Synthesis of Nucleoside Mono- and Dialdehydes as Antiviral Agents
1987-12-15
Crimean-Congo Hemorrhagic Fever VSV Vesicular Stomatitis Virus AD2 Adenovirus Type 2 VV Vaccinia FeLV Feline Leukemia Virus HIV Human Immunodeficiency...have shown broad spectrum activity against wainy of the viruses in the screening system, and some, like guanosine diaLdehyde, have shown remarkably...8217-unsaturaited adenosin*-2’,3’-diLsdehyde ahowed excellent activity against vesicular stomatitis virus . 20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21
Antibacterial and antiviral study of dialdehyde polysaccharides
NASA Astrophysics Data System (ADS)
Song, Le
Concerns for microbial contamination and infection to the general population, especially the spread of drug-resistant microorganisms, have greatly increased. Polymeric biocides have been found to be a feasible strategy to inactivate drug-resistant bacteria. However, current polymeric biocide systems involve multi-step chemical reactions and they are not cost-effective. Desirable antimicrobial systems need to be designed to be environmentally friendly, broad-spectrum effective against microorganisms, flexible for various delivery methods and economically affordable. We demonstrated that dialdehyde polysaccharides (including dialdehyde starch and dialdehdye cellulose) were broad-spectrum polymeric biocides against gram-positive/negative bacteria, bacteriophages and human virus. These polymers can be easily converted from starch and cellulose through one-step periodate oxidation. Destructions of microorganism by dialdehyde polysaccharides have been achieved in aqueous suspension or by solid surface contact. The dialdehdye functions of dialdehdye polysaccharides were found to be the dominant action against microorganism. The reactivity of the dialdehyde functionality was found to be pH-dependent as well as related to the dispersion of dialdehyde polysaccharides. Degradation of dialdehyde starch during cooking was confirmed. Degradation of dialdehyde starch was more liable in alkaline condition. Carboxylic acid and conjugated aldehyde functionalities were the two main degradation products, confirmed from the spectroscopic studies. The pH effect on the polysaccharide structure and the corresponding antimicrobial activity was very complicated. No decisive conclusions could be obtained from this study. Liner inactivation kinetics was found for dialdehyde starch aqueous suspension against bacteria. This linear inactivation kinetics was derived from the pseudo-first chemical reaction between the dialdehyde starch and the bacteria. The established inactivation kinetics was successfully predicated the response of bacteria to dialdehyde starch with time. Inactivation of bacteria by dialdehyde starch was speculated to be the crosslinking-interaction between the dialdehyde starch and the bacterial surface. Amino groups of bacterial surfaces were blocked by dialdehyde starch. This crosslinking action was also suggested from the preliminary study of the bacterial dehydrogenase activity. However, membrane damage was found in the dialdehdye starch treated bacteria from the fluorescent study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon, W.M.; Arnett, G.; Brazier, A.D.
1991-03-01
The purpose of this program is to evaluate the efficacy of candidate antiviral compounds against a spectrum of viruses of military importance. This program involves (a) primary testing of chemical compounds and natural products for antiviral efficacy in vitro using standard CPE-inhibition assays, (b) primary testing of compounds for antiviral efficacy in vivo in animal model systems, and (c) secondary evaluation of the active candidate antiviral compounds. The target viruses for in vitro testing are Vaccinia Virus (VV), Adenovirus (AD2), Vesicular Stomatitis Virus (VSV), Punta Toro Virus (PT), Sandfly Fever Virus (SF), Yellow Fever Virus (YF), Venezuelan Equine Encephalomyelitis Virusmore » (VE), Japanese Encephalitis Virus and Vaccinia Virus infections of mice. Approximately 10,000 compounds have been received for in vitro evaluation and over 66,000 assays have been performed on this contract. Compounds have been identified in nearly all virus systems that have confirmed antiviral activity equal or exceeding that of the various positive control compounds (Ribavirin, Selenazofurin, Carbocyclic-3-deaza-adenosine, Adenosine dialdehyde, Ara-A, ddC and AZT). Many of these compounds represent potent and selective new antiviral agents.« less
Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde.
Gómez-Gómez, Lourdes; Pacios, Luis F; Diaz-Perales, Araceli; Garrido-Arandia, María; Argandoña, Javier; Rubio-Moraga, Ángela; Ahrazem, Oussama
2018-05-09
In saffron, the cleavage of zeaxanthin by means of CCD2 generates crocetin dialdehyde, which is then converted by an unknown aldehyde dehydrogenase to crocetin. A proteome from saffron stigma was released recently and, based on the expression pattern and correlation analyses, five aldehyde dehydrogenases (ALDHs) were suggested as possible candidates to generate crocetin from crocetin dialdehydes. We selected four of the suggested ALDHs and analyzed their expression in different tissues, determined their activity over crocetin dialdehyde, and performed structure modeling and docking calculation to find their specificity. All the ALDHs were able to convert crocetin dialdehyde to crocetin, but two of them were stigma tissue-specific. Structure modeling and docking analyses revealed that, in all cases, there was a high coverage of residues in the models. All of them showed a very close conformation, indicated by the low root-mean-square deviation (RMSD) values of backbone atoms, which indicate a high similarity among them. However, low affinity between the enzymes and the crocetin dialdehyde were observed. Phylogenetic analysis and binding affinities calculations, including some ALDHs from Gardenia jasmonoides , Crocus sieberi , and Buddleja species that accumulate crocetin and Bixa orellana synthetizing the apocarotenoid bixin selected on their expression pattern matching with the accumulation of either crocins or bixin, pointed out that family 2 C4 members might be involved in the conversion of crocetin dialdehyde to crocetin with high specificity.
General Dialdehyde Click Chemistry for Amine Bioconjugation.
Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N
2017-05-17
The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click-conjugation strategy, we designed a straightforward scheme to synthesize a suite of dialdehyde reagents. The dialdehyde molecules were used for applications in cell-surface engineering and for tailoring surfaces for material science applications. We anticipate the broad utility of the general dialdehyde click chemistry to primary amines in all areas of chemical research, ranging from polymers and bioconjugation to material science and nanoscience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon, W.M.; Arnett, G.; Brazier, A.D.
1991-03-01
The purpose of this program is to evaluate the efficacy of candidate antiviral compounds against a spectrum of viruses of military importance. This program involves (a) primary testing of chemical compounds and natural products for antiviral efficacy in vitro using standard CPE-inhibition assays, (b) primary testing of compounds for antiviral efficacy in vivo in animal model systems, and (c) secondary evaluation of the active candidate antiviral compounds. The target viruses for in vitro testing are Vaccinia Virus (VV), Adenovirus (AD2), Vesicular Stomatitis Virus (VSV), Punta Toro Virus (PT), Sandfly fever Virus (SF), Yellow Fever Virus (YF), Venezuelan Equine Encephalomyelitis Virusmore » (VE), Japanese Encephalitis Virus, Pichinde Virus (PIC), Hantaan Virus (HTN), and Human Immunodeficiency Virus (HIV). The in vivo systems are Pichinde Virus infection of hamsters, Venezuelan Equine Encephalomyelitis Virus, Japanese Encephalitis Virus and Vaccinia virus infections of mice. Approximately 10,000 compounds have been received for in vitro evaluation and over 66,000 assays have been performed on this contract. Compounds have been identified in nearly all virus systems that have confirmed antiviral activity equal or exceeding that of the various positive control compounds (ribavirin, selenazofurin, carbocyclic-3-aza-adenosine, adenosine dialdehyde, Ara-A, ddC and AZT). Many of these compounds represent potent and selective new antiviral agents.« less
Liu, Ting; Shi, Lu; Gu, Zhipeng; Dan, Weihua; Dan, Nianhua
2017-08-01
Despite its crucial role in directing cell fate in healthy and diseased tissues, improvements in physical-chemical properties and biocompatibility of type-I collagen are still needed. In this report, we described combined and facile method to modify collagen. The collagen film was first modified by procyanidins solution, in which, then subjected to further crosslinked by dialdehyde alginate, resulting in collagen-procyanidins-dialdehyde alginate film. The properties of the crosslinked collagen films were investigated and the results were discussed. Results from differential scanning calorimetry and thermo gravimetric analysis suggested that the thermal stabilities of the collagen-procyanidins-dialdehyde alginate film were significantly improved. The mechanical properties of collagen-procyanidins-dialdehyde alginate film in terms of elongation at break and tensile strength increased approximately 2-fold and 3-fold, respectively compare to pure collagen film. In addition, the resistance to collagenase degradation of collagen-procyanidins-dialdehyde alginate film was remarkably promoted. The results from methyltetrazolium assay and confocal laser scanning microscopy showed that no cytotoxicity of collagen film was introduced by the combined crosslinking method. Thus, the novel combined by procyanidins-dialdehyde alginate crosslinking method shown in this study provided a non-toxic and efficient crosslinking method that improved various properties of collagen film, which has great potential applications in biomedical materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Mold Pectinase Modified with Dialdehyde Derivatives of Dextran and Cellulose.
Kobayashi, M; Chiba, Y; Funane, K; Ohya, S; Kato, Y
1996-01-01
Chemical modification of mold pectinase with dextran- and cellulose-dialdehydes was examined to improve the enzyme characteristics. The modified pectinase with dextran-dialdehyde retained about 50% of the original activity, and more than 80% of the total amino groups were modified. HPLC gel filtration analysis showed an increase in molecular weight of the reaction product. Reaction with cellulose-dialdehyde provided an immobilized form of pectinase. The immobilized pectinase was resistant to both acidic and alkaline pHs, and also acquired heat stability at 60°C. The optimum pH of the modified enzyme shifted from pH 4.5 to 5.0-5.5, and this enzyme had higher activity at neutral pH regions than the native enzyme. A rather low recovery of immobilized enzyme (14.5%) should be improved by the combination with various methods hitherto established.
Shock and Awe. Achieving Rapid Dominance
1996-09-01
par- adox of the issue of planning for a long - versus -short war in a nuclear world remained unresolved. 4 Shock and AweMobilization, as in World War...world and are likely to remain so for a long time to come. Why then, many will ask, should we examine and even propose major excursions and...after battle. Today, x we believe that an unusual opportunity exists to determine whether or not this long -sought strategic goal of affecting the
Ramakrishna, V; Eisenthal, A; Skornick, Y; Shinitzky, M
1993-05-01
The B16-BL6 melanoma, like most spontaneously arising tumors, is poorly immunogenic and expresses low levels of major histocompatibility complex (MHC) antigens. Treatment of cells of this tumor in vitro by hydrostatic pressure in the presence of adenosine 2',3'-dialdehyde (oxAdo), a membrane-impermeant crosslinker, caused elevated projection of MHC and a specific tumor antigen as demonstrated by flow-cytometric analysis. Maximum projection of both the MHC and the tumor antigens could be reached by application of 1200 atm for 15 min in the presence of 20 mM oxAdo. It is not yet clear whether this passive increase in availability of antigens on the cell surface originated from a dormant pool of antigens in the plasma membrane or from pressure-induced fusion of antigen-rich intracellular organelles (e.g. the endoplasmic reticulum). The immunogenic properties of the antigen-enriched B16-BL6 cells are described in the following paper.
Acharyya, Koushik; Mukherjee, Sandip; Mukherjee, Partha Sarathi
2013-01-16
Unprecedented self-sorting of three-dimensional purely organic cages driven by dynamic covalent bonds is described. Four different cages were first synthesized by condensation of two triamines and two dialdehydes separately. When a mixture of all the components was allowed to react, only two cages were formed, which suggests a high-fidelity self-recognition. The issue of the preference of one triamine for a particular dialdehyde was further probed by transforming a non-preferred combination to either of the two preferred combinations by reacting it with the appropriate triamine or dialdehyde.
Preparation and characterization of dialdehyde starch by one-step acid hydrolysis and oxidation.
Zuo, Yingfeng; Liu, Wenjie; Xiao, Junhua; Zhao, Xing; Zhu, Ying; Wu, Yiqiang
2017-10-01
Dialdehyde starch was prepared by one-step synthesis of acid hydrolysis and oxidation, using corn starch as the raw material, sodium periodate (NaIO 4 ) as the oxidant, and hydrochloric acid (HCl) as the acid solution. The prepared dialdehyde starch was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The results confirmed that oxidation occurred between the starch and NaIO 4 . The acid hydrolysis reaction reduced the molecular weight of starch and effectively improved the aldehyde group contents (92.7%). Scanning electron microscope (SEM) analysis indicated that the average particle size decreased after acid hydrolysis and oxidation reaction. X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA) analysis demonstrated that the crystallinity of the obtained dialdehyde starch showed a downward trend and a decelerated thermal decomposition rate. The starch after acid hydrolysis and oxidation exhibited lower hot paste viscosity and higher reactivity. Copyright © 2017. Published by Elsevier B.V.
Ruan, Chang-Qing; Strømme, Maria; Lindh, Jonas
2018-02-01
Micrometer sized 2,3-dialdehyde cellulose (DAC) beads were produced via a recently developed method relying on periodate oxidation of Cladophora nanocellulose. The produced dialdehyde groups and pristine hydroxyl groups provided the DAC beads with a vast potential for further functionalization. The sensitivity of the DAC beads to alkaline conditions, however, limits their possible functionalization and applications. Hence, alkaline-stable and porous cellulose beads were prepared via a reductive amination crosslinking reaction between 2,3-dialdehyde cellulose beads and chitosan. The produced materials were thoroughly characterized with different methods. The reaction conditions, including the amount of chitosan used, conditions for reductive amination, reaction temperature and time, were investigated and the maintained morphology of the beads after exposure to 1M NaOH (aq.) was verified with SEM. Different washing and drying procedures were used and the results were studied by SEM and BET analysis. Furthermore, FTIR, TGA, EDX, XPS, DLS and elemental analysis were performed to characterize the properties of the prepared beads. Finally, the alkaline-stable porous chitosan cross-linked 2,3-dialdehyde cellulose beads were applied as adsorbent for the dye Congo red. The crosslinked beads displayed fast and high adsorption capacity at pH 2 and good desorption properties at pH 12, providing a promising sorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Immobilization of pectawamorine G10x on silichromes].
Bogatskiĭ, A V; Davidenko, T I; Gren', T A
1980-01-01
Immobilization of pectawamorine G10x on silochromes, using cyanuric chloride, 2,4-toluylene diisocyanate, glutaric dialdehyde, thionyl chloride, phosphorus tribromide, titanium tetrachloride, zirconium oxychloride and hafnium oxychloride was studied. The use of glutaric dialdehyde assured the strongest binding and the preatest stability of activity. Properties of the native pectawamorine G10x and immobilized preparations were studied on a comparative basis. Pectawamorine G10x immobilized by means of hafnium oxychloride showed increased stability when stored at 5 degrees C and used repeatedly. In every case, except for cyanuric chloride and glutaric dialdehyde, maximum activity was at a temperature 10 degrees C higher than for the native enzyme, and optimum pH varied for the preparations with different binding reagents.
Mikhailov, Sergey N; Zakharova, Alexandra N; Drenichev, Mikhail S; Ershov, Andrey V; Kasatkina, Mariya A; Vladimirov, Leonid V; Novikov, Valentin V; Kildeeva, Natalia R
2016-01-01
In medical and pharmaceutical applications, chitosan is used as a component of hydrogels-macromolecular networks swollen in water. Chemical hydrogels are formed by covalent links between the crosslinking reagents and amino functionalities of chitosan. To date, the most commonly used chitosan crosslinkers are dialdehydes, such as glutaraldehyde (GA). We have developed novel GA like crosslinkers with additional functional groups-dialdehyde derivatives of uridine (oUrd) and nucleotides (oUMP and oAMP)-leading to chitosan-based biomaterials with new properties. The process of chitosan crosslinking was investigated in details and compared to crosslinking with GA. The rates of crosslinking with oUMP, oAMP, and GA were essentially the same, though much higher than in the case of oUrd. The remarkable difference in the crosslinking properties of nucleoside and nucleotide dialdehydes can be clearly attributed to the presence of the phosphate group in nucleotides that participates in the gelation process through ionic interactions with the amino groups of chitosan. Using NMR spectroscopy, we have not observed the formation of aldimine bonds. It can be concluded that the real number of crosslinks needed to cause gelation of chitosan chains may be less than 1%.
Murali, Ragothaman; Ponrasu, Thangavel; Cheirmadurai, Kalirajan; Thanikaivelan, Palanisamy
2016-02-01
Development of hybrid scaffolds with synergistic combination of growth factor is a promising approach to promote early in vivo wound repair and tissue regeneration. Here, we show the rapid wound healing in Wistar albino rats using biomimetic collagen-poly(dialdehyde) guar gum based hybrid porous scaffolds covalently immobilized with platelet derived growth factor-BB. The immobilized platelet derived growth factor in the hybrid scaffolds not only enhance the total protein, collagen, hexosamine, and uronic acid contents in the granulation tissue but also provide stronger tissues. The wound closure analysis reveal that the complete epithelialization period is 15.4 ± 0.9 days for collagen-poly(dialdehyde) guar gum-platelet derived growth factor hybrid scaffolds, whereas it is significantly higher for control, collagen, collagen- poly(dialdehyde) guar gum and povidine-iodine treated groups. Further, the histological evaluation shows that the immobilized platelet derived growth factor in the hybrid scaffolds induced a more robust cellular and vascular response in the implanted site. Hence, we demonstrate that the collagen-poly(dialdehyde) guar gum hybrid scaffolds loaded with platelet derived growth factor stimulates chemotactic effects in the implanted site to promote rapid tissue regeneration and wound repair without the assistance of antibacterial agents. © 2015 Wiley Periodicals, Inc.
A Crosslinker Based on a Tethered Electrophile for Mapping Kinase-Substrate Networks
Riel-Mehan, Megan M; Shokat, Kevan M
2014-01-01
SUMMARY Despite the continuing progress made towards mapping kinase signaling networks, there are still many phosphorylation events for which the responsible kinase has not yet been identified. We are interested in addressing this problem through forming covalent crosslinks between a peptide substrate and the corresponding phosphorylating kinase. Previously we reported a dialdehyde-based kinase binding probe capable of such a reaction with a peptide containing a cysteine substituted for the phosphorylatable ser/thr/tyr residue. Here, we examine the yield of a previously reported dialdehyde-based probe, and report that the dialdehyde based probes possesses a significant limitation in terms of crosslinked kinase-substrate product yield. To address this limitation, we develop a crosslinking scheme based on a kinase activity-based probe, and this new cross-linker provides an increase in efficiency and substrate specificity, including in the context of cell lysate. PMID:24746561
Hydroquinone Exhibits In Vitro and In Vivo Anti-Cancer Activity in Cancer Cells and Mice.
Byeon, Se Eun; Yi, Young-Su; Lee, Jongsung; Yang, Woo Seok; Kim, Ji Hye; Kim, Jooyoung; Hong, Suntaek; Kim, Jong-Hoon; Cho, Jae Youl
2018-03-19
Hydroquinone (HQ, 1,4-benzenediol) is a hydroxylated benzene metabolite with various biological activities, including anti-oxidative, neuroprotective, immunomodulatory, and anti-inflammatory functions. However, the anti-cancer activity of HQ is not well understood. In this study, the in vitro and in vivo anti-cancer activity of HQ was investigated in various cancer cells and tumor-bearing mouse models. HQ significantly induced the death of A431, SYF, B16F10, and MDA-MB-231 cells and also showed a synergistic effect on A431 cell death with other anti-cancer agents, such as adenosine-2',3'-dialdehyde and buthionine sulfoximine. In addition, HQ suppressed angiogenesis in fertilized chicken embryos. Moreover, HQ prevented lung metastasis of melanoma cells in mice in a dose-dependent manner without toxicity and adverse effects. HQ (10 mg/kg) also suppressed the generation of colon and reduced the thickness of colon tissues in azoxymethane/dextran sodium sulfate-injected mice. This study strongly suggests that HQ possesses in vitro and in vivo anti-cancer activity and provides evidence that HQ could be developed as an effective and safe anti-cancer drug.
Ramakrishna, Isai; Ramaraju, Panduga; Baidya, Mahiuddin
2018-02-16
The first catalytic enantioselective nitroso aldol reaction of distal dialdehydes is reported. The reaction is catalyzed by simple l-proline at room temperature and subsequent reduction delivered biologically potent and synthetically versatile N-O bond containing five- and six-membered heterocycles, 1,2-oxazinanes, and isoxazolidines in high yields and excellent enantioselectivities (up to >99% ee). The method was further exploited to prepare chiral 3-hydroxypiperidines and -pyrrolidines that are otherwise difficult to access.
Carrasco-Pancorbo, Alegría; Arráez-Román, David; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2006-06-01
We describe the first analytical method involving SPE and CZE coupled to ESI-IT MS (CZE-ESI-MS) used to identify and characterize phenolic compounds in olive oil samples. The SPE, CZE and ESI-MS parameters were optimized in order to maximize the number of phenolic compounds detected and the sensitivity of their determination. To this end we have devised a detailed method to find the best conditions for CE separation and the detection by MS of the phenolic compounds present in olive oil using a methanol-water extract of Picual extra-virgin olive oil (VOO). Electrophoretic separation was carried out using an aqueous CE buffer system consisting of 60 mM NH(4)OAc at pH 9.5 with 5% of 2-propanol, a sheath liquid containing 2-propanol/water 60:40 v/v and 0.1% v/v triethylamine. This method offers to the analyst the chance to study important phenolic compounds such as phenolic alcohols (tyrosol (TY), hydroxytyrosol (HYTY) and 2-(4-hydroxyphenyl)ethyl acetate), lignans ((+)-pinoresinol and (+)-1-acetoxypinoresinol), complex phenols (ligstroside aglycon (Lig Agl), oleuropein aglycon, their respective decarboxylated derivatives and several isomeric forms of these (dialdehydic form of oleuropein aglycon, dialdehydic form of ligstroside aglycon, dialdehydic form of decarboxymethyl elenolic acid linked to HYTY, dialdehydic form of decarboxymethyl elenolic acid linked to TY) and 10-hydroxy-oleuropein aglycon) and one other phenolic compound (elenolic acid) in extra-VOO by using a simple SPE before CE-ESI-MS analysis.
Antonkiewicz, Jacek; Para, Andrzej
2016-01-01
Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cangialosi, Maria Vittoria; Puccia, Egidio; Mazzola, Antonio
2010-05-15
In this study, we have identified several ovarian steroids in Ciona with high similarity to vertebrate steroids and showed that cholesterol, corticosterone, dehydroepiandrosterone, estrone, estradiol-17beta, testosterone, pregnenolone, progesterone, have identical molecular spectra with vertebrate steroids. In addition, we have studied the effects of an endocrine disruptor (tributyltin: TBT) on these sex hormones and their precursors, ovarian morphology, and gene expression of some key enzymes in steroidogenic pathway in the ovary of Ciona. Ovarian specimens were cultured in vitro using different concentrations of TBT (10{sup -5}, 10{sup -4} and 10{sup -3} M). Ethanol was used as solvent control. Gene expression analysismore » was performed for adrenodoxin (ADREN) and adrenodoxin reductase (ADOX) (mediators of acute steroidogenesis) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD). These transcripts were detected and measured by quantitative (real-time) polymerase chain reaction (qPCR). Sex steroids and their precursors were identified and quantified by a gas chromatography-mass spectroscopy (GC-MS) method. Exposure of Ciona ovaries to TBT produced modulations (either increased or decreased) of sterols and sex steroid levels, whereas no significant differences in ADREN, ADOX or 17beta-HSD mRNA expression patterns were observed. Histological analysis shows that TBT produced several modifications on Ciona ovarian morphology that includes irregular outline of nuclear membrane, less compacted cytoplasm, in addition to test and granulosa cells that were detached from the oocyte membrane. Given that the ascidians represent very simple experimental models for the study of endocrine disruption by environmental contaminants, our findings provide excellent models for multiple identification and quantification of sex steroid and their precursors in biological samples exposed to endocrine-disrupting chemicals and for direct extrapolation of such effects across taxonomic groups and phyla. In addition, these results suggest that Cionaintestinalis may be a suitable species for molecular ecotoxicological studies and biomarker model for endocrine-disrupting effects in marine invertebrates.« less
Modified cotton gauze dressings that selectively absorb neutrophil elastase activity in solution.
Edwards, J V; Yager, D R; Cohen, I K; Diegelmann, R F; Montante, S; Bertoniere, N; Bopp, A F
2001-01-01
Dressings for chronic human wounds have been aimed at protection, removal of exudate, and improved appearance. However since the time of ancient Greece wound care and dressing strategies have primarily relied on empiricism. Recent studies have shown that chronic wounds contain high levels of tissue and cytokine destroying proteases including collagenase and neutrophil elastase. Therefore we sought to develop an effective wound dressing that could absorb elastase through affinity sequestration. Cotton gauze was modified by oxidation, phosphorylation, and sulfonation to enhance elastase affinity by ionic or active site uptake. Type VII absorbent cotton gauze was oxidized to dialdehyde cotton which was subsequently converted in part to the bisulfite addition product. Gauze preparations were also phosphorylated and carboxymethylated. Modified cotton gauzes were compared with untreated gauze for reduction of elastase activity in buffered saline. Solutions of elastase that were soaked in oxidized, sulfonated, and phosphorylated cotton gauze showed reduced elastase activity. The initial velocities (v(o)) and turnover rates of elastase showed significant decreases compared with solutions taken from untreated gauze. The reduction in enzyme activity with dialdehyde cotton gauze was confirmed in solution by determining elastase inhibition with dialdehyde starch. The dialdehyde cotton gauze also decreased elastase activity in human wound fluid in a dose response relation based on weight of gauze per volume of wound fluid. Absorbency, pH, air permeability and strength properties of the modified gauze were also compared with untreated cotton gauze. This report shows the effect of reducing elastase activity in solution with cotton containing aldehydic or negatively charged cellulose fibers that may be applicable to treatment modalities in chronic wounds.
Markin, A A; Delenian, N V
1992-01-01
After a 13-day space mission, in the rats flown on Cosmos-1887 biosatellite the parameters of lipid peroxidation and antioxidant defense system--the contents of diene conjugates, malonic dialdehyde, Schiff bases, tocopherol, total antioxidant activity (in blood plasma only), antioxidant enzyme activity (in tissues only)--superoxide dismutase, catalase, glutathio peroxidase, glutathio reductase have been measured in the blood plasma, myocardium, skeletal muscles and liver. The liver level of diene conjugates, Schiff bases and tocopherol decreased, and an activity of superoxide dismutase and catalase increased. In the skeletal muscles there was an elevation of diene conjugate contents followed by the decreases in malonic dialdehyde and superoxide dismutase activity. In rat myocardium, superoxide dismutase activity and tocopherol levels increased significantly. In the blood plasma the levels of tocopherol, malonic dialdehyde and total antioxidant activity were elevated. It is concluded that the observed changes in lipid peroxidation developed probably in response to an effect of the last dynamic stage of space flight and during re-adapting to the Earth environments.
Shysh, A M; Pashevin, D O; Dosenko, V Ie; Moĭbenko, O O
2011-01-01
We have studied the influence of bioflavonoids (quercetin, corvitin) on lipid peroxidation and antioxidant enzymes in the modeling of cholesterol atherosclerosis in rabbits. It has been shown that simultaneous administration of the quercetin derivative corvitin suppressed lipid peroxidation. We showed that under hypercholesterolemia, the concentration of malone dialdehyde in myocardial tissue in rabbits is significantly increased, while administration of bioflavonoids decreased the concentration of malone dialdehyde by 38.3%. Furthermore, corvitin caused activating effects on antioxidant enzymes superoxide dismutase and catalase in cardiac tissue. Our data suggest that bioflavonoids are able to suppress lipid peroxidation and prevent the decrease ofantioxidant enzymes activity in rabbits with cholesterol-rich diet induced atherosclerosis.
Quantitative estimation of antioxidant therapy efficiency in diabetes mellitus patients
NASA Astrophysics Data System (ADS)
Gurfinkel, Youri I.; Ishunina, Angela M.; Ovsyannickov, Konstantin V.; Strokov, Igor A.
2000-11-01
The aim of this work was to find out to which degree Tanakan affects the microcirculation parameters and the malonic dialdehyde level as a parameter of intense lipid peroxidation in insulin-independent diabetes patients with different disease durations. We used computerized capillaroscope GY-0.04 designed by the Centre for Analysis of Substances, Russia for the non-invasive measurement of capillary blood velocity as well as the size of the perivascular zone and density of blood aggregates and lipid inclusions. The microcirculation parameters were studied in two groups of insulin-independent diabetes patients. The basic group included 58 patients (61+/-9,0 years, disease duration 14,7+/-7,8 years). The patients had late diabetic complications as retinopathy and nephrophathy, neuropathy, confirmed by clinical and tool investigation. In this group we also studied the level of serum malonic dialdehyde, as a parameter of intense lipid peroxidation. The reference group included 31 patients (57+/-1,3 years, disease duration 3,6+/-0,6 years) with minimum diabetic complication. We show that Tanakan in daily dosage 120 mg for 2 months reduces the malonic dialdehyde level in the blood serum and the erythrocyte membranes of type II diabetes patients and improves the microcirculation parameters. There are correspondences between the density of lipid inclusions as determined with computerized capillaroscopy and the lipid exchange parameters as determined using a routing blood test. Thus, noninvasive blood lipid quantification is feasible and reliable.
Tanoue, Ryota; Higuchi, Rintaro; Ikebe, Kiryu; Uemura, Shinobu; Kimizuka, Nobuo; Stieg, Adam Z; Gimzewski, James K; Kunitake, Masashi
2012-10-02
Two-dimensional (2D) arrays of π-conjugated aromatic polymers produced by surface-selective Schiff base coupling reactions between an aromatic diamine and an aromatic dialdehyde were investigated in detail using in situ scanning tunneling microscopy. Surface-selective coupling was achieved for almost all diamine/dialdehyde combinations attempted, although several combinations did not proceed even in homogeneous aqueous alkaline solution. Most of the combinations of an aromatic diamine and a dialdehyde, except the combinations of 4,4'-azodianiline with mono/bithiophenedicarboxaldehyde, formed highly ordered π-conjugated polymer arrays on an iodine-modified Au(111) surface in aqueous solution at a suitable pH. The simplest polymer of the various combinations tested, obtained from the combination of 1,4-diaminobenzene with terephthaldicarboxaldehyde, gave a 2D array consisting of linearly connected benzene units. Poly(azomethine) adlayers caused a positive shift in the electrochemical potential of the butterfly shaped oxidative adsorption and reductive desorption of iodine. The acceleration of the reductive desorption of iodine suggests the existence of a weak interaction between the polymer layer and iodine. Not only the first polymer adlayers but also partially adsorbed secondary adlayers with "on-top" epitaxial behavior were frequently observed for all polymer systems. The alignment of the polymer chains in the adlayers possessed a certain regularity in terms of a regular interval between polymer chains because of repulsive interpolymer interactions.
Flemming, C; Göbel, H; Wand, H; Gabert, A; Bock, W
1978-01-01
The pectinolytic enzymes are of practical interest for the clarification of fruit juice. In the present paper the covalent coupling of polygalacturonase (PG; E. C. 3.2.1.15) is reported. A commercially available enzyme (Rohament P; 5 U/mg) and purified Endo-PG (200 U/mg) are immobilized to the following carriers: BrCN-activated Sepharose, carbodiimide-activated CH-Sepharose, dialdehyde Sepharose, dialdehyde Sephadex, dialdehyde cellulose, CMC-azide, carbodiimide-activated CMC, macroporous glass (isothiocyanate and carbodiimide coupling) and glass beads. The implications of pore diameter (Sephadex- and Sepharose derivatives), of purity of the PG, of protein content of the PG-carrier-complexes as well as the presence of substrate during the coupling reaction, are discused in relation to the relative and specific activity of the bound protein and to the efficiency of the coupling reaction. From the carriers under study derivatives of Sepharose yield the best result (relative activity max. 88%, specific activity max. 5400 U/mg). The immobilization to isothiocyanate glass yields good results, too (relative activity 20%, specific activity 500 U/g). The mechanical instability of the PG-dialdehye Sephadex-complexes and the low relative activity of the bound enzyme are unsatisfactory. Due to their low affinity to PG, the derivatives of cellulose are also inappropriate for covalent coupling of this enzyme. All PG-carrier-complexes are largely stable both during storage at 4 degrees C and repeated activity assays.
Khettab, N; Amory, M C; Briand, G; Bousquet, B; Combre, A; Forlot, P; Barey, M
1988-12-01
The purpose of this study was to confirm the photoprotective effect on skin of vitamins A and E, due to inhibition of polyamine synthesis and production of free radicals. These variables were measured in the lumbar epidermis of the female hairless mouse subjected to UVA + B irradiation. Polyamines were assayed in epidermal homogenate by HPLC, and production of oxygenated free radicals was determined by spectrofluorometric assay of malonyl dialdehyde. It was determined that butyl-hydroxy-toluene and vitamin E inhibited production of free radicals (56% and 60%, respectively) and caused a significant reduction in polyamine biosynthesis (P less than 0.01), whereas the inhibitory effect of malonyl dialdehyde induced by vitamin A (30%) had no associated effect on polyamine metabolism.
Detection of amines with extended distyrylbenzenes by strip assays.
Kumpf, Jan; Freudenberg, Jan; Fletcher, Katharyn; Dreuw, Andreas; Bunz, Uwe H F
2014-07-18
We herein describe the synthesis and property evaluation of three novel aldehyde-substituted pentameric phenylenevinylenes carrying branched oligo(ethylene glycol) (swallowtail, Sw) substituents. The targets were synthesized by a combination of Heck coupling and Wittig or Horner reactions of suitable precursor modules. If the pentameric phenylenevinylene carries only two of these Sw substituents, it is no longer water-soluble. When six of the Sw substituents are attached, regardless of their position, the pentameric phenylenevinylenes are well water-soluble. The dialdehydes were investigated with respect to their amine-sensing capabilities both in water as well as in the solid state, sprayed onto thin layer chromatography (TLC) plates (alox, silica gel, reversed phase silica gel). The recognition of amine vapors using the sprayed-on phenylenevinylene dialdehydes is superb and allows the identification of different amines on regular silica TLC plates via color changes, analyzed by a statistical tool, the multivariate analysis of variance (MANOVA) protocol.
Cross-linked polyvinyl alcohol films as alkaline battery separators
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.
1983-01-01
Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.
Polyvinyl alcohol cross-linked with two aldehydes
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)
1982-01-01
A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.
Cross-linked polyvinyl alcohol films as alkaline battery separators
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.
1982-01-01
Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.
Structure and Oxidation of Pyrrole Adducts Formed between Aflatoxin B2a and Biological Amines.
Rushing, Blake R; Selim, Mustafa I
2017-06-19
Aflatoxin B 2a has been shown to bind to proteins through a dialdehyde intermediate under physiological conditions. The proposed structure of this adduct has been published showing a Schiff base interaction, but adequate verification using structural elucidation instrumental techniques has not been performed. In this work, we synthesized the aflatoxin B 2a amino acid adduct under alkaline conditions, and the formation of a new product was determined using high performance liquid chromatography-time-of-flight mass spectrometry. The resulting accurate mass was used to generate a novel proposed chemical structure of the adduct in which the dialdehyde forms a pyrrole ring with primary amines rather than the previously proposed Schiff base interaction. The pyrrole structure was confirmed using 1 H, 13 C, correlation spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond correlation NMR and tandem mass spectrometry. Reaction kinetics show that the reaction is overall second order and that the rate increases as pH increases. Additionally, this study shows for the first time that aflatoxin B 2a dialdehyde forms adducts with phosphatidylethanolamines and does so through pyrrole ring formation, which makes it the first aflatoxin-lipid adduct to be structurally identified. Furthermore, oxidation of the pyrrole adduct produced a product that was 16 m/z heavier. When the aflatoxin B 2a -lysine (ε) adduct was oxidized, it gave a product with an accurate mass, mass fragmentation pattern, and 1 H NMR spectrum that match aflatoxin B 1 -lysine, which suggest the transformation of the pyrrole ring to a pyrrolin-2-one ring. These data give new insight into the fate and chemical properties of biological adducts formed from aflatoxin B 2a as well as possible interferences with known aflatoxin B 1 exposure biomarkers.
High Glass Transition Temperature Renewable Polymers via Biginelli Multicomponent Polymerization.
Boukis, Andreas C; Llevot, Audrey; Meier, Michael A R
2016-04-01
A novel and straightforward one-pot multicomponent polycondensation method was established in this work. The Biginelli reaction is a versatile multicomponent reaction of an aldehyde, a β-ketoester (acetoacetate) and urea, which can all be obtained from renewable resources, yielding diversely substituted 3,4-dihydropyrimidin-2(1H)-ones (DHMPs). In this study, renewable diacetoacetate monomers with different spacer chain lengths (C3, C6, C10, C20) were prepared via simple transesterification of renewable diols and commercial acetoacetates. The diacetoacetate monomers were then reacted with renewable dialdehydes, i.e., terephthalaldehyde and divanillin in a Biginelli type step-growth polymerization. The obtained DHMP polymers (polyDHMPs) displayed high molar masses, high glass transition temperatures (Tg) up to 203 °C and good thermal stability (Td5%) of 280 °C. The Tg of the polyDHMPs could be tuned by variation of the structure of the dialdehyde or the diacetoacetate component. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immobilization of the proteins in the natural rubber with dialdehyde sodium alginate.
Gong, Ying; Liu, Guangjiao; Peng, Wei; Su, Xiaoyu; Chen, Jiping
2013-11-06
The biodegradable dialdehyde sodium alginate (DASA) was exploited to immobilize the proteins in the natural rubber latex (NRL) and the variations of the properties for the NRL films were estimated in detail. As demonstrated, the proteins were distributed more uniformly in the NRL films with DASA and the extractable protein (EP) content was effectively decreased. Particularly, the EP content was lowered to a value about 46 μg/g with 0.40% DASA, which could meet with the demands of the allergy protein threshold limit of 50 μg/g as described in ASTM D 5712 standard. Furthermore, there was some improve on the burial degradability of the NRL films modified with DASA. The mechanical properties, however, had no evident variation in the presence of DASA. In conclusion, the immobilization of the proteins with DASA should be a potential alternative to tackle the protein allergy problem for the NRL and its products. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bajpai, S. K.; Shah, Farhan Ferooz; Bajpai, M.
2017-01-01
Abstract In the present work, antibiotic drug gentamicin sulfate (GS) has been loaded into alginate dialdehyde-crosslinked casein (CAS) films for wound dressing applications. The films have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy. The dynamic release of model drug GS has been investigated in the physiological fluid at 37 °C. The drug release data has been interpreted in the terms of various kinetic models such as Power function model, first order model and Schott model. The release data was found to be well fitted by Schott model. The various diffusion coefficients are also evaluated. The adsorption of model therapeutic protein BSA on the film has been investigated. The maximum adsorption is found to be 5.7 mg/cm2.The films were tested for their antibacterial and anti-fungal action. Finally, the in vivo wound healing study was carried out on Albino wistar rats. PMID:29491776
Feasibility study of the natural derived chitosan dialdehyde for chemical modification of collagen.
Liu, Xinhua; Dan, Nianhua; Dan, Weihua; Gong, Juxia
2016-01-01
The aim of this study is to evaluate the chemical crosslinking effects of the natural derived chitosan dialdehyde (OCS) on collagen. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and circular dichroism (CD) measurements suggest that introducing OCS might not destroy the natural triple helix conformation of collagen but enhance the thermal-stability of collagen. Meanwhile, a denser fibrous network of cross-linked collagen is observed by atomic force microscopy. Further, scanning electron microscopy (SEM) and aggregation kinetics analysis confirm that the fibrillation process of collagen advances successfully and OCS could lengthen the completion time of collagen fibrillogenesis but raise the reconstitution rate of collagen fibrils or microfibrils. Besides, the cytocompatibility analysis implies that when the dosage of OCS is less than 15%, introducing OCS into collagen might be favorable for the cell's adhesion, growth and proliferation. Taken as a whole, the present study demonstrates that OCS might be an ideal crosslinker for the chemical fixation of collagen. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Yap, Bee-Fen; Rahmat, A. R.
2018-02-01
This work was performed to examine the properties of pristine PVOH and PVOH-starch blends under exposure of different irradiation dosages. The periodate oxidation method was used to produce dialdehyde starch. The application of low dosages of electron beam irradiation (≤10 kGy) has improved the tensile strength by forming crosslinking networks. However, the tensile strength drastically declined when radiated at 30 kGy due to the reduction of available hydroxyl groups inside polymer matrix for intermolecular interaction. Also, the incorporation of corn starch and dialdehyde starch has significantly reduced the melting temperature and enthalpy of melting of PVOH blends due to cessation of the hydrogen bonding between PVOH and starch molecules. The crystallite size for deflection planes (1 0 1), (1 0 1) and (2 0 0) for all PVOH blends was significant reduced when irradiated. The electron beam irradiation has also weakened the hydrophilic characteristic of all PVOH blends as evidenced in infrared and microscopy analysis.
Bactericidal activity of glutaraldehyde-like compounds from olive products.
Medina, Eduardo; Brenes, Manuel; García, Aranzazu; Romero, Concepción; de Castro, Antonio
2009-12-01
The bactericidal effects of several olive compounds (nonenal, oleuropein, tyrosol, the dialdehydic form of decarboxymethyl elenolic acid either free [EDA] or linked to tyrosol [TyEDA] or to hydroxytyrosol [HyEDA]), other food phenolic compounds (catechin, epicatechin, eugenol, thymol, carvacrol, and carnosic acid), and commercial disinfectants (glutaraldehyde [GTA] and ortho-phthalaldehyde [OPA]), were tested against strains of Pseudomonas fluorescens, Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli. It was found that the bactericidal activities of olive GTA-like compounds (EDA, HyEDA, and TyEDA) were greater than those exerted by several food phenolic substances. Surprisingly, these olive antimicrobials were as active as the synthetic biocides GTA and OPA against the four bacteria studied. Thus, it has been proposed that the bactericidal activity of the main olive antimicrobials is primarily due to their dialdehydic structure, which is similar to that of the commercial biocides GTA and OPA. Our results clearly reveal that olive GTA-like compounds possess a strong bactericidal activity even greater than that of other food phenolic compounds or synthetic biocides.
Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels
Tobias Köhnke; Thomas Elder; Hans Theliander; Arthur J. Ragauskas
2014-01-01
Structured xylan-based hydrogels, reinforced with cellulose nanocrystals (CNCs), have successfully been prepared from water suspensions by cross-linking during freeze-casting. In order to induce cross-linking during the solidification/sublimation operation, xylan was first oxidized using sodium periodate to introduce dialdehydes. The oxidized xylan was then mixed with...
Collagen cryogel cross-linked by naturally derived dialdehyde carboxymethyl cellulose.
Tan, Huan; Wu, Bo; Li, Changpeng; Mu, Changdao; Li, Hongli; Lin, Wei
2015-09-20
We present the use of a natural derivative, dialdehyde carboxymethyl cellulose (DCMC) as the cross-linker for the preparation of spongy collagen cryogels by freezing-thawing method. The DCMC has been characterized by laser light scattering (LLS), showing the molecular weight of 2.38 × 10(5)g/mol. FT-IR studies demonstrate that the cross-linking reaction and the cryogenic treatment do not destroy the triple helix of collagen. SEM images indicate that the cryogel has a heterophase structure with interconnecting macropores. DSC measurements reveal that the incorporation of a very small amount of DCMC can significantly improve the thermal stability of collagen. Moreover, the cryogels exhibit fast swelling rate, and their equilibrium swelling ratio is related to DCMC content and pH-dependent. The in vitro blood-compatibility tests prove that the introduction of DCMC does not cause the reducing performance in hemolysis and blood clotting compared with pure collagen. Hence, the low-cost and non-toxic nature of DCMC confers the cryogel great potential in tissue engineering and other biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jing, Zi-Wei; Ma, Zhi-Wei; Li, Chen; Jia, Yi-Yang; Luo, Min; Ma, Xi-Xi; Zhou, Si-Yuan; Zhang, Bang-Le
2017-02-15
The covalently cross-linked chitosan-poly(ethylene glycol) 1540 derivatives have been developed as a controlled release system with potential for the delivery of protein drug. The swelling characteristics of the hydrogels based on these derivatives as the function of different PEG content and the release profiles of a model protein (bovine serum albumin, BSA) from the hydrogels were evaluated in simulated gastric fluid with or without enzyme in order to simulate the gastrointestinal tract conditions. The derivatives cross-linked with difunctional PEG 1540 -dialdehyde via reductive amination can swell in alkaline pH and remain insoluble in acidic medium. The cumulative release amount of BSA was relatively low in the initial 2h and increased significantly at pH 7.4 with intestinal lysozyme for additional 12h. The results proved that the release-and-hold behavior of the cross-linked CS-PEG 1540 H-CS hydrogel provided a swell and intestinal enzyme controlled release carrier system, which is suitable for oral protein drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments.
Demurtas, Olivia Costantina; Frusciante, Sarah; Ferrante, Paola; Diretto, Gianfranco; Azad, Noraddin Hosseinpour; Pietrella, Marco; Aprea, Giuseppe; Taddei, Anna Rita; Romano, Elena; Mi, Jianing; Al-Babili, Salim; Frigerio, Lorenzo; Giuliano, Giovanni
2018-05-29
Saffron is composed of the dried stigmas of Crocus sativus and is the most expensive spice on Earth. Its red color is due to the apocarotenoid glycosides, crocins, which accumulate in the vacuole and reach up to 10% of the stigma dry weight. We have previously characterized the first dedicated enzyme in crocin biosynthesis, CsCCD2, which cleaves zeaxanthin to yield crocetin dialdehyde. In this work, we identified six putative aldehyde dehydrogenase (ALDH) transcripts expressed in saffron stigmas. When expressed in E. coli, only one of corresponding proteins (CsALDH3I1), was able to convert crocetin dialdehyde into the crocin precursor, crocetin. CsALDH3I1 carries a C-terminal hydrophobic domain, similar to that of a Neurospora membrane-associated apocarotenoid dehydrogenase, YLO-1. We also characterized a UDP-glycosyltransferase enzyme, CsUGT74AD1, able to convert crocetin to crocins 1 and 2'. In vitro assays showed high specificity of CsALDH3I1 for crocetin dialdehyde and long chain apocarotenals, and of CsUGT74AD1 for crocetin. Upon extract fractionation, the CsCCD2, CsALDH3I1 and CsUGT74AD1 enzymes partitioned in the insoluble fraction, suggesting that they are associated to membranes or to large insoluble complexes. Immunogold labeling of saffron stigmas and confocal microscopy of fusions to Green Fluorescent Protein expressed in N. benthamiana leaves revealed that CsCCD2 localizes to plastids, CsALDH3I1 to the endoplasmic reticulum (ER) and CsUGT74AD1 to the cytoplasm, in association with cytoskeletal-like structures. Based on our and on literature data, we propose that the ER and cytoplasm function as "transit centers" for metabolites whose biosynthesis starts in the plastid and are accumulated in the vacuole. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Polyazomethines containing trifluoromethylbenzene units
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor)
1995-01-01
Soluble, amorphous, aromatic polyazomethine polymers and copolymers were prepared by reacting a dialdehyde monomer with a diamine monomer containing trifluoromethylbenzene and various combinations thereof in a solvent, such as N,N-dimethylacetamide. The reaction was heated to reflux yielding a polyazomethine which, after cooling to room temperature, was precipitated. These polymers and copolymers may be used to make films, coatings, composites and adhesives.
Polyazomethines containing trifluoromethylbenzene units
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor)
1996-01-01
Soluble, amorphous, aromatic polyazomethine polymers and copolymers were prepared by reacting a dialdehyde monomer with a diamine monomer containing trifluoromethylbenzene and various combinations thereof in a solvent, such as N,N-dimethylacetamide. The reaction was heated to reflux yielding a polyazomethine which, after cooling to room temperature, was precipitated. These polymers and copolymers may be used to make films, coatings, composites and adhesives.
Zhao, Jie; Fei, Jinbo; Du, Cuiling; Cui, Wei; Ma, Hongchao; Li, Junbai
2013-11-25
An oxygen generation core-shell structure uploading rose bengal has been fabricated by covalent assembly of catalase and alginate dialdehyde via Schiff's base. The composite can catalyze the decomposition of intracellular H2O2 to increase the concentration of O2, which effectively enhances the anticancer efficiency of photodynamic therapy in vitro.
Forman, Mervyn B; Gillespie, Delbert G; Cheng, Dongmei; Jackson, Edwin K
2014-09-01
Intraperitoneal adenosine reduces abdominal adhesions. However, because of the ultra-short half-life and low solubility of adenosine, optimal efficacy requires multiple dosing. Here, we compared the ability of potential adenosine prodrugs to inhibit post-surgical abdominal adhesions after a single intraperitoneal dose. Abdominal adhesions were induced in mice using an electric toothbrush to damage the cecum. Also, 20 μL of 95 % ethanol was applied to the cecum to cause chemically induced injury. After injury, mice received intraperitoneally either saline (n = 18) or near-solubility limit of adenosine (23 mmol/L; n = 12); 5'-adenosine monophosphate (75 mmol/L; n = 11); 3'-adenosine monophosphate (75 mmol/L; n = 12); 2'-adenosine monophosphate (75 mmol/L; n = 12); 3',5'-cyclic adenosine monophosphate (75 mmol/L; n = 19); or 2',3'-cyclic adenosine monophosphate (75 mmol/L; n = 20). After 2 weeks, adhesion formation was scored by an observer blinded to the treatments. In a second study, intraperitoneal adenosine levels were measured using tandem mass spectrometry for 3 h after instillation of 2',3'-cyclic adenosine monophosphate (75 mmol/L) into the abdomen. The order of efficacy for attenuating adhesion formation was: 2',3'-cyclic adenosine monophosphate > 3',5'-cyclic adenosine monophosphate ≈ adenosine > 5'-adenosine monophosphate ≈ 3'-adenosine monophosphate ≈ 2'-adenosine monophosphate. The groups were compared using a one-factor analysis of variance, and the overall p value for differences between groups was p < 0.000001. Intraperitoneal administration of 2',3'-cAMP yielded pharmacologically relevant levels of adenosine in the abdominal cavity for >3 h. Administration of 2',3'-cyclic adenosine monophosphate into the surgical field is a unique, convenient and effective method of preventing post-surgical adhesions by acting as an adenosine prodrug.
Cui, Dongli; Liu, Zehua; Yang, Yaxing; Huang, Rijin; Cheng, Xiaojuan; Fatehi, Pedram; Sun, Bo
2016-01-01
Potato residue is vastly produced in the food industry but it is landfilled. This article describes the treatment of purified cellulose derived from potato residues by a high pressure homogenizer to produce nano-fibrillated cellulose (NFC), which was then oxidized by sodium periodate to prepare dialdehyde nano-fibrillated cellulose (DANFC). The produced NFC and DANFC were characterized by a scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The orthogonal experiment was induced to obtain the maximum degree of oxidation (DO) on DANFC. The results indicated that the optimal conditions were 40°C and pH 3. Alternatively, the isotherm and kinetic studies for the adsorption of creatinine on DANFC with different DOs (70.5 and 88.8%) were investigated, and the experimental results fitted well into Freundlich isotherm model and pseudo second-order kinetic model. The maximum adsorption capacities of DANFCs with the DO of 70.55 and 88.85% were 6.7 and 17.2 mg g(-1) , respectively, which were achieved under the conditions of 37°C and initial creatinine concentration of 100 mg L(-1). © 2015 American Institute of Chemical Engineers.
Fazili, Naveed Ahmad; Bhat, Waseem Feeroze; Naeem, Aabgeena
2014-03-01
Physiological conditions corresponding to oxidative stress deplete the level of enzyme glyoxalase, facilitating a hike in the serum concentration of glyoxal. Simulating an elevated in vivo level of glyoxal, we tested (50%, v/v) concentration of glyoxal to interact with HEWL. Initially, docking study revealed that glyoxal binds in the hydrophobic core of the enzyme. The interaction between the dialdehyde (glyoxal) and the enzyme (HEWL) followed a three step transition involving pre-molten and molten globule states formed on days 7 and 15 of incubation respectively, which were characterised by an increase in the ANS fluorescence intensity compared to the native state. These molten globule states upon further incubation on day 20 resulted in the formation of aggregates which were characterised by an increase in ThT fluorescence intensity, red shift in Congo red absorbance, negative ellipticity peak at 217 nm in the far-UV CD and the loss of signals at 284, 290 and 294 nm in the near-UV CD spectra. Finally, TEM confirmed the authenticity of lysozyme fibril formation by displaying rod like fibrillar structure. Copyright © 2013 Elsevier B.V. All rights reserved.
Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases.
Cronstein, Bruce N; Sitkovsky, Michail
2017-01-01
Adenosine, a nucleoside derived primarily from the extracellular hydrolysis of adenine nucleotides, is a potent regulator of inflammation. Adenosine mediates its effects on inflammatory cells by engaging one or more cell-surface receptors. The expression and function of adenosine receptors on different cell types change during the course of rheumatic diseases, such as rheumatoid arthritis (RA). Targeting adenosine receptors directly for the treatment of rheumatic diseases is currently under study; however, indirect targeting of adenosine receptors by enhancing adenosine levels at inflamed sites accounts for most of the anti-inflammatory effects of methotrexate, the anchor drug for the treatment of RA. In this Review, we discuss the regulation of extracellular adenosine levels and the role of adenosine in regulating the inflammatory and immune responses in rheumatic diseases such as RA, psoriasis and other types of inflammatory arthritis. In addition, adenosine and its receptors are involved in promoting fibrous matrix production in the skin and other organs, and the role of adenosine in fibrosis and fibrosing diseases is also discussed.
Kiechle, F L; Sykes, E; Artiss, J D
1995-01-01
Blockade of adenosine receptors by 3-isobutyl-1-methylxanthine or degradation of endogenous adenosine with adenosine deaminase increased the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes, an effect which was suppressed by the phosphatidylethanolamine methyltransferase inhibitor, S-adenosyl-L-homocysteine, and reversed by the adenosine analogue, N6-(L-phenylisopropyl)-adenosine. For example, the addition of N6-(L-phenylisopropyl)-adenosine to adenosine deaminase pretreated plasma membranes rapidly lowered the concentration of phosphatidylcholine by 171 nmol/mg at 30 seconds compared to control. Insulin-induced stimulation of phospholipid methylation in membranes treated with 3-isobutyl-1-methylxanthine or adenosine deaminase was achieved only after the addition of N6-(L-phenylisopropyl)-adenosine. These results suggest that adenosine receptor occupancy inhibits phospholipid methylation, is required for insulin stimulation of phospholipid methylation, and may perhaps activate a phosphatidylcholine-specific phospholipase C or phospholipase D.
Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity.
Hatanaka, M; Del Giudice, R; Long, C
1975-01-01
Mammalian cells have enzymes to convert adenosine to inosine by deamination and inosine to hypoxanthine by phosphorolysis, but they do not possess the enzymes necessary to form the free base, adenine, from adenosine. Mycoplasmas grown in broth or in cell cultures can produce adenine from adenosine. This activity was detected in a variety of mycoplasmatales, and the enzyme was shown to be adenosine phosphorylase. Adenosine formation from adenine and ribose 1-phosphate, the reverse reaction of adenine formation from adenosine, was also observed with the mycoplasma enzyme. Adenosine phosphorylase is apparently common to the mycoplasmatales but it is not universal, and the organisms can be divided into three groups on the basis of their use of adenosine as substrate. Thirteen of 16 Mycoplasma, Acholeplasma, and Siroplasma species tested exhibit adenosine phosphorylase activity. M. lipophilium differed from the other mycoplasmas and shared with mammalian cells the ability to convert adenosine to inosine by deamination. M. pneumoniae and the unclassified M. sp. 70-159 showed no reaction with adenosine. Adenosine phosphorylase activity offers an additional method for the detection of mycoplasma contamination of cells. The patterns of nucleoside metabolism will provide additional characteristics for identification of mycoplasmas and also may provide new insight into the classification of mycoplasmas. PMID:236559
Pain-relieving prospects for adenosine receptors and ectonucleotidases
Zylka, Mark J.
2010-01-01
Adenosine receptor agonists have potent antinociceptive effects in diverse preclinical models of chronic pain. In contrast, the efficacy of adenosine or adenosine receptor agonists at treating pain in humans is unclear. Two ectonucleotidases that generate adenosine in nociceptive neurons were recently identified. When injected spinally, these enzymes have long-lasting adenosine A1 receptor (A1R)-dependent antinociceptive effects in inflammatory and neuropathic pain models. Furthermore, recent findings indicate that spinal adenosine A2A receptor activation can enduringly inhibit neuropathic pain symptoms. Collectively, these studies suggest the possibility of treating chronic pain in humans by targeting specific adenosine receptor subtypes in anatomically defined regions with agonists or with ectonucleotidases that generate adenosine. PMID:21236731
Correlation of transient adenosine release and oxygen changes in the caudate-putamen
Wang, Ying; Venton, B. Jill
2016-01-01
Adenosine is an endogenous nucleoside that modulates important physiological processes, such as vasodilation, in the central nervous system. A rapid, 2–4 seconds, mode of adenosine signaling has been recently discovered, but the relationship between this type of adenosine and blood flow change has not been characterized. In this study, adenosine and oxygen changes were simultaneously measured using fast-scan cyclic voltammetry. Oxygen changes occur when there is an increase in local cerebral blood flow and thus are a measure of vasodilation. About 34% of adenosine transients in the rat caudate-putamen are correlated with a subsequent transient change in oxygen. The amount of oxygen was correlated with the concentration of adenosine release and larger adenosine transients (over 0.4 μM) always had subsequent oxygen changes. The average duration of adenosine and oxygen transients were 3.2 seconds and 3.5 seconds, respectively. On average, the adenosine release starts and peaks 0.2 seconds prior to the oxygen. The A2a antagonist, SCH442416, decreased the number of both adenosine and oxygen transient events by about 32%. However, the A1 antagonist, DPCPX, did not significantly affect simultaneous adenosine and oxygen release. The nitric oxide (NO) synthase inhibitor L-NAME also did not affect the concentration or number of adenosine and oxygen release events. These results demonstrate that both adenosine and oxygen release are modulated via A2a receptors. The correlation of transient concentrations, time delay between adenosine and oxygen peaks, and effect of A2a receptors suggests adenosine modulates blood flow on a rapid, sub-second time scale. PMID:27314215
Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging
NASA Astrophysics Data System (ADS)
Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen
2012-12-01
Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.
Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.
Nguyen, Michael D; Venton, B Jill
2015-01-01
Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.
Lynge, J; Juel, C; Hellsten, Y
2001-01-01
The existence of adenosine transporters in plasma membrane giant vesicles from rat skeletal muscles and in primary skeletal muscle cell cultures was investigated. In addition, the contribution of intracellularly or extracellularly formed adenosine to the overall extracellular adenosine concentration during muscle contraction was determined in primary skeletal muscle cell cultures. In plasma membrane giant vesicles, the carrier-mediated adenosine transport demonstrated saturation kinetics with Km= 177 ± 36 μm and Vmax= 1.9 ± 0.2 nmol ml−1 s−1 (0.7 nmol (mg protein)−1 s−1). The existence of an adenosine transporter was further evidenced by the inhibition of the carrier-mediated adenosine transport in the presence of NBMPR (nitrobenzylthioinosine; 72 % inhibition) or dipyridamol (64 % inhibition; P < 0.05). In primary skeletal muscle cells, the rate of extracellular adenosine accumulation was 5-fold greater (P < 0.05) with electrical stimulation than without electrical stimulation. Addition of the adenosine transporter inhibitor NBMPR led to a 57 % larger (P < 0.05) rate of extracellular adenosine accumulation in the electro-stimulated muscle cells compared with control cells, demonstrating that adenosine is taken up by the skeletal muscle cells during contractions. Inhibition of ecto-5′-nucleotidase with AOPCP in electro-stimulated cells resulted in a 70 % lower (P < 0.05) rate of extracellular adenosine accumulation compared with control cells, indicating that adenosine to a large extent is formed in the extracellular space during contraction. The present study provides evidence for the existence of an NBMPR-sensitive adenosine transporter in rat skeletal muscle. Our data furthermore demonstrate that the increase in extracellular adenosine observed during electro-stimulation of skeletal muscle is due to production of adenosine in the extracellular space of skeletal muscle and that adenosine is taken up rather than released by the skeletal muscle cells during contraction. PMID:11731589
Shen, Hai-Ying; Li, Tianfu; Boison, Detlev
2010-03-01
Sudden unexpected death in epilepsy (SUDEP) is a significant cause of mortality in people with epilepsy. Two postulated causes for SUDEP, cardiac and respiratory depression, can both be explained by overstimulation of adenosine receptors. We hypothesized that SUDEP is a consequence of a surge in adenosine as a result of prolonged seizures combined with deficient adenosine clearance; consequently, blockade of adenosine receptors should prevent SUDEP. Here we induced impaired adenosine clearance in adult mice by pharmacologic inhibition of the adenosine-removing enzymes, adenosine kinase and deaminase. Combination of impaired adenosine clearance with kainic acid-induced seizures triggered sudden death in all animals. Most importantly, the adenosine receptor antagonist caffeine, when given after seizure onset, increased survival from 23.75 +/- 1.35 min to 54.86 +/- 6.59 min (p < 0.01). Our data indicate that SUDEP is due to overactivation of adenosine receptors and that caffeine treatment after seizure onset might be beneficial.
Adenosine and the Auditory System
Vlajkovic, Srdjan M; Housley, Gary D; Thorne, Peter R
2009-01-01
Adenosine is a signalling molecule that modulates cellular activity in the central nervous system and peripheral organs via four G protein-coupled receptors designated A1, A2A, A2B, and A3. This review surveys the literature on the role of adenosine in auditory function, particularly cochlear function and its protection from oxidative stress. The specific tissue distribution of adenosine receptors in the mammalian cochlea implicates adenosine signalling in sensory transduction and auditory neurotransmission although functional studies have demonstrated that adenosine stimulates cochlear blood flow, but does not alter the resting and sound-evoked auditory potentials. An interest in a potential otoprotective role for adenosine has recently evolved, fuelled by the capacity of A1 adenosine receptors to prevent cochlear injury caused by acoustic trauma and ototoxic drugs. The balance between A1 and A2A receptors is conceived as critical for cochlear response to oxidative stress, which is an underlying mechanism of the most common inner ear pathologies (e.g. noise-induced and age-related hearing loss, drug ototoxicity). Enzymes involved in adenosine metabolism, adenosine kinase and adenosine deaminase, are also emerging as attractive targets for controlling oxidative stress in the cochlea. Other possible targets include ectonucleotidases that generate adenosine from extracellular ATP, and nucleoside transporters, which regulate adenosine concentrations on both sides of the plasma membrane. Developments of selective adenosine receptor agonists and antagonists that can cross the blood-cochlea barrier are bolstering efforts to develop therapeutic interventions aimed at ameliorating cochlear injury. Manipulations of the adenosine signalling system thus hold significant promise in the therapeutic management of oxidative stress in the cochlea. PMID:20190966
Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P
2004-12-15
Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.
Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release
Nguyen, Michael D.; Venton, B. Jill
2014-01-01
Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future. PMID:26900429
Wall, Mark J; Dale, Nicholas
2013-01-01
The neuromodulator adenosine plays an important role in many physiological and pathological processes within the mammalian CNS. However, the precise mechanisms of how the concentration of extracellular adenosine increases following neural activity remain contentious. Here we have used microelectrode biosensors to directly measure adenosine release induced by focal stimulation in stratum radiatum of area CA1 in mouse hippocampal slices. Adenosine release was both action potential and Ca2+ dependent and could be evoked with low stimulation frequencies and small numbers of stimuli. Adenosine release required the activation of ionotropic glutamate receptors and could be evoked by local application of glutamate receptor agonists. Approximately 40% of stimulated-adenosine release occurred by translocation of adenosine via equilibrative nucleoside transporters (ENTs). This component of release persisted in the presence of the gliotoxin fluoroacetate and thus results from the direct release of adenosine from neurons. A reduction of adenosine release in the presence of NTPDase blockers, in slices from CD73−/− and dn-SNARE mice, provides evidence that a component of adenosine release arises from the extracellular metabolism of ATP released from astrocytes. This component of release appeared to have slower kinetics than the direct ENT-mediated release of adenosine. These data suggest that activity-dependent adenosine release is surprisingly complex and, in the hippocampus, arises from at least two distinct mechanisms with different cellular sources. PMID:23713028
Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung
2015-02-01
This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine. Copyright © 2014 Elsevier B.V. All rights reserved.
Adenosine transiently modulates stimulated dopamine release in the caudate putamen via A1 receptors
Ross, Ashley E.; Venton, B. Jill
2014-01-01
Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 µM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7 %, similar to the 54 ± 6 % decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 minutes. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. PMID:25219576
Li, M; Marubayashi, A; Nakaya, Y; Fukui, K; Arase, S
2001-12-01
The mechanism by which minoxidil, an adenosine-triphosphate-sensitive potassium channel opener, induces hypertrichosis remains to be elucidated. Minoxidil has been reported to stimulate the production of vascular endothelial growth factor, a possible promoter of hair growth, in cultured dermal papilla cells. The mechanism of production of vascular endothelial growth factor remains unclear, however. We hypothesize that adenosine serves as a mediator of vascular endothelial growth factor production. Minoxidil-induced increases in levels of intracellular Ca(2+) and vascular endothelial growth factor production in cultured dermal papilla cells were found to be inhibited by 8-sulfophenyl theophylline, a specific antagonist for adenosine receptors, suggesting that dermal papilla cells possess adenosine receptors and sulfonylurea receptors, the latter of which is a well-known target receptor for adenosine-triphosphate-sensitive potassium channel openers. The expression of sulfonylurea receptor 2B and of the adenosine A1, A2A, and A2B receptors was detected in dermal papilla cells by means of reverse transcription polymerase chain reaction analysis. In order to determine which of the adenosine receptor subtypes contribute to minoxidil-induced hair growth, the effects of subtype-specific antagonists for adenosine receptors were investigated. Significant inhibition in increase in intracellular calcium level by minoxidil or adenosine was observed as the result of pretreatment with 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptor, but not by 3,7-dimethyl-1-propargyl-xanthine, an antagonist for adenosine A2 receptor, whereas vascular endothelial growth factor production was blocked by both adenosine A1 and A2 receptor antagonists. These results indicate that the effect of minoxidil is mediated by adenosine, which triggers intracellular signal transduction via both adenosine A1 and A2 receptors, and that the expression of sulfonylurea receptor 2B in dermal papilla cells might play a role in the production of adenosine.
Enzyme-Regulated Fast Self-Healing of a Pillararene-Based Hydrogel.
Zhang, Xin; Xu, Jiayun; Lang, Chao; Qiao, Shanpeng; An, Guo; Fan, Xiaotong; Zhao, Linlu; Hou, Chunxi; Liu, Junqiu
2017-06-12
Self-healing, one of the exciting properties of materials, is frequently used to repair the damage of biological and artificial systems. Here we have used enzymatic catalysis approaches to develop a fast self-healing hydrogel, which has been constructed by dynamic aldimine cross-linking of pillar[5]arene-derivant and dialdehyde-functionalized PEG followed by encapsulation of glucose oxidase (GOx) and catalase (CAT). In specific, the two hydroxyl groups at terminal of PEG 4000 are functionalized with benzaldehydes that can interact with amino-containing pillar[5]arene-derivant through dynamic aldimine cross-links, resulting in reversible dynamic hydrogels. Modulus analysis indicated that storage modulus (G') and loss modulus (G″) of the hydrogel increased obviously as the concentration of dialdehyde-functionalized PEG 4000 (DF-PEG 4000 ) increased or the pH values decreased. Once glucose oxidase (GOx) and catalase (CAT) are located, the hydrogel could be fast repaired, with self-healing efficiency up to 100%. Notably tensile test showed that the repair process of pillararene-based hydrogel can finish in several minutes upon enzyme catalysis, while it needed more than 24 h to achieve this recovery without enzymes. This enzyme-regulated self-healing hydrogel would hold promise for delivering drugs and for soft tissue regeneration in the future.
Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim
2014-01-01
The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. PMID:25057464
Adenosine and Ischemic Preconditioning
Liang, Bruce T.; Swierkosz, Tomasz A.; Herrmann, Howard C.; Kimmel, Stephen; Jacobson, Kenneth A.
2012-01-01
Adenosine is released in large amounts during myocardial ischemia and is capable of exerting potent cardioprotective effects in the heart. Although these observations on adenosine have been known for a long time, how adenosine acts to achieve its anti-ischemic effect remains incompletely understood. However, recent advances on the chemistry and pharmacology of adenosine receptor ligands have provided important and novel information on the function of adenosine receptor subtypes in the cardiovascular system. The development of model systems for the cardiac actions of adenosine has yielded important insights into its mechanism of action and have begun to elucidate the sequence of signalling events from receptor activation to the actual exertion of its cardioprotective effect. The present review will focus on the adenosine receptors that mediate the potent anti-ischemic effect of adenosine, new ligands at the receptors, potential molecular signalling mechanisms downstream of the receptor, mediators for cardioprotection, and possible clinical applications in cardiovascular disorders. PMID:10607860
Cultured astrocytes do not release adenosine during hypoxic conditions
Fujita, Takumi; Williams, Erika K; Jensen, Tina K; Smith, Nathan A; Takano, Takahiro; Tieu, Kim; Nedergaard, Maiken
2012-01-01
Recent reports based on a chemiluminescent enzymatic assay for detection of adenosine conclude that cultured astrocytes release adenosine during mildly hypoxic conditions. If so, astrocytes may suppress neural activity in early stages of hypoxia. The aim of this study was to reevaluate the observation using high-performance liquid chromatography (HPLC). The HPLC analysis showed that exposure to 20 or 120 minutes of mild hypoxia failed to increase release of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine from cultured astrocytes. Similar results were obtained using a chemiluminescent enzymatic assay. Moreover, since the chemiluminescent enzymatic assay relies on hydrogen peroxide generation, release of free-radical scavengers from hypoxic cells can interfere with the assay. Accordingly, adenosine added to samples collected from hypoxic cultures could not be detected using the chemiluminescent enzymatic assay. Furthermore, addition of free-radical scavengers sharply reduced the sensitivity of adenosine detection. Conversely, use of a single-step assay inflated measured values due to the inability of the assay to distinguish adenosine and its metabolite inosine. These results show that cultured astrocytes do not release adenosine during mild hypoxia, an observation consistent with their high resistance to hypoxia. PMID:21989480
Zhong, Xi Zoë; Zou, Yuanjie; Sun, Xue; Dong, Gaofeng; Cao, Qi; Pandey, Aditya; Rainey, Jan K.; Zhu, Xiaojuan; Dong, Xian-Ping
2017-01-01
Impaired adenosine homeostasis has been associated with numerous human diseases. Lysosomes are referred to as the cellular recycling centers that generate adenosine by breaking down nucleic acids or ATP. Recent studies have suggested that lysosomal adenosine overload causes lysosome defects that phenocopy patients with mutations in transient receptor potential channel mucolipin-1 (TRPML1), a lysosomal Ca2+ channel, suggesting that lysosomal adenosine overload may impair TRPML1 and then lead to subsequent lysosomal dysfunction. In this study, we demonstrate that lysosomal adenosine is elevated by deleting adenosine deaminase (ADA), an enzyme responsible for adenosine degradation. We also show that lysosomal adenosine accumulation inhibits TRPML1, which is rescued by overexpressing ENT3, the adenosine transporter situated in the lysosome membrane. Moreover, ADA deficiency results in lysosome enlargement, alkalinization, and dysfunction. These are rescued by activating TRPML1. Importantly, ADA-deficient B-lymphocytes are more vulnerable to oxidative stress, and this was rescued by TRPML1 activation. Our data suggest that lysosomal adenosine accumulation impairs lysosome function by inhibiting TRPML1 and subsequently leads to cell death in B-lymphocytes. Activating TRPML1 could be a new therapeutic strategy for those diseases. PMID:28087698
Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans
NASA Technical Reports Server (NTRS)
Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.
2000-01-01
It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.
Frenguelli, Bruno G; Wigmore, Geoffrey; Llaudet, Enrique; Dale, Nicholas
2007-01-01
Abstract Adenosine is well known to be released during cerebral metabolic stress and is believed to be neuroprotective. ATP release under similar circumstances has been much less studied. We have now used biosensors to measure and compare in real time the release of ATP and adenosine during in vitro ischaemia in hippocampal slices. ATP release only occurred following the anoxic depolarisation, whereas adenosine release was apparent almost immediately after the onset of ischaemia. ATP release required extracellular Ca2+. By contrast adenosine release was enhanced by removal of extracellular Ca2+, whilst TTX had no effect on either ATP release or adenosine release. Blockade of ionotropic glutamate receptors substantially enhanced ATP release, but had only a modest effect on adenosine release. Carbenoxolone, an inhibitor of gap junction hemichannels, also greatly enhanced ischaemic ATP release, but had little effect on adenosine release. The ecto-ATPase inhibitor ARL 67156, whilst modestly enhancing the ATP signal detected during ischaemia, had no effect on adenosine release. Adenosine release during ischaemia was reduced by pre-treament with homosysteine thiolactone suggesting an intracellular origin. Adenosine transport inhibitors did not inhibit adenosine release, but instead they caused a twofold increase of release. Our data suggest that ATP and adenosine release during ischaemia are for the most part independent processes with distinct underlying mechanisms. These two purines will consequently confer temporally distinct influences on neuronal and glial function in the ischaemic brain. PMID:17459147
Heinrich, A; Andó, RD; Túri, G; Rózsa, B; Sperlágh, B
2012-01-01
BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K+ concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K+, with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca2+-free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K+-evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels. LINKED ARTICLE This article is commented on by Sershen, pp. 1000–1002 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02072.x PMID:22394324
Neuroprotective effects of adenosine deaminase in the striatum
Tamura, Risa; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi
2016-01-01
Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865
A rapid enzymatic assay for high-throughput screening of adenosine-producing strains
Dong, Huina; Zu, Xin; Zheng, Ping; Zhang, Dawei
2015-01-01
Adenosine is a major local regulator of tissue function and industrially useful as precursor for the production of medicinal nucleoside substances. High-throughput screening of adenosine overproducers is important for industrial microorganism breeding. An enzymatic assay of adenosine was developed by combined adenosine deaminase (ADA) with indophenol method. The ADA catalyzes the cleavage of adenosine to inosine and NH3, the latter can be accurately determined by indophenol method. The assay system was optimized to deliver a good performance and could tolerate the addition of inorganic salts and many nutrition components to the assay mixtures. Adenosine could be accurately determined by this assay using 96-well microplates. Spike and recovery tests showed that this assay can accurately and reproducibly determine increases in adenosine in fermentation broth without any pretreatment to remove proteins and potentially interfering low-molecular-weight molecules. This assay was also applied to high-throughput screening for high adenosine-producing strains. The high selectivity and accuracy of the ADA assay provides rapid and high-throughput analysis of adenosine in large numbers of samples. PMID:25580842
Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.
Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír
2007-09-01
Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine.
Cheng, Ying; Mansfield, Kylie J; Allen, Wendy; Walsh, Colin A; Burcher, Elizabeth; Moore, Kate H
2010-03-01
Adenosine triphosphate released from urothelium during stretch stimulates afferent nerves and conveys information on bladder fullness. We measured adenosine triphosphate released during cystometric bladder filling in women with idiopathic detrusor overactivity and stress incontinence (controls), and assessed whether the level of released adenosine triphosphate is related to cystometric parameters. Routine cystometry was done in 51 controls and 48 women with detrusor overactivity who were 28 to 87 years old. Voided urodynamic fluid was collected and stored at -30 C. Adenosine triphosphate was measured by a bioluminescence assay. Adenosine triphosphate levels were similar in voided urodynamic fluid of controls and patients with detrusor overactivity (p = 0.79). A significant inverse correlation was seen between adenosine triphosphate and maximal cystometric capacity in controls (p = 0.013), and between voided volume and adenosine triphosphate in controls (p = 0.015) and detrusor overactivity cases (p = 0.019). A significant correlation between first desire to void and adenosine triphosphate was also noted in detrusor overactivity cases (p = 0.033) but not in controls (p = 0.58). No correlation was seen between adenosine triphosphate and detrusor pressure during filling or voiding. Adenosine triphosphate measurement in voided urodynamic fluid is a novel approach to understanding signals that may contribute to the urgency sensation (a sudden compelling desire to pass urine). The inverse correlation between adenosine triphosphate in voided urodynamic fluid and first desire to void suggests that adenosine triphosphate has a role in modulating the early filling sensation in patients with detrusor overactivity. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang
2017-07-01
Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.
Schindler, Charles W; Karcz-Kubicha, Marzena; Thorndike, Eric B; Müller, Christa E; Tella, Srihari R; Ferré, Sergi; Goldberg, Steven R
2005-03-01
1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2. Intraperitoneal (i.p.) injections of the adenosine A1 receptor agonist CPA led to dose-dependent decreases in both blood pressure and heart rate. These effects of 0.3 mg kg(-1) CPA were antagonized by i.p. injections of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT), but not by i.p. injections of the adenosine A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3). Injections (i.p.) of the peripherally acting nonselective adenosine antagonist 8-sulfophenyltheophylline (8-SPT) and the purported nonselective adenosine antagonist caffeine also antagonized the cardiovascular effects of CPA. 3. The adenosine A2A agonist CGS 21680 given i.p. produced a dose-dependent decrease in blood pressure and an increase in heart rate. These effects of 0.5 mg kg(-1) CGS 21680 were antagonized by i.p. injections of the adenosine A2A receptor antagonist MSX-3, but not by i.p. injections of the antagonists CPT, 8-SPT or caffeine. 4. Central administration (intracerebral ventricular) of CGS 21680 produced an increase in heart rate, but no change in blood pressure. MSX-3 given i.p. antagonized the effects of the central injection of CGS 21680. 5. These results suggest that adenosine A1 receptor agonists produce decreases in blood pressure and heart rate that are mediated by A1 receptors in the periphery, with little or no contribution of central adenosine A1 receptors to those effects. 6. The heart rate increasing effect of adenosine A2A agonists appears to be mediated by adenosine A2A receptors in the central nervous system. The blood pressure decreasing effect of adenosine A2A agonists is most probably mediated in the periphery.
Beneficial and detrimental role of adenosine signaling in diseases and therapy
Liu, Hong
2015-01-01
Adenosine is a major signaling nucleoside that orchestrates cellular and tissue adaptation under energy depletion and ischemic/hypoxic conditions by activation of four G protein-coupled receptors (GPCR). The regulation and generation of extracellular adenosine in response to stress are critical in tissue protection. Both mouse and human studies reported that extracellular adenosine signaling plays a beneficial role during acute states. However, prolonged excess extracellular adenosine is detrimental and contributes to the development and progression of various chronic diseases. In recent years, substantial progress has been made to understand the role of adenosine signaling in different conditions and to clarify its significance during the course of disease progression in various organs. These efforts have and will identify potential therapeutic possibilities for protection of tissue injury at acute stage by upregulation of adenosine signaling or attenuation of chronic disease progression by downregulation of adenosine signaling. This review is to summarize current progress and the importance of adenosine signaling in different disease stages and its potential therapeutic effects. PMID:26316513
Adenosine signaling promotes hematopoietic stem and progenitor cell emergence
Jing, Lili; Tamplin, Owen J.; Chen, Michael J.; Deng, Qing; Patterson, Shenia; Kim, Peter G.; Durand, Ellen M.; McNeil, Ashley; Green, Julie M.; Matsuura, Shinobu; Ablain, Julien; Brandt, Margot K.; Schlaeger, Thorsten M.; Huttenlocher, Anna; Daley, George Q.; Ravid, Katya
2015-01-01
Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1+/cmyb+ HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl+ hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP–protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates. PMID:25870200
Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan
2016-01-01
Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to impaired capacity to clear adenosine monophosphate. AP supplementation improves serum clearance of adenosine monophosphate to adenosine. These findings represent a potential therapeutic mechanism for alkaline phosphatase infusion during cardiac surgery. New and Noteworthy We identify alkaline phosphatase (AP) as the primary soluble ectonucleotidase in infants undergoing cardiopulmonary bypass and show decreased capacity to clear AMP when AP activity decreases post-bypass. Supplementation of AP ex vivo improves this capacity and may represent the beneficial therapeutic mechanism of AP infusion seen in phase 2 studies. PMID:27384524
Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena
2016-01-01
Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to impaired capacity to clear adenosine monophosphate. AP supplementation improves serum clearance of adenosine monophosphate to adenosine. These findings represent a potential therapeutic mechanism for alkaline phosphatase infusion during cardiac surgery. We identify alkaline phosphatase (AP) as the primary soluble ectonucleotidase in infants undergoing cardiopulmonary bypass and show decreased capacity to clear AMP when AP activity decreases post-bypass. Supplementation of AP ex vivo improves this capacity and may represent the beneficial therapeutic mechanism of AP infusion seen in phase 2 studies.
Staphylococcus aureus synthesizes adenosine to escape host immune responses
Thammavongsa, Vilasack; Kern, Justin W.; Missiakas, Dominique M.
2009-01-01
Staphylococcus aureus infects hospitalized or healthy individuals and represents the most frequent cause of bacteremia, treatment of which is complicated by the emergence of methicillin-resistant S. aureus. We examined the ability of S. aureus to escape phagocytic clearance in blood and identified adenosine synthase A (AdsA), a cell wall–anchored enzyme that converts adenosine monophosphate to adenosine, as a critical virulence factor. Staphylococcal synthesis of adenosine in blood, escape from phagocytic clearance, and subsequent formation of organ abscesses were all dependent on adsA and could be rescued by an exogenous supply of adenosine. An AdsA homologue was identified in the anthrax pathogen, and adenosine synthesis also enabled escape of Bacillus anthracis from phagocytic clearance. Collectively, these results suggest that staphylococci and other bacterial pathogens exploit the immunomodulatory attributes of adenosine to escape host immune responses. PMID:19808256
AMP Is an Adenosine A1 Receptor Agonist*
Rittiner, Joseph E.; Korboukh, Ilia; Hull-Ryde, Emily A.; Jin, Jian; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.
2012-01-01
Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5′-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5′-monophosphonate, ACP) directly activated the adenosine A1 receptor (A1R). In contrast, AMP only activated the adenosine A2B receptor (A2BR) after hydrolysis to adenosine by ecto-5′-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A1R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A1R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A1R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A1R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine. PMID:22215671
AMP is an adenosine A1 receptor agonist.
Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J
2012-02-17
Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.
Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation
Rajalaxmi Dash; Thomas Elder; Arthur Ragauskas
2012-01-01
This study demonstrates regioselective oxidation of cellulose nanowhiskers using 2.80â10.02 mmols of sodium periodate per 5 g of whiskers followed by grafting with methyl and butyl amines through a Schiff base reaction to obtain their amine derivatives in 80â90 % yield. We found a corresponding increase in carbonyl content (0.06â0.14 mmols/g) of the dialdehyde...
Adenosine receptor desensitization and trafficking.
Mundell, Stuart; Kelly, Eamonn
2011-05-01
As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.
PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine
2011-01-01
Background Prostatic acid phosphatase (PAP) and ecto-5'-nucleotidase (NT5E, CD73) produce extracellular adenosine from the nucleotide AMP in spinal nociceptive (pain-sensing) circuits; however, it is currently unknown if these are the main ectonucleotidases that generate adenosine or how rapidly they generate adenosine. Results We found that AMP hydrolysis, when measured histochemically, was nearly abolished in dorsal root ganglia (DRG) neurons and lamina II of spinal cord from Pap/Nt5e double knockout (dKO) mice. Likewise, the antinociceptive effects of AMP, when combined with nucleoside transport inhibitors (dipyridamole or 5-iodotubericidin), were reduced by 80-100% in dKO mice. In addition, we used fast scan cyclic voltammetry (FSCV) to measure adenosine production at subsecond resolution within lamina II. Adenosine was maximally produced within seconds from AMP in wild-type (WT) mice but production was reduced >50% in dKO mice, indicating PAP and NT5E rapidly generate adenosine in lamina II. Unexpectedly, we also detected spontaneous low frequency adenosine transients in lamina II with FSCV. Adenosine transients were of short duration (<2 s) and were reduced (>60%) in frequency in Pap-/-, Nt5e-/- and dKO mice, suggesting these ectonucleotidases rapidly hydrolyze endogenously released nucleotides to adenosine. Field potential recordings in lamina II and behavioral studies indicate that adenosine made by these enzymes acts through the adenosine A1 receptor to inhibit excitatory neurotransmission and nociception. Conclusions Collectively, our experiments indicate that PAP and NT5E are the main ectonucleotidases that generate adenosine in nociceptive circuits and indicate these enzymes transform pulsatile or sustained nucleotide release into an inhibitory adenosinergic signal. PMID:22011440
Salsoso, Rocío; Farías, Marcelo; Gutiérrez, Jaime; Pardo, Fabián; Chiarello, Delia I; Toledo, Fernando; Leiva, Andrea; Mate, Alfonso; Vázquez, Carmen M; Sobrevia, Luis
2017-06-01
Adenosine is an endogenous nucleoside with pleiotropic effects in different physiological processes including circulation, renal blood flow, immune function, or glucose homeostasis. Changes in adenosine membrane transporters, adenosine receptors, and corresponding intracellular signalling network associate with development of pathologies of pregnancy, including preeclampsia. Preeclampsia is a cause of maternal and perinatal morbidity and mortality affecting 3-5% of pregnancies. Since the proposed mechanisms of preeclampsia development include adenosine-dependent biological effects, adenosine membrane transporters and receptors, and the associated signalling mechanisms might play a role in the pathophysiology of preeclampsia. Preeclampsia associates with increased adenosine concentration in the maternal blood and placental tissue, likely due to local hypoxia and ischemia (although not directly demonstrated), microthrombosis, increased catecholamine release, and platelet activation. In addition, abnormal expression and function of equilibrative nucleoside transporters is described in foetoplacental tissues from preeclampsia; however, the role of adenosine receptors in the aetiology of this disease is not well understood. Adenosine receptors activation may be related to abnormal trophoblast invasion, angiogenesis, and ischemia/reperfusion mechanisms in the placenta from preeclampsia. These mechanisms may explain only a low fraction of the associated abnormal transformation of spiral arteries in preeclampsia, triggering cellular stress and inflammatory mediators release from the placenta to the maternal circulation. Although increased adenosine concentration in preeclampsia may be a compensatory or adaptive mechanism favouring placental angiogenesis, a poor angiogenic state is found in preeclampsia. Thus, preeclampsia-associated complications might affect the cell response to adenosine due to altered expression and activity of adenosine receptors, membrane transporters, or cell signalling mechanisms. This review summarizes the evidence available on the potential involvement of the adenosine in the clinical, pathophysiology, and therapeutic features of preeclampsia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dyllick-Brenzinger, C; Sullivan, G R; Pang, P P; Roberts, J D
1980-01-01
The self-association of guanosine, cytidine, and adenosine and base pairing between guanosine, cytidine, adenosine, and uridine in dimethyl sulfoxide have been investigated by the variation of their 15N NMR chemical shifts with concentration and temperature. Guanosine, cytidine, and adenosine all showed evidence of self-association by hydrogen bonding. In guanosine/cytidine mixtures, a hydrogen-bonded dimer is formed; however, no base pairing could be detected with adenosine/cytidine or adenosine/uridine mixtures. PMID:6932658
Chagoya de Sánchez, V
1995-03-01
The present review describes the biological implications of the periodic changes of adenosine concentrations in different tissues of the rat. Adenosine is a purine molecule that could have been formed in the prebiotic chemical evolution and has been preserved. The rhythmicity of this molecule, as well as its metabolism and even the presence of specific receptors, suggests a regulatory role in eukaryotic cells and in multicellular organisms. Adenosine may be considered a chemical messenger and its action could take place at the level of the same cell (autocrine), the same tissue (paracrine), or on separate organs (endocrine). Exploration of the circadian variations of adenosine was planned considering the liver as an important tissue for purine formation, the blood as a vehicle among tissues, and the brain as the possible acceptor for hepatic adenosine or its metabolites. The rats used in these studies were adapted to a dark-light cycle of 12 h with an unrestrained feeding and drinking schedule. The metabolic control of adenosine concentration in the different tissues studied through the 24-h cycle is related to the activity of adenosine-metabolizing enzyme: 5'-nucleotidase adenosine deaminase, adenosine kinase, and S-adenosylhomocysteine hydrolase. Some possibilities of the factors modulating the activity of these enzymes are commented upon. The multiphysiological action of adenosine could be mediated by several actions: (i) by interaction with extracellular and intracellular receptors and (ii) through its metabolism modulating the methylation pathway, possibly inducing physiological lipoperoxidation, or participating in the energetic homeostasis of the cell. The physiological meaning of the circadian variations of adenosine and its metabolism was focused on: maintenance of the energetic homeostasis of the tissues, modulation of membrane structure and function, regulation of fasting and feeding metabolic pattern, and its participation in the sleep-wake cycle. From these considerations, we suggest that adenosine could be a molecular oscillator involved in the circadian pattern of biological activity in the rat.
Poppe, Daniel; Doerr, Jonas; Schneider, Marion; Wilkens, Ruven; Steinbeck, Julius A; Ladewig, Julia; Tam, Allison; Paschon, David E; Gregory, Philip D; Reik, Andreas; Müller, Christa E; Koch, Philipp; Brüstle, Oliver
2018-06-01
As a powerful regulator of cellular homeostasis and metabolism, adenosine is involved in diverse neurological processes including pain, cognition, and memory. Altered adenosine homeostasis has also been associated with several diseases such as depression, schizophrenia, or epilepsy. Based on its protective properties, adenosine has been considered as a potential therapeutic agent for various brain disorders. Since systemic application of adenosine is hampered by serious side effects such as vasodilatation and cardiac suppression, recent studies aim at improving local delivery by depots, pumps, or cell-based applications. Here, we report on the characterization of adenosine-releasing human embryonic stem cell-derived neuroepithelial stem cells (long-term self-renewing neuroepithelial stem [lt-NES] cells) generated by zinc finger nuclease (ZFN)-mediated knockout of the adenosine kinase (ADK) gene. ADK-deficient lt-NES cells and their differentiated neuronal and astroglial progeny exhibit substantially elevated release of adenosine compared to control cells. Importantly, extensive adenosine release could be triggered by excitation of differentiated neuronal cultures, suggesting a potential activity-dependent regulation of adenosine supply. Thus, ZFN-modified neural stem cells might serve as a useful vehicle for the activity-dependent local therapeutic delivery of adenosine into the central nervous system. Stem Cells Translational Medicine 2018;7:477-486. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Li, Ning; Csepe, Thomas A; Hansen, Brian J; Sul, Lidiya V; Kalyanasundaram, Anuradha; Zakharkin, Stanislav O; Zhao, Jichao; Guha, Avirup; Van Wagoner, David R; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L; Biesiadecki, Brandon J; Hummel, John D; Weiss, Raul; Fedorov, Vadim V
2016-08-09
Adenosine provokes atrial fibrillation (AF) with a higher activation frequency in right atria (RA) versus left atria (LA) in patients, but the underlying molecular and functional substrates are unclear. We tested the hypothesis that adenosine-induced AF is driven by localized reentry in RA areas with highest expression of adenosine A1 receptor and its downstream GIRK (G protein-coupled inwardly rectifying potassium channels) channels (IK,Ado). We applied biatrial optical mapping and immunoblot mapping of various atrial regions to reveal the mechanism of adenosine-induced AF in explanted failing and nonfailing human hearts (n=37). Optical mapping of coronary-perfused atria (n=24) revealed that adenosine perfusion (10-100 µmol/L) produced more significant shortening of action potential durations in RA (from 290±45 to 239±41 ms, 17.3±10.4%; P<0.01) than LA (from 307±24 to 286±23 ms, 6.7±6.6%; P<0.01). In 10 hearts, adenosine induced AF (317±116 s) that, when sustained (≥2 minutes), was primarily maintained by 1 to 2 localized reentrant drivers in lateral RA. Tertiapin (10-100 nmol/L), a selective GIRK channel blocker, counteracted adenosine-induced action potential duration shortening and prevented AF induction. Immunoblotting showed that the superior/middle lateral RA had significantly higher adenosine A1 receptor (2.7±1.7-fold; P<0.01) and GIRK4 (1.7±0.8-fold; P<0.05) protein expression than lateral/posterior LA. This study revealed a 3-fold RA-to-LA adenosine A1 receptor protein expression gradient in the human heart, leading to significantly greater RA versus LA repolarization sensitivity in response to adenosine. Sustained adenosine-induced AF is maintained by reentrant drivers localized in lateral RA regions with the highest adenosine A1 receptor/GIRK4 expression. Selective atrial GIRK channel blockade may effectively treat AF during conditions with increased endogenous adenosine. © 2016 American Heart Association, Inc.
Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J
2014-01-09
D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.
Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J
2014-01-01
D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238
Adenosine signaling contributes to ethanol-induced fatty liver in mice
Peng, Zhongsheng; Borea, Pier Andrea; Wilder, Tuere; Yee, Herman; Chiriboga, Luis; Blackburn, Michael R.; Azzena, Gianfranco; Resta, Giuseppe; Cronstein, Bruce N.
2009-01-01
Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the biochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5′-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:19221436
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoehn, K.; Craig, C.G.; White, T.D.
1990-10-01
Tetrodotoxin reduced N-methyl-D-aspartate (NMDA)-evoked release of adenosine by 35% but virtually abolished (3H)norepinephrine release. Although (3H)norepinephrine release from rat cortical slices evoked by 500 microM NMDA was abolished by 1.2 mM Mg++, which produces a voltage-sensitive, uncompetitive block of NMDA-channels, adenosine release was increased in the presence of Mg++. Partial depolarization with 12 mM K+ relieved the Mg++ block of 500 microM NMDA-evoked (3H)norepinephrine release but did not affect adenosine release, indicating that a Mg++ requirement for the adenosine release process per se cannot account for this discrepancy. NMDA was 33 times more potent in releasing adenosine than (3H)norepinephrine. Atmore » submaximal concentrations of NMDA (10 and 20 microM), adenosine release was augmented in Mg+(+)-free medium. Although a high concentration of the uncompetitive NMDA antagonist MK-801 ((+)-5-methyl-10,11,dihydro-5H-dibenzo(a,d)cyclohepten-5-10-imine maleate) (3 microM) blocked NMDA-evoked release of (3H)norepinephrine and adenosine, a lower concentration (300 nM) decreased NMDA-evoked (3H)norepinephrine release by 66% without affecting adenosine release. These findings suggest that maximal adenosine release occurs when relatively few NMDA receptors are activated, raising the possibility that spare receptors exist for NMDA-evoked adenosine release. Rather than acting as a protectant against excessive NMDA excitation, released adenosine might provide an inhibitory threshold which must be overcome for NMDA-mediated neurotransmission to proceed.« less
Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea
Brown, C.M.; Collis, M.G.
1982-01-01
1 An attempt was made to determine whether the extracellular adenosine receptor that mediates relaxation in the guinea-pig trachea is of the A1/Ri or A2/Ra subtype. 2 Dose-response curves to adenosine and a number of 5′- and N6-substituted analogues were constructed for the isolated guinea-pig trachea, contracted with carbachol. 3 The 5′-substituted analogues of adenosine were the most potent compounds tested, the order of potency being 5′-N-cyclopropylcarboxamide adenosine (NCPCA) > 5′-N-ethylcarboxamide adenosine (NECA) > 2-chloroadenosine > L-N6-phenylisopropyladenosine (L-PIA) > adenosine > D-N6-phenylisopropyladenosine (D-PIA). 4 The difference in potency between the stereoisomers D- and L-PIA on the isolated trachea was at the most five fold. 5 Responses to low doses of adenosine and its analogues were attenuated after treatment with either theophylline or 8-phenyltheophylline. The responses to 2-chloroadenosine were affected to a lesser extent than were those to the other purines. 6 Adenosine transport inhibitors, dipyridamole and dilazep, potentiated responses to adenosine, did not affect those to NCPCA, NECA, L-PIA and D-PIA but significantly reduced the responses to high doses of 2-chloroadenosine. 7 Relaxations evoked by 9-β-D-xylofuranosyladenosine which can activate intracellular but not extracellular adenosine receptors, were attenuated by dipyridamole but unaffected by 8-phenyltheophylline. 8 The results support the existence of an extracellular A2/Ra subtype of adenosine receptor and an intracellular purine-sensitive site, both of which mediate relaxation. PMID:6286021
Adenosine and inflammation: what's new on the horizon?
Antonioli, Luca; Csóka, Balázs; Fornai, Matteo; Colucci, Rocchina; Kókai, Endre; Blandizzi, Corrado; Haskó, György
2014-08-01
Adenosine contributes to the maintenance of tissue integrity by modulating the immune system. Encouraging results have emerged with adenosine receptor ligands for the management of several inflammatory conditions in preclinical and clinical settings. However, therapeutic applications of these drugs are sometimes complicated by the occurrence of serious adverse effects. The scientific community is making intensive efforts to design novel adenosine receptor ligands endowed with greater selectivity or to develop innovative compounds acting as allosteric receptor modulators. In parallel, research is focusing on novel pharmacological entities (designated as adenosine-regulating agents) that can increase, in a site- and event-specific manner, adenosine concentrations at the inflammatory site, thereby minimizing the adverse systemic effects of adenosine. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].
Bagrov, Ia Iu; Manusova, N B
2014-01-01
Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.
Reaction kinetics and inhibition of adenosine kinase from Leishmania donovani.
Bhaumik, D; Datta, A K
1988-04-01
The reaction kinetics and the inhibitor specificity of adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) from Leishmania donovani, have been analysed using homogeneous preparation of the enzyme. The reaction proceeds with equimolar stoichiometry of each reactant. Double reciprocal plots of initial velocity studies in the absence of products yielded intersecting lines for both adenosine and Mg2+-ATP. AMP is a competitive inhibitor of the enzyme with respect to adenosine and noncompetitive inhibitor with respect to ATP. In contrast, ADP was a noncompetitive inhibitor with respect to both adenosine and ATP, with inhibition by ADP becoming uncompetitive at very high concentration of ATP. Parallel equilibrium dialysis experiments against [3H]adenosine and [gamma-32P]ATP resulted in binding of adenosine to fre enzyme. Tubercidin (7-deazaadenosine) and 6-methyl-mercaptopurine riboside acted as substrates for the enzyme and were found to inhibit adenosine phosphorylation competitively in vitro. 'Substrate efficiency (Vmax/Km)' and 'turnover numbers (Kcat)' of the enzyme with respect to specific analogs were determined. Taken together the results suggest that (a) the kinetic mechanism of adenosine kinase is sequential Bi-Bi, (b) AMP and ADP may regulate enzyme activity in vivo and (c) tubercidin and 6-methylmercaptopurine riboside are monophosphorylated by the parasite enzyme.
Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine.
Liang, Dongchun; Woo, Jeong-Im; Shao, Hui; Born, Willi K; O'Brien, Rebecca L; Kaplan, Henry J; Sun, Deming
2018-01-01
Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases.
Liu, Gang; Li, Si Qi; Hu, Ping Ping; Tong, Xiao Yong
2018-05-01
Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.
McLellan, Alex J A; Kumar, Saurabh; Smith, Catherine; Ling, Liang-Han; Prabhu, Sandeep; Kalman, Jonathan M; Kistler, Peter M
2017-06-01
Adenosine may unmask dormant PV conduction and facilitate consolidation of PV isolation. We performed a meta-analysis to determine the impact of adenosine administration on clinical outcomes in patients undergoing PVI. References and electronic databases reporting AF ablation and adenosine following PVI were searched through to 22nd November 2015. The impact of adenosine on freedom from AF was assessed in twenty publications after radiofrequency ablation (RFA), and in four publications after cryoablation to achieve PVI. Relative risks were calculated and combined in a meta-analysis using random effects modeling. In patients undergoing RFA with adenosine challenge, there was a significant reduction in freedom from AF in patients with versus without adenosine induced reconnection (RR 0.86; 95%CI 0.77-0.98; p=0.02) particularly if no further ablation was performed (RR 0.66; 95%CI 0.50-0.87; p<0.01). There was no difference when comparing outcomes in studies of routine adenosine challenge vs no adenosine (RR 1.07; 95%CI 0.93-1.22; p=0.36). There was a non-significant trend to an increase in freedom from AF in patients receiving routine adenosine challenge (RR 1.18 95%CI 0.99-1.42; p=0.07) in non-randomized studies using cryoablation. Adenosine induced PV reconnection following PVI is associated with a significant increase in AF recurrence, particularly if the reconnection sites are not targeted for ablation. The routine use of adenosine may be beneficial in AF ablation if given early post-PVI, at sufficient dose and reconnection is ablated. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhai, Weiwei; Chen, Dongdong; Shen, Haitao; Chen, Zhouqing; Li, Haiying; Yu, Zhengquan; Chen, Gang
2016-06-14
This study was designed to determine the role of the A1 adenosine receptors in intracerebral hemorrhage (ICH)-induced secondary brain injury and the underlying mechanisms. A collagenase-induced ICH model was established in Sprague-Dawley rats, and cultured primary rat cortical neurons were exposed to oxyhemoglobin at a concentration of 10 μM to mimic ICH in vitro. The A1 adenosine receptor agonist N(6)-cyclohexyladenosine and antagonist 8-phenyl-1,3-dipropylxanthine were used to study the role of A1 adenosine receptor in ICH-induced secondary brain injury, and antagonists of P38 and Hsp27 were used to study the underlying mechanisms of A1 adenosine receptor actions. The protein level of A1 adenosine receptor was significantly increased by ICH, while there was no significant change in protein levels of the other 3 adenosine receptors. In addition, the A1 adenosine receptor expression could be increased by N(6)-cyclohexyladenosine and decreased by 8-phenyl-1,3-dipropylxanthine under ICH conditions. Activation of the A1 adenosine receptor attenuated neuronal apoptosis in the subcortex, which was associated with increased phosphorylation of P38, MAPK, MAPKAP2, and Hsp27. Inhibition of the A1 adenosine receptor resulted in opposite effects. Finally, the neuroprotective effect of the A1 adenosine receptor agonist N(6)-cyclohexyladenosine was inhibited by antagonists of P38 and Hsp27. This study demonstrates that activation of the A1 adenosine receptor by N(6)-cyclohexyladenosine could prevent ICH-induced secondary brain injury via the P38-MAPKAP2-Hsp27 pathway.
Effects of adenosine on pressure-flow relationships in an in vitro model of compartment syndrome.
Shrier, I; Baratz, A; Magder, S
1997-03-01
Blood flow through skeletal muscle is best modeled with a vascular waterfall at the arteriolar level. Under these conditions, flow is determined by the difference between perfusion pressure (Pper) and the waterfall pressure (Pcrit), divided by the arterial resistance (Ra). By pump perfusing an isolated canine gastrocnemius muscle (n = 6) after it was placed within an airtight box, with and without adenosine infusion, we observed an interaction between the pressure surrounding a muscle (as occurs in compartment syndrome) and baseline vascular tone. We titrated adenosine concentration to double baseline flow. We measured Pcrit and Ra at box pressures (Pbox), which resulted in 100 (Pbox = 0), 90, 75, and 50% flow without adenosine; and 200, 180, 150, 100, and 50% flow with adenosine. Without adenosine, each 10% decline in flow was associated with a 5.7 mmHg increase in Pcrit (P < 0.01). With adenosine, the same decrease in flow was associated with a 2.6-mmHg increase in Pcrit (P < 0.01). Values of Pcrit at 50% of flow were almost identical. Each 10% decrease in flow was also associated with 2.2% increase in Ra with or without adenosine (P < 0.001). Ra decreased with adenosine infusion (P < 0.05), and there was no interaction between adenosine and flow (P > 0.9). We conclude that increases in pressure surrounding a muscle limit flow primarily through changes in Pcrit with and without adenosine-induced vasodilation. The interaction between Pbox and adenosine with respect to Pcrit but not Ra suggests that Pbox affects the tone of the vessels responsible for Pcrit but not Ra.
The Brain In Vivo Expresses the 2′,3′-cAMP-Adenosine Pathway
Verrier, Jonathan D.; Jackson, Travis C.; Bansal, Rashmi; Kochanek, Patrick M.; Puccio, Ava M.; Okonkwo, David O.; Jackson, Edwin K.
2012-01-01
Although multiple biochemical pathways produce adenosine, studies suggest that the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMP → adenosine) contributes to adenosine production in some cells/tissues/organs. To determine whether the 2′,3′-cAMP-adenosine pathway exists in vivo in the brain, we delivered to the brain (gray matter and white matter separately) via the inflow perfusate of a microdialysis probe either 2′,3′-cAMP, 3′,5′-cAMP, 2′-AMP, 3′-AMP, or 5′-AMP and measured the recovered metabolites in the microdialysis outflow perfusate with mass spectrometry. In both gray and white matter, 2′,3′-cAMP increased 2′-AMP, 3′-AMP and adenosine, and 3′,5′-cAMP increased 5′-AMP and adenosine. In both brain regions, 2′-AMP, 3-AMP and 5′-AMP were converted to adenosine. Microdialysis experiments in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) wild-type mice demonstrated that traumatic brain injury (TBI; controlled cortical impact model) activated the brain 2,3′-cAMP-adenosine pathway; similar experiments in CNPase knockout mice indicated that CNPase was involved in the metabolism of endogenous 2′,3′-cAMP to 2′-AMP and to adenosine. In CSF from TBI patients, 2′,3′-cAMP was significantly increased in the initial 12 hours after injury and strongly correlated with CSF levels of 2′-AMP, 3′-AMP, adenosine and inosine. We conclude that in vivo, 2′,3′-cAMP is converted to 2′-AMP/3′-AMP, and these AMPs are metabolized to adenosine. This pathway exists endogenously in both mice and humans. PMID:22360621
Odagaki, Yuji; Kinoshita, Masakazu; Ota, Toshio; Meana, J Javier; Callado, Luis F; Matsuoka, Isao; García-Sevilla, Jesús A
2018-06-01
Adenosine signaling plays a complex role in multiple physiological processes in the brain, and its dysfunction has been implicated in pathophysiology of neuropsychiatric diseases such as schizophrenia and affective disorders. In the present study, the coupling between adenosine A 1 receptor and G-protein was assessed by means of two [ 35 S]GTPγS binding assays, i.e., conventional filtration method and [ 35 S]GTPγS binding/immunoprecipitation in rat and human brain membranes. The latter method provides information about adenosine A 1 receptor-mediated Gα i-3 activation in rat as well as human brain membranes. On the other hand, adenosine-stimulated [ 35 S]GTPγS binding determined with conventional assay derives from functional activation of Gα i/o proteins (not restricted only to Gα i-3 ) coupled to adenosine A 1 receptors. The determination of adenosine concentrations in the samples used in the present study indicates the possibility that the assay mixture under our experimental conditions contains residual endogenous adenosine at nanomolar concentrations, which was also suggested by the results on the effects of adenosine receptor antagonists on basal [ 35 S]GTPγS binding level. The effects of adenosine deaminase (ADA) on basal binding also support the presence of adenosine. Nevertheless, the varied patterns of ADA discouraged us from adding ADA into assay medium routinely. The concentration-dependent increases elicited by adenosine were determined in 40 subjects without any neuropsychiatric disorders. The increases in %E max values determined by conventional assay according to aging and postmortem delay should be taken into account in future studies focusing on the effects of psychiatric disorders on adenosine A 1 receptor/G-protein interaction in postmortem human brain tissue.
Characterization and ontogeny of P1-purinoceptors on rat vas deferens.
Hourani, S M; Nicholls, J; Lee, B S; Halfhide, E J; Kitchen, I
1993-03-01
1. The P1-purinoceptors which mediate the inhibition by adenosine of nerve-mediated contraction of the rat vas deferens have been investigated by use of the agonists N6-cyclopentyladenosine (CPA) and 5'-N-ethylcarboxamidoadenosine (NECA) and the A1-selective antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). The ontogeny of the responses to adenosine and to the two co-transmitters which induce the contractions in this tissue, adenosine 5'-triphosphate (ATP) and noradrenaline (NA), have also been studied. 2. The order of potency for the adenosine agonists in inhibiting the nerve-mediated contractions was CPA = NECA > adenosine. Micromolar concentrations of DPCPX were required to antagonize the inhibition by adenosine and NECA of nerve-mediated responses, whereas the inhibitory effect of CPA was antagonized by nanomolar concentrations of the antagonist. 3. NECA and adenosine inhibited contractions induced by ATP (10 microM) or by NA (10 microM), NECA being at least ten fold more potent than adenosine, whereas CPA was inactive. Micromolar concentrations of DPCPX were required to antagonize the effect of adenosine on the contractions induced by ATP (10 microM). 4. Nerve-stimulated contractions could be observed in neonatal tissues from day 15 and increased with age, and could be inhibited by adenosine from this time, the potency of adenosine decreasing with age. Responses to ATP also appeared at day 15 and increased with age up to day 25, while responses to NA were present from day 10 (the earliest day tested) and decreased with age. 5. These results show that the rat vas deferens contains both prejunctional Al-receptors and postjunctional A2-receptors, and that adenosine acts on the latter populations to inhibit nerve-mediated contractions.The high potency of adenosine in the neonate and the parallel development of responses to ATP and to nerve-mediated contractions support suggestions that purinergic responses may be particularly important in neonatal tissues.
Shkurupii, V A; Kozyaev, M A; Nadeev, A P
2006-04-01
We studied BCG-granulomas, their cellular composition, and ultrastructure of type A epithelioid cells in the liver of male BALB/c mice with spontaneous granulomatous inflammation. The animals received free isoniazid or isoniazid conjugated with lysosomotropic intracellularly prolonged matrix (dialdehyde dextran, molecular weight 65-75 kDa). Lysosomotropic isoniazid was accumulated in the vacuolar apparatus of epithelioid cells and produced a stimulatory effect on plastic processes in these cells.
Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1
Ensminger, Michael P.; Hess, F. Dan
1985-01-01
Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206
Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.
Ensminger, M P; Hess, F D
1985-05-01
Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.
Development of a fluorescence-based sensor for rapid diagnosis of cyanide exposure.
Jackson, Randy; Oda, Robert P; Bhandari, Raj K; Mahon, Sari B; Brenner, Matthew; Rockwood, Gary A; Logue, Brian A
2014-02-04
Although commonly known as a highly toxic chemical, cyanide is also an essential reagent for many industrial processes in areas such as mining, electroplating, and synthetic fiber production. The "heavy" use of cyanide in these industries, along with its necessary transportation, increases the possibility of human exposure. Because the onset of cyanide toxicity is fast, a rapid, sensitive, and accurate method for the diagnosis of cyanide exposure is necessary. Therefore, a field sensor for the diagnosis of cyanide exposure was developed based on the reaction of naphthalene dialdehyde, taurine, and cyanide, yielding a fluorescent β-isoindole. An integrated cyanide capture "apparatus", consisting of sample and cyanide capture chambers, allowed rapid separation of cyanide from blood samples. Rabbit whole blood was added to the sample chamber, acidified, and the HCN gas evolved was actively transferred through a stainless steel channel to the capture chamber containing a basic solution of naphthalene dialdehyde (NDA) and taurine. The overall analysis time (including the addition of the sample) was <3 min, the linear range was 3.13-200 μM, and the limit of detection was 0.78 μM. None of the potential interferents investigated (NaHS, NH4OH, NaSCN, and human serum albumin) produced a signal that could be interpreted as a false positive or a false negative for cyanide exposure. Most importantly, the sensor was 100% accurate in diagnosing cyanide poisoning for acutely exposed rabbits.
Gadelha, Ary; Zugman, André; Calzavara, Mariana Bendlin; de Mendonça Furtado, Remo Holanda; Scorza, Fulvio Alexandre; Bressan, Rodrigo Afonsecca
2018-01-01
Schizophrenia is associated with an increased mortality from cardiovascular disease. Relatively few studies have assessed the putative association of schizophrenia pathophysiology with sudden death. Low adenosine levels have been associated with schizophrenia. In cardiology, increased mortality among patients with congestive heart failure has been associated with genetic polymorphisms that potentially lead to lower adenosine levels. Thus, we hypothesize that adenosine could link schizophrenia and cardiovascular mortality, with decreased adenosine levels leading to increased vulnerability to hyperexcitability following hypoxic insults, increasing the odds of fatal arrhythmias. Low adenosine levels might also lead to a small increase in overall mortality rates and a major increase in the sudden death rate. This hypothesis paves the way for further investigation of the increased cardiac mortality associated with schizophrenia. Potentially, a better characterization of adenosine-related mechanisms of sudden death in schizophrenia could lead to new evidence of factors leading to sudden death in the general population. Copyright © 2017. Published by Elsevier Ltd.
Lovatt, Ditte; Xu, Qiwu; Liu, Wei; Takano, Takahiro; Smith, Nathan A.; Schnermann, Jurgen; Tieu, Kim; Nedergaard, Maiken
2012-01-01
Adenosine is a potent anticonvulsant acting on excitatory synapses through A1 receptors. Cellular release of ATP, and its subsequent extracellular enzymatic degradation to adenosine, could provide a powerful mechanism for astrocytes to control the activity of neural networks during high-intensity activity. Despite adenosine's importance, the cellular source of adenosine remains unclear. We report here that multiple enzymes degrade extracellular ATP in brain tissue, whereas only Nt5e degrades AMP to adenosine. However, endogenous A1 receptor activation during cortical seizures in vivo or heterosynaptic depression in situ is independent of Nt5e activity, and activation of astrocytic ATP release via Ca2+ photolysis does not trigger synaptic depression. In contrast, selective activation of postsynaptic CA1 neurons leads to release of adenosine and synaptic depression. This study shows that adenosine-mediated synaptic depression is not a consequence of astrocytic ATP release, but is instead an autonomic feedback mechanism that suppresses excitatory transmission during prolonged activity. PMID:22421436
Iwabuchi, Tokuro; Ideta, Ritsuro; Ehama, Ritsuko; Yamanishi, Haruyo; Iino, Masato; Nakazawa, Yosuke; Kobayashi, Takashi; Ohyama, Manabu; Kishimoto, Jiro
2016-05-01
Adenosine is an effective treatment for androgenetic alopecia (AGA) in Japanese men and women. Adenosine exerts its effects by significantly increasing the proportion of thick hair. In this study, we assessed the clinical outcome of adenosine treatment for 6 months in 38 Caucasian men. The change in proportion of thick hair (≥60 μm) compared with baseline in the adenosine group was significantly higher than that in the placebo group (P < 0.0001). The change in vellus hair proportion (<40 μm) was significantly lower in the adenosine group than that in the placebo group (P = 0.0154). The change in hair density compared with baseline of the adenosine group was also significantly higher compared with that of the placebo group (P = 0.0470). No adverse effects due to treatment were noted during this study by dermatological evaluation. Adenosine is effective in increasing the proportion of thick hair in Caucasian men with AGA as well as in Japanese men and women. © 2015 Japanese Dermatological Association.
Oura, Hajimu; Iino, Masato; Nakazawa, Yosuke; Tajima, Masahiro; Ideta, Ritsuro; Nakaya, Yutaka; Arase, Seiji; Kishimoto, Jiro
2008-12-01
Adenosine upregulates the expression of vascular endothelial growth factor and fibroblast growth factor-7 in cultured dermal papilla cells. It has been shown that, in Japanese men, adenosine improves androgenetic alopecia due to the thickening of thin hair due to hair follicle miniaturization. To investigate the efficacy and safety of adenosine treatment to improve hair loss in women, 30 Japanese women with female pattern hair loss were recruited for this double-blind, randomized, placebo-controlled study. Volunteers used either 0.75% adenosine lotion or a placebo lotion topically twice daily for 12 months. Efficacy was evaluated by dermatologists and by investigators and in phototrichograms. As a result, adenosine was significantly superior to the placebo according to assessments by dermatologists and investigators and by self-assessments. Adenosine significantly increased the anagen hair growth rate and the thick hair rate. No side-effects were encountered during the trial. Adenosine improved hair loss in Japanese women by stimulating hair growth and by thickening hair shafts. Adenosine is useful for treating female pattern hair loss in women as well as androgenetic alopecia in men.
Extracellular cyclic AMP-adenosine pathway in isolated adipocytes and adipose tissue.
Strouch, Marci B; Jackson, Edwin K; Mi, Zaichuan; Metes, Nicole A; Carey, Gale B
2005-06-01
Our goal was to evaluate the presence and lipolytic impact of the extracellular cyclic adenosine monophosphate (AMP)-adenosine pathway in adipose tissue. Sixteen miniature Yucatan swine (Sus scrofa) were used for these in vitro and in situ experiments. Four microdialysis probes were implanted into subcutaneous adipose tissue and perfused at 2 microL/min with Ringer's solution containing no addition, varying levels of cyclic AMP, 10 microM isoproterenol, or 10 microM isoproterenol plus 1 mM alpha,beta-methylene adenosine 5'-diphosphate (AMPCP), a 5'-nucleotidase inhibitor. Dialysate was assayed for AMP, adenosine, inosine, hypoxanthine, and glycerol. Freshly isolated adipocytes were incubated with buffer, 1 microM isoproterenol, or 1 microM isoproterenol plus 0.1 mM AMPCP, and extracellular levels of AMP, adenosine, inosine, hypoxanthine, and glycerol were measured. Perfusion of adipose tissue with exogenous cyclic AMP caused a significant increase in AMP and adenosine appearance. Perfusion with AMPCP, in the presence or absence of isoproterenol, significantly increased the levels of AMP and glycerol, whereas it significantly reduced the level of adenosine and its metabolites. However, the AMPCP-provoked increase in lipolysis observed in situ and in vitro was not temporally associated with a decrease in adenosine. These data suggest the existence of a cyclic AMP-adenosine pathway in adipocytes and adipose tissue. The role of this pathway in the regulation of lipolysis remains to be clarified.
Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H
2012-06-30
The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Adenosine uptake by the isolated epithelium of guine pig jejunum.
Kolassa, N; Stengg, R; Turnheim, K
1977-10-01
The uptake of [8-14C]adenosine by the isolated epithelium of guinea pig jejunum was faster than that of inosine, hypoxanthine, or adenine. The initial velocity of adenosine uptake from both the luminal and the antiluminal side of the epithelium exhibited saturation kinetics. The apparent Km, V, and passive permeability of luminal adenosine uptake were all lower than the corresponding values of antiluminal uptake. p-Nitrobenzyl-thioguanosine inhibited adenosine uptake from both the luminal and the antiluminal side, whilst hexobendine decreased the uptake only from the antiluminal side of the epithelium. The results suggest that adenosine enters the intestinal epithelium by a carrier-mediated process in addition to passive diffusion. The antiluminal transport system for adenosine seems similar to that of other tissues with respect to hexobendine inhibition; the luminal transport mechanism, however, exhibits different properties, being insensitive to hexobendine.
Delayed production of adenosine underlies temporal modulation of swimming in frog embryo
Dale, Nicholas
1998-01-01
To investigate the dynamics of adenosine production in the spinal cord during motor activity, and its possible contribution to the temporal modulation of motor patterns, a sensor sensitive to adenosine at concentrations as low as 10 nm was devised.When pressed against the outside of the spinal cord, the sensor detected slow changes in the levels of adenosine during fictive swimming that ranged from 10 to 650 nm. In four embryos where particularly large signals were recorded due to favourable probe placement, the adenosine levels continued to rise for up to a minute following cessation of activity before slowly returning to baseline. In the remaining thirteen embryos, levels of adenosine started to return slowly to baseline almost immediately after activity had stopped.Inhibitors of adenosine uptake increased the magnitude of the signal recorded and slowed the recovery following cessation of activity.A realistic computational model of the spinal circuitry was combined with models of extracellular breakdown of ATP to adenosine. ATP and adenosine inhibited, as in the real embryo, the voltage-gated K+ and Ca2+ currents, respectively. The model reproduced the temporal run-down of motor activity seen in the real embryo suggesting that synaptic release of ATP together with its extracellular breakdown to adenosine is sufficient to exert time-dependent control over motor pattern generation.The computational analysis also suggested that the delay in the rise of adenosine levels is likely to result from feed-forward inhibition of the 5′-ectonucleotidase in the spinal cord. This inhibition is a key determinant of the rate of run-down. PMID:9679180
Torres, Bryan T; Jimenez, David A; Budsberg, Steven C
2016-07-19
Adenosine triphosphate has been shown to stimulate nociceptive nerve terminals in joints. Elevated synovial fluid adenosine triphosphate concentrations as well as a correlation between synovial fluid adenosine triphosphate concentrations and osteoarthritic knee pain has been demonstrated in humans, but not yet in dogs. This study documented elevated synovial fluid adenosine triphosphate concentrations in the stifles of dogs with secondary osteoarthritis and urate-induced synovitis, as compared to normal stifles.
Miao, Yu; Wang, Cheng-long; Yin, Hui-jun; Shi, Da-zhuo; Chen, Ke-ji
2005-04-18
To establish method for the quantitative determination of adenosine phosphates in rat myocardium by optimized high performance liquid chromatogram (HPLC). ODS HYPERSIL C(18) column and a mobile phase of 50 mmol/L tribasic potassium phosphate buffer solution (pH 6.5), with UV detector at 254 nm were used. The average recovery rates of myocardial adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) were 99%-107%, 96%-104% and 95%-119%, respectively; relative standard deviations (RSDs) of within-day and between-days were less than 1.5% and 5.1%, respectively. The method is simple, rapid and accurate, and can be used to analyse the adenosine phosphates in myocardium.
The rate of the AMP/adenosine substrate cycle in concanavalin-A-stimulated rat lymphocytes.
Szondy, Z; Newsholme, E A
1989-01-01
The effect of adenosine on the metabolism of prelabelled adenine nucleotides was investigated in concanavalin-A-stimulated rat lymphocytes. Adenosine in the presence of the adenosine deaminase inhibitor, deoxycoformycin, caused a 2-fold increase in the ATP concentration. This effect was, in part, countereacted by an increased rate of adenine nucleotide catabolism, which could be explained by a stimulation of AMP deaminase (EC 3.5.4.6). At the same time a continuous rate of labelled adenosine production was found, which was not affected by the increased ATP concentration and which could only be detected by the trapping effect of a high concentration of added unlabelled adenosine. It is concluded that the rate of the substrate cycle between AMP and adenosine is low (1.9 +/- 0.2 nmol/h per 10(7) cells) in comparison to the rate of AMP deamination. PMID:2552990
A label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence
Xu, Weichen; Lu, Yi
2009-01-01
We report a label-free fluorescent aptamer sensor for adenosine based on the regulation of malachite green (MG) fluorescence, with comparable sensitivity and selectivity to other labeled adenosine aptamer-based sensors. The sensor consists of free MG, an aptamer strand containing an adenosine aptamer next to an MG aptamer, and a bridging strand that partially hybridizes to the aptamer strand. Such a hybridization prevents MG from binding to MG aptamer, resulting in low fluorescence of MG in the absence of adenosine. Addition of adenosine causes the adenosine aptamer to bind adenosine, weakening the hybridization of the aptamer strand with the bridging strand, making it possible for MG to bind to the aptamer strand and exhibits high fluorescence intensity. Since this design is based purely on nucleic acid hybridization, it can be generally applied to other aptamers for the label-free detection of a broad range of analytes. PMID:20017558
Tang, Z; Diamond, M A; Chen, J-M; Holly, T A; Bonow, R O; Dasgupta, A; Hyslop, T; Purzycki, A; Wagner, J; McNamara, D M; Kukulski, T; Wos, S; Velazquez, E J; Ardlie, K; Feldman, A M
2007-10-01
The goal of this experiment was to identify the presence of genetic variants in the adenosine receptor genes and assess their relationship to infarct size in a population of patients with ischemic cardiomyopathy. Adenosine receptors play an important role in protecting the heart during ischemia and in mediating the effects of ischemic preconditioning. We sequenced DNA samples from 273 individuals with ischemic cardiomyopathy and from 203 normal controls to identify the presence of genetic variants in the adenosine receptor genes. Subsequently, we analyzed the relationship between the identified genetic variants and infarct size, left ventricular size, and left ventricular function. Three variants in the 3'-untranslated region of the A(1)-adenosine gene (nt 1689 C/A, nt 2206 Tdel, nt 2683del36) and an informative polymorphism in the coding region of the A3-adenosine gene (nt 1509 A/C I248L) were associated with changes in infarct size. These results suggest that genetic variants in the adenosine receptor genes may predict the heart's response to ischemia or injury and might also influence an individual's response to adenosine therapy.
Adenosine formation and release from neonatal-rat heart cells in culture.
Meghji, P; Holmquist, C A; Newby, A C
1985-01-01
The incorporation of [3H]adenosine (10 microM) into neonatal-rat heart cell nucleotides was inhibited in a concentration-dependent manner, such that 50% inhibition was obtained with 0.75 microM-dipyridamole, 0.26 microM-hexobendine or 0.22 microM-dilazep. Adenosine formation was accelerated 2.5-fold to 2.1 +/- 0.3 nmol/10(7) cells in 10 min when cells were incubated with a combination of 30 mM-2-deoxyglucose and 2 micrograms of oligomycin/ml. Of the newly formed adenosine, 6 +/- 2% was in the cells. Dipyridamole, hexobendine or dilazep (10 microM) increased the amount of adenosine in the cells and decreased that in the medium such that 45-50% of the newly formed adenosine was in the cells. Antibodies which inhibited ecto-5'-nucleotidase by 98.7 +/- 0.3% did not alter the rate of adenosine formation or its distribution between cells and medium. We conclude that adenosine was formed in the cytoplasm during catabolism of cellular ATP and was released via the dipyridamole-sensitive symmetric nucleoside transporter. PMID:2996488
Lu, Na; Wang, Baoying; Deng, Xiaohui; Zhao, Honggang; Wang, Yong; Li, Dongliang
2014-01-01
After hypoxia, ischemia, or inflammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cell death that also has neuroprotective effects. Cell Counting Kit assay, monodansylcadaverine staining, flow cytometry, western blotting, and real-time PCR were used to determine the effects of exogenous adenosine triphosphate treatment at different concentrations (2, 4, 6, 8, 10 mmol/L) over time (1, 2, 3, and 6 hours) on the apoptosis and autophagy of SH-SY5Y cells. High concentrations of extracellular adenosine triphosphate induced autophagy and apoptosis of SH-SY5Y cells. The enhanced autophagy first appeared, and peaked at 1 hour after treatment with adenosine triphosphate. Cell apoptosis peaked at 3 hours, and persisted through 6 hours. With prolonged exposure to the adenosine triphosphate treatment, the fraction of apoptotic cells increased. These data suggest that the SH-SY5Y neural cells initiated autophagy against apoptosis within an hour of adenosine triphosphate treatment to protect themselves against injury. PMID:25368646
Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia.
Iriyama, Takayuki; Sun, Kaiqi; Parchim, Nicholas F; Li, Jessica; Zhao, Cheng; Song, Anren; Hart, Laura A; Blackwell, Sean C; Sibai, Baha M; Chan, Lee-Nien L; Chan, Teh-Sheng; Hicks, M John; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang
2015-02-24
Preeclampsia is a prevalent hypertensive disorder of pregnancy and a leading cause of maternal and neonatal morbidity and mortality worldwide. This pathogenic condition is speculated to be caused by placental abnormalities that contribute to the maternal syndrome. However, the specific factors and signaling pathways that lead to impaired placentas and maternal disease development remain elusive. Using 2 independent animal models of preeclampsia (genetically engineered pregnant mice with elevated adenosine exclusively in placentas and a pathogenic autoantibody-induced preeclampsia mouse model), we demonstrated that chronically elevated placental adenosine was sufficient to induce hallmark features of preeclampsia, including hypertension, proteinuria, small fetuses, and impaired placental vasculature. Genetic and pharmacological approaches revealed that elevated placental adenosine coupled with excessive A₂B adenosine receptor (ADORA2B) signaling contributed to the development of these features of preeclampsia. Mechanistically, we provided both human and mouse evidence that elevated placental CD73 is a key enzyme causing increased placental adenosine, thereby contributing to preeclampsia. We determined that elevated placental adenosine signaling is a previously unrecognized pathogenic factor for preeclampsia. Moreover, our findings revealed the molecular basis underlying the elevation of placental adenosine and the detrimental role of excess placental adenosine in the pathophysiology of preeclampsia, and thereby, we highlight novel therapeutic targets. © 2014 American Heart Association, Inc.
A Role for Adenosine Deaminase in Drosophila Larval Development
Dolezal, Tomas; Dolezelova, Eva; Zurovec, Michal
2005-01-01
Adenosine deaminase (ADA) is an enzyme present in all organisms that catalyzes the irreversible deamination of adenosine and deoxyadenosine to inosine and deoxyinosine. Both adenosine and deoxyadenosine are biologically active purines that can have a deep impact on cellular physiology; notably, ADA deficiency in humans causes severe combined immunodeficiency. We have established a Drosophila model to study the effects of altered adenosine levels in vivo by genetic elimination of adenosine deaminase-related growth factor-A (ADGF-A), which has ADA activity and is expressed in the gut and hematopoietic organ. Here we show that the hemocytes (blood cells) are the main regulator of adenosine in the Drosophila larva, as was speculated previously for mammals. The elevated level of adenosine in the hemolymph due to lack of ADGF-A leads to apparently inconsistent phenotypic effects: precocious metamorphic changes including differentiation of macrophage-like cells and fat body disintegration on one hand, and delay of development with block of pupariation on the other. The block of pupariation appears to involve signaling through the adenosine receptor (AdoR), but fat body disintegration, which is promoted by action of the hemocytes, seems to be independent of the AdoR. The existence of such an independent mechanism has also been suggested in mammals. PMID:15907156
Dale, Nicholas; Gourine, Alexander V; Llaudet, Enrique; Bulmer, David; Thomas, Teresa; Spyer, K Michael
2002-01-01
We have measured the release of adenosine and inosine from the dorsal surface of the brainstem and from within the nucleus tractus solitarii (NTS) during the defence response evoked by hypothalamic stimulation in the anaesthetised rat. At the surface of the brainstem, only release of inosine was detected on hypothalamic defence area stimulation. This inosine signal was greatly reduced by addition of the ecto-5′-nucleotidase inhibitor α,β-methylene ADP (200 μM), suggesting that the inosine arose from adenosine that was produced in the extracellular space by the prior release of ATP. By placing a microelectrode biosensor into the NTS under stereotaxic control we have recorded release of adenosine within this nucleus. By contrast to the brainstem surface, a fast increase in adenosine, accompanied only by a much smaller change in inosine levels, was seen following stimulation of the hypothalamic defence area. The release of adenosine following hypothalamic stimulation was mainly confined to a narrow region of the NTS some 500 μm in length around the level of the obex. Interestingly the release of adenosine was depletable: when the defence reaction was evoked at short time intervals, much less adenosine was released on the second stimulus. Our novel techniques have given unprecedented real-time measurement and localisation of adenosine release in vivo and demonstrate that adenosine is released at the right time and in sufficient quantities to contribute to the cardiovascular components of the defence reaction. PMID:12356888
Sousa, Joana Beatriz; Vieira-Rocha, Maria Sofia; Sá, Carlos; Ferreirinha, Fátima; Correia-de-Sá, Paulo; Fresco, Paula; Diniz, Carmen
2014-01-01
Increased sympathetic activity has been implicated in hypertension. Adenosine has been shown to play a role in blood flow regulation. In the present study, the endogenous adenosine neuromodulatory role, in mesenteric arteries from normotensive and spontaneously hypertensive rats, was investigated. The role of endogenous adenosine in sympathetic neurotransmission was studied using electrically-evoked [3H]-noradrenaline release experiments. Purine content was determined by HPLC with fluorescence detection. Localization of adenosine A1 or A2A receptors in adventitia of mesenteric arteries was investigated by Laser Scanning Confocal Microscopy. Results indicate a higher electrically-evoked noradrenaline release from hypertensive mesenteric arteries. The tonic inhibitory modulation of noradrenaline release is mediated by adenosine A1 receptors and is lacking in arteries from hypertensive animals, despite their purine levels being higher comparatively to those determined in normotensive ones. Tonic facilitatory adenosine A2A receptor-mediated effects were absent in arteries from both strains. Immunohistochemistry revealed an adenosine A1 receptors redistribution from sympathetic fibers to Schwann cells, in adventitia of hypertensive mesenteric arteries which can explain, at least in part, the absence of effects observed for these receptors. Data highlight the role of purines in hypertension revealing that an increase in sympathetic activity in hypertensive arteries is occurring due to a higher noradrenaline/ATP release from sympathetic nerves and the loss of endogenous adenosine inhibitory tonus. The observed nerve-to-glial redistribution of inhibitory adenosine A1 receptors in hypertensive arteries may explain the latter effect.
Differential distribution of adenosine receptors in rat cochlea.
Vlajkovic, Srdjan M; Abi, Shukri; Wang, Carol J H; Housley, Gary D; Thorne, Peter R
2007-06-01
Adenosine is a constitutive cell metabolite that can be released from cells via specific bi-directional transporters and is an end-point for nucleotide hydrolysis. In the extracellular space, adenosine becomes a signalling molecule for P1 (adenosine) receptors that modulate physiological responses in a wide range of mammalian tissues. Whereas adenosine signalling has been implicated in the regulation of cochlear blood flow and in cochlear protection from oxidative damage, the potential roles for adenosine signalling in the modulation of sound transduction and auditory neurotransmission have not been established. We have characterised the expression and distribution of adenosine receptors in the rat cochlea. mRNA transcripts for all four subtypes of adenosine receptors (A(1), A(2A), A(2B) and A(3)) were detected in dissected cochlear tissue by using reverse transcription/polymerase chain reaction analysis. The protein distribution for the A(1), A(2A) and A(3) receptor subtypes was identified by immunoperoxidase histochemistry and confocal immunofluorescence labelling. These receptors were differentially expressed in the organ of Corti, spiral ganglion neurones, lateral wall tissues and cochlear blood vessels. The distribution of adenosine receptors in sensory and neural tissues and in the vasculature coincided with other elements of purinergic signalling (P2X and P2Y receptors, ectonucleotidases), consistent with the integrative regulation of many physiological processes in the cochlea by extracellular nucleotides and nucleosides. Our study provides a framework for further investigation of adenosine signalling in the inner ear, including putative roles in oxidative stress responses.
Collins, Lyndsey E; Galtieri, Daniel J; Brennum, Lise T; Sager, Thomas N; Hockemeyer, Jörg; Müller, Christa E; Hinman, James R; Chrobak, James J; Salamone, John D
2010-02-01
Tremulous jaw movements in rats, which can be induced by dopamine (DA) antagonists, DA depletion, and cholinomimetics, have served as a useful model for studies of tremor. Although adenosine A(2A) antagonists can reduce the tremulous jaw movements induced by DA antagonists and DA depletion, there are conflicting reports about the interaction between adenosine antagonists and cholinomimetic drugs. The present studies investigated the ability of adenosine antagonists to reverse the tremorogenic effect of the muscarinic agonist pilocarpine. While the adenosine A(2A) antagonist MSX-3 was incapable of reversing the tremulous jaw movements induced by the 4.0mg/kg dose of pilocarpine, both MSX-3 and the adenosine A(2A) antagonist SCH58261 reversed the tremulous jaw movements elicited by 0.5mg/kg pilocarpine. Systemic administration of the adenosine A(1) antagonist DPCPX failed to reverse the tremulous jaw movements induced by either an acute 0.5mg/kg dose of the cholinomimetic pilocarpine or the DA D2 antagonist pimozide, indicating that the tremorolytic effects of adenosine antagonists may be receptor subtype specific. Behaviorally active doses of MSX-3 and SCH 58261 showed substantial in vivo occupancy of A(2A) receptors, but DPCPX did not. The results of these studies support the use of adenosine A(2A) antagonists for the treatment of tremor. Copyright 2009 Elsevier Inc. All rights reserved.
Li, Xiaoye; Wang, Qibing; Xue, Ying; Chen, Jiahui; Lv, Qianzhou
2017-06-01
Ticagrelor produces a more potent antiplatelet effect than clopidogrel and inhibits cellular uptake of adenosine, which is associated with several cardiovascular consequences. We aimed to explore the correlation between adenosine and cyclic adenosine monophosphate (cAMP) plasma concentration and antiplatelet effect by clopidogrel or ticagrelor in patients with acute coronary syndrome (ACS) receiving dual antiplatelet therapy (DAPT). We conducted a prospective, observational and single-centre cohort study enrolling 68 patients with non-ST-segment elevation ACS from January 2016 to May 2016. We monitored the inhibition of platelet aggregation (IPA) and assessed adenosine, adenosine deaminase (ADA) and cAMP plasma concentrations by immunoassay on admission and 48 hr after coronary angiography. The demographic and clinical data were collected by reviewing their medical records. The two groups exhibited similar baseline characteristics including adenosine, ADA and cAMP. The mean IPA in patients receiving ticagrelor was significantly higher than that in patients receiving clopidogrel (93.5% versus 67.2%; p = 0.000). Also, we observed that patients treated with ticagrelor had a significantly higher increase in levels of adenosine and cAMP compared with those treated with clopidogrel (1.04 (0.86; 1.41) versus 0.04 (-0.25; 0.26); p = 0.029 and 0.78 (-1.67; 1.81) versus 0.60 (-1.91; 4.60); p = 0.037, respectively). And there was a weak correlation between IPA and adenosine as well as cAMP plasma concentration (r = 0.390, p = 0.001 and r = 0.335, p = 0.005, respectively). Ticagrelor increased adenosine and cAMP plasma concentration compared with clopidogrel in patients with ACS. © 2017 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Wu, Jing; Li, Guorong; Luna, Coralia; Spasojevic, Ivan; Epstein, David L.; Gonzalez, Pedro
2012-01-01
Purpose. To investigate the mechanisms for endogenous production of extracellular adenosine in trabecular meshwork (TM) cells and evaluate its physiological relevance to the regulation of aqueous humor outflow facility. Methods. Extra-cellular levels of adenosine monophosphate (AMP) and adenosine in porcine trabecular meshwork (PTM) cells treated with adenosine triphosphate (ATP), AMP, cAMP or forskolin with or without specific inhibitors of phosphodiesterases (IBMX) and CD73 (AMPCP) were determined by high-pressure liquid chromatography fluorometry. Extracellular adenosine was also evaluated in cell cultures subjected to cyclic mechanical stress (CMS) (20% stretching; 1 Hz) and after disruption of lipid rafts with methyl-β-cyclodextrin. Expression of CD39 and CD73 in porcine TM cells and tissue were examined by Q-PCR and Western blot. The effect of inhibition of CD73 on outflow facility was evaluated in perfused living mouse eyes. Results. PTM cells generated extracellular adenosine from extracellular ATP and AMP but not from extracellular cAMP. Increased intracellular cAMP mediated by forskolin led to a significant increase in extracellular adenosine production that was not prevented by IBMX. Inhibition of CD73 resulted, in all cases, in a significant decrease in extracellular adenosine. CMS induced a significant activation of extracellular adenosine production. Inhibition of CD73 activity with AMPCP in living mouse eyes resulted in a significant decrease in outflow facility. Conclusions. These results support the concept that the extracellular adenosine pathway might play an important role in the homeostatic regulation of outflow resistance in the TM, and suggest a novel mechanism by which pathologic alteration of the TM, such as increased tissue rigidity, could lead to abnormal elevation of IOP in glaucoma. PMID:22997289
A High Affinity Adenosine Kinase from Anopheles gambiae
Cassera, María B.; Ho, Meng-Chiao; Merino, Emilio F.; Burgos, Emmanuel S.; Rinaldo-Matthis, Agnes; Almo, Steven C.; Schramm, Vern L.
2011-01-01
Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (Km 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap4A (2.0 Å resolution) reveals interactions for adenosine, ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg2+ ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layered α/β/α sandwich, and a small cap domain in contact with adenosine. The specificity and tight-binding for adenosine arises from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168 and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64 and Asn68 and the ribosyl 2′- and 3′-hydroxyl groups. The structure is more similar to human adenosine kinase (48% identity) than to AK from Toxoplasma gondii (31% identity). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role of this enzyme to maintain the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects. PMID:21247194
Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis
2011-06-01
To determine whether insulin reverses gestational diabetes mellitus (GDM)-reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine(1177) phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A(2A)-adenosine receptor antagonist). Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO-dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A(2A)-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM.
Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling
Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A
2009-01-01
Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after αCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve αCD3/CD28-stimulated CD8 cells. Consequently, αCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs. PMID:19740334
Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A
2009-09-01
Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after alphaCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve alphaCD3/CD28-stimulated CD8 cells. Consequently, alphaCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs.
Nakae, I; Takahashi, M; Takaoka, A; Liu, Q; Matsumoto, T; Amano, M; Sekine, A; Nakajima, H; Kinoshita, M
1996-07-01
Diadenosine tetraphosphate (Ap4A) is an adenine nucleotide with vasodilatory properties. We examined the effects of Ap4A on coronary circulation in comparison with those of adenosine, its metabolite, in anesthetized pigs. Left atrial (LA) infusion of Ap4A at increasing doses of 100, 200, and 300 micrograms/kg/min increased coronary blood flow (CBF) and decreased systemic blood pressure (BP) and coronary vascular resistance (CVR). Ap4A had no effect on large epicardial coronary artery diameter (CoD). Likewise, LA infusion of adenosine at doses of 150 and 300 micrograms/kg/min increased CBF and decreased BP and coronary vascular resistance (CVR) but did not affect CoD. Therefore, the vasodilatory effects of Ap4A and adenosine were predominant in small coronary resistance vessels and negligible in large coronary arteries. Pretreatment with glibenclamide (2 mg/kg, intravenously, i.v.), a specific blocker of ATP-sensitive potassium channels (KATP), attenuated alterations of CBF, BP, and CVR induced by Ap4A and by adenosine. In contrast, treatment with cromakalim (0.5 microgram/kg/min i.v.), an activator of KATP, enhanced the coronary effects of Ap4A and adenosine. Therefore, the opening of KATP in the pig coronary circulation is involved in the in vivo vasodilatory effects of Ap4A and adenosine. Treatment with 8-phenyltheophylline (8-PT, 4 mg/kg i.v.), an adenosine receptor antagonist, suppressed CBF increases induced by Ap4A (20 micrograms/kg/min, intracoronarily, i.c.) and adenosine (5 micrograms/kg/min i.c.) by 68 and 90%, respectively. These findings suggest that the in vivo coronary effects of Ap4A are largely caused by the opening of KATP through rapid degradation to adenosine to activate adenosine receptors.
Liu, Zhong-Wu; Gao, Xiao-Bing
2006-01-01
Neurons in the lateral hypothalamus (LH) that contain hypocretin/orexin have been established as important promoters of arousal. Deficiencies in the hypocretin/orexin system lead to narcolepsy. The inhibition of hypocretin/orexin neurons by sleep-promoting neurotransmitters has been suggested as one part of the sleep regulation machinery. Adenosine has been identified as a sleep promoter and its role in sleep regulation in the basal forebrain has been well documented. However, the effect of adenosine on arousal-promoting hypocretin/orexin neurons has not been addressed, despite recent evidence that immunocytochemical visualization of adenosine receptors was detected in these neurons. In this study, we examined the hypothesis that adenosine inhibits the activity of hypocretin/orexin neurons by using electrophysiological methods in brain slices from mice expressing green fluorescent protein in hypocretin/orexin neurons. We found that adenosine significantly attenuated the frequency of action potentials without a change in membrane potential in hypocretin/orexin neurons. The adenosine-mediated inhibition is due to depression of excitatory synaptic transmission to hypocretin/orexin neurons, since adenosine depresses the amplitude of evoked excitatory postsynaptic potential and the frequency of spontaneous and miniature excitatory postsynaptic currents in these neurons. At the cell body of the hypocretin/orexin neurons, adenosine inhibits voltage-dependent calcium currents without the induction of GIRK current. The inhibitory effect of adenosine is dose-dependent, pertussis toxin-sensitive and mediated via A1 receptors. In summary, our data suggest that in addition to its effect in the basal forebrain, adenosine exerts its sleep-promoting effect in the LH via inhibition of hypocretin/orexin neurons. PMID:17093123
Xu, Lei; Shen, Xin; Li, Bingzhi; Zhu, Chunhong; Zhou, Xuemin
2017-08-08
Adenosine is an endogenous nucleotide pivotally involved in nucleic acid and energy metabolism. Its excessive existence may indicate tumorigenesis, typically lung cancer. Encouraged by its significance as the clinical biomarker, sensitive assay methods towards adenosine have been popularized, with high cost and tedious procedures as the inevitable defects. Herein, we report a label-free aptamer-based exonuclease III (Exo III) amplification colorimetric aptasensor for the highly sensitive and cost-effective detection of adenosine. The strategy employed two unlabeled hairpin DNA oligonucleotides (HP1 and HP2), where HP1 contained the aptamer towards adenosine and HP2 embedded the guanine-rich sequence (GRS). In the presence of adenosine, hairpin HP1 could form specific binding with adenosine and trigger the unfolding of HP1's hairpin structure. The resulting adenosine-HP1 complex could hybridize with HP2, generating the Exo III recognition site. After Exo III-assisted degradation, the GRS was released from HP2, and the adenosine-HP1 was released back to the solution to combine another HP2, inducing the cycling amplification. After multiple circulations, the released ample GRSs were induced to form G-quadruplex, further catalyzing the oxidation of TMB, yielding a color change which was finally mirrored in the absorbance change. On the contrary, the absence of adenosine failed to unfold HP1, remaining color unchanged eventually. Thanks to the amplification strategy, the limit of detection was lowered to 17 nM with a broad linear range from 50 nM to 6 μM. The proposed method was successfully applied to the detection of adenosine in biological samples and satisfying recoveries were acquired. Copyright © 2017 Elsevier B.V. All rights reserved.
Adenosine signaling in normal and sickle erythrocytes and beyond.
Zhang, Yujin; Xia, Yang
2012-08-01
Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A(2B) receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O(2) release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A(2A) receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and progression of disease. Thus, adenosine signaling represents a potentially important therapeutic target for the treatment and prevention of disease. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Yıldırım Poyraz, Nilüfer; Özdemir, Elif; Poyraz, Barış Mustafa; Kandemir, Zuhal; Keskin, Mutlay; Türkölmez, Şeyda
2014-01-01
Objective: The aim of this study was to investigate the relationship between patient characteristics and adenosine-related side-effects during stress myocard perfusion imaging (MPI). The effect of presence of adenosine-related side-effects on the diagnostic value of MPI with integrated SPECT/CT system for coronary artery disease (CAD), was also assessed in this study. Methods: Total of 281 patients (109 M, 172 F; mean age:62.6±10) who underwent standard adenosine stress protocol for MPI, were included in this study. All symptoms during adenosine infusion were scored according to the severity and duration. For the estimation of diagnostic value of adenosine MPI with integrated SPECT/CT system, coronary angiography (CAG) or clinical follow-up were used as gold standard. Results: Total of 173 patients (61.6%) experienced adenosine-related side-effects (group 1); flushing, dyspnea, and chest pain were the most common. Other 108 patients completed pharmacologic stress (PS) test without any side-effects (group 2). Test tolerability were similar in the patients with cardiovascular or airway disease to others, however dyspnea were observed significantly more common in patients with mild airway disease. Body mass index (BMI) ≥30 kg/m2 and age ≤45 years were independent predictors of side-effects. The diagnostic value of MPI was similar in both groups. Sensitivity of adenosine MPI SPECT/CT was calculated to be 86%, specificity was 94% and diagnostic accuracy was 92% for diagnosis of CAD. Conclusion: Adenosine MPI is a feasible and well tolerated method in patients who are not suitable for exercise stress test as well as patients with cardiopulmonary disease. However age ≤45 years and BMI ≥30 kg/m2 are the positive predictors of adenosine-related side-effects, the diagnostic value of adenosine MPI SPECT/CT is not affected by the presence of adenosine related side-effects. PMID:25541932
Sperlágh, B; Zsilla, G; Baranyi, M; Kékes-Szabó, A; Vizi, E S
1997-10-01
The presynaptic neuromodulation of stimulation-evoked release of [3H]-acetylcholine by endogenous adenosine, via A1-adenosine receptors, was studied in superfused hippocampal slices taken from 4-, 12- and 24-month-old rats. 8-Cyclopentyl-1,3-dimethylxanthine (0.25 microM), a selective A1-receptor antagonist, increased significantly the electrical field stimulation-induced release of [3H]-acetylcholine in slices prepared from 4- and 12-month-old rats, showing a tonic inhibitory action of endogenous adenosine via stimulation of presynaptic A1-adenosine receptors. In contrast, 8-cyclopentyl-1,3-dimethylxanthine had no effect in 24-month-old rats. 2-Chloroadenosine (10 microM), an adenosine receptor agonist decreased the release of [3H]-acetylcholine in slices taken from 4- and 12-month-old rats, and no significant change was observed in slices taken from 24-month-old rats. In order to show whether the number/or affinity of the A1-receptors was affected in aged rats, [3H]-8-cyclopentyl-1,3-dimethylxanthine binding was studied in hippocampal membranes prepared from rats of different ages. Whereas the Bmax value was significantly lower in 2-year-old rats than in younger counterparts, the dissociation constant (Kd) was not affected by aging, indicating that the density rather than the affinity of adenosine receptors was altered. Endogenous adenosine levels present in the extracellular space were also measured in the superfusate by high performance liquid chromatography (HPLC) coupled with ultraviolet detection, and an age-related increase in the adenosine level was found. In summary, our results indicate that during aging the level of adenosine in the extracellular fluid is increased in the hippocampus. There is a downregulation and reduced responsiveness of presynaptic adenosine A1-receptors, and it seems likely that these changes are due to the enhanced adenosine level in the extracellular space.
Chimote, Ameet A; Hajdu, Peter; Kucher, Vladimir; Boiko, Nina; Kuras, Zerrin; Szilagyi, Orsolya; Yun, Yeo-Heung; Conforti, Laura
2013-12-15
Adenosine, a purine nucleoside, is present at high concentrations in tumors, where it contributes to the failure of immune cells to eliminate cancer cells. The mechanisms responsible for the immunosuppressive properties of adenosine are not fully understood. We tested the hypothesis that adenosine's immunosuppressive functions in human T lymphocytes are in part mediated via modulation of ion channels. The activity of T lymphocytes relies on ion channels. KCa3.1 and Kv1.3 channels control cytokine release and, together with TRPM7, regulate T cell motility. Adenosine selectively inhibited KCa3.1, but not Kv1.3 and TRPM7, in activated human T cells. This effect of adenosine was mainly mediated by A2A receptors, as KCa3.1 inhibition was reversed by SCH58261 (selective A2A receptor antagonist), but not by MRS1754 (A2B receptor antagonist), and it was mimicked by the A2A receptor agonist CGS21680. Furthermore, it was mediated by the cAMP/protein kinase A isoform (PKAI) signaling pathway, as adenylyl-cyclase and PKAI inhibition prevented adenosine effect on KCa3.1. The functional implication of the effect of adenosine on KCa3.1 was determined by measuring T cell motility on ICAM-1 surfaces. Adenosine and CGS21680 inhibited T cell migration. Comparable effects were obtained by KCa3.1 blockade with TRAM-34. Furthermore, the effect of adenosine on cell migration was abolished by pre-exposure to TRAM-34. Additionally, adenosine suppresses IL-2 secretion via KCa3.1 inhibition. Our data indicate that adenosine inhibits KCa3.1 in human T cells via A2A receptor and PKAI, thereby resulting in decreased T cell motility and cytokine release. This mechanism is likely to contribute to decreased immune surveillance in solid tumors.
An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.
Bjorness, Theresa E; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A; Yanagisawa, Masashi; Bibb, James A; Greene, Robert W
2016-03-30
Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to sleep function. Copyright © 2016 the authors 0270-6474/16/363709-13$15.00/0.
Newell, Elizabeth A; Exo, Jennifer L; Verrier, Jonathan D; Jackson, Travis C; Gillespie, Delbert G; Janesko-Feldman, Keri; Kochanek, Patrick M; Jackson, Edwin K
2015-01-12
Some cells, tissues and organs release 2',3'-cAMP (a positional isomer of 3',5'-cAMP) and convert extracellular 2',3'-cAMP to 2'-AMP plus 3'-AMP and convert these AMPs to adenosine (called the extracellular 2',3'-cAMP-adenosine pathway). Recent studies show that microglia have an extracellular 2',3'-cAMP-adenosine pathway. The goal of the present study was to investigate whether the extracellular 2',3'-cAMP-adenosine pathway could have functional consequences on the production of cytokines/chemokines by activated microglia. Experiments were conducted in cultures of primary murine microglia. In the first experiment, the effect of 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine on LPS-induced TNF-α and CXCL10 production was determined. In the next experiment, the first protocol was replicated but with the addition of 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX) (0.1 μM; antagonist of adenosine receptors). The last experiment compared the ability of 2-chloro-N(6)-cyclopentyladenosine (CCPA) (10 μM; selective A1 agonist), 5'-N-ethylcarboxamide adenosine (NECA) (10 μM; agonist for all adenosine receptor subtypes) and CGS21680 (10 μM; selective A2A agonist) to inhibit LPS-induced TNF-α and CXCL10 production. (1) 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine similarly inhibited LPS-induced TNF-α and CXCL10 production; (2) DPSPX nearly eliminated the inhibitory effects of 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine on LPS-induced TNF-α and CXCL10 production; (3) CCPA did not affect LPS-induced TNF-α and CXCL10; (4) NECA and CGS21680 similarly inhibited LPS-induced TNF-α and CXCL10 production. 2',3'-cAMP and its metabolites (3'-AMP, 2'-AMP and adenosine) inhibit LPS-induced TNF-α and CXCL10 production via A2A-receptor activation. Adenosine and its precursors, via A2A receptors, likely suppress TNF-α and CXCL10 production by activated microglia in brain diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
Adenosine regulation of microtubule dynamics in cardiac hypertrophy.
Fassett, John T; Xu, Xin; Hu, Xinli; Zhu, Guangshuo; French, Joel; Chen, Yingjie; Bache, Robert J
2009-08-01
There is evidence that endogenous extracellular adenosine reduces cardiac hypertrophy and heart failure in mice subjected to chronic pressure overload, but the mechanism by which adenosine exerts these protective effects is unknown. Here, we identified a novel role for adenosine in regulation of the cardiac microtubule cytoskeleton that may contribute to its beneficial effects in the overloaded heart. In neonatal cardiomyocytes, phenylephrine promoted hypertrophy and reorganization of the cytoskeleton, which included accumulation of sarcomeric proteins, microtubules, and desmin. Treatment with adenosine or the stable adenosine analog 2-chloroadenosine, which decreased hypertrophy, specifically reduced accumulation of microtubules. In hypertrophied cardiomyocytes, 2-chloroadenosine or adenosine treatment preferentially targeted stabilized microtubules (containing detyrosinated alpha-tubulin). Consistent with a role for endogenous adenosine in reducing microtubule stability, levels of detyrosinated microtubules were elevated in hearts of CD73 knockout mice (deficient in extracellular adenosine production) compared with wild-type mice (195%, P < 0.05). In response to aortic banding, microtubules increased in hearts of wild-type mice; this increase was exaggerated in CD73 knockout mice, with significantly greater amounts of tubulin partitioning into the cold-stable Triton-insoluble fractions. The levels of this stable cytoskeletal fraction of tubulin correlated strongly with the degree of heart failure. In agreement with a role for microtubule stabilization in promoting cardiac dysfunction, colchicine treatment of aortic-banded mice reduced hypertrophy and improved cardiac function compared with saline-treated controls. These results indicate that microtubules contribute to cardiac dysfunction and identify, for the first time, a role for adenosine in regulating cardiomyocyte microtubule dynamics.
Adenosinergic signaling in epilepsy.
Boison, Detlev
2016-05-01
Despite the introduction of at least 20 new antiepileptic drugs (AEDs) into clinical practice over the past decades, about one third of all epilepsies remain refractory to conventional forms of treatment. In addition, currently used AEDs have been developed to suppress neuronal hyperexcitability, but not necessarily to address pathogenic mechanisms involved in epilepsy development or progression (epileptogenesis). For those reasons endogenous seizure control mechanisms of the brain may provide alternative therapeutic opportunities. Adenosine is a well characterized endogenous anticonvulsant and seizure terminator of the brain. Several lines of evidence suggest that endogenous adenosine-mediated seizure control mechanisms fail in chronic epilepsy, whereas therapeutic adenosine augmentation effectively prevents epileptic seizures, even those that are refractory to conventional AEDs. New findings demonstrate that dysregulation of adenosinergic mechanisms are intricately involved in the development of epilepsy and its comorbidities, whereas adenosine-associated epigenetic mechanisms may play a role in epileptogenesis. The first goal of this review is to discuss how maladaptive changes of adenosinergic mechanisms contribute to the expression of seizures (ictogenesis) and the development of epilepsy (epileptogenesis) by focusing on pharmacological (adenosine receptor dependent) and biochemical (adenosine receptor independent) mechanisms as well as on enzymatic and transport based mechanisms that control the availability (homeostasis) of adenosine. The second goal of this review is to highlight innovative adenosine-based opportunities for therapeutic intervention aimed at reconstructing normal adenosine function and signaling for improved seizure control in chronic epilepsy. New findings suggest that transient adenosine augmentation can have lasting epigenetic effects with disease modifying and antiepileptogenic outcome. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adenosine Kinase: Exploitation for Therapeutic Gain
2013-01-01
Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612
Mechanism-specific effects of adenosine on ventricular tachycardia.
Lerman, Bruce B; Ip, James E; Shah, Bindi K; Thomas, George; Liu, Christopher F; Ciaccio, Edward J; Wit, Andrew L; Cheung, Jim W; Markowitz, Steven M
2014-12-01
There is no universally accepted method by which to diagnose clinical ventricular tachycardia (VT) due to cAMP-mediated triggered activity. Based on cellular and clinical data, adenosine termination of VT is thought to be consistent with a diagnosis of triggered activity. However, a major gap in evidence mitigates the validity of this proposal, namely, defining the specificity of adenosine response in well-delineated reentrant VT circuits. To this end, we systematically studied the effects of adenosine in a model of canine reentrant VT and in human reentrant VT, confirmed by 3-dimensional, pace- and substrate mapping. Adenosine (12 mg [IQR 12-24]) failed to terminate VT in 31 of 31 patients with reentrant VT due to structural heart disease, and had no effect on VT cycle length (age, 67 years [IQR 53-74]); ejection fraction, 35% [IQR 20-55]). In contrast, adenosine terminated VT in 45 of 50 (90%) patients with sustained focal right or left outflow tract tachycardia. The sensitivity of adenosine for identifying VT due to triggered activity was 90% (95% CI, 0.78-0.97) and its specificity was 100% (95% CI, 0.89-1.0). Additionally, reentrant circuits were mapped in the epicardial border zone of 4-day-old infarcts in mongrel dogs. Adenosine (300-400 μg/kg) did not terminate sustained VT or have any effect on VT cycle length. These data support the concept that adenosine's effects on ventricular myocardium are mechanism specific, such that termination of VT in response to adenosine is diagnostic of cAMP-mediated triggered activity. © 2014 Wiley Periodicals, Inc.
Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang
2008-01-01
Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377
AMP and adenosine are both ligands for adenosine 2B receptor signaling.
Holien, Jessica K; Seibt, Benjamin; Roberts, Veena; Salvaris, Evelyn; Parker, Michael W; Cowan, Peter J; Dwyer, Karen M
2018-01-15
Adenosine is considered the canonical ligand for the adenosine 2B receptor (A 2B R). A 2B R is upregulated following kidney ischemia augmenting post ischemic blood flow and limiting tubular injury. In this context the beneficial effect of A 2B R signaling has been attributed to an increase in the pericellular concentration of adenosine. However, following renal ischemia both kidney adenosine monophosphate (AMP) and adenosine levels are substantially increased. Using computational modeling and calcium mobilization assays, we investigated whether AMP could also be a ligand for A 2B R. The computational modeling suggested that AMP interacts with more favorable energy to A 2B R compared with adenosine. Furthermore, AMPαS, a non-hydrolyzable form of AMP, increased calcium uptake by Chinese hamster ovary (CHO) cells expressing the human A 2B R, indicating preferential signaling via the G q pathway. Therefore, a putative AMP-A 2B R interaction is supported by the computational modeling data and the biological results suggest this interaction involves preferential G q activation. These data provide further insights into the role of purinergic signaling in the pathophysiology of renal IRI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Implication of the Purinergic System in Alcohol Use Disorders
Asatryan, Liana; Nam, Hyung Wook; Lee, Moonnoh R.; Thakkar, Mahesh M.; Dar, M. Saeed; Davies, Daryl L.; Choi, Doo-Sup
2010-01-01
In the central nervous system, adenosine and ATP play an important role in regulating neuronal activity as well as controlling other neurotransmitter systems such as GABA, glutamate, and dopamine. Ethanol increases extracellular adenosine levels that regulate the ataxic and hypnotic/sedative effects of ethanol. Interestingly, ethanol is known to increase adenosine levels by inhibiting an ethanol-sensitive adenosine transporter, ENT1 (equilibrative nucleoside transporter type 1). Ethanol is also known to inhibit ATP-specific P2X receptors, which might result in such similar effects as those caused by an increase in adenosine. Adenosine and ATP exert their functions through P1 (metabotropic) and P2 (P2X-ionotropic and P2Y-metabotropic) receptors, respectively. Purinergic signaling in cortex-striatum-VTA has been implicated in regulating cortical glutamate signaling as well as VTA dopaminergic signaling, which regulates the motivational effect of ethanol. Moreover, several nucleoside transporters and receptors have been identified in astrocytes, which regulate not only adenosine-ATP neurotransmission, but also homeostasis of major inhibitory-excitatory neurotransmission (i.e. GABA or glutamate) through neuron-glial interactions. This review will present novel findings on the implications of adenosine and ATP neurotransmission in alcohol use disorders. PMID:21223299
Ahn, Jun Ki; Kim, Hyo Yong; Baek, Songyi; Park, Hyun Gyu
2017-07-15
We herein describe a novel fluorescent method for the rapid and selective detection of adenosine by utilizing DNA-templated Cu/Ag nanoclusters (NCs) and employing s-adenosylhomocysteine hydrolase (SAHH). SAHH is allowed to promote hydrolysis reaction of s-adenosylhomocysteine (SAH) and consequently produces homocysteine, which would quench the fluorescence signal from DNA-templated Cu/Ag nanoclusters employed as a signaling probe in this study. On the other hand, adenosine significantly inhibits the hydrolysis reaction and prevent the formation of homocysteine. Consequently, highly enhanced fluorescence signal from DNA-Cu/Ag NCs is retained, which could be used to identify the presence of adenosine. By employing this design principle, adenosine was sensitively detected down to 19nM with high specificity over other adenosine analogs such as AMP, ADP, ATP, cAMP, guanosine, cytidine, and urine. Finally, the diagnostic capability of this method was successfully verified by reliably detecting adenosine present in a real human serum sample. Copyright © 2016 Elsevier B.V. All rights reserved.
Adenosine signaling promotes regeneration of pancreatic β-cells in vivo
Andersson, Olov; Adams, Bruce A.; Yoo, Daniel; Ellis, Gregory C.; Gut, Philipp; Anderson, Ryan M.; German, Michael S.; Stainier, Didier Y. R.
2012-01-01
Diabetes can be controlled with insulin injections, but a curative approach that restores the number of insulin-producing β-cells is still needed. Using a zebrafish model of diabetes, we screened ~7000 small molecules to identify enhancers of β-cell regeneration. The compounds we identified converge on the adenosine signaling pathway and include exogenous agonists and compounds that inhibit degradation of endogenously produced adenosine. The most potent enhancer of β-cell regeneration was the adenosine agonist 5′-N-Ethylcarboxamidoadenosine (NECA), which acting through the adenosine receptor A2aa increased β-cell proliferation and accelerated restoration of normoglycemia in zebrafish. Despite markedly stimulating β-cell proliferation during regeneration, NECA had only a modest effect during development. The proliferative and glucose-lowering effect of NECA was confirmed in diabetic mice, suggesting an evolutionarily conserved role for adenosine in β-cell regeneration. With this whole-organism screen, we identified components of the adenosine pathway that could be therapeutically targeted for the treatment of diabetes. PMID:22608007
NASA Astrophysics Data System (ADS)
Williams, Holly L.; Erickson, Blake A.; Neumark, Daniel M.
2018-05-01
The excited state relaxation dynamics of adenosine and adenosine monophosphate were studied at multiple excitation energies using femtosecond time-resolved photoelectron spectroscopy in a liquid water microjet. At pump energies of 4.69-4.97 eV, the lowest ππ* excited state, S1, was accessed and its decay dynamics were probed via ionization at 6.20 eV. By reversing the role of the pump and probe lasers, a higher-lying ππ* state was excited at 6.20 eV and its time-evolving photoelectron spectrum was monitored at probe energies of 4.69-4.97 eV. The S1 ππ* excited state was found to decay with a lifetime ranging from ˜210 to 250 fs in adenosine and ˜220 to 250 fs in adenosine monophosphate. This lifetime drops with increasing pump photon energy. Signal from the higher-lying ππ* excited state decayed on a time scale of ˜320 fs and was measureable only in adenosine monophosphate.
Newell, Elizabeth A.; Exo, Jennifer L.; Verrier, Jonathan D.; Jackson, Travis C.; Gillespie, Delbert G.; Janesko-Feldman, Keri; Kochanek, Patrick M.
2014-01-01
Background Some cells, tissues and organs release 2’,3’-cAMP (a positional isomer of 3’,5’-cAMP) and convert extracellular 2’,3’-cAMP to 2’-AMP plus 3’-AMP and convert these AMPs to adenosine (called the extracellular 2’,3’-cAMP-adenosine pathway). Recent studies show that microglia have an extracellular 2’,3’-cAMP-adenosine pathway. The goal of the present study was to investigate whether the extracellular 2’,3’-cAMP-adenosine pathway could have functional consequences on the production of cytokines/chemokines by activated microglia. Methods Experiments were conducted in cultures of primary murine microglia. In the first experiment, the effect of 2’,3’-cAMP, 3’-AMP, 2’-AMP and adenosine on LPS-induced TNF-α and CXCL10 production was determined. In the next experiment, the first protocol was replicated but with the addition of 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX) (0.1 µM; antagonist of adenosine receptors). The last experiment compared the ability of 2-chloro-N6-cyclopentyladenosine (CCPA) (10 µM; selective A1 agonist), 5’-N-ethylcarboxamide adenosine (NECA) (10 µM; agonist for all adenosine receptor subtypes) and CGS21680 (10 µM; selective A2A agonist) to inhibit LPS-induced TNF-α and CXCL10 production. Results 1) 2’,3’-cAMP, 3’-AMP, 2’-AMP and adenosine similarly inhibited LPS-induced TNF-α and CXCL10 production; 2) DPSPX nearly eliminated the inhibitory effects of 2’,3’-cAMP, 3’-AMP, 2’-AMP and adenosine on LPS-induced TNF-α and CXCL10 production; 3) CCPA did not affect LPS-induced TNF-α and CXCL10; 4) NECA and CGS21680 similarly inhibited LPS-induced TNF-α and CXCL10 production. Conclusions 2’,3’-cAMP and its metabolites (3’-AMP, 2’-AMP and adenosine) inhibit LPS-induced TNF-α and CXCL10 production via A2A-receptor activation. Adenosine and its precursors, via A2A receptors, likely suppress TNF-α and CXCL10 production by activated microglia in brain diseases. PMID:25451117
Lou, Qing; Hansen, Brian J; Fedorenko, Olga; Csepe, Thomas A; Kalyanasundaram, Anuradha; Li, Ning; Hage, Lori T; Glukhov, Alexey V; Billman, George E; Weiss, Raul; Mohler, Peter J; Györke, Sándor; Biesiadecki, Brandon J; Carnes, Cynthia A; Fedorov, Vadim V
2014-07-22
Although sinoatrial node (SAN) dysfunction is a hallmark of human heart failure (HF), the underlying mechanisms remain poorly understood. We aimed to examine the role of adenosine in SAN dysfunction and tachy-brady arrhythmias in chronic HF. We applied multiple approaches to characterize SAN structure, SAN function, and adenosine A1 receptor expression in control (n=17) and 4-month tachypacing-induced chronic HF (n=18) dogs. Novel intramural optical mapping of coronary-perfused right atrial preparations revealed that adenosine (10 μmol/L) markedly prolonged postpacing SAN conduction time in HF by 206 ± 99 milliseconds (versus 66 ± 21 milliseconds in controls; P=0.02). Adenosine induced SAN intranodal conduction block or microreentry in 6 of 8 dogs with HF versus 0 of 7 controls (P=0.007). Adenosine-induced SAN conduction abnormalities and automaticity depression caused postpacing atrial pauses in HF versus control dogs (17.1 ± 28.9 versus 1.5 ± 1.3 seconds; P<0.001). Furthermore, 10 μmol/L adenosine shortened atrial repolarization and led to pacing-induced atrial fibrillation in 6 of 7 HF versus 0 of 7 control dogs (P=0.002). Adenosine-induced SAN dysfunction and atrial fibrillation were abolished or prevented by adenosine A1 receptor antagonists (50 μmol/L theophylline/1 μmol/L 8-cyclopentyl-1,3-dipropylxanthine). Adenosine A1 receptor protein expression was significantly upregulated during HF in the SAN (by 47 ± 19%) and surrounding atrial myocardium (by 90 ± 40%). Interstitial fibrosis was significantly increased within the SAN in HF versus control dogs (38 ± 4% versus 23 ± 4%; P<0.001). In chronic HF, adenosine A1 receptor upregulation in SAN pacemaker and atrial cardiomyocytes may increase cardiac sensitivity to adenosine. This effect may exacerbate conduction abnormalities in the structurally impaired SAN, leading to SAN dysfunction, and potentiate atrial repolarization shortening, thereby facilitating atrial fibrillation. Atrial fibrillation may further depress SAN function and lead to tachy-brady arrhythmias in HF. © 2014 American Heart Association, Inc.
Adenosine for postoperative analgesia: A systematic review and meta-analysis
2017-01-01
Purpose Perioperative infusion of adenosine has been suggested to reduce the requirement for inhalation anesthetics, without causing serious adverse effects in humans. We conducted a meta-analysis of randomized controlled trials evaluating the effect of adenosine on postoperative analgesia. Methods We retrieved articles in computerized searches of Scopus, Web of Science, PubMed, EMBASE, and Cochrane Library databases, up to July 2016. We used adenosine, postoperative analgesia, and postoperative pain(s) as key words, with humans, RCT, and CCT as filters. Data of eligible studies were extracted, which included pain scores, cumulative opioid consumption, adverse reactions, and vital signs. Overall incidence rates, relative risk (RR), and 95% confidence intervals (CI) were calculated employing fixed-effects or random-effects models, depending on the heterogeneity of the included trials. Results In total, 757 patients from 9 studies were included. The overall effect of adenosine on postoperative VAS/VRS scores and postoperative opioid consumption was not significantly different from that of controls (P >0.1). The occurrence of PONV and pruritus was not statistically significantly different between an adenosine and nonremifentanil subgroup (P >0.1), but the rate of PONV occurrence was greater in the remifentanil subgroup (P <0.01). Time to first postoperative analgesic requirement in the adenosine group was not significantly difference from that of the saline group (SMD = 0.07, 95%CI: −0.28 to 0.41, P = 0.71); but this occurred significantly later than with remifentanil (SMD = 1.10, 95%CI: 2.48 to 4.06, P < 0.01). Time to hospital discharge was not significantly different between the control and adenosine groups (P = 0.78). The perioperative systolic blood pressure was significantly lower in the adenosine than in the control group in the mannitol subgroup (P < 0.01). The incidence of bradycardia, transient first- degree atrioventricular block, and tachycardia was not significantly different between the adenosine and control groups (P > 0.1). Conclusion Adenosine has no analgesic effect or prophylactic effect against PONV, but reduce systolic blood pressure and heart rates. Adenosine may benefit patients with hypertension, ischemic heart disease, and tachyarrhythmia, thereby improving cardiac function. PMID:28333936
Li, Ning; Csepe, Thomas A.; Hansen, Brian J.; Sul, Lidiya V.; Kalyanasundaram, Anuradha; Zakharkin, Stanislav O.; Zhao, Jichao; Guha, Avirup; Van Wagoner, David R.; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul ML; Biesiadecki, Brandon; Hummel, John D; Weiss, Raul; Fedorov, Vadim V.
2016-01-01
Background Adenosine provokes atrial fibrillation (AF) with a higher activation frequency in right atria (RA) versus left atria (LA) in patients, but the underlying molecular and functional substrates are unclear. We tested the hypothesis that adenosine-induced AF is driven by localized reentry in RA areas with highest expression of adenosine A1 receptor (A1R) and its downstream GIRK channels (IK,Ado). Methods We applied bi-atrial optical mapping and immunoblot mapping of various atrial regions to reveal the mechanism of adenosine-induced AF in explanted failing and non-failing human hearts (n=37). Results Optical mapping of coronary-perfused atria (n=24) revealed that adenosine perfusion (10–100μM) produced more significant shortening of action potential durations (APD80) in RA (from 290±45ms to 239±41ms, 17.3±10.4%; p<0.01) than LA (from 307±24ms to 286±23ms, 6.7±6.6%; p<0.01). In ten hearts, adenosine induced AF (317±116 sec) that, when sustained (≥2 min), was primarily maintained by one/two localized reentrant drivers in lateral RA. Tertiapin (10–100nM), a selective GIRK channel blocker, counteracted adenosine-induced APD shortening and prevented AF induction. Immunoblotting showed that the superior/middle lateral RA had significantly higher A1R (2.7±1.7 fold; p<0.01) and GIRK4 (1.7±0.8 fold; p<0.05) protein expression than lateral/posterior LA. Conclusions This study revealed a three-fold RA-to-LA A1R protein expression gradient in the human heart, leading to significantly greater RA vs. LA repolarization sensitivity in response to adenosine. Sustained adenosine-induced AF is maintained by reentrant drivers localized in lateral RA regions with the highest A1R/GIRK4 expression. Selective atrial GIRK channel blockade may effectively treat AF during conditions with increased endogenous adenosine. PMID:27462069
Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis
2011-01-01
OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM. PMID:21515851
The Adenosinergic System as a Therapeutic Target in the Vasculature: New Ligands and Challenges.
Sousa, Joana Beatriz; Diniz, Carmen
2017-05-06
Adenosine is an adenine base purine with actions as a modulator of neurotransmission, smooth muscle contraction, and immune response in several systems of the human body, including the cardiovascular system. In the vasculature, four P1-receptors or adenosine receptors-A₁, A 2A , A 2B and A₃-have been identified. Adenosine receptors are membrane G-protein receptors that trigger their actions through several signaling pathways and present differential affinity requirements. Adenosine is an endogenous ligand whose extracellular levels can reach concentrations high enough to activate the adenosine receptors. This nucleoside is a product of enzymatic breakdown of extra and intracellular adenine nucleotides and also of S-adenosylhomocysteine. Adenosine availability is also dependent on the activity of nucleoside transporters (NTs). The interplay between NTs and adenosine receptors' activities are debated and a particular attention is given to the paramount importance of the disruption of this interplay in vascular pathophysiology, namely in hypertension., The integration of important functional aspects of individual adenosine receptor pharmacology (such as in vasoconstriction/vasodilation) and morphological features (within the three vascular layers) in vessels will be discussed, hopefully clarifying the importance of adenosine receptors/NTs for modulating peripheral mesenteric vascular resistance. In recent years, an increase interest in purine physiology/pharmacology has led to the development of new ligands for adenosine receptors. Some of them have been patented as having promising therapeutic activities and some have been chosen to undergo on clinical trials. Increased levels of endogenous adenosine near a specific subtype can lead to its activation, constituting an indirect receptor targeting approach either by inhibition of NT or, alternatively, by increasing the activity of enzymes responsible for ATP breakdown. These findings highlight the putative role of adenosinergic players as attractive therapeutic targets for cardiovascular pathologies, namely hypertension, heart failure or stroke. Nevertheless, several aspects are still to be explored, creating new challenges to be addressed in future studies, particularly the development of strategies able to circumvent the predicted side effects of these therapies.
Adenosine kinase regulation of cardiomyocyte hypertrophy
Fassett, John T.; Hu, Xinli; Xu, Xin; Lu, Zhongbing; Zhang, Ping; Chen, Yingjie
2011-01-01
There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKTSer473 phosphorylation but did attenuate sustained phosphorylation of RafSer338 (24–48 h), mTORSer2448 (24–48 h), p70S6kThr389 (2.5–48 h), and ERKThr202/Tyr204 (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6kThr389 phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERKThr202/Tyr204 and AKTSer473. Reduction of Raf-induced p70S6kThr389 phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte hypertrophy, which acts, at least in part, through inhibition of Raf signaling to mTOR/p70S6k. PMID:21335462
A High-Affinity Adenosine Kinase from Anopheles Gambiae
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Cassera; M Ho; E Merino
2011-12-31
Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactionsmore » for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.« less
Liu, G S; Richards, S C; Olsson, R A; Mullane, K; Walsh, R S; Downey, J M
1994-07-01
Agonists selective for the A1 adenosine receptor mimic the protective effect of ischaemic preconditioning against infarction in the rabbit heart. Unselective adenosine antagonists block this protection but, paradoxically, the A1 adenosine receptor selective antagonist 8-cyclopentyl- 1,3-dipropylxanthine (DPCPX) does not. The aim of this study was to test the hypothesis that the newly described A3 adenosine receptor, which has an agonist profile similar to the A1 receptor but is insensitive to DPCPX, might mediate preconditioning. Isolated rabbit hearts perfused with Krebs buffer experienced 30 min of regional ischaemia followed by 120 min of reperfusion. Infarct size was measured by tetrazolium staining. In control hearts infarction was 32.2(SEM 1.5)% of the risk zone. Preconditioning by 5 min ischaemia and 10 min reperfusion reduced infarct size to 8.8(2.3)%. Replacing the regional ischaemia with 5 min perfusion with 10 microM adenosine or 65 nM N6-[2-(4-aminophenyl)ethyl]adenosine (APNEA), an adenosine A3 receptor agonist, was equally protective. The unselective antagonist 8-p-sulphophenyl theophylline at 100 microM abolished protection by preconditioning, adenosine, and APNEA, but 200 nM DPCPX did not block protection by any of the interventions. Likewise the potent but unselective A3 receptor antagonist 8-(4-carboxyethenylphenyl)-1,3-dipropylxanthine (BW A1433) completely blocked protection from ischaemic preconditioning. Because protection against infarction afforded by ischaemic preconditioning, adenosine, or the A3 receptor agonist APNEA could not be blocked by DPCPX and because the potent A3 receptor antagonist BW A1433 blocked protection from ischaemic preconditioning, these data indicate that the protection of preconditioning is not exclusively mediated by the adenosine A1 receptor in rabbit heart and could involve the A3 receptor.
Zhang, Can; Liu, Wen-jun; Shi, Yun; An, Dai-zhi; Bai, Miao; Xu, Wen
2015-05-01
The quenching agents such as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite and sodium hyposulfite are commonly used for quenching the residual disinfectant in water. In this paper, in order to select the optimal type and concentration range of quenching agents prior to the Limulus assays, the interference effects of each quenching agent at different concentrations on endotoxin detection were investigated by the Limulus assays of kinetic-turbidity. Our results identified that, as for 0-1.0% concentration of histidine, ascorbic acid, Tween-80, sodium sulfite (pH unadjusted and pH neutral), interference on the Limulus assays was existed. Hence, these quenching agents could not be applied as neutralizers prior to Limulus assays. Although, there was no interference on endotoxin detection for the glycine, a yellow color, developed by the quenching products of glycine and glutaric dialdehyde, contributed to false positive results. Hence, glycine should not be used as quenching agents in Limulus assays for samples containing glutaric dialdehyde. Compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite, 0-1.0% concentration of sodium hyposulfite elicited no obvious interference, while 1.0%-5.0% concentration of sodium hyposulfite illustrated exhibition effect for endotoxin detection. All in all, compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80 and sodium sulfite, sodium hyposulfite is suitable for quenching chemicals prior to endotoxin detection and less than 0.5% of concentration is allowable.
Sacchi, Raffaele; Paduano, Antonello; Fiore, Francesca; Della Medaglia, Dorotea; Ambrosino, Maria Luisa; Medina, Isabel
2002-05-08
The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.
Development of a Fluorescence-Based Sensor for Rapid Diagnosis of Cyanide Exposure
2015-01-01
Although commonly known as a highly toxic chemical, cyanide is also an essential reagent for many industrial processes in areas such as mining, electroplating, and synthetic fiber production. The “heavy” use of cyanide in these industries, along with its necessary transportation, increases the possibility of human exposure. Because the onset of cyanide toxicity is fast, a rapid, sensitive, and accurate method for the diagnosis of cyanide exposure is necessary. Therefore, a field sensor for the diagnosis of cyanide exposure was developed based on the reaction of naphthalene dialdehyde, taurine, and cyanide, yielding a fluorescent β-isoindole. An integrated cyanide capture “apparatus”, consisting of sample and cyanide capture chambers, allowed rapid separation of cyanide from blood samples. Rabbit whole blood was added to the sample chamber, acidified, and the HCN gas evolved was actively transferred through a stainless steel channel to the capture chamber containing a basic solution of naphthalene dialdehyde (NDA) and taurine. The overall analysis time (including the addition of the sample) was <3 min, the linear range was 3.13–200 μM, and the limit of detection was 0.78 μM. None of the potential interferents investigated (NaHS, NH4OH, NaSCN, and human serum albumin) produced a signal that could be interpreted as a false positive or a false negative for cyanide exposure. Most importantly, the sensor was 100% accurate in diagnosing cyanide poisoning for acutely exposed rabbits. PMID:24383576
V Thomas, Lynda; Vg, Rahul; D Nair, Prabha
2017-11-01
Substrate elasticity or stiffness can influence the phenotypic and functional characteristics of chondrocytes. This work aimed to study the effect of varying stiffness compositions of a two-component injectable hydrogel based on chitosan (CH) and oxidized hyaluronic acid (HDA) on the growth and functionality of encapsulated chondrocytes. Three different ratios of the gel were prepared (10:1,10:3 and 10:5 CH-HDA) and characterized. The stiffness of the gels was evaluated from the force displacement curves using force spectroscopy AFM analysis. Rabbit articular chondrocytes were harvested and the cells from Passage 2 to 4 were used for the encapsulation study. The viability and ECM production of encapsulated chondrocytes were assessed at 7day, 14day and 28day post culture. The results of the study show that as the ratio of hyaluronic acid dialdehyde component was increased, the stiffness of the gels increased from 130.78±19.83kPa to 181.47±19.77kPa which was also evidenced from the decrease in gelling time. Although there was an increase in the percentage of viable encapsulated cells which also maintained the spherical phenotype in the less stiff gels, decreased expression of ECM markers- Collagen type II and Glycosaminoglycans was observed compared to the stiffer gels. These findings indicate that gel stiffness strongly impacts the chondrocyte microenvironment both in maintenance of phenotypic integrity and ECM production. Copyright © 2017. Published by Elsevier B.V.
Fedan, J. S.
1987-01-01
The effects of incubating the guinea-pig isolated vas deferens in the presence of adenine nucleotides (adenosine triphosphate, ATP; adenosine diphosphate, ADP; and adenosine monophosphate, AMP), or in the presence of their phosphorothioate analogues (adenosine 5'-O-(3-thiotriphosphate), ATP gamma S; adenosine 5'-O-(2-thiodiphosphate), ADP beta S; and adenosine 5'-monophosphorothioate, AMP alpha S), on contractile responses to ATP were compared. After challenge with a low (1 microM) or high (300 microM) concentration of ATP to obtain control responses, one vas deferens of a pair was incubated for 5 min with one of the adenine nucleotides, while the contralateral preparation was incubated with the corresponding phosphorothioate analogue. At the conclusion of the incubation the preparations were challenged again with ATP. Incubation with AMP or AMP alpha S resulted in a transient potentiation of responses to 1 microM and 300 microM ATP. The potentiation following incubation with AMP alpha S was larger than that produced by AMP. After incubation with ADP, ADP beta S, ATP and ATP gamma S, responses to 1 microM ATP were decreased, while those to 300 microM ATP were unaffected. Thus, incubation with AMP and AMP alpha S results in potentiation, rather than inhibition, of ATP-induced responses. On the other hand, 5'-diphosphate, 5'-triphosphate, 5'-O-(2-thiodiphosphate) and 5'-O-(3-thiotriphosphate) moieties on adenosine have no effect or cause autoinhibition. These results indicate that AMP exerts a potentiating effect on reactivity to exogenous ATP. AMP arising from the enzymatic degradation of ATP might modulate the level of response to ATP released endogenously as a cotransmitter. PMID:3038248
Flyer, Jonathan N; Zuckerman, Warren A; Richmond, Marc E; Anderson, Brett R; Mendelsberg, Tamar G; McAllister, Jennie M; Liberman, Leonardo; Addonizio, Linda J; Silver, Eric S
2017-06-20
Supraventricular tachycardia is common after heart transplantation. Adenosine, the standard therapy for treating supraventricular tachycardia in children and adults without transplantation, is relatively contraindicated after transplantation because of a presumed risk of prolonged atrioventricular block in denervated hearts. This study tested whether adenosine caused prolonged asystole after transplantation and if it was effective in blocking atrioventricular nodal conduction in these patients. This was a single-center prospective clinical study including healthy heart transplant recipients 6 months to 25 years of age presenting for routine cardiac catheterization during 2015 to 2016. After catheterization, a transvenous pacing catheter was placed and adenosine was given following a dose-escalation protocol until atrioventricular block was achieved. The incidence of clinically significant asystole (≥12 seconds after adenosine) was quantified. The effects of patient characteristics on adenosine dose required to produce atrioventricular block and duration of effect were also measured. Eighty patients completed adenosine testing. No patient (0%; 95% confidence interval, 0-3) required rescue ventricular pacing. Atrioventricular block was observed in 77 patients (96%; 95% confidence interval, 89-99). The median longest atrioventricular block was 1.9 seconds (interquartile range, 1.4-3.2 seconds), with a mean duration of adenosine effect of 4.3±2.0 seconds. No patient characteristic significantly predicted the adenosine dose to produce atrioventricular block or duration of effect. Results were similar across patient weight categories. Adenosine induces atrioventricular block in healthy pediatric and young adult heart transplant recipients with minimal risk when low initial doses are used (25 μg/kg; 1.5 mg if ≥60 kg) and therapy is gradually escalated. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02462941. © 2017 American Heart Association, Inc.
Nunes, Daniela Prudente Teixeira; Spegiorin, Lígia Cosentino Junqueira Franco; de Mattos, Cinara Cássia Brandão; Oliani, Antonio Helio; Vaz-Oliani, Denise Cristina Mós; de Mattos, Luiz Carlos
2011-01-01
OBJECTIVE: Adenosine deaminase acts on adenosine and deoxyadenosine metabolism and modulates the immune response. The adenosine deaminase G22A polymorphism (20q.11.33) influences the level of adenosine deaminase enzyme expression, which seems to play a key role in maintaining pregnancy. The adenosine deaminase 2 phenotype has been associated with a protective effect against recurrent spontaneous abortions in European Caucasian women. The aim of this study was to investigate whether the G22A polymorphism of the adenosine deaminase gene is associated with recurrent spontaneous abortions in Brazilian women. METHODS: A total of 311 women were recruited to form two groups: G1, with a history of recurrent spontaneous abortions (N = 129), and G2, without a history of abortions (N = 182). Genomic DNA was extracted from peripheral blood with a commercial kit and PCR-RFLP analysis was used to identify the G22A genetic polymorphism. Fisher's exact test and odds ratio values were used to compare the proportions of adenosine deaminase genotypes and alleles between women with and without a history of recurrent spontaneous abortion (p<0.05). The differences between mean values for categorical data were calculated using unpaired t tests. The Hardy-Weinberg equilibrium was assessed with a chi-square test. RESULTS: Statistically significant differences were identified for the frequencies of adenosine deaminase genotypes and alleles between the G1 and G2 groups when adjusted for maternal age. CONCLUSIONS: The results suggest that the adenosine deaminase *2 allele is associated with a low risk for recurrent spontaneous abortions, but this association is dependent on older age. PMID:22086524
Zimmerman, Matthew C.; Zhang, Hui; Castellanos, Glenda; O’Malley, Jennifer K.; Alvarez-Ramirez, Horacio; Kharbanda, Kusum; Sisson, Joseph H.; Wyatt, Todd A.
2013-01-01
Adenosine concentrations are elevated in the lungs of patients with asthma and chronic obstructive pulmonary disease, where it balances between tissue repair and excessive airway remodeling. We previously demonstrated that the activation of the adenosine A2A receptor promotes epithelial wound closure. However, the mechanism by which adenosine-mediated wound healing occurs after cigarette smoke exposure has not been investigated. The present study investigates whether cigarette smoke exposure alters adenosine-mediated reparative properties via its ability to induce a shift in the oxidant/antioxidant balance. Using an in vitro wounding model, bronchial epithelial cells were exposed to 5% cigarette smoke extract, were wounded, and were then stimulated with either 10 μM adenosine or the specific A2A receptor agonist, 5′-(N-cyclopropyl)–carboxamido–adenosine (CPCA; 10 μM), and assessed for wound closure. In a subset of experiments, bronchial epithelial cells were infected with adenovirus vectors encoding human superoxide dismutase and/or catalase or control vector. In the presence of 5% smoke extract, significant delay was evident in both adenosine-mediated and CPCA-mediated wound closure. However, cells pretreated with N-acetylcysteine (NAC), a nonspecific antioxidant, reversed smoke extract–mediated inhibition. We found that cells overexpressing mitochondrial catalase repealed the smoke extract inhibition of CPCA-stimulated wound closure, whereas superoxide dismutase overexpression exerted no effect. Kinase experiments revealed that smoke extract significantly reduced the A2A-mediated activation of cyclic adenosine monophosphate–dependent protein kinase. However, pretreatment with NAC reversed this effect. In conclusion, our data suggest that cigarette smoke exposure impairs A2A-stimulated wound repair via a reactive oxygen species–dependent mechanism, thereby providing a better understanding of adenosine signaling that may direct the development of pharmacological tools for the treatment of chronic inflammatory lung disorders. PMID:23371060
Increased cortical extracellular adenosine correlates with seizure termination.
Van Gompel, Jamie J; Bower, Mark R; Worrell, Gregory A; Stead, Matt; Chang, Su-Youne; Goerss, Stephan J; Kim, Inyong; Bennet, Kevin E; Meyer, Fredric B; Marsh, W Richard; Blaha, Charles D; Lee, Kendall H
2014-02-01
Seizures are currently defined by their electrographic features. However, neuronal networks are intrinsically dependent on neurotransmitters of which little is known regarding their periictal dynamics. Evidence supports adenosine as having a prominent role in seizure termination, as its administration can terminate and reduce seizures in animal models. Furthermore, microdialysis studies in humans suggest that adenosine is elevated periictally, but the relationship to the seizure is obscured by its temporal measurement limitations. Because electrochemical techniques can provide vastly superior temporal resolution, we test the hypothesis that extracellular adenosine concentrations rise during seizure termination in an animal model and humans using electrochemistry. White farm swine (n = 45) were used in an acute cortical model of epilepsy, and 10 human epilepsy patients were studied during intraoperative electrocorticography (ECoG). Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS)-based fast scan cyclic voltammetry (FSCV) and fixed potential amperometry were obtained utilizing an adenosine-specific triangular waveform or biosensors, respectively. Simultaneous ECoG and electrochemistry demonstrated an average adenosine increase of 260% compared to baseline, at 7.5 ± 16.9 s with amperometry (n = 75 events) and 2.6 ± 11.2 s with FSCV (n = 15 events) prior to electrographic seizure termination. In agreement with these animal data, adenosine elevation prior to seizure termination in a human patient utilizing FSCV was also seen. Simultaneous ECoG and electrochemical recording supports the hypothesis that adenosine rises prior to seizure termination, suggesting that adenosine itself may be responsible for seizure termination. Future work using intraoperative WINCS-based FSCV recording may help to elucidate the precise relationship between adenosine and seizure termination. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
A2-purinoceptor-mediated relaxation in the guinea-pig coronary vasculature: a role for nitric oxide.
Vials, A.; Burnstock, G.
1993-01-01
1. The Langendorff heart preparation was used to investigate the mechanism of action of the endothelium-dependent vasodilatation evoked by adenosine and its analogues in the guinea-pig coronary vasculature. 2. The relative order of potency of adenosine and its analogues in causing a reduction in perfusion pressure was D-5'-(N-ethylcarboxamide)adenosine (NECA) = 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N- ethylcarboxamidoadenosine (CGS 21680)> R-N6-(2-phenylisopropyl)adenosine (R-PIA) = adenosine = 2-chloroadenosine (2-CA) > S-N6-(2-phenylisopropyl)adenosine (S-PIA) = N6-cyclopentyl-adenosine (CPA); thus suggesting the presence of A2-purinoceptors in this preparation. 3. 8-(p-Sulphophenyl)theophylline (8-PSPT; 3 x 10(-5) M) significantly reduced both the maximum amplitude and area of the vasodilatation produced in response to adenosine (5 x 10(-10) -5 x 10(-8) mol) without having any effect on the response to the P2-purinoceptor agonist, 2-methylthioATP. The relaxation induced by adenosine (5 x 10(-12) -5 x 10(-8) mol) was unaffected by the selective A1-purinoceptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 10(-8) M). This antagonist profile suggests that only A2-purinoceptors are present in the guinea-pig coronary vasculature. 4. The areas of the vasodilator response to adenosine (5 x 10(-10) -5 x 10(-7 mol), NECA (5 x 10(-12) -5 x 10(-7) mol) and CGS 21680 (5 x 10(-12) -5 x 10(-10) mol) were significantly reduced by NG-nitro-L-arginine methyl ester (L-NAME; 3 x 10(-5) M).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8358543
Erythrocytic adenosine monophosphate as an alternative purine source in Plasmodium falciparum.
Cassera, María B; Hazleton, Keith Z; Riegelhaupt, Paul M; Merino, Emilio F; Luo, Minkui; Akabas, Myles H; Schramm, Vern L
2008-11-21
Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum.
Reentry Tachycardia in Children: Adenosine Can Make It Worse.
Hien, Maximilian D; Benito Castro, Fernando; Fournier, Philippe; Filleron, Anne; Tran, Tu-Anh
2016-10-08
We report on a rare but severe complication of adenosine use in a child with reentry tachycardia. Treatment with adenosine, which is the standard medical therapy of atrioventricular reentry tachycardia, led to the development of an irregular wide complex tachycardia, caused by rapid ventricular response to atrial fibrillation. The girl was finally stabilized with electrical cardioversion. We analyze the pathomechanism and discuss possible treatment options. Atrial fibrillation, as well as its conduction to the ventricles, can be caused by adenosine. Rapid ventricular response in children with Wolff-Parkinson-White syndrome is more frequent than previously believed. A patient history of atrial fibrillation is a contraindication for cardioversion with adenosine and needs to be assessed in children with reentry tachycardia. High-risk patients may potentially profit from prophylactic comedication with antiarrhythmic agents, such as flecainide, ibutilide, or vernakalant, before adenosine administration.
Opiate-induced Changes in Brain Adenosine Levels and Narcotic Drug Responses
Wu, Manhong; Sahbaie, Peyman; Zheng, Ming; Lobato, Robert; Boison, Detlev; Clark, J. David; Peltz, Gary
2012-01-01
We have very little information about the metabolomic changes that mediate neurobehavioral responses, including addiction. It was possible that opioid-induced metabolomic changes in brain could mediate some of the pharmacodynamic effects of opioids. To investigate this, opiate-induced brain metabolomic responses were profiled using a semi-targeted method in C57BL/6 and 129Sv1 mice, which exhibit extreme differences in their tendency to become opiate dependent. Escalating morphine doses (10–40 mg/kg) administered over a 4-day period selectively induced a two-fold decrease (p<0.00005) in adenosine abundance in the brainstem of C57BL/6 mice, which exhibited symptoms of narcotic drug dependence; but did not decrease adenosine abundance in 129Sv1 mice, which do not exhibit symptoms of dependence. Based on this finding, the effect of adenosine on dependence was investigated in genetically engineered mice with alterations in adenosine tone in the brain and in pharmacologic experiments. Morphine withdrawal behaviors were significantly diminished (P<0.0004) in genetically engineered mice with reduced adenosine tone in the brainstem, and by treatment with an adenosine receptor1 (A1) agonist (2-chloro-N6-cyclopentyladenosine, 0.5 mg/kg) or an A2a receptor (A2a) antagonist (SCH 58261 1 mg/kg). These results indicate that adenosine homeostasis plays a crucial role in narcotic drug responses. Opiate-induced changes in brain adenosine levels may explain many important neurobehavioral features associated with opiate addiction and withdrawal. PMID:23098802
Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety
Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.
2014-01-01
Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587
Nakamura, Kazuki; Yoshikawa, Noriko; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru
2006-01-01
An attempt was made to elucidate the molecular targetfor the antitumor effects of cordycepin (3'-deoxyadenosine) using non-selective and selective adenosine A1, A2a, A2b and A3 receptor agonists and antagonists. Although adenosine and 2'-deoxyadenosine (up to 100 microM) had no effect, cordycepin showed remarkable inhibitory effects on the growth curves of B16-BL6 mouse melanoma (IC50= 39 microM) and mouse Lewis lung carcinoma (IC50 = 48 microM) cell lines in vitro. Among the adenosine receptor agonists and antagonists used (up to 100 microM), only 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), a selective adenosine A3 receptor agonist, notably inhibited the growth of both mouse tumor cell lines (B16-BL6; IC50 = 5 microM, LLC; 14 microM). In addition, the tumor growth inhibitory effect of cordycepin was antagonized by 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191), a selective adenosine A3 receptor antagonist. These results suggest that cordycepin exerts inhibitory effects on the growth of mouse melanoma and lung carcinoma cells by stimulating adenosine A3 receptors on tumor cells.
Adenosine receptors and caffeine in retinopathy of prematurity
Chen, Jiang-Fan; Zhang, Shuya; Zhou, Rong; Lin, Zhenlang; Cai, Xiaohong; Lin, Jing; Huo, Yuqing; Liu, Xiaoling
2017-01-01
Retinopathy of prematurity (ROP) is a major cause of childhood blindness in the world and is caused by oxygen-induced damage to the developing retinal vasculature, resulting in hyperoxia-induced vaso-obliteration and subsequent delayed retinal vascularization and hypoxia-induced pathological neovascularization driven by vascular endothelial growth factor (VEGF) signaling pathway in retina. Current anti-VEGF therapy has shown some effective in a clinical trial, but is associated with the unintended effects on delayed eye growth and retinal vasculature development of preterm infants. Notably, cellular responses to hypoxia are characterized by robust increases in extracellular adenosine production and the markedly induced adenosine receptors, which provide a novel target for preferential control of pathological angiogenesis without affecting normal vascular development. Here, we review the experimental evidence in support of adenosine receptor-based therapeutic strategy for ROP, including the aberrant adenosine signaling in oxygen-induced retinopathy and the role of three adenosine receptor subtypes (A1R, A2AR, A2BR) in development and treatment of ROP using oxygen-induced retinopathy models. The clinical and initial animal evidence that implicate the therapeutic effect of caffeine (a non-selective adenosine receptor antagonist) in treatment of ROP are highlighted. Lastly, we discussed the translational potential as well therapeutic advantage of adenosine receptor- and caffeine-based therapy for ROR and possibly other proliferative retinopathy. PMID:28088487
Sugiyama, Kentaro; Tsukaguchi, Mahoto; Toyama, Akira; Satoh, Hiroshi; Saito, Kazuhide; Nakagawa, Yuki; Takahashi, Kota; Tanaka, Sachiko; Onda, Kenji; Hirano, Toshihiko
2014-06-01
The adenosine triphosphate assay using peripheral lymphocytes may be useful to evaluate the risks of acute rejection and infection in kidney transplant patients. We used the adenosine triphosphate assay to evaluate differences between recipients who were treated with cyclosporine- or tacrolimus-based immunosuppressive therapy. Adenosine triphosphate levels were measured in peripheral CD4+ cells before and after transplant and were correlated with clinical outcomes in 45 kidney transplant recipients. These recipients received immunosuppressive therapy with either cyclosporine (23 patients) or tacrolimus (22 patients). Adenosine triphosphate levels were significantly lower in the cyclosporine- than tacrolimus-based therapy groups from 2 to 6 weeks after transplant. Adenosine triphosphate levels were similar between these groups before and 1 week after transplant. The frequency of cytomegalovirus infection was greater in the recipients who received cyclosporine (17 patients [74%]) than tacrolimus (6 patients [27%]; P ≦ .003). The frequency of acute rejection episodes was similar between the cyclosporine and tacrolimus groups. These observations suggest that cyclosporine-based immunosuppressive therapy causes excessive immunosuppression compared with tacrolimus-based therapy, evidenced by the lymphocyte adenosine triphosphate levels. The adenosine triphosphate assay using peripheral CD4+ cells may be a useful method for predicting the occurrence of cytomegalovirus infections in kidney transplant recipients.
Pedroza, Mesias; Schneider, Daniel J.; Karmouty-Quintana, Harry; Coote, Julie; Shaw, Stevan; Corrigan, Rebecca; Molina, Jose G.; Alcorn, Joseph L.; Galas, David; Gelinas, Richard; Blackburn, Michael R.
2011-01-01
Background Chronic lung diseases are the third leading cause of death in the United States due in part to an incomplete understanding of pathways that govern the progressive tissue remodeling that occurs in these disorders. Adenosine is elevated in the lungs of animal models and humans with chronic lung disease where it promotes air-space destruction and fibrosis. Adenosine signaling increases the production of the pro-fibrotic cytokine interleukin-6 (IL-6). Based on these observations, we hypothesized that IL-6 signaling contributes to tissue destruction and remodeling in a model of chronic lung disease where adenosine levels are elevated. Methodology/Principal Findings We tested this hypothesis by neutralizing or genetically removing IL-6 in adenosine deaminase (ADA)-deficient mice that develop adenosine dependent pulmonary inflammation and remodeling. Results demonstrated that both pharmacologic blockade and genetic removal of IL-6 attenuated pulmonary inflammation, remodeling and fibrosis in this model. The pursuit of mechanisms involved revealed adenosine and IL-6 dependent activation of STAT-3 in airway epithelial cells. Conclusions/Significance These findings demonstrate that adenosine enhances IL-6 signaling pathways to promote aspects of chronic lung disease. This suggests that blocking IL-6 signaling during chronic stages of disease may provide benefit in halting remodeling processes such as fibrosis and air-space destruction. PMID:21799929
Autoradiography of P2x ATP receptors in the rat brain.
Balcar, V. J.; Li, Y.; Killinger, S.; Bennett, M. R.
1995-01-01
1. Binding of a P2x receptor specific radioligand, [3H]-alpha,beta-methylene adenosine triphosphate ([3H]-alpha,beta-MeATP) to sections of rat brain was reversible and association/dissociation parameters indicated that it consisted of two saturable components. Non-specific binding was very low (< 7% at 10 nM ligand concentration). 2. The binding was completely inhibited by suramin (IC50 approximately 14-26 microM) but none of the ligands specific for P2y receptors such as 2-methylthio-adenosine triphosphate (2-methyl-S-ATP) and 2-chloro-adenosine triphosphate (2-C1-ATP) nor 2-methylthio-adenosine diphosphate (2-methyl-S-ADP) a ligand for the P2 receptor on blood platelets ('P2T' type) produced strong inhibitions except for P1,P4-di(adenosine-5')tetraphosphate (Ap4A). 3. Inhibitors of Na+,K(+)-dependent adenosine triphosphatase (ATPase) ouabain, P1-ligand adenosine and an inhibitor of transport of, respectively, adenosine and cyclic nucleotides, dilazep, had no effect. 4. The highest density of P2x binding sites was found to be in the cerebellar cortex but the binding sites were present in all major brain regions, especially in areas known to receive strong excitatory innervation. Images Figure 2 PMID:7670731
ST 1535: a preferential A2A adenosine receptor antagonist.
Stasi, Maria Antonietta; Borsini, Franco; Varani, Katia; Vincenzi, Fabrizio; Di Cesare, Maria Assunta; Minetti, Patrizia; Ghirardi, Orlando; Carminati, Paolo
2006-10-01
Antagonism of the A2A adenosine function has proved beneficial in the treatment of Parkinson's disease, in that it increases L-dopa therapeutical effects without concomitant worsening of its side-effects. In this paper we describe a preferential A2A adenosine antagonist, ST 1535, with long-lasting pharmacodynamic effects. It competitively antagonizes the effects of the A2A adenosine agonist NECA on cAMP in cells cloned with the human A2A adenosine receptor (IC50=353+/-30 nM), and the effects of the A1 adenosine agonist CHA on cAMP in cells cloned with the human A1 adenosine receptor (IC50=510+/-38 nM). ST 1535, at oral doses of 5 and 10 mg/kg, antagonizes catalepsy induced by intracerebroventricular administration of the A2A adenosine agonist CGS 21680 (10 microg/5 microl) in mice. At oral doses ranging between 5 and 20 mg/kg, ST 1535 induces hypermotility and antagonizes haloperidol-induced catalepsy in mice up to 7 h. Oral ST 1535, at 1.25 and 2.5 mg/kg, potentiates L-dopa effects in reducing haloperidol-induced catalepsy. ST 1535 represents a potential new compound, with long-lasting activity, for the treatment of Parkinson's disease.
Purinergic signaling pathways in endocrine system.
Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S
2015-09-01
Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. Published by Elsevier B.V.
Purinergic Signaling Pathways in Endocrine System
Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.
2015-01-01
Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051
Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.
Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel
2011-06-01
The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.
Detrimental effects of adenosine signaling in sickle cell disease
Zhang, Yujin; Dai, Yingbo; Wen, Jiaming; Zhang, Weiru; Grenz, Almut; Sun, Hong; Tao, Lijian; Lu, Guangxiu; Alexander, Danny C; Milburn, Michael V; Carter-Dawson, Louvenia; Lewis, Dorothy E; Zhang, Wenzheng; Eltzschig, Holger K; Kellems, Rodney E; Blackburn, Michael R; Juneja, Harinder S; Xia, Yang
2016-01-01
Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A2B receptor (A2BR)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A2BR has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease. PMID:21170046
Laszlo, I.
1963-01-01
Several methods for removing interfering nucleotides, adenosine-5'-monophosphate and adenosine 5'-triphosphate from brain extracts have been studied. An enzymic method, using adenylic acid deaminase, has been found suitable. This deaminates adenosine monophosphate to 5'-inosinic acid, an inactive compound which does not influence the estimations of substance P. Owing to the adenosine triphosphatase content of the enzyme extract, adenosine triphosphate was also inactivated. For the estimation of adenosine monophosphate-deaminase activity, a simple colorimetric method is described which measures the ammonia liberated from adenosine monophosphate. Substance P in mouse brain extracts was estimated after treatment of the animals with various drugs, and after the enzymic removal of interfering nucleotides from the brain extracts. The drugs had no effect on the substance P content of mouse brain. The effect of drugs on the contractions of the guinea-pig ileum induced by substance P was also investigated, and the effect of drugs on the estimations of substance P in brain extracts is discussed. PMID:14066136
Detrimental effects of adenosine signaling in sickle cell disease.
Zhang, Yujin; Dai, Yingbo; Wen, Jiaming; Zhang, Weiru; Grenz, Almut; Sun, Hong; Tao, Lijian; Lu, Guangxiu; Alexander, Danny C; Milburn, Michael V; Carter-Dawson, Louvenia; Lewis, Dorothy E; Zhang, Wenzheng; Eltzschig, Holger K; Kellems, Rodney E; Blackburn, Michael R; Juneja, Harinder S; Xia, Yang
2011-01-01
Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A(2B) receptor (A(2B)R)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A(2B)R has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease.
A2B Adenosine Receptor–Mediated Induction of IL-6 Promotes CKD
Dai, Yingbo; Zhang, Weiru; Wen, Jiaming; Zhang, Yujin; Kellems, Rodney E.
2011-01-01
Chronic elevation of adenosine, which occurs in the setting of repeated or prolonged tissue injury, can exacerbate cellular dysfunction, suggesting that it may contribute to the pathogenesis of CKD. Here, mice with chronically elevated levels of adenosine, resulting from a deficiency in adenosine deaminase (ADA), developed renal dysfunction and fibrosis. Both the administration of polyethylene glycol–modified ADA to reduce adenosine levels and the inhibition of the A2B adenosine receptor (A2BR) attenuated renal fibrosis and dysfunction. Furthermore, activation of A2BR promoted renal fibrosis in both mice infused with angiotensin II (Ang II) and mice subjected to unilateral ureteral obstruction (UUO). These three mouse models shared a similar profile of profibrotic gene expression in kidney tissue, suggesting that they share similar signaling pathways that lead to renal fibrosis. Finally, both genetic and pharmacologic approaches showed that the inflammatory cytokine IL-6 mediates adenosine-induced renal fibrosis downstream of A2BR. Taken together, these data suggest that A2BR-mediated induction of IL-6 contributes to renal fibrogenesis and shows potential therapeutic targets for CKD. PMID:21511827
Vissiennon, Z; Sichardt, K; Koetter, U; Brattström, A; Nieber, K
2006-06-01
In this study we evaluated the adenosine A1 receptor-mediated effect of valerian extract (Ze 911) on postsynaptic potentials (PSPs) in pyramidal cells of the rat cingulate cortex in a slice preparation. We first observed that N6-cyclopentyladenosine (CPA, 0.01 - 10 microM), an adenosine A1 receptor agonist, inhibited PSPs in a concentration-dependent manner. The CPA (10 microM)-induced inhibition was antagonized by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.1 microM), an adenosine A1 receptor antagonist. Ze 911 concentration dependently (0.1 - 15 mg/mL) inhibited PSPs in the presence of the adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC, 0.2 microM) and adenosine deaminase (1 U/mL). The maximal inhibition induced by 10 mg/mL was completely antagonised by DPCPX (0.1 microM), an A1 receptor blocker. The data suggest that activation of adenosine A1 receptors is involved in the pharmacological effects of the valerian extract Ze 911.
Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum*
Cassera, María B.; Hazleton, Keith Z.; Riegelhaupt, Paul M.; Merino, Emilio F.; Luo, Minkui; Akabas, Myles H.; Schramm, Vern L.
2008-01-01
Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum. PMID:18799466
Huang, Hong; Yan, Youyi; Zuo, Zhong; Yang, Lin; Li, Bin; Song, Yu; Liao, Linchuan
2010-09-01
Although the change in adenosine phosphate levels in muscles may contribute to the development of rigor mortis, the relationship between their levels and the onset and development of rigor mortis has not been well elucidated. In the current study, levels of the adenosine phosphates including adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in gastrocnemius at various postmortem intervals of 180 rats from different death modes were detected by high performance liquid chromatography. The results showed that the levels of ATP and ADP significantly decreased along with the postmortem period of rats from different death mode whereas the AMP level remained the same. In addition, it was found that changes in the ATP levels in muscles after death correlated well with the development of rigor mortis. Therefore, the ATP level could serve as a reference parameter for the deduction of rigor mortis in forensic science.
[Effect of caffeine on myocardial blood flow during pharmacological vasodilation].
Wielepp, J P; Fricke, E; Horstkotte, D; Burchert, W
2005-02-01
Pharmacologic stress with adenosine is frequently used for noninvasive detection of coronary artery disease. Dietary intake of caffeinated food, beverages or medications might alter adenosine-induced hyperemic blood flow, thereby compromising the diagnostic sensitivity of adenosine stress testing. In this case we report on a male patient with CAD. Myocardial blood flow at rest and during adenosine-induced hyperemia 2 hours after consumption of decaffeinated coffee and again without caffeine intake were quantified by ammonia PET. After caffeine intake there was a clearly diminished increase of myocardial blood flow during adenosine. The average coronary flow reserve in the myocardium was 1.3 after caffeine. In the baseline study without caffeine the coronary flow reserve has been improved to 2.3. Caffeine intake alters the coronary vasodilatory capacity. These findings emphasize the importance of carefully screening patients for intake of caffeinated food prior to adenosine stress testing.
Reduction of cytotoxicity of benzalkonium chloride and octenidine by Brilliant Blue G.
Bartok, Melinda; Tandon, Rashmi; Alfaro-Espinoza, Gabriela; Ullrich, Matthias S; Gabel, Detlef
2015-01-01
The irritative effects of preservatives found in ophthalmologic solution, or of antiseptics used for skin disinfection is a consistent problem for the patients. The reduction of the toxic effects of these compounds is desired. Brilliant Blue G (BBG) has shown to meet the expected effect in presence of benzalkonium chloride (BAK), a well known preservative in ophthalmic solutions, and octenidine dihydrochloride (Oct), used as antiseptic in skin and wound disinfection. BBG shows a significant protective effect on human corneal epithelial (HCE) cells against BAK and Oct toxicity, increasing the cell survival up to 51 % at the highest BAK or Oct concentration tested, which is 0.01 %, both at 30 min incubation. Although BBG is described as a P2x7 receptor antagonist, other selective P2x7 receptor antagonists, OxATP (adenosine 5'-triphosphate-2',3'-dialdehyde) and DPPH (N'-(3,5-dichloropyridin-4-yl)-3-phenylpropanehydrazide), did not reduce the cytotoxicity of neither BAK nor Oct. Therefore we assume that the protective effect of BBG is not due to its action on the P2x7 receptor. Brilliant Blue R (BBR), a dye similar to BBG, was also tested for protective effect on BAK and Oct toxicity. In presence of BAK no significant protective effect was observed. Instead, with Oct a comparable protective effect was seen with that of BBG. To assure that the bacteriostatic effect is not affected by the combinations of BAK/BBG, Oct/BBG and Oct/BBR, bacterial growth inhibition was analyzed on different Gram-negative and Gram-positive bacteria. All combinations of BAK or Oct with BBG hinder growth of Gram-positive bacteria. The combinations of 0.001 % Oct and BBR above 0.025 % do not hinder the growth of B. subtilis. For Gram-negative bacteria, BBG and BBR reduce, but do not abolish, the antimicrobial effect of BAK nor of Oct. In conclusion, the addition of BBG at bacterial inhibitory concentrations is suggested in the ready-to-use ophthalmic preparations and antiseptic solutions.
Reduction of cytotoxicity of benzalkonium chloride and octenidine by Brilliant Blue G
Bartok, Melinda; Tandon, Rashmi; Alfaro-Espinoza, Gabriela; Ullrich, Matthias S.; Gabel, Detlef
2015-01-01
The irritative effects of preservatives found in ophthalmologic solution, or of antiseptics used for skin disinfection is a consistent problem for the patients. The reduction of the toxic effects of these compounds is desired. Brilliant Blue G (BBG) has shown to meet the expected effect in presence of benzalkonium chloride (BAK), a well known preservative in ophthalmic solutions, and octenidine dihydrochloride (Oct), used as antiseptic in skin and wound disinfection. BBG shows a significant protective effect on human corneal epithelial (HCE) cells against BAK and Oct toxicity, increasing the cell survival up to 51 % at the highest BAK or Oct concentration tested, which is 0.01 %, both at 30 min incubation. Although BBG is described as a P2x7 receptor antagonist, other selective P2x7 receptor antagonists, OxATP (adenosine 5’-triphosphate-2’,3’-dialdehyde) and DPPH (N’-(3,5-dichloropyridin-4-yl)-3-phenylpropanehydrazide), did not reduce the cytotoxicity of neither BAK nor Oct. Therefore we assume that the protective effect of BBG is not due to its action on the P2x7 receptor. Brilliant Blue R (BBR), a dye similar to BBG, was also tested for protective effect on BAK and Oct toxicity. In presence of BAK no significant protective effect was observed. Instead, with Oct a comparable protective effect was seen with that of BBG. To assure that the bacteriostatic effect is not affected by the combinations of BAK/BBG, Oct/BBG and Oct/BBR, bacterial growth inhibition was analyzed on different Gram-negative and Gram-positive bacteria. All combinations of BAK or Oct with BBG hinder growth of Gram-positive bacteria. The combinations of 0.001 % Oct and BBR above 0.025 % do not hinder the growth of B. subtilis. For Gram-negative bacteria, BBG and BBR reduce, but do not abolish, the antimicrobial effect of BAK nor of Oct. In conclusion, the addition of BBG at bacterial inhibitory concentrations is suggested in the ready-to-use ophthalmic preparations and antiseptic solutions. PMID:26417355
Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.
1998-01-01
During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120
Pouliot, Marc; Fiset, Marie-Elaine; Massé, Mireille; Naccache, Paul H; Borgeat, Pierre
2002-11-01
Polymorphonuclear neutrophils (granulocytes; PMNs) are often the first blood cells to migrate toward inflammatory lesions to perform host defense functions. PMNs respond to specific stimuli by releasing several factors and generate lipid mediators of inflammation from the 5-lipoxygenase and the inducible cyclooxygenase (COX)-2 pathways. In view of adenosine's anti-inflammatory properties and suppressive impact on the 5-lipoxygenase pathway, we addressed in this study the impact of this autacoid on the COX-2 pathway. We observed that adenosine up-regulates the expression of the COX-2 enzyme and mRNA. Production of PGE(2) in response to exogenous arachidonic acid was also increased by adenosine and correlated with COX-2 protein levels. The potentiating effect of adenosine on COX-2 could be mimicked by pharmacological increases of intracellular cAMP levels, involving the latter as a putative second messenger for the up-regulation of COX-2 by adenosine. Specific COX-2 inhibitors were used to confirm the predominant role of the COX-2 isoform in the formation of prostanoids by stimulated PMNs. Withdrawal of extracellular adenosine strikingly emphasized the inhibitory potential of PGE(2) on leukotriene B(4) formation and involved the EP(2) receptor subtype in this process. Thus, adenosine may promote a self-limiting regulatory process through the increase of PGE(2) generation, which may result in the inhibition of PMN functions. This study identifies a new aspect of the anti-inflammatory properties of adenosine in leukocytes, introducing the concept that this autacoid may exert its immunomodulatory activities in part by modifying the balance of lipid mediators generated by PMNs.
Systemic Adenosine Triphosphate Impairs Neutrophil Chemotaxis and Host Defense in Sepsis.
Li, Xiaoou; Kondo, Yutaka; Bao, Yi; Staudenmaier, Laura; Lee, Albert; Zhang, Jingping; Ledderose, Carola; Junger, Wolfgang G
2017-01-01
Sepsis remains an unresolved clinical problem. Therapeutic strategies focusing on inhibition of neutrophils (polymorphonuclear neutrophils) have failed, which indicates that a more detailed understanding of the underlying pathophysiology of sepsis is required. Polymorphonuclear neutrophil activation and chemotaxis require cellular adenosine triphosphate release via pannexin-1 channels that fuel autocrine feedback via purinergic receptors. In the current study, we examined the roles of endogenous and systemic adenosine triphosphate on polymorphonuclear neutrophil activation and host defense in sepsis. Prospective randomized animal investigation and in vitro studies. Preclinical academic research laboratory. Wild-type C57BL/6 mice, pannexin-1 knockout mice, and healthy human subjects used to obtain polymorphonuclear neutrophils for in vitro studies. Wild-type and pannexin-1 knockout mice were treated with suramin or apyrase to block the endogenous or systemic effects of adenosine triphosphate. Mice were subjected to cecal ligation and puncture and polymorphonuclear neutrophil activation (CD11b integrin expression), organ (liver) injury (plasma aspartate aminotransferase), bacterial spread, and survival were monitored. Human polymorphonuclear neutrophils were used to study the effect of systemic adenosine triphosphate and apyrase on chemotaxis. Inhibiting endogenous adenosine triphosphate reduced polymorphonuclear neutrophil activation and organ injury, but increased the spread of bacteria and mortality in sepsis. By contrast, removal of systemic adenosine triphosphate improved bacterial clearance and survival in sepsis by improving polymorphonuclear neutrophil chemotaxis. Systemic adenosine triphosphate impairs polymorphonuclear neutrophil functions by disrupting the endogenous purinergic signaling mechanisms that regulate cell activation and chemotaxis. Removal of systemic adenosine triphosphate improves polymorphonuclear neutrophil function and host defenses, making this a promising new treatment strategy for sepsis.
Characterization of adenosine receptors in guinea-pig isolated left atria.
Jahnel, U.; Nawrath, H.
1989-01-01
1. The effects of purinergic stimulation on action potential, force of contraction, 86Rb efflux and 45Ca uptake were investigated in guinea-pig left atria. 2. Adenosine exerted a negative inotropic effect which was antagonized by adenosine deaminase but enhanced by dipyridamole. 3. The negative inotropic effect of adenosine was mimicked by 5'-(N-ethyl)-carboxamido-adenosine (NECA) and the isomers of N6-(phenyl-isopropyl)-adenosine, R-PIA and S-PIA. NECA and R-PIA were about 100 times more potent than adenosine, whereas R-PIA was about 100 times more potent than S-PIA. 4. The inotropic effects of adenosine (in the presence of dipyridamole), NECA, R-PIA and S-PIA were competitively antagonized either by theophylline (pA2 about 4.5) or 8-phenyltheophylline (pA2 about 6.3). 5. NECA and R-PIA shortened the action potential duration and increased the rate constant of the efflux of 86Rb in a concentration-dependent manner with no differences in potency; the effects were competitively antagonized by 8-phenyltheophylline. 6. Barium ions reduced the efflux of 86Rb under control conditions and antagonized the increase induced by NECA and R-PIA. 7. NECA and R-PIA significantly reduced 45Ca uptake in beating preparations. 8. It is concluded that adenosine, NECA and R-PIA activate a common receptor population (P1 or A3) on the outside of the cell membrane of atrial heart muscle to increase the potassium conductance and to reduce the action potential and, thereby, calcium influx and force of contraction. PMID:2790380
Kan, Hung-Wei; Chang, Chin-Hong; Lin, Chih-Lung; Lee, Yi-Chen; Hsieh, Sung-Tsang; Hsieh, Yu-Lin
2018-04-16
The neurochemical effects of adenosine signaling in small-fiber neuropathy leading to neuropathic pain are yet to be explored in a direct manner. This study examined this system at the level of ligand (via the ectonucleotidase activity of prostatic acid phosphatase, PAP) and adenosine A1 receptors (A1Rs) in resiniferatoxin (RTX) neuropathy, a peripheral neurodegenerative disorder which specifically affects nociceptive nerves expressing transient receptor potential vanilloid type 1 (TRPV1). We conducted immunohistochemistry on dorsal root ganglion neurons (DRG), high-performance liquid chromatography (HPLC) for functional assays, and pharmacological interventions to alter PAP and A1Rs in mice with RTX neuropathy. In DRG of RTX neuropathy, PAP(+) neurons were reduced compared with vehicle-treated mice (P = 0.002) . Functionally, PAP ectonucleotidase activity was consequently reduced (i.e., the content of adenosine in DRG, P = 0.012). PAP(+) neuronal density was correlated with the degree of mechanical allodynia, which was reversed by intrathecal lumbar puncture (i.t.) injection of recombinant PAP with a dose-dependent effect. Furthermore, A1Rs were downregulated (P = 0.002), and this downregulation was colocalized with the TRPV1 receptor (31.0% ± 2.8%). Mechanical allodynia was attenuated in a dose-dependent response by i.t. injection of the A1R ligand, adenosine; however, no analgesia was evident when an exogenous adenosine was blocked by A1R antagonist. This study demonstrated dual mechanisms of neuropathic pain in TRPV1-induced neuropathy, involving a reduced adenosine system at both the ligand (adenosine) and receptor (A1Rs) levels.
Low-dose adenosine stress echocardiography: detection of myocardial viability.
Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav
2003-06-03
The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of >or= 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 +/- 2 months) were available in 24 revascularized patients. Wall motion score index improved from rest 1.55 +/- 0.30 to 1.33 +/- 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 +/- 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability.
Enzymatic regeneration of adenosine triphosphate cofactor
NASA Technical Reports Server (NTRS)
Marshall, D. L.
1974-01-01
Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.
In Vivo Cardiovascular Pharmacology of 2′,3′-cAMP, 2′-AMP, and 3′-AMP in the Rat
Mi, Zaichuan
2013-01-01
The naturally occurring purine 2′,3′-cAMP is metabolized in vitro to 2′-AMP and 3′-AMP, which are subsequently metabolized to adenosine. Whether in vivo 2′,3′-cAMP, 2′-AMP, or 3′-AMP are rapidly converted to adenosine and exert rapid effects via adenosine receptors is unknown. To address this question, we compared the cardiovascular and renal effects of 2′,3′-cAMP, 2′-AMP, 3′-AMP, 3′,5′-cAMP, 5′-AMP, and adenosine in vivo in the rat. Purines were infused intravenously while monitoring mean arterial blood pressure (MABP), heart rate (HR), cardiac output, and renal and mesenteric blood flows. Total peripheral (TPR), renal vascular (RVR), and mesenteric vascular (MVR) resistances were calculated. Urine was collected for determination of urine excretion rate [urine volume (UV)]. When sufficient urine was available, the sodium excretion rate (Na+ER) and glomerular filtration rate (GFR) were determined. 2′,3′-cAMP, 2′-AMP, and 3′-AMP dose-dependently and profoundly reduced MABP, HR, TPR, and MVR with efficacy and potency similar to adenosine and 5′-AMP. These effects of 2′,3′-cAMP, 2′-AMP, and 3′-AMP were attenuated by blockade of adenosine receptors with 1,3-dipropyl-8-(p-sulfophenyl)xanthine. 2′,3′-cAMP, 2′-AMP, 3′-AMP, adenosine, and 5′-AMP variably affected RVR, but profoundly (nearly 100%) decreased UV at higher doses. GFR and Na+ER could be measured at the lower doses and were suppressed by 2′,3′-cAMP, 2′-AMP, and 3′-AMP, but not by adenosine or 5′-AMP. 2′,3′-cAMP increased urinary excretion rates of 2′-AMP, 3′-AMP, and adenosine. 3′,5′-cAMP exerted no adverse hemodynamic effects yet increased urinary adenosine as efficiently as 2′,3′-cAMP. Conclusions: In vivo 2′,3′-cAMP is rapidly converted to adenosine. Because both cAMPs increase adenosine in the urinary compartment, these agents may provide unique therapeutic opportunities. PMID:23759508
Role of CNPase in the Oligodendrocytic Extracellular 2′,3′-cAMP-Adenosine Pathway
Verrier, Jonathan D.; Jackson, Travis C.; Gillespie, Delbert G.; Janesko-Feldman, Keri; Bansal, Rashmi; Goebbels, Sandra; Nave, Klaus-Armin; Kochanek, Patrick M.; Jackson, Edwin K.
2014-01-01
Extracellular adenosine 3′,5′-cyclic monophosphate (3′,5′-cAMP) is an endogenous source of localized adenosine production in many organs. Recent studies suggest that extracellular 2′,3′-cAMP (positional isomer of 3′,5′-cAMP) is also a source of adenosine, particularly in the brain in vivo post-injury. Moreover, in vitro studies show that both microglia and astrocytes can convert extracellular 2′,3′-cAMP to adenosine. Here we examined the ability of primary mouse oligodendrocytes and neurons to metabolize extracellular 2′,3′-cAMP and their respective adenosine monophosphates (2′-AMP and 3′-AMP). Cells were also isolated from mice deficient in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase). Oligodendrocytes metabolized 2′,3′-cAMP to 2′-AMP with 10-fold greater efficiency than did neurons (and also more than previously examined microglia and astrocytes); whereas, the production of 3′-AMP was minimal in both oligodendrocytes and neurons. The production of 2′-AMP from 2′,3′-cAMP was reduced by 65% in CNPase -/- versus CNPase +/+ oligodendrocytes. Oligodendrocytes also converted 2′-AMP to adenosine, and this was also attenuated in CNPase -/- oligodendrocytes. Inhibition of classic 3′,5′-cAMP-3′-phosphodiesterases with 3-isobutyl-1-methylxanthine did not block metabolism of 2′,3′-cAMP to 2′-AMP and inhibition of classic ecto-5′-nucleotidase (CD73) with α,β-methylene-adenosine-5′-diphosphate did not attenuate the conversion of 2′-AMP to adenosine. These studies demonstrate that oligodendrocytes express the extracellular 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP → adenosine). This pathway is more robustly expressed in oligodendrocytes than in all other CNS cell types because CNPase is the predominant enzyme that metabolizes 2′,3′-cAMP to 2-AMP in CNS cells. By reducing levels of 2′,3′-cAMP (a mitochondrial toxin) and increasing levels of adenosine (a neuroprotectant), oligodendrocytes may protect axons from injury. PMID:23922219
Pák, Krisztián; Kiss, Zsuzsanna; Erdei, Tamás; Képes, Zita; Gesztelyi, Rudolf
2014-01-01
Cardiovascular disease is the biggest challenge in terms of life expectancy in developed countries. Adenosine contributes to the adaptation of the heart to ischemia and hypoxia, because adenosine, in addition to its metabolite role in the nucleic acid metabolism, is the endogenous agonist of the ubiquitous adenosine receptor family. Adenosine receptor activation is beneficial in most cases, it improves the balance between energy supply and consumption, reduces injury caused by stressors and inhibits the unfavorable tissue remodeling. Pharmacological manipulation of cardioprotective effects evoked by adenosine is an important, although to date not sufficiently utilized endeavor that may have therapeutic and preventive implications in cardiovascular diseases. As the ligand binding site of adenosine receptors is accessible from the extracellular space, it is especially important to know the adenosine concentration of the interstitial fluid ([Ado](ISF)). However, in the functioning heart, [Ado](ISF) values range in an extremely wide interval, spanning from nano- to micromolar concentrations, as estimated by the commonly used methods. Our recently developed procedure, the receptorial responsiveness method (RRM), may resolve this problem in certain cases. RRM enables quantification of an acute increase in the concentration of a pharmacological agonist, uniquely in the microenvironment of the receptors of the given agonist. As a limitation, concentration of agonists with short half-life (just like adenosine) at their receptors can only be quantified with the equieffective concentration of a stable agonist exerting the same action. In a previous study using RRM, inhibition of the transmembrane nucleoside transport in the euthyroid guinea pig atrium produced an increase in [Ado](ISF) that was equieffective with 18.8 +/- 3 nM CPA (N6-cyclopentyladenosine, a stable, selective A1 adenosine receptor agonist). This finding is consistent with observations of others, i.e., in the normoxic heart, adenosine flow is directed into the cell interior, and thus transport blockade elevates the extracellular adenosine level. In turn, nucleoside transport inhibition in the hyperthyroid guinea pig atrium caused a rise in [Ado](ISF) equieffective with 46.5 +/- 13.7 nM CPA. In sum, our work team was the first to demonstrate that adenosine transport in the hyperthyroid atrium has the same direction but is more intense as/than that in the euthyroid one.
A study of three polymorphic sites of ADA gene in colon cancer.
Spina, C; Saccucci, P; Cozzoli, E; Bottini, E; Gloria-Bottini, F
2010-12-01
Adenosine inhibits the immune response in tumors. Adenosine deaminase (ADA) controls adenosine level and as ecto-enzyme acts as costimulatory molecule of adenosine receptors and/or CD26. We examined ADA₁, ADA₂, ADA₆ polymorphic sites of ADA gene in 109 subjects with colon cancer from Rome's population and in 246 blood donors as controls from the same population. In colon cancer ADA₁*2/ADA₂*1 haplotype is more represented, while ADA₁*2/ADA₂*2 is less represented than in controls. ADA₂*2/ADA₆*2 is less represented in patients than in controls. Polymorphic sites of ADA might influence cell-mediated anti-tumor immune responses controlling adenosine level and extraenzymatic protein functions.
Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase.
Lankin, V Z; Shumaev, K B; Tikhaze, A K; Kurganov, B I
2017-07-01
Se-containing glutathione peroxidase (GSH-Px) is one of the key enzymes of the body's antioxidant system. The kinetic characteristics of GSH-Px (substrate is tert-butyl hydroperoxide) after modification of the enzyme by various concentrations of natural dicarbonyls (glyoxal, methylglyoxal, malonic dialdehyde) were studied. It was shown that dicarbonyls affected both K m and V max for GSH-Px. It is suggested that the effect of various dicarbonyls on GSH-Px depends on the molecular mechanisms of their interaction with the amino acid residues of the enzyme.
Imine-based [2]catenanes in water.
Caprice, Kenji; Pupier, Marion; Kruve, Anneli; Schalley, Christoph A; Cougnon, Fabien B L
2018-02-07
We report the efficient condensation of imine-based macrocycles from dialdehyde A and aliphatic diamines B n in pure water. Within the libraries, we identified a family of homologous amphiphilic [2]catenanes, whose self-assembly is primarily driven by the hydrophobic effect. The length and odd-even character of the diamine alkyl linker dictate both the yield and the conformation of the [2]catenanes, whose particular thermodynamic stability further shifts the overall equilibrium in favour of imine condensation. These findings highlight the role played by solvophobic effects in the self-assembly of complex architectures.
Adenosine receptors and caffeine in retinopathy of prematurity.
Chen, Jiang-Fan; Zhang, Shuya; Zhou, Rong; Lin, Zhenlang; Cai, Xiaohong; Lin, Jing; Huo, Yuqing; Liu, Xiaoling
2017-06-01
Retinopathy of prematurity (ROP) is a major cause of childhood blindness in the world and is caused by oxygen-induced damage to the developing retinal vasculature, resulting in hyperoxia-induced vaso-obliteration and subsequent delayed retinal vascularization and hypoxia-induced pathological neovascularization driven by vascular endothelial growth factor (VEGF) signaling pathway in retina. Current anti-VEGF therapy has shown some effective in a clinical trial, but is associated with the unintended effects on delayed eye growth and retinal vasculature development of preterm infants. Notably, cellular responses to hypoxia are characterized by robust increases in extracellular adenosine production and the markedly induced adenosine receptors, which provide a novel target for preferential control of pathological angiogenesis without affecting normal vascular development. Here, we review the experimental evidence in support of adenosine receptor-based therapeutic strategy for ROP, including the aberrant adenosine signaling in oxygen-induced retinopathy and the role of three adenosine receptor subtypes (A 1 R, A 2A R, A 2B R) in development and treatment of ROP using oxygen-induced retinopathy models. The clinical and initial animal evidence that implicate the therapeutic effect of caffeine (a non-selective adenosine receptor antagonist) in treatment of ROP are highlighted. Lastly, we discussed the translational potential as well therapeutic advantage of adenosine receptor- and caffeine-based therapy for ROR and possibly other proliferative retinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adenosine kinase regulation of cardiomyocyte hypertrophy.
Fassett, John T; Hu, Xinli; Xu, Xin; Lu, Zhongbing; Zhang, Ping; Chen, Yingjie; Bache, Robert J
2011-05-01
There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKT(Ser⁴⁷³) phosphorylation but did attenuate sustained phosphorylation of Raf(Ser³³⁸) (24-48 h), mTOR(Ser²⁴⁴⁸) (24-48 h), p70S6k(Thr³⁸⁹) (2.5-48 h), and ERK(Thr²⁰²/Tyr²⁰⁴) (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERK(Thr202/Tyr204) and AKT(Ser⁴⁷³). Reduction of Raf-induced p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte hypertrophy, which acts, at least in part, through inhibition of Raf signaling to mTOR/p70S6k.
MÓDIS, KATALIN; GERŐ, DOMOKOS; STANGL, RITA; ROSERO, OLIVÉR; SZIJÁRTÓ, ATTILA; LOTZ, GÁBOR; MOHÁCSIK, PETRA; SZOLECZKY, PETRA; COLETTA, CIRO; SZABÓ, CSABA
2013-01-01
Liver ischemia represents a common clinical problem. In the present study, using an in vitro model of hepatic ischemia-reperfusion injury, we evaluated the potential cytoprotective effect of the purine metabolites, such as adenosine and inosine, and studied the mode of their pharmacological actions. The human hepatocellular carcinoma-derived cell line HepG2 was subjected to combined oxygen-glucose deprivation (COGD; 0-14-24 h), followed by re-oxygenation (0-4-24 h). Adenosine or inosine (300–1,000 μM) were applied in pretreatment. Cell viability and cytotoxicity were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase methods, respectively. The results showed that both adenosine and inosine exerted cytoprotective effects, and these effects were not related to receptor-mediated actions, since they were not prevented by selective adenosine receptor antagonists. On the other hand, the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA, 10 μM) markedly and almost fully reversed the protective effect of adenosine during COGD, while it did not influence the cytoprotective effect of inosine in the same assay conditions. These results suggest that the cytoprotective effects are related to intracellular actions, and, in the case of adenosine also involve intracellular conversion to inosine. The likely interpretation of these findings is that inosine serves as an alternative source of energy to produce ATP during hypoxic conditions. The protective effects are also partially dependent on adenosine kinase, as the inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine, 2HCl (ABT 702, 30 μM) significantly reversed the protective effect of both adenosine and inosine during hypoxia and re-oxygenation. Collectively, the current results support the view that during hypoxia, adenosine and inosine exert cytoprotective effects via receptor-independent, intracellular modes of action, which, in part, depend on the restoration of cellular bioenergetics. The present study supports the view that testing of inosine for protection against various forms of warm and cold liver ischemia is relevant. PMID:23232950
Módis, Katalin; Gerő, Domokos; Stangl, Rita; Rosero, Olivér; Szijártó, Attila; Lotz, Gábor; Mohácsik, Petra; Szoleczky, Petra; Coletta, Ciro; Szabó, Csaba
2013-02-01
Liver ischemia represents a common clinical problem. In the present study, using an in vitro model of hepatic ischemia-reperfusion injury, we evaluated the potential cytoprotective effect of the purine metabolites, such as adenosine and inosine, and studied the mode of their pharmacological actions. The human hepatocellular carcinoma-derived cell line HepG2 was subjected to combined oxygen-glucose deprivation (COGD; 0-14-24 h), followed by re-oxygenation (0-4-24 h). Adenosine or inosine (300-1,000 µM) were applied in pretreatment. Cell viability and cytotoxicity were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase methods, respectively. The results showed that both adenosine and inosine exerted cytoprotective effects, and these effects were not related to receptor-mediated actions, since they were not prevented by selective adenosine receptor antagonists. On the other hand, the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA, 10 µM) markedly and almost fully reversed the protective effect of adenosine during COGD, while it did not influence the cytoprotective effect of inosine in the same assay conditions. These results suggest that the cytoprotective effects are related to intracellular actions, and, in the case of adenosine also involve intracellular conversion to inosine. The likely interpretation of these findings is that inosine serves as an alternative source of energy to produce ATP during hypoxic conditions. The protective effects are also partially dependent on adenosine kinase, as the inhibitor 4-amino-5-(3-bromophenyl)-7-(6‑morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine, 2HCl (ABT 702, 30 µM) significantly reversed the protective effect of both adenosine and inosine during hypoxia and re-oxygenation. Collectively, the current results support the view that during hypoxia, adenosine and inosine exert cytoprotective effects via receptor-independent, intracellular modes of action, which, in part, depend on the restoration of cellular bioenergetics. The present study supports the view that testing of inosine for protection against various forms of warm and cold liver ischemia is relevant.
Kang, G; Tu, T N T; Kim, S; Yang, H; Jang, M; Jo, D; Ryu, J; Baek, J; Jung, H
2018-04-01
Although dissolving microneedle patches have been widely studied in the cosmetics field, no comparisons have been drawn with the topical applications available for routine use. In this study, two wrinkle-improving products, adenosine-loaded dissolving microneedle patches and an adenosine cream, were evaluated for efficacy, with respect to skin wrinkling, dermal density, elasticity, and hydration, and safety in a clinical test on the crow's feet area. Clinical efficacy and safety tests were performed for 10 weeks on 22 female subjects with wrinkles around their eyes. The adenosine-loaded dissolving microneedle patch was applied once every 3 days, in the evening, for 8 weeks to the designated crow's feet area. The adenosine cream was applied two times per day, in the morning and evening, for 8 weeks to the other crow's feet area. Skin wrinkling, dermal density, elasticity, and hydration were measured by using PRIMOS ® premium, Dermascan ® C, Cutometer ® MPA580, and Corneometer ® CM 825, respectively. In addition, subjective skin irritation was evaluated by self-observation, and objective skin irritation was assessed through expert interviews. The adenosine-loaded dissolving microneedle patches had a similar or better efficacy than the adenosine cream. Both groups showed statistically significant efficacy for almost all parameters (P < 0.05). The dissolving microneedle patches had a long-lasting effect on the average wrinkle depth (P < 0.05), only showed efficacy in dermal density (P < 0.05), had an early improving effect on elasticity (P < 0.05), and demonstrated better hydration efficacy (P < 0.001). No adverse effects were observed in either group during the test period. In the clinical efficacy test of four skin-improvement parameters, adenosine-loaded dissolving microneedle patches showed the same or better effect than the adenosine cream, although the weekly adenosine dose was 140 times lower. The dissolving microneedle patches caused no adverse reactions. These adenosine-loaded dissolving microneedle patches are expected to be safe, effective, and novel cosmetics for skin improvement. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki
2014-01-01
Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. PMID:25287622
The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine
Baron, L; Gombault, A; Fanny, M; Villeret, B; Savigny, F; Guillou, N; Panek, C; Le Bert, M; Lagente, V; Rassendren, F; Riteau, N; Couillin, I
2015-01-01
The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation. PMID:25654762
Maldonado, Claudio; Pushpakumar, Sathnur B; Perez-Abadia, Gustavo; Arumugam, Sengodagounder; Lane, Andrew N
2013-05-01
Ischemia-reperfusion injury is a devastating complication that occurs in allotransplantation and replantation of limbs. Over the years, several preservation strategies have been used to conserve the critical levels of intracellular adenosine triphosphate (ATP) during ischemia to sustain the ion gradients across the membranes and thus the tissue viability. The administration of exogenous ATP to ischemic tissues is known to provide beneficial effects during reperfusion, but it is unclear whether it provides protection during ischemia. The purpose of the present study was to determine the effect of ATP administration on high-energy phosphate levels in ischemic skeletal muscle and to examine the role of purinergic and adenosine receptors in mediating the response to exogenous ATP. The extensor digitorum longus muscles of Fischer rats were subjected to ischemia and treated with different concentrations of ATP with or without purinergic and adenosine receptor blockers. Phosphorus-31 nuclear magnetic resonance spectroscopy was used to measure the rate of decay of ATP, phosphocreatine (PCr), and the formation of adenosine monophosphate and acidification. Phosphorylated compounds were analyzed using a simple model of energy metabolism, and the PCr half-life was used as an index of internal depletion of ATP to distinguish between intracellular and extracellular ATP. PCr decay was rapid in all muscle groups and was followed by gradual ATP decay. The half-life of PCr was significantly longer in the ATP-treated muscles than in the vehicle controls and was maximally prolonged by treating with slow hydrolyzing adenosine 5'-O-(3-thio)triphosphate. Purinoceptor (P2X) blockade with ATP treatment significantly increased the half-life of PCr, and adenosine receptor blockers blunted the response. Administration of adenosine to ischemic muscles significantly increased the half-life of PCr compared with that in the vehicle controls. Exogenous ATP administration to ischemic skeletal muscles appears to spare intracellular energy by acting primarily through adenosine receptors. Copyright © 2013 Elsevier Inc. All rights reserved.
Ticagrelor and Rosuvastatin Have Additive Cardioprotective Effects via Adenosine.
Birnbaum, Yochai; Birnbaum, Gilad D; Birnbaum, Itamar; Nylander, Sven; Ye, Yumei
2016-12-01
Ticagrelor inhibits the equilibrative-nucleoside-transporter-1 and thereby, adenosine cell re-uptake. Ticagrelor limits infarct size (IS) in non-diabetic rats and the effect is adenosine-dependent. Statins, via ecto-5'-nucleotidase activation, also increase adenosine levels and limit IS. Ticagrelor and rosuvastatin have additive effects on myocardial adenosine levels, and therefore, on IS and post-reperfusion activation of the NLRP3-inflammasome. Diabetic ZDF rats received via oral gavage; water (control), ticagrelor (150 mg/kg/d), prasugrel (7.5 mg/kg/d), rosuvastatin (5 mg/kg/d), ticagrelor + rosuvastatin and prasugrel + rosuvastatin for 3d. On day 4, rats underwent 30 min coronary artery occlusion and 24 h of reperfusion. Two additional groups received, ticagrelor + rosuvastatin or water in combination with CGS15943 (CGS, an adenosine receptor antagonist, 10 mg/kg i.p. 1 h before ischemia). Both ticagrelor and rosuvastatin increased myocardial adenosine levels with an additive effect of the combination whereas prasugrel had no effect. Similarly, both ticagrelor and rosuvastatin significantly reduced IS with an additive effect of the combination whereas prasugrel had no effect. The effect on IS was adenosine dependent as CGS15943 reversed the effect of ticagrelor + rosuvastatin. The ischemia-reperfusion injury increased myocardial mRNA levels of NLRP3, ASC, IL-1β and IL-6. Ticagrelor and rosuvastatin, but not prasugrel, significantly decreased these pro-inflammatory mediators with a trend to an additive effect of the combination. The combination also increased the levels of anti-inflammatory 15-epilipoxin A 4 . Ticagrelor and rosuvastatin when given in combination have an additive effect on local myocardial adenosine levels in the setting of ischemia reperfusion. This translates into an additive cardioprotective effect mediated by adenosine-induced effects including downregulation of pro- but upregulation of anti-inflammatory mediators.
Klein-Wiele, Oliver; Garmer, Marietta; Urbien, Rhyan; Busch, Martin; Kara, Kaffer; Mateiescu, Serban; Grönemeyer, Dietrich; Schulte-Hermes, Michael; Garbrecht, Marc; Hailer, Birgit
2015-12-22
Cardiovascular Magnetic Resonance (CMR) with adenosine stress is a valuable diagnostic tool in coronary artery disease (CAD). However, despite the development of MR conditional pacemakers CMR is not yet established in clinical routine for pacemaker patients with known or suspected CAD. A possible reason is that adenosine stress perfusion for ischemia detection in CMR has not been studied in patients with cardiac conduction disease requiring pacemaker therapy. Other than under resting conditions it is unclear whether MR safe pacing modes (paused pacing or asynchronous mode) can be applied safely because the effect of adenosine on heart rate is not precisely known in this entity of patients. We investigate for the first time feasibility and safety of adenosine stress CMR in pacemaker patients in clinical routine and evaluate a pacing protocol that considers heart rate changes under adenosine. We retrospectively analyzed CMR scans of 24 consecutive patients with MR conditional pacemakers (mean age 72.1 ± 11.0 years) who underwent CMR in clinical routine for the evaluation of known or suspected CAD. MR protocol included cine imaging, adenosine stress perfusion and late gadolinium enhancement. Pacemaker indications were sinus node dysfunction (n = 18) and second or third degree AV block (n = 6). Under a pacing protocol intended to avoid competitive pacing on the one hand and bradycardia due to AV block on the other no arrhythmia occurred. Pacemaker stimulation was paused to prevent competitive pacing in sinus node dysfunction with resting heart rate >45 bpm. Sympatho-excitatory effect of adenosine led to a significant acceleration of heart rate by 12.3 ± 8.3 bpm (p < 0.001), no bradycardia occurred. On the contrary in AV block heart rate remained constant; asynchronous pacing above resting heart rate did not interfere with intrinsic rhythm. Adenosine stress CMR appears to be feasible and safe in patients with MR conditional pacemakers. Heart rate response to adenosine has to be considered for the choice of pacing modes during CMR.
Katz, N. K.; Ryals, J. M.; Wright, D. E.
2014-01-01
Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. The current study used a mouse model of painful diabetic neuropathy to determine the effect of diabetes on endogenous adenosine production, and if central or peripheral delivery of adenosine receptor agonists could alleviate signs of mechanical allodynia in diabetic mice. Diabetes was induced using streptozocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Hydrolysis of AMP into adenosine by ectonucleotidases was determined in the dorsal root ganglia (DRG) and spinal cord at 8-weeks post-induction of diabetes. AMP, adenosine and the specific A1R agonist, N6-cyclopentyladenosine (CPA), were administered both centrally (intrathecal) and peripherally (intraplantar) to determine the effect of activation of adenosine receptors on mechanical allodynia in diabetic mice. Eight weeks post-induction, diabetic mice displayed significantly decreased hydrolysis of extracellular AMP in the DRG; at this same time, diabetic mice displayed significantly decreased mechanical withdrawal thresholds compared to nondiabetic controls. Central delivery AMP, adenosine and CPA significantly improved mechanical withdrawal thresholds in diabetic mice. Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of painful diabetic neuropathy. Moreover, central and peripheral activation of A1R significantly improved mechanical sensitivity, warranting further investigation into this important antinociceptive pathway as a novel therapeutic option for the treatment of painful diabetic neuropathy. PMID:25451280
Yetgin, Tuncay; Uitterdijk, André; Te Lintel Hekkert, Maaike; Merkus, Daphne; Krabbendam-Peters, Ilona; van Beusekom, Heleen M M; Falotico, Robert; Serruys, Patrick W; Manintveld, Olivier C; van Geuns, Robert-Jan M; Zijlstra, Felix; Duncker, Dirk J
2015-12-28
In the absence of effective clinical pharmacotherapy for prevention of reperfusion-mediated injury, this study re-evaluated the effects of intracoronary adenosine on infarct size and no-reflow in a porcine model of acute myocardial infarction using clinical bolus and experimental high-dose infusion regimens. Despite the clear cardioprotective effects of adenosine, when administered prior to ischemia, studies on cardioprotection by adenosine when administered at reperfusion have yielded contradictory results in both pre-clinical and clinical settings. Swine (54 ± 1 kg) were subjected to a 45-min mid-left anterior descending artery occlusion followed by 2 h of reperfusion. In protocol A, an intracoronary bolus of 3 mg adenosine injected over 1 min (n = 5) or saline (n = 10) was administered at reperfusion. In protocol B, an intracoronary infusion of 50 μg/kg/min adenosine (n = 15) or saline (n = 21) was administered starting 5 min prior to reperfusion and continued throughout the 2-h reperfusion period. In protocol A, area-at-risk, infarct size, and no-reflow were similar between groups. In protocol B, risk zones were similar, but administration of adenosine resulted in significant reductions in infarct size from 59 ± 3% of the area-at-risk in control swine to 46 ± 4% (p = 0.02), and no-reflow from 49 ± 6% of the infarct area to 26 ± 6% (p = 0.03). During reperfusion, intracoronary adenosine can limit infarct size and no-reflow in a porcine model of acute myocardial infarction. However, protection was only observed when adenosine was administered via prolonged high-dose infusion, and not via short-acting bolus injection. These findings warrant reconsideration of adenosine as an adjuvant therapy during early reperfusion. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA)
2011-01-01
Background Staphylococcus aureus is a human pathogen that produces extracellular adenosine to evade clearance by the host immune system, an activity attributed to the 5'-nucleotidase activity of adenosine synthase (AdsA). In mammals, conversion of adenosine triphosphate to adenosine is catalyzed in a two-step process: ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTDPases) hydrolyze ATP and ADP to AMP, whereas 5'-nucleotidases hydrolyze AMP to adenosine. NTPDases harbor apyrase conserved regions (ACRs) that are critical for activity. Results NTPDase ACR motifs are absent in AdsA, yet we report here that recombinant AdsA hydrolyzes ADP and ATP in addition to AMP. Competition assays suggest that hydrolysis occurs following binding of all three substrates at a unique site. Alanine substitution of two amino acids, aspartic acid 127 and histidine 196 within the 5'-nucleotidase signature sequence, leads to reduced AMP or ADP hydrolysis but does not affect the binding of these substrates. Conclusion Collectively, these results provide insight into the unique ability of AdsA to produce adenosine through the consecutive hydrolysis of ATP, ADP and AMP, thereby endowing S. aureus with the ability to modulate host immune responses. PMID:22035583
The Role of Adenosine A2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone
Khayat, Maan T.
2017-01-01
Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediators that are not fully disclosed. The vascular endothelium plays a pivotal role in regulating blood flow to and from all body organs. Also, the vascular endothelium is not merely a physical barrier; it is a complex tissue with numerous functions. Among adenosine receptors, A2A receptor subtype (A2AAR) stands out as the primary receptor responsible for the vasodilatory effects of adenosine. This review focuses on important effectors of the vascular endothelium, including adenosine, adenosine receptors, EETs (epoxyeicosatrienoic acids), HETEs (hydroxyeicosatetraenoic acids), PPARs (peroxisome proliferator-activated receptors), and KATP channels. Given the impact of vascular tone regulation in cardiovascular physiology and pathophysiology, better understanding of the mechanisms affecting it could have a significant potential for developing therapeutic agents for cardiovascular diseases. PMID:28884118
Li, Na; Liu, Shi Gang; Fan, Yu Zhu; Ju, Yan Jun; Xiao, Na; Luo, Hong Qun; Li, Nian Bing
2018-07-12
The various synthetic routes of carbon dots (C-dots) feature a considerable step toward their potential use in chemical sensors and biotechnology. Herein, by coupling phosphorus and nitrogen element introduction, the adenosine-derived N/P co-doped C-dots with fluorescence enhancement were achieved. By separately employing adenosine, adenosine monophosphate, adenosine diphosphate, and adenosine-5'-triphosphate as precursors, the effect of N/P co-doping on the fluorescence emission is discussed in detail. The formed C-dots with adenosine monophosphate exhibited strong blue fluorescence with a high quantum yield of 33.81%. Then the C-dots were employed as a fluorescent probe and utilized to develop a fast, sensitive, and selective picric acid sensor. The fluorescence of C-dots can be quenched by picric acid immediately, giving rise to a picric acid determination down to 30 nM. The possible mechanism of fluorescence quenching was discussed, which was proved to be inner filter effect and static quenching. Moreover, this method has the potential to detect picric acid in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Role of adenosine receptors in caffeine tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holtzman, S.G.; Mante, S.; Minneman, K.P.
1991-01-01
Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity ofmore » caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.« less
Mahaffey, K W; Puma, J A; Barbagelata, N A; DiCarli, M F; Leesar, M A; Browne, K F; Eisenberg, P R; Bolli, R; Casas, A C; Molina-Viamonte, V; Orlandi, C; Blevins, R; Gibbons, R J; Califf, R M; Granger, C B
1999-11-15
The Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial was designed to test the hypothesis that adenosine as an adjunct to thrombolysis would reduce myocardial infarct size. Reperfusion therapy for acute myocardial infarction (MI) has been shown to reduce mortality, but reperfusion itself also may have deleterious effects. The AMISTAD trial was a prospective, open-label trial of thrombolysis with randomization to adenosine or placebo in 236 patients within 6 h of infarction onset. The primary end point was infarct size as determined by Tc-99 m sestamibi single-photon emission computed tomography (SPECT) imaging 6+/-1 days after enrollment based on multivariable regression modeling to adjust for covariates. Secondary end points were myocardial salvage index and a composite of in-hospital clinical outcomes (death, reinfarction, shock, congestive heart failure or stroke). In all, 236 patients were enrolled. Final infarct size was assessed in 197 (83%) patients. There was a 33% relative reduction in infarct size (p = 0.03) with adenosine. There was a 67% relative reduction in infarct size in patients with anterior infarction (15% in the adenosine group vs. 45.5% in the placebo group) but no reduction in patients with infarcts located elsewhere (11.5% for both groups). Patients randomized to adenosine tended to reach the composite clinical end point more often than those assigned to placebo (22% vs. 16%; odds ratio, 1.43; 95% confidence interval, 0.71 to 2.89). Many agents thought to attenuate reperfusion injury have been unsuccessful in clinical investigation. In this study, adenosine resulted in a significant reduction in infarct size. These data support the need for a large clinical outcome trial.
Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung
2015-02-01
We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Gettys, George C.; Liu, Fang; Kimlin, Ed; Baghdoyan, Helen A.; Lydic, Ralph
2012-01-01
Background Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. Methods Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N6-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and time to recovery of righting response (RoRR) was quantified after PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), or SPA and DPCPX. Results First, SPA significantly decreased respiratory rate (−18%), tidal volume (−12%) and minute ventilation (−16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). DPCPX alone caused a concentration-dependent increase in acetylcholine, decrease in RoRR, and decrease in breathing rate. Coadministration of SPA and DPCPX blocked the SPA-induced decrease in acetylcholine and increase in RoRR. Conclusions Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing. PMID:23263018
Peart, J; Headrick, J P
2000-11-01
We assessed the role of A(1) adenosine receptor (A(1)AR) activation by endogenous adenosine in the modulation of ischemic contracture and postischemic recovery in Langendorff-perfused mouse hearts subjected to 20 min of total ischemia and 30 min of reperfusion. In control hearts, the rate-pressure product (RPP) and first derivative of pressure development over time (+dP/dt) recovered to 57 +/- 3 and 58 +/- 3% of preischemia, respectively. Diastolic pressure remained elevated at 20 +/- 2 mmHg (compared with 3 +/- 1 mmHg preischemia). Interstitial adenosine, assessed by microdialysis, rose from approximately 0.3 to 1.9 microM during ischemia compared with approximately 15 microM in rat heart. Nonetheless, these levels will near maximally activate A(1)ARs on the basis of effects of exogenous adenosine and 2-chloroadenosine. Neither A(1)AR blockade with 200 nM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) during the ischemic period alone nor A(1)AR activation with 50 nM N(6)-cyclopentyladenosine altered rapidity or extent of ischemic contracture. However, ischemic DPCPX treatment significantly depressed postischemic recovery of RPP and +dP/dt (44 +/- 3 and 40 +/- 4% of preischemia, respectively). DPCPX treatment during the reperfusion period alone also reduced recovery of RPP and +dP/dt (to 44 +/- 2 and 47 +/- 2% of preischemia, respectively). These data indicate that 1) interstitial adenosine is lower in mouse versus rat myocardium during ischemia, 2) A(1)AR activation by endogenous adenosine or exogenous agonists does not modify ischemic contracture in murine myocardium, 3) A(1)AR activation by endogenous adenosine during ischemia attenuates postischemic stunning, and 4) A(1)AR activation by endogenous adenosine during the reperfusion period also improves postischemic contractile recovery.
Randall, Patrick A.; Nunes, Eric J.; Janniere, Simone L.; Stopper, Colin M.; Farrar, Andrew M.; Sager, Thomas N.; Baqi, Younis; Hockemeyer, Jörg; Müller, Christa E.
2012-01-01
Rationale Adenosine A2A antagonists can reverse many of the behavioral effects of dopamine antagonists, including actions on instrumental behavior. However, little is known about the effects of selective adenosine antagonists on operant behavior when these drugs are administered alone. Objective The present studies were undertaken to investigate the potential for rate-dependent stimulant effects of both selective and nonselective adenosine antagonists. Methods Six drugs were tested: two nonselective adenosine antagonists (caffeine and theophylline), two adenosine A1 antagonists (DPCPX and CPT), and two adenosine A2A antagonists (istradefylline (KW6002) and MSX-3). Two schedules of reinforcement were employed; a fixed interval 240-s (FI-240 sec) schedule was used to generate low baseline rates of responding and a fixed ratio 20 (FR20) schedule generated high rates. Results Caffeine and theophylline produced rate-dependent effects on lever pressing, increasing responding on the FI-240 sec schedule but decreasing responding on the FR20 schedule. The A2A antagonists MSX-3 and istradefylline increased FI-240 sec lever pressing but did not suppress FR20 lever pressing in the dose range tested. In fact, there was a tendency for istradefylline to increase FR20 responding at a moderate dose. A1 antagonists failed to increase lever pressing rate, but DPCPX decreased FR20 responding at higher doses. Conclusions These results suggest that adenosine A2A antagonists enhance operant response rates, but A1 antagonists do not. The involvement of adenosine A2A receptors in regulating aspects of instrumental response output and behavioral activation may have implications for the treatment of effort-related psychiatric dysfunctions, such as psychomotor slowing and anergia in depression. PMID:21347642
Eckle, Tobias; Hughes, Kelly; Ehrentraut, Heidi; Brodsky, Kelley S.; Rosenberger, Peter; Choi, Doo-Sup; Ravid, Katya; Weng, Tingting; Xia, Yang; Blackburn, Michael R.; Eltzschig, Holger K.
2013-01-01
The signaling molecule adenosine has been implicated in attenuating acute lung injury (ALI). Adenosine signaling is terminated by its uptake through equilibrative nucleoside transporters (ENTs). We hypothesized that ENT-dependent adenosine uptake could be targeted to enhance adenosine-mediated lung protection. To address this hypothesis, we exposed mice to high-pressure mechanical ventilation to induce ALI. Initial studies demonstrated time-dependent repression of ENT1 and ENT2 transcript and protein levels during ALI. To examine the contention that ENT repression represents an endogenous adaptive response, we performed functional studies with the ENT inhibitor dipyridamole. Dipyridamole treatment (1 mg/kg; EC50=10 μM) was associated with significant increases in ALI survival time (277 vs. 395 min; P<0.05). Subsequent studies in gene-targeted mice for Ent1 or Ent2 revealed a selective phenotype in Ent2−/− mice, including attenuated pulmonary edema and improved gas exchange during ALI in conjunction with elevated adenosine levels in the bronchoalveolar fluid. Furthermore, studies in genetic models for adenosine receptors implicated the A2B adenosine receptor (Adora2b) in mediating ENT-dependent lung protection. Notably, dipyridamole-dependent attenuation of lung inflammation was abolished in mice with alveolar epithelial Adora2b gene deletion. Our newly identified crosstalk pathway between ENT2 and alveolar epithelial Adora2b in lung protection during ALI opens possibilities for combined therapies targeted to this protein set.—Eckle, T., Hughes, K., Ehrentraut, H., Brodsky, K. S., Rosenberger, P., Choi, D.-S., Ravid, K., Weng, T., Xia, Y., Blackburn, M. R., Eltzschig, H. K. Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury. PMID:23603835
Polska, Elzbieta; Ehrlich, Paulina; Luksch, Alexandra; Fuchsjäger-Mayrl, Gabriele; Schmetterer, Leopold
2003-07-01
There is evidence from a variety of animal studies that the adenosine system plays a role in the control of intraocular pressure (IOP) and ocular blood flow. However, human data on the effect of adenosine on IOP and choroidal and optic nerve blood flow are not available. The effect of stepwise increases in doses of adenosine (10, 20, and 40 micro g/kg per minute, 30 minutes per infusion step) on optic nerve head blood flow, choroidal blood flow, and IOP was determined in a placebo-controlled double-masked clinical trial in 12 healthy male volunteers. Blood flow in the optic nerve head and choroid was measured with laser Doppler flowmetry. In addition, fundus pulsation amplitude in the macula (FPAM) and the optic nerve head (FPAO) were assessed with laser interferometry. Adenosine induced a small but significant decrease in IOP (at 40 microg/kg per minute: 12% +/- 13%), which was significant versus placebo (P = 0.046). In addition, adenosine induced a significant increase in choroidal blood flow (P < 0.001) and optic nerve head blood flow (P = 0.037), and FPAM (P = 0.0014) and tended to increase FPAO (P = 0.057). At the highest administered dose, the effect on choroidal hemodynamic parameters between 14% and 17%, whereas the effect on optic nerve hemodynamic parameters was between 3% and 11%. These data are consistent with adenosine inducing choroidal and optic nerve head vasodilatation and reducing IOP in healthy humans. Considering the neuroprotective properties of adenosine described in previous animal experiments the adenosine system is an attractive target system for therapeutic approaches in glaucoma.
Low-dose adenosine stress echocardiography: Detection of myocardial viability
Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav
2003-01-01
Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months) were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 ± 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability. PMID:12812523
Gettys, George C; Liu, Fang; Kimlin, Ed; Baghdoyan, Helen A; Lydic, Ralph
2013-02-01
Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and the time to recovery of righting response (RoRR) was quantified after a PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1, 3-dipropyl-8-cyclopentylxanthine, or SPA and 1, 3-dipropyl-8-cyclopentylxanthine. First, SPA significantly decreased respiratory rate (-18%), tidal volume (-12%), and minute ventilation (-16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). 1, 3-dipropyl-8-cyclopentylxanthine alone caused a concentration-dependent increase in acetylcholine, a decrease in RoRR, and a decrease in breathing rate. Coadministration of SPA and 1, 3-dipropyl-8-cyclopentylxanthine blocked the SPA-induced decrease in acetylcholine and increase in RoRR. Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing.
Adenosine-Associated Delivery Systems
Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali
2016-01-01
Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156
Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.
2012-01-01
SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286
Astrocyte-derived adenosine is central to the hypnogenic effect of glucose
Scharbarg, Emeric; Daenens, Marion; Lemaître, Frédéric; Geoffroy, Hélène; Guille-Collignon, Manon; Gallopin, Thierry; Rancillac, Armelle
2016-01-01
Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity. PMID:26755200
Lin, Yanna; Dai, Yuxue; Sun, Yuanling; Ding, Chaofan; Sun, Weiyan; Zhu, Xiaodong; Liu, Hao; Luo, Chuannan
2018-05-15
In this work, HKUST-1 and QDs-luminol-aptamer conjugates were prepared. The QDs-luminol-aptamer conjugates can be adsorbed by graphene oxide through π-π conjugation. When the adenosine was added, the QDs-luminol-aptamer conjugates were released from magnetic graphene oxide (MGO), the chemiluminescent switch was turned on. It was reported that HKUST-1 can catalyze the chemiluminescence reaction of luminol-H 2 O 2 system in an alkaline medium, and improve the chemiluminescence resonance energy transfer (CRET) between chemiluminescence and QDs indirectly. Thus, the adenosine can be detected sensitively. Based on this phenomenon, the excellent platform for detection of adenosine was established. Under the optimized conditions, the linear detection range for adenosine was 1.0 × 10 -12 -2.2 × 10 -10 mol/L with a detection limit of 2.1 × 10 -13 mol/L. The proposed method was successfully used for adenosine detection in biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Phillis, J. W.
1986-01-01
The effects of four progestational agents pregnenolone sulphate, cyproterone acetate, norethindrone acetate and progesterone, on adenosine-evoked depression of the firing of rat cerebral cortical neurones have been studied. When applied iontophoretically, pregnenolone sulphate, cyproterone, and norethindrone enhanced the actions of iontophoretically applied adenosine and failed to potentiate the depressant effects of adenosine 5'-N-ethylcarboxamide and gamma-aminobutyric acid. Cyproterone acetate (50 micrograms kg-1) and progesterone (200 micrograms kg-1) administered intravenously enhanced the depressant actions of iontophoretically applied adenosine. When applied by large currents, cyproterone, and less frequently norethindrone, depressed the firing of cerebral cortical neurones. The depressant effects of cyproterone were antagonized by caffeine. Pregnenolone sulphate tended to excite cortical neurones but neither this action, nor its potentiation of adenosine were reproduced by application of sulphate ions. It is hypothesized that some of the psychotropic actions of progestational agents may involve an enhancement of 'purinergic' tone in the central nervous system. PMID:3814905
Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I
2011-05-01
A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.
Filippov, Sergey; Pinkosky, Stephen L; Newton, Roger S
2014-08-01
To review the profile of ETC-1002, as shown in preclinical and clinical studies, including LDL-cholesterol (LDL-C)-lowering activity and beneficial effects on other cardiometabolic risk markers as they relate to the inhibition of adenosine triphosphate-citrate lyase and the activation of adenosine monophosphate-activated protein kinase. ETC-1002 is an adenosine triphosphate-citrate lyase inhibitor/adenosine monophosphate-activated protein kinase activator currently in Phase 2b clinical development. In seven Phase 1 and Phase 2a clinical studies, ETC-1002 dosed once daily for 2-12 weeks has lowered LDL-C and reduced high-sensitivity C-reactive protein by up to 40%, with neutral to positive effects on glucose levels, blood pressure, and body weight. Importantly, use of ETC-1002 in statin-intolerant patients has shown statin-like lowering of LDL-C without the muscle pain and weakness responsible for discontinuation of statin use by many patients. ETC-1002 has also been shown to produce an incremental benefit, lowering LDL-C as an add-on therapy to a low-dose statin. In over 300 individuals in studies of up to 12 weeks, ETC-1002 has been well tolerated with no serious adverse effects. Because adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase play central roles in regulating lipid and glucose metabolism, pharmacological modulation of these two enzymes could provide an important therapeutic alternative for statin-intolerant patients with hypercholesterolemia.
Queiroz, Glória; Quintas, Clara; Talaia, Carlos; Gonçalves, Jorge
2004-08-01
In the prostatic portion of rat vas deferens, the non-selective adenosine receptor agonist NECA (0.1-30 microM), but not the A(2A) agonist CGS 21680 (0.001-10 microM), caused a facilitation of electrically evoked noradrenaline release (up to 43 +/- 4%), when inhibitory adenosine A(1) receptors were blocked. NECA-elicited facilitation of noradrenaline release was prevented by the A(2B) receptor-antagonist MRS 1754, enhanced by preventing cyclic-AMP degradation with rolipram, abolished by the protein kinase A inhibitors H-89, KT 5720 and cyclic-AMPS-Rp and attenuated by the protein kinase C inhibitors Ro 32-0432 and calphostin C. The adenosine uptake inhibitor NBTI also elicited a facilitation of noradrenaline release; an effect that was abolished by adenosine deaminase and attenuated by MRS 1754, by inhibitors of the extracellular nucleotide metabolism and by blockade of alpha(1)-adrenoceptors and P2X receptors with prazosin and NF023, respectively. It was concluded that adenosine A(2B) receptors are involved in a facilitation of noradrenaline release in the prostatic portion of rat vas deferens that can be activated by adenosine formed by extracellular catabolism of nucleotides. The receptors seem to be coupled to the adenylyl cyclase-protein kinase A pathway but activation of the protein kinase C by protein kinase A, may also contribute to the adenosine A(2B) receptor-mediated facilitation of noradrenaline release.
Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus
Zhang, Dali; Xiong, Wei; Jackson, Michael F.
2016-01-01
Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965
Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus.
Zhang, Dali; Xiong, Wei; Jackson, Michael F; Parkinson, Fiona E
2016-07-01
Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5'-nucleotidase activity. Wild-type (CD73(+/+)) and ecto-5'-nucleotidase-deficient (CD73(-/-)) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73(+/+) mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73(+/+) mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg(2+) conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5'-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73(-/-) mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5'-nucleotidase activity. Copyright © 2016 The Author(s).
Schwann Cells Metabolize Extracellular 2′,3′-cAMP to 2′-AMP
Verrier, Jonathan D.; Kochanek, Patrick M.
2015-01-01
The 3′,5′-cAMP–adenosine pathway (3′,5′-cAMP→5′-AMP→adenosine) and the 2′,3′-cAMP–adenosine pathway (2′,3′-cAMP→2′-AMP/3′-AMP→adenosine) are active in the brain. Oligodendrocytes participate in the brain 2′,3′-cAMP–adenosine pathway via their robust expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase; converts 2′,3′-cAMP to 2′-AMP). Because Schwann cells also express CNPase, it is conceivable that the 2′,3′-cAMP–adenosine pathway exists in the peripheral nervous system. To test this and to compare the 2′,3′-cAMP–adenosine pathway to the 3′,5′-cAMP–adenosine pathway in Schwann cells, we examined the metabolism of 2′,3′-cAMP, 2′-AMP, 3′-AMP, 3′,5′-cAMP, and 5′-AMP in primary rat Schwann cells in culture. Addition of 2′,3′-cAMP (3, 10, and 30 µM) to Schwann cells increased levels of 2′-AMP in the medium from 0.006 ± 0.002 to 21 ± 2, 70 ± 3, and 187 ± 10 nM/µg protein, respectively; in contrast, Schwann cells had little ability to convert 2′,3′-cAMP to 3′-AMP or 3′,5′-cAMP to either 3′-AMP or 5′-AMP. Although Schwann cells slightly converted 2′,3′-cAMP and 2′-AMP to adenosine, they did so at very modest rates (e.g., 5- and 3-fold, respectively, more slowly compared with our previously reported studies in oligodendrocytes). Using transected myelinated rat sciatic nerves in culture medium, we observed a time-related increase in endogenous intracellular 2′,3′-cAMP and extracellular 2′-AMP. These findings indicate that Schwann cells do not have a robust 3′,5′-cAMP–adenosine pathway but do have a 2′,3′-cAMP–adenosine pathway; however, because the pathway mostly involves 2′-AMP formation rather than 3′-AMP, and because the conversion of 2′-AMP to adenosine is slow, metabolism of 2′,3′-cAMP mostly results in the accumulation of 2′-AMP. Accumulation of 2′-AMP in peripheral nerves postinjury could have pathophysiological consequences. PMID:25998049
Esquisatto, L C; Costa, S K; Camargo, E A; Ribela, M T; Brain, S D; de Nucci, G; Antunes, E
2001-09-01
1. The contribution of sensory neurons and mast cells to the oedema evoked by adenosine A1 (N(6)-cyclopentyladenosine, CPA, 3 - 30 nmol site(-1)), A2 (5'N-ethylcarboxamidoadenosine, NECA, 1 - 10 nmol site(-1)) and A3 receptor agonists (N6-[3-iodobenzyl]-N-methyl-5'-carboxiamidoadenosine, IB-MECA, 0.01 - 3 nmol site(-1)) was investigated in the rat skin microvasculature, by the extravascular accumulation of intravenously-injected (i.v.) 125I-albumin. 2. Intradermal (i.d.) injection of adenosine and analogues induced increased microvascular permeability in a dose-dependent manner (IB-MECA > NECA > CPA > adenosine). The non-selective adenosine receptor antagonist theophylline (5 - 50 nmol site(-1)) markedly inhibited adenosine, CPA or NECA but not IB-MECA-induced plasma extravasation. The A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.3 - 3 micromol kg(-1), i.v.) significantly reduced CPA-induced plasma extravasation whereas responses to adenosine, NECA or IB-MECA were unchanged. The A2 receptor antagonist 3,7-dymethyl-1-proprargylxanthine (DMPX, 0.5 - 50 nmol site(-1)) significantly reduced NECA-induced plasma extravasation without affecting responses to adenosine, CPA and IB-MECA. 3. The tachykinin NK1 receptor antagonist (S)-1-[2-[3-(3,4-dichlorphenyl)-1 (3-isopropoxyphenylacetyl) piperidin-3-yl] ethyl]-4-phenyl-1 azaniabicyclo [2.2.2]octane chloride (SR140333), but not the NK2 receptor antagonist (S)-N-methyl-N[4-acetylamino-4-phenyl piperidino)-2-(3,4-dichlorophenyl)butyl]-benzamide (SR48968), significantly inhibited the plasma extravasation evoked by higher doses of adenosine (100 nmol site(-1)), CPA (100 nmol site(-1)), NECA (1 nmol site(-1)) and IB-MECA (0.1 - 1 nmol site(-1)). In rats treated with capsaicin to destroy sensory neurons, the response to higher doses of adenosine, CPA and NECA, but not IB-MECA, was significantly inhibited. 4. The effects of adenosine and analogues were largely inhibited by histamine and 5-hydroxytryptamine (5-HT) antagonists and by compound 48/80 pretreatment. 5. In conclusion, our results provide evidence that adenosine A1 and A2, but not A3, receptor agonists may function as cutaneous neurogenic pro-inflammatory mediators; acting via microvascular permeability-increasing mechanisms that can, depending on dose of agonist and purine receptor under study, involve the tachykinin NK1 receptor and mast cell amines.
Headrick, John P; Willems, Laura; Ashton, Kevin J; Holmgren, Kirsten; Peart, Jason; Matherne, G Paul
2003-01-01
The genesis of the ischaemia intolerant phenotype in aged myocardium is poorly understood. We tested the hypothesis that impaired adenosine-mediated protection contributes to ischaemic intolerance, and examined whether this is countered by A1 adenosine receptor (A1AR) overexpression. Responses to 20 min ischaemia and 45 min reperfusion were assessed in perfused hearts from young (2–4 months) and moderately aged (16–18 months) mice. Post-ischaemic contractility was impaired by ageing with elevated ventricular diastolic (32 ± 2 vs. 18 ± 2 mmHg in young) and reduced developed (37 ± 3 vs. 83 ± 6 mmHg in young) pressures. Lactate dehydrogenase (LDH) loss was exaggerated (27 ± 2 vs. 16 ± 2 IU g−1in young) whereas the incidence of tachyarrhythmias was similar in young (15 ± 1 %) and aged hearts (16 ± 1 %). Functional analysis confirmed equipotent effects of 50 μm adenosine at A1 and A2 receptors in young and aged hearts. Nonetheless, while 50 μm adenosine improved diastolic (5 ± 1 mmHg) and developed pressures (134 ± 7 mmHg) and LDH loss (6 ± 2 IU g−1) in young hearts, it did not alter these variables in the aged group. Adenosine did attenuate arrhythmogenesis for both ages (to ∼10 %). In contrast to adenosine, 50 μm diazoxide reduced ischaemic damage and arrhythmogenesis for both ages. Contractile and anti-necrotic effects of adenosine were limited by 100 μm 5-hydroxydecanoate (5-HD) and 3 μm chelerythrine. Anti-arrhythmic effects were limited by 5-HD but not chelerythrine. Non-selective (100 μm 8-sulfophenyltheophylline) and A1-selective (150 nm 8-cyclopentyl-1,3-dipropylxanthine) adenosine receptor antagonism impaired ischaemic tolerance in young but not aged hearts. Quantitative real-time PCR and radioligand analysis indicated that impaired protection is unrelated to changes in A1AR mRNA transcription, or receptor density (∼8 fmol mg−1 protein in both age groups). However, A1AR overexpression improved tolerance for both ages, restoring adenosine-mediated protection. These data reveal impaired protection via exogenous and endogenous adenosine contributes to ischaemic intolerance with ageing. This is independent of A1AR expression, and involves ineffective activation of a 5-HD-/diazoxide-sensitive process. The effects of A1AR overexpression indicate that the age-related failure in signalling can be overcome. PMID:12717009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saksonov, N.P.
Experiments were conducted on male, mongrel albino rats. They were exposed to /sup 60/Co ..gamma.. radiation once, in a dosage of 600 R. Estradiol and hydrocortisone were given intraperitoneally at the rate of 1 mg/kg, 2 h before irradiation or 2, 24 and 72 h after exposure. The animals were sacrificed 5 days after irradiation. These studies established that single exposure of animals to radiation in a dosage of 600 R leads to activation of processes of peroxidation of membrane lipids of the hepatic mitochondria. When estradiol is given 2 and 4 days before sacrificing, one observes acceleration of processesmore » of peroxidation of lipids without reliable change in malonic dialdehyde content. Administration of estrogen 5 days prior to sacrificing leads to a drop of malonic dialdehyde level, which is indicative of attenuation of the process of lipid peroxidation. Administration of hydrocortisone is associated with elevation of the latency period and level of peroxidation after 5 days, as compared to intact animals. Injection of this hormone 2 days before sacrificing the animals leads to attenuation and decrease in rate of peroxidation. The obtained data indicate that there are different mechanisms involved in the inhibitory effects of estradiol and hydrocortisone on peroxidation of lipids of mitochondrial membranes of the rat liver, activated by irradiation. Thus, it may be assumed that steroid hormones are actively involved in regulation of lipid peroxidation when mammals are exposed to radiation. (ERB)« less
Du, Wen-Yuan; Chang, Cheng; Zhang, Yu; Liu, Yu-Ying; Sun, Kai; Wang, Chuan-She; Wang, Ming-Xia; Liu, Yuan; Wang, Fu; Fan, Jing-Yu; Li, Peng-Tao; Han, Jing-Yan
2013-05-02
Chlorogenic acid (CA) exits widely in those Chinese herbal injections that have antibacterial and antiphlogistic effects and belongs to the ethnopharmacological family of medicines. Chinese herbal injections containing high levels of CA have been reported to increase the adverse drug reactions, but the mechanism for which is still unclear. In this study, we investigated the mechanism of the CA derived adverse drug reactions. The present study was to explore the potential role of CA in initiating inflammatory reaction and the underlying mechanism. Male Wistar rats were treated with different dosages of CA for different time period. The variables examined included microcirculation by intravital microscopy, histology of ileum tissue, expression of adhesion molecules CD11b and CD18 on leukocytes by flow cytometry, myeloperoxidase activity and maleic dialdehyde content in ileum tissue by spectrophotometry, activity of superoxide dismutase and catalase in serum by ELISA, and expression of NADPH oxidase subunits by PCR and Western blot. High-dose CA increased the number of adherent leukocytes, generation of peroxides in the venular walls and induced albumin leakage from mesentery venules. High-dose CA induced changes also included an increase in maleic dialdehyde, myeloperoxidase, inflammatory cytokines and NADPH oxidase activities, and a decline in activity of superoxide dismutase and catalase. High-dose, but not Low-dose CA induced inflammation reaction, and in this process an imbalance between oxidant and antioxidant mechanism may be involved, providing more information for better understanding the rationale behind the adverse effects of CA. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
1986-04-21
Role of Adenosine in Muscles of Varied Fiber Types 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...Role of Adenosine in Muscles of Varied Fiber Types Name of Candidate: Lisa M. Schwartz Doctor of Philosophy Degree Ap r i 1 21 , 1 9 8 6 Thesis and...adenosine in muscles of varied fiber types Lisa M. Schwartz, Doctor of Philosophy, 1986 Dissertation Directed by: Jack E. McKenzie, Associate
Glynn, I. M.; Slayman, Carolyn W.; Eichberg, J.; Dawson, R. M. C.
1965-01-01
1. Subcellular fractions were prepared from the electric organs of Electrophorus and Torpedo and assayed for adenosine-triphosphatase activity. 2. Treatment of the `low-speed' fraction from Torpedo with m-urea gave an adenosine-triphosphatase preparation that was almost completely (98%) inhibited by ouabain (0·1mg./ml.) and dependent on the simultaneous presence of Na+ and K+. 3. The adenosine-triphosphatase preparations were exposed to [γ-32P]ATP for 30sec. in the presence of (i) Na+, (ii) K+, (iii) Na++K+ and (iv) Na++K++ouabain. No significant labelling of phosphatidic acid, triphosphoinositide or any other phospholipid was observed. 4. The results suggest that phospholipids do not act as phosphorylated intermediates in the `transport adenosine-triphosphatase' system of electric organ. PMID:14340060
Ankireddy, Seshadri Reddy; Kim, Jongsung
2015-01-01
Microbeads are frequently used as solid supports for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. Chip-based, quantum dot (QD)-bead-biomolecule probes have been used for the detection of various types of DNA. In this study, we developed dopamine (DA)-functionalized InP/ZnS QDs (QDs-DA) as fluorescence probes for the detection of adenosine in microfluidic chips. The photoluminescence (PL) intensity of the QDs-DA is quenched by Zn(2+) because of the strong coordination interactions. In the presence of adenosine, Zn(2+) cations preferentially bind to adenosine, and the PL intensity of the QDs-DA is recovered. A polydimethylsiloxane-based microfluidic chip was fabricated, and adenosine detection was confirmed using QDs-DA probes.
Ankireddy, Seshadri Reddy; Kim, Jongsung
2015-01-01
Microbeads are frequently used as solid supports for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. Chip-based, quantum dot (QD)-bead-biomolecule probes have been used for the detection of various types of DNA. In this study, we developed dopamine (DA)-functionalized InP/ZnS QDs (QDs-DA) as fluorescence probes for the detection of adenosine in microfluidic chips. The photoluminescence (PL) intensity of the QDs-DA is quenched by Zn2+ because of the strong coordination interactions. In the presence of adenosine, Zn2+ cations preferentially bind to adenosine, and the PL intensity of the QDs-DA is recovered. A polydimethylsiloxane-based microfluidic chip was fabricated, and adenosine detection was confirmed using QDs-DA probes. PMID:26347351
Tapbergenov, S O; Sovetov, B S; Tapbergenov, A T
2016-11-01
Administration of a large dose of adrenaline (4 mg/kg 60 min before analysis) increased blood levels of total leukocytes, lymphocytes, decreased T-cell suppressors, leukocyte migration inhibition reaction (LMIR) and NBT test, but increased the level of conjugated dienes (CD). Administration of AMPand adenosine increased levels of total leukocytes, lymphocytes, T- lymphocytes, T-helpers, decreased the level of malondialdehyde (MDA), LMIR, and T-cell suppressors. Sympathetic hyperactivation induced by administration of a large dose of adrenaline (4 mg/kg 60 min before analysis) was accompanied by an increase in heart and liver activities of glutathione peroxidase (GPx), catalase, AMP deaminase (AMPD), and adenosine deaminase (AD). Administration of AMP or adenosine caused a decrease in activities of glutathione reductase (GR), GPx, catalase, a decrease in the MDA level and an increase in activities of AMPD and AD in the heart. In the liver AMP and adenosine also caused a decrease in activities of glutathione reductase (GR), GPx, a decrease in the MDA level and an increase in activities of AMPD and AD. The data obtained suggest that administration of adrenaline, AMP, and adenosine influences activity of enzymes involved in purine nucleotide metabolism. However, in contrast to adrenaline, administration of AMP or adenosine does not provoke stress reaction.
Morita, Yo; Yoshida, Wataru; Savory, Nasa; Han, Sung Woong; Tera, Masayuki; Nagasawa, Kazuo; Nakamura, Chikashi; Sode, Koji; Ikebukuro, Kazunori
2011-08-15
By inserting an adenosine aptamer into an aptamer that forms a G-quadruplex, we developed an adaptor molecule, named the Gq-switch, which links an electrode with flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) that is capable of transferring electron to a electrode directly. First, we selected an FADGDH-binding aptamer and identified that its sequence is composed of two blocks of consecutive six guanine bases and it forms a polymerized G-quadruplex structure. Then, we inserted a sequence of an adenosine aptamer between the two blocks of consecutive guanine bases, and we found it also bound to adenosine. Then we named it as Gq-switch. In the absence of adenosine, the Gq-switch-FADGDH complex forms a 30-nm high bulb-shaped structure that changes in the presence of adenosine to give an 8-nm high wire-shaped structure. This structural change brings the FADGDH sufficiently close to the electrode for electron transfer to occur, and the adenosine can be detected from the current produced by the FADGDH. Adenosine was successfully detected with a concentration dependency using the Gq-switch-FADGDH complex immobilized Au electrode by measuring response current to the addition of glucose. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhao, Hui; Wang, Yong-Sheng; Tang, Xian; Zhou, Bin; Xue, Jin-Hua; Liu, Hui; Liu, Shan-Du; Cao, Jin-Xiu; Li, Ming-Hui; Chen, Si-Han
2015-08-05
We report on an enzyme-free and label-free strategy for the ultrasensitive determination of adenosine. A novel multipurpose adenosine aptamer (MAAP) is designed, which serves as an effective target recognition probe and a capture probe for malachite green. In the presence of adenosine, the conformation of the MAAP is converted from a hairpin structure to a G-quadruplex. Upon addition of malachite green into this solution, a noticeable enhancement of resonance light scattering was observed. The signal response is directly proportional to the concentration of adenosine ranging from 75 pM to 2.2 nM with a detection limit of 23 pM, which was 100-10,000 folds lower than those obtained by previous reported methods. Moreover, this strategy has been applied successfully for detecting adenosine in human urine and blood samples, further proving its reliability. The mechanism of adenosine inducing MAAP to form a G-quadruplex was demonstrated by a series of control experiments. Such a MAAP probe can also be used to other strategies such as fluorescence or spectrophotometric ones. We suppose that this strategy can be expanded to develop a universal analytical platform for various target molecules in the biomedical field and clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.
The Role of Extracellular Adenosine Triphosphate in Ischemic Organ Injury.
Zhao, Hailin; Kilgas, Susan; Alam, Azeem; Eguchi, Shiori; Ma, Daqing
2016-05-01
Ischemic tissue injury contributes to significant morbidity and mortality and is implicated in a range of pathologic conditions, including but not limited to myocardial infarction, ischemic stroke, and acute kidney injury. The associated reperfusion phase is responsible for the activation of the innate and adaptive immune system, further accentuating inflammation. Adenosine triphosphate molecule has been implicated in various ischemic conditions, including stroke and myocardial infarction. Adenosine triphosphate is a well-defined intracellular energy transfer and is commonly referred to as the body's "energy currency." However, Laboratory studies have demonstrated that extracellular adenosine triphosphate has the ability to initiate inflammation and is therefore referred to as a damage-associated molecular pattern. Purinergic receptors-dependent signaling, proinflammatory cytokine release, increased Ca influx into cells, and subsequent apoptosis have been shown to form a common underlying extracellular adenosine triphosphate molecular mechanism in ischemic organ injury. In this review, we aim to discuss the molecular mechanisms behind adenosine triphosphate-mediated ischemic tissue injury and evaluate the role of extracellular adenosine triphosphate in ischemic injury in specific organs, in order to provide a greater understanding of the pathophysiology of this complex process. We also appraise potential future therapeutic strategies to limit damage in various organs, including the heart, brain, kidneys, and lungs.
Detke, Siegfried
2007-01-01
TOR is an atypical multidrug resistance protein present in the human protozoan parasite, Leishmania. Resistance to the toxic adenosine analog tubercidin was brought about by redirecting the adenosine permease from the plasma membrane to the multivesicular tubule lysosome. The cells became resistant to tubercidin because they were unable to take up and accumulate this toxic purine. The domain which was recognized by TOR in this internalization pathway was identified by expressing portions of this transporter in Leishmania and assessing whether they were capable of hindering the multidrug resistance capability of TOR. This approach identified the adenosine permease region spanning Met289 to Trp305. This region was also the epitope recognized by the internalization mechanism. An internal deletion mutant lacking Met289-Trp305 was functionally active but could no longer be internalized in cells with high TOR levels. The internalization and altered trafficking of the adenosine permease by TOR was observed in yeast and human embryonic kidney cells co-expressing these two Leishmania proteins indicating that the internalization process was conserved in evolutionary diverse organisms. The inability of Saccharomyces with a temperature sensitive ubiquitin ligase to internalize adenosine permease suggested that ubiquitination was involved in this altered trafficking. PMID:17428463
Detke, Siegfried
2007-05-15
TOR is an atypical multidrug resistance protein present in the human protozoan parasite, Leishmania. Resistance to the toxic adenosine analog tubercidin was brought about by redirecting the adenosine permease from the plasma membrane to the multivesicular tubule lysosome. The cells became resistant to tubercidin because they were unable to take up and accumulate this toxic purine. The domain, which was recognized by TOR in this internalization pathway, was identified by expressing portions of this transporter in Leishmania and assessing whether they were capable of hindering the multidrug resistance capability of TOR. This approach identified the adenosine permease region spanning Met289 to Trp305. This region was also the epitope recognized by the internalization mechanism. An internal deletion mutant lacking Met289-Trp305 was functionally active but could no longer be internalized in cells with high TOR levels. The internalization and altered trafficking of the adenosine permease by TOR was observed in yeast and human embryonic kidney cells co-expressing these two Leishmania proteins indicating that the internalization process was conserved in evolutionary diverse organisms. The inability of Saccharomyces with a temperature-sensitive ubiquitin ligase to internalize adenosine permease suggested that ubiquitination was involved in this altered trafficking.
Suppression of Adenosine-Activated Chloride Transport by Ethanol in Airway Epithelia
Raju, Sammeta V.; Wang, Guoshun
2012-01-01
Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM) for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (ISC) in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A2B adenosine receptor (A2BAR), largely abolished the adenosine-stimulated chloride transport, suggesting that A2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections. PMID:22442662
Delle Donne, K T; Sonsalla, P K
1994-12-01
Methamphetamine (METH)-induced neurotoxicity to nigrostriatal dopaminergic neurons in experimental animals appears to have a glutamatergic component because blockade of N-methyl-D-aspartate receptors prevents the neuropathologic consequences. Because adenosine affords neuroprotection against various forms of glutamate-mediated neuronal damage, the present studies were performed to investigate whether adenosine plays a protective role in METH-induced toxicity. METH-induced decrements in neostriatal dopamine content and tyrosine hydroxylase activity in mice were potentiated by concurrent treatment with caffeine, a nonselective adenosine antagonist that blocks both A1 and A2 adenosine receptors. In contrast, chronic treatment of mice with caffeine through their drinking water for 4 weeks, which increased the number of adenosine A1 receptors in the neostriatum and frontal cortex, followed by drug washout, prevented the neurochemical changes produced by the treatment of mice with METH treatment. In contrast, this treatment did not prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced dopaminergic neurotoxicity. Furthermore, concurrent administration of cyclopentyladenosine, an adenosine A1 receptor agonist, attenuated the METH-induced neurochemical changes. This protection by cyclopentyladenosine was blocked by cyclopentyltheophylline, an A1 receptor antagonist. These results indicate that activation of A1 receptors can protect against METH-induced neurotoxicity in mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronstein, B.N.; Eberle, M.A.; Levin, R.I.
1991-03-15
Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, the authors determined whether a 48-hr pretreatment with methotrexate affected adenosine release from ({sup 14}C)adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts. The effect of methotrexate on adenosine release was not due to cytotoxicity since cells treated with maximal concentrations of methotrexate took up ({sup 14}C)adenine and released {sup 14}C-labeled purine (a measure of cell injury) in a mannermore » identical to control cells. Methotrexate treatment of fibroblasts dramatically inhibited adherence to fibroblasts by both unstimulated neutrophils and stimulated neutrophils. One hypothesis that explains the effect of methotrexate on adenosine release is that, by inhibition of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase, methotrexate induces the accumulation of AICAR, the nucleoside precursor of which has previously been shown to cause adenosine release from ischemic cardiac tissue. The observation that the antiinflammatory actions of methotrexate are due to the capacity of methotrexate to induce adenosine release may form the basis for the development of an additional class of antiinflammatory drugs.« less
Gillespie, Delbert G.
2013-01-01
In a previous study, we demonstrated that human proximal tubular epithelial cells obtained from a commercial source metabolized extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP and extracellular 2′-AMP and 3′-AMP to adenosine (the extracellular 2′,3′-cAMP-adenosine pathway; extracellular 2′,3′-cAMP → 2′-AMP + 3′-AMP → adenosine). The purpose of this study was to investigate the metabolism of extracellular 2′,3′-cAMP in proximal tubular vs. thick ascending limb vs. collecting duct epithelial cells freshly isolated from their corresponding nephron segments obtained from rat kidneys. In epithelial cells from all three nephron segments, 1) extracellular 2′,3′-cAMP was metabolized to 2′-AMP and 3′-AMP, with 2′-AMP > 3′-AMP, 2) the metabolism of extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP was not inhibited by either 3-isobutyl-1-methylxanthine (phosphodiesterase inhibitor) or 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor), 3) extracellular 2′,3′-cAMP increased extracellular adenosine levels, 4) 3′-AMP and 2′-AMP were metabolized to adenosine with an efficiency similar to that of 5′-AMP, and 5) the metabolism of 5′-AMP, 3′-AMP, and 2′-AMP was not inhibited by α,β-methylene-adenosine-5′-diphosphate (CD73 inhibitor). These results support the conclusion that renal epithelial cells all along the nephron can metabolize extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP and can efficiently metabolize extracellular 2′-AMP and 3′-AMP to adenosine and that the metabolic enzymes involved are not the classical phosphodiesterases nor ecto-5′-nucleotidase (CD73). Because 2′,3′-cAMP is released by injury and because previous studies demonstrate that the extracellular 2′,3′-cAMP-adenosine pathway stimulates epithelial cell proliferation via adenosine A2B receptors, the present results suggest that the extracellular 2′,3′-cAMP-adenosine pathway may help restore epithelial cells along the nephron following kidney injury. PMID:23077101
Endogenous purines modulate K+ -evoked ACh secretion at the mouse neuromuscular junction.
Guarracino, Juan F; Cinalli, Alejandro R; Veggetti, Mariela I; Losavio, Adriana S
2018-06-01
At the mouse neuromuscular junction, adenosine triphosphate (ATP) is co-released with the neurotransmitter acetylcholine (ACh), and once in the synaptic cleft, it is hydrolyzed to adenosine. Both ATP/adenosine diphosphate (ADP) and adenosine modulate ACh secretion by activating presynaptic P2Y 13 and A 1 , A 2A , and A 3 receptors, respectively. To elucidate the action of endogenous purines on K + -dependent ACh release, we studied the effect of purinergic receptor antagonists on miniature end-plate potential (MEPP) frequency in phrenic diaphragm preparations. At 10 mM K + , the P2Y 13 antagonist N-[2-(methylthio)ethyl]-2-[3,3,3-trifluoropropyl]thio-5'-adenylic acid, monoanhydride with (dichloromethylene)bis[phosphonic acid], tetrasodium salt (AR-C69931MX) increased asynchronous ACh secretion while the A 1 , A 3 , and A 2A antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), (3-Ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1, 4-(±)-dihydropyridine-3,5-, dicarboxylate (MRS-1191), and 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH-58261) did not modify neurosecretion. The inhibition of equilibrative adenosine transporters by S-(p-nitrobenzyl)-6-thioinosine provoked a reduction of 10 mM K + -evoked ACh release, suggesting that the adenosine generated from ATP is being removed from the synaptic space by the transporters. At 15 and 20 mM K + , endogenous ATP/ADP and adenosine bind to inhibitory P2Y 13 and A 1 and A 3 receptors since AR-C69931MX, DPCPX, and MRS-1191 increased MEPP frequency. Similar results were obtained when the generation of adenosine was prevented by using the ecto-5'-nucleotidase inhibitor α,β-methyleneadenosine 5'-diphosphate sodium salt. SCH-58261 only reduced neurosecretion at 20 mM K + , suggesting that more adenosine is needed to activate excitatory A 2A receptors. At high K + concentration, the equilibrative transporters appear to be saturated allowing the accumulation of adenosine in the synaptic cleft. In conclusion, when motor nerve terminals are depolarized by increasing K + concentrations, the ATP/ADP and adenosine endogenously generated are able to modulate ACh secretion by sequential activation of different purinergic receptors. © 2018 Wiley Periodicals, Inc.
Rudd, Donna M; Dobson, Geoffrey P
2011-12-01
Most cardiac preservation solutions provide safe cold ischemic storage times for 4 to 5 hours. Our aim was to investigate the effects of 8 hours of cold static storage (4°C) using 2 normokalemic, polarizing adenosine-lidocaine (Adenocaine; Hibernation Therapeutics Global Ltd, Kilquade, Ireland) solutions and to compare their functional recovery with hearts preserved in gold standard histidine-tryptophan-ketoglutarate (Custodiol-HTK; Essential Pharma, Newtown, Pa) and Celsior (Genzyme, Cambridge, Mass) solutions. Male Sprague-Dawley rats (350-450 g) were randomly assigned to 1 of 4 groups (n = 8): (1) adenosine-lidocaine cardioplegia with low Ca(2+)/high Mg(2+); (2) 2× adenosine-lidocaine cardioplegia, low Ca(2+)/high Mg(2+), melatonin, and insulin (2× adenosine, lidocaine, melatonin, and insulin); (3) histidine-tryptophan-ketoglutarate solution; or (4) Celsior. Hearts were perfused in working mode, arrested (37°C), removed, stored for 8 hours at 4°C, reattached in Langendorff mode and rewarmed for 5 minutes (37°C), and switched to working mode for 60 minutes. Myocardial oxygen consumption, effluent lactates, and troponin T levels were measured. Hearts preserved for 8 hours in adenosine-lidocaine and 2× adenosine, lidocaine, melatonin, and insulin returned 50% and 76% of aortic flow and 70% and 86% of coronary flow, respectively, at 60 minutes of reperfusion. In contrast, Custodiol-HTK and Celsior hearts returned 2% and 17% of aortic flow and 11% and 48% of coronary flow, respectively, at 60 minutes of reperfusion. Hearts preserved in adenosine-lidocaine and 2× adenosine, lidocaine, melatonin, and insulin returned 90% and 100% of developed pressures and 101% and 104% of heart rate, respectively. Hearts preserved in histidine-tryptophan-ketoglutarate failed to increase systolic pressure greater than 14 mm Hg (11% baseline) and diastolic pressure greater than 10 mm Hg (17% baseline), and recovered only 16% of heart rate. Hearts preserved in Celsior developed 70% of baseline systolic pressures and 86% recovery of heart rate. At 5 minutes of rewarming after cold storage, the myocardial oxygen consumption for hearts preserved in adenosine-lidocaine, 2× adenosine, lidocaine, melatonin, and insulin, Custodiol-HTK, and Celsior was 23.0 ± 5, 20 ± 4, 15 ± 1, and 10 ± 2 μmol O(2)/min/g dry wt, respectively, with corresponding lactate outputs of 1.8 ± 0.8, 1.5 ± 0.7, 2.6 ± 0.7, and 3.2 ± 1.4 μmol lactate/min/g dry weight. Troponin T was not detected in the coronary effluent of adenosine-lidocaine or 2× adenosine, lidocaine, melatonin, and insulin hearts, whereas Custodiol-HTK and Celsior hearts had troponin T levels of 0.08 and 0.24 μg/mL, respectively. We report a 78% return of cardiac output, 90% to 100% return of developed pressures, and 101% to 104% return of heart rate after 8 hours of cold static storage using normokalemic, adenosine, lidocaine, melatonin, and insulin preservation solution in the isolated rat heart compared with 55% cardiac output with polarizing adenosine-lidocaine cardioplegia alone, 4% cardiac output with Custodiol-HTK, and 25% cardiac output in Celsior preservation solutions. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway
Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O
2007-01-01
Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164
Kim, Jaehyun; Andersson, Karl-Erik; Jackson, John D.; Lee, Sang Jin; Atala, Anthony
2014-01-01
A major challenge to the success of cell-based implants for tissue regeneration is an insufficient supply of oxygen before host vasculature is integrated into the implants, resulting in premature cell death and dysfunction. Whereas increasing oxygenation to the implants has been a major focus in the field, our strategy is aimed at lowering oxygen consumption by downregulating cellular metabolism of cell-based implants. Adenosine, which is a purine nucleoside that functions as an energy transferring molecule, has been reported to increase under hypoxia, resulting in reducing the adenosine triphosphate (ATP) demands of the Na+/K+ ATPase. In the present study, we investigated whether adenosine could be used to downregulate cellular metabolism to achieve prolonged survival under hypoxic conditions. Murine myoblasts (C2C12) lacking a self-survival mechanism were treated with adenosine under 0.1% hypoxic stress. The cells, cultured in the presence of 5 mM adenosine, maintained their viability under hypoxia, and regained their normal growth and function of forming myotubes when transferred to normoxic conditions at day 11 without further supply of adenosine, whereas nontreated cells failed to survive. An increase in adenosine concentrations shortened the onset of reproliferation after transfer to normoxic conditions. This increase correlated with an increase in metabolic downregulation during the early phase of hypoxia. A higher intracellular ATP level was observed in adenosine-treated cells throughout the duration of hypoxia. This strategy of increasing cell survival under hypoxic conditions through downregulating cellular metabolism may be utilized for cell-based tissue regeneration applications as well as protecting tissues against hypoxic injuries. PMID:24524875
Müller, Thomas
2013-08-01
Recent experimental and clinical research has shown that A2A adenosine receptor antagonism can bring about an improvement in the motor behavior of patients with Parkinson's disease. Istradefylline , a xanthine derivative, has the longest half-life of all the currently available A2A adenosine receptor antagonists; it can successfully permeate through the blood-brain barrier and has a high human A2A adenosine receptor affinity. In this article, the author discusses the potential role of A2A adenosine receptor antagonists in the treatment of Parkinson's disease through the evaluation of istradefylline. Specifically, the article reviews the clinical and pharmacokinetic information available to elucidate its therapeutic potential. A2A adenosine receptor antagonists are efficacious in combination with l-dopa. l-dopa has a complex pharmacokinetic behavior and causes long-term behavioral and metabolic side effects. Future research on A2A adenosine receptor antagonism should consider compounds like istradefylline as l-dopa and/or dopamine agonist-sparing treatment alternatives, since their clinical handling, safety and side-effect profile are superior to l-dopa and/or dopamine agonists. The current focus to demonstrate a specific dyskinesia-ameliorating efficacy of A2A adenosine receptor antagonism in clinical trials is risky, since the presentation of dyskinesia varies on a day-to-day basis and is considerably influenced by peripheral l-dopa metabolism. The demonstration of an antidyskinetic effect may convince authorities, but this is far less relevant in clinical practice as patients generally better tolerate dyskinesia than other phenomena and dopaminergic side effects.
Mueller, Geoffrey A; Thompson, Peter M; DeRose, Eugene F; O'Connell, Thomas M; London, Robert E
2016-12-01
Studies on ragweed and birch pollen extracts suggested that the adenosine content is an important factor in allergic sensitization. However, exposure levels from other pollens and considerations of geographic and seasonal factors have not been evaluated. This study compared the metabolite profile of pollen species important for allergic disease, specifically measured the adenosine content, and evaluated exposure to pollen-derived adenosine. An NMR metabolomics approach was used to measure metabolite concentrations in twenty-six pollen extracts. Pollen count data was analyzed from five cities to model exposure. A principal component analysis of the various metabolites identified by NMR showed that pollen extracts could be differentiated primarily by sugar content: glucose, fructose, sucrose, and myo-inositol. In extracts of 10 mg of pollen/ml, the adenosine was highest for grasses (45 μM) followed by trees (23 μM) and weeds (19 μM). Pollen count data showed that tree pollen was typically 5-10 times the amount of other pollens. At the daily peaks of tree, grass, and weed season the pollen-derived adenosine exposure per day is likely to only be 1.1, 0.11, and 0.12 μg, respectively. Seasonal models of pollen exposure and respiration suggest that it would be a rare event limited to tree pollen season for concentrations of pollen-derived adenosine to approach physiological levels. Sugar content and other metabolites may be useful in classifying pollens. Unless other factors create localized exposures that are very different from these models, pollen-derived adenosine is unlikely to be a major factor in allergic sensitization.
Neurochemical Measurement of Adenosine in Discrete Brain Regions of Five Strains of Inbred Mice
Pani, Amar K.; Jiao, Yun; Sample, Kenneth J.; Smeyne, Richard J.
2014-01-01
Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754
The role of the adenosinergic system in lung fibrosis.
Della Latta, Veronica; Cabiati, Manuela; Rocchiccioli, Silvia; Del Ry, Silvia; Morales, Maria-Aurora
2013-10-01
Adenosine (ADO) is a retaliatory metabolite that is expressed in conditions of injury or stress. During these conditions ATP is released at the extracellular level and is metabolized to adenosine. For this reason, adenosine is defined as a "danger signal" for cells and organs, in addition to its important role as homeostatic regulator. Its physiological functions are mediated through interaction with four specific transmembrane receptors called ADORA1, ADORA2A, ADORA2B and ADORA3. In the lungs of mice and humans all four adenosine receptors are expressed with different roles, having pro- and anti-inflammatory roles, determining bronchoconstriction and regulating lung inflammation and airway remodeling. Adenosine receptors can also promote differentiation of lung fibroblasts into myofibroblasts, typical of the fibrotic event. This last function suggests a potential involvement of adenosine in the fibrotic lung disease processes, which are characterized by different degrees of inflammation and fibrosis. Idiopathic pulmonary fibrosis (IPF) is the pathology with the highest degree of fibrosis and is of unknown etiology and burdened by lack of effective treatments in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.
Snell, C. R.; Snell, P. H.
1984-01-01
We have demonstrated high affinity diazepam binding sites of the Ro5-4864 benzodiazepine receptor subtype on 108CC15 neuroblastoma X glioma hybrid cells. These cells were previously shown to have purinoceptors of the A2 adenosine subtype and we have now found that [3H]-adenosine can be displaced from this binding site by the benzodiazepines and related compounds that can also bind to the Ro5-4864 site. Diazepam was found to have no intrinsic activity at the A2-receptor as measured by the stimulation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) production in this cell line. At concentrations sufficient to compete for the A2-receptor, diazepam was shown to facilitate, by approximately 2 fold, the stimulation of cyclic AMP by adenosine. These effects are not due to inhibition of adenosine uptake or phosphodiesterase activity, but are probably a consequence of modulation of the coupling of the A2-receptor to cyclic AMP production in this hybrid cell line. PMID:6150742
Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury
NASA Astrophysics Data System (ADS)
Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick
2014-12-01
There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.
Yang, Ke-Ke; Sui, Yi; Zhou, Hui-Rong; Zhao, Hai-Lu
2017-05-01
Renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway both play important roles in carcinogenesis, but the interplay of renin-angiotensin system and adenosine monophosphate-activated protein kinase in carcinogenesis is not clear. In this study, we researched the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase in renal carcinogenesis of uninephrectomized rats. A total of 96 rats were stratified into four groups: sham, uninephrectomized, and uninephrectomized treated with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Renal adenosine monophosphate-activated protein kinase and its downstream molecule acetyl coenzyme A carboxylase were detected by immunohistochemistry and western blot at 10 months after uninephrectomy. Meanwhile, we examined renal carcinogenesis by histological transformation and expressions of Ki67 and mutant p53. During the study, fasting lipid profiles were detected dynamically at 3, 6, 8, and 10 months. The results indicated that adenosine monophosphate-activated protein kinase expression in uninephrectomized rats showed 36.8% reduction by immunohistochemistry and 89.73% reduction by western blot. Inversely, acetyl coenzyme A carboxylase expression increased 83.3% and 19.07% in parallel to hyperlipidemia at 6, 8, and 10 months. The histopathology of carcinogenesis in remnant kidneys was manifested by atypical proliferation and carcinoma in situ, as well as increased expressions of Ki67 and mutant p53. Intervention with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker significantly prevented the inhibition of adenosine monophosphate-activated protein kinase signaling pathway and renal carcinogenesis in uninephrectomized rats. In conclusion, the novel findings suggest that uninephrectomy-induced disturbance in adenosine monophosphate-activated protein kinase signaling pathway resulted in hyperlipidemia and carcinogenesis in tubular epithelial cells, which may be largely attenuated by renin-angiotensin system blockade, implying the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats.
McLellan, Alex J A; Prabhu, Sandeep; Voskoboinik, Alex; Wong, Michael C G; Walters, Tomos E; Pathik, Bhupesh; Morris, Gwilym M; Nisbet, Ashley; Lee, Geoffrey; Morton, Joseph B; Kalman, Jonathan M; Kistler, Peter M
2017-12-01
Catheter ablation to achieve posterior left atrial wall (PW) isolation may be performed as an adjunct to pulmonary vein isolation (PVI) in patients with persistent atrial fibrillation (AF). We aimed to determine whether routine adenosine challenge for dormant posterior wall conduction improved long-term outcome. A total of 161 patients with persistent AF (mean age 59 ± 9 years, AF duration 6 ± 5 years) underwent catheter ablation involving circumferential PVI followed by PW isolation. Posterior left atrial wall isolation was performed with a roof and inferior wall line with the endpoint of bidirectional block. In 54 patients, adenosine 15 mg was sequentially administered to assess reconnection of the pulmonary veins and PW. Sites of transient reconnection were ablated and adenosine was repeated until no further reconnection was present. Holter monitoring was performed at 6 and 12 months to assess for arrhythmia recurrence. Posterior left atrial wall isolation was successfully achieved in 91% of 161 patients (procedure duration 191 ± 49 min, mean RF time 40 ± 19 min). Adenosine-induced reconnection of the PW was demonstrated in 17%. The single procedure freedom from recurrent atrial arrhythmia was superior in the adenosine challenge group (65%) vs. no adenosine challenge (40%, P < 0.01) at a mean follow-up of 19 ± 8 months. After multiple procedures, there was significantly improved freedom from AF between patients with vs. without adenosine PW challenge (85 vs. 65%, P = 0.01). Posterior left atrial wall isolation in addition to PVI is a readily achievable ablation strategy in patients with persistent AF. Routine adenosine challenge for dormant posterior wall conduction was associated with an improvement in the success of catheter ablation for persistent AF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.
Gonçalves, J.; Queiroz, G.
1996-01-01
1. The effects of analogues of adenosine and ATP on noradrenaline release elicited by electrical stimulation (5 Hz, 2700 pulses) were studied in superfused preparations of rat tail artery. The effects of purinoceptor antagonists, of adenosine deaminase and of adenosine uptake blockade were also examined. Noradrenaline was measured by h.p.l.c. electrochemical detection. 2. The A1-adenosine receptor agonist, N6-cyclopentyladenosine (CPA; 0.1-100 nM) reduced, whereas the A2A-receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 3-30 nM) increased evoked noradrenaline overflow. These effects were antagonized by the A1-adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 20 nM) and the A2-adenosine receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX; 100 nM), respectively. The P2Y-purinoceptor agonist, 2-methylthio-ATP (1-100 microM) reduced noradrenaline overflow, an effect prevented by the P2-purinoceptor antagonist, cibacron blue 3GA (100 microM) and suramin (100 microM). 3. Adenosine deaminase (2 u ml-1), DMPX (100 nM) and inhibition of adenosine uptake with S-(p-nitrobenzyl)-6-thioinosine (NBTI; 50 nM) decreased evoked noradrenaline overflow. DPCPX alone did not change noradrenaline overflow but prevented the inhibition caused by NBTI. The P2Y-purinoceptor antagonist, cibacron blue 3GA (100 microM) increased evoked noradrenaline overflow as did suramin, a non-selective P2-antagonist. 4. It is concluded that, in rat tail artery, inhibitory (A1 and P2Y) and facilitatory (A2A) purinoceptors are present and modulate noradrenaline release evoked by electrical stimulation. Endogenous purines tonically modulate noradrenaline release through activation of inhibitory P2Y and facilitatory A2A purinoceptors, whereas a tonic activation of inhibitory A1 purinoceptors seems to be prevented by adenosine uptake. PMID:8825357
Steensrud, Tor; Li, Jing; Dai, Xiaojing; Manlhiot, Cedric; Kharbanda, Rajesh K; Tropak, Michael; Redington, Andrew
2010-11-01
We have previously shown that remote ischemic preconditioning (rIPC) by transient limb ischemia leads to the release of a circulating factor(s) that induces potent myocardial protection. Intra-arterial injection of adenosine into a limb also leads to cardioprotection, but the mechanism of its signal transduction is poorly understood. Eleven groups of rabbits received saline control or rIPC or adenosine administration with additional pretreatment with the nitric oxide (NO) synthase blocker N(G)-nitro-l-arginine methyl ester, the NO donor S-nitroso-N-acetylpenicillamine, its non-NO-donating derivative N-acetylpenicillamine, or femoral nerve section. Blood was then drawn from each animal, and the dialysate of the plasma was used to perfuse a naïve heart from an untreated donor. Infarct size was measured after 30 min of global ischemia and 120 min reperfusion. When compared with that of the control, mean infarct size was significantly smaller in groups treated with rIPC alone (P < 0.01) and intra-arterial adenosine (P < 0.01). Pretreatment with N(G)-nitro-l-arginine methyl ester or N-acetylpenicillamine did not affect the level of protection induced by rIPC (P = not significant, compared with rIPC alone) or intra-arterial adenosine (P = not significant, compared with intra-arterial adenosine alone), but prior femoral nerve transection or pretreatment with S-nitroso-N-acetylpenicillamine abolished the cardioprotective effect of intra-arterial adenosine and rIPC. Intra-arterial adenosine, like rIPC, releases a blood-borne cardioprotective factor(s) that is dependent on an intact femoral nerve and is inhibited by pretreatment with a NO donor. These results may be important when designing or assessing the results of clinical trials of adenosine or rIPC cardioprotection, where NO donors are used as part of therapy.
Chimote, Ameet A; Balajthy, Andras; Arnold, Michael J; Newton, Hannah S; Hajdu, Peter; Qualtieri, Julianne; Wise-Draper, Trisha; Conforti, Laura
2018-04-24
The limited ability of cytotoxic T cells to infiltrate solid tumors hampers immune surveillance and the efficacy of immunotherapies in cancer. Adenosine accumulates in solid tumors and inhibits tumor-specific T cells. Adenosine inhibits T cell motility through the A 2A receptor (A 2A R) and suppression of KCa3.1 channels. We conducted three-dimensional chemotaxis experiments to elucidate the effect of adenosine on the migration of peripheral blood CD8 + T cells from head and neck squamous cell carcinoma (HNSCC) patients. The chemotaxis of HNSCC CD8 + T cells was reduced in the presence of adenosine, and the effect was greater on HNSCC CD8 + T cells than on healthy donor (HD) CD8 + T cells. This response correlated with the inability of CD8 + T cells to infiltrate tumors. The effect of adenosine was mimicked by an A 2A R agonist and prevented by an A 2A R antagonist. We found no differences in A 2A R expression, 3',5'-cyclic adenosine monophosphate abundance, or protein kinase A type 1 activity between HNSCC and HD CD8 + T cells. We instead detected a decrease in KCa3.1 channel activity, but not expression, in HNSCC CD8 + T cells. Activation of KCa3.1 channels by 1-EBIO restored the ability of HNSCC CD8 + T cells to chemotax in the presence of adenosine. Our data highlight the mechanism underlying the increased sensitivity of HNSCC CD8 + T cells to adenosine and the potential therapeutic benefit of KCa3.1 channel activators, which could increase infiltration of these T cells into tumors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Mathew, Smitha C; Ghosh, Nandita; By, Youlet; Berthault, Aurélie; Virolleaud, Marie-Alice; Carrega, Louis; Chouraqui, Gaëlle; Commeiras, Laurent; Condo, Jocelyne; Attolini, Mireille; Gaudel-Siri, Anouk; Ruf, Jean; Parrain, Jean-Luc; Rodriguez, Jean; Guieu, Régis
2009-12-01
The cross talk between different membrane receptors is the source of increasing research. We designed and synthesized a new hetero-bivalent ligand that has antagonist properties on both A(1) adenosine and mu opiate receptors with a K(i) of 0.8+/-0.05 and 0.7+/-0.03 microM, respectively. This hybrid molecule increases cAMP production in cells that over express the mu receptor as well as those over expressing the A(1) adenosine receptor and reverses the antalgic effects of mu and A(1) adenosine receptor agonists in animals.
Roles of the Adenosine Receptor and CD73 in the Regulatory Effect of γδ T Cells
Liang, Dongchun; Zuo, Aijun; Shao, Hui; Chen, Mingjiazi; Kaplan, Henry J.; Sun, Deming
2014-01-01
The adenosine A2A receptor (A2AR), the main functional adenosine receptor on murine T cells, plays a unique role in the attenuation of inflammation and tissue damage in vivo. Here, we showed that, of the immune cell types tested, activated γδ T cells expressed the highest levels of A2AR mRNA and that A2AR ligation inhibited αβ T cell activation, but enhanced γδ T cell activation. We also showed that the inhibitory effect of an adenosine receptor agonist on autoreactive T cells was prevented by addition of a low percentage of activated γδ T cells. Furthermore, compared to resting cells, activated γδ T cells expressed significantly lower levels of CD73, an enzyme involved in the generation of extracellular adenosine. Exogenous AMP had a significant inhibitory effect on autoreactive T cell responses, but only in the presence of CD73+ γδ T cells, and this effect was abolished by a CD73 inhibitor. Our results show that expression of increased amounts of A2AR allows γδ T cells to bind adenosine and thereby attenuate its suppressive effect, while decreased expression of CD73 results in less generation of adenosine in the inflammatory site. Together, these events allow activated γδ T cells to acquire increased proinflammatory activity, leading to augmented autoimmune responses. PMID:25268760
Kloner, Robert A; Forman, Mervyn B; Gibbons, Raymond J; Ross, Allan M; Alexander, R Wayne; Stone, Gregg W
2006-10-01
The purpose of this analysis was to determine whether the efficacy of adenosine vs. placebo was dependent on the timing of reperfusion therapy in the second Acute Myocardial Infarction Study of Adenosine (AMISTAD-II). Patients presenting with ST-segment elevation anterior AMI were randomized to receive placebo vs. adenosine (50 or 70 microg/kg/min) for 3 h starting within 15 min of reperfusion therapy. In the present post hoc hypothesis generating study, the results were stratified according to the timing of reperfusion, i.e. > or = or < the median 3.17 h, and by reperfusion modality. In patients receiving reperfusion < 3.17 h, adenosine compared with placebo significantly reduced 1-month mortality (5.2 vs. 9.2%, respectively, P = 0.014), 6-month mortality (7.3 vs. 11.2%, P = 0.033), and the occurrence of the primary 6-month composite clinical endpoint of death, in-hospital CHF, or rehospitalization for CHF at 6 months (12.0 vs. 17.2%, P = 0.022). Patients reperfused beyond 3 h did not benefit from adenosine. In this post hoc analysis, 3 h adenosine infusion administered as an adjunct to reperfusion therapy within the first 3.17 h onset of evolving anterior ST-segment elevation AMI enhanced early and late survival, and reduced the composite clinical endpoint of death or CHF at 6 months.
Yoshikawa, Noriko; Yamada, Shizuo; Takeuchi, Chihiro; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru; Nakamura, Kazuki
2008-06-01
Cordyceps sinensis, a parasitic fungus on the larvae of Lepidoptera, has been used as a traditional Chinese medicine. We previously reported that the growth of B16-BL6 mouse melanoma (B16-BL6) cells was inhibited by cordycepin (3'-deoxyadenosine), an active ingredient of C. sinensis, and its effect was antagonized by MRS1191, a selective adenosine A3 receptor antagonist. In this study, the radioligand binding assay using [125I]-AB-MECA (a selective adenosine A3 receptor agonist) has shown that B16-BL6 cells express adenosine A3 receptors and that cordycepin binds to these receptors. We also confirmed the involvement of adenosine A3 receptors in the action of cordycepin using MRS1523 and MRS1220, specific adenosine A3 receptor antagonists. Next, indirubin, a glycogen synthase kinase-3beta (GSK-3beta) inhibitor, antagonized the growth suppression induced by cordycepin. Furthermore, the level of cyclin D1 protein in B16-BL6 cells was decreased by cordycepin using Western blot analysis. In conclusion, this study demonstrated that cordycepin inhibits the proliferation of B16-BL6 cells by stimulating adenosine A3 receptors followed by the Wnt signaling pathway, including GSK-3beta activation and cyclin D1 inhibition.
Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.
1986-11-01
We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did notmore » alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Olov, E-mail: olov.andersson@ki.se
Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATPmore » have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.« less
Yee, Benjamin K; Singer, Philipp; Chen, Jiang-Fan; Feldon, Joram; Boison, Detlev
2007-12-01
The neuromodulator adenosine fulfills a unique role in the brain affecting glutamatergic neurotransmission and dopaminergic signaling via activation of adenosine A1 and A2A receptors, respectively. The adenosine system is thus ideally positioned to integrate glutamatergic and dopaminergic neurotransmission, which in turn could affect behavior and cognition. In the adult brain, adenosine levels are largely regulated by its key metabolic enzyme adenosine kinase (ADK), which may assume the role of an 'upstream regulator' of these two neurotransmitter pathways. To test this hypothesis, transgenic mice with an overexpression of ADK in brain (Adk-tg), and therefore reduced brain adenosine levels, were evaluated in a panel of behavioral and psychopharmacological assays to assess possible glutamatergic and dopaminergic dysfunction. In comparison to non-transgenic control mice, Adk-tg mice are characterized by severe learning deficits in the Morris water maze task and in Pavlovian conditioning. The Adk-tg mice also exhibited reduced locomotor reaction to systemic amphetamine, whereas their reaction to the non-competitive N-methyl-d-aspartate receptor antagonist MK-801 was enhanced. Our results confirmed that ADK overexpression could lead to functional concomitant alterations in dopaminergic and glutamatergic functions, which is in keeping with the hypothesized role of ADK in the balance and integration between glutamatergic and dopaminergic neurotransmission. The present findings are of relevance to current pathophysiological hypotheses of schizophrenia and its pharmacotherapy.
Schachter, J B; Wolfe, B B
1992-03-01
The activation of adenosine A1 receptors in DDT1-MF2 smooth muscle cells resulted in both the inhibition of agonist-stimulated cAMP accumulation and the potentiation of norepinephrine-stimulated phosphoinositide hydrolysis. Pharmacological analysis indicated the involvement of an A1 adenosine receptor subtype in both of these responses. In the absence of norepinephrine, the activation of the adenosine receptor did not directly stimulate phosphoinositide hydrolysis. The adenosine receptor-mediated augmentation of norepinephrine-stimulated phosphoinositide hydrolysis was pertussis toxin sensitive and was selectively antagonized by agents that mimicked cAMP (8-bromo-cAMP) or raised cellular cAMP levels (forskolin). This initially suggested that cAMP might partially regulate the magnitude of the phospholipase C response to norepinephrine and that adenosine agonists might enhance the phospholipase C response by reducing cAMP levels. However, neither the reduction of cellular cAMP levels by other agents nor the inhibition of cAMP-dependent protein kinase was sufficient to replicate the action of adenosine receptor activation on phosphoinositide hydrolysis. Thus, in the presence of norepinephrine, adenosine receptor agonists appear to stimulate phosphoinositide hydrolysis via a pathway that is separate from, but dependent upon, that of norepinephrine. This second pathway can be distinguished from that which is stimulated by norepinephrine on the basis of its sensitivity to inhibition by both cAMP and pertussis toxin.
Taywade, Sameer K; Ramaiah, Vijayaraghavan L; Basavaraja, Harish; Venkatasubramaniam, Parameswaran R; Selvakumar, Job
2017-04-01
Myocardial perfusion scintigraphy (MPS) is a valuable, noninvasive imaging modality in the evaluation of patients with coronary artery disease. Adenosine stress may occasionally be associated with ECG changes. This study evaluated the strength of association between adenosine stress-related ECG changes and perfusion defects on Tc-MPS. 117 (mean age: 61.25±9.27 years; sex: men 87, women 30) patients with known/suspected coronary artery disease underwent adenosine stress MPS. ECG was monitored continuously during adenosine stress for ST-depression. On the basis of the summed difference score, reversible perfusion defects were categorized as follows: normal: less than 4, mild: 4-8, moderate: 9-13, and severe: more than 13. ST-depression was observed in 27/117 (23.1%) and reversible perfusion defects were observed in 18/27 (66.66%) patients. 2/27, 6/27, and 10/27 patients had mild, moderate, and severe ischemia, respectively. 9/27 patients had normal perfusion. ECG changes and perfusion defects showed a moderate strength of association (correlation coefficient r=0.35, P=0.006). The sensitivity, specificity, positive predictive value, and negative predictive value of ECG findings for prediction of ischemia were 35.29, 86.36, 67.67, and 63.33%, respectively. ECG changes during adenosine stress are not uncommon. It shows a moderate strength of association with reversible perfusion defects. ECG changes during adenosine merit critical evaluation of MPS findings.
Zhuravleva, O A
2011-01-01
Blood serum of Russian members (n = 21) of the 8 to 12-day visiting missions to the ISS was analyzed before and after mission for products of lipid peroxidation, i.e. diene conjugates, malone dialdehyde, Schiff bases and tocopherol, the primary lipid antioxidant. No reliable change was found in the parameters postflight as compared with preflight values. It may be concluded that 14 days in orbital flight and the factors of re-entry and early recovery do not affect significantly the mechanisms of free radical lipid oxidation and functioning of the antioxidant protection system.
Petukhov, V I; Kumerova, A O; Letse, A G; Silova, A A; Shkesters, A P; Krishchuna, M A; Mironova, N A
1997-01-01
Concentration of malonic dialdehyde (MDA) and activity of antioxidant enzymes G-6-PD, glutation peroxidase (GP), glutation reductase, catalase, superoxide dismutase were measured in red cells of patients with polycythemia vera. Plasmic ions Fe3+ were estimated by means of electron-paramagnetic resonance. MDA concentration and antioxidant enzymes (except GP) in polycythemia red cells were found increased, while the activity of selenium-dependent GP was reduced, the inhibition being greatest in severe iron deficiency. It is suggested that GP activity in red cells depends on both selenium levels in the body and concentrations of non-hematic iron.
Adenosine monophosphate as a mediator of ATP effects at P1 purinoceptors
Ross, Fiona M; Brodie, Martin J; Stone, Trevor W
1998-01-01
When perfused with a medium containing no added magnesium and 4-aminopyridine (4AP) (50 μM) hippocampal slices generated epileptiform bursts of an interictal nature. We have shown in a previous study that adenosine 5′-triphosphate (ATP) depressed epileptiform activity and that this effect was blocked by the adenosine A1 receptor antagonist cyclopentyltheophylline but was not affected by adenosine deaminase. This implied that ATP might act indirectly at P1 receptors or at a xanthine-sensitive P2 receptor. The aim of the present study was to investigate further the action of ATP on epileptiform activity.ATP can be metabolized by ecto-nucleotidases to adenosine 5′-diphosphate (ADP), adenosine 5′-monophosphate (AMP) and adenosine, respectively. Each of these metabolites can activate receptors in its own right: P2 receptors for ADP and P1 receptors for AMP and adenosine.We now show that both AMP and ATP (50 μM) significantly decrease epileptiform discharge rate in a rapid and reversible manner. 5′Adenylic acid deaminase (AMP deaminase, AMPase) (0.2 u ml−1), when perfused alone did not significantly alter the discharge rate over the 10 min superfusion period used for drug application. When perfused concurrently with AMP (50 μM), AMP deaminase prevented the depressant effect of AMP on discharge rate.AMP deaminase, at a concentration of 0.2 u ml−1 which annulled the effect of AMP (50 μM), prevented the inhibitory activity of ATP (50 μM). A higher concentration of ATP (200 μM) depressed the frequency of spontaneous bursts to approximately 30% control and this response was also prevented by AMP deaminase.Superfusion of the slices with 5′-nucleotidase also prevented the inhibitory activity of ATP on epileptiform discharges.The results suggest that AMP mediates the inhibitory effects of ATP on epileptiform activity, a conclusion which can explain the earlier finding that cyclopentyltheophylline but not adenosine deaminase inhibited the effect of ATP. A corollary to this is that, when examining the pharmacology of ATP, care must be taken to inactivate AMP with AMP deaminase, as well as adenosine with adenosine deaminase, before a direct action of ATP on P1 receptors can be postulated. Failure to do so may have led to erroneous conclusions in some previous studies of nucleotide activity on nucleotside receptors. PMID:9690876
Treatment of out-of-hospital supraventricular tachycardia: adenosine vs verapamil.
Brady, W J; DeBehnke, D J; Wickman, L L; Lindbeck, G
1996-06-01
To compare the use of adenosine and the use of verapamil as out-of-hospital therapy for supraventricular tachycardia (SVT). A period of prospective adenosine use (March 1993 to February 1994) was compared with a historical control period of verapamil use (March 1990 to February 1991) for SVT. Data were obtained for SVT patients treated in a metropolitan, fire-department-based paramedic system serving a population of approximately 1 million persons. Standard drug protocols were used and patient outcomes (i.e., conversion rates, complications, and recurrences) were monitored. During the adenosine treatment period, 105 patients had SVT; 87 (83%) received adenosine, of whom 60 (69%) converted to a sinus rhythm (SR). Vagal maneuvers (VM) resulted in restoration of SR in 8 patients (7.6%). Some patients received adenosine for non-SVT rhythms: 7 sinus tachycardia, 18 atrial fibrilation, 7 wide-complex tachycardia (WCT), and 2 ventricular tachycardia; no non-SVT rhythm converted to SR and none of these patients experienced an adverse effect. Twenty-five patients were hemodynamically unstable (systolic blood pressure < 90 mm Hg), with 20 receiving drug and 13 converting to SR; 8 patients required electrical cardioversion. Four patients experienced adverse effects related to adenosine (chest pain dyspnea, prolonged bradycardia, and ventricular tachycardia). In the verapamil period, 106 patients had SVT: 52 (49%) received verapamil (p < 0.001, compared with the adenosine period), of whom 43 (88%) converted to SR (p = 0.11). Two patients received verapamil for WCT; neither converted to SR and both experienced cardiovascular collapse. VM resulted in restoration of SR in 12 patients (11.0%) (p = 0.52). Sixteen patients were hemodynamically unstable, with 5 receiving drug (p = 0.005) and 5 converting to SR; 9 patients required electrical cardioversion (p = 0.48). Four patients experienced adverse effects related to verapamil (hypotension ventricular tachycardia, ventricular fibrillation). Recurrence of SVT was noted in 2 adenosine patients and 2 verapamil patients in the out-of-hospital setting and in 23 adenosine patients and 15 verapamil patients after ED arrival, necessitating additional therapy (p = 0.48 and 0.88, for recurrence rates and types of additional therapies, respectively). Hospital diagnoses, outcomes, and ED dispositions were similar for the 2 groups. Adenosine and verapamil were equally successful in converting out-of-hospital SVT in patients with similar etiologies responsible for the SVT. Recurrence of SVT occurred at similar rates for the 2 medications. Rhythm misidentification remains a common issue in out-of-hospital cardiac care in this emergency medical services system.
ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer.
Dvorak, Pavel; Pesta, Martin; Soucek, Pavel
2017-05-01
Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various cancers. Graphical abstract.
Ross, Allan M; Gibbons, Raymond J; Stone, Gregg W; Kloner, Robert A; Alexander, R Wayne
2005-06-07
The purpose of this research was to determine the effect of intravenous adenosine on clinical outcomes and infarct size in ST-segment elevation myocardial infarction (STEMI) patients undergoing reperfusion therapy. Previous small studies suggest that adenosine may reduce the size of an evolving infarction. Patients (n = 2,118) with evolving anterior STEMI receiving thrombolysis or primary angioplasty were randomized to a 3-h infusion of either adenosine 50 or 70 microg/kg/min or of placebo. The primary end point was new congestive heart failure (CHF) beginning >24 h after randomization, or the first re-hospitalization for CHF, or death from any cause within six months. Infarct size was measured in a subset of 243 patients by technetium-99m sestamibi tomography. There was no difference in the primary end point between placebo (17.9%) and either the pooled adenosine dose groups (16.3%) or, separately, the 50-microg/kg/min dose and 70-microg/kg/min groups (16.5% vs. 16.1%, respectively, p = 0.43). The pooled adenosine group trended toward a smaller median infarct size compared with the placebo group, 17% versus 27% (p = 0.074). A dose-response relationship with final median infarct size was seen: 11% at the high dose (p = 0.023 vs. placebo) and 23% at the low dose (p = NS vs. placebo). Infarct size and occurrence of a primary end point were significantly related (p < 0.001). Clinical outcomes in patients with STEMI undergoing reperfusion therapy were not significantly improved with adenosine, although infarct size was reduced with the 70-microg/kg/min adenosine infusion, a finding that correlated with fewer adverse clinical events. A larger study limited to the 70-microg/kg/min dose is, therefore, warranted.
Adenosine enhances sweet taste through A2B receptors in the taste bud
Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.
2012-01-01
Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293
Ergul, Yakup; Ozturk, Erkut; Ozyilmaz, Isa; Unsal, Serkan; Carus, Hayat; Tola, Hasan Tahsin; Tanidir, Ibrahim Cansaran; Guzeltas, Alper
2015-01-01
We aimed to determine the correlation between noninvasive testing (exercise stress testing [EST] and adenosine responsiveness of accessory pathway [AP] ) and invasive electrophysiology study (EPS) for assessment antegrade conduction of the AP in Wolff-Parkinson-White syndrome. This prospective, observational study enrolled 40 children (58% male children, median age of 13 years, and median weight of 47.5 kg) with Wolff-Parkinson-White syndrome. Conduction through the AP to a cycle length of ≤250 ms was considered rapid or high-risk; otherwise, patients were nonrapid or low-risk. The sudden disappearance of the delta-wave was seen in 10 cases (25%) during EST. Accessory pathway was found to be high-risk in 13 cases (13/40, 32.5%) while the accessory path was identified as low-risk in 27 cases; however, six patients (15%) had blocked AP conduction with adenosine during EPS. Low-risk classification by EST alone to identify patients with nonrapid conduction in baseline EPS had a specificity of 93% and a positive predictive value of 90% (accuracy 54%). Blocked AP conduction with adenosine as a marker of nonrapid baseline AP conduction had a specificity of 93% and a positive predictive value of 84%. Finally, AP was adenosine nonresponsive in the majority of patients (28/30, 93%) with persistent delta-waves, 40% of those who had a sudden disappearance of delta-waves had an adenosine-responsive AP (P value: .028). Abrupt loss of preexcitation during EST and blocked AP conduction with adenosine had high specificity and positive predictive value for nonrapid and low-risk antegrade conduction during baseline invasive EPS. Successful risk stratification of pediatric patients with Wolff-Parkinson-White is possible through the use of EST and the adenosine responsiveness of AP. © 2015 Wiley Periodicals, Inc.
Kitkungvan, Danai; Lai, Dejian; Zhu, Hongjian; Roby, Amanda E; Johnson, Nils P; Steptoe, Derek D; Patel, Monica B; Kirkeeide, Richard; Gould, K Lance
2017-02-01
Different adenosine stress imaging protocols have not been systemically validated for absolute myocardial perfusion and coronary flow reserve (CFR) by positron emission tomography, where submaximal stress precludes assessing physiological severity of coronary artery disease. In 127 volunteers, serial rest-stress positron emission tomography scans using rubidium-82 with various adenosine infusion protocols identified (1) the protocol with maximum stress perfusion and CFR, (2) test-retest precision in same subject, (3) stress perfusion and CFR after adenosine compared with dipyridamole, (4) heterogeneity of coronary flow capacity combining stress perfusion and CFR, and (5) potential relevance for patients with risk factors or coronary artery disease. The adenosine 6-minute infusion with rubidium-82 injection at 3 minutes caused CFR that was significantly 15.7% higher than the 4-minute adenosine infusion with rubidium-82 injection at 2 minutes and significantly more homogeneous by Kolmogorov-Smirnov analysis for histograms of 1344 pixel range of perfusion in paired positron emission tomographies. In a coronary artery disease cohort separate from volunteers of this study, compared with the 3/6-minute protocol, the 2/4-minute adenosine protocol would potentially have changed 332 of 1732 (19%) positron emission tomographies at low-risk physiological severity CFR ≥2.3 to CFR <2.0, thereby implying high-risk quantitative severity potentially appropriate for interventions but because of suboptimal stress of the 2/4 protocol in some patients. The 6-minute adenosine infusion with rubidium-82 activation at 3 minutes produced CFR that averaged 15.7% higher than that in the 2/4-minute protocol, thereby potentially providing essential information for personalized management in some patients. © 2017 American Heart Association, Inc.
Adenosine enhances sweet taste through A2B receptors in the taste bud.
Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D
2012-01-04
Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.
Cho, Kang Jun; Koh, Jun Sung; Choi, Jinbong; Kim, Joon Chul
2017-12-01
We investigated changes in the levels of adenosine triphosphate and nitric oxide in the urothelium of men with detrusor underactivity and benign prostatic hyperplasia. We prospectively enrolled in study 30 men who planned to undergo surgical treatment for benign prostatic hyperplasia. The 15 patients with a bladder contractility index less than 100 were assigned to the detrusor underactivity group while the 15 with a bladder contractility index more than 100 were assigned to the no detrusor underactivity group. Bladder mucosal specimens were collected at surgical prostate resection, and adenosine triphosphate and endothelial nitric oxide synthase were analyzed in these specimens. The levels of adenosine triphosphate and endothelial nitric oxide synthase were compared between the 2 groups. The correlation of urodynamic parameters with adenosine triphosphate and endothelial nitric oxide synthase was assessed in all patients. Mean ± SEM endothelial nitric oxide synthase did not significantly differ between the detrusor underactivity and no underactivity groups (3.393 ± 0.969 vs 1.941 ± 0.377 IU/ml, p = 0.247). However, the mean level of adenosine triphosphate in the detrusor underactivity group was significantly lower than in the no detrusor underactivity group (1.289 ± 0.320 vs 9.262 ± 3.285 pmol, p = 0.011). In addition, in all patients adenosine triphosphate positively correlated with the bladder contractility index (r = 0.478, p = 0.018) and with detrusor pressure on maximal flow (r = 0.411, p = 0.046). Adenosine triphosphate was significantly decreased in the urothelium in men with detrusor underactivity and benign prostatic hyperplasia, reflecting the change in detrusor function. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Gholinejad, Masoumeh; Jafari Anarkooli, Iraj; Taromchi, Amirhossein; Abdanipour, Alireza
2018-05-01
Overproduction of free radicals during oxidative stress induces damage to key biomolecules and activates programed cell death pathways. Neuronal cell death in the nervous system leads to a number of neurodegenerative diseases. The aim of the present study was to evaluate the neuroprotective effect of adenosine on inhibition of apoptosis induced by hydrogen peroxide (H 2 O 2 ) in bone marrow-derived neural stem cells (B-dNSCs), with focus on its regulatory effect on the expression of mammalian sterile 20-like kinase 1 ( Mst1 ), as a novel proapoptotic kinase. B-dNSCs were exposed to adenosine at different doses (2, 4, 6, 8 and 10 µM) for 48 h followed by 125 µM H 2 O 2 for 30 min. Using MTT, terminal deoxynucleotidyl transferase dUTP nick-end labeling and real-time reverse transcription polymerase chain reaction assays, the effects of adenosine on cell survival, apoptosis and Mst1 , nuclear factor (erythroid-derived 2)-like 2 and B-cell lymphoma 2 and adenosine A1 receptor expression were evaluated in pretreated B-dNSCs compared with controls (cells treated with H 2 O 2 only). Firstly, results of the MTT assay indicated 6 µM adenosine to be the most protective dose in terms of promotion of cell viability. Subsequent assays using this dosage indicated that apoptosis rate and Mst1 expression in B-dNSCs pretreated with 6 µM adenosine were significantly decreased compared with the control group. These findings suggest that adenosine protects B-dNSCs against oxidative stress-induced cell death, and therefore, that it may be used to promote the survival rate of B-dNSCs and as a candidate for the treatment of oxidative stress-mediated neurological diseases.
Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika
2014-01-01
Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571
Responses of the aorta of the garter snake (Thamnophis sirtalis parietalis) to purines.
Knight, G E; Burnstock, G
1995-01-01
1. Isolated aortic rings from the garter snake (Thamnophis sirtalis parietalis) were investigated in order to identify and classify responses to adenosine and adenosine 5'-triphosphate (ATP) and their analogues as part of a comparative study of vertebrate purinoceptors. 2. Adenosine, D-5'-(N-ethylcarboxamide) adenosine (NECA), R- and S-N6-(2-phenylisopropyl) adenosine (R- and S-PIA) and 2-chloroadenosine (2-CA) all concentration-dependently relaxed aorta preconstricted with noradrenaline (NA). The order of potency was: NECA > R-PIA = 2-CA > adenosine > S-PIA. Individual pD2 values for the analogues were: NECA 7.12 +/- 0.13 (9), R-PIA 5.93 +/- 0.25 (7), 2-CA 5.64 +/- 0.40 (5), adenosine 5.04 +/- 0.10 (13) and S-PIA 4.26 +/- 0.10 (7). The order of potency has characteristics of both A1 and A2 receptors and cannot satisfactorily be classified according to the P1-(adenosine) purinoceptor subtypes established in mammalian preparations. 3. ATP, alpha, beta-methylene ATP (alpha, beta-MeATP), 2-methylthio ATP (2MeSATP), beta, gamma-methylene ATP (beta, gamma,-MeATP) and uridine 5'-triphosphate (UTP) all concentration-dependently constricted the isolated aorta. The order of potency was alpha, beta-MeATP = 2MeSATP > ATP > beta, gamma-MeATP > UTP. Only ATP, alpha, beta-MeATP and 2MeSATP consistently produced a maximum response; pD2 values were: ATP 3.98 +/- 0.07 (10), alpha, beta-MeATP 5.86 +/- 0.15 (12) and 2MeSATP 6.06 +/- 0.23 (9). In vessels preconstricted with NA neither ATP nor 2MeSATP caused relaxation in the presence or absence of the endothelium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7712027
Mundell, S J; Matharu, A-L; Nisar, S; Palmer, T M; Benovic, J L; Kelly, E
2010-02-01
We have investigated the effect of deletions of a postsynaptic density, disc large and zo-1 protein (PDZ) motif at the end of the COOH-terminus of the rat A(2B) adenosine receptor on intracellular trafficking following long-term exposure to the agonist 5'-(N-ethylcarboxamido)-adenosine. The trafficking of the wild type A(2B) adenosine receptor and deletion mutants expressed in Chinese hamster ovary cells was studied using an enzyme-linked immunosorbent assay in combination with immunofluorescence microscopy. The wild type A(2B) adenosine receptor and deletion mutants were all extensively internalized following prolonged treatment with NECA. The intracellular compartment through which the Gln(325)-stop receptor mutant, which lacks the Type II PDZ motif found in the wild type receptor initially trafficked was not the same as the wild type receptor. Expression of dominant negative mutants of arrestin-2, dynamin or Eps-15 inhibited internalization of wild type and Leu(330)-stop receptors, whereas only dominant negative mutant dynamin inhibited agonist-induced internalization of Gln(325)-stop, Ser(326)-stop and Phe(328)-stop receptors. Following internalization, the wild type A(2B) adenosine receptor recycled rapidly to the cell surface, whereas the Gln(325)-stop receptor did not recycle. Deletion of the COOH-terminus of the A(2B) adenosine receptor beyond Leu(330) switches internalization from an arrestin- and clathrin-dependent pathway to one that is dynamin dependent but arrestin and clathrin independent. The presence of a Type II PDZ motif appears to be essential for arrestin- and clathrin-dependent internalization, as well as recycling of the A(2B) adenosine receptor following prolonged agonist addition.
Pornbanlualap, Somchai; Chalopagorn, Pornchanok
2011-08-01
The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.
Antinociceptive effect of purine nucleotides.
Mello, C F; Begnini, J; De-La-Vega, D D; Lopes, F P; Schwartz, C C; Jimenez-Bernal, R E; Bellot, R G; Frussa-Filho, R
1996-10-01
The antinociceptive effect of purine nucleotides administered systematically (sc) was determined using the formalin and writhing tests in adult male albino mice. The mechanisms underlying nucleotide-induced antinociception were investigated by preinjecting the animals (sc) with specific antagonists for opioid (naloxone, 1 mg/kg), purinergic P1 (caffeine, 5, 10, of 30 mg/kg); theophylline, 10 mg/kg) or purinergic P2 receptors (suramin, 100 mg/kg; Coomassie blue, 30-300 mg/kg; quinidine, 10 mg/kg). Adenosine, adenosine monophosphate (AMP), diphosphate (ADP) and triphosphate (ATP) caused a reduction in the number of writhes and in the time of licking the formalin-injected paw. Naloxone had no effect on adenosine- or adenine nucleotide-induced antinociception. Caffeine (30 mg/kg) and theophylline (10 mg/kg) reversed the antinociceptive action of adenosine and adenine nucleotide derivatives in both tests. P2 antagonists did not reverse adenine nucleotide-induced antinociception. These results suggest that antinociceptive effect of adenine nucleotides is mediated by adenosine.
Use of Antibody to Membrane Adenosine Triphosphatase in the Study of Bacterial Relationships1
Whiteside, Theresa L.; De Siervo, August J.; Salton, Milton R. J.
1971-01-01
An antiserum to Ca2+-activated adenosine triphosphatase from membranes of Micrococcus lysodeikticus cross-reacted in agar gels with membrane adenosine triphosphatases from other pigmented micrococci and related species. Species of Micrococcus and Sarcina showed different levels of inhibition of adenosine triphosphatase activities in heterologous reactions with antiserum. Inter- and intraspecific relationships based on the inhibition reaction were compared with an independent parameter, namely the quantitative and qualitative composition of the bacterial membrane phospholipids and fatty acids. The guanine plus cytosine contents in the deoxyribonucleic acid of the species studied correlated well with the serological cross-reactivity of adenosine triphosphatases from their membranes. The types of cross-bridges found in the peptidoglycans of these cocci were also compared with the other properties. The results suggest that an antiserum specific for a major membrane protein may be a reliable and most useful adjunct in studying bacterial serotaxonomy. Images PMID:4323299
Use of antibody to membrane adenosine triphosphatase in the study of bacterial relatioships.
Whiteside, T L; De Siervo, A J; Salton, M R
1971-03-01
An antiserum to Ca(2+)-activated adenosine triphosphatase from membranes of Micrococcus lysodeikticus cross-reacted in agar gels with membrane adenosine triphosphatases from other pigmented micrococci and related species. Species of Micrococcus and Sarcina showed different levels of inhibition of adenosine triphosphatase activities in heterologous reactions with antiserum. Inter- and intraspecific relationships based on the inhibition reaction were compared with an independent parameter, namely the quantitative and qualitative composition of the bacterial membrane phospholipids and fatty acids. The guanine plus cytosine contents in the deoxyribonucleic acid of the species studied correlated well with the serological cross-reactivity of adenosine triphosphatases from their membranes. The types of cross-bridges found in the peptidoglycans of these cocci were also compared with the other properties. The results suggest that an antiserum specific for a major membrane protein may be a reliable and most useful adjunct in studying bacterial serotaxonomy.
Stereoselective formation of a 2 prime (3 prime)- aminoacyl ester of a nucleotide
NASA Technical Reports Server (NTRS)
Weber, A. L.
1986-01-01
Reaction of DL-series and adenosine-5-phosphorimidazolide in the presence of adenosine-5'-(0-methylphosphate) and imidazole resulted in the stereoselective synthesis of the aminoacyl nucleotide ester, 2'(3')-0-seryl-adenosine-5'-(0-methylphosphate). The enantiomeric excess of D-serine incorporated into 2'(3')-0-seryl-adenosine-5'-(0-methylphosphate) was about 9%. Adenylyl-(5->N)-serine and an unknown product also incorporated an excess of D-serine, however, seryl-serine showed an excess of L-serine. The relationship of these results to the origin of the biological pairing of L-amino acids and nucleotides containing D-ribose is discussed.
Yin, Chun-Yun; Zhou, Ying; Ye, Bang-Ce
2011-01-01
Dissolved oxygen (DO) is an important factor for adenosine fermentation. Our previous experiments have shown that low oxygen supply in the growth period was optimal for high adenosine yield. Herein, to better understand the link between oxygen supply and adenosine productivity in B. subtilis (ATCC21616), we sought to systematically explore the effect of DO on genetic regulation and metabolism through transcriptome analysis. The microarrays representing 4,106 genes were used to study temporal transcript profiles of B. subtilis fermentation in response to high oxygen supply (agitation 700 r/min) and low oxygen supply (agitation 450 r/min). The transcriptome data analysis revealed that low oxygen supply has three major effects on metabolism: enhance carbon metabolism (glucose metabolism, pyruvate metabolism and carbon overflow), inhibit degradation of nitrogen sources (glutamate family amino acids and xanthine) and purine synthesis. Inhibition of xanthine degradation was the reason that low oxygen supply enhanced adenosine production. These provide us with potential targets, which can be modified to achieve higher adenosine yield. Expression of genes involved in energy, cell type differentiation, protein synthesis was also influenced by oxygen supply. These results provided new insights into the relationship between oxygen supply and metabolism. PMID:21625606
Gillerman, Irina; Fischer, Bilha
2011-01-13
Inhibitors of adenosine deaminase (ADA, EC 3.5.4.4) are potential therapeutic agents for the treatment of various health disorders. Several highly potent inhibitors were previously identified, yet they exhibit unacceptable toxicities. We performed a SAR study involving a series of C2 or C8 substituted purine-riboside analogues with a view to discover less potent inhibitors with a lesser toxicity. We found that any substitution at C8 position of nebularine resulted in total loss of activity toward calf intestinal ADA. However, several 2-substituted-adenosine, 8-aza-adenosine, and nebularine analogues exhibited inhibitory activity. Specifically, 2-Cl-purine riboside, 8-aza-2-thiohexyl adenosine, 2-thiohexyl adenosine, and 2-MeS-purine riboside were found to be competitive inhibitors of ADA with K(i) values of 25, 22, 6, and 3 μM, respectively. We concluded that electronic parameters are not major recognition determinants of ADA but rather steric parameters. A C2 substituent which fits ADA hydrophobic pocket and improves H-bonding with the enzyme makes a good inhibitor. In addition, a gg rotamer about C4'-C5' bond is apparently an important recognition determinant.
Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V.; Gau, Eva; Thompson, Linda F.; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W.; Blackburn, Michael R.; Westendorf, Astrid M.; Stuschke, Martin; Jendrossek, Verena
2016-01-01
Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks post-irradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately three-fold. Histological evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P<0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase (PEG-ADA) or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacological strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. PMID:26921334
López-Cruz, Laura; Salamone, John D.; Correa, Mercè
2018-01-01
Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy) and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression. PMID:29910727
Wawrzyniak, Andrew J; Dilsizian, Vasken; Krantz, David S; Harris, Kristie M; Smith, Mark F; Shankovich, Anthony; Whittaker, Kerry S; Rodriguez, Gabriel A; Gottdiener, John; Li, Shuying; Kop, Willem; Gottlieb, Stephen S
2015-10-01
Mental stress can trigger myocardial ischemia, but the prevalence of mental stress-induced ischemia in congestive heart failure (CHF) patients is unknown. We characterized mental stress-induced and adenosine-induced changes in myocardial perfusion and neurohormonal activation in CHF patients with reduced left-ventricular function using SPECT to precisely quantify segment-level myocardial perfusion. Thirty-four coronary artery disease patients (mean age±SD, 62±10 y) with CHF longer than 3 mo and ejection fraction less than 40% underwent both adenosine and mental stress myocardial perfusion SPECT on consecutive days. Mental stress consisted of anger recall (anger-provoking speech) followed by subtraction of serial sevens. The presence and extent of myocardial ischemia was quantified using the conventional 17-segment model. Sixty-eight percent of patients had 1 ischemic segment or more during mental stress and 81% during adenosine. On segment-by-segment analysis, perfusion with mental stress and adenosine were highly correlated. No significant differences were found between any 2 time points for B-type natriuretic peptide, tumor necrosis factor-α, IL-1b, troponin, vascular endothelin growth factor, IL-17a, matrix metallopeptidase-9, or C-reactive protein. However, endothelin-1 and IL-6 increased, and IL-10 decreased, between the stressor and 30 min after stress. Left-ventricular end diastolic dimension was 179±65 mL at rest and increased to 217±71 after mental stress and 229±86 after adenosine (P<0.01 for both). Resting end systolic volume was 129±60 mL at rest and increased to 158±66 after mental stress (P<0.05) and 171±87 after adenosine (P<0.07), with no significant differences between adenosine and mental stress. Ejection fraction was 30±12 at baseline, 29±11 with mental stress, and 28±10 with adenosine (P=not significant). There was high concordance between ischemic perfusion defects induced by adenosine and mental stress, suggesting that mental stress is equivalent to pharmacologic stress in eliciting clinically significant myocardial perfusion defects in CHF patients. Cardiac dilatation suggests clinically important changes with both conditions. Psychosocial stressors during daily life may contribute to the ischemic burden of CHF patients with coronary artery disease. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
The regulation of ATP release from the urothelium by adenosine and transepithelial potential.
Dunning-Davies, Bryony M; Fry, Christopher H; Mansour, Dina; Ferguson, Douglas R
2013-03-01
WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: Stretch of the urothelium, as occurs during bladder filling, is associated with a release of ATP that is postulated to act as a sensory neurotransmitter. The regulation of ATP release is poorly understood and in particular if there is a feedback mechanism provided by ATP itself. Adenosine, a breakdown product of ATP, is a potent inhibitor of stretch-induced ATP release, acting through and A1 receptor; endogenous levels are about 0.6μM. Data are consistent with ATP release relying on the rise of intracellular Ca2+. Transepithelial potential also controls ATP release, also acting via an A1 receptor-dependent pathway. To test the hypothesis that distension-induced ATP release from the bladder urothelium is regulated by adenosine as well as changes to transurothelial potential (TEP). To examine the role of changes to intracellular [Ca(2+) ] in ATP release. Rabbit urothelium/suburothelium membranes were used in an Ussing chamber system. Distension was induced by fluid removal from the chamber bathing the serosal (basolateral) membrane face. The TEP and short-circuit current were measured. ATP was measured in samples aspirated from the serosal chamber by a luciferin-luciferase assay. Intracellular [Ca(2+) ] was measured in isolated urothelial cells using the fluorochrome Fura-2. All experiments were performed at 37°C. Distension-induced ATP release was decreased by adenosine (1-10 μm) and enhanced by adenosine deaminase and A1- (but not A2-) receptor antagonists. Distension-induced ATP release was reduced by 2-APB, nifedipine and capsazepine; capsaicin induced ATP release in the absence of distension. ATP and capsaicin, but not adenosine, generated intracellular Ca(2+) transients; adenosine did not affect the ATP-generated Ca(2+) transient. ATP release was dependent on a finite transepithelial potential. Changes to TEP, in the absence of distension, generated ATP release that was in turn reduced by adenosine. Adenosine exerts a powerful negative feedback control of ATP release from the urothelium via A1 receptor activation. Distension-induced ATP release may be mediated by a rise of the intracellular [Ca(2+) ]. Modulation of distension-induced ATP release by adenosine and TEP may have a common pathway. © 2012 BJU International.
Gebhard, Catherine; Messerli, Michael; Lohmann, Christine; Treyer, Valerie; Bengs, Susan; Benz, Dominik C; Giannopoulos, Andreas A; Kudura, Ken; von Felten, Elia; Schwyzer, Moritz; Gaemperli, Oliver; Gräni, Christoph; Pazhenkottil, Aju P; Buechel, Ronny R; Kaufmann, Philipp A
2018-04-23
In light of growing cardiovascular mortality rates observed in young women, sexual dimorphism in cardiac autonomic nervous control is gaining increasing attention. Heart rate responses to adenosine mirror autonomic activity and may carry important prognostic information. Hemodynamic changes during adenosine stress were retrospectively analysed in a propensity-matched cohort of 1932 consecutive patients undergoing myocardial perfusion single-photon-emission computed tomography (MPI-SPECT). Heart rate (HR) and systolic blood pressure (SBP) increased during adenosine infusion (P < 0.001). The increase in SBP and HR (heart rate reserve, HRR), was significantly more pronounced in women compared with men (P < 0.05). Patients ≤ 55 years had a higher HRR compared with patients > 55 years (46.8% vs 37.5%, P = 0.015). Women ≤ 55 years with a reversible perfusion defect on MPI-SPECT exhibited the highest HRR (89.2%), while age-matched men showed a blunted HR response to adenosine (26.4%, P = 0.01). Accordingly, age and an interaction term of female sex and increased HRR were identified as significant predictors of myocardial ischemia in a multiple regression analysis (OR 1.4, 95% CI 1.02-1.9, P = 0.038). HRR during adenosine infusion is influenced by age and sex. Our data suggest a stronger, sympathetic-driven, hemodynamic response to adenosine in younger women with myocardial ischemia.
Densmore, John C; Schaid, Terry R; Jeziorczak, Paul M; Medhora, Meetha; Audi, Said; Nayak, Shraddha; Auchampach, John; Dwinell, Melinda R; Geurts, Aron M; Jacobs, Elizabeth R
2017-02-01
Purpose/Aim of the Study: Adenosine signaling was studied in bronchiolitis obliterans organizing pneumonia (BOOP) resulting from unilateral lung ischemia. Ischemia was achieved by either left main pulmonary artery or complete hilar ligation. Sprague-Dawley (SD) rats, Dahl salt sensitive (SS) rats and SS mutant rat strains containing a mutation in the A 2B adenosine receptor gene (Adora2b) were studied. Adenosine concentrations were measured in bronchoalveolar lavage (BAL) by HPLC. A 2A (A 2A AR) and A 2B adenosine receptor (A 2B AR) mRNA and protein were quantified. Twenty-four hours after unilateral PA ligation, BAL adenosine concentrations from ischemic lungs were increased relative to contralateral lungs in SD rats. A 2B AR mRNA and protein concentrations were increased after PA ligation while miR27a, a negatively regulating microRNA, was decreased in ischemic lungs. A 2A AR mRNA and protein concentrations remained unchanged following ischemia. A 2B AR protein was increased in PA ligated lungs of SS rats after 7 days, and 4 h after complete hilar ligation in SD rats. SS-Adora2b mutants showed a greater extent of BOOP relative to SS rats, and greater inflammatory changes. Increased A 2B AR and adenosine following unilateral lung ischemia as well as more BOOP in A 2B AR mutant rats implicate a protective role for A 2B AR signaling in countering ischemic lung injury.
Densmore, John C.; Schaid, Terry R.; Jeziorczak, Paul M.; Medhora, Meetha; Audi, Said; Nayak, Shraddha; Auchampach, John; Dwinell, Melinda R.; Geurts, Aron M.; Jacobs, Elizabeth R.
2018-01-01
Purpose/Aim of the study Adenosine signaling was studied in bronchiolitis obliterans organizing pneumonia (BOOP) resulting from unilateral lung ischemia. Materials and Methods Ischemia was achieved by either left main pulmonary artery or complete hilar ligation. Sprague Dawley (SD) rats, Dahl salt sensitive (SS) rats and SS mutant rat strain containing a mutation in the A2B adenosine receptor gene (Adora2b) were studied. Adenosine concentrations were measured in bronchoalveolar lavage (BAL) by HPLC. A2A (A2AAR) and A2B adenosine receptor (A2BAR) mRNA and protein were quantified. Results 24h after unilateral PA ligation, BAL adenosine concentrations from ischemic lungs were increased relative to contralateral lungs in SD rats. A2BAR mRNA and protein concentrations were increased after PA ligation while miR27a, a negatively regulating microRNA, was decreased in ischemic lungs. A2AAR mRNA and protein concentrations remained unchanged following ischemia. A2BAR protein was increased in PA ligated lungs of SS rats after 7d, and 4h after complete hilar ligation in SD rats. SS-Adora2b mutants showed a greater extent of BOOP relative to SS rats, and greater inflammatory changes. Conclusions Increased A2BAR and adenosine following unilateral lung ischemia as well as more BOOP in A2BAR mutant rats implicate a protective role for A2BAR signaling in countering ischemic lung injury. PMID:28266889
Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, M.E.; Geiger, J.D.
1990-09-01
The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than didmore » mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.« less
Alcohol and Caffeine: The Perfect Storm
O'Brien, Mary Claire
2011-01-01
Although it is widely believed that caffeine antagonizes the intoxicating effects of alcohol, the molecular mechanisms underlying their interaction are incompletely understood. It is known that both caffeine and alcohol alter adenosine neurotransmission, but the relationship is complex, and may be dose dependent. In this article, we review the available literature on combining caffeine and alcohol. Ethical constraints prohibit laboratory studies that would mimic the high levels of alcohol intoxication achieved by many young people in real-world settings, with or without the addition of caffeine. We propose a possible neurochemical mechanism for the increase in alcohol consumption and alcohol-related consequences that have been observed in persons who simultaneously consume caffeine. Caffeine is a nonselective adenosine receptor antagonist. During acute alcohol intake, caffeine antagonizes the “unwanted” effects of alcohol by blocking the adenosine A1 receptors that mediate alcohol's somnogenic and ataxic effects. The A1 receptor–mediated “unwanted” anxiogenic effects of caffeine may be ameliorated by alcohol-induced increase in the extracellular concentration of adenosine. Moreover, by means of interactions between adenosine A2A and dopamine D2 receptors, caffeine-mediated blockade of adenosine A2A receptors can potentiate the effects of alcohol-induced dopamine release. Chronic alcohol intake decreases adenosine tone. Caffeine may provide a “treatment” for the withdrawal effects of alcohol by blocking the effects of upregulated A1 receptors. Finally, blockade of A2A receptors by caffeine may contribute to the reinforcing effects of alcohol. PMID:24761263
Huang, N; Wang, D J; Heppel, L A
1989-01-01
Extracellular ATP in concentrations of 5-50 microM displayed very little mitogenic activity by itself but it caused synergistic stimulation of [3H]thymidine incorporation in the presence of phorbol 12-tetradecanoate 13-acetate, epidermal growth factor, platelet-derived growth factor, insulin, adenosine, or 5'-(N-ethyl)carboxamidoadenosine. Cultures of Swiss 3T3, Swiss 3T6, A431, DDT1-MF2, and HFF cells were used. The percent of cell nuclei labeled with [3H]thymidine and cell number were also increased. ADP was equally mitogenic, while UTP and ITP were much less active. The effect of ATP was not due to hydrolysis by ectoenzymes to form adenosine, a known growth factor. Thus, the nonhydrolyzable analogue adenosine 5'-[beta, gamma-imido]triphosphate was mitogenic. In addition, it was found that ATP showed synergism in 3T6 and 3T3 cells when present for only the first hour of an incorporation assay, during which time no significant hydrolysis occurred. Furthermore, prolonged preincubation of cells with ATP reduced the mitogenic response to ATP but not to adenosine; preincubation with adenosine or N6-(R-phenylisopropyl)adenosine had the reverse effect. Finally, the effect of adenosine, but not of ATP, was inhibited by aminophylline. We conclude that extracellular ATP is a mitogen that interacts with P2 purinoceptors on the plasma membrane. PMID:2813367
Sheikhi, Amir; Yang, Han; Alam, Md Nur; van de Ven, Theo G M
2016-07-20
Nanoparticles, as one of the key materials in nanotechnology and nanomedicine, have gained significant importance during the past decade. While metal-based nanoparticles are associated with synthetic and environmental hassles, cellulose introduces a green, sustainable alternative for nanoparticle synthesis. Here, we present the chemical synthesis and separation procedures to produce new classes of hairy nanoparticles (bearing both amorphous and crystalline regions) and biopolymers based on wood fibers. Through periodate oxidation of soft wood pulp, the glucose ring of cellulose is opened at the C2-C3 bond to form 2,3-dialdehyde groups. Further heating of the partially oxidized fibers (e.g., T = 80 °C) results in three products, namely fibrous oxidized cellulose, sterically stabilized nanocrystalline cellulose (SNCC), and dissolved dialdehyde modified cellulose (DAMC), which are well separated by intermittent centrifugation and co-solvent addition. The partially oxidized fibers (without heating) were used as a highly reactive intermediate to react with chlorite for converting almost all aldehyde to carboxyl groups. Co-solvent precipitation and centrifugation resulted in electrosterically stabilized nanocrystalline cellulose (ENCC) and dicarboxylated cellulose (DCC). The aldehyde content of SNCC and consequently surface charge of ENCC (carboxyl content) were precisely controlled by controlling the periodate oxidation reaction time, resulting in highly stable nanoparticles bearing more than 7 mmol functional groups per gram of nanoparticles (e.g., as compared to conventional NCC bearing < 1 mmol functional group/g). Atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) attested to the rod-like morphology. Conductometric titration, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), electrokinetic-sonic-amplitude (ESA) and acoustic attenuation spectroscopy shed light on the superior properties of these nanomaterials.
Protective effects of N-acetylcysteine on experimentally undescended testis.
Uyeturk, Ugur; Cetinkaya, Ayhan; Ozyalvacli, Gulzade; Tekce, Buket Kin; Ozyalvacli, Mehmet Emin; Kemahli, Eray; Gucuk, Adnan
2014-04-01
We evaluated the efficacy of N-acetylcysteine for testicular damage induced by undescended testes in rats. Flutamide was injected in the abdomen of pregnant rats daily from days 14 to 20 of gestation. Male offspring with cryptorchidism were randomly divided into 2 groups. Healthy male rats without undescended testes comprised the control group (group 1). Group 2 (undescended testes without N-acetylcysteine) received no treatment. Group 3 (undescended testes plus N-acetylcysteine) received intraperitoneal N-acetylcysteine daily. At 70 days after experiment initiation the testes were removed for histopathological and biochemical analysis. Mean malonyl dialdehyde values were lowest in group 1 and highest in group 2. In group 3 malonyl dialdehyde levels were significantly lower than in group 2 (p <0.001). Conversely, mean glutathione peroxidase was highest in group 1 and lowest in group 2. Glutathione peroxidase levels in group 3 were significantly higher than in group 2 (p <0.001). Histopathological differences between groups 1 and 3 in the modified Johnsen score were not significant (p = 0.041). However, the differences between these groups and group 2 were significant (p <0.001). The median apoptotic cell count did not differ between groups 1 and 3 but it was significantly higher in group 2 than in the other groups (p = 0.03 and <0.001, respectively). N-acetylcysteine may alleviate undescended testis induced damage to testes through its antioxidant effects. The underlying mechanism of these effects merits further investigation. Long-term studies are also needed as well as comparative animal and human studies. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Manju, Saraswathy; Muraleedharan, Chirathodi Vayalappil; Rajeev, Adathala; Jayakrishnan, Attipettah; Joseph, Roy
2011-07-01
Vascular grafts are devices intended to replace compromised arteries in the body and grafts made of polyethylene terephthalate (PET) fabric have been used mainly for synthetic grafting procedures involving medium to large diameter vascular grafts. Though porosity of the graft permits tissue in-growth, it would lead to bleeding through the graft walls immediately after implantation. So it is essential to seal the pores either by preclotting with patient's own blood or by other sealing materials prior to implantation in order to prevent blood leakage through the graft wall. Biodegradable hydrogel materials are ideal candidates for this purpose. Apart from sealing the pores, they offer biocompatible and low-thrombogenic surfaces when coated on vascular graft. In the present study, a biodegradable hydrogel, derived from oxidized alginate and gelatin, has been deposited on PET grafts by dip coating and were characterized for its efficacy on sealing the pores of the graft. Water permeability in the static and pulsatile conditions, burst strength, in vitro cell culture cytotoxicity, hemocompatibility, and endothelial cell adhesion and proliferation of the coated grafts were investigated. Results showed that the alginate dialdehyde cross-linked gelatin hydrogel was nontoxic, hemocompatible, and was efficient in sealing the pores of the graft. Blood perfusion study showed that when hydrogel-coated grafts were exposed to blood for 30 min, they showed little affinity toward platelets or leukocytes. Hemolytic potential of PET was significantly reduced when it was coated with hydrogel. Improved adhesion and proliferation of endothelial cells were observed when PET grafts were coated with hydrogel. Results also showed that coating with hydrogel did not affect the burst strength of the PET graft. Copyright © 2011 Wiley Periodicals, Inc.
Mikhałlov, I B; Guzeva, V I; Sharf, M Ia; Basharina, O B; Chałka, N A
1997-01-01
Epileptic patients given phenobarbital (3 mg/kg, n = 8) or finlepsin (20 mg/kg, n = 7) were found to have a statistically significant increase (p < 0.05) in the parameters of the lipid peroxidation end product malonic dialdehyde in the erythrocytes (3.34 +/- 1.13 mumol/liter) and blood plasma (0.099 +/- 0.04 mumol/liter) in comparison to the control group (n = 9; 1.58 +/- 0.96 mumol/liter and 0.045 +/- 0.02 mumol/liter, respectively). The urea level (6.7 +/- 1.28 mumol/liter) and the ammonia level (31.59 +/- 10.46 mumol/liter) increase were statistically insignificant as compared to the controls (5.76 +/- 0.66 mumol/liter and 26.41 +/- 5.96 mumol/liter, respectively). Bemitil (n = -7) in a dose of 20 mg/kg reduced in 10 days the amount of malonic dialdehyde in the erythrocytes (1.57 +/- 0.61 mumol/liter, p < 0.05) and plasma (0.043 +/- 0.02 mumol/liter, p < 0.05) as well as the amount of urea (3.76 +/- 0.96 mumol/liter,) and ammonia p < 0.05 and ammonia (18.17 +/- 2.02 mumol/liter, p < 0.05) in the blood. A favorable therapeutic effect (lesser frequency of seizures and lesser asthenia of the of the children) was observed at the same time. The frequency of paroxysms reduced to 50% in 4 patients (2 with complex-partial seizures, one with absence, and one with simple-partial seizures) and to 75-% in the fifth patient with complex-partial seizures. The therapeutic effect in the 6th and 7th patients could not be evaluated.
NASA Astrophysics Data System (ADS)
Iwan, Agnieszka; Schab-Balcerzak, Ewa; Pociecha, Damian; Krompiec, Michal; Grucela, Marzena; Bilski, Pawel; Kłosowski, Mariusz; Janeczek, Henryk
2011-11-01
New siloxane-containing poly(azomethine)s and a six-membered poly(imide) have been developed from siloxane-containing diamine with four different dialdehydes and 3,4,9,10-perylenetetracarboxylic dianhydride, and their thermotropic behavior, optoelectrical and electrochemical properties were examined. Mesomorphic behavior of the polymers was investigated via differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (WAXRD, SAXRD) studies. The electrochemical behavior of poly(azomethine)s and poly(imide) was studied by differential pulse voltammetry (DPV). The HOMO levels of these polymers were in the range of -5.13 to -5.90 eV. UV-vis properties of the polymers were investigated in solid state as thin films and in chloroform solution. Optical energy band gap ( Egopt.) was calculated from absorption spectra and absorption coefficients α. The photoluminescence properties (PL) of obtained polymers were studied in chloroform solution. The investigated poly(azomethine)s emitted blue light, while the poly(imide) emitted green light. The polymers were irradiated with a test dose of 1 Gy Co-60 gamma-rays to detect their thermoluminescence properties in the temperature range of 50-200 °C. Polymer monolayer (ITO/polymer/Al) and bulk heterojunction (BHJ) (ITO/polymer:PCBM/Al and ITO/PEDOT:PSS/polymer:PCBM/Al) devices were prepared with PAZ and PI used as active layers and I- U curves were measured in the dark and during irradiation with light (under illumination of 1000 W/m 2). Poly(azomethine)s were blended with [6,6]-phenyl C 61 butyric acid methyl ester (PCBM). Selected properties of the investigated polymers with siloxane linkages were compared with the polymers ( PAZ1a- PAZ3a, PIa) prepared from the same dialdehydes or dianhydride and poly(1,4-butanediol)bis(4-aminobenzoate).
The 2′,3′-cAMP-adenosine pathway
2011-01-01
Our recent studies employing HPLC-tandem mass spectrometry to analyze venous perfusate from isolated, perfused kidneys demonstrate that intact kidneys produce and release into the extracellular compartment 2′,3′-cAMP, a positional isomer of the second messenger 3′,5′-cAMP. To our knowledge, this represents the first detection of 2′,3′-cAMP in any cell/tissue/organ/organism. Nuclear magnetic resonance experiments with isolated RNases and experiments in isolated, perfused kidneys suggest that 2′,3′-cAMP likely arises from RNase-mediated transphosphorylation of mRNA. Both in vitro and in vivo kidney experiments demonstrate that extracellular 2′,3′-cAMP is efficiently metabolized to 2′-AMP and 3′-AMP, both of which can be further metabolized to adenosine. This sequence of reactions is called the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMP → adenosine). Experiments in rat and mouse kidneys show that metabolic poisons increase extracellular levels of 2′,3′-cAMP, 2′-AMP, 3′-AMP, and adenosine; however, little is known regarding the pharmacology of 2′,3′-cAMP, 2′-AMP, and 3′-AMP. What is known is that 2′,3′-cAMP facilitates activation of mitochondrial permeability transition pores, a process that can lead to apoptosis and necrosis, and inhibits proliferation of vascular smooth muscle cells and glomerular mesangial cells. In summary, there is mounting evidence that at least some types of cellular injury, by triggering mRNA degradation, engage the 2′,3′-cAMP-adenosine pathway, and therefore this pathway should be added to the list of biochemical pathways that produce adenosine. Although speculative, it is possible that the 2′,3′-cAMP-adenosine pathway may protect against some forms of acute organ injury, for example acute kidney injury, by both removing an intracellular toxin (2′,3′-cAMP) and increasing an extracellular renoprotectant (adenosine). PMID:21937608
Why do premature newborn infants display elevated blood adenosine levels?
Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca
2016-05-01
Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW infants may be regarded as those in which premature exposure to ambient oxygen concentrations and oxidative stress causes a premature functioning of the extra-mitochondrial oxidative phosphorylation primarily in axons and endothelium. Adenosine may become a biomarker of prematurity risk, whose implications further studies may assess. Copyright © 2016 Elsevier Ltd. All rights reserved.
Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki
2014-12-01
Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Quintana, Miguel; Kahan, Thomas; Hjemdahl, Paul
2004-01-01
The concept of reperfusion injury, although first recognized from animal studies, is now recognized as a clinical phenomenon that may result in microvascular damage, no-reflow phenomenon, myocardial stunning, myocardial hibernation and ischemic preconditioning. The final consequence of this event is left ventricular (LV) systolic dysfunction leading to increased morbidity and mortality. The typical clinical case of reperfusion injury occurs in acute myocardial infarction (MI) with ST segment elevation in which an occlusion of a major epicardial coronary artery is followed by recanalization of the artery. This may occur either spontaneously or by means of thrombolysis and/or by primary percutaneous coronary intervention (PCI) with efficient platelet inhibition by aspirin (acetylsalicylic acid), clopidogrel and glycoprotein IIb/IIIa inhibitors. Although the pathophysiology of reperfusion injury is complex, the major role that neutrophils play in this process is well known. Neutrophils generate free radicals, degranulation products, arachidonic acid metabolites and platelet-activating factors that interact with endothelial cells, inducing endothelial injury and neutralization of nitrous oxide vasodilator capacity. Adenosine, through its multi-targeted pharmacological actions, is able to inhibit some of the above-mentioned detrimental effects. The net protective of adenosine in in vivo models of reperfusion injury is the reduction of the infarct size, the improvement of the regional myocardial blood flow and of the regional function of the ischemic area. Additionally, adenosine preserves the post-ischemic coronary flow reserve, coronary blood flow and the post-ischemic regional contractility. In small-scale studies in patients with acute MI, treatment with adenosine has been associated with smaller infarcts, less no-reflow phenomenon and improved LV function. During elective PCI adenosine reduced ST segment shifts, lactate production and ischemic symptoms. During the last years, three relatively large placebo-controlled clinical trials have been conducted: Acute Myocardial Infarction Study of Adenosine Trial (AMISTAD) I and II and Attenuation by Adenosine of Cardiac Complications (ATTACC). In the AMISTAD trials, the final infarct size was reduced and the LV systolic function was improved by adenosine treatment, mainly in patients with anterior MI localization. However, morbidity and mortality were not affected. In the ATTACC study, the LV systolic function was not affected by adenosine, however, trends towards improved survival were observed in patients with anterior MI localization. The possibility of obtaining a Thrombolysis in Myocardial Infarction (TIMI) grade 3 flow in the infarct-related artery in up to 95% of patients with acute MI (increasing the occurrence of reperfusion injury) has turned back the interest towards the protection of myocardial cells from the impending ischemic and reperfusion injury in which adenosine alone or together with other cardio-protective agents may exert important clinical effects.
Bjerring, Peter Nissen; Bjerrum, Esben Jannik; Larsen, Fin Stolze
2018-06-01
Liver failure results in hyperammonaemia, impaired regulation of cerebral microcirculation, encephalopathy, and death. However, the key mediator that alters cerebral microcirculation remains unidentified. In this study we show that topically applied ammonium significantly increases periarteriolar adenosine tone on the brain surface of healthy rats and is associated with a disturbed microcirculation. Cranial windows were prepared in anaesthetized Wistar rats. The flow velocities were measured by speckle contrast imaging and compared before and after 30 min of exposure to 10 mM ammonium chloride applied on the brain surface. These flow velocities were compared with those for control groups exposed to artificial cerebrospinal fluid or ammonium plus an adenosine receptor antagonist. A flow preservation curve was obtained by analysis of flow responses to a haemorrhagic hypotensive challenge and during stepwise exsanguination. The periarteriolar adenosine concentration was measured with enzymatic biosensors inserted in the cortex. After ammonium exposure the arteriolar flow velocity increased by a median (interquartile range) of 21.7% (23.4%) vs. 7.2% (10.2%) in controls (n = 10 and n = 6, respectively, p <0.05), and the arteriolar surface area increased. There was a profound rise in the periarteriolar adenosine concentration. During the hypotensive challenge the flow decreased by 27.8% (14.9%) vs. 9.2% (14.9%) in controls (p <0.05). The lower limit of flow preservation remained unaffected, 27.7 (3.9) mmHg vs. 27.6 (6.4) mmHg, whereas the autoregulatory index increased, 0.29 (0.33) flow units per millimetre of mercury vs. 0.03 (0.21) flow units per millimetre of mercury (p <0.05). When ammonium exposure was combined with topical application of an adenosine receptor antagonist, the autoregulatory index was normalized. Vasodilation of the cerebral microcirculation during exposure to ammonium chloride is associated with an increase in the adenosine tone. Application of a specific adenosine receptor antagonist restores the regulation of the microcirculation. This indicates that adenosine could be a key mediator of the brain dysfunction seen during hyperammonaemia and is a potential therapeutic target. In patients with liver failure, disturbances in brain function are caused in part by ammonium toxicity. In our project we studied how ammonia, through adenosine release, affects the blood flow in the brain of rats. In our experimental model we demonstrated that the detrimental effect of ammonia on blood flow regulation was counteracted by blocking the adenosine receptors in the brain. With this observation we identified a novel potential treatment target. If we can confirm our findings in a future clinical study, this might help patients with liver failure and the severe condition called hepatic encephalopathy. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Tiret, Brice; Brouillet, Emmanuel; Valette, Julien
2016-09-01
With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis. © The Author(s) 2016.
Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis
Liddicoat, Brian J.; Hartner, Jochen C.; Piskol, Robert; Ramaswami, Gokul; Chalk, Alistair M.; Kingsley, Paul D.; Sankaran, Vijay G.; Wall, Meaghan; Purton, Louise E.; Seeburg, Peter H.; Palis, James; Orkin, Stuart H.; Lu, Jun; Li, Jin Billy; Walkley, Carl R.
2016-01-01
Adenosine deaminases that act on RNA (ADARs) convert adenosine residues to inosine in double-stranded RNA. In vivo, ADAR1 is essential for the maintenance of hematopoietic stem/progenitors. Whether other hematopoietic cell types also require ADAR1 has not been assessed. Using erythroid- and myeloid-restricted deletion of Adar1, we demonstrate that ADAR1 is dispensable for myelopoiesis but is essential for normal erythropoiesis. Adar1-deficient erythroid cells display a profound activation of innate immune signaling and high levels of cell death. No changes in microRNA levels were found in ADAR1-deficient erythroid cells. Using an editing-deficient allele, we demonstrate that RNA editing is the essential function of ADAR1 during erythropoiesis. Mapping of adenosine-to-inosine editing in purified erythroid cells identified clusters of hyperedited adenosines located in long 3’-untranslated regions of erythroid-specific transcripts and these are ADAR1-specific editing events. ADAR1-mediated RNA editing is essential for normal erythropoiesis. PMID:27373493
Adenylate Energy Charge in Escherichia coli During Growth and Starvation
Chapman, Astrid G.; Fall, Lana; Atkinson, Daniel E.
1971-01-01
The value of the adenylate energy charge, [(adenosine triphosphate) + ½ (adenosine diphosphate)]/[(adenosine triphosphate) + (adenosine diphosphate) + (adenosine monophosphate)], in Escherichia coli cells during growth is about 0.8. During the stationary phase after cessation of growth, or during starvation in carbon-limited cultures, the energy charge declines slowly to a value of about 0.5, and then falls more rapidly. During the slow decline in energy charge, all the cells are capable of forming colonies, but a rapid fall in viability coincides with the steep drop in energy charge. These results suggest that growth can occur only at energy charge values above about 0.8, that viability is maintained at values between 0.8 and 0.5, and that cells die at values below 0.5. Tabulation of adenylate concentrations previously reported for various organisms and tissues supports the prediction, based on enzyme kinetic observations in vitro, that the energy charge is stabilized near 0.85 in intact metabolizing cells of a wide variety of types. PMID:4333317
Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent
Song, Anren; Zhang, Yujin; Han, Leng; Yegutkin, Gennady G.; Liu, Hong; Sun, Kaiqi; D'Alessandro, Angelo; Li, Jessica; Karmouty-Quintana, Harry; Iriyama, Takayuki; Weng, Tingting; Zhao, Shushan; Wang, Wei; Wu, Hongyu; Nemkov, Travis; Subudhi, Andrew W.; Jameson-Van Houten, Sonja; Julian, Colleen G.; Lovering, Andrew T.; Hansen, Kirk C.; Zhang, Hong; Bogdanov, Mikhail; Dowhan, William; Jin, Jianping; Kellems, Rodney E.; Eltzschig, Holger K.; Blackburn, Michael; Roach, Robert C.; Xia, Yang
2017-01-01
Faster acclimatization to high altitude upon re-ascent is seen in humans; however, the molecular basis for this enhanced adaptive response is unknown. We report that in healthy lowlanders, plasma adenosine levels are rapidly induced by initial ascent to high altitude and achieved even higher levels upon re-ascent, a feature that is positively associated with quicker acclimatization. Erythrocyte equilibrative nucleoside transporter 1 (eENT1) levels are reduced in humans at high altitude and in mice under hypoxia. eENT1 deletion allows rapid accumulation of plasma adenosine to counteract hypoxic tissue damage in mice. Adenosine signalling via erythrocyte ADORA2B induces PKA phosphorylation, ubiquitination and proteasomal degradation of eENT1. Reduced eENT1 resulting from initial hypoxia is maintained upon re-ascent in humans or re-exposure to hypoxia in mice and accounts for erythrocyte hypoxic memory and faster acclimatization. Our findings suggest that targeting identified purinergic-signalling network would enhance the hypoxia adenosine response to counteract hypoxia-induced maladaptation. PMID:28169986
Adenosine A1-Dopamine D1 Receptor Heteromers Control the Excitability of the Spinal Motoneuron.
Rivera-Oliver, Marla; Moreno, Estefanía; Álvarez-Bagnarol, Yocasta; Ayala-Santiago, Christian; Cruz-Reyes, Nicole; Molina-Castro, Gian Carlo; Clemens, Stefan; Canela, Enric I; Ferré, Sergi; Casadó, Vicent; Díaz-Ríos, Manuel
2018-05-24
While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely dependent on functional complexes of specific subtypes of adenosine and dopamine receptors. Combining a selective destabilizing peptide strategy with a proximity ligation assay and patch-clamp electrophysiology in slices from male mouse lumbar spinal cord, the present study demonstrates the existence of adenosine A 1 -dopamine D 1 receptor heteromers in the spinal motoneuron by which adenosine tonically inhibits D 1 receptor-mediated signaling. A 1 -D 1 receptor heteromers play a significant control of the motoneuron excitability, represent main targets for the excitatory effects of caffeine in the spinal cord and can constitute new targets for the pharmacological therapy after spinal cord injury, motor aging-associated disorders and restless legs syndrome.
Content of Adenosine Phosphates and Adenylate Energy Charge in Germinating Ponderosa Pine Seeds
Ching, Te May; Ching, Kim K.
1972-01-01
An average of 540 picomoles of total adenosine phosphates was found in the embryo of mature seeds of ponderosa pine (Pinus ponderosa Laws.) and 1140 picomoles in the gametophyte. Adenylate energy charges were 0.44 and 0.26, respectively. After stratification, total adenosine phosphates increased 7-fold and 6-fold in embryo and gametophyte, respectively, and energy charges rose to 0.85 and 0.75. During germination, total adenosine phosphates increased to a 20-fold peak on the 9th day in gametophytic tissue, parallel with the peak of reserve regradation and organellar synthesis, and then decreased. In embryo and seedling, total adenosine phosphates elevated 80-fold with two distinct oscillating increases of AMP and ADP. The oscillating increases occurred before the emergence of radicle and cotyledons during which the highest mitotic index prevailed in all tissues. Energy charges fluctuated between 0.65 at the rapid cell dividing stage to 0.85 at the fully differentiated stage of the seedling, while energy charges remained around 0.75 in the gametophyte. These data indicated that the content of adenosine phosphates of germinating seeds reflects growth, organogenesis, and morphogenesis, and that a compartmentalized energy metabolism must exist in dividing and growing plant cells. PMID:16658212
Grenz, Almut; Bauerle, Jessica D.; Dalton, Julee H.; Ridyard, Douglas; Badulak, Alexander; Tak, Eunyoung; McNamee, Eóin N.; Clambey, Eric; Moldovan, Radu; Reyes, German; Klawitter, Jost; Ambler, Kelly; Magee, Kristann; Christians, Uwe; Brodsky, Kelley S.; Ravid, Katya; Choi, Doo-Sup; Wen, Jiaming; Lukashev, Dmitriy; Blackburn, Michael R.; Osswald, Hartmut; Coe, Imogen R.; Nürnberg, Bernd; Haase, Volker H.; Xia, Yang; Sitkovsky, Michail; Eltzschig, Holger K.
2012-01-01
A complex biologic network regulates kidney perfusion under physiologic conditions. This system is profoundly perturbed following renal ischemia, a leading cause of acute kidney injury (AKI) — a life-threatening condition that frequently complicates the care of hospitalized patients. Therapeutic approaches to prevent and treat AKI are extremely limited. Better understanding of the molecular pathways promoting postischemic reflow could provide new candidate targets for AKI therapeutics. Due to its role in adapting tissues to hypoxia, we hypothesized that extracellular adenosine has a regulatory function in the postischemic control of renal perfusion. Consistent with the notion that equilibrative nucleoside transporters (ENTs) terminate adenosine signaling, we observed that pharmacologic ENT inhibition in mice elevated renal adenosine levels and dampened AKI. Deletion of the ENTs resulted in selective protection in Ent1–/– mice. Comprehensive examination of adenosine receptor–knockout mice exposed to AKI demonstrated that renal protection by ENT inhibitors involves the A2B adenosine receptor. Indeed, crosstalk between renal Ent1 and Adora2b expressed on vascular endothelia effectively prevented a postischemic no-reflow phenomenon. These studies identify ENT1 and adenosine receptors as key to the process of reestablishing renal perfusion following ischemic AKI. If translatable from mice to humans, these data have important therapeutic implications. PMID:22269324
Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells
Mello, Paola de Andrade; Filippi-Chiela, Eduardo Cremonese; Nascimento, Jéssica; Beckenkamp, Aline; Santana, Danielle Bertodo; Kipper, Franciele; Casali, Emerson André; Nejar Bruno, Alessandra; Paccez, Juliano Domiraci; Zerbini, Luiz Fernando; Wink, Marcia Rosângela; Lenz, Guido; Buffon, Andréia
2014-01-01
In cervical cancer, HPV infection and disruption of mechanisms involving cell growth, differentiation, and apoptosis are strictly linked with tumor progression and invasion. Tumor microenvironment is ATP and adenosine rich, suggesting a role for purinergic signaling in cancer cell growth and death. Here we investigate the effect of extracellular ATP on human cervical cancer cells. We find that extracellular ATP itself has a small cytotoxic effect, whereas adenosine formed from ATP degradation by ectonucleotidases is the main factor responsible for apoptosis induction. The level of P2×7 receptor seemed to define the main cytotoxic mechanism triggered by ATP, since ATP itself eliminated a small subpopulation of cells that express high P2×7 levels, probably through its activation. Corroborating these data, blockage or knockdown of P2×7 only slightly reduced ATP cytotoxicity. On the other hand, cell viability was almost totally recovered with dipyridamole, an adenosine transporter inhibitor. Moreover, ATP-induced apoptosis and signaling—p53 increase, AMPK activation, and PARP cleavage—as well as autophagy induction were also inhibited by dipyridamole. In addition, inhibition of adenosine conversion into AMP also blocked cell death, indicating that metabolization of intracellular adenosine originating from extracellular ATP is responsible for the main effects of the latter in human cervical cancer cells. PMID:25103241
Lacher, Svenja K; Mayer, Ralf; Sichardt, Kathrin; Nieber, Karen; Müller, Christa E
2007-01-15
A series of extracts of valerian roots (Valeriana officinalis L.) was prepared with solvents of different polarity. Polar as well as nonpolar extracts were found to interact with adenosine A(1) receptors. While polar extracts activated A(1) receptors (partial agonistic activity), nonpolar extracts showed antagonistic or inverse agonistic activity at A(1) receptors, as demonstrated by GTPgammaS binding assays at human recombinant A(1) receptors stably expressed in Chinese hamster ovary (CHO) cells. Guided by radioligand binding assays, fractionation of a lipophilic petroleum ether:diethyl ether (1:1) extract led to the isolation of isovaltrate, which was characterized as a potent, highly efficacious inverse agonist at adenosine A(1) receptors (K(i) rat A(1): 2.05 microM). In experiments at rat brain slices measuring post-synaptic potentials (PSPs) in cortical neurons, isovaltrate at least partly reversed the reduction in the PSPs induced by the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA). Isovaltrate may serve as a new lead structure for the development of inverse agonists at adenosine A(1) receptors. The common use of hydrophilic, but not lipophilic valerian extracts as mild sleep-inducing agents is consistent with the opposite actions of hydrophilic and lipophilic extracts on adenosine receptors.
Phillips, Andrew J K; Klerman, Elizabeth B; Butler, James P
2017-10-01
Sleep loss causes profound cognitive impairments and increases the concentrations of adenosine and adenosine A1 receptors in specific regions of the brain. Time courses for performance impairment and recovery differ between acute and chronic sleep loss, but the physiological basis for these time courses is unknown. Adenosine has been implicated in pathways that generate sleepiness and cognitive impairments, but existing mathematical models of sleep and cognitive performance do not explicitly include adenosine. Here, we developed a novel receptor-ligand model of the adenosine system to test the hypothesis that changes in both adenosine and A1 receptor concentrations can capture changes in cognitive performance during acute sleep deprivation (one prolonged wake episode), chronic sleep restriction (multiple nights with insufficient sleep), and subsequent recovery. Parameter values were estimated using biochemical data and reaction time performance on the psychomotor vigilance test (PVT). The model closely fit group-average PVT data during acute sleep deprivation, chronic sleep restriction, and recovery. We tested the model's ability to reproduce timing and duration of sleep in a separate experiment where individuals were permitted to sleep for up to 14 hours per day for 28 days. The model accurately reproduced these data, and also correctly predicted the possible emergence of a split sleep pattern (two distinct sleep episodes) under these experimental conditions. Our findings provide a physiologically plausible explanation for observed changes in cognitive performance and sleep during sleep loss and recovery, as well as a new approach for predicting sleep and cognitive performance under planned schedules.
Yang, Ya-Chun; Wang, Yen-Ting; Tseng, Wei-Lung
2017-03-22
Numerous compounds such as protein and double-stranded DNA have been shown to efficiently inhibit intrinsic peroxidase-mimic activity in Fe 3 O 4 nanoparticles (NP) and other related nanomaterials. However, only a few studies have focused on finding new compounds for enhancing the catalytic activity of Fe 3 O 4 NP-related nanomaterials. Herein, phosphate containing adenosine analogs are reported to enhance the oxidation reaction of hydrogen peroxide (H 2 O 2 ) and amplex ultrared (AU) for improving the peroxidase-like activity in Fe 3 O 4 NPs. This enhancement is suggested to be a result of the binding of adenosine analogs to Fe 2+ /Fe 3+ sites on the NP surface and from adenosine 5'-monophosphate (AMP) acting as the distal histidine residue of horseradish peroxidase for activating H 2 O 2 . Phosphate containing adenosine analogs revealed the following trend for the enhanced activity of Fe 3 O 4 NPs: AMP > adenosine 5'-diphosphate > adenosine 5'-triphosphate. The peroxidase-like activity in the Fe 3 O 4 NPs progressively increased with increasing AMP concentration and polyadenosine length. The Michaelis constant for AMP attached Fe 3 O 4 NPs is 5.3-fold lower and the maximum velocity is 2.7-fold higher than those of the bare Fe 3 O 4 NPs. Furthermore, on the basis of AMP promoted peroxidase mimicking activity in the Fe 3 O 4 NPs and the adsorption of protein on the NP surface, a selective fluorescent turn-off system for the detection of urinary protein is developed.
Purification and properties of adenosine kinase from rat brain.
Yamada, Y; Goto, H; Ogasawara, N
1980-12-04
Adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to apparent homogeneity from rat brain by (NH4)2SO4 fractionation, affinity chromatography on AMP-Sepharose 4B, gel filtration with Sephadex G-100, and DE-52 cellulose column chromatography. The yield was 56% of the initial activity with a final specific activity of 7.8 mumol/min per mg protein. The molecular weight was estimated as 38 000 by gel filtration with Sephadex G-100 and 41 000 by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 20% that of adenosine phosphorylation. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad pH optimum at pH 7.5-8.5. The Km value for adenosine was 0.2 microM and the maximum activity was observed at 0.5 microM. At higher concentrations of adenosine, the activity was strongly inhibited. The Km value for ATP was 0.02 mM and that for Mg2+ was 0.1 mM. GTP, dGTP, dATP and UTP were also proved to be effective phosphate donors. Co2+ was as effective as Mg2+, and Ca2+, Mn2+ or Ni2+ showed about 50% of the activity for Mg2+. The kinase is quite unstable, but stable in the presence of a high concentration of salt; e.g., 0.15 M KCl.
Phillips, Andrew J. K.
2017-01-01
Sleep loss causes profound cognitive impairments and increases the concentrations of adenosine and adenosine A1 receptors in specific regions of the brain. Time courses for performance impairment and recovery differ between acute and chronic sleep loss, but the physiological basis for these time courses is unknown. Adenosine has been implicated in pathways that generate sleepiness and cognitive impairments, but existing mathematical models of sleep and cognitive performance do not explicitly include adenosine. Here, we developed a novel receptor-ligand model of the adenosine system to test the hypothesis that changes in both adenosine and A1 receptor concentrations can capture changes in cognitive performance during acute sleep deprivation (one prolonged wake episode), chronic sleep restriction (multiple nights with insufficient sleep), and subsequent recovery. Parameter values were estimated using biochemical data and reaction time performance on the psychomotor vigilance test (PVT). The model closely fit group-average PVT data during acute sleep deprivation, chronic sleep restriction, and recovery. We tested the model’s ability to reproduce timing and duration of sleep in a separate experiment where individuals were permitted to sleep for up to 14 hours per day for 28 days. The model accurately reproduced these data, and also correctly predicted the possible emergence of a split sleep pattern (two distinct sleep episodes) under these experimental conditions. Our findings provide a physiologically plausible explanation for observed changes in cognitive performance and sleep during sleep loss and recovery, as well as a new approach for predicting sleep and cognitive performance under planned schedules. PMID:29073206
Barron, H V; Sciammarella, M G; Lenihan, K; Michaels, A D; Botvinick, E H
2000-01-01
The mechanism by which ischemia stimulates angiogenesis is unknown. Adenosine is released during myocardial ischemia and may be a mediator of this process. Experimental data suggest that heparin may enhance this effect. The purpose of this open-labeled, placebo-controlled trial was to determine whether repeated intravenous administration of adenosine and heparin could mimic physiologic angiogenesis and reduce the amount of exercise-induced myocardial ischemia in patients with coronary artery disease. Subjects with chronic stable angina refractory to conventional medical therapy and not suitable for revascularization received either adenosine (140 microg/kg/min for 6 minutes) and heparin (10,000 U bolus), (n = 14), or placebo, (n = 7) daily for 10 days. All patients underwent baseline and follow-up exercise testing with thallium-201 single-photon emission computed tomography myocardial perfusion imaging. A semiquantitative assessment of the extent and severity of the perfusion abnormalities was calculated by 2 blinded investigators. There was no significant change in exercise duration or in the peak heart rate systolic blood pressure product associated with adenosine and heparin compared with placebo treatment. There was, however, a 9% reduction in the extent (60.6 +/- 4.0 vs 54.9 +/- 4.1, p = 0.03) and a 14% improvement in severity (41.5 +/- 3.2 vs 35.7 +/- 2.9, p = 0.01) of the myocardial perfusion abnormalities seen in patients who received adenosine and heparin compared with placebo. Thus, in this pilot study, repeated administration of adenosine and heparin reduced the amount of exercise-induced ischemia in patients with chronic stable angina refractory to conventional treatment.
Boring, Daniel L.; Ji, Xiao-Duo; Zimmet, Jeff; Taylor, Kirk E.; Stiles, Gary L.
2012-01-01
The 1,3-phenylene diisothiocyanate conjugate of XAC (8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]-oxy]phenyl]-l,3-dipropylxanthine, a potent A1 selective adenosine antagonist) has been characterized as an irreversible inhibitor of A1 adenosine receptors. To further extend this work, a series of analogues were prepared containing a third substituent in the phenyl isothiocyanate ring, incorporated to modify the physiochemical or spectroscopic properties of the conjugate. Symmetrical trifunctional cross-linking reagents bearing two isothiocyanate groups were prepared as general intermediates for cross-linking functionalized congeners and receptors. Xanthine isothiocyanate derivatives containing hydrophilic, fluorescent, or reactive substituents, linked via an amide, thiourea, or methylene group in the 5-position, were synthesized and found to be irreversible inhibitors of A1 adenosine receptors. The effects of the 5-substituent on water solubility and on the A1/A2 selectivity ratio derived from binding assays in rat brain membranes were examined. Inhibition of binding of [3H]-N6-(2-phenylisopropyl)-adenosine and [3H]CGS21680 (2-[[2-[4-(2-carboxyethyl)phenyl]ethyl]amino]adenosine-5′-N-ethylcarboxamide) at central A1 and A2 adenosine receptors, respectively, was measured. A conjugate of XAC and 1,3,5-triisothiocyanatobenzene was 894-fold selective for A1 receptors. Reporter groups, such as fluorescent dyes and a spin-label, were included as chain substituents in the irreversibly binding analogues, which were designed for spectroscopic assays, histochemical characterization, and biochemical characterization of the receptor protein. PMID:1868116
Yang, Wen; Li, Tengfei; Shu, Chang; Ji, Shunli; Wang, Lei; Wang, Yan; Li, Duo; Mtalimanja, Michael; Sun, Luning; Ding, Li
2018-05-10
A method is described for the determination of proteins with LC-MS/MS enabled by a small molecule (adenosine) barcode and based on a double-recognition sandwich structure. The coagulation protein thrombin was chosen as the model analyte. Magnetic nanoparticles were functionalized with aptamer29 (MNP/apt29) and used to capture thrombin from the samples. MNP/apt29 forms a sandwich with functionalized gold nanoparticles modified with (a) aptamer15 acting as thrombin-recognizing element and (b) a large number of adenosine as mass barcodes. The sandwich formed (MNP/apt29-thrombin-apt15/AuNP/adenosine) can ben magnetically separated from the sample. Mass barcodes are subsequently released from the sandwiched structure for further analysis by adding 11-mercaptoundecanoic acid. Adenosine is then detected by LC-MS/MS as it reflects the level of thrombin with impressively amplified signal. Numerous adenosines introduced into the sandwich proportional to the target concentration further amplify the signal. Under optimized conditions, the response is linearly proportional to the thrombin concentration in the range of 0.02 nM to 10 nM, with a detection limit of 9 fM. The application of this method to the determination of thrombin in spiked plasma samples gave recoveries that ranged from 92.3% to 104.7%. Graphical abstract Schematic representation of a method for the determination of thrombin with LC-MS/MS. The method is based on a double-recognition sandwiched structure. With LC-MS/MS, mass barcodes (adenosine) are detected to quantify thrombin, which amplifies the detection signal impressively.
Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J.; Mikami, Dean J.
2015-01-01
Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions. PMID:25813057
Roy Chowdhury, Subir K; Smith, Darrell R; Saleh, Ali; Schapansky, Jason; Marquez, Alexandra; Gomes, Suzanne; Akude, Eli; Morrow, Dwane; Calcutt, Nigel A; Fernyhough, Paul
2012-06-01
Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3-5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway.
An enzyme-linked immuno-mass spectrometric assay with the substrate adenosine monophosphate.
Florentinus-Mefailoski, Angelique; Soosaipillai, Antonius; Dufresne, Jaimie; Diamandis, Eleftherios P; Marshall, John G
2015-02-01
An enzyme-linked immuno-mass spectrometric assay (ELIMSA) with the specific detection probe streptavidin conjugated to alkaline phosphatase catalyzed the production of adenosine from the substrate adenosine monophosphate (AMP) for sensitive quantification of prostate-specific antigen (PSA) by mass spectrometry. Adenosine ionized efficiently and was measured to the femtomole range by dilution and direct analysis with micro-liquid chromatography, electrospray ionization, and mass spectrometry (LC-ESI-MS). The LC-ESI-MS assay for adenosine production was shown to be linear and accurate using internal (13)C(15)N adenosine isotope dilution, internal (13)C(15)N adenosine one-point calibration, and external adenosine standard curves with close agreement. The detection limits of LC-ESI-MS for alkaline phosphatase-streptavidin (AP-SA, ∼190,000 Da) was tested by injecting 0.1 μl of a 1 pg/ml solution, i.e., 100 attograms or 526 yoctomole (5.26E-22) of the alkaline-phosphatase labeled probe on column (about 315 AP-SA molecules). The ELIMSA for PSA was linear and showed strong signals across the picogram per milliliter range and could robustly detect PSA from all of the prostatectomy patients and all of the female plasma samples that ranged as low as 70 pg/ml with strong signals well separated from the background and well within the limit of quantification of the AP-SA probe. The results of the ELIMSA assay for PSA are normal and homogenous when independently replicated with a fresh standard over multiple days, and intra and inter diem assay variation was less than 10 % of the mean. In a blind comparison, ELIMSA showed excellent agreement with, but was more sensitive than, the present gold standard commercial fluorescent ELISA, or ECL-based detection, of PSA from normal and prostatectomy samples, respectively.
Costa, M Adelina; Barbosa, A; Neto, E; Sá-e-Sousa, A; Freitas, R; Neves, J M; Magalhães-Cardoso, T; Ferreirinha, F; Correia-de-Sá, P
2011-05-01
Purines are important modulators of bone cell biology. ATP is metabolized into adenosine by human primary osteoblast cells (HPOC); due to very low activity of adenosine deaminase, the nucleoside is the end product of the ecto-nucleotidase cascade. We, therefore, investigated the expression and function of adenosine receptor subtypes (A(1) , A(2A) , A(2B) , and A(3) ) during proliferation and osteogenic differentiation of HPOC. Adenosine A(1) (CPA), A(2A) (CGS21680C), A(2B) (NECA), and A(3) (2-Cl-IB-MECA) receptor agonists concentration-dependently increased HPOC proliferation. Agonist-induced HPOC proliferation was prevented by their selective antagonists, DPCPX, SCH442416, PSB603, and MRS1191. CPA and NECA facilitated osteogenic differentiation measured by increases in alkaline phosphatase (ALP) activity. This contrasts with the effect of CGS21680C which delayed HPOC differentiation; 2-Cl-IB-MECA was devoid of effect. Blockade of the A(2B) receptor with PSB603 prevented osteogenic differentiation by NECA. In the presence of the A(1) antagonist, DPCPX, CPA reduced ALP activity at 21 and 28 days in culture. At the same time points, blockade of A(2A) receptors with SCH442416 transformed the inhibitory effect of CGS21680C into facilitation. Inhibition of adenosine uptake with dipyridamole caused a net increase in osteogenic differentiation. The presence of all subtypes of adenosine receptors on HPOC was confirmed by immunocytochemistry. Data show that adenosine is an important regulator of osteogenic cell differentiation through the activation of subtype-specific receptors. The most abundant A(2B) receptor seems to have a consistent role in cell differentiation, which may be balanced through the relative strengths of A(1) or A(2A) receptors determining whether osteoblasts are driven into proliferation or differentiation. Copyright © 2010 Wiley-Liss, Inc.
Wang, Yipei; Liu, Xin; Schneider, Brandon; Zverina, Elaina A.; Russ, Kristen; Wijeyesakere, Sanjeeva J.; Fierke, Carol A.; Richardson, Rudy J.; Philbert, Martin A.
2012-01-01
Astrocytes are acutely sensitive to 1,3-dinitrobenzene (1,3-DNB) while adjacent neurons are relatively unaffected, consistent with other chemically-induced energy deprivation syndromes. Previous studies have investigated the role of astrocytes in protecting neurons from hypoxia and chemical injury via adenosine release. Adenosine is considered neuroprotective, but it is rapidly removed by extracellular deaminases such as adenosine deaminase (ADA). The present study tested the hypothesis that ADA is inhibited by 1,3-DNB as a substrate mimic, thereby preventing adenosine catabolism. ADA was inhibited by 1,3-DNB with an IC50 of 284μM, Hill slope, n = 4.8 ± 0.4. Native gel electrophoresis showed that 1,3-DNB did not denature ADA. Furthermore, adding Triton X-100 (0.01–0.05%, wt/vol), Nonidet P-40 (0.0015–0.0036%, wt/vol), or bovine serum albumin (0.05 mg/ml or changing [ADA] (0.2 and 2nM) did not substantially alter the 1,3-DNB IC50 value. Likewise, dynamic light scattering showed no particle formation over a (1,3-DNB) range of 149–1043μM. Kinetics revealed mixed inhibition with 1,3-DNB binding to ADA (KI = 520 ± 100μM, n = 1 ± 0.6) and the ADA-adenosine complex (KIS = 262 ± 7μM, n = 6 ± 0.6, indicating positive cooperativity). In accord with the kinetics, docking predicted binding of 1,3-DNB to the active site and three peripheral sites. In addition, exposure of DI TNC-1 astrocytes to 10–500μM 1,3-DNB produced concentration-dependent increases in extracellular adenosine at 24 h. Overall, the results demonstrate that 1,3-DNB is a mixed inhibitor of ADA and may thus lead to increases in extracellular adenosine. The finding may provide insights to guide future work on chemically-induced energy deprivation. PMID:22106038
Costa, Marcelo S; Ardais, Ana Paula; Fioreze, Gabriela T; Mioranzza, Sabrina; Botton, Paulo Henrique S; Portela, Luis Valmor; Souza, Diogo O; Porciúncula, Lisiane O
2012-01-10
Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors. Copyright © 2011. Published by Elsevier Inc.
Dale, Nicholas; Pearson, Tim; Frenguelli, Bruno G
2000-01-01
We have used an enzyme-based, twin-barrelled sensor to measure adenosine release during hypoxia in the CA1 region of rat hippocampal slices in conjunction with simultaneous extracellular field recordings of excitatory synaptic transmission. When loaded with a combination of adenosine deaminase, nucleoside phosphorylase and xanthine oxidase, the sensor responded linearly to exogenous adenosine over the concentration range 10 nM to 20 μM. Without enzymes, the sensor when placed on the surface of hippocampal slices recorded a very small net signal during hypoxia of 40 ± 43 pA (mean ±s.e.m.; n = 7). Only when one barrel was loaded with the complete sequence of enzymes and the other with the last two in the cascade did the sensor record a large net difference signal during hypoxia (1226 ± 423 pA; n = 7). This signal increased progressively during the hypoxic episode, scaled with the hypoxic depression of the simultaneously recorded field excitatory postsynaptic potential and was greatly reduced (67 ± 6.5 %; n = 9) by coformycin (0.5-2 μM), a selective inhibitor of adenosine deaminase, the first enzyme in the enzymic cascade within the sensor. For 5 min hypoxic episodes, the sensor recorded a peak concentration of adenosine of 5.6 ± 1.2 μM (n = 16) with an IC50 for the depression of transmission of approximately 3 μM. In slices pre-incubated for 3-6 h in nominally Ca2+-free artificial cerebrospinal fluid, 5 min of hypoxia resulted in an approximately 9-fold greater release of adenosine (48.9 ± 17.7 μM; n = 6). High extracellular Ca2+ (4 mM) both reduced the adenosine signal recorded by the sensor during hypoxia (3.5 ± 0.6 μM; n = 4) and delayed the hypoxic depression of excitatory synaptic transmission. PMID:10878107
Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo
2016-01-01
The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428
Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo
The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.
Smith, Mark D; Bhatt, Dhaval P; Geiger, Jonathan D; Rosenberger, Thad A
2014-06-04
Acetate supplementation reduces neuroglia activation and pro-inflammatory cytokine expression in rat models of neuroinflammation and Lyme neuroborreliosis. Because single-dose glyceryl triacetate (GTA) treatment increases brain phosphocreatine and reduces brain AMP levels, we postulate that GTA modulates adenosine metabolizing enzymes and receptors, which may be a possible mechanism to reduce neuroinflammation. To test this hypothesis, we quantified the ability of GTA to alter brain levels of ecto-5'-nucleotidase (CD73), adenosine kinase (AK), and adenosine A2A receptor using western blot analysis and CD73 activity by measuring the rate of AMP hydrolysis. Neuroinflammation was induced by continuous bacterial lipopolysaccharide (LPS) infusion in the fourth ventricle of the brain for 14 and 28 days. Three treatment strategies were employed, one and two where rats received prophylactic GTA through oral gavage with LPS infusion for 14 or 28 days. In the third treatment regimen, an interventional strategy was used where rats were subjected to 28 days of neuroinflammation, and GTA treatment was started on day 14 following the start of the LPS infusion. We found that rats subjected to neuroinflammation for 28 days had a 28% reduction in CD73 levels and a 43% increase in AK levels that was reversed with prophylactic acetate supplementation. CD73 activity in these rats was increased by 46% with the 28-day GTA treatment compared to the water-treated rats. Rats subjected to neuroinflammation for 14 days showed a 50% increase in levels of the adenosine A2A receptor, which was prevented with prophylactic acetate supplementation. Interventional GTA therapy, beginning on day 14 following the induction of neuroinflammation, resulted in a 67% increase in CD73 levels and a 155% increase in adenosine A2A receptor levels. These results support the hypothesis that acetate supplementation can modulate brain CD73, AK and adenosine A2A receptor levels, and possibly influence purinergic signaling.
ATP-induced changes in rat skeletal muscle contractility.
Gabdrakhmanov, A I; Khayrullin, A E; Grishin, C H; Ziganshin, A U
2015-01-01
Extracellular purine compounds, adenosine triphosphate (ATP) and adenosine, are involved in regulation of many cell functions, engaging in rapid and long-term cellular processes. The nucleotides, including ATP, exert their extracellular effects by influencing membrane P2 receptors. ATP outside of the cell rapidly is metabolized by the ecto-enzyme system to produce adenosine, which acts on separate adenosine (P1) receptors. Since adenosine and ATP often are functional antagonists, ATP degradation not only limits its effect, but also brings new ligand with different, often opposing, properties. Great variety and widespread of P2 and adenosine receptors in the body emphasize the important physiological and pathophysiological significance of these receptors, and make them very attractive as targets for potential drug action.The existence of several subtypes of P2 and adenosine receptors has been shown in the skeletal muscles. ATP as a co-transmitter is densely packed together with classical neurotransmitters in the presynaptic vesicles of vertebral motor units but until recently ATP was refused to have its own functional role there and was recognized only as a source of adenosine. However, on the eve of the third millennium there appeared data that ATP, released from the nerve ending and acting on presynaptic P2 receptors, suppresses subsequent quantum release of acetylcholine. The final product of its degradation, adenosine, performs a similar inhibitory effect acting on presynaptic adenosine receptors.Despite the fact that the mechanisms of presynaptic inhibitory action of ATP and other purines were studied earlier, the object of those studies was usually neuromuscular synapse of cold-blooded animals. The few studies, in which experiments were carried out on preparations of warm-blooded animals, described the basic effects of purines. These often were guided by the convenience of preparation of the synapses of the diaphragm. We think that those results cannot be considered as typical effects of ATP and other purines on skeletal muscles and could not be extrapolated to all warm-blooded animals. Furthermore the role of ATP and its derivatives in the accumulation of vertebrate muscular effort has not been investigated.It is known that in physiological conditions vertebrates may mobilize only up to a third of the maximum muscle force. Why the two-thirds of muscular strength are not used normally but may be used at stress, remains unknown.It is known that the body's adaptive response to stress is a change in the activity of the endocrine system. The leading role in this is given to catechol amines and glucocorticoids, mobilized in significant quantities in blood under stress.We have found previously that incubation of frog sartorius muscle with hydrocortisone resulted in a decrease of contraction amplitude. However, when hydrocortisone was used in combination with ATP, its inhibitory effect on contractile responses disappeared. It is interesting that hydrocortisone had no effect on the inhibitory effect of adenosine. In the following experiments, assessing the effect of hydrocortisone on rat soleus muscle, it was established that hydrocortisone and purines had similar inhibitory effect. When ATP and hydrocortisone were given together the same oppression occurred. To study the effects of ATP and adenosine on contraction parameters of rat skeletal muscle and assess the impact of the catechol amines on these processes. Contractions of rat soleus muscles were recorded isometrically by mechanical sensor Linton FSG-01 (UK) according to standard procedures. The average of muscle parameters received within 30 seconds (30 responses) was treated as one result. Amplitude and time characteristics of the curve reductions were estimated. During all experiments standard Krebs solution flowed through the bath continuously to which agents were added at necessary concentrations. All experimental animals were maintained and prepared for dissection under the European Convention for the Protection of Vertebrate Animals used in scientific experiments. All agents used in the study were supplied by Sigma Chemical Company Ltd. (UK), Tocris Cookson and Research Biochemicals International (USA). The concentration of 100 μM for adenosine is close to saturation [1], and for its predecessor ATP this concentration is created after the passage of a pulse through the synapse [2]. We used this concentration of purines to study the mechanism of action of adenosine and ATP on neuromuscular synapse.The effect of adenosine was partially inhibited in the presence of 100 μM 8-SPT, an antagonist of adenosine receptors. The contraction force of "fast" and "slow" rat skeletal muscles was raised by half in the presence of norepinephrine. In the presence of norepinephrine adenosine exerted its effect fully, but ATP by half reduced its depressor effect on the contraction force of both muscles. 1. Norepinephrine increases half times of the reduction of "fast" and "slow" skeletal muscle.2. In the presence of norepinephrine, inhibitory effect of adenosine on contraction force is maintained.3. Inhibitory effect of ATP on contraction force of studied skeletal muscles becomes twice less pronounced in the presence of norepinephrine.We think that reduction of ATP depressive effect on the skeletal muscle by norepinephrine may be an adaptive response to acute stress.
Katritzky, Alan R; Jain, Ritu; Xu, Yong-Jiang; Steel, Peter J
2002-11-15
Condensation reactions of benzotriazole and 2-(pyrrol-1-yl)-1-ethylamine (1) with formaldehyde and glutaric dialdehyde, respectively, afforded intermediates 2 and 6. Subsequent nucleophilic substitutions of the benzotriazole group in 2 and 6 with Grignard reagents, sodium cyanide, and sodium borohydride gave 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines 3a-e, 4, 5 and 5,6,9,10,11,11a-hexahydro-8H-pyrido[1,2-a]pyrrolo[2,1-c]pyrazines 7a-c, 8, 9, respectively, in good yields.
Datta, Barun Kumar; Thiyagarajan, Durairaj; Ramesh, Aiyagari; Das, Gopal
2015-08-07
A dialdehyde-based multi-analyte sensor renders distinctive emission spectra for Al(3+), Zn(2+) and F(-) ions. The ligand exhibited different types of interactions with these three different ions resulting in the enhancement of fluorescence intensity at three different wavelengths. All the sensing processes were studied in detail by absorption spectroscopy, emission spectroscopy and (1)H-NMR titration experiment. The ligand has the working ability in a wide pH range including the physiological pH. The ligand is non-toxic and amicable for sensing intracellular Al(3+) and Zn(2+) in live HeLa cells.
Chemical transformations on botryane skeleton. Effect on the cytotoxic activity.
Reino, José L; Durán-Patrón, Rosa; Segura, Inmaculada; Hernández-Galán, Rosario; Riese, Hans H; Collado, Isidro G
2003-03-01
Eighteen compounds with a botryane skeleton have been obtained through chemical transformations of various toxins from the fungus Botrytis cinerea. During the course of these transformations, the C-10 carbon of the botryane skeleton was found to exhibit an interesting high regioselectivity to oxidizing and reducing agents. In addition, the cytotoxicity of 27 botryane derivatives was determined in vitro against Hs578T, MDA-MB-231, HT-1080, U87-MG, IMR-90, and HUVEC cell lines. The results of this study confirm that the cytotoxicity of botrydial (1) and its derivatives is related to the presence of a 1,5-dialdehyde functionality.
Lakhin, R E; Belozerova, L A; Maksimets, V A; Romanov, D M
1999-01-01
Effects of hyperbaric oxygenation, bemitil, and solcoseryl used in preoperative treatment of patients with hepatic failure on the oxidant-antioxidant system are studied. Lipid peroxidation (LPO) was assessed from changes in the levels of malonic dialdehyde and diene conjugate and the antioxidant system from the number of SH-groups. Hyperbaric oxygenation led to activation of LPO processes. Bemitil decreased the intensity of LPO by extending the potentialities of the antioxidant system. Antioxidant properties of solcoseryl were not realized through the thiol buffer of the antioxidant system. Only a course of treatment with this drug brings about a stable effect.
Delenian, N V; Markin, A A
1989-01-01
Rats flown for 7 days on Cosmos-1667 were for the first time used to measure antioxidative enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase, catalase), lipid peroxidation products (diene conjugates, malonic dialdehyde, Schiff bases) and tocopherol. Enhanced lipid peroxidation in the heart was completely compensated by activation of antioxidative enzymes. The content of all lipid peroxidation products measured in the liver increased; this was accompanied by a decrease of glutathione peroxidase and an increase of superoxide dismutase activities. It is suggested that lipid peroxidation was activated in response to altered gravity.
2006-11-01
A specific objective here is to determine the role and subtype of adenosine receptors that mediate skeletal muscle protection using a quantitative... using a mouse hindlimb model and it defined adenosine A3 receptors as one of the skeletal muscle protective adenosine receptors. The study also...from the US Army Medical Research and Materiel Command Human Subjects Research Review Board on 9/9/2005. Twenty two subjects were consented but
Characterization of the swine adipocyte A1 adenosine receptor using an optimized assay system.
Dong, Q; Schuchman, J; Carey, G B
1994-07-01
The radioligand binding assay of A1 adenosine receptors in adipocyte crude plasma membrane from Yucatan miniature swine was optimized by evaluating 17 factors involved in the assay. Significant effects of CHAPS, adenosine deaminase, EDTA, pre-rinsing glass fiber filters and pH were found for the binding measurements. Using the optimized procedure, [3H]8-cyclopentyl-1,3-dipropylxanthine, ([3H]-DPCPX) binding to A1 adenosine receptors in swine subcutaneous adipocyte crude plasma membrane was measured; Bmax and Kd values were 479 +/- 77 fmol/mg protein and 0.87 +/- 0.10 nM, respectively. Values for mesenteric adipose tissue from sedentary swine and subcutaneous adipose tissue from exercise-trained swine were also measured.
Rudd, Donna M; Dobson, Geoffrey P
2009-01-01
Currently, the safe human heart preservation time is limited to around 4 to 5 hours of cold ischemic storage. Longer arrest times can lead to donor heart damage, early graft dysfunction, and chronic rejection. The aim of this study was to examine a new nondepolarizing, normokalemic preservation solution with adenosine and lidocaine for as long as 6 hours of arrest at cold and warmer storage temperatures. Isolated perfused rat hearts (n = 87) were switched from working to Langendorff (nonworking) mode and arrested at 37 degrees C with 200-micromol/L adenosine and 500-micromol/L lidocaine in Krebs-Henseleit buffer (10-mmol/L glucose, pH 7.7, 37 degrees C) or with Celsior (Sangstat Medical Corp, Fremont, CA). Hearts were removed and placed in static storage at 4 degrees C for 2 and 6 hours or remained on the apparatus and were intermittently flushed at 37 degrees C every 20 minutes for 2 minutes at 68 mm Hg (average arrest temperature 28 degrees -30 degrees C) for 2 and 6 hours. We further investigated the effect of the warmer adenosine-lidocaine solution supplemented with 1- or 5-mmol/L pyruvate. Adenosine-lidocaine solution arrested hearts in 16 +/- 2 seconds (n = 32), whereas Celsior did so in 39 +/- 4 seconds (n = 23). After 2 hours of cold static storage, there were no functional differences between the adenosine-lidocaine and Celsior groups, with approximately 70% return of cardiac output. In contrast, after 6 hours of 4 degrees C storage, adenosine-lidocaine hearts had significantly higher functional recoveries (68% +/- 5% cardiac output) than Celsior hearts (47% +/- 14% cardiac output) during 60 minutes of reperfusion. In addition, Celsior hearts took 5 minutes longer to reanimate and showed early reperfusion arrhythmias. At warmer temperatures after 2 hours of arrest, adenosine-lidocaine and Celsior hearts were not significantly different, despite a 43% higher cardiac output in adenosine-lidocaine hearts (80% +/- 3% vs 56% +/- 12%). After 6 hours, adenosine-lidocaine hearts had recovered 55% +/- 3% of prearrest cardiac output, which increased significantly to 75% +/- 4% with addition of 1-mmol/L pyruvate. Adenosine-lidocaine with 1-mmol/L pyruvate hearts spontaneously recovered 106% heart rate, 93% to 105% developed pressures, 70% aortic flow, and 81% coronary flow. Coronary vascular resistance increased 1.7- to 1.9-fold during the 6-hour arrest. In contrast, Celsior hearts did not have return of aortic or coronary flow after 6 hours in these warmer conditions. A new nondepolarizing, normokalemic adenosine-lidocaine arrest solution in Krebs-Henseleit buffer with 10-mmol/L glucose was versatile at both 4 degrees C and 28 degrees C to 30 degrees C relative to Celsior, and the addition of 1-mmol/L pyruvate significantly improved cardiac output at warmer arrest temperatures. This new arrest paradigm may be useful in the harvest, storage, and implantation of donor hearts.
Eme, John; Rhen, Turk; Crossley, Dane A
2014-10-01
Adenosine is an endogenous nucleoside that acts via G-protein coupled receptors. In vertebrates, arterial or venous adenosine injection causes a rapid and large bradycardia through atrioventricular node block, a response mediated by adenosine receptors that inhibit adenylate cyclase and decrease cyclic AMP concentration. Chronic developmental hypoxia has been shown to alter cardioregulatory mechanisms in reptile embryos, but adenosine's role in mediating these responses is not known. We incubated snapping turtle embryos under chronic normoxic (N21; 21 % O2) or chronic hypoxic conditions (H10; 10 % O2) beginning at 20 % of embryonic incubation. H10 embryos at 90 % of incubation were hypotensive relative to N21 embryos in both normoxic and hypoxic conditions. Hypoxia caused a hypotensive bradycardia in both N21 and H10 embryos during the initial 30 min of exposure; however, f H and P m both trended towards increasing during the subsequent 30 min, and H10 embryos were tachycardic relative to N21 embryos in hypoxia. Following serial ≥1 h exposure to normoxic and hypoxic conditions, a single injection of adenosine (1 mg kg(-1)) was given. N21 and H10 embryos responded to adenosine injection with a rapid and large hypotensive bradycardia in both normoxia and hypoxia. Gene expression for adenosine receptors were quantified in cardiac tissue, and Adora1 mRNA was the predominant receptor subtype with transcript levels 30-82-fold higher than Adora2A or Adora2B. At 70 % of incubation, H10 embryos had lower Adora1 and Adora2B expression compared to N21 embryos. Expression of Adora1 and Adora2B decreased in N21 embryos during development and did not differ from H10 embryos at 90 % of incubation. Similar to previous results in normoxia, H10 embryos in hypoxia were chronically tachycardic compared to N21 embryos before and after complete cholinergic and adrenergic blockade. Chronic hypoxia altered the development of normal cholinergic and adrenergic tone, as well as adenosine receptor mRNA levels. This study demonstrates that adenosine may be a major regulator of heart rate in developing snapping turtle embryos, and that chronic hypoxic incubation alters the response to hypoxic exposure.
Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine.
Malave, Lauren B; Broderick, Patricia A
2014-06-01
Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE ® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo , in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction.
Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine
Malave, Lauren B.
2014-01-01
Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo, in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction. PMID:25054079
Role of adenosine as adjunctive therapy in acute myocardial infarction.
Forman, Mervyn B; Stone, Gregg W; Jackson, Edwin K
2006-01-01
Although early reperfusion and maintained patency is the mainstay therapy for ST elevation myocardial infarction, experimental studies demonstrate that reperfusion per se induces deleterious effects on viable ischemic cells. Thus "myocardial reperfusion injury" may compromise the full potential of reperfusion therapy and may account for unfavorable outcomes in high-risk patients. Although the mechanisms of reperfusion injury are complex and multifactorial, neutrophil-mediated microvascular injury resulting in a progressive decrease in blood flow ("no-reflow" phenomenon) likely plays an important role. Adenosine is an endogenous nucleoside found in large quantities in myocardial and endothelial cells. It activates four well-characterized receptors producing various physiological effects that attenuate many of the proposed mechanisms of reperfusion injury. The cardio-protective effects of adenosine are supported by its role as a mediator of pre- and post-conditioning. In experimental models, administration of adenosine in the peri-reperfusion period results in a marked reduction in infarct size and improvement in ventricular function. The cardioprotective effects in the canine model have a narrow time window with the drug losing its effect following three hours of ischemia. Several small clinical studies have demonstrated that administration of adenosine with reperfusion therapy reduces infarct size and improves ventricular function. In the larger AMISTAD and AMISTAD II trials a 3-h infusion of adenosine as an adjunct to reperfusion resulted in a striking reduction in infarct size (55-65%). Post hoc analysis of AMISTAD II showed that this was associated with significantly improved early and late mortality in patients treated within 3.17 h of symptoms. An intravenous infusion of adenosine for 3 h should be considered as adjunctive therapy in high risk-patients undergoing reperfusion therapy.
Clarkson, Wesley A; Restrepo, Carlos Santiago; Bauch, Terry D; Rubal, Bernard J
2009-01-01
This study examines the effects of intravenous infusion of adenosine and sublingual nitroglycerin on coronary angiograms obtained by current-generation multidetector computed tomography. We assessed coronary vasodilation at baseline and after intravenous adenosine (140 µg/kg/min) or sublingual nitroglycerin spray (800 µg) in 7 female swine (weight, 40.9 ± 1.4 kg) by using electrocardiogram-gated coronary angiography with a 64-detector scanner (rotation time, 400 ms; 120kV; 400 mA) and intravenous contrast (300 mg/mL iohexol, 4.5 mL/s, 2 mL/kg). Cross-sectional areas of segments in the left anterior descending, circumflex, and right coronary arteries were evaluated in oblique orthogonal views. Images were acquired at an average heart rate of 73 ± 11 beats per minute. Changes in aortic pressure were not significant with nitroglycerin but decreased (approximately 10%) with adenosine. Of the 76 segments analyzed (baseline range, 2 to 39 mm2), 1 distal segment could not be assessed after adenosine. Segment cross-sectional area increased by 11.3% with nitroglycerin but decreased by 9.6% during adenosine infusion. The results of the present study are consistent with the practice of using sublingual nitroglycerin to enhance visualization of epicardial vessels and suggest that intravenous adenosine may hinder coronary artery visualization. This study is the first repeated-measures electrocardiogram-gated CT evaluation to use the same imaging technology to assess changes in coronary cross-sectional area before and after treatment with a vasodilator. The nitroglycerin-associated changes in our swine model were modest in comparison with previously reported human studies. PMID:20034433
CD73-Generated Adenosine Is Critical for Immune Regulation during Toxoplasma gondii Infection
Mahamed, Deeqa A.; Toussaint, Leon E.
2014-01-01
As an obligate intracellular pathogen, the apicomplexan parasite Toxoplasma gondii evades immune system-mediated clearance by undergoing stage differentiation to persist indefinitely in susceptible hosts. Previously, we found that mice deficient in the ectoenzyme CD73, which generates adenosine in the extracellular matrix, were resistant to chronic toxoplasmosis after oral infection with T. gondii. Resistance in CD73 knockout mice was due to a delay in parasite differentiation in the central nervous system (CNS). To further clarify the role of CD73 and extracellular adenosine in T. gondii pathogenesis, we infected wild-type (WT) and CD73−/− mice with T. gondii cysts systemically by the intraperitoneal (i.p.) route. In contrast to oral infection, i.p. infected CD73−/− mice were highly susceptible to immune-mediated pathology, with significantly increased infiltration of neutrophils and T cells into the peritoneal cavity. Administration of the broad-spectrum adenosine receptor agonist 5′-N-ethylcarboxamidoadenosine (NECA) protected CD73−/− mice against T. gondii-induced immunopathology, suggesting that the absence of CD73-generated adenosine led to the increased susceptibility in these mice. Peritoneal exudate cells from infected CD73−/− mice produced higher levels of the inflammatory mediators nitric oxide, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β), without enhanced parasite killing or clearance. Bone marrow chimeras established that CD73 expression in both hematopoietic and nonhematopoietic compartments contributes to limiting T. gondii-induced immunopathology. In addition, mice deficient in the adenosine receptor A2A were more susceptible to immunopathology during intraperitoneal infection with T. gondii than WT mice. Thus, extracellular adenosine is a key immune regulator that limits collateral tissue damage due to an intracellular pathogen and promotes host survival. PMID:25452548
Schlundt, Christian; Bietau, Christian; Klinghammer, Lutz; Wiedemann, Ricarda; Rittger, Harald; Ludwig, Josef; Achenbach, Stephan
2015-05-01
Measurement of fractional flow reserve (FFR) constitutes the current gold standard to evaluate the hemodynamic significance of coronary stenoses. Limited data validate the intracoronary application of adenosine against standard intravenous infusion. We systematically compared FFR measurements during intracoronary and intravenous application of adenosine about agreement and reproducibility. We included 114 patients with an intermediate degree of stenosis in coronary angiography. Two FFR measurements were performed during intracoronary bolus injection (40 μg for the right and 80 μg for the left coronary artery, FFRic), and 2 FFR measurements during continuous intravenous infusion of adenosine (140 μg/kg per minute, FFRiv). FFR value, the time to reach FFR and patient discomfort (on a subjective scale from 0 for no symptoms to 5 for maximal discomfort) were recorded for each measurement. Mean time to FFR was 100 ± 27 s for continuous intravenous infusion versus 23 ± 14 s for intracoronary bolus administration of adenosine (P < 0.001). Reported discomfort after intracoronary application was significantly lower compared with intravenous adenosine (subjective scale > 0 in 35.1% versus 87.7% of the patients; P < 0.001). Correlation between FFRiv and FFRic was extremely close (r = 0.99; P < 0.001) with no systematic bias in Bland-Altman analysis (bias 0.002 [confidence interval, -0.001 to 0.005]) and low intermethod variability (1.56%). Intramethod variability was not different between intravenous and intracoronary administration (1.47% versus 1.33%; P=0.5). Intracoronary bolus injection of adenosine (40 μg for the right and 80 μg for the left coronary artery) yields identical FFR results compared with intravenous infusion (140 μg/kg per minute), while requiring less time and offering superior patient comfort. © 2015 American Heart Association, Inc.
Murillo-Rodriguez, Eric; Blanco-Centurion, Carlos; Sanchez, Cristina; Piomelli, Daniele; Shiromani, Priyattam J
2003-12-15
The principal component of marijuana, delta-9-tetrahydrocannabinol increases sleep in humans. Endogenous cannabinoids, such as N-arachidonoylethanolamine (anandamide), also increase sleep. However, the mechanism by which these molecules promote sleep is not known but might involve a sleep-inducing molecule such as adenosine. Microdialysis samples were collected from the basal forebrain in order to detect levels of adenosine before and after injection of anandamide. Rats were implanted for sleep studies, and a cannula was placed in the basal forebrain to collect microdialysis samples. Samples were analyzed using high-performance liquid chromatography. Basic neuroscience research laboratory. Three-month-old male F344 rats. At the start of the lights-on period, animals received systemic injections of dimethyl sulfoxide (vehicle), anandamide, SR141716A (cannabinoid receptor 1 [CB1] antagonist), or SR141716A and anandamide. One hour after injections, microdialysis samples were collected (5 microL) from the basal forebrain every hour over a 20-minute period for 5 hours. The samples were immediately analyzed via high-performance liquid chromatography for adenosine levels. Sleep was also recorded continuously over the same period. Anandamide increased adenosine levels compared to vehicle controls with the peak levels being reached during the third hour after drug injection. There was a significant increase in slow-wave sleep during the third hour. The induction in sleep and the rise in adenosine were blocked by the CB1-receptor antagonist, SR141716A. Anandamide increased adenosine levels in the basal forebrain and also increased sleep. The soporific effects of anandamide were mediated by the CB1 receptor, since the effects were blocked by the CB1-receptor antagonist. These findings identify a potential therapeutic use of endocannabinoids to induce sleep in conditions where sleep may be severely attenuated.
Andrade, Jason G; Pollak, Scott J; Monir, George; Khairy, Paul; Dubuc, Marc; Roy, Denis; Talajic, Mario; Deyell, Marc; Rivard, Léna; Thibault, Bernard; Guerra, Peter G; Nattel, Stanley; Macle, Laurent
2013-12-01
Atrial fibrillation recurrence after pulmonary vein (PV) isolation is associated with PV to left atrium reconduction. We prospectively studied the use of 2 procedural techniques designed to facilitate identification of residual gaps within the index ablation line. After wide circumferential PV isolation, 40 patients received additional ablation targeted at locations of left atrial capture during high-output pacing (pace-capture group), while 40 patients underwent adenosine testing with targeted ablation at sites of dormant conduction (adenosine group). Patients were followed up at 3, 6, and 12 months. After PV isolation, high-output pace-capture was documented in 39 PVs (25%; 50% of patients) in the pace-capture group. Dormant conduction was unmasked in 34 PVs (22%; 53% of patients) in the adenosine group. A subset of 25 patients in the pace-capture group underwent adenosine testing without targeted ablation of dormant conduction. In these patients, only 10 out of 86 PVs (11.6%; 24% of patients) demonstrated dormant conduction after the elimination of local pace-capture. At a follow-up of 329±124 days, the single procedure off antiarrhythmic drug freedom from recurrent atrial fibrillation was 67.5% in the adenosine group and 65.0% in the pace-capture group (P=0.814). Procedure duration and fluoroscopy time were significantly longer in the pace-capture group (P=0.002 and P<0.001), whereas radiofrequency ablation time was comparable (P=0.192). The use of high-output pacing post-PV isolation results in a significant reduction in the incidence of dormant conduction with a comparable long-term freedom from recurrent atrial fibrillation (versus adenosine-guided ablation). The use of these approaches requires evaluation in a long-term prospective randomized study. [corrected].
Kerkelä, Erja; Laitinen, Anita; Räbinä, Jarkko; Valkonen, Sami; Takatalo, Maarit; Larjo, Antti; Veijola, Johanna; Lampinen, Milla; Siljander, Pia; Lehenkari, Petri; Alfthan, Kaija; Laitinen, Saara
2016-03-01
Mesenchymal stem/stromal cells (MSCs) have the capacity to counteract excessive inflammatory responses. MSCs possess a range of immunomodulatory mechanisms, which can be deployed in response to signals in a particular environment and in concert with other immune cells. One immunosuppressive mechanism, not so well-known in MSCs, is mediated via adenosinergic pathway by ectonucleotidases CD73 and CD39. In this study, we demonstrate that adenosine is actively produced from adenosine 5'-monophosphate (AMP) by CD73 on MSCs and MSC-derived extracellular vesicles (EVs). Our results indicate that although MSCs express CD39 at low level and it colocalizes with CD73 in bulge areas of membranes, the most efficient adenosine production from adenosine 5'-triphosphate (ATP) requires co-operation of MSCs and activated T cells. Highly CD39 expressing activated T cells produce AMP from ATP and MSCs produce adenosine from AMP via CD73 activity. Furthermore, adenosinergic signaling plays a role in suppression of T cell proliferation in vitro. In conclusion, this study shows that adenosinergic signaling is an important immunoregulatory mechanism of MSCs, especially in situations where ATP is present in the extracellular environment, like in tissue injury. An efficient production of immunosuppressive adenosine is dependent on the concerted action of CD39-positive immune cells with CD73-positive cells such as MSCs or their EVs. © 2016 AlphaMed Press.
Adenosine A2A receptor agonists with potent antiplatelet activity.
Fuentes, Eduardo; Fuentes, Manuel; Caballero, Julio; Palomo, Iván; Hinz, Sonja; El-Tayeb, Ali; Müller, Christa E
2018-05-01
Selected adenosine A 2A receptor agonists (PSB-15826, PSB-12404, and PSB-16301) have been evaluated as new antiplatelet agents. In addition, radioligand-binding studies and receptor-docking experiments were performed in order to explain their differential biological effects on a molecular level. Among the tested adenosine derivatives, PSB-15826 was the most potent compound to inhibit platelet aggregation (EC 50 0.32 ± 0.05 µmol/L) and platelet P-selectin cell-surface localization (EC 50 0.062 ± 0.2 µmol/L), and to increase intraplatelets cAMP levels (EC 50 0.24 ± 0.01 µmol/L). The compound was more active than CGS21680 (EC 50 0.97±0.07 µmol/L) and equipotent to NECA (EC 50 0.31 ± 0.05 µmol/L) in platelet aggregation induced by ADP. In contrast to the results from cAMP assays, K i values determined in radioligand-binding studies were not predictive of the A 2A agonists' antiplatelet activity. Docking studies revealed the key molecular determinants of this new family of adenosine A 2A receptor agonists: differences in activities are related to π-stacking interactions between the ligands and the residue His264 in the extracellular loop of the adenosine A 2A receptor which may result in increased residence times. In conclusion, these results provide an improved understanding of the requirements of antiplatelet adenosine A 2A receptor agonists.
Aberrant Bone Density in Aging Mice Lacking the Adenosine Transporter ENT1
Hinton, David J.; McGee-Lawrence, Meghan E.; Lee, Moonnoh R.; Kwong, Hoi K.; Westendorf, Jennifer J.; Choi, Doo-Sup
2014-01-01
Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months) compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density. PMID:24586402
Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs.
Tune, J D; Richmond, K N; Gorman, M W; Feigl, E O
2000-06-27
Inhibition of nitric oxide (NO) synthesis results in very little change in coronary blood flow, but this is thought to be because cardiac adenosine concentration increases to compensate for the loss of NO vasodilation. Accordingly, in the present study, adenosine measurements were made before and during NO synthesis inhibition during exercise. Experiments were performed in chronically instrumented dogs at rest and during graded treadmill exercise before and during inhibition of NO synthesis with N(omega)-nitro-L-arginine (L-NNA, 35 mg/kg IV). Before inhibition of NO synthesis, myocardial oxygen consumption increased approximately 3.7-fold, and coronary blood flow increased approximately 3.2-fold from rest to the highest level of exercise, and this was not changed by NO synthesis inhibition. Coronary venous oxygen tension was modestly reduced by L-NNA at all levels of myocardial oxygen consumption. However, the slope of the relationship between myocardial oxygen consumption and coronary venous oxygen tension was not altered by L-NNA. Inhibition of NO synthesis did not increase coronary venous plasma or estimated interstitial adenosine concentration. During exercise, estimated interstitial adenosine remained well below the threshold concentration necessary for coronary vasodilation before or after L-NNA. NO causes a modest coronary vasodilation at rest and during exercise but does not act as a local metabolic vasodilator. Adenosine does not mediate a compensatory local metabolic coronary vasodilation when NO synthesis is inhibited.
The Effect of Endogenous Adenosine on Neuronal Activity in Rats: An FDG PET Study
Paul, Soumen; Zhang, Dali; Mzengeza, Shadreck; Ko, Ji Hyun
2016-01-01
ABSTRACT 2–18F‐fluorodeoxy‐D‐glucose (FDG) is a glucose analog that is taken up by cells and phosphorylated. The amount of FDG accumulated by cells is a measure of the rate of glycolysis, which reflects cellular activity. As the levels and actions of the neuromodulator adenosine are dynamically regulated by neuronal activity, this study was designed to test whether endogenous adenosine affects tissue accumulation of FDG as assessed by positron emission tomography (PET) or by postmortem analysis of tissue radioactivity. Rats were given an intraperitoneal injection of the adenosine A1 receptor antagonist 8‐cyclopentyl‐1,3‐dipropyl‐xanthine (DPCPX, 3 mg/kg), the adenosine kinase inhibitor ABT‐702 (3 mg/kg), or vehicle 10 minutes prior to an intravenous injection of FDG (15.4 ± 0.7 MBq per rat). Rats were then subjected to a 15 minute static PET scan. Reconstructed images were normalized to FDG PET template for rats and standard uptake values (SUVs) were calculated. To examine the regional effect of active treatment compared to vehicle, statistical parametric mapping analysis was performed. Whole‐brain FDG uptake was not affected by drug treatment. Significant regional hypometabolism was detected, particularly in cerebellum, of DPCPX‐ and ABT‐702 treated rats, relative to vehicle‐treated rats. Thus, endogenous adenosine can affect FDG accumulation although this effect is modest in quiescent rats. PMID:27082948
Vengerovsky, A I; Yakimova, T V; Nasanova, O N
2015-01-01
The influence of low-fat diet, nettle (Urtica dioica) leafs and burdock (Arctium lappa) roots extracts on lipid metabolism and glycosylation reactions has been investigated in experimental diabetes mellitus. These extracts were applied in diets with both high and low fat content. The experiments were performed on 90 noninbred male albino rats (200–220 g) that were divided into 9 experimental groups. Diabetes mellitus was modeled with twice-repeated intraperitoneal streptozotocin (30 mg/kg) injections. The animals received food with increased fat content (proteins – 8%, fats – 30%, carbohydrates – 62% of total daily caloric content) during 4 weeks before streptozotocine injections and 8 weeks after its discontinuation. Simultaneously the rats were daily administered nettle leafs (100 mg/kg), burdock roots (25 mg/kg) extracts or metformin (100 mg/kg) into the stomach during 10 days. During the period of agents introduction half the animals continued to receive food with high fat content, the other half received low fat diet (proteins – 20%, fats – 8%, carbohydrates – 72% of the total daily caloric content). The forth (control) group received low fat food only without extracts or metformin administration. The levels of blood glucose, glycosylated hemoglobin, malonic dialdehyde, lipid and lipoprotein fractions content were measured. It has been shown that after streptozotocine injections and 30% fat diet consumption the blood glucose level increased by 5.3 fold compared to that of the intact animals, the content of atherogenic lipid fractions increased by 2–8.3 fold and the protein glycosylation reactions were intensified by 1.9–2.5 fold. In animals fed with 8% fat diet the blood glucose and malonic dialdehyde content decreased by 1.8–2.3 fold. In this experiment the levels of triglycerides, total cholesterol, cholesterol of nonhigh-density lipoproteins, low-density and very low-density lipoproteins, as well as the cholesterol and protein content of high-density lipoproteins normalized. The low fat food did not cause glycosylation reactions regression. With the administration of nettle, burdock extracts or metformin to animals that continued to receive high fat food the blood glucose, triglycerides, total cholesterol, cholesterol of nonhigh-density lipoproteins, low-density and very low-density lipoproteins levels decreased by l.6–7.l fold as compared to the parameters in streptozotocine diabetes mellitus. Cholesterol and protein content of high-density lipoproteins increased by l.4–3.7 fold. The herbal extracts also prevented malonic dialdehyde formation, high-density lipoproteins and hemoglobin glycosylation. The nettle and burdock extracts more effectively decreased hyperglycemia, hypertriglyceridemia and lipoperoxidation in animals fed with low fat food. Metformin in the experiment with low fat intake decreased the glucose, low-density and very low-density lipoproteins content to a maximal degree and prevented high-density lipoproteins glycosylation.
Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu
2014-03-25
Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5'-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a 'calm down' signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001.
Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu
2014-01-01
Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5’-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a ‘calm down’ signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001 PMID:24668173
Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert
2016-04-01
The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanik, G.M. Jr.
Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% andmore » 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.« less
Regulation of adenosine deaminase (ADA) on induced mouse experimental autoimmune uveitis (EAU) ‡
Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J.; Sun, Deming
2016-01-01
Adenosine is an important regulator of the immune response and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies have shown that adenosine receptor (AR) agonists can be either anti- or pro-inflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1–20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8–14 days post-immunization, shortly before EAU expression, but ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses and this effect was γδ T cell-dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help improve the design of ADA- and AR-targeted therapies. PMID:26856700
Regulation of renal adenosine A(1) receptors: effect of dietary sodium chloride.
Smith, J A; Whitaker, E M; Yaktubay, N; Morton, M J; Bowmer, C J; Yates, M S
1999-11-12
The influence of dietary NaCl on the regulation of renal adenosine A(1) receptors was investigated in the rat. Renal membranes from rats fed on a diet low (0.04%) in NaCl showed a 46% increase in B(max) for the binding of [3H]-1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX), a selective adenosine A(1) receptor antagonist, compared to membranes from rats fed on a normal diet (0.4% NaCl). Conversely, a high NaCl diet (4.0%) resulted in a 37% decrease in B(max). Levels of renal adenosine A(1) receptor mRNA were 65% lower in rats on a high salt diet. Autoradiographic studies showed that, for the inner medullary collecting ducts, a low NaCl diet resulted in a 30% increase in [3H]DPCPX binding with a 39% decrease noted in rats maintained on a high salt diet. The results indicate that changes in adenosine A(1) receptor density may represent a novel mechanism whereby the kidneys adapt to changes in salt load.
Trapp, Johannes; Jochum, Anne; Meier, Rene; Saunders, Laura; Marshall, Brett; Kunick, Conrad; Verdin, Eric; Goekjian, Peter; Sippl, Wolfgang; Jung, Manfred
2006-12-14
NAD+-dependent histone deacetylases, sirtuins, cleave acetyl groups from lysines of histones and other proteins to regulate their activity. Identification of potent selective inhibitors would help to elucidate sirtuin biology and could lead to useful therapeutic agents. NAD+ has an adenosine moiety that is also present in the kinase cofactor ATP. Kinase inhibitors based upon adenosine mimesis may thus also target NAD+-dependent enzymes. We present a systematic approach using adenosine mimics from one cofactor class (kinase inhibitors) as a viable method to generate new lead structures in another cofactor class (sirtuin inhibitors). Our findings have broad implications for medicinal chemistry and specifically for sirtuin inhibitor design. Our results also raise a question as to whether selectivity profiling for kinase inhibitors should be limited to ATP-dependent targets.
8-(2-Furyl)adenine derivatives as A₂A adenosine receptor ligands.
Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Thomas, Ajiroghene; Klotz, Karl-Norbert; Federico, Stephanie; Cacciari, Barbara; Spalluto, Giampiero; Volpini, Rosaria
2013-01-01
Selective adenosine receptor modulators are potential tools for numerous therapeutic applications, including cardiovascular, inflammatory, and neurodegenerative diseases. In this work, the synthesis and biological evaluation at the four human adenosine receptor subtypes of a series of 9-substituted 8-(2-furyl)adenine derivatives are reported. Results show that 8-(2-furyl)-9-methyladenine is endowed with high affinity at the A₂A subtype. Further modification of this compound with introduction of arylacetyl or arylcarbamoyl groups in N(6)-position takes to different effects on the A₂A affinity and in particular on the selectivity versus the other three adenosine receptor subtypes. A molecular modelling analysis at three different A₂A receptor crystal structures provides an interpretation of the obtained biological results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Xu, Weichen; Lu, Yi
2011-05-07
We report a general strategy for developing a smart MRI contrast agent for the sensing of small molecules such as adenosine based on a DNA aptamer that is conjugated to a Gd compound and a protein streptavidin. The binding of adenosine to its aptamer results in the dissociation of the Gd compound from the large protein, leading to decreases in the rotational correlation time and thus change of MRI contrast. © The Royal Society of Chemistry 2011
No Effect of Nutritional Adenosine Receptor Antagonists on Exercise Performance in the Heat
2008-11-01
358–363, 1996. 11. Cook NC, Samman S. Flavonoids — chemistry , metabolism, cardiopro- tective effects, and dietary sources. Nutr Biochem 7: 66–76, 1996...metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother 51: 305–310, 1997. R400 ADENOSINE RECEPTOR ANTAGONISM AND EXERCISE IN THE HEAT...Interactions of flavonoids with adenosine receptors. J Med Chem 39: 781–788, 1996. 35. MacRae HS, Mefferd KM. Dietary antioxidant supplementation com
Capiotti, Katiucia Marques; Menezes, Fabiano Peres; Nazario, Luiza Reali; Pohlmann, Julhana Bianchini; de Oliveira, Giovanna M T; Fazenda, Lidiane; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza
2011-01-01
Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase. Copyright © 2011 Elsevier Inc. All rights reserved.
Smith, Darrell R.; Saleh, Ali; Schapansky, Jason; Marquez, Alexandra; Gomes, Suzanne; Akude, Eli; Morrow, Dwane; Calcutt, Nigel A.; Fernyhough, Paul
2012-01-01
Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3–5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway. PMID:22561641
Adenosine signalling mediates the anti-inflammatory effects of the COX-2 inhibitor nimesulide.
Caiazzo, Elisabetta; Maione, Francesco; Morello, Silvana; Lapucci, Andrea; Paccosi, Sara; Steckel, Bodo; Lavecchia, Antonio; Parenti, Astrid; Iuvone, Teresa; Schrader, Jürgen; Ialenti, Armando; Cicala, Carla
2016-07-15
Extracellular adenosine formation from ATP is controlled by ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) and ecto-5'-nucleotidase (e-5NT/CD73); the latter converts AMP to adenosine and inorganic phosphate, representing the rate limiting step controlling the ratio between extracellular ATP and adenosine. Evidence that cellular expression and activity of CD39 and CD73 may be subject to changes under pathophysiological conditions has identified this pathway as an endogenous modulator in several diseases and was shown to be involved in the molecular mechanism of drugs, such as methotrexate, salicylates , interferon-β. We evaluated whether CD73/adenosine/A2A signalling pathway is involved in nimesulide anti-inflammatory effect, in vivo and in vitro. We found that the adenosine A2A agonist, 4-[2-[[6-amino-9-(N-ethyl-β-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS21680, 2mg/kg ip.), inhibited carrageenan-induced rat paw oedema and the effect was reversed by co-administration of the A2A antagonist -(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385; 3mg/kg i.p.). Nimesulide (5mg/kg i.p.) anti-inflammatory effect was inhibited by pre-treatment with ZM241385 (3mg/kg i.p.) and by local administration of the CD73 inhibitor, adenosine 5'-(α,β-methylene)diphosphate (APCP; 400μg/paw). Furthermore, we found increased activity of 5'-nucleotidase/CD73 in paws and plasma of nimesulide treated rats, 4h following oedema induction. In vitro, the inhibitory effect of nimesulide on nitrite and prostaglandin E2 production by lipopolysaccharide-activated J774 cell line was reversed by ZM241385 and APCP. Furthermore, nimesulide increased CD73 activity in J774 macrophages while it did not inhibit nitrite accumulation by lipopolysaccharide-activated SiRNA CD73 silenced J774 macrophages. Our data demonstrate that the anti-inflammatory effect of nimesulide in part is mediated by CD73-derived adenosine acting on A2A receptors. Copyright © 2016 Elsevier Inc. All rights reserved.
The effects of purine compounds on the isolated aorta of the frog Rana temporaria.
Knight, G. E.; Burnstock, G.
1996-01-01
1. In the isolated aorta of the frog, Rana temporaria, adenosine concentration-dependently, endothelium-independently relaxed adrenaline pre-constricted vessels. None of the adenosine analogues including D-5'-(N-ethylcarboxamide) adenosine (NECA), R- and S-N6-(2-phenylisopropyl) adenosine (R-and S-PIA) and 2-chloroadenosine (2-CA), or the more selective A1, A2 and A3 agonists cyclopentyladenosine (CPA), CGS 21680 and N6-(3-iodobenzyl) adenosine-5'-N-methylcarboxamide (IB-MECA) respectively, had any effect. 2. The non-selective adenosine antagonist, 8-p-sulphophenyl-theophylline (8-pSPT; 30 microM) failed to inhibit adenosine relaxations, as did NG-nitro-L-arginine methyl ester (L-NAME; 0.1 mM) and indomethacin (30 microM). 3. Adenosine 5'-triphosphate (ATP), alpha, beta-methylene ATP (alpha, beta-MeATP), beta, gamma-methylene ATP (beta, gamma-MeATP), 2-methylthio ATP (2-MeSATP) and uridine 5'-triphosphate (UTP) all concentration-dependently contracted the frog aorta. ATP and alpha, beta-MeATP were equipotent and more potent than UTP and beta, gamma-MeATP; 2-MeSATP had little activity. 4. The P2-purinoceptor antagonist, suramin (0.1 mM) inhibited contractions to alpha, beta-MeATP but not to ATP. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 30 microM) also inhibited contractions to alpha, beta-MeATP but not to ATP. Contractions to ATP were, however, inhibited by indomethacin (30 microM). 5. In conclusion, in the frog aorta there appears to be a novel subclass of P1-purinoceptor mediating vasodilatation, although like the A3 subclass it is not blocked by methylxanthines; a P2-purinoceptor mediates vasconstriction which resembles a P2x subtype, based on the agonist potency of alpha, beta-MeATP being more potent than 2-MeSATP (UTP has moderate activity) and PPADS is an effective antagonist. There is no evidence for the presence of a P2y-purinoceptor, mediating vasodilatation, in this preparation. PMID:8851504
Kutryb-Zajac, Barbara; Mateuszuk, Lukasz; Zukowska, Paulina; Jasztal, Agnieszka; Zabielska, Magdalena A; Toczek, Marta; Jablonska, Patrycja; Zakrzewska, Agnieszka; Sitek, Barbara; Rogowski, Jan; Lango, Romuald; Slominska, Ewa M; Chlopicki, Stefan; Smolenski, Ryszard T
2016-11-01
Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular inflammation and improved endothelial function. This study highlights the importance of extracellular nucleotides and adenosine metabolism in the atherosclerotic vessel in both experimental and clinical setting. The increased eADA activity marks an early stage of atherosclerosis, contributes to its progression and could represent a novel target for therapy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.
Genetics Home Reference: adenosine monophosphate deaminase deficiency
... view the expand/collapse boxes. Description Adenosine monophosphate (AMP) deaminase deficiency is a condition that can affect ... for movement ( skeletal muscles ). In many affected individuals, AMP deaminase deficiency does not cause any symptoms. People ...
Genetics Home Reference: adenosine deaminase deficiency
... to eliminate a molecule called deoxyadenosine, which is generated when DNA is broken down. Adenosine deaminase converts ... a substitute for professional medical care or advice. Users with questions about a personal health condition should ...
Kobayashi, M; Takatori, T; Iwadate, K; Nakajima, M
1996-10-25
We examined the changes in adenosine triphosphate (ATP), lactic acid, adenosine diphosphate (ADP) and adenosine monophosphate (AMP) in five different rat muscles after death. Rigor mortis has been thought to occur simultaneously in dead muscles and hence to start in small muscles sooner than in large muscles. In this study we found that the rate of decrease in ATP was significantly different in each muscle. The greatest drop in ATP was observed in the masseter muscle. These findings contradict the conventional theory of rigor mortis. Similarly, the rates of change in ADP and lactic acid, which are thought to be related to the consumption or production of ATP, were different in each muscle. However, the rate of change of AMP was the same in each muscle.
Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling
Blundon, Jay A.; Roy, Noah C.; Teubner, Brett J. W.; ...
2017-06-30
Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. We show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement ofmore » tone-discrimination abilities. We determined that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.« less
Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blundon, Jay A.; Roy, Noah C.; Teubner, Brett J. W.
Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. We show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement ofmore » tone-discrimination abilities. We determined that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.« less
Role of nitric oxide in adenosine-induced vasodilation in humans
NASA Technical Reports Server (NTRS)
Costa, F.; Biaggioni, I.; Robertson, D. (Principal Investigator)
1998-01-01
Vasodilation is one of the most prominent effects of adenosine and one of the first to be recognized, but its mechanism of action is not completely understood. In particular, there is conflicting information about the potential contribution of endothelial factors. The purpose of this study was to explore the role of nitric oxide in the vasodilatory effect of adenosine. Forearm blood flow responses to intrabrachial adenosine infusion (125 microg/min) were assessed with venous occlusion plethysmography during intrabrachial infusion of saline or the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) (12.5 mg/min). Intrabrachial infusions of acetylcholine (50 microg/min) and nitroprusside (3 microg/min) were used as a positive and negative control, respectively. These doses were chosen to produce comparable levels of vasodilation. In a separate study, a second saline infusion was administered instead of L-NMMA to rule out time-related effects. As expected, pretreatment with L-NMMA reduced acetylcholine-induced vasodilation; 50 microg/min acetylcholine increased forearm blood flow by 150+/-43% and 51+/-12% during saline and L-NMMA infusion, respectively (P<.01, n=6). In contrast, L-NMMA did not affect the increase in forearm blood flow produced by 3 microg/min nitroprusside (165+/-30% and 248+/-41% during saline and L-NMMA, respectively) or adenosine (173+/-48% and 270+/-75% during saline and L-NMMA, respectively). On the basis of our observations, we conclude that adenosine-induced vasodilation is not mediated by nitric oxide in the human forearm.
The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA.
Ruiz-Medina, Jessica; Ledent, Catherine; Carretón, Olga; Valverde, Olga
2011-04-01
Adenosine is an endogenous purine nucleoside that plays a neuromodulatory role in the central nervous system. A2a adenosine receptors have been involved in reward-related processes, inflammatory phenomena and neurotoxicity reactions. In the present study, we investigated the role of A2a adenosine receptors on the acute pharmacological effects, reinforcement and neuroinflammation induced by MDMA administration. First, the acute effects of MDMA on body temperature, locomotor activity and anxiety-like responses were measured in A2a knockout mice and wild-type littermates. Second, MDMA reinforcing properties were evaluated using the intravenous self-administration paradigm. Finally, we assessed striatal astrogliosis and microgliosis as markers of MDMA neurotoxicity. Our results showed that acute MDMA produced a biphasic effect on body temperature and increased locomotor activity and anxiogenic-like responses in both genotypes. However, MDMA reinforcing properties were dramatically affected by the lack of A2a adenosine receptors. Thus, wild-type mice maintained MDMA self-administration under a fixed ratio 1 reinforcement schedule, whereas the operant response appeared completely abolished in A2a knockout mice. In addition, the MDMA neurotoxic regime produced an enhanced inflammatory response in striatum of wild-type mice, revealed by a significant increase in glial expression, whereas such activation was attenuated in mutant mice. This is the first report indicating that A2a adenosine receptors play a key role in reinforcement and neuroinflammation induced by the widely used psychostimulant.
Hoffman, William E; Albrecht, Ronald F; Jonjev, Zivojin S
2003-08-01
To compare adenosine-, isoflurane-, or desflurane-induced hypotension with and without left anterior descending (LAD) coronary artery constriction for the effects on myocardial tissue oxygen pressure (PmO(2)) in dogs. Prospective, randomized, nonblinded. University teaching hospital. Male nonpurpose-bred dogs (n = 18). Dogs were anesthetized with 1.5% isoflurane (n = 12) or 8% desflurane (n = 6). A flow probe and balloon occluder were placed on the LAD artery. A probe that measured myocardial oxygen pressure was inserted into the middle myocardium in the LAD region. Myocardial oxygen consumption (MVO(2)) was calculated as LAD flow x arterial minus coronary sinus oxygen content. Measures were made during hypotension produced by adenosine infusion, 2.8% isoflurane, or 14% desflurane with and without LAD constriction to decrease blood flow 30%. Without LAD artery constriction, adenosine infusion increased LAD flow 90% and MVO(2) 70%, 2.8% isoflurane produced no change in MVO(2), and 14% desflurane decreased MVO(2) 25%, but no treatment changed PmO(2). LAD artery constriction decreased PmO(2) 50% by itself. Adenosine infusion during LAD constriction decreased tissue oxygen pressure an additional 60%, 2.8% isoflurane produced no change, and 14% desflurane increased PmO(2) 100%. There was an inverse relationship between the effect of adenosine, 2.8% isoflurane, and 14% desflurane on MVO(2) and PmO(2) during ischemia. This is consistent with reports that increasing oxygen demand worsens myocardial ischemia.
New parasite inhibitors encompassing novel conformationally-locked 5'-acyl sulfamoyl adenosines.
Dixit, Shailesh S; Upadhayaya, Ram Shankar; Chattopadhyaya, Jyoti
2012-08-14
We describe the design, synthesis and biological evaluation of conformationally-locked 5'-acyl sulfamoyl adenosine derivatives as new parasitic inhibitors against Trypanosoma and Leishmania. The conformationally-locked (3'-endo, North-type) nucleosides have been synthesized by covalently attaching a 4'-CH(2)-O-2' bridge () across C2'-C4' of adenosine in order to reduce the conformational flexibility of the pentose ring. This is designed to decrease the entropic penalty for complex formation with the target protein, which may improve free-energy of stabilization of the complex leading to improved potency. Conformationally-locked 5'-acyl sulfamoyl adenosine derivatives (16-22) were tested against parasitic protozoans for the first time in this work, and showed potent inhibition of Trypanosoma cruzi, Trypanosoma brucei, Trypanosoma rhodesiense and Leishmania infantum with IC(50) = 0.25-0.51 μM. In particular, the potent 5'-pentanyl acyl sulfamoyl adenosine derivative 17 (IC(50) = 0.25 μM) against intracellular L. infantum amastigotes and Trypanosoma subspecies is interesting in view of its almost insignificant cytotoxicity in murine macrophage host cells (CC(50) >4 μM) and in diploid human fibroblasts MRC-5 cell lines (CC(50) 4 μM). This work also suggests that variable alkyl chain length of the acyl group on the acylsulfamoyl side chain at 5' can modulate the toxicity of 5'-O-sulfamoylnucleoside analogues. This conformationally-locked sulfamoyl adenosine scaffold presents some interesting possibilities for further drug design and lead optimization.
Chang, K C; Chan, M C; Leung, W M; Kong, F Y; Mak, C M; Chen, S Pl; Yu, W C
2018-02-01
Pleural fluid adenosine deaminase level can be applied to rapidly detect tuberculous pleural effusion. We aimed to establish a local diagnostic cut-off value for pleural fluid adenosine deaminase to identify patients with tuberculous pleural effusion, and optimise its utility. We retrospectively reviewed the medical records of consecutive adults with pleural fluid adenosine deaminase level measured by the Diazyme commercial kit (Diazyme Laboratories, San Diego [CA], United States) during 1 January to 31 December 2011 in a cluster of public hospitals in Hong Kong. We considered its level alongside early (within 2 weeks) findings in pleural fluid and pleural biopsy, with and without applying Light's criteria in multiple scenarios. For each scenario, we used the receiver operating characteristic curve to identify a diagnostic cut-off value for pleural fluid adenosine deaminase, and estimated its positive and negative predictive values. A total of 860 medical records were reviewed. Pleural effusion was caused by congestive heart failure, chronic renal failure, or hypoalbuminaemia caused by liver or kidney diseases in 246 (28.6%) patients, malignancy in 198 (23.0%), non-tuberculous infection in 168 (19.5%), tuberculous pleural effusion in 157 (18.3%), and miscellaneous causes in 91 (10.6%). All those with tuberculous pleural effusion had a pleural fluid adenosine deaminase level of ≤100 U/L. When analysis was restricted to 689 patients with pleural fluid adenosine deaminase level of ≤100 U/L and early negative findings for malignancy and non-tuberculous infection in pleural fluid, the positive predictive value was significantly increased and the negative predictive value non-significantly reduced. Using this approach, neither additionally restricting analysis to exudates by Light's criteria nor adding closed pleural biopsy would further enhance predictive values. As such, the diagnostic cut-off value for pleural fluid adenosine deaminase is 26.5 U/L, with a sensitivity of 87.3%, specificity of 93.2%, positive predictive value of 79.2%, negative predictive value of 96.1%, and accuracy of 91.9%. Sex, age, and co-morbidity did not significantly affect prediction of tuberculous pleural effusion using the cut-off value. We have established a diagnostic cut-off level for pleural fluid adenosine deaminase in the diagnosis of tuberculous pleural effusion by restricting analysis to a level of ≤100 U/L, and considering early pleural fluid findings for malignancy and non-tuberculous infection, but not Light's criteria.
van der Kwast, Reginald V C T; van Ingen, Eva; Parma, Laura; Peters, Hendrika A B; Quax, Paul H A; Nossent, A Yaël
2018-02-02
Adenosine-to-inosine editing of microRNAs has the potential to cause a shift in target site selection. 2'-O-ribose-methylation of adenosine residues, however, has been shown to inhibit adenosine-to-inosine editing. To investigate whether angiomiR miR487b is subject to adenosine-to-inosine editing or 2'-O-ribose-methylation during neovascularization. Complementary DNA was prepared from C57BL/6-mice subjected to hindlimb ischemia. Using Sanger sequencing and endonuclease digestion, we identified and validated adenosine-to-inosine editing of the miR487b seed sequence. In the gastrocnemius muscle, pri-miR487b editing increased from 6.7±0.4% before to 11.7±1.6% ( P =0.02) 1 day after ischemia. Edited pri-miR487b is processed into a novel microRNA, edited miR487b, which is also upregulated after ischemia. We confirmed editing of miR487b in multiple human primary vascular cell types. Short interfering RNA-mediated knockdown demonstrated that editing is adenosine deaminase acting on RNA 1 and 2 dependent. Using reverse-transcription at low dNTP concentrations followed by quantitative-PCR, we found that the same adenosine residue is methylated in mice and human primary cells. In the murine gastrocnemius, the estimated methylation fraction increased from 32.8±14% before to 53.6±12% 1 day after ischemia. Short interfering RNA knockdown confirmed that methylation is fibrillarin dependent. Although we could not confirm that methylation directly inhibits editing, we do show that adenosine deaminase acting on RNA 1 and 2 and fibrillarin negatively influence each other's expression. Using multiple luciferase reporter gene assays, we could demonstrate that editing results in a complete switch of target site selection. In human primary cells, we confirmed the shift in miR487b targeting after editing, resulting in a edited miR487b targetome that is enriched for multiple proangiogenic pathways. Furthermore, overexpression of edited miR487b, but not wild-type miR487b, stimulates angiogenesis in both in vitro and ex vivo assays. MiR487b is edited in the seed sequence in mice and humans, resulting in a novel, proangiogenic microRNA with a unique targetome. The rate of miR487b editing, as well as 2'-O-ribose-methylation, is increased in murine muscle tissue during postischemic neovascularization. Our findings suggest miR487b editing plays an intricate role in postischemic neovascularization. © 2017 American Heart Association, Inc.
Pietrowska-Borek, Małgorzata; Nuc, Katarzyna; Guranowski, Andrzej
2015-09-01
Cells contain various congeners of the canonical nucleotides. Some of these accumulate in cells under stress and may function as signal molecules. Their cellular levels are enzymatically controlled. Previously, we demonstrated a signaling function for diadenosine polyphosphates and cyclic nucleotides in Arabidopsis thaliana and grape, Vitis vinifera. These compounds increased the expression of genes for and the specific activity of enzymes of phenylpropanoid pathways resulting in the accumulation of certain products of these pathways. Here, we show that adenosine 5'-phosphoramidate, whose level can be controlled by HIT-family proteins, induced similar effects. This natural nucleotide, when added to A. thaliana seedlings, activated the genes for phenylalanine:ammonia lyase, 4-coumarate:coenzyme A ligase, cinnamate-4-hydroxylase, chalcone synthase, cinnamoyl-coenzyme A:NADP oxidoreductase and isochorismate synthase, which encode proteins catalyzing key reactions of phenylpropanoid pathways, and caused accumulation of lignins, anthocyanins and salicylic acid. Adenosine 5'-phosphofluoridate, a synthetic congener of adenosine 5'-phosphoramidate, behaved similarly. The results allow us to postulate that adenosine 5'-phosphoramidate should be considered as a novel signaling molecule. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Webster, J M; Heseltine, L; Taylor, R
1996-06-07
The dose-response effects of a new adenosine agonist, GR79236, were examined in isolated rat soleus muscle strips and human rectus abdominus muscle strips. Effects on the insulin sensitivity of carbohydrate metabolism were examined, in particular upon insulin stimulated glycogen synthesis and glycolytic flux. In the presence of adenosine deaminase (ADA), GR79236 increased insulin sensitivity of pyruvate release from rat soleus muscle strips by 24% from 82.5 +/- 10.0 to 102.5 +/- 10.0 (P < 0.01), by 27% to 105.0 +/- 12.5 (P < 0.01) and by 24% to 102.5 +/- 10.0 (P < 0.01) nmol/25 mg per h at 0.1 and 10 microM GR79236, respectively. Rates of lactate release followed a similar but non-significant trend. Addition of GR79236 in the presence of ADA had no effect on rates of glycogen synthesis. Insulin stimulated rates of pyruvate or lactate release or of glycogen synthesis were unaffected by the addition of adenosine deaminase or GR79236 in human rectus abdominus muscle strips. Adenosine agonists may act indirectly to modulate insulin sensitivity of carbohydrate metabolism.
[Effectiveness of fenspiride in patients with chronic obstructive bronchitis].
Shorokhova, T D; Medvedeva, I V; Lapik, S V; Solov'eva, O G; Gracheva, E Iu; Iusupova, R S
2001-01-01
Patients with chronic obstructive pulmonary disease of moderate severity were investigated for two months for assessment of fenspiride activity. Examination of the patients (age 42.6 +/- 5.3) took place before and after fenspiride therapy. In comparison to the control group, fenspiride patients showed improvement of external respiration function: FEV 1, FVC, FEF 50-75, PEF increased. Dienic conjugates, malonic dialdehyde levels decreased, alpha-tocopherol in platelet membranes rose, functional activity of platelets fell. Side effects were rare and not serious. It is concluded that fenspiride has an antiinflammatory effect, reduces bronchoconstriction and depresses platelet aggregation, is well tolerated. Fenspiride is an effective drug for the treatment of moderate chronic obstructive bronchitis.
Liu, Haoliang; Feng, Juan; Chen, Liuping
2015-01-01
A novel dynamic covalent gel strategy is reported to immobilize an asymmetric catalyst within the channels of a microfluidic flow reactor. A layer of a catalytically active Mn–salen dynamic covalent imine gel matrix was coated onto a functionalized capillary. Mn–salen active moiety was incorporated into dynamic covalent imine gel matrix via the reaction of a chiral Mn–salen dialdehyde unit with a tetraamine linker. The catalytic activity of the capillary reactor has been demonstrated in enantioselective kinetic resolution of secondary alcohols. PMID:28706652
Phillis, John W
2004-01-01
A considerable volume of evidence implicates the purine adenosine in the regulation of cerebral blood flow during states such as hypotension, neural activation, hypoxia/ischemia, and hypercapnia/acidosis. The aim of this review is to describe developments in our understanding of the roles that adenosine and the adenine nucleotides play in cerebral blood flow control, with some comparisons to coronary blood flow. The first part of the review focuses on the categorization of receptors for adenosine (A1, A2A, A2B, and A3) and the adenine nucleotides, ATP and ADP (P2X and P2Y). Frequently used agonists and antagonists for these different receptors are mentioned. A description follows of the distribution of these different receptors in cerebral arterioles. The second part of the review initially deals with the literature on the release of adenosine and adenine nucleotides into the extracellular space of the brain, describing the various techniques used to make these measurements and assessing the pitfalls associated with their use. This is followed by a discussion of the factors affecting purine release, which include cell swelling and acidosis. The third section evaluates the role of smooth muscle potassium channels in controlling arteriolar diameter. There is evidence for an important role of KATP and KCa channels, but less is known about the contributions of voltage-dependent (KV) and inwardly rectifying (KIR) channels. This section ends with a discussion on the reported inhibitory effect of nitric oxide synthase inhibitors on the KATP channel and the consequences of such an action for the interpretation of much of the published work on nitric oxide as a regulator of cerebral blood flow. The fourth section evaluates the data supporting a role of adenosine and ATP in the regulation of cerebral blood flow during autoregulation, hypotension, neural activity, hypoxia/ ischemia, and hypercapnia. Studies using antagonists and potentiators of adenosine's actions have led to the conclusion that adenosine is involved in vascular flow control, matching metabolic activity to blood flow in all of these conditions, possibly with the exceptions of autoregulation at mean arterial blood pressures above approximately 60 mmHg. Evidence is presented for a major role of A2A, and a more limited role of A2B receptors, in balancing blood flow with metabolism. The primary effect of receptor occupancy is activation of KATP and KCa channels with smooth muscle relaxation and elevated blood flow rates. There are presently fewer data on ATP's participation in flow control, but recent evidence regarding glial cell control of cerebral arteriolar diameter suggests that this may be an important mechanism. The semi-final section, which briefly describes the evidence for a comparable role of adenosine in regulating coronary blood flow, is followed by a concluding statement reaffirming the importance of adenosine as a cerebral blood flow regulator.
Smith, N; Broadley, K J
2008-09-01
Endogenous adenosine levels are raised in the lungs during asthma attacks. 5'-adenosine monophosphate (5'-AMP) inhalation in asthmatics causes bronchoconstriction and in sensitized guinea-pigs induces early (EAR) and late asthmatic responses (LAR), airway hyper-reactivity (AHR) and inflammatory cell recruitment to the lungs. The aim of this study was to investigate the roles of A(1), A(2A), A(2B) and A(3) adenosine receptors in these responses to inhaled 5'-AMP in sensitized guinea-pigs. Comparisons were made with the effect of dexamethasone treatment on 5'-AMP-induced responses. Functional airways responses to inhaled 5'-AMP (3 and 300 mM) of actively sensitized, conscious guinea-pigs were determined by whole-body plethysmography following administration of selective adenosine receptor antagonists or their vehicles. AHR to inhaled histamine (1 mM) and inflammatory cell influx in bronchoalveolar lavage fluid were determined. 5'-AMP at 3 mM caused an immediate bronchoconstriction (EAR), whereas 300 mM caused bronchodilatation. Both responses were followed at 6 h by a LAR, together with inflammatory cell influx and AHR to histamine. The A(2A) receptor antagonist, ZM241385, further enhanced cell influx after 5'-AMP inhalation (3 and 300 mM), and blocked the immediate bronchodilator response to 300 mM 5'-AMP, exposing an EAR. The A(2B) receptor antagonist, MRS1706 (in the presence of ZM241385), inhibited the LAR, AHR and cell influx, following inhalation of 5'-AMP (300 mM). The A(3) receptor antagonist, MRS1220, inhibited 5'-AMP-induced inflammatory cell influx. The A(1) receptor antagonist, DPCPX (in the presence of ZM241385), inhibited the EAR following 5'-AMP inhalation (300 mM). Dexamethasone inhibited the LAR, AHR and cell influx following inhalation of 5'-AMP (300 mM). All four adenosine receptor subtypes play various roles in the airways responses to inhaled 5'-AMP in sensitized guinea-pigs.
NASA Astrophysics Data System (ADS)
Schechinger, Linda Sue
I. To investigate the delivery of nucleotide-based drugs, we are studying molecular recognition of nucleotide derivatives in environments that are similar to cell membranes. The Nowick group previously discovered that membrane-like surfactant micelles tetradecyltrimethylammonium bromide (TTAB) micelle facilitate molecular of adenosine monophosphate (AMP) recognition. The micelles bind nucleotides by means of electrostatic interactions and hydrogen bonding. We observed binding by following 1H NMR chemical shift changes of unique hexylthymine protons upon addition of AMP. Cationic micelles are required for binding. In surfactant-free or sodium dodecylsulfate solutions, no hydrogen bonding is observed. These observations suggest that the cationic surfactant headgroups bind the nucleotide phosphate group, while the intramicellar base binds the nucleotide base. The micellar system was optimized to enhance binding and selectivity for adenosine nucleotides. The selectivity for adenosine and the number of phosphate groups attached to the adenosine were both investigated. Addition of cytidine, guanidine, or uridine monophosphates, results in no significant downfield shifting of the NH resonance. Selectivity for the phosphate is limited, since adenosine mono-, di-, and triphosphates all have similar binding constants. We successfully achieved molecular recognition of adenosine nucleotides in micellar environments. There is significant difference in the binding interactions between the adenosine nucleotides and three other natural nucleotides. II. The UCI Chemistry Outreach Program (UCICOP) addresses the declining interest of the nations youth for science. UCICOP brings fun and exciting chemistry experiments to local high schools, to remind students that science is fun and has many practical uses. Volunteer students and alumni of UCI perform the demonstrations using scripts and material provided by UCICOP. The preparation of scripts and materials is done by two coordinators. These coordinators organize the program and provide continuity to the program. The success of UCICOP can be measured by the high praise and gratitude expressed by the teachers, students and volunteers.
Corciulo, Carmen; Liu, Hailing; Zhang, Jin; Perez-Aso, Miguel; Picard, Laura; Wilder, Tuere
2017-01-01
Background Fibrosing diseases are a leading cause of morbidity and mortality worldwide and, therefore, there is a need for safe and effective antifibrotic therapies. Adenosine, generated extracellularly by the dephosphorylation of adenine nucleotides, ligates specific receptors which play a critical role in development of hepatic and dermal fibrosis. Results of recent clinical trials indicate that tenofovir, a widely used antiviral agent, reverses hepatic fibrosis/cirrhosis in patients with chronic hepatitis B infection. Belonging to the class of acyclic nucleoside phosphonates, tenofovir is an analogue of AMP. We tested the hypothesis that tenofovir has direct antifibrotic effects in vivo by interfering with adenosine pathways of fibrosis using two distinct models of adenosine and A2AR-mediated fibrosis. Methods Thioacetamide (100mg/kg IP)-treated mice were treated with vehicle, or tenofovir (75mg/kg, SubQ) (n = 5–10). Bleomycin (0.25U, SubQ)-treated mice were treated with vehicle or tenofovir (75mg/kg, IP) (n = 5–10). Adenosine levels were determined by HPLC, and ATP release was quantitated as luciferase-dependent bioluminescence. Skin breaking strength was analysed and H&E and picrosirus red-stained slides were imaged. Pannexin-1expression was knocked down following retroviral-mediated expression of of Pannexin-1-specific or scrambled siRNA. Results Treatment of mice with tenofovir diminished adenosine release from the skin of bleomycin-treated mice and the liver of thioacetamide-treated mice, models of diffuse skin fibrosis and hepatic cirrhosis, respectively. More importantly, tenofovir treatment diminished skin and liver fibrosis in these models. Tenofovir diminished extracellular adenosine concentrations by inhibiting, in a dose-dependent fashion, cellular ATP release but not in cells lacking Pannexin-1. Conclusions These studies suggest that tenofovir, a widely used antiviral agent, could be useful in the treatment of fibrosing diseases. PMID:29145453
Liu, Hong; Zhang, Yujin; Wu, Hongyu; D'Alessandro, Angelo; Yegutkin, Gennady G; Song, Anren; Sun, Kaiqi; Li, Jessica; Cheng, Ning-Yuan; Huang, Aji; Edward Wen, Yuan; Weng, Ting Ting; Luo, Fayong; Nemkov, Travis; Sun, Hong; Kellems, Rodney E; Karmouty-Quintana, Harry; Hansen, Kirk C; Zhao, Bihong; Subudhi, Andrew W; Jameson-Van Houten, Sonja; Julian, Colleen G; Lovering, Andrew T; Eltzschig, Holger K; Blackburn, Michael R; Roach, Robert C; Xia, Yang
2016-08-02
High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. Together, human and mouse studies reveal novel mechanisms of hypoxia adaptation and potential therapeutic approaches for counteracting hypoxia-induced tissue damage. © 2016 American Heart Association, Inc.
Redzic, Zoran B; Hasan, Fuad A; Al-Sarraf, Hameed
2009-05-01
Increased adenosine concentration inhibits gastric acid secretion in rat via adenosine A1 and A2A receptors, whereas achlorhydria suppresses A1 and A2A receptor gene expression. This study aimed to examine the effects of omeprazole-induced achlorhydria on the expression and functional activity of nucleoside transporters in rat gastric mucosa. Wistar rats were treated for either 1 or 3 days with 0.4 mmol/kg omeprazole via gavage; controls were treated with vehicle. The expression of nucleoside transporters at the transcript level was explored by quantitative real-time polymerase chain reaction assays; the functional activity of nucleoside transporters in gastric mucosa was explored by observing [3H]adenosine uptake in vitro. Gastric mucosa expressed rat equilibrative nucleoside transporter (rENT) 1 and 2, and rat concentrative nucleoside transporter (rCNT) 1, 2, and 3 at the transcript level, and the estimated values for the threshold cycles for target amplification (Ct) were 31.5 +/- 2, 28.5 +/- 2.1, 32.9 +/- 2.2, 29.1 +/- 2, and 28.9 +/- 2.5, respectively (n = 3 or 4). The Ct value for rat beta-actin was 21.9 +/- 1.8 (n = 4). In vitro uptake of [3H]adenosine by gastric mucosa samples consisted of Na+-dependent and Na+-independent components. One-day omeprazole treatment caused no change in nucleoside transporter mRNA levels or in [3H]adenosine uptake. Three-day omeprazole treatments, however, led to a 12-fold and 17-fold increase in rENT2 and rCNT1 mRNA levels, respectively. Samples taken after 3 days of treatment also took up significantly more [3H]adenosine than did samples from the corresponding control. In conclusion, the possible modification of nucleoside transport activities by changes in intraluminal acidity may have significance as part of a purinergic regulatory feedback mechanism in the control of gastric acid secretion.
Schimmel, R J; Honeyman, T W; McMahon, K K
1983-05-15
Incorporation of [32P]Pi into phosphatidic acid and phosphatidylinositol of hamster epididymal adipocytes was partially inhibited by 3-isobutyl-1-methylxanthine. This effect of 3-isobutyl-1-methylxanthine was antagonized by isopropyl-N6-phenyladenosine but not by 2',5'-dideoxyadenosine, prostaglandin E1 or clonidine. N6-Phenylisopropyladenosine did not affect incorporation of [32P]Pi into phosphatidic acid or phosphatidylinositol when 3-isobutyl-1-methylxanthine was not present. In contrast with 3-isobutyl-1-methylxanthine inhibition of [32P]Pi incorporation into phospholipids, which was blocked only by N6-phenylisopropyladenosine, accelerated lipolysis was blocked by prostaglandin E1, clonidine and 2',5'-dideoxyadenosine as well as by N6-phenylisopropyladenosine. Phospholipid labelling was also decreased in the presence of adenosine deaminase, but not in the presence of isoprenaline (isoproterenol). The stimulatory effect of N6-phenylisopropyladenosine on [32P]Pi incorporation into phospholipids in cells exposed to 3-isobutyl-1-methylxanthine was evident as soon as 3 min after addition of the adenosine analogue and maximum 10 min after its addition. As observed by others, [32P]Pi incorporation into phospholipids was increased by the alpha 1-selective agonist methoxamine. The stimulatory effect of methoxamine occurred with a time course similar to that of N6-phenylisopropyladenosine and was present at nearly equal magnitude in the absence or presence of 3-isobutyl-1-methylxanthine. The inhibitory effects of 3-isobutyl-1-methylxanthine and adenosine deaminase on phospholipid labelling are attributed to blockade of the action, or to the enzymic removal, of adenosine formed in and released from the fat-cells during their incubation. Supporting this view is the selective reversal of the actions of 3-isobutyl-1-methylxanthine and of adenosine deaminase by N6-phenylisopropyladenosine. These findings suggest an important role for endogenous adenosine in regulation of phospholipid turnover in adipocytes.
Prabhu, Sandeep; Mackin, Vincent; McLellan, Alex J A; Phan, Tuong; McGlade, Desmond; Ling, Liang-Han; Peck, Kah Y; Voskoboinik, Alexandr; Pathik, Bupesh; Nalliah, Chrishan J; Wong, Geoff R; Azzopardi, Sonia M; Lee, Geoffrey; Mariani, Justin; Taylor, Andrew J; Kalman, Jonathan M; Kistler, Peter M
2017-01-01
ELECTROPHYSIOLOGICAL AND HEMODYNAMIC ASSESSMENT. The significance of adenosine induced dormant pulmonary vein (PV) conduction in atrial fibrillation (AF) ablation remains controversial. The optimal dose of adenosine to determine dormant PV conduction is yet to be systematically explored. ELECTROPHYSIOLOGICAL AND HEMODYNAMIC ASSESSMENT. Consecutive patients undergoing index AF ablation received 3 adenosine doses (12, 18, and 24 mg) in a randomized blinded order, immediately after pulmonary vein isolation (PVI). Electrophysiological (PR prolongation, AV block (AVB) and PV reconnection) and hemodynamic (BP) parameters were measured. A total, 339 doses (113/dose) assessed 191 PVs in 50 patients (66% male, 72% PAF, 52% hypertensive). Dormant PV conduction occurred in 28% of patients (16.5% [32] of PVs). All cases were associated with AVB (AVB: PV reconnection vs. no PV reconnection 100% vs. 83%, P = 0.007). AVB occurred more frequently at 24 mg versus 12 mg (92% vs. 82%, P = 0.019) but not versus 18 mg (91%, P = 0.62). AVB duration progressed between 12 mg (12.0 ± 8.9 seconds), 18 mg (16.1 ± 9.1 seconds, P = 0.001), and 24 mg (19.0 ± 9.3 seconds, P < 0.001) doses. MBP fell further at 24 mg (ΔMBP: 27 ± 12 mmHg) and 18 mg (26 ± 13 mmHg) doses compared to 12 mg (22 ± 10 mmHg vs., P < 0.001). A significant reduction in AVB in patients >110 kg (65% vs. 91% in 70-110 kg group, P < 0.001) in response to adenosine was seen. ELECTROPHYSIOLOGICAL AND HEMODYNAMIC ASSESSMENT. An adenosine dose producing AVB is required to unmask dormant PV conduction. AVB is significantly reduced in patients >110 kg. Weight and dosing variability may in part explain the conflicting results of studies evaluating the clinical utility of adenosine in PVI. © 2016 Wiley Periodicals, Inc.
Salsoso, R; Guzmán-Gutiérrez, E; Sáez, T; Bugueño, K; Ramírez, M A; Farías, M; Pardo, F; Leiva, A; Sanhueza, C; Mate, A; Vázquez, C; Sobrevia, L
2015-03-01
Preeclampsia is associated with impaired placental vasodilation and reduced endothelial nitric oxide synthase (eNOS) activity in the foetoplacental circulation. Adenosine and insulin stimulate vasodilation in endothelial cells, and this activity is mediated by adenosine receptor activation in uncomplicated pregnancies; however, this activity has yet to be examined in preeclampsia. Early onset preeclampsia is associated with severe placental vasculature alterations that lead to altered foetus growth and development, but whether late-onset preeclampsia (LOPE) alters foetoplacental vascular function is unknown. Vascular reactivity to insulin (0.1-1000 nmol/L, 5 min) and adenosine (1 mmol/L, 5 min) was measured in KCl-preconstricted human umbilical vein rings from normal and LOPE pregnancies using a wire myograph. The protein levels of human cationic amino acid transporter 1 (hCAT-1), adenosine receptor subtypes, total and Ser¹¹⁷⁷- or Thr⁴⁹⁵-phosphorylated eNOS were detected via Western blot, and L-arginine transport (0-1000 μmol/L L-arginine, 3 μCi/mL L-[³H]arginine, 20 s, 37 °C) was measured in the presence or absence of insulin and adenosine receptor agonists or antagonists in human umbilical vein endothelial cells (HUVECs) from normal and LOPE pregnancies. LOPE increased the maximal L-arginine transport capacity and hCAT-1 and eNOS expression and activity compared with normal conditions. The A(2A) adenosine receptor (A(2A)AR) antagonist ZM-241385 blocked these effects of LOPE. Insulin-mediated umbilical vein ring relaxation was lower in LOPE pregnancies than in normal pregnancies and was restored using the A(2A)AR antagonist. The reduced foetoplacental vascular response to insulin may result from A(2A)AR activation in LOPE pregnancies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vyas, Falguni S; Hargreaves, Alan J; Bonner, Philip L R; Boocock, David J; Coveney, Clare; Dickenson, John M
2016-05-01
The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly understood. In this study, we investigated the modulation of TG2 activity by the A1 adenosine receptor in cardiomyocyte-like H9c2 cells. H9c2 cells were lysed following stimulation with the A1 adenosine receptor agonist N(6)-cyclopentyladenosine (CPA). Transglutaminase activity was determined using an amine incorporating and a protein cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was investigated by monitoring hypoxia-induced cell death. CPA induced time and concentration-dependent increases in amine incorporating and protein crosslinking activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by removal of extracellular Ca(2+). CPA triggered robust increases in the levels of TG2-associated phosphoserine and phosphothreonine, which were attenuated by PKC, MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-induced cytoprotection. Copyright © 2016 Elsevier Inc. All rights reserved.
Harata, Shingo; Isobe, Satoshi; Morishima, Itsuro; Suzuki, Susumu; Tsuboi, Hideyuki; Sone, Takahito; Ishii, Hideki; Murohara, Toyoaki
2015-10-01
The currently available Japanese normal database (NDB) in stress myocardial perfusion scintigraphy recommended by the Japanese Society of Nuclear Medicine (JSNM-NDB) is created based on the data from exercise tests. The newly developed adenosine normal database (ADS-NDB) remains to be validated for patients undergoing adenosine stress test. We tested whether the diagnostic accuracy of adenosine stress test is improved by the use of ADS-NDB (Kanazawa University). Of 233 consecutive patients undergoing (99m)Tc-MIBI adenosine stress test, 112 patients were tested. The stress/rest myocardial (99m)Tc-MIBI single-photon emission computed tomography (SPECT) images were analyzed by AutoQUANT 7.2 with both ADS-NDB and JSNM-NDB. The summed stress score (SSS) and summed difference score (SDS) were calculated. The agreements of the post-stress defect severity between ADS-NDB and JSNM-NDB were assessed using a weighted kappa statistic. In all patients, mean SSSs of all, right coronary artery (RCA), left anterior descending (LAD), and left circumflex (LCx) territories were significantly lower with ADS-NDB than those with JSNM-NDB. Mean SDSs in all, RCA, and LAD territories were significantly lower with ADS-NDB than those with JSNM-NDB. In 28 patients with significant coronary stenosis, the mean SSS in the RCA territory was significantly lower with ADS-NDB than that with JSNM-NDB. In 84 patients without ischemia, both mean SSSs and SDSs in all, RCA, LAD, and LCx territories were significantly lower with ADS-NDB than those with JSNM-NDB. Weighted kappa values of all patients, patients with significant stenosis, and patients without ischemia were 0.89, 0.83, and 0.92, respectively. Differences were observed between results from ADS-NDB and JSNM-NDB. The diagnostic accuracy of adenosine stress myocardial perfusion scintigraphy may be improved by reducing false-positive results.
Purines and Carotid Body: New Roles in Pathological Conditions
Conde, Silvia V.; Monteiro, Emilia C.; Sacramento, Joana F.
2017-01-01
It is known that adenosine and adenosine-5′-triphosphate (ATP) are excitatory mediators involved in carotid body (CB) hypoxic signaling. The CBs are peripheral chemoreceptors classically defined by O2, CO2, and pH sensors. When hypoxia activates the CB, it induces the release of neurotransmitters from chemoreceptor cells leading to an increase in the action potentials frequency at the carotid sinus nerve (CSN). This increase in the firing frequency of the CSN is integrated in the brainstem to induce cardiorespiratory compensatory responses. In the last decade several pathologies, as, hypertension, diabetes, obstructive sleep apnea and heart failure have been associated with CB overactivation. In the first section of the present manuscript we review in a concise manner fundamental aspects of purine metabolism. The second section is devoted to the role of purines on the hypoxic response of the CB, providing the state-of-the art for the presence of adenosine and ATP receptors in the CB; for the role of purines at presynaptic level in CB chemoreceptor cells, as well as, its metabolism and regulation; at postsynaptic level in the CSN activity; and on the ventilatory responses to hypoxia. Recently, we have showed that adenosine is involved in CB hypersensitization during chronic intermittent hypoxia (CIH), which mimics obstructive sleep apnea, since caffeine, a non-selective adenosine receptor antagonist that inhibits A2A and A2B adenosine receptors, decreased CSN chemosensory activity in animals subjected to CIH. Apart from this involvement of adenosine in CB sensitization in sleep apnea, it was recently found that P2X3 ATP receptor in the CB contributes to increased chemoreflex hypersensitivity and hypertension in spontaneously hypertension rats. Therefore the last section of this manuscript is devoted to review the recent findings on the role of purines in CB-mediated pathologies as hypertension, diabetes and sleep apnea emphasizing the potential clinical importance of modulating purines levels and action to treat pathologies associated with CB dysfunction. PMID:29311923
Intracoronary Adenosine: Dose-Response Relationship With Hyperemia.
Adjedj, Julien; Toth, Gabor G; Johnson, Nils P; Pellicano, Mariano; Ferrara, Angela; Floré, Vincent; Di Gioia, Giuseppe; Barbato, Emanuele; Muller, Olivier; De Bruyne, Bernard
2015-09-01
The present study sought to establish the dosage of intracoronary (IC) adenosine associated with minimal side effects and above which no further increase in flow can be expected. Despite the widespread adoption of IC adenosine in clinical practice, no wide-ranging, dose-response study has been conducted. A recurring debate still exists regarding its optimal dose. In 30 patients, Doppler-derived flow velocity measurements were obtained in 10 right coronary arteries (RCAs) and 20 left coronary arteries (LCAs) free of stenoses >20% in diameter. Flow velocity was measured at baseline and after 8 ml bolus administrations of arterial blood, saline, contrast medium, and 9 escalating doses of adenosine (4 to 500 μg). The hyperemic value was expressed in percent of the maximum flow velocity reached in a given artery (Q/Qmax, %). Q/Qmax did not increase significantly beyond dosages of 60 μg for the RCA and 160 μg for LCA. Heart rate did not change, whereas mean arterial blood pressure decreased by a maximum of 7% (p < 0.05) after bolus injections of IC adenosine. The incidence of transient A-V blocks was 40% after injection of 100 μg in the RCA and was 15% after injection of 200 μg in the LCA. The duration of the plateau reached 12 ± 13 s after injection of 100 μg in the RCA and 21 ± 6 s after the injection of 200 μg in the LCA. A progressive prolongation of the time needed to return to baseline was observed. Hyperemic response after injection of 8 ml of contrast medium reached 65 ± 36% of that achieved after injection of 200 μg of adenosine. This wide-ranging, dose-response study indicates that an IC adenosine bolus injection of 100 μg in the RCA and 200 μg in the LCA induces maximum hyperemia while being associated with minimal side effects. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase
Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong
2012-01-01
RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro. PMID:22496660
Fredholm, Bertil B; Assender, Jean W; Irenius, Eva; Kodama, Noriko; Saito, Naoaki
2003-06-01
1. The effect of adenosine analogues and of nucleotides, alone or in combination, on intracellular calcium, accumulation of inositol (1,4,5) trisphosphate (InsP3), and on activation of protein kinase C (PKC) was studied in DDT1 MF2 cells derived from a Syrian hamster myosarcoma. These cells were found to express mRNA for A1 and some as yet unidentified P2Y receptor(s). 2. Activation of either receptor type stimulated the production of InsP3 and raised intracellular calcium in DDT1 MF2 cells. Similarly, the A1 selective agonist N6-cyclopentyladenosine (CPA) increased PKC-dependent phosphorylation of the substrate MBP(4-14) and induced a PKC translocation to the plasma membrane as determined using [3H]-phorbol dibutyrate (PDBu) binding in DDT1 MF-2 cells. However, neither adenosine nor CPA induced a significant translocation of transiently transfected gamma-PKC-GFP from the cytosol to the cell membrane. In contrast to adenosine analogues, ATP and UTP also caused a rapid but transient translocation of gamma-PKC-GFP and activation of PKC. 3. Doses of the A1 agonist CPA and of ATP or UTP per se caused barely detectable increases in intracellular Ca2+ but when combined, they caused an almost maximal stimulation. Similarly, adenosine (0.6 microM) and UTP (or ATP, 2.5 microM), which per se caused no detectable translocation of either gamma- or epsilon-PKC-GFP, caused when combined a very clear-cut translocation of both PKC subforms, albeit with different time courses. These results show that simultaneous activation of P2Y and adenosine A1 receptors synergistically increases Ca2+ transients and translocation of PKC in DDT1 MF-2 cells. Since adenosine is rapidly formed by breakdown of extracellular ATP, such interactions may be biologically important.
Madara, J L; Patapoff, T W; Gillece-Castro, B; Colgan, S P; Parkos, C A; Delp, C; Mrsny, R J
1993-01-01
Neutrophil transmigration across intestinal epithelia is thought to contribute to epithelial dysfunction and characterizes many inflammatory intestinal diseases. Neutrophils activated by factors, normally present in the lumen, release a neutrophil-derived secretagogue activity to which intestinal epithelia respond with an electrogenic chloride secretion, the transport event which underlies secretory diarrhea. Using sequential ultrafiltration, column chromatographic, and mass and Raman spectroscopic techniques, neutrophil-derived secretagogue was identified as 5'-AMP. Additional studies suggested that neutrophil-derived 5'-AMP is subsequently converted to adenosine at the epithelial cell surface by ecto-5'-nucleotidase and that adenosine subsequently activates intestinal secretion through adenosine receptors on the apical membrane of target intestinal epithelial cells. These findings suggest that this ATP metabolite may serve as a neutrophil-derived paracrine mediator that contributes to secretory diarrhea in states of intestinal inflammation. PMID:8486793
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadat Hayatshahi, Sayyed Hamed; Abdolmaleki, Parviz; Safarian, Shahrokh
2005-12-16
Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, themore » previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.« less
NASA Technical Reports Server (NTRS)
Prabahar, K. J.; Ferris, J. P.
1997-01-01
Methyladenine and adenine N-phosphoryl derivatives of adenosine 5'-monophosphate (5'-AMP) and uridine 5'-monophosphate (5'-UMP) are synthesized, and their structures are elucidated. The oligomerization reactions of the adenine derivatives of 5'-phosphoramidates of adenosine on montmorillonite are investigated. 1-Methyladenine and 3-methyladenine derivatives on montmorillonite yielded oligoadenylates as long as undecamer, and the 2-methyladenine and adenine derivatives on montmorillonite yielded oligomers up to hexamers and pentamers, respectively. The 1-methyladenine derivative yielded linear, cyclic, and A5'ppA-derived oligonucleotides with a regioselectivity for the 3',5'-phosphodiester linkages averaging 84%. The effect of pKa and amine structure of phosphate-activating groups on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidate of adenosine are discussed. The binding and reaction of methyladenine and adenine N-phosphoryl derivatives of adenosine are described.
REGULATION OF THE T-CELL RESPONSE BY CD39
Takenaka, Maisa C.; Robson, Simon; Quintana, Francisco J.
2016-01-01
The ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, or CD39) catalyzes the phosphohydrolysis of extracellular adenosine triphosphate (eATP) and diphosphate (eADP) released under conditions of inflammatory stress and cell injury. CD39 generates adenosine monophosphate (AMP), which is in turn used by the ecto-5’-nucleotidase CD73 to synthesize adenosine. These ectonucleotidases have major impacts on the dynamic equilibrium of pro-inflammatory eATP and ADP nucleotides vs. immunosuppressive adenosine nucleosides. Indeed, CD39 plays a dominant role in the purinergic regulation of inflammation and the immune response because its expression is influenced by genetic and environmental factors. Here, we review the specific role of CD39 in the kinetic regulation of cellular immune responses in the evolution of disease. We focus on the effects of CD39 on T cells and explore potential clinical applications in autoimmunity, chronic infections and cancer. PMID:27236363
Kechadi, Mohammed; Sotta, Bruno; Gamby, Jean
2015-01-01
This paper presents the use of polymer coated microelectrodes for the realtime conductivity monitoring in a microchannel photoablated through the polymer without contact. Based on this strategy, a small conductometry sensor has been developed to record in time conductivity variation when an enzymatic reaction occurs through the channel. The rate constant determination, k2, for the dephosphorylation of organic phosphate-alkaline phosphatase-superparamagnetic beads complex using chemically different substrates such as adenosine monoesterphosphate, adenosine diphosphate and adenosine triphosphate was taken as an example to demonstrate selectivity and sensivity of the detection scheme. The k2 value measured for each adenosine phosphate decreases from 39 to 30 s(-1) in proportion with the number (3, 2 and 1) of attached phosphate moiety, thus emphasizing the steric hindrance effect on kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.
Hakeem, Abdul; Cilingiroglu, Mehmet; Leesar, Massoud A
2010-02-01
Compared to coronary angiography, both intravascular ultrasound (IVUS) and CT-angiography provide important information with respect to the morphological aspects of myocardial bridging (MB). However, these modalities are limited in defining the hemodynamic and clinical significance of MB. Intracoronary Doppler studies demonstrate a peculiar abnormal Doppler flow profile associated with MB. Fractional flow reserve (FFR) after adenosine infusion has been used to assess the hemodynamic significance of MB, but FFR after adenosine induced hyperemia underestimates the significance of MB. On the other hand, high-dose dobutamine by increasing the contractility of the bridging segment unmasks ischemia induced by MB. This review outlines the role of flow velocity measurement by intracoronary Doppler, FFR, and IVUS for assessment of patients with MB. In addition, we compared FFR measurements after adenosine versus dobutamine infusions for the hemodynamic assessment of MB in two patients.
Ribeiro, Joaquim A; Sebastião, Ana M
2010-01-01
Caffeine causes most of its biological effects via antagonizing all types of adenosine receptors (ARs): A1, A2A, A3, and A2B and, as does adenosine, exerts effects on neurons and glial cells of all brain areas. In consequence, caffeine, when acting as an AR antagonist, is doing the opposite of activation of adenosine receptors due to removal of endogenous adenosinergic tonus. Besides AR antagonism, xanthines, including caffeine, have other biological actions: they inhibit phosphodiesterases (PDEs) (e.g., PDE1, PDE4, PDE5), promote calcium release from intracellular stores, and interfere with GABA-A receptors. Caffeine, through antagonism of ARs, affects brain functions such as sleep, cognition, learning, and memory, and modifies brain dysfunctions and diseases: Alzheimer's disease, Parkinson's disease, Huntington's disease, Epilepsy, Pain/Migraine, Depression, Schizophrenia. In conclusion, targeting approaches that involve ARs will enhance the possibilities to correct brain dysfunctions, via the universally consumed substance that is caffeine.
Sharma, Rishi; Sahota, Pradeep; Thakkar, Mahesh M
2014-03-01
Strong clinical and preclinical evidence suggests that acute ethanol promotes sleep. However, very little is known about how and where ethanol acts to promote sleep. We hypothesized that ethanol may induce sleep by increasing extracellular levels of adenosine and inhibiting orexin neurons in the perifornical hypothalamus. Experiments 1 and 2: Within-Subject Design; Experiment 3: Between-Subject Design. N/A. N/A. N/A. Using adult male Sprague-Dawley rats as our animal model, we performed three experiments to test our hypothesis. Our first experiment examined the effect of A1 receptor blockade in the orexinergic perifornical hypothalamus on sleep- promoting effects of ethanol. Bilateral microinjection of the selective A1 receptor antagonist 1,3-dipropyl-8-phenylxanthine (500 μM; 250 nL/side) into orexinergic perifornical hypothalamus significantly reduced nonrapid eye movement sleep with a concomitant increase in wakefulness, suggesting that blockade of adenosine A1 receptor attenuates ethanol-induced sleep promotion. Our second experiment examined adenosine release in the orexinergic perifornical hypothalamus during local ethanol infusion. Local infusion of pharmacologically relevant doses of ethanol significantly and dose-dependently increased adenosine release. Our final experiment used c-Fos immunohistochemistry to examine the effects of ethanol on the activation of orexin neurons. Acute ethanol exposure significantly reduced the number of orexin neurons containing c-Fos, suggesting an inhibition of orexin neurons after ethanol intake. Based on our results, we believe that ethanol promotes sleep by increasing adenosine in the orexinergic perifornical hypothalamus, resulting in A1 receptor-mediated inhibition of orexin neurons.
Forman, Mervyn B; Jackson, Edwin K
2007-11-01
High risk ST segment elevation myocardial infarction (STEMI) patients undergoing reperfusion therapy continue to exhibit significant morbidity and mortality due in part to myocardial reperfusion injury. Importantly, preclinical studies demonstrate that progressive microcirculatory failure (the "no-reflow" phenomenon) contributes significantly to myocardial reperfusion injury. Diagnostic techniques to measure tissue perfusion have validated this concept in humans, and it is now clear that abnormal tissue perfusion occurs frequently in STEMI patients undergoing reperfusion therapy. Moreover, because tissue perfusion correlates poorly with epicardial blood flow (TIMI flow grade), clinical studies show that tissue perfusion is an independent predictor of early and late mortality in STEMI patients and is associated with infarct size, ventricular function, CHF and ventricular arrhythmias. The mechanisms responsible for abnormal tissue perfusion are multifactorial and include both mechanical obstruction and vasoconstrictor humoral factors. Adenosine, an endogenous nucleoside, maintains microcirculatory flow following reperfusion by activating four well-characterized extracellular receptors. Because activation of adenosine receptors attenuates the mechanical and functional mechanisms leading to the "no reflow" phenomenon and activates other cardioprotective pathways as well, it is not surprising that both experimental and clinical studies show striking myocardial salvage with intravenous infusions of adenosine administered in the peri-reperfusion period. For example, a post hoc analysis of the AMISTAD II trial indicates a significant reduction in 1 and 6-month mortality in STEMI patients undergoing reperfusion therapy who are treated with adenosine within 3 hours of symptoms. In conclusion, adenosine's numerous cardioprotective effects, including attenuation of the "no-reflow" phenomenon, support its use in high risk STEMI undergoing reperfusion.
Khaliulin, Igor; Parker, Joanna E.; Halestrap, Andrew P.
2010-01-01
Aims Temperature preconditioning (TP) provides very powerful protection against ischaemia/reperfusion. Understanding the signalling pathways involved may enable the development of effective pharmacological cardioprotection. We investigated the interrelationship between activation of protein kinase A (PKA) and protein kinase C (PKC) in the signalling mechanisms of TP and developed a potent pharmacological intervention based on this mechanism. Methods and results Isolated rat hearts were subjected to TP, 30 min global ischaemia, and 60 min reperfusion. Other control and TP hearts were perfused with either sotalol (β-adrenergic blocker) or H-89 (PKA inhibitor). Some hearts were pre-treated with either isoproterenol (β-adrenergic agonist) or adenosine (PKC activator) that were given alone, simultaneously, or sequentially. Pre-treatment with isoproterenol, adenosine, and the consecutive isoproterenol/adenosine treatment was also combined with the PKC inhibitor chelerythrine. Cardioprotection was evaluated by haemodynamic function recovery, lactate dehydrogenase release, measurement of mitochondrial permeability transition pore opening, and protein carbonylation during reperfusion. Cyclic AMP and PKA activity were increased in TP hearts. H-89 and sotalol blocked the cardioprotective effect of TP and TP-induced PKC activation. Isoproterenol, adenosine, and the consecutive treatment increased PKC activity during pre-ischaemia. Isoproterenol significantly reduced myocardial glycogen content. Isoproterenol and adenosine, alone or simultaneously, protected hearts but the consecutive treatment gave the highest protection. Cardioprotective effects of adenosine were completely blocked by chelerythrine but those of the consecutive treatment only attenuated. Conclusion The signal transduction pathway of TP involves PKA activation that precedes PKC activation. Pharmacologically induced consecutive PKA/PKC activation mimics TP and induces extremely potent cardioprotection. PMID:20558443
Mingote, Susana; Font, Laura; Farrar, Andrew M.; Vontell, Regina; Worden, Lila T.; Stopper, Colin M.; Port, Russell G.; Sink, Kelly S.; Bunce, Jamie G.; Chrobak, James J.; Salamone, John D.
2009-01-01
Goal-directed actions are sensitive to work-related response costs, and dopamine in nucleus accumbens is thought to modulate the exertion of effort in motivated behavior. Dopamine-rich striatal areas such as nucleus accumbens also contain high numbers of adenosine A2A receptors, and, for that reason, the behavioral and neurochemical effects of the adenosine A2A receptor agonist CGS 21680 [2-p-(2-carboxyethyl) phenethylamino-5′-N-ethylcarboxamidoadenosine] were investigated. Stimulation of accumbens adenosine A2A receptors disrupted performance of an instrumental task with high work demands (i.e., an interval lever-pressing schedule with a ratio requirement attached) but had little effect on a task with a lower work requirement. Immunohistochemical studies revealed that accumbens neurons that project to the ventral pallidum showed adenosine A2A receptors immunoreactivity. Moreover, activation of accumbens A2A receptors by local injections of CGS 21680 increased extracellular GABA levels in the ventral pallidum. Combined contralateral injections of CGS 21680 into the accumbens and the GABAA agonist muscimol into ventral pallidum (i.e., “disconnection” methods) also impaired response output, indicating that these structures are part of a common neural circuitry regulating the exertion of effort. Thus, accumbens adenosine A2A receptors appear to regulate behavioral activation and effort-related processes by modulating the activity of the ventral striatopallidal pathway. Research on the effort-related functions of these forebrain systems may lead to a greater understanding of pathological features of motivation, such as psychomotor slowing, anergia, and fatigue in depression. PMID:18768698
Singh, Amritpal; Randhawa, Puneet Kaur; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh
2017-04-01
The cardioprotective effects of remote hind limb preconditioning (RIPC) are well known, but mechanisms by which protection occurs still remain to be explored. Therefore, the present study was designed to investigate the role of TRPV and CGRP in adenosine and remote preconditioning-induced cardioprotection, using sumatriptan, a CGRP release inhibitor and ruthenium red, a TRPV inhibitor, in rats. For remote preconditioning, a pressure cuff was tied around the hind limb of the rat and was inflated with air up to 150 mmHg to produce ischemia in the hind limb and during reperfusion pressure was released. Four cycles of ischemia and reperfusion, each consisting of 5 min of inflation and 5 min of deflation of pressure cuff were used to produce remote limb preconditioning. An ex vivo Langendorff's isolated rat heart model was used to induce ischemia reperfusion injury by 30 min of global ischemia followed by 120 min of reperfusion. RIPC demonstrated a significant decrease in ischemia reperfusion-induced significant myocardial injury in terms of increase in LDH, CK, infarct size and decrease in LVDP, +dp/dt max and -dp/dt min . Moreover, pharmacological preconditioning with adenosine produced cardioprotective effects in a similar manner to RIPC. Pretreatment with sumatriptan, a CGRP release blocker, abolished RIPC and adenosine preconditioning-induced cardioprotective effects. Administration of ruthenium red, a TRPV inhibitor, also abolished adenosine preconditioning-induced cardioprotection. It may be proposed that the cardioprotective effects of adenosine and remote preconditioning are possibly mediated through activation of a TRPV channels and consequent, release of CGRP.
Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Streitová, Denisa; Vacek, Antonín
2008-07-01
Two adenosine receptor agonists, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and N6-cyclopentyladenosine (CPA), which selectively activate adenosine A3 and A1 receptors, respectively, were tested for their ability to influence proliferation of granulocytic and erythroid cells in femoral bone marrow of mice using morphological criteria. Agonists were given intraperitoneally to mice in repeated isomolar doses of 200 nmol/kg. Three variants of experiments were performed to investigate the action of the agonists under normal resting state of mice and in phases of cell depletion and subsequent regeneration after treatment with the cytotoxic drug 5-fluorouracil. In the case of granulopoiesis, IB-MECA 1) increased by a moderate but significant level proliferation of cells under normal resting state; 2) strongly increased proliferation of cells in the cell depletion phase; but 3) did not influence cell proliferation in the regeneration phase. CPA did not influence cell proliferation under normal resting state and in the cell depletion phase, but strongly suppressed the overshooting cell proliferation in the regeneration phase. The stimulatory effect of IB-MECA on cell proliferation of erythroid cells was observed only when this agonist was administered during the cell depletion phase. CPA did not modulate erythroid proliferation in any of the functional states investigated, probably due to the lower demand for cell production as compared with granulopoiesis. The results indicate opposite effects of the two adenosine receptor agonists on proliferation of hematopoietic cells and suggest the plasticity and homeostatic role of the adenosine receptor expression.
Hyperalgesia, low-anxiety, and impairment of avoidance learning in neonatal caffeine-treated rats.
Pan, Hong-Zhen; Chen, Hwei-Hsien
2007-03-01
The nonselective adenosine receptor antagonist caffeine is used clinically to treat apnea in preterm infants. The brain developmental stage of preterm infants is usually at a period of rapid brain growth, referred as brain growth spurt, which occurs during early postnatal life in rats and is highly sensitive to central nervous system (CNS) acting drugs. The aim of this work was to study whether caffeine treatment during brain growth spurt produces long-term effects on the adenosine receptor-regulated behaviors including nociception, anxiety, learning, and memory. Neonatal male and female Sprague-Dawley rats were administered either deionized water or caffeine (15-20 mg kg(-1) day(-1)) through gavage (0.05 ml/10 g) over postnatal days (PN) 2-6. The hot-plate test, elevated plus-maze, dark-light transition test, and step-through inhibitory avoidance learning task were examined in juvenile rats. Furthermore, the responses to adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA)-induced hypothermia and A(2A) receptor agonist CGS21680-induced locomotor depression were also compared. Caffeine-treated rats showed hyperalgesia in hot-plate test, less anxiety than controls in the elevated plus-maze and dark-light transition, and impairment in step-through avoidance learning test. Moreover, the responses to CPA-induced hypothermia and CGS21680-induced locomotor depression were enhanced in caffeine-treated rats. These results indicate that caffeine exposure during brain growth spurt alters the adenosine receptor-regulated behaviors and the responsiveness to adenosine agonists, suggesting the risk of adenosine receptor-related behavioral dysfunction may exist in preterm newborns treated for apnea with caffeine.
Ran, Hong; Zhang, Ping-Yang; Fang, Ling-Ling; Ma, Xiao-Wu; Wu, Wen-Fang; Feng, Wang-Fei
2012-07-01
To evaluate whether myocardial strain under adenosine stress calculated from two-dimensional echocardiography by automatic frame-by-frame tracking of natural acoustic markers enables objective description of myocardial viability in clinic. Two-dimensional echocardiography and two-dimensional speckle tracking imaging (2D STI) at rest were performed first and once again after adenosine was infused at 140 ug/kg/min over a period of 6 minutes in 36 stable patients with previous myocardial infarction. Then radionuclide myocardial perfusion/metabolic imaging served as the "gold standard" to define myocardial viability was given in all patients within 1 day. Two-dimensional speckle tracking images were acquired at rest and after adenosine administration. An automatic frame-by-frame tracking system of natural acoustic echocardiographic markers was used to calculate 2D strain variables including peak-systolic circumferential strain (CS(peak-sys)), radial strain (RS(peak-sys)), and longitudinal strain (LS(peak-sys)). Those segments with abnormal motion from visual assessment of two-dimensional echocardiography were selected for further study. As a result, 126 regions were viable whereas 194 were nonviable among 320 abnormal motion segments in 36 patients according to radionuclide imaging. At rest, there were no significant changes of 2D strain between the viable and nonviable myocardium. After adenosine administration (140 ug/kg/min), CS(peak-sys) had a little change of the viable myocardium while RS(peak-sys) and LS(peak-sys) increased significantly compared with those at rest. In nonviable group, CS(peak-sys), RS(peak-sys), and LS(peak-sys) had no significant changes during adenosine administration. After adenosine administration, RS(peak-sys) and LS(peak-sys) in viable group increased significantly compared with nonviable group. Obtained strain data were highly reproducible and affected in small intraobserver and interobserver variabilities. A change of radial strain more than 9.5% has a sensitivity of 83.9% and a specificity of 81.4% for viable whereas a change of longitudinal strain more than 14.6% allowed a sensitivity of 86.7% and a specificity of 90.2%. 2D STI combined with adenosine stress echocardiography could provide a new and reliable method to identify myocardium viability. © 2012, Wiley Periodicals, Inc.
Rongen, G A; Smits, P; Ver Donck, K; Willemsen, J J; De Abreu, R A; Van Belle, H; Thien, T
1995-02-01
In 12 healthy male volunteers (27-53 yr), a placebo-controlled randomized double blind cross-over trial was performed to study the effect of the intravenous injection of 0.25, 0.5, 1, 2, 4, and 6 mg draflazine (a selective nucleoside transport inhibitor) on hemodynamic and neurohumoral parameters and ex vivo nucleoside transport inhibition. We hypothesized that an intravenous draflazine dosage without effect on hemodynamic and neurohumoral parameters would still be able to augment the forearm vasodilator response to intraarterially infused adenosine. Heart rate (electrocardiography), systolic blood pressure (Dinamap 1846 SX; Critikon, Portanje Electronica BV, Utrecht, The Netherlands) plasma norepinephrine and epinephrine increased dose-dependently and could almost totally be abolished by caffeine pretreatment indicating the involvement of adenosine receptors. Draflazine did not affect forearm blood flow (venous occlusion plethysmography). Intravenous injection of 0.5 mg draflazine did not affect any of the measured hemodynamic parameters but still induced a significant ex vivo nucleoside-transport inhibition of 31.5 +/- 4.1% (P < 0.05 vs placebo). In a subgroup of 10 subjects the brachial artery was cannulated to infuse adenosine (0.15, 0.5, 1.5, 5, 15, and 50 micrograms/100 ml forearm per min) before and after intravenous injection of 0.5 mg draflazine. Forearm blood flow amounted 1.9 +/- 0.3 ml/100 ml forearm per min for placebo and 1.8 +/- 0.2, 2.0 +/- 0.3, 3.8 +/- 0.9, 6.3 +/- 1.2, 11.3 +/- 2.2, and 19.3 +/- 3.9 ml/100 ml forearm per min for the six incremental adenosine dosages, respectively. After the intravenous draflazine infusion, these values were 1.6 +/- 0.2 ml/100 ml forearm per min for placebo and 2.1 +/- 0.3, 3.3 +/- 0.6, 5.8 +/- 1.1, 6.9 +/- 1.4, 14.4 +/- 2.9, and 23.5 +/- 4.0 ml/100 ml forearm per min, respectively (Friedman ANOVA: P < 0.05 before vs after draflazine infusion). In conclusion, a 30-50% inhibition of adenosine transport significantly augments the forearm vasodilator response to adenosine without significant systemic effects. These results suggest that draflazine is a feasible tool to potentiate adenosine-mediated cardioprotection in man.
Du, Xuewen; Li, Junfeng; Gao, Yuan; Kuang, Yi; Xu, Bing
2012-02-18
The use of enzyme to instruct the self-assembly of the nucleoside of adenosine in water provides a new class of molecular nanofibers/hydrogels as functional soft materials. This journal is © The Royal Society of Chemistry 2012
Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)
NASA Technical Reports Server (NTRS)
Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.
1975-01-01
A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.
Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.
Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D
2017-01-29
Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.
Effects of tofacitinib on nucleic acid metabolism in human articular chondrocytes.
Koizumi, Hideki; Arito, Mitsumi; Endo, Wataru; Kurokawa, Manae S; Okamoto, Kazuki; Omoteyama, Kazuki; Suematsu, Naoya; Beppu, Moroe; Kato, Tomohiro
2015-07-01
In our previous screening of chondrocyte protein profiles, the amount of adenosine monophosphate deaminase (AMPD) 2 was found to be decreased by tofacitinib. Extending the study, here we confirmed the decrease of AMPD2 by tofacitinib and further investigated effects of tofacitinib on purine nucleotide metabolism. Human articular chondrocytes and a chondrosarcoma cell line: OUMS-27 were stimulated with tofacitinib. Then the levels of AMPD2 and its related enzymes were investigated by Western blot. The levels of AMP and adenosine were assessed by mass spectrometry. We confirmed the significant decrease of AMPD2 by tofacitinib in chondrocytes (p = 0.025). The levels of adenosine kinase and 5'-nucleotidase were decreased in chondrocytes, although they did not meet statistical significance (p = 0.067 and p = 0.074, respectively). The results from OUMS-27 were similar to those from the chondrocytes. The cellular adenosine levels were significantly decreased by tofacitinib in OUMS-27 (p = 0.014). The cellular AMP levels were increased, although they did not meet statistical significance in OUMS-27 (p = 0.066). Our data indicate that tofacitinib increases the cellular levels of adenosine, which is known to have anti-inflammatory activity, through the downregulation of AMPD2. This would be a novel functional aspect of tofacitinib.
Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease
Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E.; Franco, Rafael
2011-01-01
Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson’s disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson’s patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized anti-parkinsonian drug therapy, namely the existence of receptor (hetero)dimers/oligomers of G protein-coupled receptors, a topic currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and safer drugs. PMID:21810444
Adenosine A3 receptors regulate heart rate, motor activity and body temperature
Yang, Jiangning; Wang, Yingqing; Garcia-Roves, Pablo; Björnholm, Marie; Fredholm, Bertil B.
2010-01-01
Aim We wanted to examine the phenotype of mice that lack the adenosine A3 receptor (A3R). Methods We examined the heart rate, body temperature and locomotion continuously by telemetry over several days. In addition the effect of the adenosine analogue R - N6- phenylisopropyl-adenosine (R-PIA) was examined. In addition, we examined heat production and food intake. Results We found that the marked diurnal variation in activity, heart rate and body temperature, with markedly higher values at night than during day time, was reduced in the A3R knockout mice. Surprisingly, the reduction in heart rate, activity and body temperature seen after injection of R-PIA in wild type mice was virtually eliminated in the A3R knock-out mice. The marked reduction in activity was associated with a decreased heat production, as expected. However, the A3R knock-out mice, surprisingly, had a higher food intake but no difference in body weight compared to wild type mice. Conclusions The mice lacking adenosine A3 receptors exhibit a surprisingly clear phenotype with changes in e.g. diurnal rhythm and temperature regulation. Whether these effects are due to a physiological role of A3 receptors in these processes or if they represent a role in development remains to be elucidated. PMID:20121716
SKCa Channels Blockage Increases the Expression of Adenosine A2A Receptor in Jurkat Human T Cells
Regaya, Imed; Aidi-Knani, Sabrine; By, Youlet; Condo, Jocelyne; Gerolami, Victoria; Berge-Lefranc, Jean-Louis; Ben Hamida, Jeannette; Sabatier, Jean-Marc; Fenouillet, Emmanuel; Guieu, Régis
2013-01-01
Abstract Adenosine is a nucleoside displaying various biological effects via stimulation of four G-protein–coupled receptors, A1, A2A, A2B, and A3. Adenosine also modulates voltage-gated (Kv) and small conductance calcium-activated (SKCa) potassium channels. The effect of these potassium channels on the expression of adenosine receptors is poorly understood. We evaluated the action of BgK (a natural Kv channel blocker) and Lei-Dab7 (a synthetic SKCa channel blocker) on the expression of adenosine A2A receptors (A2AR) in Jurkat human T cells. We found that Lei-Dab7, but not BgK, increased the maximal binding value of the tritiated ligand ZM241385 to A2AR in a dose-dependent manner (+45% at 5 nM; +70% at 50 nM as compared to control). These results were further confirmed by Western blotting using a specific monoclonal antibody to human A2AR. The ligand affinity-related dissociation constant and A2AR mRNA amount were not significantly modified by either drug. We suggest that modulation of SKCa channels can influence membrane expression of A2AR and thus has a therapeutic potential. PMID:23593569
Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds
Marín-Aguilar, Fabiola; Pavillard, Luis E.; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D.
2017-01-01
Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases. PMID:28146060
Acetylcholine but not adenosine triggers preconditioning through PI3-kinase and a tyrosine kinase.
Qin, Qining; Downey, James M; Cohen, Michael V
2003-02-01
Adenosine and acetylcholine (ACh) trigger preconditioning by different signaling pathways. The involvement of phosphatidylinositol 3-kinase (PI3-kinase), a protein tyrosine kinase, and Src family tyrosine kinase in preconditioning was evaluated in isolated rabbit hearts. Either wortmannin (PI3-kinase blocker), genistein (tyrosine kinase blocker), lavendustin A (tyrosine kinase blocker), or 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2; Src family tyrosine kinase blocker) was given for 15 min to bracket a 5-min infusion of either adenosine or ACh (trigger phase). The hearts then underwent 30 min of regional ischemia. Infarct size for ACh alone was 9.3 +/- 3.5% of the risk zone versus 34.3 +/- 4.1% in controls. All four inhibitors blocked ACh-induced protection. When wortmannin or PP2 was infused only during the 30-min ischemic period (mediator phase), ACh-induced protection was not affected (7.4 +/- 2.1% and 9.7 +/- 1.7% infarction, respectively). Adenosine-triggered protection was not blocked by any of the inhibitors. Therefore, PI3-kinase and at least one protein tyrosine kinase, probably Src kinase, are involved in the trigger phase of ACh-induced, but not adenosine-induced, preconditioning. Neither PI3-kinase nor Src kinase is a mediator of the protection of ACh.
High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging
NASA Technical Reports Server (NTRS)
2004-01-01
Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P less than 0.00l). Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.
High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging
NASA Technical Reports Server (NTRS)
Rahman, Atiar
2006-01-01
Background: Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). Methods and Results: 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P<0.001). Conclusions: Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.
Söderström, V; Renshaw, G M; Nilsson, G E
1999-04-01
The key to surviving hypoxia is to protect the brain from energy depletion. The epaulette shark (Hemiscyllium ocellatum) is an elasmobranch able to resist energy depletion and to survive hypoxia. Using epi-illumination microscopy in vivo to observe cerebral blood flow velocity on the brain surface, we show that cerebral blood flow in the epaulette shark is unaffected by 2 h of severe hypoxia (0.35 mg O2 l-1 in the respiratory water, 24 C). Thus, the epaulette shark differs from other hypoxia- and anoxia-tolerant species studied: there is no adenosine-mediated increase in cerebral blood flow such as that occurring in freshwater turtles and cyprinid fish. However, blood pressure showed a 50 % decrease in the epaulette shark during hypoxia, indicating that a compensatory cerebral vasodilatation occurs to maintain cerebral blood flow. We observed an increase in cerebral blood flow velocity when superfusing the normoxic brain with adenosine (making sharks the oldest vertebrate group in which this mechanism has been found). The adenosine-induced increase in cerebral blood flow velocity was reduced by the adenosine receptor antagonist aminophylline. Aminophylline had no effect upon the maintenance of cerebral blood flow during hypoxia, however, indicating that adenosine is not involved in maintaining cerebral blood flow in the epaulette shark during hypoxic hypotension.
21 CFR 864.7040 - Adenosine triphosphate release assay.
Code of Federal Regulations, 2014 CFR
2014-04-01
... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...
21 CFR 864.7040 - Adenosine triphosphate release assay.
Code of Federal Regulations, 2011 CFR
2011-04-01
... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...
21 CFR 864.7040 - Adenosine triphosphate release assay.
Code of Federal Regulations, 2013 CFR
2013-04-01
... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...
21 CFR 864.7040 - Adenosine triphosphate release assay.
Code of Federal Regulations, 2010 CFR
2010-04-01
... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...
21 CFR 864.7040 - Adenosine triphosphate release assay.
Code of Federal Regulations, 2012 CFR
2012-04-01
... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...
Proszkowiec-Weglarz, M; Richards, M P
2009-01-01
The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a highly conserved serine-threonine protein kinase and a key part of a kinase-signaling cascade that senses cellular energy status (adenosine monophosphate:adenosine triphosphate ratio) and acts to maintain energy homeostasis by coordinately regulating energy-consuming and energy-generating metabolic pathways. The objective of this study was to investigate aspects of the AMPK pathway in the liver, brain, breast muscle, and heart from d 12 of incubation through hatch in chickens. We first determined mRNA and protein expression profiles for a major upstream AMPK kinase, LKB1, which is known to activate (phosphorylate) AMPK in response to increases in the adenosine monophosphate:adenosine triphosphate ratio. Expression of LKB1 protein was greatest in the brain, which demonstrated tissue-specific patterns for phosphorylation. Next, AMPK subunit mRNA and protein expression profiles were determined. Significant changes in AMPK subunit mRNA expression occurred in all tissues from d 12 of incubation to hatch. Differences in the levels of active (phosphorylated) AMPK as well as alpha and beta subunit proteins were observed in all 4 tissues during embryonic development. Finally, we determined the protein level and phosphorylation status of an important downstream target for AMPK, acetyl-coenzyme A carboxylase. The expression of acetyl-co-enzyme A carboxylase and phosphorylated acetyl-coenzyme A was greater in the brain than the liver, but was undetectable by Western blotting in the breast muscle and heart throughout the period of study. Together, our results are the first to demonstrate the expression and activity of the AMPK pathway in key tissues during the transition from embryonic to posthatch development in chickens.
Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells.
Mello, Paola de Andrade; Filippi-Chiela, Eduardo Cremonese; Nascimento, Jéssica; Beckenkamp, Aline; Santana, Danielle Bertodo; Kipper, Franciele; Casali, Emerson André; Nejar Bruno, Alessandra; Paccez, Juliano Domiraci; Zerbini, Luiz Fernando; Wink, Marcia Rosângela; Lenz, Guido; Buffon, Andréia
2014-10-01
In cervical cancer, HPV infection and disruption of mechanisms involving cell growth, differentiation, and apoptosis are strictly linked with tumor progression and invasion. Tumor microenvironment is ATP and adenosine rich, suggesting a role for purinergic signaling in cancer cell growth and death. Here we investigate the effect of extracellular ATP on human cervical cancer cells. We find that extracellular ATP itself has a small cytotoxic effect, whereas adenosine formed from ATP degradation by ectonucleotidases is the main factor responsible for apoptosis induction. The level of P2 × 7 receptor seemed to define the main cytotoxic mechanism triggered by ATP, since ATP itself eliminated a small subpopulation of cells that express high P2 × 7 levels, probably through its activation. Corroborating these data, blockage or knockdown of P2 × 7 only slightly reduced ATP cytotoxicity. On the other hand, cell viability was almost totally recovered with dipyridamole, an adenosine transporter inhibitor. Moreover, ATP-induced apoptosis and signaling-p53 increase, AMPK activation, and PARP cleavage-as well as autophagy induction were also inhibited by dipyridamole. In addition, inhibition of adenosine conversion into AMP also blocked cell death, indicating that metabolization of intracellular adenosine originating from extracellular ATP is responsible for the main effects of the latter in human cervical cancer cells. © 2014 Mello et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Ecto-5’-Nucleotidase Overexpression Reduces Tumor Growth in a Xenograph Medulloblastoma Model
Cappellari, Angélica R.; Pillat, Micheli M.; Souza, Hellio D. N.; Dietrich, Fabrícia; Oliveira, Francine H.; Figueiró, Fabrício; Abujamra, Ana L.; Roesler, Rafael; Lecka, Joanna; Sévigny, Jean; Battastini, Ana Maria O.; Ulrich, Henning
2015-01-01
Background Ecto-5’-nucleotidase/CD73 (ecto-5’-NT) participates in extracellular ATP catabolism by converting adenosine monophosphate (AMP) into adenosine. This enzyme affects the progression and invasiveness of different tumors. Furthermore, the expression of ecto-5’-NT has also been suggested as a favorable prognostic marker, attributing to this enzyme contradictory functions in cancer. Medulloblastoma (MB) is the most common brain tumor of the cerebellum and affects mainly children. Materials and Methods The effects of ecto-5’-NT overexpression on human MB tumor growth were studied in an in vivo model. Balb/c immunodeficient (nude) 6 to 14-week-old mice were used for dorsal subcutaneous xenograph tumor implant. Tumor development was evaluated by pathophysiological analysis. In addition, the expression patterns of adenosine receptors were verified. Results The human MB cell line D283, transfected with ecto-5’-NT (D283hCD73), revealed reduced tumor growth compared to the original cell line transfected with an empty vector. D283hCD73 generated tumors with a reduced proliferative index, lower vascularization, the presence of differentiated cells and increased active caspase-3 expression. Prominent A1 adenosine receptor expression rates were detected in MB cells overexpressing ecto-5’-NT. Conclusion This work suggests that ecto-5’-NT promotes reduced tumor growth to reduce cell proliferation and vascularization, promote higher differentiation rates and initiate apoptosis, supposedly by accumulating adenosine, which then acts through A1 adenosine receptors. Therefore, ecto-5’-NT might be considered an important prognostic marker, being associated with good prognosis and used as a potential target for therapy. PMID:26491983
Kim, Youngsoo; Elmenhorst, David; Weisshaupt, Angela; Wedekind, Franziska; Kroll, Tina; McCarley, Robert W; Strecker, Robert E; Bauer, Andreas
2015-10-01
Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. © 2015 European Sleep Research Society.
Traverse, Jay H; Chen, YingJie; Hou, MingXiao; Li, Yunfang; Bache, Robert J
2007-06-08
K(+)(ATP) channels are important metabolic regulators of coronary blood flow (CBF) that are activated in the setting of reduced levels of ATP or perfusion pressure. In the normal heart, blockade of K(+)(ATP) channels results in a approximately 20% reduction in resting CBF but does not impair the increase in CBF that occurs during exercise. In contrast, adenosine receptor blockade fails to alter CBF or myocardial oxygen consumption (MVO(2)) in the normal heart but contributes to the increase in CBF during exercise when vascular K(+)(ATP) channels are blocked. Congestive heart failure (CHF) is associated with a decrease in CBF that is matched to a decrease in MVO(2) suggesting downregulation of myocardial energy utilization. Because myocardial ATP levels and coronary perfusion pressure are reduced in CHF, this study was undertaken to examine the role of K(+)(ATP) channels and adenosine in dogs with pacing-induced CHF. Myocardial blood flow (MBF) and MVO(2) were measured during rest and treadmill exercise before and after K(+)(ATP) channel blockade with glibenclamide (50 microg/kg/min ic) or adenosine receptor blockade with 8-phenyltheophylline (8-PT; 5 mg/kg iv). Inhibition of K(+)(ATP) channels resulted in a decrease in CBF and MVO(2) at rest and during exercise without a change in the relationship between CBF and MVO(2). In contrast, adenosine receptor blockade caused a significant increase in CBF that occurred secondary to an increase of MVO(2). These findings demonstrate that coronary K(+)(ATP) channel activity contribute to the regulation of resting MBF in CHF, and that endogenous adenosine may act to inhibit MVO(2) in the failing heart.
Sun, D; Samuelson, L C; Yang, T; Huang, Y; Paliege, A; Saunders, T; Briggs, J; Schnermann, J
2001-08-14
Adenosine is a determinant of metabolic control of organ function increasing oxygen supply through the A2 class of adenosine receptors and reducing oxygen demand through A1 adenosine receptors (A1AR). In the kidney, activation of A1AR in afferent glomerular arterioles has been suggested to contribute to tubuloglomerular feedback (TGF), the vasoconstriction elicited by elevations in [NaCl] in the macula densa region of the nephron. To further elucidate the role of A1AR in TGF, we have generated mice in which the entire A1AR coding sequence was deleted by homologous recombination. Homozygous A1AR mutants that do not express A1AR mRNA transcripts and do not respond to A1AR agonists are viable and without gross anatomical abnormalities. Plasma and urinary electrolytes were not different between genotypes. Likewise, arterial blood pressure, heart rates, and glomerular filtration rates were indistinguishable between A1AR(+/+), A1AR(+/-), and A1AR(-/-) mice. TGF responses to an increase in loop of Henle flow rate from 0 to 30 nl/min, whether determined as change of stop flow pressure or early proximal flow rate, were completely abolished in A1AR(-/-) mice (stop flow pressure response, -6.8 +/- 0.55 mmHg and -0.4 +/- 0.2 in A1AR(+/+) and A1AR(-/-) mice; early proximal flow rate response, -3.4 +/- 0.4 nl/min and +0.02 +/- 0.3 nl/min in A1AR(+/+) and A1AR(-/-) mice). Absence of TGF responses in A1AR-deficient mice suggests that adenosine is a required constituent of the juxtaglomerular signaling pathway. A1AR null mutant mice are a promising tool to study the functional role of A1AR in different target tissues.
Faghihi, Gita; Iraji, Fariba; Rajaee Harandi, Manijeh; Nilforoushzadeh, Mohammad-Ali; Askari, Gholamreza
2013-01-01
According to the hypothesis on the stimulating effect of adenosine on increasing fibroblast growth factor 7 in dermal papilla cells and its vasorelaxant effect, we performed this study to compare the effect of topical minoxidil 5% and adenosine 0.75% on male pattern androgenetic alopecia. This prospective-randomized study recruited 110 male patients suffering from grade II-V Hamilton androgenetic alopecia. Fifty-five patients received minoxidil 5% (group 1) and adenosine 0.75% (group 2) each. Later, 16 patients were excluded due to allergic reactions or loss to follow up. After 3 and 6 months of treatment, complete and relative recovery rates alongside patient satisfaction rate (faster prevention of primary hair loss and appearance of newly grown hair) were compared between the groups. After 3 months of treatment, relative recovery was achieved in 2.4% and 1.9% of patients in group 1 and group 2, respectively, which was not significantly different (p=0.17). During 6 months, the relative recovery rate did not change either within or between the groups (p=0.99) and after 6 months none of the patients achieved complete recovery. However, the patient satisfaction rate was significantly higher in group 2 (p=0.003). In the light of the results, adenosine has no statistically superiority to minoxidil in the treatment of androgenetic alopecia according to recovery rates. However, the patients were significantly more satisfied with adenosine because of faster prevention of hair loss and appearance of the newly grown hairs. It seems further studies with larger sample size or different drug dosages are required to clarify the findings.
Urry, Emily; Landolt, Hans-Peter
2015-01-01
An intricate interplay between circadian and sleep-wake homeostatic processes regulate cognitive performance on specific tasks, and individual differences in circadian preference and sleep pressure may contribute to individual differences in distinct neurocognitive functions. Attentional performance appears to be particularly sensitive to time of day modulations and the effects of sleep deprivation. Consistent with the notion that the neuromodulator, adenosine , plays an important role in regulating sleep pressure, pharmacologic and genetic data in animals and humans demonstrate that differences in adenosinergic tone affect sleepiness, arousal and vigilant attention in rested and sleep-deprived states. Caffeine--the most often consumed stimulant in the world--blocks adenosine receptors and normally attenuates the consequences of sleep deprivation on arousal, vigilance, and attention. Nevertheless, caffeine cannot substitute for sleep, and is virtually ineffective in mitigating the impact of severe sleep loss on higher-order cognitive functions. Thus, the available evidence suggests that adenosinergic mechanisms, in particular adenosine A2A receptor-mediated signal transduction, contribute to waking-induced impairments of attentional processes, whereas additional mechanisms must be involved in higher-order cognitive consequences of sleep deprivation. Future investigations should further clarify the exact types of cognitive processes affected by inappropriate sleep. This research will aid in the quest to better understand the role of different brain systems (e.g., adenosine and adenosine receptors) in regulating sleep, and sleep-related subjective state, and cognitive processes. Furthermore, it will provide more detail on the underlying mechanisms of the detrimental effects of extended wakefulness, as well as lead to the development of effective, evidence-based countermeasures against the health consequences of circadian misalignment and chronic sleep restriction.
Woods, Parker S; Doolittle, Lauren M; Hickman-Davis, Judy M; Davis, Ian C
2018-01-01
Influenza A viruses are highly contagious respiratory pathogens that are responsible for significant morbidity and mortality worldwide on an annual basis. We have shown previously that influenza infection of mice leads to increased ATP and adenosine accumulation in the airway lumen. Moreover, we demonstrated that A 1 -adenosine receptor activation contributes significantly to influenza-induced acute respiratory distress syndrome (ARDS). However, we found that development of ARDS in influenza-infected mice does not require catabolism of ATP to adenosine by ecto-5'-nucleotidase (CD73). Hence, we hypothesized that increased adenosine generation in response to infection is mediated by tissue nonspecific alkaline phosphatase (TNAP), which is a low-affinity, high-capacity enzyme that catabolizes nucleotides in a nonspecific manner. In the current study, we found that whole lung and BALF TNAP expression and alkaline phosphatase enzymatic activity increased as early as 2 days postinfection (dpi) of C57BL/6 mice with 10,000 pfu/mouse of influenza A/WSN/33 (H1N1). Treatment at 2 and 4 dpi with a highly specific quinolinyl-benzenesulfonamide TNAP inhibitor (TNAPi) significantly reduced whole lung alkaline phosphatase activity at 6 dpi but did not alter TNAP gene or protein expression. TNAPi treatment attenuated hypoxemia, lung dysfunction, histopathology, and pulmonary edema at 6 dpi without impacting viral replication or BALF adenosine. Treatment also improved epithelial barrier function and attenuated cellular and humoral immune responses to influenza infection. These data indicate that TNAP inhibition can attenuate influenza-induced ARDS by reducing inflammation and fluid accumulation within the lung. They also further emphasize the importance of adenosine generation for development of ARDS in influenza-infected mice.
Salerno, Michael; Taylor, Angela; Yang, Yang; Kuruvilla, Sujith; Ragosta, Michael; Meyer, Craig H; Kramer, Christopher M
2014-07-01
Adenosine stress cardiovascular magnetic resonance perfusion imaging can be limited by motion-induced dark-rim artifacts, which may be mistaken for true perfusion abnormalities. A high-resolution variable-density spiral pulse sequence with a novel density compensation strategy has been shown to reduce dark-rim artifacts in first-pass perfusion imaging. We aimed to assess the clinical performance of adenosine stress cardiovascular magnetic resonance using this new perfusion sequence to detect obstructive coronary artery disease. Cardiovascular magnetic resonance perfusion imaging was performed during adenosine stress (140 μg/kg per minute) and at rest on a Siemens 1.5-T Avanto scanner in 41 subjects with chest pain scheduled for coronary angiography. Perfusion images were acquired during injection of 0.1 mmol/kg Gadolinium-diethylenetriaminepentacetate at 3 short-axis locations using a saturation recovery interleaved variable-density spiral pulse sequence. Significant stenosis was defined as >50% by quantitative coronary angiography. Two blinded reviewers evaluated the perfusion images for the presence of adenosine-induced perfusion abnormalities and assessed image quality using a 5-point scale (1 [poor] to 5 [excellent]). The prevalence of obstructive coronary artery disease by quantitative coronary angiography was 68%. The average sensitivity, specificity, and accuracy were 89%, 85%, and 88%, respectively, with a positive predictive value and negative predictive value of 93% and 79%, respectively. The average image quality score was 4.4±0.7, with only 1 study with more than mild dark-rim artifacts. There was good inter-reader reliability with a κ statistic of 0.67. Spiral adenosine stress cardiovascular magnetic resonance results in high diagnostic accuracy for the detection of obstructive coronary artery disease with excellent image quality and minimal dark-rim artifacts. © 2014 American Heart Association, Inc.
Song, Dan; Xu, Junnan; Bai, Qiufang; Cai, Liping; Hertz, Leif
2014-01-01
This study investigates the role of the intracellular adenosine transporter equilibrative nucleoside transporter 3 (ENT3) in stimulated release of the gliotransmitter adenosine triphosphate (ATP) from astrocytes. Within the past 20 years, our understanding of the importance of astrocytic handling of adenosine, its phosphorylation to ATP, and release of astrocytic ATP as an important transmitter has become greatly expanded. A recent demonstration that the mainly intracellular nucleoside transporter ENT3 shows much higher expression in freshly isolated astrocytes than in a corresponding neuronal preparation leads to the suggestion that it was important for the synthesis of gliotransmitter ATP from adenosine. This would be consistent with a previously noted delay in transmitter release of ATP in astrocytes but not in neurons. The present study has confirmed and quantitated stimulated ATP release in response to glutamate, adenosine, or an elevated K+ concentration from well-differentiated astrocyte cultures, measured by a luciferin–luciferase reaction. It showed that the stimulated ATP release was abolished by downregulation of ENT3 with small interfering RNA (siRNA), regardless of the stimulus. The concept that transmitter ATP in mature astrocytes is synthesized directly from adenosine prior to release is supported by the postnatal development of the expression of the vesicular transporter SLC17A9 in astrocytes. In neurons, this transporter carries ATP into synaptic vesicles, but in astrocytes, its expression is pronounced only in immature cells and shows a rapid decline during the first 3 postnatal weeks so that it has almost disappeared at the end of the third week in well-differentiated astrocytes, where its role has probably been taken over by ENT3. PMID:25298788
DeOliveira, Caroline Candida; Paiva Caria, Cintia Rabelo E; Ferreira Gotardo, Erica Martins; Ribeiro, Marcelo Lima; Gambero, Alessandra
2017-03-15
Adenosine receptors are expressed in adipose tissue and control physiological and pathological events such as lipolysis and inflammation. The aim of this study was to evaluate the activity of N 6 -cyclopentyladenosine (CPA), a potent and selective A 1 adenosine receptor agonist; 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxyamidoadenosine hydrochloride (CGS-21680), an A 2A adenosine receptor agonist; and 5'-N-ethylcarboxamidoadenosine (NECA), a potent non-selective adenosine receptor agonist on adipose tissue inflammatory alterations induced by obesity in mice. Swiss mice were fed with a high-fat diet for 12 weeks and agonists were administered in the last two weeks. Body weight, adiposity and glucose homeostasis were evaluated. Inflammation in adipose tissue was assessed by evaluation of adipokine production and macrophage infiltration. Adenosine receptor signaling in adipose tissue was also evaluated. Mice that received CGS21680 presented an improvement in glucose homeostasis in association with systemically reduced inflammatory markers (TNF-α, PAI-1) and in the visceral adipose tissue (TNF-α, MCP-1, macrophage infiltration). Activation of p38 signaling was found in adipose tissue of this group of mice. NECA-treated mice presented some improvements in glucose homeostasis associated with an observed weight loss. Mice that received CPA presented only a reduction in the ex vivo basal lipolysis rate measured within visceral adipose tissue. In conclusion, administration of the A 2A receptor agonist to obese mice resulted in improvements in glucose homeostasis and adipose tissue inflammation, corroborating the idea that new therapeutics to treat obesity could emerge from these compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Font, Laura; Mingote, Susana; Farrar, Andrew M.; Pereira, Mariana; Worden, Lila; Stopper, Colin; Port, Russell G.
2009-01-01
Rationale Nucleus accumbens dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired accumbens DA transmission reallocate their behavior away from food-reinforced activities that have high response requirements and instead select less-effortful types of food-seeking behavior. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related processes, emerging evidence also implicates adenosine A2A receptors. Objective The present work was undertaken to test the hypothesis that accumbens A2A receptor stimulation would produce effects similar to those produced by DA depletion or antagonism. Materials and methods Three experiments assessed the effects of the adenosine A2A agonist CGS 21680 on performance of a concurrent choice task (lever pressing for preferred food vs. intake of less preferred chow) that is known to be sensitive to DA antagonists and accumbens DA depletions. Results Systemic injections of CGS 21680 reduced lever pressing but did not increase feeding. In contrast, bilateral infusions of the adenosine A2A receptor agonist CGS 21680 (6.0–24.0 ng) into the nucleus accumbens decreased lever pressing for the preferred food but substantially increased consumption of the less preferred chow. Injections of CGS 21680 into a control site dorsal to the accumbens were ineffective. Conclusions Taken together, these results are consistent with the hypothesis that local stimulation of adenosine A2A receptors in nucleus accumbens produces behavioral effects similar to those induced by accumbens DA depletions. Accumbens adenosine A2A receptors appear to be a component of the brain circuitry regulating effort-related choice behavior. PMID:18491078
Ahmed, Nadeem; Layland, Jamie; Carrick, David; Petrie, Mark C; McEntegart, Margaret; Eteiba, Hany; Hood, Stuart; Lindsay, Mitchell; Watkins, Stuart; Davie, Andrew; Mahrous, Ahmed; Carberry, Jaclyn; Teng, Vannesa; McConnachie, Alex; Curzen, Nick; Oldroyd, Keith G; Berry, Colin
2016-01-01
Coronary guidewire-based diagnostic assessments with hyperemia may cause iatrogenic complications. We assessed the safety of guidewire-based measurement of coronary physiology, using intravenous adenosine, in patients with an acute coronary syndrome. We prospectively enrolled invasively managed STEMI and NSTEMI patients in two simultaneously conducted studies in 6 centers (NCT01764334; NCT02072850). All of the participants underwent a diagnostic coronary guidewire study using intravenous adenosine (140 μg/kg/min) infusion for 1-2 min. The patients were prospectively assessed for the occurrence of serious adverse events (SAEs) and symptoms and invasively measured hemodynamics were also recorded. 648 patients (n=298 STEMI patients in 1 hospital; mean time to reperfusion 253 min; n=350 NSTEMI in 6 hospitals; median time to angiography from index chest pain episode 3 (2, 5) days) were included between March 2011 and May 2013. Two NSTEMI patients (0.3% overall) experienced a coronary dissection related to the guidewire. No guidewire dissections occurred in the STEMI patients. Chest symptoms were reported in the majority (86%) of patient's symptoms during the adenosine infusion. No serious adverse events occurred during infusion of adenosine and all of the symptoms resolved after the infusion ceased. In this multicenter analysis, guidewire-based measurement of FFR and IMR using intravenous adenosine was safe in patients following STEMI or NSTEMI. Self-limiting symptoms were common but not associated with serious adverse events. Finally, coronary dissection in STEMI and NSTEMI patients was noted to be a rare phenomenon. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
zur Nedden, Stephanie; Hawley, Simon; Pentland, Naomi; Hardie, D Grahame; Doney, Alexander S; Frenguelli, Bruno G
2011-04-20
The extent to which brain slices reflect the energetic status of the in vivo brain has been a subject of debate. We addressed this issue to investigate the recovery of energetic parameters and adenine nucleotides in rat hippocampal slices and the influence this has on synaptic transmission and plasticity. We show that, although adenine nucleotide levels recover appreciably within 10 min of incubation, it takes 3 h for a full recovery of the energy charge (to ≥ 0.93) and that incubation of brain slices at 34°C results in a significantly higher ATP/AMP ratio and a threefold lower activity of AMP-activated protein kinase compared with slices incubated at room temperature. Supplementation of artificial CSF with d-ribose and adenine (Rib/Ade) increased the total adenine nucleotide pool of brain slices, which, when corrected for the influence of the dead cut edges, closely approached in vivo values. Rib/Ade did not affect basal synaptic transmission or paired-pulse facilitation but did inhibit long-term potentiation (LTP) induced by tetanic or weak theta-burst stimulation. This decrease in LTP was reversed by strong theta-burst stimulation or antagonizing the inhibitory adenosine A(1) receptor suggesting that the elevated tissue ATP levels had resulted in greater activity-dependent adenosine release during LTP induction. This was confirmed by direct measurement of adenosine release with adenosine biosensors. These observations provide new insight into the recovery of adenine nucleotides after slice preparation, the sources of loss of such compounds in brain slices, the means by which to restore them, and the functional consequences of doing so.
Meng, Kang; Lü, Shu-Zheng; Zhu, Hua-Gang; Chen, Xin; Ge, Chang-Jiang; Song, Xian-Tao
2010-12-01
Adenosine phosphate-mediated platelet aggregation is a prognostic factor for major adverse cardiac events in patients who have undergone selective percutaneous coronary interventions. This study aimed to assess whether an adjusted loading dose of clopidogrel could more effectively inhibit platelet aggregation in patients undergoing selected percutaneous coronary intervention. A total of 205 patients undergoing selected percutaneous coronary intervention were enrolled in this multicenter, prospective, randomized study. Patients receiving domestic clopidogrel (n = 104) served as the Talcom (Taijia) group; others (n = 101) received Plavix, the Plavix group. Patients received up to 3 additional 300-mg loading doses of clopidogrel to decrease the adenosine phosphate-mediated platelet aggregation index by more than 50% (the primary endpoint) compared with the baseline. The secondary endpoint was major adverse cardiovascular events at 12 months. Compared with the rational loading dosage, the tailored loading dosage better inhibited platelet aggregation based on a > 50% decrease in adenosine phosphate-mediated platelet aggregation (rational loading dosage vs. tailored loading dosage, 48% vs. 73%, P = 0.028). There was no significant difference in the eligible index between the Talcom and Plavix groups (47% vs. 49% at 300 mg; 62% vs. 59% at 600 mg; 74% vs. 72% at 900 mg; P > 0.05) based on a standard adenosine diphosphate-mediated platelet aggregation decrease of > 50%. After 12 months of follow-up, there were no significant differences in major adverse cardiac events (2.5% vs. 2.9%, P = 5.43). No acute or subacute stent thrombosis events occurred. An adjusted loading dose of clopidogrel could have significant effects on antiplatelet aggregation compared with a rational dose, decreasing 1-year major adverse cardiac events in patients undergoing percutaneous coronary interventions based on adenosine phosphate-mediated platelet aggregation with no increase in bleeding.
Activation of Adenosine A2A Receptors Inhibits Neutrophil Transuroepithelial Migration ▿
Säve, Susanne; Mohlin, Camilla; Vumma, Ravi; Persson, Katarina
2011-01-01
Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways. PMID:21646447
Papegay, Bérengère; Stadler, Michaela; Nuyens, Vincent; Kruys, Véronique; Boogaerts, Jean G; Vamecq, Joseph
2017-03-01
Dietary restriction or reduced food intake was supported to protect against renal and hepatic ischemic injury. In this vein, short fasting was recently shown to protect in situ rat liver against ischemia-reperfusion. Here, perfused ex vivo instead of in situ livers were exposed to ischemia-reperfusion to study the impact of disconnecting liver from extrahepatic supply in energetic substrates on the protection given by short-term fasting. Perfused ex vivo livers using short (18 h) fasted compared with fed rats were submitted to ischemia-reperfusion and studied for release of cytolysis markers in the perfusate. Energetic stores are differently available in time and cell energetic charges (ratio of adenosine triphosphate plus half of the adenosine diphosphate concentrations to the sum of adenosine triphosphate + adenosine diphosphate + adenosine monophosphate concentrations), adenosine phosphates, and glycogen, which were further measured at different time points in livers. Short fasting versus feeding failed to protect perfused ex vivo rat livers against ischemia/reperfusion, increasing the release of cytolysis markers (potassium, cytochrome c, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase) in the perfusate during reoxygenation phase. Toxicity of short fasting versus feeding was associated with lower glycogen and energetic charges in livers and lower lactate levels in the perfusate. High energetic charge, intracellular content in glycogen, and glycolytic activity may protect liver against ischemia/reperfusion injury. This work does not question how much the protective role previously demonstrated in the literature for dietary restriction and short fasting. In fact, it suggests that exceeding the energy charge threshold value of 0.3 might trigger the effectiveness of this protective role. Copyright © 2016 Elsevier Inc. All rights reserved.
Adenosine metabolism in Toxoplasma gondii: potential targets for chemotherapy.
el Kouni, Mahmoud H
2007-01-01
Toxoplasma gondii is an intracellular parasitic protozoan that infects approximately a billion people worldwide. Infection with T. gondii represents a major health problem for immunocompromised individuals, such as AIDS patients, organ transplant recipients, and the unborn children of infected mothers. Currently available drugs usually do not eradicate infection and as many as 50% of the patients do not respond to this therapy. Furthermore, they are ineffective against T. gondii tissue cysts. In addition, prolonged exposure to these drugs induces serious host toxicity forcing the discontinuation of the therapy. Finally, there is no effective vaccine currently available for the treatment of toxoplasmosis. Therefore, it is necessary to develop new and effective drugs for the treatment and management of toxoplasmosis. The rational design of a drug depends on the exploitation of fundamental biochemical or physiological differences between pathogens and their host. Some of the most striking differences between T. gondii and their mammalian host are found in purine metabolism. T. gondii, like most parasites studied, lack the ability to synthesize purines do novo and depend on the salvage of purines from their host to satisfy their requirements of purines. In this respect, the salvage of adenosine is the major source of purines in T. gondii. Therefore, interference with adenosine uptake and metabolism in T. gondii can be selectively detrimental to the parasite. The host cells, on the other hand, can still obtain their purine requirements by their de novo pathways. This review will focus on the broad aspects of the adenosine transport and the enzyme adenosine kinase (EC 2.7.1.20) which are the two primary routes for adenosine utilization in T. gondii, in an attempt to illustrate their potentials as targets for chemotherapy against this parasite.
diphosphoglycerate , and adenosine triphosphate occurred with storage in both sets. 2,3 diphosphoglycerate levels were slightly higher initially in...Adenosine triphosphate levels increased significantly and remained high 24 hr after transfusion. Red cell survival decreased with storage for both
Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri
2012-11-21
In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.
Chao, Julie; Weathersbee, Carolyn J.
1974-01-01
Cyclic adenosine 3′, 5′-monophosphate (AMP) stimulates maltodextrin phosphorylase synthesis in Escherichia coli cells induced with maltose. A maximal effect occurs at 2 to 3 mM cyclic AMP. The action of cyclic AMP is specific, inasmuch as adenosine triphosphate, 3′-AMP, 5′-AMP, adenosine, and dibutyryl cyclic AMP are inactive. Glucose, α-methyl glucoside, 2-deoxyglucose, and pyridoxal 5′-phosphate repress maltodextrin phosphorylase synthesis. This repression is reversed by cyclic AMP. The action of cyclic AMP appears to be at the transcriptional level, since cyclic AMP fails to stimulate phosphorylase production in induced cells in which messenger ribonucleic acid synthesis has been arrested by rifampin or by inducer removal. The two other enzymes involved in the metabolism of maltose, amylomaltase and maltose permease, are also induced in this strain of E. coli and affected by glucose and cyclic AMP in a manner similar to phosphorylase. PMID:4358043
Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine
Zylka, Mark J.; Sowa, Nathaniel A.; Taylor-Blake, Bonnie; Twomey, Margaret A.; Herrala, Annakaisa; Voikar, Vootele; Vihko, Pirkko
2008-01-01
SUMMARY Thiamine monophosphatase (TMPase, also known as Fluoride-Resistant Acid Phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. The molecular identity of TMPase is currently unknown. We found that TMPase is identical to the transmembrane isoform of Prostatic Acid Phosphatase (PAP), an enzyme with unknown molecular and physiological functions. We then found that PAP knockout mice have normal acute pain sensitivity but enhanced sensitivity in chronic inflammatory and neuropathic pain models. In gain-of-function studies, intraspinal injection of PAP protein has potent anti-nociceptive, anti-hyperalgesic and anti-allodynic effects that last longer than the opioid analgesic morphine. PAP suppresses pain by functioning as an ecto-5’-nucleotidase. Specifically, PAP dephosphorylates extracellular adenosine monophosphate (AMP) to adenosine and activates A1-adenosine receptors in dorsal spinal cord. Our studies reveal molecular and physiological functions for PAP in purine nucleotide metabolism and nociception and suggest a novel use for PAP in the treatment of chronic pain. PMID:18940592
Sayers, G; Beall, R J; Seelig, S
1972-03-10
Corticosterone production by isolated adrenal cells in response to adrenocorticotropic hormone is reduced when the cells are incubated in a medium that contains no calcium. This reduction is associated with an equal reduction of accumulation of cyclic adenosine monophosphate. Production of corticosterone and accumulation of cyclic adenosine monophosphate are increased when the calcium concentration in the medium is increased (from zero to 7.65 millimolar). This is in contrast to the situation in "subcellular membrane fragments" of adrenal tissue where high calcium in the medium (> 1.0 millimolar) inhibits cyclic adenosine monophosphate accumulation. We propose that adenyl cyclase in the intact plasma membrane is located in a compartment wherein calcium concentration is low and remains unaffected by the concentration of calcium in the extracellular space. It is proposed that, as the concentration of calcium in the incubation medium is increased from zero to 7.65 millimolar, the strength of the signal generated by the interaction of adrenocorticotropic hormone with its receptor and transmitted to the adenyl cyclase compartment is proportionately increased.
Nucleotide and nucleoside involvement in immunomodulation in experimental Chagas disease.
do Carmo, Guilherme M; de Sá, Mariângela F; Baldissera, Matheus D; Grando, Thirssa H; Mendes, Ricardo E; Cardoso, Valesca V; Casali, Emerson A; Moritz, Cesar Eduardo J; Monteiro, Silvia G; Da Silva, Aleksandro S
2018-02-05
The aim of this study was to evaluate whether Trypanosma cruzi infections cause alterations in the levels of seric purines, which could contribute to host immunomodulation. Twelve mice were divided into two groups identified as control (uninfected) and infected (T. cruzi) groups. The influence of the disease on seric purine levels was verified on day 20 post-infection (PI) by HPLC. Infected mice had circulating trypomastigotes during the experiment, as well as amastigote forms in the heart associated with inflammatory infiltrates. Increases on adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine (ADO), inosine (INO), and uric acid (URIC) levels were observed in the infected animals, while the adenosine monophosphate (AMP) and xanthine (XAN) levels were reduced compared with mice of the control group, indicating a possible impairment on the purinergic system, and consequently, on the immune system during the clinical course of the disease. In summary, the T. cruzi infection alters the seric purine levels, and consequently, modulates the immune system.
A comparison of adenine and some derivatives on pig isolated tracheal muscle.
Bach-Dieterle, Y.; Holden, W. E.; Junod, A. F.
1983-01-01
We studied the muscle relaxation induced by adenine and several adenine derivatives in strips of tracheal smooth muscle from pigs; in addition their metabolism by the tissue was examined. Adenine relaxed tissue which was contracted by carbachol, histamine, or KCl. Adenine's potency was similar to that of adenosine and ATP (threshold about 4 X 10(-5)M). In tissues with carbachol-induced tone, the adenine effect differed from adenosine and ATP by being slower in onset and in 'washout' time. Furthermore, neither dipyridamole nor theophylline modified the response to adenine. The relationship was examined between pharmacological effects and the metabolism of [3H]-adenosine and [3H]-adenine. Both substrates were taken up by the tissue and converted to nucleotides, but relaxation correlated with nucleotide accumulation only in the case of [3H]-adenine. We conclude that the site and mechanism of adenine-induced relaxation is different from that of adenosine and ATP in porcine tracheal muscle. PMID:6571222
Modulation of bicarbonate secretion in rabbit duodenum: the role of calcium.
Hogan, D L; Yao, B; Isenberg, J I
1998-01-01
Surface epithelial bicarbonate secretion protects the proximal duodenum from acid peptic injury. Cyclic adenosine monophosphate and calcium serve as intracellular mediators of intestinal transport. Experiments were performed to examine whether calcium participates in duodenal bicarbonate transport. Stripped duodenal mucosa from rabbits was studied in Ussing chambers. HCO3- transport was stimulated by the calcium ionophore A23187, carbachol, vasoactive intestinal peptide, prostaglandin E2, dibutyryl-cyclic adenosine monophosphate, and electrical field stimulation. A23187 stimulated HCO3- secretion and Isc; tetrodotoxin failed to inhibit this effect. The calcium-channel blocker verapamil abolished HCO3- secretion stimulated by carbachol, vasoactive intestinal peptide, and electrical field stimulation, but failed to alter basal, prostaglandin E2- or dibutyryl-cyclic adenosine monophosphate-stimulated HCO3- secretion. Therefore, calcium is likely required during stimulation of duodenal epithelial HCO3- transport by carbachol, vasoactive intestinal peptide, and electrical field stimulation. Prostaglandin E2 and dibutyryl-cyclic adenosine monophosphate appear to activate duodenal HCO3- secretion by a calcium-independent pathway(s).
Sauer, Aisha V.; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L.; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S.; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D.; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D’Adamo, Patrizia; Aiuti, Alessandro
2017-01-01
Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency. PMID:28074903
Sauer, Aisha V; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D'Adamo, Patrizia; Aiuti, Alessandro
2017-01-11
Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency.
Extracellular Adenosine: A Safety Signal That Dampens Hypoxia-Induced Inflammation During Ischemia
Grenz, Almut; Homann, Dirk
2011-01-01
Abstract Traditionally, the single most unique feature of the immune system has been attributed to its capability to discriminate between self (e.g., host proteins) and nonself (e.g., pathogens). More recently, an emerging immunologic concept involves the notion that the immune system responds via a complex system for sensing signals of danger, such as pathogens or host-derived signals of cellular distress (e.g., ischemia), while remaining unresponsive to nondangerous motifs. Experimental studies have provided strong evidence that the production and signaling effects of extracellular adenosine are dramatically enhanced during conditions of limited oxygen availability as occurs during ischemia. As such, adenosine would fit the bill of signaling molecules that are enhanced during situations of cellular distress. In contrast to a danger signal, we propose here that extracellular adenosine operates as a countermeasure, in fact as a safety signal, to both restrain potentially harmful immune responses and to maintain and promote general tissue integrity during conditions of limited oxygen availability. Antioxid. Redox Signal. 15, 2221–2234. PMID:21126189
Adenosine A(3) receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis.
Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Vacek, Antonín; Streitová, Denisa
2007-07-01
The present study was performed to define the optimum conditions of the stimulatory action of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), on bone marrow hematopoiesis in mice. Effects of 2-day treatment with IB-MECA given at single doses of 200nmol/kg twice daily were investigated in normal mice and in mice whose femoral bone marrow cells were either depleted or regenerating after pretreatment with the cytotoxic drug 5-fluorouracil. Morphological criteria were used to determine the proliferation state of the granulocytic and erythroid cell systems. Significant negative correlation between the control proliferation state and the increase of cell proliferation after IB-MECA treatment irrespective of the cell lineage investigated was found. The results suggest the homeostatic character of the induced stimulatory effects and the need to respect the functional state of the target tissue when investigating effects of adenosine receptor agonists under in vivo conditions.
NASA Technical Reports Server (NTRS)
Tragardh, Elin; Schlegel, Todd T.; Carlsson, Marcus; Pettersson, Jonas; Nilsson, Klas; Pahlm, Olle
2007-01-01
Background: A previous study has shown that analysis of high-frequency QRS components (HF-QRS) is highly sensitive and reasonably specific for detecting reversible perfusion defects on myocardial perfusion imaging (MPI) scans during adenosine. The purpose of the present study was to try to reproduce those findings. Methods: 12-lead high-resolution electrocardiogram recordings were obtained from 100 patients before (baseline) and during adenosine Tc-99m-tetrofosmin MPI tests. HF-QRS were analyzed regarding morphology and changes in root mean square (RMS) voltages from before the adenosine infusion to peak infusion. Results: The best area under the curve (AUC) was found in supine patients (AUC=0.736) in a combination of morphology and RMS changes. None of the measurements, however, were statistically better than tossing a coin (AUC=0.5). Conclusion: Analysis of HF-QRS was not significantly better than tossing a coin for determining reversible perfusion defects on MPI scans.
Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds
2012-01-01
Background Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. Result Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA-) and colony size (smlA- and ctnA-) and restore their parental aggregate size. Conclusion Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and extracellular cAMP levels are the other major determinants regulating aggregate size and pattern. Importantly, the aggregation process is conserved among different lineages of cellular slime molds despite using unrelated signalling molecules for aggregation. PMID:22269093
Zhou, Jade Z.; Riquelme, Manuel A.; Gao, Xiaoli; Ellies, Lesley G.; Sun, Lu-Zhe; Jiang, Jean X.
2015-01-01
Extracellular ATP has been shown to either inhibit or promote cancer growth and migration; however the mechanism underlying this discrepancy remained elusive. Here, we demonstrate the divergent roles of ATP and adenosine released by bone osteocytes in breast cancers. We showed that conditioned media (CM) collected from osteocytes treated with alendronate (AD), a bisphosphonate drug, inhibited the migration of human breast cancer MDA-MB-231 cells. Removal of the extracellular ATP by apyrase in CM abolished this effect, suggesting the involvement of ATP. ATP exerted its inhibitory effect through the activation of purinergic P2X receptor signaling in breast cancer cells evidenced by the attenuation of the inhibition by an antagonist, oxidized ATP, as well as knocking down P2X07 with siRNA, and the inhibition by an agonist, BzATP. Intriguingly, ATP had a biphasic effect on breast cancer cell behavior–lower dosage inhibited, but higher dosage promoted its migration. The stimulatory effect on migration was blocked by an adenosine receptor antagonist, MRS1754, ARL67156, an ecto-ATPase inhibitor, and A2A receptor siRNA, suggesting that in contrast to the action of ATP, adenosine, a metabolic product of ATP, promoted migration of breast cancer cells. Consistently, non-hydrolyzable ATP, ATPγS, only inhibited, but did not promote cancer cell migration. ATP also had a similar inhibitory effect on the Py8119 mouse mammary carcinoma cells; however, adenosine had no effect due to the absence of the A2A receptor. Consistent with the results of cancer cell migration, ATPγS inhibited, while adenosine promoted anchorage-independent growth of breast cancer cells. Our in vivo xenograft study showed a significant delay of tumor growth with the treatment of ATPγS. Moreover, the extent of bone metastasis in a mouse intratibial model was significantly reduced with the treatment of ATPγS. Together, our results suggest the distinct roles of ATP and adenosine released by osteocytes, and the activation of corresponding receptors P2X7 and A2A signaling on breast cancer cell growth, migration and bone metastasis. PMID:24837364
Vyas, Falguni S; Nelson, Carl P; Dickenson, John M
2018-01-15
Pharmacologically-induced pre- and post-conditioning represent attractive therapeutic strategies to reduce ischaemia/reperfusion injury during cardiac surgery and following myocardial infarction. We have previously reported that transglutaminase 2 (TG2) activity is modulated by the A 1 adenosine receptor and β 2 -adrenoceptor in H9c2 cardiomyoblasts. The primary aim of this study was to determine the role of TG2 in A 1 adenosine receptor and β 2 -adrenoceptor-induced pharmacological pre- and post-conditioning in the H9c2 cells. H9c2 cells were exposed to 8h hypoxia (1% O 2 ) followed by 18h reoxygenation, after which cell viability was assessed by monitoring mitochondrial reduction of MTT, lactate dehydrogenase release and caspase-3 activation. N 6 -cyclopentyladenosine (CPA; A 1 adenosine receptor agonist), formoterol (β 2 -adrenoceptor agonist) or isoprenaline (non-selective β-adrenoceptor agonist) were added before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following hypoxia (post-conditioning). Pharmacological pre- and post-conditioning with CPA and isoprenaline significantly reduced hypoxia/reoxygenation-induced cell death. In contrast, formoterol did not elicit protection. Pre-treatment with pertussis toxin (G i/o -protein inhibitor), DPCPX (A 1 adenosine receptor antagonist) or TG2 inhibitors (Z-DON and R283) attenuated the A 1 adenosine receptor-induced pharmacological pre- and post-conditioning. Similarly, pertussis toxin, ICI 118,551 (β 2 -adrenoceptor antagonist) or TG2 inhibition attenuated the isoprenaline-induced cell survival. Knockdown of TG2 using small interfering RNA (siRNA) attenuated CPA and isoprenaline-induced pharmacological pre- and post-conditioning. Finally, proteomic analysis following isoprenaline treatment identified known (e.g. protein S100-A6) and novel (e.g. adenine phosphoribosyltransferase) protein substrates for TG2. These results have shown that A 1 adenosine receptor and β 2 -adrenoceptor-induced protection against simulated hypoxia/reoxygenation occurs in a TG2 and G i/o -protein dependent manner in H9c2 cardiomyoblasts. Copyright © 2017 Elsevier B.V. All rights reserved.
Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds.
Jaiswal, Pundrik; Soldati, Thierry; Thewes, Sascha; Baskar, Ramamurthy
2012-01-23
Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA-) and colony size (smlA- and ctnA-) and restore their parental aggregate size. Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and extracellular cAMP levels are the other major determinants regulating aggregate size and pattern. Importantly, the aggregation process is conserved among different lineages of cellular slime molds despite using unrelated signalling molecules for aggregation.