2) (PGE(2)) inhibited lipolysis with an IC(50) value of 5.8 nm (4.7-7.2 nm) in the A(1)R (+/+) mice and 10.6 nm (9.0-12.6 nm) in the A(1)R (-/-) mice. Nicotinic acid inhibited lipolysis with an IC(50) value of 0.30 microm (0.19-0.46 microm) in the A(1)R (+/+) mice and 0.24 microm (0.16-0.37 microm) in the A(1)R (-/-) mice. G(i)alpha(1) mRNA was significantly up-regulated in adipose tissue from A(1)R (-/-) mice. However, immunoblotting showed that G(ialpha1) was not up-regulated at the protein level. The A(1)R mediates the antilipolytic actions of adenosine. Deletion of the A(1)R in mice does not result in compensatory increases in G-protein-mediated antilipolytic actions of PGE(2) or nicotinic acid.

  2. 1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals.

    PubMed

    Han, Yunlei; Wang, Rui; Yang, Zhirong; Zhan, Yuhua; Ma, Yao; Ping, Shuzhen; Zhang, Liwen; Lin, Min; Yan, Yongliang

    2015-07-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase, which is encoded by some bacteria, can reduce the amount of ethylene, a root elongation inhibitor, and stimulate the growth of plants under various environmental stresses. The presence of ACC deaminase activity and the regulation of ACC in several rhizospheric bacteria have been reported. The nitrogen-fixing Pseudomonas stutzeri A1501 is capable of endophytic association with rice plants and promotes the growth of rice. However, the functional identification of ACC deaminase has not been performed. In this study, the proposed effect of ACC deaminase in P. stutzeri A1501 was investigated. Genome mining showed that P. stutzeri A1501 carries a single gene encoding ACC deaminase, designated acdS. The acdS mutant was devoid of ACC deaminase activity and was less resistant to NaCl and NiCl2 compared with the wild-type. Furthermore, inactivation of acdS greatly impaired its nitrogenase activity under salt stress conditions. It was also observed that mutation of the acdS gene led to loss of the ability to promote the growth of rice under salt or heavy metal stress. Taken together, this study illustrates the essential role of ACC deaminase, not only in enhancing the salt or heavy metal tolerance of bacteria but also in improving the growth of plants, and provides a theoretical basis for studying the interaction between plant growth-promoting rhizobacteria and plants.

  3. Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine

    PubMed Central

    Chen, Yunjia; Liu, Yin; Cottingham, Christopher; McMahon, Lori; Jiao, Kai; Greengard, Paul; Wang, Qin

    2012-01-01

    Endogenous adenosine is an essential protective agent against neural damage by various insults to the brain. However, the therapeutic potential of adenosine receptor-directed ligands for neuroprotection is offset by side effects in peripheral tissues and organs. An increase in adenosine receptor responsiveness to endogenous adenosine would enhance neuroprotection while avoiding the confounding effects of exogenous ligands. Here we report novel regulation of adenosine-evoked responses by a neural tissue-specific protein, neurabin. Neurabin attenuated adenosine A1 receptor (A1R) signaling by assembling a complex between the A1R and the regulator of G protein signaling 4 (RGS4), a protein known to turn off G protein signaling. Inactivation of the neurabin gene enhanced A1R signaling and promoted the protective effect of adenosine against excitotoxic seizure and neuronal death in mice. Furthermore, administration of a small molecule inhibitor of RGS4 significantly attenuated seizure severity in mice. Notably, the dose of kainate capable of inducing an ~50% rate of death in WT mice did not affect neurabin null mice or WT mice co-treated with an RGS4 inhibitor. The enhanced anti-seizure and neuroprotective effect achieved by disruption of the A1R/neurabin/RGS4 complex is elicited by the on-site and on-demand release of endogenous adenosine, and does not require administration of A1R ligands. These data identify neurabin-RGS4 as a novel tissue-selective regulatory mechanism for fine-tuning adenosine receptor function in the nervous system. Moreover, these findings implicate the A1R/neurabin/RGS4 complex as a valid therapeutic target for specifically manipulating the neuroprotective effects of endogenous adenosine. PMID:22357852

  4. Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine.

    PubMed

    Chen, Yunjia; Liu, Yin; Cottingham, Christopher; McMahon, Lori; Jiao, Kai; Greengard, Paul; Wang, Qin

    2012-02-22

    Endogenous adenosine is an essential protective agent against neural damage by various insults to the brain. However, the therapeutic potential of adenosine receptor-directed ligands for neuroprotection is offset by side effects in peripheral tissues and organs. An increase in adenosine receptor responsiveness to endogenous adenosine would enhance neuroprotection while avoiding the confounding effects of exogenous ligands. Here we report novel regulation of adenosine-evoked responses by a neural tissue-specific protein, neurabin. Neurabin attenuated adenosine A(1) receptor (A1R) signaling by assembling a complex between the A1R and the regulator of G-protein signaling 4 (RGS4), a protein known to turn off G-protein signaling. Inactivation of the neurabin gene enhanced A1R signaling and promoted the protective effect of adenosine against excitotoxic seizure and neuronal death in mice. Furthermore, administration of a small molecule inhibitor of RGS4 significantly attenuated seizure severity in mice. Notably, the dose of kainate capable of inducing an ∼50% rate of death in wild-type (WT) mice did not affect neurabin-null mice or WT mice cotreated with an RGS4 inhibitor. The enhanced anti-seizure and neuroprotective effect achieved by disruption of the A1R/neurabin/RGS4 complex is elicited by the on-site and on-demand release of endogenous adenosine, and does not require administration of A1R ligands. These data identify neurabin-RGS4 as a novel tissue-selective regulatory mechanism for fine-tuning adenosine receptor function in the nervous system. Moreover, these findings implicate the A1R/neurabin/RGS4 complex as a valid therapeutic target for specifically manipulating the neuroprotective effects of endogenous adenosine.

  5. Intracellular adenosine formation and release by freshly-isolated vascular endothelial cells from rat skeletal muscle: effects of hypoxia and/or acidosis.

    PubMed

    Le, G Y; Essackjee, H C; Ballard, H J

    2014-07-18

    Previous studies suggested indirectly that vascular endothelial cells (VECs) might be able to release intracellularly-formed adenosine. We isolated VECs from the rat soleus muscle using collagenase digestion and magnetic-activated cell sorting (MACS). The VEC preparation had >90% purity based on cell morphology, fluorescence immunostaining, and RT-PCR of endothelial markers. The kinetic properties of endothelial cytosolic 5'-nucleotidase suggested it was the AMP-preferring N-I isoform: its catalytic activity was 4 times higher than ecto-5'nucleotidase. Adenosine kinase had 50 times greater catalytic activity than adenosine deaminase, suggesting that adenosine removal in VECs is mainly through incorporation into adenine nucleotides. The maximal activities of cytosolic 5'-nucleotidase and adenosine kinase were similar. Adenosine and ATP accumulated in the medium surrounding VECs in primary culture. Hypoxia doubled the adenosine, but ATP was unchanged; AOPCP did not alter medium adenosine, suggesting that hypoxic VECs had released intracellularly-formed adenosine. Acidosis increased medium ATP, but extracellular conversion of ATP to AMP was inhibited, and adenosine remained unchanged. Acidosis in the buffer-perfused rat gracilis muscle elevated AMP and adenosine in the venous effluent, but AOPCP abolished the increase in adenosine, suggesting that adenosine is formed extracellularly by non-endothelial tissues during acidosis in vivo. Hypoxia plus acidosis increased medium ATP by a similar amount to acidosis alone and adenosine 6-fold; AOPCP returned the medium adenosine to the level seen with hypoxia alone. These data suggest that VECs release intracellularly formed adenosine in hypoxia, ATP during acidosis, and both under simulated ischaemic conditions, with further extracellular conversion of ATP to adenosine. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Evidence for a substrate cycle between AMP and adenosine in isolated hepatocytes.

    PubMed Central

    Bontemps, F; Van den Berghe, G; Hers, H G

    1983-01-01

    The effect of adenosine on the metabolism of prelabeled adenine nucleotides was investigated in isolated hepatocytes. Adenosine caused an approximately equal to 2-fold increase in the ATP content of the cells. This effect was in part counteracted by an increased rate of adenine nucleotide catabolism that could be explained by a stimulation of both AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) and the cytoplasmic 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) because of the increased concentration of ATP. The unexpected finding that labeled adenosine was formed immediately after the addition of the unlabeled nucleoside could be explained by the trapping effect of adenosine. An accumulation of labeled adenosine was observed also in the presence of 5-iodotubercidin, a potent inhibitor of adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20). Under these conditions, there was a decrease in the concentration of ATP in the cell and a 2- to 3-fold increase in the rate of formation of allantoin. This formation of adenosine was only slightly decreased by inhibition of the membranous 5'-nucleotidase; it led to the accumulation of S-adenosylhomocysteine in the presence of coformycin and an excess of L-homocysteine. It was concluded that, under basal conditions, the cytoplasmic 5'-nucleotidase present in the liver cell continuously produces adenosine, which is immediately reconverted into AMP by adenosine kinase, without giving rise to allantoin. This futile cycle between AMP and adenosine amounts to at least 20 nmol/min per g of liver and, thus, exceeds the basic rate of allantoin formation. PMID:6304684

  7. Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation

    PubMed Central

    Boison, Detlev; Stewart, Kerry-Ann

    2009-01-01

    Epilepsy is a common seizure disorder affecting approximately 70 million people worldwide. Current pharmacotherapy is neuron-centered, frequently accompanied by intolerable side-effects, and fails to be effective in about one third of patients. Therefore, new therapeutic concepts are needed. Recent research suggests an astrocytic basis of epilepsy, presenting the possibility of novel therapeutic targets. In particular, dysfunction of the astrocyte-controlled, endogenous, adenosine-based seizure control system of the brain is implicated in seizure generation. Thus, astrogliosis – a pathological hallmark of the epileptic brain – is associated with upregulation of the adenosine-removing enzyme adenosine kinase (ADK), resulting in focal adenosine deficiency. Both astrogliotic upregulation of ADK in epilepsy and transgenic overexpression of ADK are associated with seizures, and inhibition of ADK prevents seizures in a mouse model of pharmacoresistant epilepsy. These findings link adenosine deficiency with seizures and predict that adenosine augmentation therapies (AATs) will likely be effective in preventing seizures. Given the widespread systemic and central side effects of systemically administered AATs, focal AATs (i.e., limited to the astrogliotic lesion) are a necessity. This Commentary will discuss the pharmacological rationale for the development of focal AATs. Additionally, several AAT strategies will be discussed: (1) adenosine released from silk-based brain implants; (2) adenosine released from locally implanted encapsulated cells; (3) adenosine released from stem cell-derived brain implants; and (4) adenosine augmenting gene therapies. Finally, new developments and therapeutic challenges in using focal AATs for epilepsy therapy will critically be evaluated. PMID:19682439

  8. [Pulmonary surfactant protein adenosine triphosphate-binding-cassette-A3 gene composite mutations in infant congenital interstitial lung disease: report of a case and review of literature].

    PubMed

    Xie, N; Chen, D H; Lin, Y N; Wu, S Z; Gu, Y Y; Zeng, Q S; Zhai, Y Y; Yang, L Y; Xu, J X

    2016-10-02

    Objective: To report a case of the pulmonary surfactant protein(SP) adenosine triphosphate-binding-cassette-A3 (ABCA3) gene mutations in infant congenital interstitial lung disease(ILD), and review the related literature, to investigate the relationships of ABCA3 gene mutation associated with ILD in infants. Method: A 6-months-old boy was hospitalized in the department of Pediatrics of the First Affiliated Hospital of Guangzhou Medical University. The clinical, radiological, histological information from transbronchial lung biopsy (TBLB) and genetic testing in this case was analyzed; 12 reports retrieved on literature search at Pubmed, OVID databases from 2004 to 2015 by using the ABCA3 as keyword were reviewed and analyzed. Result: (1)The patient, a 6-months-old boy, had progressive tachypnea and dyspnea since 4 months old. Physical examination on admission revealed respiratory rate of 78 times/min , heart rate of 187 times/min, SpO2 0.93(mask oxygen-inspiration with 6 L/min), scattered fine moist crackles could be heard over the both lungs, clubbing fingers were found. High-resolution computed tomography(HRCT) revealed diffuse ground-glass opacity, interlobular and intralobular septal thickening. Lung biopsies showed evidences of the alveolar cavity atelectatic changes and interstitial fibrosis. SP-A and SP-B were negative in immunohistochemical stainting. SP-related gene sequence analysis found that there was compound heterozygous missense mutation of ABCA3 gene in c. 1942A>G, c.2701-33G>C and c. 991-105C>A. (2)The review of related literature found that totally 12 cases were reported. The main manifestations were progressive tachypnea and dyspnea, age of onset was between birth and 4 years of age. The imaging characteristics of chest HRCT revealed diffuse infiltration or diffuse ground-glass pattern in the lung. 6 cases died, and 6 cases survived, including 4 cases with pulmonary function disturbance to different degrees; 12 cases had ABCA3 gene mutations, 9

  9. Arxula adeninivorans recombinant guanine deaminase and its application in the production of food with low purine content.

    PubMed

    Trautwein-Schult, Anke; Jankowska, Dagmara; Cordes, Arno; Hoferichter, Petra; Klein, Christina; Matros, Andrea; Mock, Hans-Peter; Baronian, Keith; Bode, Rüdiger; Kunze, Gotthard

    2014-01-01

    Purines of exogenous and endogenous sources are degraded to uric acid in human beings. Concentrations >6.8 mg uric acid/dl serum cause hyperuricemia and its symptoms. Pharmaceuticals and the reduction of the intake of purine-rich food are used to control uric acid levels. A novel approach to the latter proposition is the enzymatic reduction of the purine content of food by purine-degrading enzymes. Here we describe the production of recombinant guanine deaminase by the yeast Arxula adeninivorans LS3 and its application in food. In media supplemented with nitrogen sources hypoxanthine or adenine, guanine deaminase (AGDA) gene expression is induced and intracellular accumulation of guanine deaminase (Agdap) protein occurs. The characteristics of the guanine deaminase isolated from wild-type strain LS3 and a transgenic strain expressing the AGDA gene under control of the strong constitutive TEF1 promoter were determined and compared. Both enzymes were dimeric and had temperature optima of 55°C with high substrate specificity for guanine and localisation in both the cytoplasm and vacuole of yeast. The enzyme was demonstrated to reduce levels of guanine in food. A mixture of guanine deaminase and other purine degradation enzymes will allow the reduction of purines in purine-rich foods. © 2014 S. Karger AG, Basel.

  10. Adenosine triphosphate in milk.

    PubMed

    Zulak, I M; Patton, S; Hammerstedt, R H

    1976-08-01

    Freshly secreted goat's milk contains a number of viable metabolic pathways including those for the synthesis of triglycerides and phospholipids. Toward understanding this matter, amounts of the fundamentally important energy substrate, adenosine triphosphate, in goat's milk were evaluated. Milk left in the goat udder overnight had less adenosine triphosphate (12.4 muM) than fresh secreted milk (37.6 muM). In similar experiments the skim milk derived from whole accumulating in the udder overnight was lower in adenosine triphosphate (14.2 muM) than skim milk from freshly secreted milk (26.0 muM). To determine changes in quantities of adenosine triphosphate after milking, milks were divided into two parts, one containing only milk and the other milk plus 2,4-dinitrophenol and sodium arsenate, inhibitors of oxidative and substrate level phosphorylation. Adenosine triphosphate in milk decreased during 4-h in vitro incubations, and the rate of decline was markedly greater in the presence of the inhibitors. Thus, freshly secreted goat's milk contains significant amounts of adenosine triphosphate, and more can be synthesized therein after removal from the udder. In limited samples human and bovine milks contained much lower concentrations of the compound than those in goat's milk.

  11. N-terminal amino acid sequences of D-serine deaminases of wild-type and operator-constitutive strains of Escherichia coli K-12.

    PubMed Central

    Heincz, M C; McFall, E

    1975-01-01

    The N-terminal amino acid sequences of the D-serine deaminases from strains of Escherichia coli K-12 that harbor wild-type and high-level constitutive catabolite-insensitive operator-initiator regions are identical: Met-Ser-GluNH2-Ser-Gly-Arg-His-Cys. This result indicates that the operator-initiator region is probably distinct from the D-serine deaminase structural gene. Images PMID:1099073

  12. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Menezes, Fabiano Peres; Nazario, Luiza Reali; Pohlmann, Julhana Bianchini; de Oliveira, Giovanna M T; Fazenda, Lidiane; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2011-01-01

    Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase

  13. A putative antiviral role of plant cytidine deaminases.

    PubMed

    Martín, Susana; Cuevas, José M; Grande-Pérez, Ana; Elena, Santiago F

    2017-01-01

    A mechanism of innate antiviral immunity operating against viruses infecting mammalian cells has been described during the last decade.  Host cytidine deaminases ( e.g., APOBEC3 proteins) edit viral genomes, giving rise to hypermutated nonfunctional viruses; consequently, viral fitness is reduced through lethal mutagenesis.  By contrast, sub-lethal hypermutagenesis may contribute to virus evolvability by increasing population diversity.  To prevent genome editing, some viruses have evolved proteins that mediate APOBEC3 degradation.  The model plant Arabidopsis thaliana genome encodes nine cytidine deaminases ( AtCDAs), raising the question of whether deamination is an antiviral mechanism in plants as well. Here we tested the effects of expression of AtCDAs on the pararetrovirus Cauliflower mosaic virus (CaMV). Two different experiments were carried out. First, we transiently overexpressed each one of the nine A. thalianaAtCDA genes in Nicotianabigelovii plants infected with CaMV, and characterized the resulting mutational spectra, comparing them with those generated under normal conditions.  Secondly, we created A. thaliana transgenic plants expressing an artificial microRNA designed to knock-out the expression of up to six AtCDA genes.  This and control plants were then infected with CaMV.  Virus accumulation and mutational spectra where characterized in both types of plants.  We have shown that the A. thalianaAtCDA1 gene product exerts a mutagenic activity, significantly increasing the number of G to A mutations in vivo, with a concomitant reduction in the amount of CaMV genomes accumulated.  Furthermore, the magnitude of this mutagenic effect on CaMV accumulation is positively correlated with the level of AtCDA1 mRNA expression in the plant. Our results suggest that deamination of viral genomes may also work as an antiviral mechanism in plants.

  14. Association study of three single-nucleotide polymorphisms in the cyclic adenosine monophosphate response element binding 1 gene and major depressive disorder.

    PubMed

    Wei, Yange; Bu, Shufang; Liu, Xican; Li, Hengfen

    2015-06-01

    Major depressive disorder is a common chronic emotional disorder, and cyclic adenosine monophosphate response element binding protein 1 (CREB1) is hypothesized to play a role in its pathogenesis. The aim of the present study was to investigate the associations between major depressive disorder and relevant single nucleotide polymorphisms (SNPs) in the CREB1 gene. A total of 1,038 subjects of Han Chinese descent were recruited, including 456 patients with major depressive disorder (case group) and 582 healthy volunteers (control group). The frequency distributions of the genotypes and alleles were estimated in the case and control groups, and analyzed for any correlation with major depressive disorder. Three relevant SNP sites in CREB1 were analyzed using quantitative polymerase chain reaction, and statistical analyses were performed to estimate their use as risk factors for major depressive disorder. The analyses revealed that rs2254137 and rs16839883 in CREB1 showed polymorphisms in the sample population, and the genotype and allele frequencies of rs16839883 differed significantly when comparing the patients and healthy controls (P<0.05). No statistically significant differences were detected in the two SNP sites between the male and female patients (P>0.05). Furthermore, no statistically significant differences were detected in rs2254137 genotype and allele distribution when comparing the male and female patients with their corresponding control groups (P>0.05). However, statistically significant differences were observed in the genotype and allele frequencies of rs16839883 when the male and female patients were compared with their respective controls (P<0.05). Therefore, the results demonstrated that there is a close correlation between the rs16839883 polymorphism in CREB1 and major depressive disorder, which suggests that this SNP site should be further studied as a potential biomarker for major depressive disorder.

  15. Cooperation of Adenosine with Macrophage Toll-4 Receptor Agonists Leads to Increased Glycolytic Flux through the Enhanced Expression of PFKFB3 Gene*

    PubMed Central

    Ruiz-García, Almudena; Monsalve, Eva; Novellasdemunt, Laura; Navarro-Sabaté, Àurea; Manzano, Anna; Rivero, Samuel; Castrillo, Antonio; Casado, Marta; Laborda, Jorge; Bartrons, Ramón; Díaz-Guerra, María José M.

    2011-01-01

    Macrophages activated through Toll receptor triggering increase the expression of the A2A and A2B adenosine receptors. In this study, we show that adenosine receptor activation enhances LPS-induced pfkfb3 expression, resulting in an increase of the key glycolytic allosteric regulator fructose 2,6-bisphosphate and the glycolytic flux. Using shRNA and differential expression of A2A and A2B receptors, we demonstrate that the A2A receptor mediates, in part, the induction of pfkfb3 by LPS, whereas the A2B receptor, with lower adenosine affinity, cooperates when high adenosine levels are present. pfkfb3 promoter sequence deletion analysis, site-directed mutagenesis, and inhibition by shRNAs demonstrated that HIF1α is a key transcription factor driving pfkfb3 expression following macrophage activation by LPS, whereas synergic induction of pfkfb3 expression observed with the A2 receptor agonists seems to depend on Sp1 activity. Furthermore, levels of phospho-AMP kinase also increase, arguing for increased PFKFB3 activity by phosphorylation in long term LPS-activated macrophages. Taken together, our results show that, in macrophages, endogenously generated adenosine cooperates with bacterial components to increase PFKFB3 isozyme activity, resulting in greater fructose 2,6-bisphosphate accumulation. This process enhances the glycolytic flux and favors ATP generation helping to develop and maintain the long term defensive and reparative functions of the macrophages. PMID:21464136

  16. Theophylline and adenosine modulate the inflammatory functions of the human neutrophil by exerting an opposing influence on the stimulus-induced increase in intracellular calcium

    SciTech Connect

    Schmeichel Morley, C.J.

    1988-01-01

    Based on evidence that endogenously-produced adenosine inhibited neutrophil responses, the influence of methylxanthine bronchodilators on neutrophil responses stimulated in vitro by n-formyl-methionyl-leucyl-phenylalanine (fMLP) was examined. At concentrations between 10/sup /minus/5/ M and 10/sup /minus/4/ M, theophylline potentiated lysosomal enzyme release by 30 to 50%, superoxide anion formation by 30 to 60%, and neutrophil aggregation. Theophylline at concentrations >10/sup /minus/4/ M inhibited the same responses by >90%. Adenosine deaminase mimicked, whereas adenosine reversed the theophylline potentiation. A potential role for calcium in the modulation of the neutrophil responses by theophylline and adenosine was explored. Theophylline enhanced by >150% the fMLP-stimulated increase in cytoplasmic calcium concentration ((Ca/sup 2 +/)/sub i/) at time points between 5 and 90 sec as measured by Fura-2. Adenosine deaminase induced a comparable enhancement, whereas 3 /times/ 10/sup /minus/7/ M adenosine and 10/sup /minus/7/ M N-ethylcarboxamideadenosine decreased the (Ca/sup 2 +/)/sub i/ in fMLP-stimulated neutrophils. Extracellular calcium was not required for the opposing influences of theophylline and adenosine and neither compound altered fMLP-stimulated /sup 45/Ca uptake at the early time points.

  17. Gene therapy of primary T cell immunodeficiencies.

    PubMed

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2013-08-10

    Gene therapy of severe combined immunodeficiencies has been proven to be effective to provide sustained correction of the T cell immunodeficiencies. This has been achieved for 2 forms of SCID, i.e SCID-X1 (γc deficiency) and adenosine deaminase deficiency. Occurrence of gene toxicity generated by integration of first generation retroviral vectors, as observed in the SCID-X1 trials has led to replace these vectors by self inactivated (SIN) retro(or lenti) viruses that may provide equivalent efficacy with a better safety profile. Results of ongoing clinical studies in SCID as well as in other primary immunodeficiencies, such as the Wiskott Aldrich syndrome, will be thus very informative.

  18. Advances of gene therapy for primary immunodeficiencies

    PubMed Central

    Candotti, Fabio

    2016-01-01

    In the recent past, the gene therapy field has witnessed a remarkable series of successes, many of which have involved primary immunodeficiency diseases, such as X-linked severe combined immunodeficiency, adenosine deaminase deficiency, chronic granulomatous disease, and Wiskott-Aldrich syndrome. While such progress has widened the choice of therapeutic options in some specific cases of primary immunodeficiency, much remains to be done to extend the geographical availability of such an advanced approach and to increase the number of diseases that can be targeted. At the same time, emerging technologies are stimulating intensive investigations that may lead to the application of precise genetic editing as the next form of gene therapy for these and other human genetic diseases. PMID:27508076

  19. Adenosine: Tipping the balance towards hepatic steatosis and fibrosis

    PubMed Central

    Robson, Simon C.; Schuppan, Detlef

    2010-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the histochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:20395005

  20. Arxula adeninivorans recombinant adenine deaminase and its application in the production of food with low purine content.

    PubMed

    Jankowska, D A; Faulwasser, K; Trautwein-Schult, A; Cordes, A; Hoferichter, P; Klein, C; Bode, R; Baronian, K; Kunze, G

    2013-11-01

    Construction of a transgenic Arxula adeninivorans strain that produces a high concentration of adenine deaminase and investigation into the application of the enzyme in the production of food with low purine content. The A. adeninivorans AADA gene, encoding adenine deaminase, was expressed in this yeast under the control of the strong inducible nitrite reductase promoter using the Xplor(®) 2 transformation/expression platform. The recombinant enzyme was biochemically characterized and was found to have a pH range of 5.5-7.5 and temperature range of 34-46 °C with medium thermostability. A beef broth was treated with the purified enzyme resulting in the concentration of adenine decreasing from 70.4 to 0.4 mg l(-1). It was shown that the production of adenine deaminase by A. adeninivorans can be increased and that the recombinant adenine deaminase can be used to lower the adenine content in the food. Adenine deaminase is one component of an enzymatic system that can reduce the production of uric acid from food constituents. This study gives details on the expression, characterization and application of the enzyme and thus provides evidence that supports the further development of the system. © 2013 The Society for Applied Microbiology.

  1. The Transcription Elongation Complex Directs Activation-Induced Cytidine Deaminase-Mediated DNA Deamination†

    PubMed Central

    Besmer, Eva; Market, Eleonora; Papavasiliou, F. Nina

    2006-01-01

    Activation-induced cytidine deaminase (AID) is a single-stranded DNA deaminase required for somatic hypermutation of immunoglobulin (Ig) genes, a key process in the development of adaptive immunity. Transcription provides a single-stranded DNA substrate for AID, both in vivo and in vitro. We present here an assay which can faithfully replicate all of the molecular features of the initiation of hypermutation of Ig genes in vivo. In this assay, which detects AID-mediated deamination in the context of transcription by Escherichia coli RNA polymerase, deamination targets either strand and declines in efficiency as the distance from the promoter increases. We show that AID binds DNA exposed by the transcribing polymerase, implicating the polymerase itself as the vehicle which distributes AID on DNA as it moves away from the promoter. PMID:16705187

  2. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants

    PubMed Central

    Singh, Rajnish P.; Shelke, Ganesh M.; Kumar, Anil; Jha, Prabhat N.

    2015-01-01

    1-aminocyclopropane-1-carboxylate deaminase (ACCD), a pyridoxal phosphate-dependent enzyme, is widespread in diverse bacterial and fungal species. Owing to ACCD activity, certain plant associated bacteria help plant to grow under biotic and abiotic stresses by decreasing the level of “stress ethylene” which is inhibitory to plant growth. ACCD breaks down ACC, an immediate precursor of ethylene, to ammonia and α-ketobutyrate, which can be further metabolized by bacteria for their growth. ACC deaminase is an inducible enzyme whose synthesis is induced in the presence of its substrate ACC. This enzyme encoded by gene AcdS is under tight regulation and regulated differentially under different environmental conditions. Regulatory elements of gene AcdS are comprised of the regulatory gene encoding LRP protein and other regulatory elements which are activated differentially under aerobic and anaerobic conditions. The role of some additional regulatory genes such as AcdB or LysR may also be required for expression of AcdS. Phylogenetic analysis of AcdS has revealed that distribution of this gene among different bacteria might have resulted from vertical gene transfer with occasional horizontal gene transfer (HGT). Application of bacterial AcdS gene has been extended by developing transgenic plants with ACCD gene which showed increased tolerance to biotic and abiotic stresses in plants. Moreover, distribution of ACCD gene or its homolog's in a wide range of species belonging to all three domains indicate an alternative role of ACCD in the physiology of an organism. Therefore, this review is an attempt to explore current knowledge of bacterial ACC deaminase mediated physiological effects in plants, mode of enzyme action, genetics, distribution among different species, ecological role of ACCD and, future research avenues to develop transgenic plants expressing foreign AcdS gene to cope with biotic and abiotic stressors. Systemic identification of regulatory circuits

  3. Effects of the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine on phencyclidine-induced behavior and expression of the immediate-early genes in the discrete brain regions of rats.

    PubMed

    Gotoh, Leo; Kawanami, Noriko; Nakahara, Tatsuo; Hondo, Hisao; Motomura, Keisuke; Ohta, Eiko; Kanchiku, Izumi; Kuroki, Toshihide; Hirano, Makoto; Uchimura, Hideyuki

    2002-04-30

    Because of the possible interaction between adenosine receptors and dopaminergic functions, the compound acting on the specific adenosine receptor subtype may be a candidate for novel antipsychotic drugs. To elucidate the antipsychotic potential of the selective adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA), we examined herein the effects of CPA on phencyclidine (PCP)-induced behavior and expression of the immediate-early genes (IEGs), arc, c-fos and jun B, in the discrete brain regions of rats. PCP (7.5 mg/kg, s.c.) increased locomotor activity and head weaving in rats and this effect was significantly attenuated by pretreatment with CPA (0.5 mg/kg, s.c.). PCP increased the mRNA levels of c-fos and jun B in the medial prefrontal cortex, nucleus accumbens and posterior cingulate cortex, while leaving the striatum and hippocampus unaffected. CPA pretreatment significantly attenuated the PCP-induced increase in c-fos mRNA levels in the medial prefrontal cortex and nucleus accumbens. CPA also significantly attenuated the PCP-induced arc expression in the medial prefrontal cortex and posterior cingulate cortex. When administered alone, CPA decreased the mRNA levels of all IEGs examined in the nucleus accumbens, but not in other brain regions. Based on the ability of CPA to inhibit PCP-induced hyperlocomotion and its interaction with neural systems in the medial prefrontal cortex, posterior cingulate cortex and nucleus accumbens, the present results provide further evidence for a significant antipsychotic effect of the adenosine A(1) receptor agonist.

  4. Alanine-scanning mutagenesis reveals a cytosine deaminase mutant with altered substrate preference.

    PubMed

    Mahan, Sheri D; Ireton, Greg C; Stoddard, Barry L; Black, Margaret E

    2004-07-20

    Suicide gene therapy of cancer is a method whereby cancerous tumors can be selectively eradicated while sparing damage to normal tissue. This is accomplished by delivering a gene, encoding an enzyme capable of specifically converting a nontoxic prodrug into a cytotoxin, to cancer cells followed by prodrug administration. The Escherichia coli gene, codA, encodes cytosine deaminase and is introduced into cancer cells followed by administration of the prodrug 5-fluorocytosine (5-FC). Cytosine deaminase converts 5-FC into cytotoxic 5-fluorouracil, which leads to tumor-cell eradication. One limitation of this enzyme/prodrug combination is that 5-FC is a poor substrate for bacterial cytosine deaminase. The crystal structure of bacterial cytosine deaminase (bCD) reveals that a loop structure in the active site pocket of wild-type bCD comprising residues 310-320 undergoes a conformational change upon cytosine binding, making several contacts to the pyrimidine ring. Alanine-scanning mutagenesis was used to investigate the structure-function relationship of amino acid residues within this region, especially with regard to substrate specificity. Using an E. coli genetic complementation system, seven active mutants were identified (F310A, G311A, H312A, D314A, V315A, F316A, and P318A). Further characterization of these mutants reveals that mutant F316A is 14-fold more efficient than the wild-type at deaminating cytosine to uracil. The mutant D314A enzyme demonstrates a dramatic decrease in cytosine activity (17-fold) as well as a slight increase in activity toward 5-FC (2-fold), indicating that mutant D314A prefers the prodrug over cytosine by almost 20-fold, suggesting that it may be a superior suicide gene.

  5. Caffeine and adenosine.

    PubMed

    Ribeiro, Joaquim A; Sebastião, Ana M

    2010-01-01

    Caffeine causes most of its biological effects via antagonizing all types of adenosine receptors (ARs): A1, A2A, A3, and A2B and, as does adenosine, exerts effects on neurons and glial cells of all brain areas. In consequence, caffeine, when acting as an AR antagonist, is doing the opposite of activation of adenosine receptors due to removal of endogenous adenosinergic tonus. Besides AR antagonism, xanthines, including caffeine, have other biological actions: they inhibit phosphodiesterases (PDEs) (e.g., PDE1, PDE4, PDE5), promote calcium release from intracellular stores, and interfere with GABA-A receptors. Caffeine, through antagonism of ARs, affects brain functions such as sleep, cognition, learning, and memory, and modifies brain dysfunctions and diseases: Alzheimer's disease, Parkinson's disease, Huntington's disease, Epilepsy, Pain/Migraine, Depression, Schizophrenia. In conclusion, targeting approaches that involve ARs will enhance the possibilities to correct brain dysfunctions, via the universally consumed substance that is caffeine.

  6. Progress and prospects: gene therapy for inherited immunodeficiencies.

    PubMed

    Qasim, W; Gaspar, H B; Thrasher, A J

    2009-11-01

    Haematopoietic stem cell transplantation (HSCT) is now widely used to treat primary immunodeficiencies (PID). For patients with specific disorders (severe combined immunodeficiency (SCID)-X1, adenosine deaminase deficiency (ADA)-SCID, X-chronic granulomatous disease (CGD) and Wiskott-Aldrich Syndrome (WAS)) who lack a suitable human leukocyte antigen (HLA)-matched donor, gene therapy has offered an important alternative treatment option. The success of gene therapy can be attributed, in part, to the selective advantage offered to gene-corrected cells, the avoidance of graft-versus-host disease and to the use of pre-conditioning in patients with chemotherapy to facilitate engraftment of corrected cells. Adverse events have been encountered and this has led to detailed characterization of retroviral vector integration profiles. A new generation of self-inactivating retroviral and lentiviral vectors have been designed to address these safety concerns, and are at an advanced stage of preparation for the next phase of clinical testing.

  7. Structural and Kinetic Characterization of Escherichia coli TadA, the Wobble-Specific tRNA Deaminase

    SciTech Connect

    Kim,J.; Malashkevich, V.; Roday, S.; Lisbin, M.; Schramm, V.; Almo, S.

    2006-01-01

    The essential tRNA-specific adenosine deaminase catalyzes the deamination of adenosine to inosine at the wobble position of tRNAs. This modification allows for a single tRNA species to recognize multiple synonymous codons containing A, C, or U in the last (3'-most) position and ensures that all sense codons are appropriately decoded. We report the first combined structural and kinetic characterization of a wobble-specific deaminase. The structure of the Escherichia coli enzyme clearly defines the dimer interface and the coordination of the catalytically essential zinc ion. The structure also identifies the nucleophilic water and highlights residues near the catalytic zinc likely to be involved in recognition and catalysis of polymeric RNA substrates. A minimal 19 nucleotide RNA stem substrate has permitted the first steady-state kinetic characterization of this enzyme (k{sub cat} = 13 {+-} 1 min{sup -1} and K{sub M} = 0.83 {+-} 0.22 {micro}M). A continuous coupled assay was developed to follow the reaction at high concentrations of polynucleotide substrates (>10 {micro}M). This work begins to define the chemical and structural determinants responsible for catalysis and substrate recognition and lays the foundation for detailed mechanistic analysis of this essential enzyme.

  8. Significance of the D-serine-deaminase and D-serine metabolism of Staphylococcus saprophyticus for virulence.

    PubMed

    Korte-Berwanger, Miriam; Sakinc, Türkan; Kline, Kimberly; Nielsen, Hailyn V; Hultgren, Scott; Gatermann, Sören G

    2013-12-01

    Staphylococcus saprophyticus is the only species of Staphylococcus that is typically uropathogenic and possesses a gene coding for a D-serine-deaminase (DsdA). As D-serine is prevalent in urine and toxic or bacteriostatic to many bacteria, it is not surprising that the D-serine-deaminase gene is found in the genome of uropathogens. It has been suggested that D-serine-deaminase or the ability to respond to or to metabolize D-serine is important for virulence. For uropathogenic Escherichia coli (UPEC), a high intracellular D-serine concentration affects expression of virulence factors. S. saprophyticus is able to grow in the presence of high D-serine concentrations; however, its D-serine metabolism has not been described. The activity of the D-serine-deaminase was verified by analyzing the formation of pyruvate from D-serine in different strains with and without D-serine-deaminase. Cocultivation experiments were performed to show that D-serine-deaminase confers a growth advantage to S. saprophyticus in the presence of D-serine. Furthermore, in vivo coinfection experiments showed a disadvantage for the ΔdsdA mutant during urinary tract infection. Expression analysis of known virulence factors by reverse transcription-quantitative PCR (RT-qPCR) showed that the surface-associated lipase Ssp is upregulated in the presence of D-serine. In addition, we show that S. saprophyticus is able to use D-serine as the sole carbon source, but interestingly, D-serine had a negative effect on growth when glucose was also present. Taken together, D-serine metabolism is associated with virulence in S. saprophyticus, as at least one known virulence factor is upregulated in the presence of D-serine and a ΔdsdA mutant was attenuated in virulence murine model of urinary tract infection.

  9. Significance of the d-Serine-Deaminase and d-Serine Metabolism of Staphylococcus saprophyticus for Virulence

    PubMed Central

    Sakinc, Türkan; Kline, Kimberly; Nielsen, Hailyn V.; Hultgren, Scott; Gatermann, Sören G.

    2013-01-01

    Staphylococcus saprophyticus is the only species of Staphylococcus that is typically uropathogenic and possesses a gene coding for a d-serine-deaminase (DsdA). As d-serine is prevalent in urine and toxic or bacteriostatic to many bacteria, it is not surprising that the d-serine-deaminase gene is found in the genome of uropathogens. It has been suggested that d-serine-deaminase or the ability to respond to or to metabolize d-serine is important for virulence. For uropathogenic Escherichia coli (UPEC), a high intracellular d-serine concentration affects expression of virulence factors. S. saprophyticus is able to grow in the presence of high d-serine concentrations; however, its d-serine metabolism has not been described. The activity of the d-serine-deaminase was verified by analyzing the formation of pyruvate from d-serine in different strains with and without d-serine-deaminase. Cocultivation experiments were performed to show that d-serine-deaminase confers a growth advantage to S. saprophyticus in the presence of d-serine. Furthermore, in vivo coinfection experiments showed a disadvantage for the ΔdsdA mutant during urinary tract infection. Expression analysis of known virulence factors by reverse transcription-quantitative PCR (RT-qPCR) showed that the surface-associated lipase Ssp is upregulated in the presence of d-serine. In addition, we show that S. saprophyticus is able to use d-serine as the sole carbon source, but interestingly, d-serine had a negative effect on growth when glucose was also present. Taken together, d-serine metabolism is associated with virulence in S. saprophyticus, as at least one known virulence factor is upregulated in the presence of d-serine and a ΔdsdA mutant was attenuated in virulence murine model of urinary tract infection. PMID:24082071

  10. B-cell development and functions and therapeutic options in adenosine deaminase–deficient patients

    PubMed Central

    Brigida, Immacolata; Sauer, Aisha V.; Ferrua, Francesca; Giannelli, Stefania; Scaramuzza, Samantha; Pistoia, Valentina; Castiello, Maria Carmina; Barendregt, Barbara H.; Cicalese, Maria Pia; Casiraghi, Miriam; Brombin, Chiara; Puck, Jennifer; Müller, Klaus; Notarangelo, Lucia Dora; Montin, Davide; van Montfrans, Joris M.; Roncarolo, Maria Grazia; Traggiai, Elisabetta; van Dongen, Jacques J. M.; van der Burg, Mirjam; Aiuti, Alessandro

    2015-01-01

    Background Adenosine deaminase (ADA) deficiency causes severe cellular and humoral immune defects and dysregulation because of metabolic toxicity. Alterations in B-cell development and function have been poorly studied. Enzyme replacement therapy (ERT) and hematopoietic stem cell (HSC) gene therapy (GT) are therapeutic options for patients lacking a suitable bone marrow (BM) transplant donor. Objective We sought to study alterations in B-cell development in ADA-deficient patients and investigate the ability of ERT and HSC-GT to restore normal B-cell differentiation and function. Methods Flow cytometry was used to characterize B-cell development in BM and the periphery. The percentage of gene-corrected B cells was measured by using quantitative PCR. B cells were assessed for their capacity to proliferate and release IgM after stimulation. Results Despite the severe peripheral B-cell lymphopenia, patients with ADA-deficient severe combined immunodeficiency showed a partial block in central BM development. Treatment with ERT or HSC-GT reverted most BM alterations, but ERT led to immature B-cell expansion. In the periphery transitional B cells accumulated under ERT, and the defect in maturation persisted long-term. HSC-GT led to a progressive improvement in B-cell numbers and development, along with increased levels of gene correction. The strongest selective advantage for ADA-transduced cells occurred at the transition from immature to naive cells. B-cell proliferative responses and differentiation to immunoglobulin secreting IgM after B-cell receptor and Toll-like receptor triggering were severely impaired after ERT and improved significantly after HSC-GT. Conclusions ADA-deficient patients show specific defects in B-cell development and functions that are differently corrected after ERT and HSC-GT. PMID:24506932

  11. Gene therapy for newborns.

    PubMed

    Kohn, D B; Parkman, R

    1997-07-01

    Application of gene therapy to treat genetic and infectious diseases may have several advantages if performed in newborns. Because of the minimal adverse effect of the underlying disease on cells of the newborn, the relatively small size of infants, and the large amount of future growth, gene therapy may be more successful in newborns than in older children or adults. The presence of umbilical cord blood from newborns provides a unique and susceptible target for the genetic modification of hematopoietic stem cells. In our first trial of gene therapy in newborns, we inserted a normal adenosine deaminase gene into umbilical cord blood cells of three neonates with a congenital immune deficiency. The trial demonstrated the successful transduction and engraftment of stem cells, which continue to contribute to leukocyte production more than 3 years later. A similar approach may be taken to insert genes that inhibit replication of HIV-1 into umbilical cord blood cells of HIV-1-infected neonates. Many other metabolic and infectious disorders could be treated by gene therapy during the neonatal period if prenatal diagnoses are made and the appropriate technical and regulatory requirements have been met.

  12. Adenosine and sleep

    SciTech Connect

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  13. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    PubMed

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P < 0.05) in detrusor strips from BPH patients. The extracellular hydrolysis of ATP and, subsequent, adenosine formation was slower (t (1/2) 73 vs. 36 min, P < 0.05) in BPH detrusor strips. The A(1) receptor-mediated inhibition of evoked [(3)H]ACh release by adenosine (100 μM), NECA (1 μM), and R-PIA (0.3 μM) was enhanced in BPH bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients.

  14. A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea

    PubMed Central

    Randau, Lennart; Stanley, Bradford J.; Kohlway, Andrew; Mechta, Sarah; Xiong, Yong; Söll, Dieter

    2010-01-01

    All canonical transfer RNAs (tRNAs) have a uridine at position 8, involved in maintaining tRNA tertiary structure. However, the hyperthermophilic archaeon Methanopyrus kandleri harbors 30 (out of 34) tRNA genes with cytidine at position 8. Here, we demonstrate C-to-U editing at this location in the tRNA’s tertiary core, and present the crystal structure of a tRNA-specific cytidine deaminase, CDAT8, which has the cytidine deaminase domain linked to a tRNA-binding THUMP domain. CDAT8 is specific for C deamination at position 8, requires only the acceptor stem hairpin for activity, and belongs to a unique family within the “cytidine deaminase–like” superfamily. The presence of this C-to-U editing enzyme guarantees the proper folding and functionality of all M. kandleri tRNAs. PMID:19407206

  15. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning.

    PubMed

    Aiuti, Alessandro; Slavin, Shimon; Aker, Memet; Ficara, Francesca; Deola, Sara; Mortellaro, Alessandra; Morecki, Shoshana; Andolfi, Grazia; Tabucchi, Antonella; Carlucci, Filippo; Marinello, Enrico; Cattaneo, Federica; Vai, Sergio; Servida, Paolo; Miniero, Roberto; Roncarolo, Maria Grazia; Bordignon, Claudio

    2002-06-28

    Hematopoietic stem cell (HSC) gene therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID) has shown limited clinical efficacy because of the small proportion of engrafted genetically corrected HSCs. We describe an improved protocol for gene transfer into HSCs associated with nonmyeloablative conditioning. This protocol was used in two patients for whom enzyme replacement therapy was not available, which allowed the effect of gene therapy alone to be evaluated. Sustained engraftment of engineered HSCs with differentiation into multiple lineages resulted in increased lymphocyte counts, improved immune functions (including antigen-specific responses), and lower toxic metabolites. Both patients are currently at home and clinically well, with normal growth and development. These results indicate the safety and efficacy of HSC gene therapy combined with nonmyeloablative conditioning for the treatment of SCID.

  16. Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth.

    PubMed

    Magnucka, Elżbieta G; Pietr, Stanisław J

    2015-12-01

    The study evaluates the effect of rhizobacteria having 1-aminocyclopropane-1-carboxylate deaminase (ACCd) on the development of wheat seedlings. This enzyme has been proposed to play a key role in microbe-plant association. Three fluorescent pseudomonads containing this deaminase were selected from 70 strains of pseudomonads isolated from rhizosphere of wheat (Triticum aestivum L.) and rape (Brassica napus L.). These bacteria, varied significantly in the ability to both biosynthesize auxins and hydrolyze ACC. Among them, Pseudomonas brassicacearum subsp. brassicacearum strain RZ310 presented the highest activities of ACC deaminase during 96h of growth in liquid Dworkin and Foster (DF) salt medium. Additionally, this rape rhizosphere strain did not produce indoles. Two other isolates, Pseudomonas sp. PO283 and Pseudomonas sp. PO366, secreted auxins only in the presence of their precursor. Phylogenetic analysis of the 16S rRNA gene and four other protein-encoding genes indicated that these wheat rhizosphere isolates belonged to the fluorescent Pseudomonas group. Moreover, the effects of these strains on wheat seedling growth under in vitro conditions were markedly dependent on both their cell suspensions used to grain inoculation and nutrient conditions. Strains tested had beneficial influence on wheat seedlings mainly at low cell densities. In addition, access to nutrients markedly changed bacteria action on cereal growth. Their presence generally favored the positive effects of pseudomonads on length and the estimated biomasses of wheat coleoptiles. Despite these general rules, impacts of each isolate on the growth parameters of cereal seedlings were unique.

  17. Cytosine deaminase MX cassettes as positive/negative selectable markers in Saccharomyces cerevisiae.

    PubMed

    Hartzog, Phillip E; Nicholson, Bradly P; McCusker, John H

    2005-07-30

    We describe positive/negative selectable cytosine deaminase MX cassettes for use in Saccharomyces cerevisiae. The basis of positive selection for cytosine deaminase (Fcy1) activity is that (a) fcy1 strains are unable to grow on medium containing cytosine as a sole nitrogen source and (b) fcy1 ura3 strains are unable to grow on medium containing cytosine as the sole pyrimidine source. Conversely, as 5-fluorocytosine (5FC) is toxic to cytosine deaminase-producing cells, fcy1 strains are resistant to 5FC. FCY1MX and FCA1MX cassettes, containing open reading frames (ORFs) of S. cerevisiae FCY1 and Candida albicans FCA1, respectively, were constructed and used to disrupt targeted genes in S. cerevisiae fcy1 strains. In addition, new direct repeat cassettes, kanPR, FCA1PR, FCY1PR and CaURA3PR, were developed to allow efficient deletion of target genes in cells containing MX3 repeats. Finally, the FCY1- and FCA1MX3 or PR direct repeat cassettes can be readily recycled after 5FC counter-selection on both synthetic and rich media.

  18. [Screening and identification of an endophytic bacterium with 1-aminocyclopropane-1-carboxylate deaminase activity from Panax ginseng and its effect on host growth].

    PubMed

    Tian, Lei; Jiang, Yun; Chen, Changqing; Zhang, Guanjun; Li, Tong; Tong, Bin; Xu, Peng

    2014-07-04

    This study aimed to screen endophytic bacteria with 1-aminocyclopropane-1-carboxylate deaminase activity from Panax ginseng and test the capability of growth promotion to its host. In total 120 endophytic bacterial strains isolated from Panax ginseng were screened for 1-aminocyclopropane-1-carboxylate deaminase activity using the qualitative and quantitative methods. The obtained strain was also tested for its ability of nitrogen fixation using the Ashby agar plates and the gene of nifH, for its ability of phosphate solubilization using the Pikovaskaia's plates and quantitative analysis of Mo-Sb-Ascrobiology acid colorimetry, for its ability of producing siderophores using the method of Chrome azurol S detecting, and its effect on promoting growth of Panax ginseng by laboratory and field experiments. The bacterial strain with ACC deaminase was identified based on morphology, physiological and biochemical traits, and 16S rRNA sequence analysis. The bacterial stain JJ8-3 with the ability of producing ACC deaminase activity was obtained through screening, which its ACC deaminase activity was alpha-ketobutyric acid 6.7 micromol/(mg x h). Strain JJ8-3 had other traits of phosphate solubilizing, nitrogen fixation, producing siderophores, and the ability of promoting growth of Panax ginseng. Strain JJ8-3 was identified as Pseudomonas fluorescens. Strain JJ8-3 of endophytic bacterium with ACC deaminase activity from Panax ginseng was obtained and would lay the foundation for its further study and application on plant growth promotion.

  19. Yeast Cytosine Deaminase Mutants with Increased Thermostability Impart Sensitivity to 5-Fluorocytosine

    PubMed Central

    Stolworthy, Tiffany S.; Korkegian, Aaron M.; Willmon, Candice L.; Ardiani, Andressa; Cundiff, Jennifer; Stoddard, Barry L.; Black, Margaret E.

    2008-01-01

    SUMMARY Prodrug gene therapy (PGT) is a treatment strategy in which tumor cells are transfected with a 'suicide' gene that encodes a metabolic enzyme capable of converting a nontoxic prodrug into a potent cytotoxin. One of the most promising PGT enzymes is cytosine deaminase (CD), a microbial salvage enzyme that converts cytosine to uracil. CD also converts 5-fluorocytosine (5FC) to 5-fluorouracil (5FU), an inhibitor of DNA synthesis and RNA function. Over 150 studies of cytosine deaminase-mediated PGT applications have been reported since 2000, all using wild-type enzymes. However, various forms of cytosine deaminase are limited by inefficient turnover of 5FC and/or limited thermostability. In a previous study we stabilized and extended the half-life of yeast cytosine deaminase (yCD) by repacking of its hydrophobic core at several positions distant from the active site. Here we report that random mutagenesis of residues selected based on alignment with similar enzymes, followed by selection for enhanced sensitization to 5FC, also produces an enzyme variant (yCD-D92E) with elevated Tm values and increased activity half-life. The new mutation is located at the enzyme's dimer interface, indicating that independent mutational pathways can lead to an increase in the temperature that induces protein unfolding and aggregation in thermal denaturation experiments measured by circular dichroism spectroscopy, and an increase in the half-life of enzyme activity at physiological temperature, as well as more subtle effect on enzyme kinetics. Each independently derived set of mutations significantly improves the enzyme's performance in PGT assays both in cell culture and in animal models. PMID:18291415

  20. Multivalent Induction of Biodegradative Threonine Deaminase

    PubMed Central

    Yui, Yoshiki; Watanabe, Yasuyoshi; Ito, Seiji; Shizuta, Yutaka; Hayaishi, Osamu

    1977-01-01

    To determine the inducer(s) of the biodegradative threonine deaminase in Escherichia coli, the effects of various amino acids on the synthesis of this enzyme were investigated. The complex medium used hitherto for the enzyme induction can be completely replaced by a synthetic medium composed of 18 natural amino acids. In this synthetic medium, the omission of each of the seven amino acids threonine, serine, aspartic acid, methionine, valine, leucine, and arginine resulted in the greatest loss of enzyme formation. These seven amino acids did not significantly influence the uptake of other amino acids into the cells. Furthermore, they did not stimulate the conversion of inactive enzyme into an active form, since they did not affect the enzyme level in cells in which protein synthesis was inhibited by chloramphenicol. Threonine, serine, aspartic acid, and methionine failed to stimulate enzyme production in cells in which messenger ribonucleic acid synthesis was arrested by rifampin, whereas valine, leucine, and arginine stimulated enzyme synthesis under the same conditions. Therefore, the first four amino acids appear to act as inducers of the biodegradative threonine deaminase in E. coli and the last three amino acids appear to be amplifiers of enzyme production. The term “multivalent induction” has been proposed for this type of induction, i.e., enzyme induction only by the simultaneous presence of several amino acids. PMID:334736

  1. Metformin in vitro and in vivo increases adenosine signaling in rabbit corpora cavernosa.

    PubMed

    Vignozzi, Linda; Filippi, Sandra; Comeglio, Paolo; Cellai, Ilaria; Morelli, Annamaria; Rastrelli, Giulia; Maneschi, Elena; Mannucci, Edoardo; Maggi, Mario

    2014-07-01

    In subjects with erectile dysfunction responding poorly to sildenafil, metformin was reported to improve erections. The aim of this study is to investigate metformin's mechanism of action on erectile function, particularly focusing on adenosine (ADO) and nitric oxide (NO) signaling in an animal model of high-fat diet (HFD)-induced metabolic syndrome. In vitro contractility studies of penile strips. Penile expression of genes related to ADO or NO signaling was also evaluated. In vitro contractility studies were used to investigate the effect of in vivo and ex vivo metformin administration on ADO- or acetylcholine (Ach)-induced relaxation of penile strips from HFD as compared with animals fed a regular diet (RD). Expression of ADO receptor type 3 (A3 R), ADO deaminase (ADA), AMP deaminase type 1 (AMPD1), and 2 (AMPD2) was decreased in HFD as compared with RD. Accordingly, in HFD the ADO relaxant effect was potentiated as compared with RD (P < 0.02). In vivo metformin treatment in both RD and HFD significantly increased the ADO relaxing effect (P < 0.0001 and P < 0.01, respectively, vs. relative untreated groups) although to a different extent. In fact, the half-maximal inhibitory concentration (IC50 )/IC50 ratio in RD increased fourfold vs. HFD (RD IC50 ratio = 13.75 ± 2.96; HFD IC50 ratio = 2.85 ± 0.52). In corpora cavernosa (CC) from HFD, in vivo metformin (i) normalized A3 R, ADA, and AMPD1; (ii) further decreased AMPD2; (iii) increased dimethylarginine dimethylamino-hydrolase; and (iv) partially restored impaired Ach-induced relaxation. Ex vivo metformin time and dose dependently increased the relaxant effect of ADO in RD. The potentiating effect of metformin on ADO-induced relaxation was significantly reduced by preincubation with NO synthase inhibitor N(ω) -Nitro-L-arginine methyl ester hydrochloride (L-NAME). Interestingly, in vivo testosterone supplementation in HFD rabbits (i) increased penile expression of endothelial NO

  2. Adenosine receptor expression and function in rat striatal cholinergic interneurons.

    PubMed

    Preston, Z; Lee, K; Widdowson, L; Freeman, T C; Dixon, A K; Richardson, P J

    2000-06-01

    Cholinergic neurons were identified in rat striatal slices by their size, membrane properties, sensitivity to the NK(1) receptor agonist (Sar(9), Met(O(2))(11)) Substance P, and expression of choline acetyltransferase mRNA. A(1) receptor mRNA was detected in 60% of the neurons analysed, and A(2A) receptor mRNA in 67% (n=15). The A(1) receptor agonist R-N(6)-(2-phenylisopropyl)adenosine (R-PIA) hyperpolarized cholinergic neurons in a concentration dependent manner sensitive to the A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX, 100 nM). In dual stimulus experiments, the A(2A) receptor antagonist 8-(3-chlorostyryl)caffeine (CSC, 500 nM) decreased release of [(3)H]-acetylcholine from striatal slices (S2/S1 0.78+/-0.07 versus 0.95+/-0.05 in control), as did adenosine deaminase (S2/S1 ratio 0.69+/-0.05), whereas the A(1) receptor antagonist DPCPX (100 nM) had no effect (S2/S1 1.05+/-0.14). In the presence of adenosine deaminase the adenosine A(2A) receptor agonist 2-p-((carboxyethyl)phenylethylamino)-5'-N-ethylcarboxamidoadeno sin e (CGS21680, 10 nM) increased release (S2/S1 ratio 1.03+/-0.05 versus 0.88+/-0.05 in control), an effect blocked by the antagonist CSC (500 nM, S2/S1 0.68+/-0.05, versus 0.73+/-0.08 with CSC alone). The combined superf