Science.gov

Sample records for adenosine diphosphate glucose

  1. Synthesis of the coenzymes adenosine diphosphate glucose, guanosine diphosphate glucose, and cytidine diphosphoethanolamine under primitive Earth conditions

    NASA Technical Reports Server (NTRS)

    Mar, A.; Oro, J.

    1991-01-01

    The nonenzymatic synthesis of the coenzymes adenosine diphosphate glucose (ADPG), guanosine diphosphate glucose (GDPG), and cytidine diphosphoethanolamine (CDP-ethanolamine) has been carried out under conditions considered to have been prevalent on the early Earth. The production of these compounds was performed by allowing simple precursor molecules to react under aqueous solutions, at moderate temperatures and short periods of time, with mediation by cyanamide or urea. These two condensing agents are considered to have been present in significant amounts on the primitive Earth and have been previously used in the nonenzymatic synthesis of several other important biochemical compounds. In our experiments, ADPG was obtained by heating glucose-1-phosphate (G1P) and ATP in the presence of cyanamide for 24 h at 70 degrees C. The reaction of G1P and GTP under the same conditions yielded GDPG. The cyanamide-mediated production of CDP-ethanolamine was carried out by reacting a mixture of ethanolamine phosphate and CTP for 24 h at 70 degrees C. The separation and identification of the reaction products was carried out by paper chromatography, thin-layer chromatography, high performance thin-layer chromatography, high performance liquid chromatography, both normal and reverse-phase, UV spectroscopy, enzymatic assays, and acid hydrolysis. Due to the mild conditions employed, and to the relative ease of these reactions, these studies offer a simple attractive system for the nonenzymatic synthesis of phosphorylated high-energy metabolic intermediates under conditions considered to have been prevalent on the ancient Earth.

  2. HPLC analysis of cyclic adenosine diphosphate ribose and adenosine diphosphate ribose: determination of NAD+ metabolites in hippocampal membranes.

    PubMed

    Casabona, G; Sturiale, L; L'Episcopo, M R; Raciti, G; Fazzio, A; Sarpietro, M G; Genazzani, A A; Cambria, A; Nicoletti, F

    1995-01-01

    Cyclic adenosine diphosphate-ribose (cADPR) and ADPR were separated by high-performance liquid chromatography (HPLC) on a CarboPac PA-1 column at strong basic pH and quantitated by a pulsed amperometric detector. Although this HPLC method was quite sensitive and highly reproducible, it did not allow the separation of cADPR from guanosine monophosphate (GMP) which, when present, could be removed by ion-affinity chromatography, using gel-immobilized Fe3+ columns. Crude synaptic membranes from rat hippocampi were incubated with nicotinamide adenine dinucleotide (NAD) and acidic extracts were subject to HPLC analysis after neutralization. Incubation led to a time-dependent formation of ADPR, which was amplified when membranes were incubated in the presence of guanosine trisphosphate (GTP), guanosine-5'-0-(3-thiotrisphosphate) (GTP-gamma-S) or AlF3. cADPR did not accumulate in detectable amounts and only a minimal proportion (< 5%) of radioactivity originating from [3H]NAD co-eluted with authentic cADPR in extracts from hippocampal membranes. The simultaneous detection of cADPR and ADPR we have described may help the search for inhibitors of cADPR metabolism, which will allow to measure the cADPR that accumulates under basal conditions or in response to extracellular signals.

  3. Switching of adenosine diphosphate receptor inhibitor after hospital discharge among myocardial infarction patients: Insights from the Treatment with Adenosine Diphosphate Receptor Inhibitors: Longitudinal Assessment of Treatment Patterns and Events after Acute Coronary Syndrome (TRANSLATE-ACS) observational study.

    PubMed

    Zettler, Marjorie E; Peterson, Eric D; McCoy, Lisa A; Effron, Mark B; Anstrom, Kevin J; Henry, Timothy D; Baker, Brian A; Messenger, John C; Cohen, David J; Wang, Tracy Y

    2017-01-01

    The reasons for postdischarge adenosine diphosphate receptor inhibitor (ADPri) switching among patients with myocardial infarction (MI) are unclear. We sought to describe the incidence and patterns of postdischarge ADPri switching among patients with acute MI treated with percutaneous coronary intervention.

  4. Non-enzymatic synthesis of the coenzymes, uridine diphosphate glucose and cytidine diphosphate choline, and other phosphorylated metabolic intermediates

    NASA Technical Reports Server (NTRS)

    Mar, A.; Dworkin, J.; Oro, J.

    1987-01-01

    Using urea and cyanamide, the two condensing agents considered to have been present on the primitive earth, uridine diphosphate glucose (UDPG), cytidine diphosphate choline (CDP-choline), glucose-1-phosphate (G1P), and glucose-6-phosphate (G6P) were synthesized under simulated prebiotic conditions. The reaction products were separated and identified using paper chromatography, thin layer chromatography, enzymatic analyses, and ion-pair reverse-phase high performance liquid chromatography. The possibility of nonenzymatic synthesis of metabolic intermediates on the primitive earth from simple precursors was thus demonstrated.

  5. Activation and modulation of cardiac poly-adenosine diphosphate ribose polymerase activity in a rat model of brain death.

    PubMed

    Brain, John G; Rostron, Anthony J; Dark, John H; Kirby, John A

    2008-05-15

    DNA damage during transplantation can activate poly-adenosine diphosphate ribose polymerase (PARP) resulting in the generation of polymers of adenosine diphosphate-ribose (PAR). Excessive linkage of PAR to nuclear proteins can induce cell death, thereby limiting the function of transplanted organs. This study uses a rat model of brain death to determine the profile of PARP activation and whether mechanisms that lead to cell death can be ameliorated by appropriate donor resuscitation. The expression of PAR-linked nuclear proteins within cardiac myocytes was greatly increased after the induction of donor brain death. Importantly, infusion of noradrenaline or vasopressin to normalize the chronic hypotension produced by brain death reduced the expression of PAR to a level below baseline. These data suggest that chronic hypotension after donor brain death has the potential to limit cardiac function through the activation of PARP; however, this early cause of graft damage can be mitigated by appropriate donor resuscitation.

  6. Adenosine diphosphate receptors on blood platelets: potential new targets for antiplatelet therapy.

    PubMed

    Rozalski, Marcin; Nocun, Marek; Watala, Cezary

    2005-01-01

    Platelets play a key role not only in physiological haemostasis, but also under pathological conditions such as thrombosis. Platelet activation may be initiated by a variety of agonists including thrombin, collagen, thromboxane or adenosine diphosphate (ADP). Although ADP is regarded as a weak agonist of blood platelets, it remains an important mediator of platelet activation evoked by other agonists, which induce massive ADP release from dense granules, where it occurs in molar concentrations. Thus, ADP action underlies a positive feedback that facilitates further platelet aggregation and leads to platelet plug formation. Additionally, ADP acts synergistically to other, even weak, agonists such as serotonin, adrenaline or chemokines. Blood platelets express two types of P2Y ADP receptors: P2Y(1) and P2Y(12). ADP-dependent platelet aggregation is initiated by the P2Y1 receptor, whereas P2Y(12) receptor augments the activating signal and promotes platelet release reaction. Stimulation of P2Y(12) is also essential for ADP-mediated complete activation of GPIIb-IIIa and GPIa-IIa, and further stabilization of platelet aggregates. The crucial role in blood platelet biology makes P2(Y12) an ideal candidate for pharmacological approaches for anti-platelet therapy.

  7. Inhibition of poly(adenosine diphosphate-ribose) polymerase by the active form of vitamin D

    PubMed Central

    MABLEY, JON G.; WALLACE, REBECCA; PACHER, PÁL; MURPHY, KANNEGANTI; SZABÓ, CSABA

    2008-01-01

    Vitamin D is well characterized for its role in mineral homeostasis and maintenance of normal skeletal architecture. Vitamin D has been demonstrated to exert anti-inflammatory effects in a variety of disease states including diabetes, arthritis and inflammatory bowel disease. In these diseases poly[adenosine diphosphate (ADP)-ribose] polymerase (PARP) inhibitors have also proved effective as anti-inflammatory agents. Here we present data demonstrating that the active metabolite of vitamin D, 1α,25-dihydroxyvitamin D3, is a PARP inhibitor. UV irradiation-mediated PARP activation in human keratinocytes can be inhibited by treatment with vitamin D, 7-dehydrocholesterol or 1α,25-dihydroxyvitamin D3. Inhibition of cytochrome P450 reversed the PARP inhibitory action of vitamin D and 7-dehydrocholesterol, indicating that conversion to 1α,25-dihydroxyvitamin D3 mediates their PARP inhibitory action. Vitamin D may protect keratinocytes against over-activation of PARP resulting from exposure to sunlight. PARP inhibition may contribute to the pharmacological and anti-inflammatory effects of vitamin D. PMID:17487428

  8. Nutrition and Training Influences on the Regulation of Mitochondrial Adenosine Diphosphate Sensitivity and Bioenergetics.

    PubMed

    Holloway, Graham P

    2017-03-01

    Since the seminal finding almost 50 years ago that exercise training increases mitochondrial content in skeletal muscle, a considerable amount of research has been dedicated to elucidate the mechanisms inducing mitochondrial biogenesis. The discovery of peroxisome proliferator-activated receptor γ co-activator 1α as a major regulator of exercise-induced gene transcription was instrumental in beginning to understand the signals regulating this process. However, almost two decades after its discovery, our understanding of the signals inducing mitochondrial biogenesis remain poorly defined, limiting our insights into possible novel training modalities in elite athletes that can increase the oxidative potential of muscle. In particular, the role of mitochondrial reactive oxygen species has received very little attention; however, several lifestyle interventions associated with an increase in mitochondrial reactive oxygen species coincide with the induction of mitochondrial biogenesis. Furthermore, the diminishing returns of exercise training are associated with reductions in exercise-induced, mitochondrial-derived reactive oxygen species. Therefore, research focused on altering redox signaling in elite athletes may prove to be effective at inducing mitochondrial biogenesis and augmenting training regimes. In the context of exercise performance, the biological effect of increasing mitochondrial content is an attenuated rise in free cytosolic adenosine diphosphate (ADP), and subsequently decreased carbohydrate flux at a given power output. Recent evidence has shown that mitochondrial ADP sensitivity is a regulated process influenced by nutritional interventions, acute exercise, and exercise training. This knowledge raises the potential to improve mitochondrial bioenergetics in the absence of changes in mitochondrial content. Elucidating the mechanisms influencing the acute regulation of mitochondrial ADP sensitivity could have performance benefits in athletes

  9. Blocking Cyclic Adenosine Diphosphate Ribose-mediated Calcium Overload Attenuates Sepsis-induced Acute Lung Injury in Rats

    PubMed Central

    Peng, Qian-Yi; Zou, Yu; Zhang, Li-Na; Ai, Mei-Lin; Liu, Wei; Ai, Yu-Hang

    2016-01-01

    Background: Acute lung injury (ALI) is a common complication of sepsis that is associated with high mortality. Intracellular Ca2+ overload plays an important role in the pathophysiology of sepsis-induced ALI, and cyclic adenosine diphosphate ribose (cADPR) is an important regulator of intracellular Ca2+ mobilization. The cluster of differentiation 38 (CD38)/cADPR pathway has been found to play roles in multiple inflammatory processes but its role in sepsis-induced ALI is still unknown. This study aimed to investigate whether the CD38/cADPR signaling pathway is activated in sepsis-induced ALI and whether blocking cADPR-mediated calcium overload attenuates ALI. Methods: Septic rat models were established by cecal ligation and puncture (CLP). Rats were divided into the sham group, the CLP group, and the CLP+ 8-bromo-cyclic adenosine diphosphate ribose (8-Br-cADPR) group. Nicotinamide adenine dinucleotide (NAD+), cADPR, CD38, and intracellular Ca2+ levels in the lung tissues were measured at 6, 12, 24, and 48 h after CLP surgery. Lung histologic injury, tumor necrosis factor (TNF)-α, malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities were measured. Results: NAD+, cADPR, CD38, and intracellular Ca2+ levels in the lungs of septic rats increased significantly at 24 h after CLP surgery. Treatment with 8-Br-cADPR, a specific inhibitor of cADPR, significantly reduced intracellular Ca2+ levels (P = 0.007), attenuated lung histological injury (P = 0.023), reduced TNF-α and MDA levels (P < 0.001 and P = 0.002, respectively) and recovered SOD activity (P = 0.031) in the lungs of septic rats. Conclusions: The CD38/cADPR pathway is activated in the lungs of septic rats, and blocking cADPR-mediated calcium overload with 8-Br-cADPR protects against sepsis-induced ALI. PMID:27411462

  10. Separation of adenosine diphosphate--adenosine triphosphate-exchange activity from the cerebral microsomal sodium-plus-potassium ion-stimulated adenosine triphosphatase.

    PubMed

    Stahl, W L; Sattin, A; McIlwain, H

    1966-05-01

    1. A microsomal fraction from ox cerebral cortex catalysed [(14)C]ADP-ATP exchange at a speed similar to that at which it liberated P(i) from ATP in the presence of Na(+), K(+) and Mg(2+). 2. Repeated washing the fraction with MgATP solutions solubilized most of the exchange activity and left the adenosine triphosphatase insoluble and little changed in activity. The exchange activity was accompanied by negligible adenosine-triphosphatase activity and was enriched by precipitation at chosen pH and by DEAE-Sephadex. At no stage was its activity affected by Na(+), K(+) or ouabain. 3. The washed microsomal fraction was exposed to a variety of reagents; a sodium iodide-cysteine treatment increased both adenosine-triphosphatase and exchange activities, as also did a synthetic zeolite. Preparations were obtained with exchange activities less than 3% of their Na(+)-plus-K(+)-stimulated adenosine-triphosphatase activity. Some contribution to the residual exchange activity was made by an adenylate kinase. 4. Thus over 95% of the microsomal ADP-ATP-exchange activity does not take part in the Na(+)-plus-K(+)-stimulated adenosine-triphosphatase reaction. Participation of some of the residual 3% of the ADP-ATP-exchange activity has not been excluded, but there appears no firm evidence for its participation in the adenosine triphosphatase; the bearing of this conclusion on mechanisms proposed for the Na(+)-plus-K(+)-stimulated adenosine triphosphatase is indicated.

  11. Separation of adenosine diphosphate-adenosine triphosphate–exchange activity from the cerebral microsomal sodium-plus-potassium ion-stimulated adenosine triphosphatase

    PubMed Central

    Stahl, W. L.; Sattin, A.; McIlwain, H.

    1966-01-01

    1. A microsomal fraction from ox cerebral cortex catalysed [14C]ADP–ATP exchange at a speed similar to that at which it liberated Pi from ATP in the presence of Na+, K+ and Mg2+. 2. Repeated washing the fraction with MgATP solutions solubilized most of the exchange activity and left the adenosine triphosphatase insoluble and little changed in activity. The exchange activity was accompanied by negligible adenosine-triphosphatase activity and was enriched by precipitation at chosen pH and by DEAE-Sephadex. At no stage was its activity affected by Na+, K+ or ouabain. 3. The washed microsomal fraction was exposed to a variety of reagents; a sodium iodide–cysteine treatment increased both adenosine-triphosphatase and exchange activities, as also did a synthetic zeolite. Preparations were obtained with exchange activities less than 3% of their Na+-plus-K+-stimulated adenosine-triphosphatase activity. Some contribution to the residual exchange activity was made by an adenylate kinase. 4. Thus over 95% of the microsomal ADP–ATP-exchange activity does not take part in the Na+-plus-K+-stimulated adenosine-triphosphatase reaction. Participation of some of the residual 3% of the ADP–ATP-exchange activity has not been excluded, but there appears no firm evidence for its participation in the adenosine triphosphatase; the bearing of this conclusion on mechanisms proposed for the Na+-plus-K+-stimulated adenosine triphosphatase is indicated. PMID:4223577

  12. Adenosine diphosphate restricts the protein remodeling activity of the Hsp104 chaperone to Hsp70 assisted disaggregation

    PubMed Central

    Kłosowska, Agnieszka; Chamera, Tomasz; Liberek, Krzysztof

    2016-01-01

    Hsp104 disaggregase provides thermotolerance in yeast by recovering proteins from aggregates in cooperation with the Hsp70 chaperone. Protein disaggregation involves polypeptide extraction from aggregates and its translocation through the central channel of the Hsp104 hexamer. This process relies on adenosine triphosphate (ATP) hydrolysis. Considering that Hsp104 is characterized by low affinity towards ATP and is strongly inhibited by adenosine diphosphate (ADP), we asked how Hsp104 functions at the physiological levels of adenine nucleotides. We demonstrate that physiological levels of ADP highly limit Hsp104 activity. This inhibition, however, is moderated by the Hsp70 chaperone, which allows efficient disaggregation by supporting Hsp104 binding to aggregates but not to non-aggregated, disordered protein substrates. Our results point to an additional level of Hsp104 regulation by Hsp70, which restricts the potentially toxic protein unfolding activity of Hsp104 to the disaggregation process, providing the yeast protein-recovery system with substrate specificity and efficiency in ATP consumption. DOI: http://dx.doi.org/10.7554/eLife.15159.001 PMID:27223323

  13. High-Throughput Screening for RecA Inhibitors Using a Transcreener Adenosine 5′-O-Diphosphate Assay

    PubMed Central

    Peterson, Eliza J.R.; Janzen, William P.; Kireev, Dmitri

    2012-01-01

    Abstract The activities of the bacterial RecA protein are involved in the de novo development and transmission of antibiotic resistance genes, thus allowing bacteria to overcome the metabolic stress induced by antibacterial agents. RecA is ubiquitous and highly conserved among bacteria, but has only distant homologs in human cells. Together, this evidence points to RecA as a novel and attractive antibacterial drug target. All known RecA functions require the formation of a complex formed by multiple adenosine 5′-O-triphosphate (ATP)-bound RecA monomers on single-stranded DNA. In this complex, RecA hydrolyzes ATP. Although several methods for assessing RecA's ATPase activity have been reported, these assay conditions included relatively high concentrations of enzyme and ATP and thereby restricted the RecA conformational state. Herein, we describe the validation of commercial reagents (Transcreener® adenosine 5′-O-diphosphate [ADP]2 fluorescence polarization assay) for the high-throughput measurement of RecA's ATPase activity with lower concentrations of ATP and RecA. Under optimized conditions, ADP detection by the Transcreener reagent provided robust and reproducible activity data (Z′=0.92). Using the Transcreener assay, we screened 113,477 small molecules against purified RecA protein. In total, 177 small molecules were identified as confirmed hits, of which 79 were characterized by IC50 values ≤10 μM and 35 were active in bioassays with live bacteria. This set of compounds comprises previously unidentified scaffolds for RecA inhibition and represents tractable hit structures for efforts aimed at tuning RecA inhibitory activity in both biochemical and bacteriological assays. PMID:22192312

  14. High-throughput screening for RecA inhibitors using a transcreener adenosine 5'-O-diphosphate assay.

    PubMed

    Peterson, Eliza J R; Janzen, William P; Kireev, Dmitri; Singleton, Scott F

    2012-06-01

    The activities of the bacterial RecA protein are involved in the de novo development and transmission of antibiotic resistance genes, thus allowing bacteria to overcome the metabolic stress induced by antibacterial agents. RecA is ubiquitous and highly conserved among bacteria, but has only distant homologs in human cells. Together, this evidence points to RecA as a novel and attractive antibacterial drug target. All known RecA functions require the formation of a complex formed by multiple adenosine 5'-O-triphosphate (ATP)-bound RecA monomers on single-stranded DNA. In this complex, RecA hydrolyzes ATP. Although several methods for assessing RecA's ATPase activity have been reported, these assay conditions included relatively high concentrations of enzyme and ATP and thereby restricted the RecA conformational state. Herein, we describe the validation of commercial reagents (Transcreener(®) adenosine 5'-O-diphosphate [ADP](2) fluorescence polarization assay) for the high-throughput measurement of RecA's ATPase activity with lower concentrations of ATP and RecA. Under optimized conditions, ADP detection by the Transcreener reagent provided robust and reproducible activity data (Z'=0.92). Using the Transcreener assay, we screened 113,477 small molecules against purified RecA protein. In total, 177 small molecules were identified as confirmed hits, of which 79 were characterized by IC(50) values ≤ 10 μM and 35 were active in bioassays with live bacteria. This set of compounds comprises previously unidentified scaffolds for RecA inhibition and represents tractable hit structures for efforts aimed at tuning RecA inhibitory activity in both biochemical and bacteriological assays.

  15. Killer toxin for sake yeast: properties and effects of adenosine 5'-diphosphate and calcium ion on killing action.

    PubMed Central

    Kotani, H; Shinmyo, A; Enatsu, T

    1977-01-01

    The killer character of strain isolated from the main mash of sake brewing which produces a killer substance for sake yeast was transmitted to hybrids of the strain and a standard strain of Saccharomyces cerevisiae through a cytoplasmic determinant. The character was eliminated at 41 degrees C by incubation followed by growth at 30 degrees C. The killer strain produced the killer toxin in a growth-associated manner. A preparation of crude killer toxin extract showed first-order inactivation and a linear Arrhenius plot between 25 and 40 degrees C, with an activation of energy of 55.0 kcal/mol. Addition of 1% of synthetic polymer protected the toxin from inactivation by agitation but not by heat. Enhancement of the killer action toward sensitive yeast cells by only the nucleotide adenosine 5'-diphosphate (ADP) was observed after plating on agar medium as well as after incubation in liquid medium. The addition of CaCl2 reversed the enhancing effect of ADP on killing activity. This action of CaCl2 was inhibited by cycloheximide, suggesting that protein synthesis is required for recovery of toxin-induced cells in the presence of CaCl2. Further, CaCl2 overcame the decrease in the intracellular level of adenosine 5'-triphosphate (ATP) enhanced by ADP in killer-treated cells and also inhibited leakage of ATP from the cells with immediate response. The mode of killing action is discussed in terms of a transient state of the cells and the action of ADP and CaCl2. PMID:14107

  16. Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate.

    PubMed

    Bonello, Laurent; Tantry, Udaya S; Marcucci, Rossella; Blindt, Ruediger; Angiolillo, Dominick J; Becker, Richard; Bhatt, Deepak L; Cattaneo, Marco; Collet, Jean Philippe; Cuisset, Thomas; Gachet, Christian; Montalescot, Gilles; Jennings, Lisa K; Kereiakes, Dean; Sibbing, Dirk; Trenk, Dietmar; Van Werkum, Jochem W; Paganelli, Franck; Price, Matthew J; Waksman, Ron; Gurbel, Paul A

    2010-09-14

    The addition of clopidogrel to aspirin treatment reduces ischemic events in a wide range of patients with cardiovascular disease. However, recurrent ischemic event occurrence during dual antiplatelet therapy, including stent thrombosis, remains a major concern. Platelet function measurements during clopidogrel treatment demonstrated a variable and overall modest level of P2Y(12) inhibition. High on-treatment platelet reactivity to adenosine diphosphate (ADP) was observed in selected patients. Multiple studies have now demonstrated a clear association between high on-treatment platelet reactivity to ADP measured by multiple methods and adverse clinical event occurrence. However, the routine measurement of platelet reactivity has not been widely implemented and recommended in the guidelines. Reasons for the latter include: 1) a lack of consensus on the optimal method to quantify high on-treatment platelet reactivity and the cutoff value associated with clinical risk; and 2) limited data to support that alteration of therapy based on platelet function measurements actually improves outcomes. This review provides a consensus opinion on the definition of high on-treatment platelet reactivity to ADP based on various methods reported in the literature and proposes how this measurement may be used in the future care of patients.

  17. Effects of cumene hydroperoxide on adenosine diphosphate ribosyl transferase in mononuclear leukocytes of patients with adenomatous polyps in the colon.

    PubMed

    Markowitz, M M; Johnson, D B; Pero, R W; Winawer, S J; Miller, D G

    1988-03-01

    We have studied the effects of plasma and of cumene hydroperoxide (CUM) on adenosine diphosphate ribosyl transferase (ADPRT) from mononuclear leukocytes (HML) of patients with colonic adenomatous polyps (n = 22), with colonic hyperplastic polyps (n = 5) and with neither type of polyp (controls) (n = 6). ADPRT was measured after incubation of HML with plasma alone (termed the plasma value), and with plasma plus CUM (50 microM) (the activated value); the difference elicited by CUM was termed the induced value. There was no significant difference in values between the control and hyperplastic polyp groups: these were combined for further analysis. The plasma (P = 0.038), activated (P = 0.009) and induced (P = 0.0024) values of the combined group all differed significantly from those of the adenoma group. At low exposures, CUM stimulated both ADPRT and unscheduled DNA synthesis and, at higher exposures, inactivated both. Pretreatment of HML with vitamin E protected against these effects of CUM, while pretreatment with diamide (which depletes GSH) accentuated the effects. This study demonstrates a differential reaction of ADPRT in patients harboring colonic adenomas and suggests that the origin of this difference may lie in cellular responses to oxidative stress.

  18. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose.

    PubMed

    Scharbarg, Emeric; Daenens, Marion; Lemaître, Frédéric; Geoffroy, Hélène; Guille-Collignon, Manon; Gallopin, Thierry; Rancillac, Armelle

    2016-01-12

    Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity.

  19. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding.

    PubMed

    Tantry, Udaya S; Bonello, Laurent; Aradi, Daniel; Price, Matthew J; Jeong, Young-Hoon; Angiolillo, Dominick J; Stone, Gregg W; Curzen, Nick; Geisler, Tobias; Ten Berg, Jurrien; Kirtane, Ajay; Siller-Matula, Jolanta; Mahla, Elisabeth; Becker, Richard C; Bhatt, Deepak L; Waksman, Ron; Rao, Sunil V; Alexopoulos, Dimitrios; Marcucci, Rossella; Reny, Jean-Luc; Trenk, Dietmar; Sibbing, Dirk; Gurbel, Paul A

    2013-12-17

    Dual antiplatelet therapy with aspirin and a P2Y12 receptor blocker is a key strategy to reduce platelet reactivity and to prevent thrombotic events in patients treated with percutaneous coronary intervention. In an earlier consensus document, we proposed cutoff values for high on-treatment platelet reactivity to adenosine diphosphate (ADP) associated with post-percutaneous coronary intervention ischemic events for various platelet function tests (PFTs). Updated American and European practice guidelines have issued a Class IIb recommendation for PFT to facilitate the choice of P2Y12 receptor inhibitor in selected high-risk patients treated with percutaneous coronary intervention, although routine testing is not recommended (Class III). Accumulated data from large studies underscore the importance of high on-treatment platelet reactivity to ADP as a prognostic risk factor. Recent prospective randomized trials of PFT did not demonstrate clinical benefit, thus questioning whether treatment modification based on the results of current PFT platforms can actually influence outcomes. However, there are major limitations associated with these randomized trials. In addition, recent data suggest that low on-treatment platelet reactivity to ADP is associated with a higher risk of bleeding. Therefore, a therapeutic window concept has been proposed for P2Y12 inhibitor therapy. In this updated consensus document, we review the available evidence addressing the relation of platelet reactivity to thrombotic and bleeding events. In addition, we propose cutoff values for high and low on-treatment platelet reactivity to ADP that might be used in future investigations of personalized antiplatelet therapy.

  20. Prognostic and clinicopathological value of poly (adenosine diphosphate-ribose) polymerase expression in breast cancer: A meta-analysis

    PubMed Central

    Qiao, Weiqiang; Pan, Linlin; Kou, Changgui; Li, Ke; Yang, Ming

    2017-01-01

    Background Previous studies have shown that the poly (adenosine diphosphate-ribose) polymerase (PARP) level is a promising indicator of breast cancer. However, its prognostic value remains controversial. The present meta-analysis evaluated the prognostic value of PARP expression in breast cancer. Materials and methods Eligible studies were retrieved from the PubMed, Web of Science, Embase, and Cochrane Library databases through July 20, 2016. Studies investigating PARP expression as well as reporting survival data in breast cancer were included. Two independent reviewers carried out all literature searches. The pooled relative risk (RR) and hazard ratio (HR) with 95% confidence interval (95% CI) were applied to assess the association between PARP expression and the clinicopathological features and survival outcome in breast cancer. Results A total of 3506 patients from eight eligible studies were included. We found that higher PARP expression indicated a worse clinical outcome in early stage breast cancer, with a HR of 3.08 (95% CI, 1.14–8.29, P = 0.03) for disease-free survival and a HR of 1.82 (95% CI, 1.20–2.76; P = 0.005) for overall survival. Moreover, increased PARP expression was significantly associated with higher nuclear grade (RR, 1.51; 95% CI, 1.12–2.04; P = 0.008) in breast cancer. A similar correlation was detected in triple-negative breast cancer (TNBC; RR, 1.81; 95% CI, 1.04–3.17; P = 0.04). Conclusions Our findings indicated that elevated PARP expression correlated with worse prognosis in early stage breast cancer. Furthermore, high PARP expression was associated with higher nuclear grade and TNBC. PMID:28212434

  1. The impact of adenosine and A(2B) receptors on glucose homoeostasis.

    PubMed

    Rüsing, D; Müller, C E; Verspohl, E J

    2006-12-01

    Adenosine and adenosine receptor antagonists are involved in glucose homoeostasis. The participating receptors are not known, mainly due to a lack of specific agonists and antagonists, but are reasonable targets for anti-diabetic therapy. The stable, albeit nonselective, adenosine analogue NECA (5'-N-ethylcarboxamidoadenosine) (10 microM) reduced glucose-stimulated insulin release from INS-1 cells. This was mimicked by A(1)-(CHA), A(2A)-(CGS-21680) and A(3)-receptor agonists (Cl-IB-MECA). Two newly synthesized A(2B)-receptor antagonists, PSB-53 and PSB-1115, counteracted the inhibitory effect of NECA. These in-vitro effects were mirrored by in-vivo data with respect to CHA, CGS and Cl-IB-MECA. Distinct concentrations of either PSB-53 or PSB-1115 reversed the decrease in plasma insulin induced by NECA. This was not mimicked by a corresponding change in blood glucose. The effect of PSB-1115 was also obvious in diabetic GotoKakizaki rats: plasma insulin was increased whereas blood glucose was unchanged. During most experiments the effects on blood glucose were not impressive probably because of the physiologically necessary homoeostasis. The adenosine levels were not different in normal Wistar rats and in diabetic GotoKakzaki rats. Altogether the A(2B)-receptor antagonists showed an anti-diabetic potential mainly by increasing plasma insulin levels under conditions when the adenosine tonus was elevated in-vivo and increased insulin release in-vitro.

  2. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose

    PubMed Central

    Scharbarg, Emeric; Daenens, Marion; Lemaître, Frédéric; Geoffroy, Hélène; Guille-Collignon, Manon; Gallopin, Thierry; Rancillac, Armelle

    2016-01-01

    Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity. PMID:26755200

  3. Reduced nicotinamide adenine dinucleotide fluorescence lifetime detected poly(adenosine-5'-diphosphate-ribose) polymerase-1-mediated cell death and therapeutic effect of pyruvate

    NASA Astrophysics Data System (ADS)

    Guo, Han-Wen; Wei, Yau-Huei; Wang, Hsing-Wen

    2011-06-01

    Noninvasive detection of cell death has the potential for definitive diagnosis and monitoring treatment outcomes in real time. Reduced nicotinamide adenine dinucleotide (NADH) fluorescence intensity has long been used as a noninvasive optical probe of metabolic states. NADH fluorescence lifetime has recently been studied for its potential as an alternative optical probe of cellular metabolic states and cell death. In this study, we investigated the potential using NADH fluorescence intensity and/or lifetime to detect poly(adenosine-5'-diphosphate-ribose) polymerase-1 (PARP-1)-mediated cell death in HeLa cells. We also examined if NADH signals respond to treatment by pyruvate. The mechanism of PARP-1-mediated cell death has been well studied that extensive PARP-1 activation leads to cytosolic nicotinamide adenine dinucleotide depletion resulting in glycolytic inhibition, mitochondrial failure, and death. Pyruvate could restore electron transport chain to prevent energy failure and death. Our results show that NADH fluorescence lifetime, not intensity, responded to PARP-1-mediated cell death and the rescue effect of pyruvate. This lifetime change of NADH fluorescence happened before the collapse of mitochondrial membrane potential and mitochondrial uncoupling. Together with our previous findings in staurosporine-induced cell death, we suggest that NADH fluorescence lifetime increase during cell death is mainly due to increased protein-protein interactions but not the intracellular NADH content.

  4. Synergistic inhibition of both P2Y1 and P2Y12 adenosine diphosphate receptors as novel approach to rapidly attenuate platelet-mediated thrombosis

    PubMed Central

    Gremmel, Thomas; Yanachkov, Ivan B.; Yanachkova, Milka I.; Wright, George E.; Wider, Joseph; Undyala, Vishnu V.R.; Michelson, Alan D.; Frelinger, Andrew L.; Przyklenk, Karin

    2015-01-01

    Objective Unlike currently approved adenosine diphosphate (ADP) receptor antagonists, the new diadenosine tetraphosphate derivative GLS-409 targets not only P2Y12 but also the second human platelet ADP receptor P2Y1, and may therefore be a promising antiplatelet drug candidate. The current study is the first to investigate the in vivo antithrombotic effects of GLS-409. Approach and Results We studied (1) the in vivo effects of GLS-409 on agonist-stimulated platelet aggregation in anesthetized rats, (2) the antithrombotic activity of GLS-409 and the associated effect on the bleeding time in a canine model of platelet-mediated coronary artery thrombosis, and (3) the inhibition of agonist-stimulated platelet aggregation by GLS-409 versus selective P2Y1 and P2Y12 inhibition in vitro in samples from healthy human subjects before and 2 hours after aspirin intake. In vivo treatment with GLS-409 significantly inhibited ADP- and collagen-stimulated platelet aggregation in rats. Further, GLS-409 attenuated cyclic flow variation, i.e., platelet-mediated thrombosis, in vivo in our canine model of unstable angina. The improvement in coronary patency was accompanied by a non-significant 30% increase in bleeding time. Of note, GLS-409 exerted its effects without affecting rat and canine hemodynamics. Finally, in vitro treatment with GLS-409 showed effects similar to that of cangrelor and the combination of cangrelor with the selective P2Y1 inhibitor MRS 2179 on agonist-stimulated platelet aggregation in human platelet-rich plasma and whole blood before and 2 hours after aspirin intake. Conclusions Synergistic inhibition of both P2Y1 and P2Y12 ADP receptors by GLS-409 immediately attenuates platelet-mediated thrombosis and effectively blocks agonist-stimulated platelet aggregation irrespective of concomitant aspirin therapy. PMID:26743169

  5. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    SciTech Connect

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A.; Solomon, Benjamin

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  6. Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3'- 5'-diphosphate (PAP)

    SciTech Connect

    Dombrovski, Luidmila; Dong, Aiping; Bochkarev, Alexey; Plotnikov, Alexander N.

    2008-09-17

    Cytosolic sulfotransferases (SULTs), often referred as Phase II enzymes of chemical defense, are a superfamily of enzymes that catalyze the transfer of a sulfonate group from 3{prime}-phosphoadenosine 5{prime}-phosphosulfate (PAPS) to an acceptor group of substrates. This reaction modulates the activities of a large array of small endogenous and foreign chemicals including drugs, toxic compounds, steroid hormones, and neurotransmitters. In some cases, however, SULTs activate certain food and environmental compounds to mutagenenic and carcinogenic metabolites. Twelve human SULTs have been identified, which are partitioned into three families: SULT1, SULT2 and SULT4. The SULT1 family is further divided in four subfamilies, A, B, C, and E, and comprises eight members (1A1, 1A2, 1A3, 1B1, 1C1, 1C2, 1C3, and 1E1). Despite sequence and structural similarity among the SULTs, the family and subfamily members appear to have different biological function. SULT1 family shows substrate-binding specificity for simple phenols, estradiol, and thyroid hormones, as well as environmental xenobiotics and drugs. Human SULT1B1 is expressed in liver, colon, small intestine, and blood leukocytes, and shows substrate-binding specificity to thyroid hormones and benzylic alcohols. Human SULT1C1 is expressed in the adult stomach, kidney, and thyroid, as well as in fetal kidney and liver. SULT1C1 catalyzes the sulfonation of p-nitrophenol and N-hydroxy-2-acetylaminofluorene in vitro. However, the in vivo function of the enzyme remains unknown. We intend to solve the structures for all of the SULTs for which structural information is not yet available, and compare the structural and functional features of the entire SULT superfamily. Here we report the structures of two members of SULT1 family, SULT1B1 and SULT1C1, both in complex with the product of the PAPS cofactor, adenosine-3{prime}-5{prime}-diphosphate (PAP).

  7. Syzygium cumini inhibits adenosine deaminase activity and reduces glucose levels in hyperglycemic patients.

    PubMed

    Bopp, A; De Bona, K S; Bellé, L P; Moresco, R N; Moretto, M B

    2009-08-01

    Syzigium cumini (L.) Skeels from the Myrtaceae family is among the most common medicinal plants used to treat diabetes in Brazil. Leaves, fruits, and barks of S. cumini have been used for their hypoglycemic activity. Adenosine deaminase (ADA) is an important enzyme that plays a relevant role in purine and DNA metabolism, immune responses, and peptidase activity. ADA is suggested to be an important enzyme for modulating the bioactivity of insulin, but its clinical significance in diabetes mellitus (DM) has not yet been proven. In this study, we examined the effect of aqueous leaf extracts of S. cumini (L.) (ASC) on ADA activity of hyperglycemic subjects and the activity of total ADA, and its isoenzymes in serum and erythrocytes. The present study indicates that: (i) the ADA activity in hyperglycemic serum was higher than normoglycemic serum and ADA activity was higher when the blood glucose level was more elevated; (ii) ASC (60-1000 microg/mL) in vitro caused a concentration-dependent inhibition of total ADA activity and a decrease in the blood glucose level in serum; (iii) ADA1 and 2 were reduced both in erythrocytes and in hyperglycemic serum. These results suggest that the decrease of ADA activity provoked by ASC may contribute to control adenosine levels and the antioxidant defense system of red cells and could be related to the complex ADA/DPP-IV-CD26 and the properties of dipeptidyl peptidase IV (DPP-IV) inhibitors which serve as important regulators of blood glucose.

  8. Glycan structure and site of glycosylation in the ER-resident glycoprotein, uridine 5'-diphosphate-glucose: glycoprotein glucosyltransferases 1 from rat, porcine, bovine, and human.

    PubMed

    Daikoku, Shusaku; Seko, Akira; Ito, Yukishige; Kanie, Osamu

    2014-08-29

    Here we report glycan structures and their position of attachment to a carrier protein, uridine 5'-diphosphate-glucose: glycoprotein glucosyltransferase (UGGT1), as detected using tandem mass spectrometry. UGGT1 acts as a folding sensor of newly synthesized glycosylated polypeptides in the endoplasmic reticulum, and the transferase itself is known to be glycosylated. The structure of glycan attached to UGGT1, however, has not been investigated. In this study, we reveal the site of glycosylation (N269) and the glycan structures (Hex5-8HexNAc2) in UGGT1 obtained from rat (Rattus norvegicus), pig (Sus scrofa), cow (Bos taurus), and human (Homo sapiens).

  9. Effect of Repeated Injections of Adenosine Diphosphate-Encapsulated Liposomes Coated with a Fibrinogen γ-Chain Dodecapeptide Developed as a Synthetic Platelet Substitute on Accelerated Blood Clearance in a Healthy and an Anticancer Drug-Induced Thrombocytopenia Rat Model.

    PubMed

    Taguchi, Kazuaki; Hashimoto, Mai; Ogaki, Shigeru; Watanabe, Hiroshi; Takeoka, Shinji; Ikeda, Yasuo; Handa, Makoto; Otagiri, Masaki; Maruyama, Toru

    2015-09-01

    Adenosine diphosphate (ADP)-encapsulated liposomes coated with a fibrinogen γ-chain dodecapeptide [H12 (dodecapeptide ((400) HHLGGAKQAGDV(411) ))-(ADP)-liposome] is a synthetic platelet substitute, in which the surface is covered with polyethylene glycol (PEG). It has been reported that repeated injections of PEGylated liposomes induce an accelerated blood clearance (ABC) phenomenon, which involves a loss in the long-circulation half-life of the material when administered repeatedly to the same animals. The objective of this study was to determine whether the ABC phenomenon was induced by repeated injections of H12-(ADP)-liposome in healthy and anticancer drug-induced thrombocytopenia model rats. The findings show that the ABC phenomenon was induced by healthy rats that were repeatedly injected with H12-(ADP)-liposomes at the interval of 5 days at a dose of 10 mg lipids/kg. The ABC phenomenon involves the production of anti-H12-(ADP)-liposome immunoglobulin M (IgM) and complement activation. On the other hand, when thrombocytopenia model rats were repeatedly injected with H12-(ADP)-liposomes under the same conditions, no ABC phenomenon, nor was any suppression of anti-H12-(ADP)-liposome IgM-mediated complement activation observed. We thus conclude that the repeated injection of H12-(ADP)-liposome treatment in rat model with anticancer drug-induced thrombocytopenia did not induce the ABC phenomenon.

  10. Mitogen-stimulated glucose transport in thymocytes. Possible role of Ca++ and antagonism by adenosine 3':5'-monophosphate

    PubMed Central

    1977-01-01

    The plant lectin, concanavalin A (Con-A), and the ionophore, A-23187 (specific for divalent cations), stimulated glucose transport in rat thymocytes. Con-A stimulation developed more slowly and was somewhat less extensive than that of stimulation developed more slowly and was somewhat less extensive than that of A-23187. Both responses showed saturation dose dependencies. The two responses were poorly additive, suggesting that A-23187 may saturate regulatory processes shared by the two stimulatory mechanisms. Doses of methylisobutylxanthine (MIX) and prostaglandin E2 which raised adenosine 3':5'-monophosphate (cAMP) levels in these cells also antagonized the Con-A stimulation of glucose transport but did not inhibit basal glucose transport or the A-23187 stimulation. Dibutyryl-cAMP and 8-bromo-cAMP also natagonized Con-A stimulation without inhibiting basal glucose transport. MIX antagonized high Con-A doses about as strongly as it did low Con-A doses, suggesting that MIX did not compete in the Con-A binding step or other process saturable by Con-A. [3H-A1Con-A binding was not affected by MIX. The stimulatory effects of Con-A and A-23187 were reduced by reduction of Ca++ in the medium. Both Con-A and A-23187 enhanced 45Ca++ influx and cellular Ca++ content. The A-23187 dose, which was saturating for glucose transport stimulation, enhanced Ca++ influx and cellular Ca++ content more than did the Con-A dose which was saturating for glucose transport stimulation. The dose fo MIX which specifically antagonized Con-A stimulation of glucose transport proved also to reduce Ca++ influx and cellular Ca++ in the presence of Con-A but not in the presence of A-23187. Thus, glucose transport correlates rather well with cellular Ca++. These results are compatible with the view that Ca++ in a cellular compartment can promote glucose transport, the Con-A's enhancement of Ca++ entry contributes to its stimulation of glucose transport, and the MIX antagonized Con-A action at least

  11. High D-glucose reduces SLC29A1 promoter activity and adenosine transport involving specific protein 1 in human umbilical vein endothelium.

    PubMed

    Puebla, Carlos; Farías, Marcelo; González, Marcelo; Vecchiola, Andrea; Aguayo, Claudio; Krause, Bernardo; Pastor-Anglada, Marçal; Casanello, Paola; Sobrevia, Luis

    2008-06-01

    High D-glucose reduces human equilibrative nucleoside transporter 1 (hENT1)-mediated adenosine uptake involving endothelial nitric oxide synthase (eNOS), mitogen-activated protein (MAP) kinase kinases 1 and 2/MAP kinases p42/44 (MEK/ERKs), and protein kinase C (PKC) activation in human umbilical vein endothelium (HUVEC). Since NO represses SLC29A1 gene (hENT1) promoter activity we studied whether D-glucose-reduced hENT1-adenosine transport results from lower SLC29A1 expression in HUVEC primary cultures. HUVEC incubation (24 h) with high D-glucose (25 mM) reduced hENT1-adenosine transport and pGL3-hENT1(-1114) construct SLC29A1 reporter activity compared with normal D-glucose (5 mM). High D-glucose also reduced pGL3-hENT1(-1114) reporter activity compared with cells transfected with pGL3-hENT1(-795) construct. N(G)-nitro-L-arginine methyl ester (L-NAME, NOS inhibitor), PD-98059 (MEK1/2 inhibitor), and/or calphostin C (PKC inhibitor) blocked D-glucose effects. Insulin (1 nM) and phorbol 12-myristate 13-acetate (PMA, 100 nM, PKC activator), but not 4alpha-phorbol 12,13-didecanoate (4alphaPDD, 100 nM, PMA less active analogue) reduced hENT1-adenosine transport. L-NAME and PD-98059 blocked insulin effects. L-NAME, PD-98059, and calphostin C increased hENT1 expression without altering protein or mRNA stability. High D-glucose increased Sp1 transcription factor protein abundance and binding to SLC29A1 promoter, phenomena blocked by L-NAME, PD-98059, and calphostin C. Sp1 overexpression reduced SLC29A1 promoter activity in normal D-glucose, an effect reversed by L-NAME and further reduced by S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor) in high D-glucose. Thus, reduced hENT1-mediated adenosine transport in high D-glucose may result from increased Sp1 binding to SLC29A1 promoter down-regulating hENT1 expression. This phenomenon depends on eNOS, MEK/ERKs, and PKC activity, suggesting potential roles for these molecules in hyperglycemia-associated endothelial

  12. Purine metabolism in adenosine deaminase deficiency.

    PubMed Central

    Mills, G C; Schmalstieg, F C; Trimmer, K B; Goldman, A S; Goldblum, R M

    1976-01-01

    Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides. PMID:1066699

  13. Sirtuins in glucose and lipid metabolism

    PubMed Central

    Ye, Xin; Li, Meiting; Hou, Tianyun; Gao, Tian; Zhu, Wei-guo; Yang, Yang

    2017-01-01

    Sirtuins are evolutionarily conserved protein, serving as nicotinamide adenine dinucleotide-dependent deacetylases or adenosine diphosphate-ribosyltransferases. The mammalian sirtuins family, including SIRT1~7, is involved in many biological processes such as cell survival, proliferation, senescence, stress response, genome stability and metabolism. Evidence accumulated over the past two decades has indicated that sirtuins not only serve as important energy status sensors but also protect cells against metabolic stresses. In this review, we summarize the background of glucose and lipid metabolism concerning sirtuins and discuss the functions of sirtuins in glucose and lipid metabolism. We also seek to highlight the biological roles of certain sirtuins members in cancer metabolism. PMID:27659520

  14. Role of the adenosine system and glucose restriction in the acute anticonvulsant effect of caprylic acid in the 6 Hz psychomotor seizure test in mice.

    PubMed

    Socała, Katarzyna; Nieoczym, Dorota; Pieróg, Mateusz; Wlaź, Piotr

    2015-03-03

    Although several studies have reported the acute anticonvulsant activity of caprylic acid in animal seizure models, little is known about the mechanism underlying this effect. Recently, the role of adenosine in the efficacy of the ketogenic diet has been postulated. Therefore, the present study aimed to evaluate the possible involvement of the adenosine system (in non-fasted mice) as well as the role of glucose restriction (in fasted and non-fasted mice) in the acute anticonvulsant activity of caprylic acid in the 6 Hz psychomotor seizure threshold test. We showed that the anticonvulsant effect of caprylic acid (30 mmol/kg, p.o.) was reversed by a selective adenosine A1 receptor antagonist (DPCPX, 1mg/kg, i.p.) and a selective adenosine A2A receptor antagonist (KW-6002, 1 mg/kg, p.o.) but not by glibenclamide (1 pg/mouse, i.c.v.) - the ATP-sensitive potassium (KATP) channel blocker. Co-administration of an ineffective dose of caprylic acid (20 mmol/kg) with an ineffective dose of adenosine transporter inhibitor (dipyridamole, 50 mg/kg, i.p.) significantly raised the threshold for the 6 Hz-induced seizures. A high dose of glucose (2 g/kg) significantly only diminished the anticonvulsant effect of caprylic acid (30 mmol/kg) in non-fasted mice, and this was accompanied by an increase in blood glucose level and no changes in ketone body level as compared to the caprylic acid-treated group. In both fasted and non-fasted mice treated with glucose and caprylic acid, a significant decrease in trunk blood pH occurred as compared to the control group. No alternations in motor coordination or muscular strength were noted with any drug treatment, apart from the caprylic acid and glibenclamide combination, where a significant decrease in the muscle strength was observed. The present study provides a new insight into the role of the adenosine system and low glucose usage in the mechanisms underlying the anticonvulsant effects of caprylic acid in the 6 Hz seizure test.

  15. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  16. Post-Translational Regulation of the Glucose-6-Phosphatase Complex by Cyclic Adenosine Monophosphate Is a Crucial Determinant of Endogenous Glucose Production and Is Controlled by the Glucose-6-Phosphate Transporter.

    PubMed

    Soty, Maud; Chilloux, Julien; Delalande, François; Zitoun, Carine; Bertile, Fabrice; Mithieux, Gilles; Gautier-Stein, Amandine

    2016-04-01

    The excessive endogenous glucose production (EGP) induced by glucagon participates in the development of type 2 diabetes. To further understand this hormonal control, we studied the short-term regulation by cyclic adenosine monophosphate (cAMP) of the glucose-6-phosphatase (G6Pase) enzyme, which catalyzes the last reaction of EGP. In gluconeogenic cell models, a 1-h treatment by the adenylate cyclase activator forskolin increased G6Pase activity and glucose production independently of any change in enzyme protein amount or G6P content. Using specific inhibitors or protein overexpression, we showed that the stimulation of G6Pase activity involved the protein kinase A (PKA). Results of site-directed mutagenesis, mass spectrometry analyses, and in vitro phosphorylation experiments suggested that the PKA stimulation of G6Pase activity did not depend on a direct phosphorylation of the enzyme. However, the temperature-dependent induction of both G6Pase activity and glucose release suggested a membrane-based mechanism. G6Pase is composed of a G6P transporter (G6PT) and a catalytic unit (G6PC). Surprisingly, we demonstrated that the increase in G6PT activity was required for the stimulation of G6Pase activity by forskolin. Our data demonstrate the existence of a post-translational mechanism that regulates G6Pase activity and reveal the key role of G6PT in the hormonal regulation of G6Pase activity and of EGP.

  17. Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the quantification of uridine diphosphate-glucose, uridine diphosphate-glucuronic acid, deoxynivalenol and its glucoside: In-house validation and application to wheat.

    PubMed

    Warth, Benedikt; Siegwart, Gerald; Lemmens, Marc; Krska, Rudolf; Adam, Gerhard; Schuhmacher, Rainer

    2015-12-04

    Nucleotide sugars, the activated forms of monosaccharides, are important metabolites involved in a multitude of cellular processes including glycosylation of xenobiotics. Especially in plants, UDP-glucose is one of the most prominent members among these nucleotide-sugars, as it is involved in the formation of glucose conjugates of xenobiotics, including mycotoxins, but also holds a central role in the interconversion of energized sugars such as the formation of UDP-glucuronic acid required for cell wall biosynthesis. Here, we present the first HILIC-LC-ESI-TQ-MS/MS method for the quantification of UDP-glucose and UDP-glucuronic acid together with the Fusarium toxin deoxynivalenol (DON) and its major plant detoxification product DON-3-O-glucoside (DON-3-Glc) utilizing a polymer-based column. For sample preparation a time-effective and straightforward 'dilute and shoot' protocol was applied. The chromatographic run time was minimized to 9min including proper column re-equilibration. In-house validation of the method verified its linear range, intra- (1-7%) and interday (8-20%) precision, instrumental LODs between 0.6 and 10ngmL(-1), selectivity and moderate matrix effects with mean recoveries of 85-103%. To prove the methods applicability, we analyzed two sets of wheat extracts obtained from different cultivars grown under standardized greenhouse conditions. The results clearly demonstrated the suitability of the developed method to quantify UDP-glucose, DON and its masked form D3G in diluted wheat extracts. We observed differing concentration levels of UDP-glucose in the two wheat cultivars showing different resistance to the severe plant disease Fusarium head blight. We propose that the higher ability to detoxify DON into DON-3-Glc might be a consequence of the higher cellular UDP-glucose pool in the resistant cultivar.

  18. A high isoflavone diet decreases 5' adenosine monophosphate-activated protein kinase activation and does not correct selenium-induced elevations in fasting blood glucose in mice.

    PubMed

    Stallings, Michael T; Cardon, Brandon R; Hardman, Jeremy M; Bliss, Tyler A; Brunson, Scott E; Hart, Chris M; Swiss, Maria D; Hepworth, Squire D; Christensen, Merrill J; Hancock, Chad R

    2014-04-01

    Selenium (Se) has been implicated as a micronutrient that decreases adenosine monophosphate-activated protein kinase (AMPK) signaling and may increase diabetes risk by reducing insulin sensitivity. Soy isoflavones (IF) are estrogen-like compounds that have been shown to attenuate insulin resistance, hyperglycemia, adiposity, and increased AMPK activation. We hypothesized that a high IF (HIF) diet would prevent the poor metabolic profile associated with high Se intake. The purpose of this study was to examine changes in basal glucose metabolism and AMPK signaling in response to an HIF diet and/or supplemental Se in a mouse model. Male FVB mice were divided into groups receiving either a control diet with minimal IF (low IF) or an HIF diet. Each dietary group was further subdivided into groups receiving either water or Se at a dose of 3 mg Se/kg body weight daily, as Se-methylselenocysteine (SMSC). After 5 months, mice receiving SMSC had elevated fasting glucose (P < .05) and a tendency for glucose intolerance (P = .08). The increase in dietary IF did not result in improved fasting blood glucose. Interestingly, after 6 months, HIF-fed mice had decreased basal AMPK activation in liver and skeletal muscle tissue (P < .05). Basal glucose metabolism was changed by SMSC supplementation as evidenced by increased fasting blood glucose and glucose intolerance. High dietary IF levels did not protect against aberrant blood glucose. In FVB mice, decreased basal AMPK activation is not the mechanism through which Se exerts its effect. These results suggest that more research must be done to elucidate the role of Se and IF in glucose metabolism.

  19. The adenosine A2A receptor antagonist ZM241385 enhances neuronal survival after oxygen-glucose deprivation in rat CA1 hippocampal slices

    PubMed Central

    Pugliese, AM; Traini, C; Cipriani, S; Gianfriddo, M; Mello, T; Giovannini, MG; Galli, A; Pedata, F

    2009-01-01

    Background and purpose: Activation of adenosine A2A receptors in the CA1 region of rat hippocampal slices during oxygen-glucose deprivation (OGD), a model of cerebral ischaemia, was investigated. Experimental approach: We made extracellular recordings of CA1 field excitatory postsynaptic potentials (fepsps) followed by histochemical and immunohistochemical techniques coupled to Western blots. Key results: OGD (7 or 30 min duration) elicited an irreversible loss of fepsps invariably followed by the appearance of anoxic depolarization (AD), an unambiguous sign of neuronal damage. The application of the selective adenosine A2A receptor antagonist, ZM241385 (4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a}{1,3,5}triazin-5-ylamino]ethyl)phenol; 100–500 nmol·L−1) prevented or delayed AD appearance induced by 7 or 30 min OGD and protected from the irreversible fepsp depression elicited by 7 min OGD. Two different selective adenosine A2A receptor antagonists, SCH58261 and SCH442416, were less effective than ZM241385 during 7 min OGD. The extent of CA1 cell injury was assessed 3 h after the end of 7 min OGD by propidium iodide. Substantial CA1 pyramidal neuronal damage occurred in untreated slices, exposed to OGD, whereas injury was significantly prevented by 100 nmol·L−1 ZM241385. Glial fibrillary acid protein (GFAP) immunostaining showed that 3 h after 7 min OGD, astrogliosis was appreciable. Western blot analysis indicated an increase in GFAP 30 kDa fragment which was significantly reduced by treatment with 100 nmol·L−1 ZM241385. Conclusions and implications: In the CA1 hippocampus, antagonism of A2A adenosine receptors by ZM241385 was protective during OGD (a model of cerebral ischaemia) by delaying AD appearance, decreasing astrocyte activation and improving neuronal survival. PMID:19422385

  20. Biochemical retrosynthesis of 2'-deoxyribonucleosides from glucose, acetaldehyde, and a nucleobase.

    PubMed

    Horinouchi, Nobuyuki; Ogawa, Jun; Kawano, Takako; Sakai, Takafumi; Saito, Kyota; Matsumoto, Seiichiro; Sasaki, Mie; Mikami, Yoichi; Shimizu, Sakayu

    2006-08-01

    2'-Deoxyribonucleosides are important as building blocks for the synthesis of antisense drugs, antiviral nucleosides, and 2'-deoxyribonucleotides for polymerase chain reaction. The microbial production of 2'-deoxyribonucleosides from simple materials, glucose, acetaldehyde, and a nucleobase, through the reverse reactions of 2'-deoxyribonucleoside degradation and the glycolytic pathway, was investigated. The glycolytic pathway of baker's yeast yielded fructose 1,6-diphosphate from glucose using the energy of adenosine 5'-triphosphate generated from adenosine 5'-monophosphate through alcoholic fermentation with the yeast. Fructose 1,6-diphosphate was further transformed to 2-deoxyribose 5-phosphate in the presence of acetaldehyde by deoxyriboaldolase-expressing Escherichia coli cells via D-glyceraldehyde 3-phosphate. E. coli transformants expressing phosphopentomutase and nucleoside phosphorylase produced 2'-deoxyribonucleosides from 2-deoxyribose 5-phosphate and a nucleobase via 2-deoxyribose 1-phosphate through the reverse reactions of 2'-deoxyribonucleoside degradation. Coupling of the glycolytic pathway and deoxyriboaldolase-catalyzing reaction efficiently supplied 2-deoxyribose 5-phosphate, which is a key intermediate for 2'-deoxyribonucleoside synthesis. 2'-Deoxyinosine (9.9 mM) was produced from glucose, acetaldehyde, and adenine through three-step reactions via fructose 1,6-diphosphate and then 2-deoxyribose 5-phosphate, the molar yield as to glucose being 17.8%.

  1. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  2. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  3. Effects of electric stress on glucose metabolism, glucose-stimulated cyclic adenosine 3',5'-monophosphate accumulation and 45 Ca++ efflux in isolated pancreatic islets from rats fed with a high fat diet.

    PubMed

    Yamaguchi, K; Goko, H; Matsuoka, A

    1979-10-01

    The effects of the electric stress on glucose oxidation, cyclic adenosine 3', 5'-monophosphate (AMP) accumulation and 45Ca++ efflux in response to glucose were studied in pancreatic islets isolated from rats fed on a control (C) or a high fat diet (F) for 12 weeks. The half of rats on each diet were subjected to electrical shocks in the random time schedule for 1 hr per day for the last 3 weeks of the feeding period (group C-S and F-S). The remaining rats were not given any shocks (group C-NS and F-NS). The rats in F-S group had the high levels of plasma epinephrine, dopamine and blood glucose. The basal content of cyclic AMP after 20 min of incubation with 2.8 mM glucose was decreased in islets from F-S group without affecting insulin release. After 20 min of incubation with 25 mM glucose, the cyclic AMP content in islets from F-S group, which was identical with that in F-NS group, was only 50% of that in C-S group. Insulin release in response to high glucose was significantly inhibited in islets from F-S group. In spite of a remarkable increase of cyclic AMP content in islets from C-S group, insulin release did not differ from that in C-NS group. Glucose (16.7 mM)-stimulated 45Ca++ efflux from the perfused islets was greatly inhibited by the high fat diet rather than by stress. The rate of glucose oxidation with 16.7 mM glucose was decreased in islets from F-S group. It is suggested that the decreased insulin release in response to glucose provoked by the combined effects of the feeding of a high fat diet and electric stress may be mediated by changes of the adenylate cyclase-cyclic AMP system on the plasma membrane of the B-cell or be related to changes in glucose metabolism in islets.

  4. Enhanced Production of Polysaccharide Through the Overexpression of Homologous Uridine Diphosphate Glucose Pyrophosphorylase Gene in a Submerged Culture of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes).

    PubMed

    Ji, Sen-Lin; Liu, Rui; Ren, Meng-Fei; Li, Huan-Jun; Xu, Jun-Wei

    2015-01-01

    This study aimed to improve polysaccharide production by engineering the biosynthetic pathway in Ganoderma lucidum through the overexpression of the homologous UDP glucose pyrophosphorylase (UGP) gene. The effects of UGP gene overexpression on intracellular polysaccharide (IPS) content, extracellular polysaccharide (EPS) production, and transcription levels of 3 genes encoding the enzymes involved in polysaccharide biosynthesis, including phosphoglucomutase (PGM), UGP, and α-1,3-glucan synthase (GLS), were investigated. The maximum IPS content and EPS production in G. lucidum overexpressing the UGP gene were 24.32 mg/100 mg dry weight and 1.66 g/L, respectively, which were higher by 42% and 36% than those of the wild-type strain. The transcription levels of PGM, UGP, and GLS were up-regulated by 1.6, 2.6, and 2.4-fold, respectively, in the engineered strain, suggesting that increased polysaccharide biosynthesis may result from a higher expression of those genes.

  5. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds

    PubMed Central

    Marín-Aguilar, Fabiola; Pavillard, Luis E.; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D.

    2017-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases. PMID:28146060

  6. Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors.

    PubMed

    Dennis, Siobhan H; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G; Henley, Jeremy M; Mellor, Jack R

    2011-08-17

    Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca(2+), resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A(3) receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca(2+) also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A(3) receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection.

  7. Effect of guanosine 5'-diphosphate 3'-diphosphate and related nucleoside polyphosphates on induction of tryptophanase and beta-galactosidase in permeabilized cells of Escherichia coli.

    PubMed

    Yoshimoto, A; Oki, T; Inui, T

    1978-10-04

    Exogenous addition of guanosine and adenosine 5'-(mono, di and tri) phosphate 3'-diphosphates (pppGpp, ppGpp, pGpp, pppApp, ppApp and pApp) stimulated the synthesis of tryptophanase and beta-galactosidase in permeabilized cells of Escherichia coli. From the results obtained with ppGpp and pppApp, this effect appeared to be at a transcriptional level and depended greatly on the growth condition; the largest effect was observed in cells under shiftdown or grown on poor enrgy source. ppGpp and pppApp, unlike cyclic AMP, did not act to overcome the inhibition of enzyme induction by glucose, but in combination with cyclic AMP caused a synergistic stimulation effect. In the shiftdown cells, ppGpp and pppApp gave 30% or more stimulation effect on tryptophanase induction while cyclic AMP did not stimulate induction. There was therefore a pronounced difference between cyclic AMP and ppGpp or pppApp in stimulatory function.

  8. Neuroprotective effects of adenosine deaminase in the striatum

    PubMed Central

    Tamura, Risa; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-01-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  9. Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling.

    PubMed

    So, Wing Yan; Leung, Po Sing

    2016-09-01

    Irisin is a newly identified myokine that promotes the browning of white adipose tissue, enhances glucose uptake in skeletal muscle and modulates hepatic metabolism. However, the signaling pathways involved in the effects on hepatic glucose and lipid metabolism have not been resolved. This study aimed to examine the role of irisin in the regulation of hepatic glucose/lipid metabolism and cell survival, and whether adenosine monophosphate-activated protein kinase (AMPK), a master metabolic regulator in the liver, is involved in irisin's actions. Human liver-derived HepG2 cells were cultured in normal glucose-normal insulin (NGNI) or high glucose-high insulin (HGHI/insulin-resistant) condition. Hepatic glucose and lipid metabolism was evaluated by glucose output and glycogen content or triglyceride accumulation assays, respectively. Our results showed that irisin stimulated phosphorylation of AMPK and acetyl-CoA-carboxylase (ACC) via liver kinase B1 (LKB1) rather than Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) in HepG2 cells. Irisin ameliorated hepatic insulin resistance induced by HGHI condition. Irisin reduced hepatic triglyceride content and glucose output, but increased glycogen content, with those effects reversed by dorsomorphin, an AMPK inhibitor. Furthermore, irisin also stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and promoted cell survival in an AMPK-dependent manner. In conclusion, our data indicate that irisin ameliorates dysregulation of hepatic glucose/lipid metabolism and cell death in insulin-resistant states via AMPK activation. These findings reveal a novel irisin-mediated protective mechanism in hepatic metabolism which provides a scientific basis for irisin as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes mellitus.

  10. Fluorescence detection of adenosine triphosphate in an aqueous solution using a combination of copper(II) complexes.

    PubMed

    Kataev, Evgeny; Arnold, René; Rüffer, Tobias; Lang, Heinrich

    2012-08-06

    Fluorescent ligands have been designed to form ternary complexes with a Cu(II) cation and phosphates in a buffer solution at physiological pH 7.4. It has been shown that a combination of two different ligands and CuCl(2) allows one to achieve high adenosine triphosphate/adenosine diphosphate, adenosine 5'-monophosphate selectivity, and ratiometric fluorescence sensing, while separately each ligand complex does not have such properties.

  11. Turnover of adenosine in plasma of human and dog blood

    SciTech Connect

    Moeser, G.H.S.; Schrader, J.; Deussen, A.

    1989-04-01

    To determine half-life and turnover of plasma adenosine, heparinized blood from healthy volunteers was incubated with radiolabeled adenosine in the physiological concentration range of 0.1-1 microM. Plasma levels of adenosine in vitro were 82 +/- 14 nM and were similar to those determined immediately after blood collection with a ''stopping solution.'' Dipyridamole (83 microM) and erythro-9(2-hydroxynon-3yl)-adenine (EHNA) (8 microM) did not measurably alter basal adenosine levels but completely blocked the uptake of added adenosine. Inhibition of ecto-5'-nucleotidase with 100 microM alpha, beta-methyleneadenosine 5'-diphosphate (AOPCP) reduced plasma adenosine to 22 +/- 6 nM. For the determination of adenosine turnover, the decrease in specific radioactivity of added (/sup 3/H)adenosine was measured using a dipyridamole-containing stopping solution. Without altering basal adenosine levels, the half-life was estimated to be 0.6 s. Similar experiments were carried out with washed erythrocytes or in the presence of AOPCP, yielding half-lives of 0.7 and 0.9 s, respectively. When the initial adenosine concentration was 1 microM, its specific activity decreased by only 11% within 5 s, whereas total plasma adenosine exponentially decreased with a half-life of 1.5 s. Venous plasma concentrations were measured after relief of a 3-min forearm ischemia. Changes in plasma adenosine did not correlate well with changes in blood flow but were augmented in the presence of dipyridamole.

  12. Isopentenyl diphosphate and dimethylallyl diphosphate/isopentenyl diphosphate ratio measured with recombinant isopentenyl diphosphate isomerase and isoprene synthase.

    PubMed

    Zhou, Changfang; Li, Ziru; Wiberley-Bradford, Amy E; Weise, Sean E; Sharkey, Thomas D

    2013-09-15

    Isopentenyl diphosphate (IDP) and its isomer dimethylallyl diphosphate (DMADP) are building units for all isoprenoids; thus, intracellular pool sizes of IDP and DMADP play important roles in living organisms. Several methods have been used to quantify the amount of DMADP or the combined amount of IDP plus DMADP, but measuring the DMADP/IDP ratio has been difficult. In this study, a method was developed to measure the ratio of DMADP/IDP. Catalyzed by a recombinant IDP isomerase (IDI) together with a recombinant isoprene synthase (IspS), IDP was converted to isoprene, which was then detected by chemiluminescence. With this method, the in vitro equilibrium ratio of DMADP/IDP was found to be 2.11:1. IDP and DMADP pools were significantly increased in Escherichia coli transformed with methylerythritol 4-phosphate pathway genes; the ratio of DMADP/IDP was 3.85. An E. coli strain transformed with IspS but no additional IDI had a lower DMADP level and a DMADP/IDP ratio of 1.05. Approximately 90% of the IDP and DMADP pools in light-adapted kudzu leaves were light dependent and so presumably were located in the chloroplasts; the DMADP/IDP ratios in chloroplasts and cytosol were the same as the in vitro ratio (2.04 in the light and 2.32 in the dark).

  13. Enzymatic synthesis of isotopically labeled isoprenoid diphosphates.

    PubMed

    Christensen, D J; Poulter, C D

    1994-07-01

    Recombinant yeast isopentenyl diphosphate (IPP) isomerase and avian farnesyl diphosphate (FPP) synthase from overproducing strains of Escherichia coli were used to synthesize FPP from IPP and dimethylallyl diphosphate (DMAPP). [2,4,5-13C3]IPP and [2,4,5-13C3]DMAPP were synthesized from ethyl [2-13C]bromoacetate and [1,3-13C2]acetone. Thes compounds were used as substrates for enzymatic synthesis of FPP selectivity labeled at the first or third isoprene residue or at all three.

  14. Extracellular adenosine triphosphate and adenosine in cancer.

    PubMed

    Stagg, J; Smyth, M J

    2010-09-30

    Adenosine triphosphate (ATP) is actively released in the extracellular environment in response to tissue damage and cellular stress. Through the activation of P2X and P2Y receptors, extracellular ATP enhances tissue repair, promotes the recruitment of immune phagocytes and dendritic cells, and acts as a co-activator of NLR family, pyrin domain-containing 3 (NLRP3) inflammasomes. The conversion of extracellular ATP to adenosine, in contrast, essentially through the enzymatic activity of the ecto-nucleotidases CD39 and CD73, acts as a negative-feedback mechanism to prevent excessive immune responses. Here we review the effects of extracellular ATP and adenosine on tumorigenesis. First, we summarize the functions of extracellular ATP and adenosine in the context of tumor immunity. Second, we present an overview of the immunosuppressive and pro-angiogenic effects of extracellular adenosine. Third, we present experimental evidence that extracellular ATP and adenosine receptors are expressed by tumor cells and enhance tumor growth. Finally, we discuss recent studies, including our own work, which suggest that therapeutic approaches that promote ATP-mediated activation of inflammasomes, or inhibit the accumulation of tumor-derived extracellular adenosine, may constitute effective new means to induce anticancer activity.

  15. Activation of thiamin diphosphate in enzymes.

    PubMed

    Hübner, G; Tittmann, K; Killenberg-Jabs, M; Schäffner, J; Spinka, M; Neef, H; Kern, D; Kern, G; Schneider, G; Wikner, C; Ghisla, S

    1998-06-29

    Activation of the coenzyme ThDP was studied by measuring the kinetics of deprotonation at the C2 carbon of thiamin diphosphate in the enzymes pyruvate decarboxylase, transketolase, pyruvate dehydrogenase complex, pyruvate oxidase, in site-specific mutant enzymes and in enzyme complexes containing coenzyme analogues by proton/deuterium exchange detected by 1H-NMR spectroscopy. The respective deprotonation rate constant is above the catalytic constant in all enzymes investigated. The fast deprotonation requires the presence of an activator in pyruvate decarboxylase from yeast, showing the allosteric regulation of this enzyme to be accomplished by an increase in the C2-H dissociation rate of the enzyme-bound thiamin diphosphate. The data of the thiamin diphosphate analogues and of the mutant enzymes show the N1' atom and the 4'-NH2 group to be essential for the activation of the coenzyme and a conserved glutamate involved in the proton abstraction mechanism of the enzyme-bound thiamin diphosphate.

  16. Increased red cell calcium, decreased calcium adenosine triphosphatase, and altered membrane proteins during fava bean hemolysis in glucose-6-phosphate dehydrogenase-deficient (Mediterranean variant) individuals.

    PubMed

    Turrini, F; Naitana, A; Mannuzzu, L; Pescarmona, G; Arese, P

    1985-08-01

    RBCs from four glucose-6-phosphate dehydrogenase (G6PD)-deficient (Mediterranean variant) subjects were studied during fava bean hemolysis. In the density-fractionated RBC calcium level, Ca2+-ATPase activity, reduced glutathione level, and ghost protein pattern were studied. In the bottom fraction, containing most heavily damaged RBCs, calcium level ranged from 143 to 244 mumol/L RBCs (healthy G6PD-deficient controls: 17 +/- 5 mumol/L RBCs). The Ca2+-ATPase activity ranged from 0.87 to 1.84 mumol ATP consumed/g Hb/min (healthy G6PD-deficient controls: 2.27 +/- 0.4). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of ghosts showed: (1) the presence of high mol wt aggregates (in three cases they were reduced by dithioerythritol; in one case, only partial reduction was possible); (2) the presence of multiple, scattered new bands; and (3) the reduction of band 3. Oxidant-mediated damage to active calcium extrusion, hypothetically associated with increased calcium permeability, may explain the large increase in calcium levels. They, in turn, could activate calcium-dependent protease activity, giving rise to the profound changes in the ghost protein pattern.

  17. Chemoelectrical energy conversion of adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  18. Cloning and characterization of bifunctional enzyme farnesyl diphosphate/geranylgeranyl diphosphate synthase from Plasmodium falciparum

    PubMed Central

    2013-01-01

    Background Isoprenoids are the most diverse and abundant group of natural products. In Plasmodium falciparum, isoprenoid synthesis proceeds through the methyl erythritol diphosphate pathway and the products are further metabolized by farnesyl diphosphate synthase (FPPS), turning this enzyme into a key branch point of the isoprenoid synthesis. Changes in FPPS activity could alter the flux of isoprenoid compounds downstream of FPPS and, hence, play a central role in the regulation of a number of essential functions in Plasmodium parasites. Methods The isolation and cloning of gene PF3D7_18400 was done by amplification from cDNA from mixed stage parasites of P. falciparum. After sequencing, the fragment was subcloned in pGEX2T for recombinant protein expression. To verify if the PF3D7_1128400 gene encodes a functional rPfFPPS protein, its catalytic activity was assessed using the substrate [4-14C] isopentenyl diphosphate and three different allylic substrates: dimethylallyl diphosphate, geranyl diphosphate or farnesyl diphosphate. The reaction products were identified by thin layer chromatography and reverse phase high-performance liquid chromatography. To confirm the product spectrum formed of rPfFPPS, isoprenic compounds were also identified by mass spectrometry. Apparent kinetic constants KM and Vmax for each substrate were determined by Michaelis–Menten; also, inhibition assays were performed using risedronate. Results The expressed protein of P. falciparum FPPS (rPfFPPS) catalyzes the synthesis of farnesyl diphosphate, as well as geranylgeranyl diphosphate, being therefore a bifunctional FPPS/geranylgeranyl diphosphate synthase (GGPPS) enzyme. The apparent KM values for the substrates dimethylallyl diphosphate, geranyl diphosphate and farnesyl diphosphate were, respectively, 68 ± 5 μM, 7.8 ± 1.3 μM and 2.06 ± 0.4 μM. The protein is expressed constitutively in all intra-erythrocytic stages of P. falciparum, demonstrated by using transgenic

  19. Short-term exposure of platelets to glucose impairs inhibition of platelet aggregation by cyclooxygenase inhibitors.

    PubMed

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2011-01-01

    Aspirin treatment reduces cardiovascular events and deaths in high-risk non-diabetic patients, but not in patients suffering from diabetes. In these patients, hyperglycemia has been found to cause reduced platelet sensitivity to aspirin. It is supposed that long-term exposure of platelets to glucose leads to non-enzymatic glycosylation and impairs aspirin inhibition of platelet aggregation. On the other hand, short-term exposure of platelets to glucose also attenuates the effect of aspirin on platelets. The aim of the present work was to analyse the effect of short-term exposure of glucose on the inhibition of platelet aggregation by aspirin and other cyclooxygenase (COX) inhibitors. Already a 15 min exposure of platelets to glucose impaired aspirin inhibition of the platelet aggregation induced by collagen, thrombin, adenosine diphosphate (ADP), and arachidonic acid (AA). Aspirin inhibition of platelet aggregation in platelet-rich plasma (PRP) was attenuated by 5.6, 11.2, 16.8, and 22.4 mM of glucose in a concentration-dependent way. The same effect was observed with indomethacin and acetaminophen used as cyclooxygenase inhibitors instead of aspirin. N-methyl-L-arginine, an inhibitor of nitric oxide synthase, prevented the effect of glucose on aspirin, indomethacin and acetaminophen inhibition of platelet aggregation. Other monosaccharides, for example fructose and galactose, impaired aspirin inhibition as did glucose. Lactic acid (0.1, 0.2, 0.4, 0.8 mM), the end product of anaerobic glycolysis in platelets, impaired the inhibition of platelet aggregation with aspirin in a concentration-dependent way but did not affect indomethacin. It is suggested that lactic acid might be a mediator of the effect of glucose on aspirin inhibition in platelets.

  20. Purification and characterization of two fructose diphosphate aldolases from Escherichia coli (Crookes' strain)

    PubMed Central

    Stribling, Donald; Perham, Richard N.

    1973-01-01

    Two fructose diphosphate aldolases (EC 4.1.2.13) were detected in extracts of Escherichia coli (Crookes' strain) grown on pyruvate or lactate. The two enzymes can be resolved by chromatography on DEAE-cellulose at pH7.5, or by gel filtration on Sephadex G-200, and both have been obtained in a pure state. One is a typical bacterial aldolase (class II) in that it is strongly inhibited by metal-chelating agents and is reactivated by bivalent metal ions, e.g. Ca2+, Zn2+. It is a dimer with a molecular weight of approx. 70000, and the Km value for fructose diphosphate is about 0.85mm. The other aldolase is not dependent on metal ions for its activity, but is inhibited by reduction with NaBH4 in the presence of substrate. The Km value for fructose diphosphate is about 20μm (although the Lineweaver–Burk plot is not linear) and the enzyme is probably a tetramer with molecular weight approx. 140000. It has been crystallized. On the basis of these properties it is tentatively assigned to class I. The appearance of a class I aldolase in bacteria was unexpected, and its synthesis in E. coli is apparently favoured by conditions of gluconeogenesis. Only aldolase of class II was found in E. coli that had been grown on glucose. The significance of these results for the evolution of fructose diphosphate aldolases is briefly discussed. PMID:4198624

  1. Temporal variations of adenosine metabolism in human blood.

    PubMed

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yáñez, L; Aguilar-Roblero, R; Oksenberg, A; Vega-González, A; Villalobos, L; Rosenthal, L; Fernández-Cancino, F; Drucker-Colín, R; Díaz-Muñoz, M

    1996-08-01

    Eight diurnally active (06:00-23:00 h) subjects were adapted for 2 days to the room conditions where the experiments were performed. Blood sampling for adenosine metabolites and metabolizing enzymes was done hourly during the activity span and every 30 min during sleep. The results showed that adenosine and its catabolites (inosine, hypoxanthine, and uric acid), adenosine synthesizing (S-adenosylhomocysteine hydrolase and 5'-nucleotidase), degrading (adenosine deaminase) and nucleotide-forming (adenosine kinase) enzymes as well as adenine nucleotides (AMP, ADP, and ATP) undergo statistically significant fluctuations (ANOVA) during the 24 h. However, energy charge was invariable. Glucose and lactate chronograms were determined as metabolic indicators. The same data analyzed by the chi-square periodogram and Fourier series indicated ultradian oscillatory periods for all the metabolites and enzymatic activities determined, and 24-h oscillatory components for inosine, hypoxanthine, adenine nucleotides, glucose, and the activities of SAH-hydrolase, 5'-nucleotidase, and adenosine kinase. The single cosinor method showed significant oscillatory components exclusively for lactate. As a whole, these results suggest that adenosine metabolism may play a role as a biological oscillator coordinating and/or modulating the energy homeostasis and physiological status of erythrocytes in vivo and could be an important factor in the distribution of purine rings for the rest of the organism.

  2. Homeostatic effect of p-chloro-diphenyl diselenide on glucose metabolism and mitochondrial function alterations induced by monosodium glutamate administration to rats.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Chagas, Pietro M; da Rocha, Juliana T; Dobrachinski, Fernando; Carvalho, Nélson R; Soares, Félix A; da Luz, Sônia C Almeida; Nogueira, Cristina W

    2016-01-01

    The metabolic syndrome is a group of metabolic alterations considered a worldwide public health problem. Organic selenium compounds have been reported to have many different pharmacological actions, such as anti-hypercholesterolemic and anti-hyperglycemic. The aim of this study was to evaluate the effect of p-chloro-diphenyl diselenide (p-ClPhSe)2, an organic selenium compound, in a model of obesity induced by monosodium glutamate (MSG) administration in rats. The rats were treated during the first ten postnatal days with MSG and received (p-ClPhSe)2 (10 mg/kg, intragastrically) from 45th to 51 th postnatal day. Glucose, lipid and lactate levels were determined in plasma of rats. Glycogen levels and activities of tyrosine aminotransferase, hexokinase, citrate synthase and glucose-6-phosphatase (G-6-Pase) were determined in livers of rats. Renal G-6-Pase activity was also determined. The purine content [Adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate] and mitochondrial functionality in the liver were also investigated. p-(ClPhSe)2 did not alter the reduction in growth performance and in the body weight caused by MSG but reduced epididymal fat deposition of rats. p-(ClPhSe)2 restored glycemia, triglycerides, cholesterol and lactate levels as well as the glucose metabolism altered in rats treated with MSG. p-(ClPhSe)2 restored hepatic mitochondrial dysfunction and the decrease in citrate synthase activity and ATP and ADP levels caused by MSG in rats. In summary, (p-ClPhSe)2 had homeostatic effects on glucose metabolism and mitochondrial function alterations induced by MSG administration to rats.

  3. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  4. Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides.

    PubMed Central

    Cunha, R. A.; Correia-de-Sá, P.; Sebastião, A. M.; Ribeiro, J. A.

    1996-01-01

    1. In the present work, we investigated the action of adenosine originating from extracellular catabolism of adenine nucleotides, in two preparations where synaptic transmission is modulated by both inhibitory A1 and excitatory A(2a)-adenosine receptors, the rat hippocampal Schaffer fibres/CA1 pyramid synapses and the rat innervated hemidiaphragm. 2. Endogenous adenosine tonically inhibited synaptic transmission, since 0.5-2 u ml-1 of adenosine deaminase increased both the population spike amplitude (30 +/- 4%) and field excitatory post-synaptic potential (f.e.p.s.p.) slope (27 +/- 4%) recorded from hippocampal slices and the evoked [3H]-acetylcholine ([3H]-ACh) release from the motor nerve terminals (25 +/- 2%). 3. alpha, beta-Methylene adenosine diphosphate (AOPCP) in concentrations (100-200 microM) that almost completely inhibited the formation of adenosine from the extracellular catabolism of AMP, decreased population spike amplitude by 39 +/- 5% and f.e.p.s.p. slope by 32 +/- 3% in hippocampal slices and [3H]-ACh release from motor nerve terminals by 27 +/- 3%. 4. Addition of exogenous 5'-nucleotidase (5 u ml-1) prevented the inhibitory effect of AOPCP on population spike amplitude and f.e.p.s.p. slope by 43-57%, whereas the P2 antagonist, suramin (100 microM), did not modify the effect of AOPCP. 5. In both preparations, the effect of AOPCP resulted from prevention of adenosine formation since it was no longer evident when accumulation of extracellular adenosine was hindered by adenosine deaminase (0.5-2 u ml-1). The inhibitory effect of AOPCP was still evident when A1 receptors were blocked by 1,3-dipropyl-8-cyclopentylxanthine (2.5-5 nM), but was abolished by the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (10 microM). 6. These results suggest that adenosine originating from catabolism of released adenine nucleotides preferentially activates excitatory A2 receptors in hippocampal CAI pyramid synapses and in phrenic motor nerve endings. PMID:8886406

  5. Optical Aptasensors for Adenosine Triphosphate

    PubMed Central

    Ng, Stella; Lim, Hui Si; Ma, Qian; Gao, Zhiqiang

    2016-01-01

    Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives. PMID:27446501

  6. Fluorometric Determination of Adenosine Nucleotide Derivatives as Measures of the Microfouling, Detrital, and Sedimentary Microbial Biomass and Physiological Status

    PubMed Central

    Davis, William M.; White, David C.

    1980-01-01

    Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N6-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge. PMID:16345633

  7. How thiamine diphosphate is activated in enzymes.

    PubMed

    Kern, D; Kern, G; Neef, H; Tittmann, K; Killenberg-Jabs, M; Wikner, C; Schneider, G; Hübner, G

    1997-01-03

    The controversial question of how thiamine diphosphate, the biologically active form of vitamin B1, is activated in different enzymes has been addressed. Activation of the coenzyme was studied by measuring thermodynamics and kinetics of deprotonation at the carbon in the 2-position (C2) of thiamine diphosphate in the enzymes pyruvate decarboxylase and transketolase by use of nuclear magnetic resonance spectroscopy, proton/deuterium exchange, coenzyme analogs, and site-specific mutant enzymes. Interaction of a glutamate with the nitrogen in the 1'-position in the pyrimidine ring activated the 4'-amino group to act as an efficient proton acceptor for the C2 proton. The protein component accelerated the deprotonation of the C2 atom by several orders of magnitude, beyond the rate of the overall enzyme reaction. Therefore, the earlier proposed concerted mechanism or stabilization of a C2 carbanion can be excluded.

  8. Adenosine receptor neurobiology: overview.

    PubMed

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases.

  9. Adenosine receptors and diabetes: Focus on the A(2B) adenosine receptor subtype.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Gessi, Stefania

    2015-09-01

    Over the last two decades, diabetes mellitus has become one of the most challenging health problems worldwide. Diabetes mellitus, classified as type I and II, is a pathology concerning blood glucose level in the body. The nucleoside adenosine has long been known to affect insulin secretion, glucose homeostasis and lipid metabolism, through activation of four G protein coupled adenosine receptors (ARs), named A1, A2A, A2B and A3. Currently, the novel promising subtype to develop new drugs for diabetes treatment is the A2BAR subtype. The use of selective agonists and antagonists for A2BAR subtype in various diabetic animal models allowed us to identify several effects of A2BAR signaling in cell metabolism. In particular, the focus of this review is to summarize the studies on purinergic signaling associated with diabetes through A2BARs modulation.

  10. X-ray analysis of azido-thymidine diphosphate binding to nucleoside diphosphate kinase.

    PubMed

    Xu, Y; Sellam, O; Moréra, S; Sarfati, S; Biondi, R; Véron, M; Janin, J

    1997-07-08

    To be effective as antiviral agent, AZT (3'-azido-3'-deoxythymidine) must be converted to a triphosphate derivative by cellular kinases. The conversion is inefficient and, to understand why AZT diphosphate is a poor substrate of nucleoside diphosphate (NDP) kinase, we determined a 2.3-A x-ray structure of a complex with the N119A point mutant of Dictyostelium NDP kinase. It shows that the analog binds at the same site and, except for the sugar ring pucker which is different, binds in the same way as the natural substrate thymidine diphosphate. However, the azido group that replaces the 3'OH of the deoxyribose in AZT displaces a lysine side chain involved in catalysis. Moreover, it is unable to make an internal hydrogen bond to the oxygen bridging the beta- and gamma-phosphate, which plays an important part in phosphate transfer.

  11. Bacterial Cell Growth Inhibitors Targeting Undecaprenyl Diphosphate Synthase and Undecaprenyl Diphosphate Phosphatase.

    PubMed

    Wang, Yang; Desai, Janish; Zhang, Yonghui; Malwal, Satish R; Shin, Christopher J; Feng, Xinxin; Sun, Hong; Liu, Guizhi; Guo, Rey-Ting; Oldfield, Eric

    2016-10-19

    We synthesized a series of benzoic acids and phenylphosphonic acids and investigated their effects on the growth of Staphylococcus aureus and Bacillus subtilis. One of the most active compounds, 5-fluoro-2-(3-(octyloxy)benzamido)benzoic acid (7, ED50 ∼0.15 μg mL(-1) ) acted synergistically with seven antibiotics known to target bacterial cell-wall biosynthesis (a fractional inhibitory concentration index (FICI) of ∼0.35, on average) but had indifferent effects in combinations with six non-cell-wall biosynthesis inhibitors (average FICI∼1.45). The most active compounds were found to inhibit two enzymes involved in isoprenoid/bacterial cell-wall biosynthesis: undecaprenyl diphosphate synthase (UPPS) and undecaprenyl diphosphate phosphatase (UPPP), but not farnesyl diphosphate synthase, and there were good correlations between bacterial cell growth inhibition, UPPS inhibition, and UPPP inhibition.

  12. Intracerebral adenosine infusion improves neurological outcome after transient focal ischemia in rats.

    PubMed

    Kitagawa, Hisashi; Mori, Atsushi; Shimada, Jun; Mitsumoto, Yasuhide; Kikuchi, Tetsuro

    2002-04-01

    Second Institute of New Drug Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan In order to elucidate the role of adenosine in brain ischemia, the possible protective effects of adenosine on ischemic brain injury were investigated in a rat model of brain ischemia both in vitro and in vivo. Exogenous adenosine dose-dependently rescued cortical neuronal cells from injury after glucose deprivation in vitro. Adenosine (1 mM) also significantly reduced hypoglycemia/hypoxia-induced glutamate release from the hippocampal slice. In a rat model of transient middle cerebral artery occlusion (MCAO), extracellular adenosine concentration was increased immediately after occlusion, and then returned to the baseline by 30 min after reperfusion. Adenosine infusion through a microdialysis probe into the ipsilateral striatum (1 mM adenosine, 2 microl min(-1), total 4.5 h from the occlusion to 3 h after reperfusion) showed a significant improvement in the neurological outcome, and about 25% reduction of infarct volume, although the effect did not reach statistical significance, compared with the vehicle-treated group at 20 h after 90 min of MCAO. These results demonstrated the neuroprotective effect of adenosine against ischemic brain injury both in vitro and in vivo, suggesting the possible therapeutic application of adenosine regulating agents, which inhibit adenosine uptake or metabolism to enhance or maintain extracellular endogenous adenosine levels, for stroke treatment.

  13. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  14. The breakdown of adenosine triphosphate in the contraction cycle of the frog sartorius muscle

    PubMed Central

    Mommaerts, W. F. H. M.; Wallner, A.

    1967-01-01

    1. It is confirmed that a fluorodinitrobenzene (FDNB)-treated frog sartorius muscle does not split phosphorylcreatine in the course of its contraction cycle, but does use adenosine triphosphate (ATP). 2. Good stoicheiometric relations between the diminution of ATP and the formation of adenosine diphosphate (ADP), adenosine monophosphate (AMP) and phosphate are obtained, and in a 0·2 sec tetanus at 0° C the net break-down of ATP amounts to 0·27, the total equivalent break-down to 0·34 μmoles/g. 3. There is no difference in this quantity between muscles interrupted at the height of contraction and those that have also relaxed, and, in experiments specifically designed to determine relaxation metabolism separately, no such metabolism is found. Thus, all the ATP-break-down occurs in the contraction phase. PMID:6065882

  15. Adenosine and sleep

    SciTech Connect

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  16. Localization of Adenosine Triphosphatase Activity on the Chloroplast Envelope in Tendrils of Pisum sativum1

    PubMed Central

    Sabnis, Dinkar D.; Gordon, Mildred; Galston, Arthur W.

    1970-01-01

    When samples of pea tendril tissue were incubated in the Wachstein-Meisel medium for the demonstration of adenosine triphosphatases, deposits of lead reaction product were localized between the membranes of the chloroplast envelope. The presence of Mg2+ was necessary for adenosine triphosphatase activity, and Ca2+ could not substitute for this requirement. Varying the pH of incubation to 5.5 or 9.4 inhibited enzyme activity, as did the addition of p-chloromercuribenzoic acid or N-ethylmaleimide. The adenosine triphosphatase was apparently inactivated or degraded when the plants were grown in the dark for 24 hours prior to incubation. The enzyme was substrate-specific for adenosine triphosphate; no reaction was obtained with adenosine diphosphate, uridine triphosphate, inosine triphosphate, p-nitrophenyl phosphate, and sodium β-glycerophosphate. Sites of nonspecific depositions of lead are described. The adenosine triphosphatase on the chloroplast envelope may be involved in the light-induced contraction of this organelle. Images PMID:4245003

  17. Possible mechanism of adenosine protection in carbon tetrachloride acute hepatotoxicity. Role of adenosine by-products and glutathione peroxidase.

    PubMed

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Yáñez, L; Vidrio, S; Díaz-Muñoz, M

    1995-02-01

    Adenosine proved to be an effective hepatoprotector increasing the survival rate of rats receiving lethal doses of CCl4. Searching for the mechanism of action, we found that adenosine transiently prevents the necrotic liver damage associated to an acute CCl4 treatment. The antilipoperoxidative action of the nucleoside was evidenced by a decrease of TBA-reactive products and the diene conjugates elicited by the hepatotoxin. Adenosine's protective effect was demonstrated by reverting the decrease of cytochrome P-450 while preserved intact the activity of the microsomal enzyme glucose-6-phosphatase. CCl4 promoted an increase in the oxidant stress through an enhancement in oxidized glutathione levels. This action was also completely counteracted by the nucleoside. Adenosine was unable to prevent CCl4 activation and, even, increased .CCl3 formation in the presence of PBN in vivo. However, in the presence of the nucleoside, irreversible binding of 14CCl4 to the microsomal lipid fraction of the treated animals was decreased. These results suggest that adenosine protective action might be exerted at the level of the propagation reaction following CCl4 activation. Two possible mechanisms were associated to the nucleoside protection: (1) the peroxide-metabolyzed enzymes, GSH-per, showed a marked increase after 30 minutes of adenosine treatment, which was potentiated by the hepatotoxin, suggesting an important role of this enzyme in the nucleoside's action; (2) the adenosine catabolism induced an increase in uric acid level, and allopurinol, a purine metabolism inhibitor, prevented such elevation as well as the antilipoperoxidative action of adenosine and the increase of GSH-per associated with the nucleoside treatment. These facts strongly suggest that the protective effect elicited by adenosine is not a direct one, but rather is related to its catabolic products, such as uric acid, which has been recognized as a free radical scavenger.

  18. NMR-based quantification of organic diphosphates

    PubMed Central

    Lenevich, Stepan

    2010-01-01

    Phosphorylated compounds are ubiquitous in life. Given their central role, many such substrates and analogues have been prepared for subsequent evaluation. Prior to biological experiments, it is typically necessary to determine the concentration of the target molecule in solution. Here we describe a method where concentrations of stock solutions of organic diphosphates and bisphosphonates are quantified using 31P NMR spectroscopy with standard instrumentation using a capillary tube with a secondary standard. The method is specific and is applicable down to a concentration of 200 μM. The capillary tube provides the reference peak for quantification and deuterated solvent for locking. PMID:20833124

  19. A Versatile Photoactivatable Probe Designed to Label the Diphosphate Binding Site of Farnesyl Diphosphate Utilizing Enzymes

    PubMed Central

    Henry, Olivier; Lopez-Gallego, Fernando; Agger, Sean A.; Schmidt-Dannert, Claudia; Sen, Stephanie; Shintani, David; Cornish, Katrina; Distefano, Mark D.

    2009-01-01

    Farnesyl diphosphate (FPP) is a substrate for a diverse number of enzymes found in nature. Photoactive analogues of isoprenoid diphosphates containing either benzophenone, diazotrifluropropionate or azide groups have been useful for studying both the enzymes that synthesize FPP as well as those that employ FPP as a substrate. Here we describe the synthesis and properties of a new class of FPP analogues that links an unmodified farnesyl group to a diphosphate mimic containing a photoactive benzophenone moiety; thus, importantly, these compounds are photoactive FPP analogues that contain no modifications of the isoprenoid portion of the molecule that may interfere with substrate binding in the active site of an FPP utilizing enzyme. Two isomeric compounds containing meta- and para-substituted benzophenones were prepared. These two analogues inhibit S. cerevisiae protein farnesyltransferase (ScPFTase) with IC50 values of 5.8 (meta isomer) and 3.0 µM (para isomer); the more potent analogue, the para isomer, was shown to be a competitive inhibitor of ScPFTase with respect to FPP with a KI of 0.46 µM. Radiolabeled forms of both analogues selectively labelled the β-subunit of ScPFTase. The para isomer was also shown to label E. coli farnesyl diphosphate synthase and Drosophila melanogaster farnesyl diphosphate synthase. Finally, the para isomer was shown to be an alternative substrate for a sesquiterpene synthase from Nostoc sp. strain PCC7120, a cyanobacterial source; the compound also labeled the purified enzyme upon photolysis. Taken together, these results using a number of enzymes demonstrate that this new class of probes should be useful for a plethora of studies of FPP-utilizing enzymes. PMID:19447628

  20. Crystal structures of phosphoketolase: thiamine diphosphate-dependent dehydration mechanism.

    PubMed

    Suzuki, Ryuichiro; Katayama, Takane; Kim, Byung-Jun; Wakagi, Takayoshi; Shoun, Hirofumi; Ashida, Hisashi; Yamamoto, Kenji; Fushinobu, Shinya

    2010-10-29

    Thiamine diphosphate (ThDP)-dependent enzymes are ubiquitously present in all organisms and catalyze essential reactions in various metabolic pathways. ThDP-dependent phosphoketolase plays key roles in the central metabolism of heterofermentative bacteria and in the pentose catabolism of various microbes. In particular, bifidobacteria, representatives of beneficial commensal bacteria, have an effective glycolytic pathway called bifid shunt in which 2.5 mol of ATP are produced per glucose. Phosphoketolase catalyzes two steps in the bifid shunt because of its dual-substrate specificity; they are phosphorolytic cleavage of fructose 6-phosphate or xylulose 5-phosphate to produce aldose phosphate, acetyl phosphate, and H(2)O. The phosphoketolase reaction is different from other well studied ThDP-dependent enzymes because it involves a dehydration step. Although phosphoketolase was discovered more than 50 years ago, its three-dimensional structure remains unclear. In this study we report the crystal structures of xylulose 5-phosphate/fructose 6-phosphate phosphoketolase from Bifidobacterium breve. The structures of the two intermediates before and after dehydration (α,β-dihydroxyethyl ThDP and 2-acetyl-ThDP) and complex with inorganic phosphate give an insight into the mechanism of each step of the enzymatic reaction.

  1. Stroke and aspirin non-responder patients: relation with hypertension and platelet response to adenosine diphosphate.

    PubMed

    Godeneche, G; Sorel, N; Ragot, S; Chomel, J C; Neau, J P; Macchi, L

    2009-11-01

    Despite its widespread use, there are many concerns about the efficacy of aspirin in the secondary prevention of cardiovascular events after stroke, leading to the concept of aspirin non-response (ANR). Although the mechanisms of ANR remain uncertain, it is expected to be due to a combination of clinical, biological and genetic characteristics affecting platelet function. In this study, we investigated whether clinical and/or biological factors such as hypertension and platelet response to ADP could contribute to the ANR. As a secondary objective, we determine whether ANR and collagen/ADP closure time (CADP-CT) could be related to platelet glycoprotein single nucleotide polymorphisms (SNPs). One hundred patients on aspirin (160 mg/day) were enrolled. ANR was measured with a platelet function analyzer (PFA-100); genotyping of four SNPs (GP IIIa, GP Ia, P2Y12 and GP VI) was performed using a tetra-primer amplification refractory mutation system. Using a collagen/epinephrine-coated cartridge on the PFA-100, the prevalence of ANR was 15% (n = 15). In the ANR group, (i) CADP-CT was significantly shorter and (ii) hypertension was an independent clinical predictive factor of ANR (OR = 4.25; 95%CI: 1.06-17.11). No clear relation was found between CADT-CT and platelet gene polymorphism as well as ANR status and SNPs. In conclusion our study confirms the independent relationship between hypertension, platelet hypersensitivity to ADP and aspirin (160 mg/day) non-response. The differential sensitivity to aspirin may have potential clinical implications, where adaptation of antiplatelet therapy is necessary according to a patient's clinical and genetic characteristics.

  2. Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo.

    PubMed

    Alvarez-Gonzalez, R; Jacobson, M K

    1987-06-02

    Methods have been developed and applied to determine the size and branching frequency of polymers of ADP-ribose synthesized in nucleotide-permeable cultured mouse cells and in intact cultured cells. Polymers were purified by affinity chromatography with a boronate resin and were fractionated according to size molecular sieve high-performance liquid chromatography. Fractions were enzymatically digested to nucleotides, which were separated by strong anion exchange high-performance liquid chromatography. From these data, average polymer size and branching frequency were calculated. A wide range of polymer sizes was observed. Polymers as large as 190 residues with at least five points of branching per molecule were generated in vitro. Polymers of up to 67 residues containing up to two points of branching per molecule were isolated from intact cells following treatment with the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Cells treated with hyperthermia prior to DNA damage contained polymers of an average maximum size of 244 residues containing up to six points of branching per molecule. The detection of large polymers of ADP-ribose in intact cells suggests that alterations in chromatin organization effected by poly(ADP-ribosylation) may extend beyond the covalently modified proteins and very likely involve noncovalent interactions of poly(ADP-ribose) with other components of chromatin.

  3. Inhibitory effect of added adenosine diphosphate on palmitate oxidation in mitochondria from rat brain

    SciTech Connect

    Kawamura, N.

    1986-05-01

    It is generally accepted that fatty acids are poor substrates for the oxidation in brain because plasma fatty acids do not traverse the blood-brain barrier. However, a regional difference in the barrier suggests that fatty acids are available for oxidation. Why most of fatty acids are not oxidized is not certain. For this reason, regulation of oxidation of (1-/sup 14/C)palmitate (pal) in rat brain has been studied in nonsynaptic mitochondria (mit) prepared by use of Ficoll/sucrose density gradient. The authors found two contrasting oxidations with respect to ATP concentration; Type A at 2 mM and Type B at 0.5 mM. The rate of Type A was 50% of the level of B. Type A was inhibited by high levels of L-carnitine (car) and Mg/sup 2 +/. Added ADP inhibited Type A, but stimulated B. Addition of carboxyatractyloside was stimulatory for Type A, but inhibitory for B. The rate of Type A showed a downward curvature with increasing protein concentration while that of B showed a linear relationship. Addition of NH/sub 4//sup +/ to Type A stimulated the rate and reduced the inhibitory effects of both added ADP and high levels of car. These results suggest that under the normal level of ATP, the carnitine-dependent transport of pal is inhibited (thereby resulting in the inhibition in pal oxidation) by the transport of ADP into mit mediated by the ATP-ADP translocase, but that the inhibition is not observed under the specified conditions or regions where ATP levels are low or ammonia levels are high.

  4. Inhibition of aortic vessel adenosine diphosphate degradation by cadmium and mercury.

    PubMed

    Togna, G; Dolci, N; Caprino, L

    1984-01-01

    The effects of cadmium and mercury on ADP breakdown by vessel walls were investigated. These metals reduce the ADP clearance promoted by arterial tissue. This effect could be attributed to the inhibition of vessel wall ADP-ase enzyme, which plays an important role in the genesis of thrombotic phenomena.

  5. Rat cardiac myocyte adenosine transport and metabolism

    SciTech Connect

    Ford, D.A.; Rovetto, M.J.

    1987-01-01

    Based on the importance of myocardial adenosine and adenine nucleotide metabolism, the adenosine salvage pathway in ventricular myocytes was studied. Accurate estimates of transport rates, separate from metabolic fllux, were determined. Adenosine influx was constant between 3 and 60 s. Adenosine metabolism maintained intracellular adenosine concentrations < 10% of the extracellular adenosine concentrations and thus unidirectional influx could be measured. Myocytes transported adenosine via saturable and nonsaturable processes. A minimum estimate of the V/sub max/ of myocytic adenosine kinase indicated the saturable component of adenosine influx was independent of adenosine kinase activity. Saturable transport was inhibited by nitrobenzylthioinosine and verapamil. Extracellular adenosine taken up myocytes was rapidly phosphorylated to adenine taken up by myocytes was rapidly phosphorylated to adenine nucleotides. Not all extracellular adenosine, though, was phosphorylated on entering myocytes, since free, as opposed to protein-bound, intracellular adenosine was detected after digitonin extraction of cells in the presence of 1 mM ethylene-diaminetetraacetic acid.

  6. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  7. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase.

    PubMed

    Bergstrom, J D; Bostedor, R G; Masarachia, P J; Reszka, A A; Rodan, G

    2000-01-01

    Alendronate, a nitrogen-containing bisphosphonate, is a potent inhibitor of bone resorption used for the treatment and prevention of osteoporosis. Recent findings suggest that alendronate and other N-containing bisphosphonates inhibit the isoprenoid biosynthesis pathway and interfere with protein prenylation, as a result of reduced geranylgeranyl diphosphate levels. This study identified farnesyl disphosphate synthase as the mevalonate pathway enzyme inhibited by bisphosphonates. HPLC analysis of products from a liver cytosolic extract narrowed the potential targets for alendronate inhibition (IC(50) = 1700 nM) to isopentenyl diphosphate isomerase and farnesyl diphosphate synthase. Recombinant human farnesyl diphosphate synthase was inhibited by alendronate with an IC(50) of 460 nM (following 15 min preincubation). Alendronate did not inhibit isopentenyl diphosphate isomerase or GGPP synthase, partially purified from liver cytosol. Recombinant farnesyl diphosphate synthase was also inhibited by pamidronate (IC(50) = 500 nM) and risedronate (IC(50) = 3.9 nM), negligibly by etidronate (IC50 = 80 microM), and not at all by clodronate. In osteoclasts, alendronate inhibited the incorporation of [(3)H]mevalonolactone into proteins of 18-25 kDa and into nonsaponifiable lipids, including sterols. These findings (i) identify farnesyl diphosphate synthase as the selective target of alendronate in the mevalonate pathway, (ii) show that this enzyme is inhibited by other N-containing bisphosphonates, such as risendronate, but not by clodronate, supporting a different mechanism of action for different bisphosphonates, and (iii) document in purified osteoclasts alendronate inhibition of prenylation and sterol biosynthesis.

  8. Type II Isopentenyl Diphosphate Isomerase: Probing the Mechanism with Alkyne/Allene Diphosphate Substrate Analogues†

    PubMed Central

    Sharma, Nagendra K.; Pan, Jian-Jung; Poulter, C. Dale

    2010-01-01

    Isopentenyl diphosphate isomerase (IDI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the basic five-carbon building blocks of isoprenoid molecules. Two structurally unrelated classes of IDI are known. Type I IPP isomerase (IDI-1) utilizes a divalent metal in a protonation-deprotonation reaction. In contrast, the type II enzyme (IDI-2) requires reduced flavin, raising the possibility that the reaction catalyzed by IDI-2 involves the net addition/abstraction of a hydrogen atom. As part of our studies of the mechanism of isomerization for IDI-2, we synthesized allene and alkyne substrate analogues for the enzyme. These molecules are predicted to be substantially less reactive toward proton addition than IPP and DMAPP, but have similar reactivities toward hydrogen atom addition. This prediction was verified by calculations of gas phase heats of reaction for addition of a proton and of a hydrogen atom to 1-butyne (3) and 1,2-butadiene (4) to form the 1-buten-2-yl carbocation and radical, respectively, and related affinities for 2-methyl-1-butene (5) and 2-methyl-2-butene (6) using G3MP2B3 and CBS-QB3 protocols. Alkyne 1-OPP and allene 2-OPP were not substrates for Thermus thermophilus IDI-2 or Escherichia coli IDI-1, but instead were competitive inhibitors. The experimental and computational results are consistent with a protonation-deprotonation mechanism for the enzyme-catalyzed isomerization of IPP and DMAPP. PMID:20560533

  9. Studies on thiamine diphosphate-dependent enzymes.

    PubMed

    Leeper, F J; Hawksley, D; Mann, S; Perez Melero, C; Wood, M D H

    2005-08-01

    The 3-deaza analogue of TPP (thiamine diphosphate), a close mimic of the ylid intermediate, has been synthesized and is an extremely potent inhibitor of a variety of TPP-dependent enzymes, binding much more tightly than TPP itself. Results using deazaTPP complexed with the E1 subunit of PDH (pyruvate dehydrogenase) have led to a novel proposal about the mechanism of this enzyme. The 2-substituted forms of deazaTPP, which mimic other intermediates in the catalytic mechanism, can also be synthesized and 2-(1-hydroxyethyl)deazaTPP is also an extremely potent inhibitor of PDC (pyruvate decarboxylase). Attachment of such 2-substituents is expected to be a way to introduce selectivity in the inhibition of various TPP-dependent enzymes.

  10. Structure-Based Design, Synthesis, and Evaluation of 2'-(2-Hydroxyethyl)-2'-deoxyadenosine and the 5'-Diphosphate Derivative as Ribonucleotide Reductase Inhibitors

    SciTech Connect

    Sun, D.; Xu, H.; Wijerathna, S.R.; Dealwis, C.; Lee, R.E.

    2010-08-27

    Analysis of the recently solved X-ray crystal structures of Saccharomyces cerevisiae ribonucleotide reductase I (ScRnr1) in complex with effectors and substrates led to the discovery of a conserved water molecule located at the active site that interacted with the 2'-hydroxy group of the nucleoside ribose. In this study 2'-(2-hydroxyethyl)-2'-deoxyadenosine 1 and the 5'-diphosphate derivative 2 were designed and synthesized to see if the conserved water molecule could be displaced by a hydroxymethylene group, to generate novel RNR inhibitors as potential antitumor agents. Herein we report the synthesis of analogues 1 and 2, and the co-crystal structure of adenosine diphosphate analogue 2 bound to ScRnr1, which shows the conserved water molecule is displaced as hypothesized.

  11. Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution

    SciTech Connect

    Ogawa, Takuya; Yoshimura, Tohru; Hemmi, Hisashi

    2010-02-26

    The gene of (all-E) geranylfarnesyl diphosphate synthase that is responsible for the biosynthesis of methanophenazine, an electron carrier utilized for methanogenesis, was cloned from a methanogenic archaeon Methanosarcina mazei Goe1. The properties of the recombinant enzyme and the results of phylogenetic analysis suggest that the enzyme is closely related to (all-E) prenyl diphosphate synthases that are responsible for the biosynthesis of respiratory quinones, rather than to the enzymes involved in the biosynthesis of archaeal membrane lipids, including (all-E) geranylfarnesyl diphosphate synthase from a thermophilic archaeon.

  12. Neurochemical Measurement of Adenosine in Discrete Brain Regions of Five Strains of Inbred Mice

    PubMed Central

    Pani, Amar K.; Jiao, Yun; Sample, Kenneth J.; Smeyne, Richard J.

    2014-01-01

    Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754

  13. The mechanism of phosphorylation of natural nucleosides and anti-HIV analogues by nucleoside diphosphate kinase is independent of their sugar substituents.

    PubMed

    Hutter, Michael C; Helms, Volkhard

    2002-07-02

    The reaction mechanism of the phosphoryl transfer catalyzed by dinucleoside diphosphate kinase from Dictyostelium discoideum is investigated by semiempirical AM1 molecular orbital computation of an active site model system on the basis of various X-ray crystallographic structures. The computational results suggest that the phosphoryl transfer from adenosine triphosphate to the His122 residue is accompanied by the simultaneous shift of a proton from the histidine residue to one of the oxygen atoms of the gamma phosphate group. This involves a doubly protonated His122 residue whilst this residue is neutral in its ternary complex with ADP and the transition state analogue AlF(3). The proposed mechanism is thus analogous to that of phosphoryl transfer by cyclic adenosine monophosphate dependent protein kinase and uridine/cytidine monophosphate kinase as found in our earlier work and clarifies the role of the ribose 3'-OH group. Furthermore, the energetics of phosphoryl transfer onto other nucleoside analogues such as 3'-azido-3'-deoxythymidine-diphosphate and 2',3'-dideoxy-2',3'-didehydro-thymidine-diphosphate are investigated. The calculated reaction barriers for the phosphorylation of the diphosphates by the enzyme are all within a range of 13.1 kJ mol(-1), which suggests that variations in the activation energies alone cannot account for the experimentally observed differences in enzymatic activity. Consequences for the design of new anti-HIV nucleoside analogues are discussed. Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2268/2002/f360_s.pdf or from the author.

  14. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate.

    PubMed

    Schilmiller, Anthony L; Schauvinhold, Ines; Larson, Matthew; Xu, Richard; Charbonneau, Amanda L; Schmidt, Adam; Wilkerson, Curtis; Last, Robert L; Pichersky, Eran

    2009-06-30

    We identified a cis-prenyltransferase gene, neryl diphosphate synthase 1 (NDPS1), that is expressed in cultivated tomato (Solanum lycopersicum) cultivar M82 type VI glandular trichomes and encodes an enzyme that catalyzes the formation of neryl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. mRNA for a terpene synthase gene, phellandrene synthase 1 (PHS1), was also identified in these glands. It encodes an enzyme that uses neryl diphosphate to produce beta-phellandrene as the major product as well as a variety of other monoterpenes. The profile of monoterpenes produced by PHS1 is identical with the monoterpenes found in type VI glands. PHS1 and NDPS1 map to chromosome 8, and the presence of a segment of chromosome 8 derived from Solanum pennellii LA0716 causes conversion from the M82 gland monoterpene pattern to that characteristic of LA0716 plants. The data indicate that, contrary to the textbook view of geranyl diphosphate as the "universal" substrate of monoterpene synthases, in tomato glands neryl diphosphate serves as a precursor for the synthesis of monoterpenes.

  15. Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells.

    PubMed Central

    Disch, A; Hemmerlin, A; Bach, T J; Rohmer, M

    1998-01-01

    Study of the incorporation of 13C-labelled glucose or pyruvate into the isoprenoids of tobacco BY-2 cells allowed the biosynthetic origin of isopentenyl diphosphate to be determined. Sterols synthesized in the cytoplasm and the prenyl chain of ubiquinone Q10 located in mitochondria were derived from the same isopentenyl diphosphate pool, synthesized from acetyl-CoA through mevalonate, whereas the prenyl chain of plastoquinone was obtained from the mevalonate-independent glyceraldehyde 3-phosphate/pyruvate route, like all chloroplast isoprenoids from higher plants. These results are in accord with the compartmentation and complete enzymic independence of the biosynthesis of long-chain all-trans polyprenols in mitochondria and chloroplasts. PMID:9531505

  16. Properties of ribulose diphosphate carboxylase immobilized on porous glass

    NASA Technical Reports Server (NTRS)

    Shapira, J.; Hanson, C. L.; Lyding, J. M.; Reilly, P. J.

    1974-01-01

    Ribulose-1,5-diphosphate carboxylase from spinach has been bound to arylamine porous glass with a diazo linkage and to alklamine porous glass with glutaraldehyde. Stability at elevated temperatures and responses to changes of pH and ribulose-1,5-diphosphate, Mg(2+), and dithiothreitol concentrations were not significantly different from the soluble enzyme, though stability at 4 C was somewhat improved.

  17. Unique energetic properties of Adenosine Tri-Phosphate in comparison to similar compounds using density functional theory

    NASA Astrophysics Data System (ADS)

    Muraszko, Kevin; Halloran, Thomas; Malinovskaya, Svetlana; Leopold, Philip

    2015-05-01

    Adenosine Tri-Phosphate (ATP) is arguably the most critical compound to all life known on Earth, serving as the main energy transport and storage in cellular biology. Why in particular did nature ``choose'' ATP instead of a similar compound? We are seeking to answer this question by comparing the energetic properties of ATP to similar compounds. We discuss 3-D models for ATP, variants of the molecule based on all of the separate nucleobases, and ATP's twin molecule Adenosine Di-Phosphate. All calculations were done using Density Functional Theory. The results showed that purine compounds like Adenosine and Guanosine produce similar bond angles, making these viable unlike the other nucleobases. We have analyzed the chiral properties of ATP by comparing the ground-state-energies of ATP-cis and ATP-trans and have shown that ATP-cis is the more energetically favorable of the two. This is consistent with observations in nature.

  18. 3'-Phosphorylated nucleotides are tight binding inhibitors of nucleoside diphosphate kinase activity.

    PubMed

    Schneider, B; Xu, Y W; Janin, J; Véron, M; Deville-Bonne, D

    1998-10-30

    Nucleoside diphosphate (NDP) kinase catalyzes the phosphorylation of ribo- and deoxyribonucleosides diphosphates into triphosphates. NDP kinase is also involved in malignant tumors and was shown to activate in vitro transcription of the c-myc oncogene by binding to its NHE sequence. The structure of the complex of NDP kinase with bound ADP shows that the nucleotide adopts a different conformation from that observed in other phosphokinases with an internal H bond between the 3'-OH and the beta-O made free by the phosphate transfer. We use intrinsic protein fluorescence to investigate the inhibitory and binding potential of nucleotide analogues phosphorylated in 3'-OH position of the ribose to both wild type and F64W mutant NDP kinase from Dictyostelium discoideum. Due to their 3'-phosphate, 5'-phosphoadenosine 3'-phosphate (PAP) and adenosine 3'-phosphate 5'-phosphosulfate (PAPS) can be regarded as structural analogues of enzyme-bound ADP. The KD of PAPS (10 microM) is three times lower than the KD of ADP. PAPS also acts as a competitive inhibitor toward natural substrates during catalysis, with a KI in agreement with binding data. The crystal structure of the binary complex between Dictyostelium NDP kinase and PAPS was solved at 2.8-A resolution. It shows a new mode of nucleotide binding at the active site with the 3'-phosphate of PAPS located near the catalytic histidine, at the same position as the gamma-phosphate in the transition state. The sulfate group is directed toward the protein surface. PAPS will be useful for the design of high affinity drugs targeted to NDP kinases.

  19. Reexamination of magnetic isotope and field effects on adenosine triphosphate production by creatine kinase.

    PubMed

    Crotty, Darragh; Silkstone, Gary; Poddar, Soumya; Ranson, Richard; Prina-Mello, Adriele; Wilson, Michael T; Coey, J M D

    2012-01-31

    The influence of isotopically enriched magnesium on the creatine kinase catalyzed phosphorylation of adenosine diphosphate is examined in two independent series of experiments where adenosine triphosphate (ATP) concentrations were determined by a luciferase-linked luminescence end-point assay or a real-time spectrophotometric assay. No increase was observed between the rates of ATP production with natural Mg, (24)Mg, and (25)Mg, nor was any significant magnetic field effect observed in magnetic fields from 3 to 1,000 mT. Our results are in conflict with those reported by Buchachenko et al. [J Am Chem Soc 130:12868-12869 (2008)], and they challenge these authors' general claims that a large (two- to threefold) magnetic isotope effect is "universally observable" for ATP-producing enzymes [Her Russ Acad Sci 80:22-28 (2010)] and that "enzymatic phosphorylation is an ion-radical, electron-spin-selective process" [Proc Natl Acad Sci USA 101:10793-10796 (2005)].

  20. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    PubMed

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism.

  1. Glucose and fructose metabolism in Zymomonas anaerobia

    PubMed Central

    McGill, D. J.; Dawes, E. A.

    1971-01-01

    Isotopic and enzymic evidence indicates that Zymomonas anaerobia ferments glucose via the Entner–Doudoroff pathway. The molar growth yields with glucose (5.89) and fructose (5.0) are lower than those for the related organism Zymomonas mobilis and the observed linear growth suggests that energetically uncoupled growth occurs. A survey of enzymes of carbohydrate metabolism revealed the presence of weak phosphofructokinase and fructose 1,6-diphosphate aldolase activities but phosphoketolase, transketolase and transaldolase were not detected. Fermentation balances for glucose and fructose are reported; acetaldehyde accumulated in both fermentations, to a greater extent with fructose which also yielded glycerol and dihydroxyacetone as minor products. PMID:4259336

  2. Adenosine-Associated Delivery Systems

    PubMed Central

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  3. The A1 adenosine receptor as a new player in microglia physiology.

    PubMed

    Luongo, L; Guida, F; Imperatore, R; Napolitano, F; Gatta, L; Cristino, L; Giordano, C; Siniscalco, D; Di Marzo, V; Bellini, G; Petrelli, R; Cappellacci, L; Usiello, A; de Novellis, V; Rossi, F; Maione, S

    2014-01-01

    The purinergic system is highly involved in the regulation of microglial physiological processes. In addition to the accepted roles for the P2 X4,7 and P2 Y12 receptors activated by adenosine triphosphate (ATP) and adenosine diphosphate, respectively, recent evidence suggests a role for the adenosine A2A receptor in microglial cytoskeletal rearrangements. However, the expression and function of adenosine A1 receptor (A1AR) in microglia is still unclear. Several reports have demonstrated possible expression of A1AR in microglia, but a new study has refuted such evidence. In this study, we investigated the presence and function of A1AR in microglia using biomolecular techniques, live microscopy, live calcium imaging, and in vivo electrophysiological approaches. The aim of this study was to clarify the expression of A1AR in microglia and to highlight its possible roles. We found that microglia express A1AR and that it is highly upregulated upon ATP treatment. Moreover, we observed that selective stimulation of A1AR inhibits the morphological activation of microglia, possibly by suppressing the Ca(2+) influx induced by ATP treatment. Finally, we recorded the spontaneous and evoked activity of spinal nociceptive-specific neuron before and after application of resting or ATP-treated microglia, with or without preincubation with a selective A1AR agonist. We found that the microglial cells, pretreated with the A1AR agonist, exhibit lower capability to facilitate the nociceptive neurons, as compared with the cells treated with ATP alone.

  4. Lysine-21 of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase participates in substrate binding through charge-charge interaction.

    PubMed Central

    Lee, W. T.; Levy, H. R.

    1992-01-01

    Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PD) was isolated in high yield and purified to homogeneity from a newly constructed strain of Escherichia coli which lacks its own glucose 6-phosphate dehydrogenase gene. Lys-21 is one of two lysyl residues in the enzyme previously modified by the affinity labels pyridoxal 5'-phosphate and pyridoxal 5'-diphosphate-5'-adenosine, which are competitive inhibitors of the enzyme with respect to glucose 6-phosphate (LaDine, J.R., Carlow, D., Lee, W.T., Cross, R.L., Flynn, T.G., & Levy, H.R., 1991, J. Biol. Chem. 266, 5558-5562). K21R and K21Q mutants of the enzyme were purified to homogeneity and characterized kinetically to determine the function of Lys-21. Both mutant enzymes showed increased Km-values for glucose 6-phosphate compared to wild-type enzyme: 1.4-fold (NAD-linked reaction) and 2.1-fold (NADP-linked reaction) for the K21R enzyme, and 36-fold (NAD-linked reaction) and 53-fold (NADP-linked reaction) for the K21Q enzyme. The Km for NADP+ was unchanged in both mutant enzymes. The Km for NAD+ was increased 1.5- and 3.2-fold, compared to the wild-type enzyme, in the K21R and K21Q enzymes, respectively. For the K21R enzyme the kcat for the NAD- and NADP-linked reactions was unchanged. The kcat for the K21Q enzyme was increased in the NAD-linked reaction by 26% and decreased by 30% in the NADP-linked reaction from the values for the wild-type enzyme. The data are consistent with Lys-21 participating in the binding of the phosphate group of the substrate to the enzyme via charge-charge interaction. PMID:1304341

  5. Engineering the expression level of cytosolic nucleoside diphosphate kinase in transgenic Solanum tuberosum roots alters growth, respiration and carbon metabolism.

    PubMed

    Dorion, Sonia; Clendenning, Audrey; Rivoal, Jean

    2017-03-01

    Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme that catalyzes the transfer of the γ-phosphate from a donor nucleoside triphosphate to an acceptor nucleoside diphosphate. In this study we used a targeted metabolomic approach and measurement of physiological parameters to report the effects of the genetic manipulation of cytosolic NDPK (NDPK1) expression on physiology and carbon metabolism in potato (Solanum tuberosum) roots. Sense and antisense NDPK1 constructs were introduced in potato using Agrobacterium rhizogenes to generate a population of root clones displaying a 40-fold difference in NDPK activity. Root growth, O2 uptake, flux of carbon between sucrose and CO2 , levels of reactive oxygen species and some tricarboxylic acid cycle intermediates were positively correlated with levels of NDPK1 expression. In addition, NDPK1 levels positively affected UDP-glucose and cellulose contents. The activation state of ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was higher in antisense roots than in roots overexpressing NDPK1. Further analyses demonstrated that ADP-glucose pyrophosphorylase was more oxidized, and therefore less active, in sense clones than antisense clones. Consequently, antisense NDPK1 roots accumulated more starch and the starch to cellulose ratio was negatively affected by the level of NDPK1. These data support the idea that modulation of NDPK1 affects the distribution of carbon between starch and cellulose biosynthetic pathways.

  6. Isopentenyl diphosphate isomerase: A checkpoint to isoprenoid biosynthesis.

    PubMed

    Berthelot, Karine; Estevez, Yannick; Deffieux, Alain; Peruch, Frédéric

    2012-08-01

    Even if the isopentenyl diphosphate (IPP) isomerases have been discovered in the 50s, it is only in the last decade that the genetical, enzymatical, structural richness and cellular importance of this large family of crucial enzymes has been uncovered. Present in all living kingdoms, they can be classified in two subfamilies: type 1 and type 2 IPP isomerases, which show clearly distinct characteristics. They all perform the regulatory isomerization of isopentenyl diphosphate into dimethylallyl diphosphate, a key rate-limiting step of the terpenoid biosynthesis, via a protonation/deprotonation mechanism. Due to their importance in the isoprenoid metabolism and the increasing interest of industry devoted to terpenoid production, it is foreseen that the biotechnological development of such enzymes should be under intense scrutiny in the near future.

  7. Regulation of Ribulose Diphosphate Formation in Vivo by Light

    PubMed Central

    Klob, W.; Kandler, O.; Tanner, W.

    1972-01-01

    Light-dependent formation of ribulose-1,5 diphosphate is completely inhibited by low concentrations of 3-(3,4-dichlorophenyl)-1,1-dimethylurea which do not severely affect cyclic photophosphorylation. Also in Scenedesmus mutant number 11, capable of cyclic photophosphorylation, cellular ribulose-1,5 diphosphate-levels do not increase upon illumination. When mutant cells are H2 adapted, however, a light-dependent formation of ribulose-1,5 diphosphate is observed in the presence of H2. From these results it has been concluded that at least part of the Calvin cycle does not operate in the dark, since a reductant is lacking which is generated in the light. PMID:16658080

  8. Arginine kinase shows nucleoside diphosphate kinase-like activity toward deoxythymidine diphosphate.

    PubMed

    Lopez-Zavala, Alonso A; Sotelo-Mundo, Rogerio R; Hernandez-Flores, Jose M; Lugo-Sanchez, Maria E; Sugich-Miranda, Rocio; Garcia-Orozco, Karina D

    2016-06-01

    Arginine kinase (AK) (ATP: L-arginine phosphotransferase, E.C. 2.7.3.3) catalyzes the reversible transfer of ATP γ-phosphate group to L-arginine to synthetize phospho-arginine as a high-energy storage. Previous studies suggest additional roles for AK in cellular processes. Since AK is found only in invertebrates and it is homologous to creatine kinase from vertebrates, the objective of this work was to demonstrate nucleoside diphosphate kinase-like activity for shrimp AK. For this, AK from marine shrimp Litopenaeus vannamei (LvAK) was purified and its activity was assayed for phosphorylation of TDP using ATP as phosphate donor. Moreover, by using high-pressure liquid chromatography (HPLC) the phosphate transfer reaction was followed. Also, LvAK tryptophan fluorescence emission changes were detected by dTDP titration, suggesting that the hydrophobic environment of Trp 221, which is located in the top of the active site, is perturbed upon dTDP binding. The kinetic constants for both substrates Arg and dTDP were calculated by isothermal titration calorimetry (ITC). Besides, docking calculations suggested that dTDP could bind LvAK in the same cavity where ATP bind, and LvAK basic residues (Arg124, 126 and 309) stabilize the dTDP phosphate groups and the pyrimidine base interact with His284 and Ser122. These results suggest that LvAK bind and phosphorylate dTDP being ATP the phosphate donor, thus describing a novel alternate nucleoside diphosphate kinase-like activity for this enzyme.

  9. Ribulose diphosphate carboxylase/oxygenase. III. Isolation and properties.

    PubMed

    Ryan, F J; Tolbert, N E

    1975-06-10

    Similarities in properties of ribulose diphosphate carboxylase and oxygenase activities further substantiate the hypothesis that the same protein catalyzes both reactions. The Km (ribulose diphosphate) is 0.33 mM for the ribulose diphosphate oxygenase, when assayed in air with an oxygen electrode. Maximum activity is obtained with 10 to 35 mM MgCl2. Higher MgCl2 concentrations are inhibitory, but they shift the pH optimum from 9.3 or 9.4 to 8.7 or 9.0. MnCl2 is an effective cofactor of the oxygenase and some activity is obtained with CoCl2. Both the ribulose diphosphate carboxylase and oxygenase activity of the purified protein from spinach leaves are slowly inactivated by storage at 0 degrees and reactivated in 10 min at 50 degrees, provided both 25 mM MgCl2 and 1 mM dithiothreitol are present. The sulfhydryl groups of the enzyme which react rapidly with 5,5'-dithiobis(2-nitrobenzoic acid) are approximately 4 at pH 7.8 and 11 at pH 9.4. At both pH values ribulose diphosphate prevents two of these sulfhydryl groups from reacting with this reagent. About 50% inhibition of the oxygenase activity at pH 9.0 occurs with 50 mM bicarbonate in the presence of 3 mM ribulose diphosphate, and from variations in these parameters the inhibition is attributed to the CO2 species. The purified enzyme of acrylamide gels prevented the reduction of nitroblue tetrazolium in the presence of the superoxide radical, but the enzyme in solution did not react as a superoxide dismutase.

  10. Adenosine receptor targets for pain.

    PubMed

    Sawynok, J

    2016-12-03

    The main focus for the development of adenosine targets as analgesics to date has been A1Rs due to its antinociceptive profile in various preclinical pain models. The usefulness of systemic A1R agonists may be limited by other effects (cardiovascular, motor), but enhanced selectivity for pain might occur with partial agonists, potent and highly selective agonists, or allosteric modulators. A2AR agonists exhibit some peripheral pronociceptive effects, but also act on immune cells to suppress inflammation and on spinal glia to suppress pain signaling and may be useful for inflammatory and neuropathic pain. A2BR agonists exhibit peripheral proinflammatory effects on immune cells, but also spinal antinociceptive effects similar to A2AR agonists. A3Rs are now demonstrated to produce antinociception in several preclinical neuropathic pain models, with mechanistic actions on glial cells, and may be useful for neuropathic pain. Endogenous adenosine levels can be augmented by inhibition of metabolism (via adenosine kinase) or increased generation (via nucleotidases), and these approaches have implications for pain. Endogenous adenosine contributes to antinociception by several pharmacological agents, herbal remedies, acupuncture, transcutaneous electrical nerve stimulation, exercise, joint mobilization, and water immersion via spinal and/or peripheral effects, such that this system appears to constitute a major pain regulatory system. Finally, caffeine inhibits A1-, A2A- and A3Rs with similar potency, and dietary caffeine intake will need attention in trials of: (a) agonists and/or modulators acting at these receptors, (b) some pharmacological and herbal analgesics, and (c) manipulations that enhance endogenous adenosine levels, all of which are inhibited by caffeine and/or A1R antagonists in preclinical studies. All adenosine receptors have effects on spinal glial cells in regulating nociception, and gender differences in the involvement of such cells in chronic

  11. Characterization of ribulose diphosphate carboxylase and phosphoribulokinase from Thiobacillus thioparus and Thiobacillus neapolitanus.

    NASA Technical Reports Server (NTRS)

    Johnson, E. J.; Johnson, M. K.; Macelroy, R. D.

    1968-01-01

    Ribulose diphosphate carboxylase and phosphoribulokinase activity in chemosynthetic autotrophs Thiobacillus thioparus and Thiobacillus neapolitanus, noting sedimentation and gel filtration characteristics

  12. A review on the chemical synthesis of pyrophosphate bonds in bioactive nucleoside diphosphate analogs.

    PubMed

    Xu, Zhihong

    2015-09-15

    Currently, there is an ongoing interest in the synthesis of nucleoside diphosphate analogs as important regulators in catabolism/anabolism, and their potential applications as mechanistic probes and chemical tools for bioassays. However, the pyrophosphate bond formation step remains as the bottleneck. In this Digest, the chemical synthesis of the pyrophosphate bonds of representative bioactive nucleoside diphosphate analogs, i.e. phosphorus-modified analogs, nucleoside cyclic diphosphates, and nucleoside diphosphate conjugates, will be described.

  13. Biosynthesis of isoprenoids in Escherichia coli: stereochemistry of the reaction catalyzed by farnesyl diphosphate synthase.

    PubMed

    Leyes, A E; Baker, J A; Poulter, C D

    1999-10-07

    [formula: see text] Farnesyl diphosphate (FPP) synthase from Escherichia coli catalyzes the condensation of isopentenyl diphosphate (IPP) and geranyl diphosphate (GPP) with selective removal of the pro-R hydrogen at C2 of IPP, the same stereochemistry observed for the pig liver, yeast, and avian enzymes.

  14. Role of adenosine signalling and metabolism in β-cell regeneration

    SciTech Connect

    Andersson, Olov

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  15. Quercetin and sesamin protect neuronal PC12 cells from high-glucose-induced oxidation, nitrosative stress, and apoptosis.

    PubMed

    Bournival, Julie; Francoeur, Marc-André; Renaud, Justine; Martinoli, Maria-Grazia

    2012-06-01

    Complications of diabetes are now well-known to affect sensory, motor, and autonomic nerves. Diabetes is also thought to be involved in neurodegenerative processes characteristic of several neurodegenerative diseases. Indeed, it has been acknowledged recently that hyperglycemia-induced oxidative stress contributes to numerous cellular reactions typical of central nervous system deterioration. The goal of the present study was to evaluate the effects of the polyphenol quercetin and the lignan sesamin on high-glucose (HG)-induced oxidative damage in an in vitro model of dopaminergic neurons, neuronal PC12 cells. When incubated with HG (13.5 mg/mL), neuronal PC12 cells showed a significant increase of cellular death. Our results revealed that quercetin and sesamin defend neuronal PC12 cells from HG-induced cellular demise. An elevated level of reactive oxygen and nitrogen species is a consequence of improved oxidative stress after HG administration, and we demonstrated that this production diminishes with quercetin and sesamin treatment. We also found that quercetin and sesamin elicited an increment of superoxide dismutase activity. DNA fragmentation, Bax/Bcl-2 ratio, nuclear translocation of apoptosis-inducing factor, as well as poly(adenosine diphosphate [ADP]-ribose) polymerase cleavage were significantly reduced by quercetin and sesamin administration, affirming their antiapoptotic features. Also, HG treatment impacted caspase-3 cleavage, supporting caspase-3-dependent pathways as mechanisms of apoptotic death. Our results indicate a powerful role for these natural dietary compounds and emphasize preventive or complementary nutritional strategies for diabetes control.

  16. Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors.

    PubMed

    Bettendorff, Lucien; Wins, Pierre

    2009-06-01

    Prokaryotes, yeasts and plants synthesize thiamin (vitamin B1) via complex pathways. Animal cells capture the vitamin through specific high-affinity transporters essential for internal thiamin homeostasis. Inside the cells, thiamin is phosphorylated to higher phosphate derivatives. Thiamin diphosphate (ThDP) is the best-known thiamin compound because of its role as an enzymatic cofactor. However, in addition to ThDP, at least three other thiamin phosphates occur naturally in most cells: thiamin monophosphate, thiamin triphosphate (ThTP) and the recently discovered adenosine thiamin triphosphate. It has been suggested that ThTP has a specific neurophysiological role, but recent data favor a much more basic metabolic function. During amino acid starvation, Escherichia coli accumulate ThTP, possibly acting as a signal involved in the adaptation of the bacteria to changing nutritional conditions. In animal cells, ThTP can phosphorylate some proteins, but the physiological significance of this mechanism remains unknown. Adenosine thiamin triphosphate, recently discovered in E. coli, accumulates during carbon starvation and might act as an alarmone. Among the proteins involved in thiamin metabolism, thiamin transporters, thiamin pyrophosphokinase and a soluble 25-kDa thiamin triphosphatase have been characterized at the molecular level, in contrast to thiamin mono- and diphosphatases whose specificities remain to be proven. A soluble enzyme catalyzing the synthesis of adenosine thiamin triphosphate from ThDP and ADP or ATP has been partially characterized in E. coli, but the mechanism of ThTP synthesis remains elusive. The data reviewed here illustrate the complexity of thiamin biochemistry, which is not restricted to the cofactor role of ThDP.

  17. Structure of nucleoside diphosphate kinase from pacific shrimp (Litopenaeus vannamei) in binary complexes with purine and pyrimidine nucleoside diphosphates.

    PubMed

    López-Zavala, Alonso A; Quintero-Reyes, Idania E; Carrasco-Miranda, Jesús S; Stojanoff, Vivian; Weichsel, Andrzej; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R

    2014-09-01

    Nucleoside diphosphate kinase (NDK; EC 2.7.4.6) is an enzyme that catalyzes the third phosphorylation of nucleoside diphosphates, leading to nucleoside triphosphates for DNA replication. Expression of the NDK from Litopenaeus vannamei (LvNDK) is known to be regulated under viral infection. Also, as determined by isothermal titration calorimetry, LvNDK binds both purine and pyrimidine deoxynucleoside diphosphates with high binding affinity for dGDP and dADP and with no heat of binding interaction for dCDP [Quintero-Reyes et al. (2012), J. Bioenerg. Biomembr. 44, 325-331]. In order to investigate the differences in selectivity, LvNDK was crystallized as binary complexes with both acceptor (dADP and dCDP) and donor (ADP) phosphate-group nucleoside diphosphate substrates and their structures were determined. The three structures with purine or pyrimidine nucleotide ligands are all hexameric. Also, the binding of deoxy or ribonucleotides is similar, as in the former a water molecule replaces the hydrogen bond made by Lys11 to the 2'-hydroxyl group of the ribose moiety. This allows Lys11 to maintain a catalytically favourable conformation independently of the kind of sugar found in the nucleotide. Because of this, shrimp NDK may phosphorylate nucleotide analogues to inhibit the viral infections that attack this organism.

  18. Structure of nucleoside diphosphate kinase from pacific shrimp (Litopenaeus vannamei) in binary complexes with purine and pyrimidine nucleoside diphosphates

    PubMed Central

    López-Zavala, Alonso A.; Quintero-Reyes, Idania E.; Carrasco-Miranda, Jesús S.; Stojanoff, Vivian; Weichsel, Andrzej; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R.

    2014-01-01

    Nucleoside diphosphate kinase (NDK; EC 2.7.4.6) is an enzyme that catalyzes the third phosphorylation of nucleoside diphosphates, leading to nucleoside triphosphates for DNA replication. Expression of the NDK from Litopenaeus vannamei (LvNDK) is known to be regulated under viral infection. Also, as determined by isothermal titration calorimetry, LvNDK binds both purine and pyrimidine deoxynucleoside diphosphates with high binding affinity for dGDP and dADP and with no heat of binding interaction for dCDP [Quintero-Reyes et al. (2012 ▶), J. Bioenerg. Biomembr. 44, 325–331]. In order to investigate the differences in selectivity, LvNDK was crystallized as binary complexes with both acceptor (dADP and dCDP) and donor (ADP) phosphate-group nucleoside diphosphate substrates and their structures were determined. The three structures with purine or pyrimidine nucleotide ligands are all hexameric. Also, the binding of deoxy or ribonucleotides is similar, as in the former a water molecule replaces the hydrogen bond made by Lys11 to the 2′-hydroxyl group of the ribose moiety. This allows Lys11 to maintain a catalytically favourable conformation independently of the kind of sugar found in the nucleotide. Because of this, shrimp NDK may phosphorylate nucleotide analogues to inhibit the viral infections that attack this organism. PMID:25195883

  19. Adenosine accelerates the healing of diabetic ischemic ulcers by improving autophagy of endothelial progenitor cells grown on a biomaterial

    PubMed Central

    Chen, Wen; Wu, Yangxiao; Li, Li; Yang, Mingcan; Shen, Lei; Liu, Ge; Tan, Ju; Zeng, Wen; Zhu, Chuhong

    2015-01-01

    Endothelial progenitor cells (EPCs) seeded on biomaterials can effectively promote diabetic ischemic wound healing. However, the function of transplanted EPCs is negatively affected by a high-glucose and ischemic microenvironment. Our experiments showed that EPC autophagy was inhibited and mitochondrial membrane potential (MMP) was increased in diabetic patients, while adenosine treatment decreased the energy requirements and increased the autophagy levels of EPCs. In animal experiments, we transplanted a biomaterial seeded with EPCs onto the surface of diabetic wounds and found that adenosine-stimulated EPCs effectively promoted wound healing. Increased microvascular genesis and survival of the transplanted cells were also observed in the adenosine-stimulated groups. Interestingly, our study showed that adenosine increased the autophagy of the transplanted EPCs seeded onto the biomaterial and maintained EPC survival at 48 and 96 hours. Moreover, we observed that adenosine induced EPC differentiation through increasing the level of autophagy. In conclusion, our study indicated that adenosine-stimulated EPCs seeded onto a biomaterial significantly improved wound healing in diabetic mice; mechanistically, adenosine might maintain EPC survival and differentiation by increasing high glucose-inhibited EPC autophagy and maintaining cellular energy metabolism. PMID:26108983

  20. The Effect of Endogenous Adenosine on Neuronal Activity in Rats: An FDG PET Study

    PubMed Central

    Paul, Soumen; Zhang, Dali; Mzengeza, Shadreck; Ko, Ji Hyun

    2016-01-01

    ABSTRACT 2–18F‐fluorodeoxy‐D‐glucose (FDG) is a glucose analog that is taken up by cells and phosphorylated. The amount of FDG accumulated by cells is a measure of the rate of glycolysis, which reflects cellular activity. As the levels and actions of the neuromodulator adenosine are dynamically regulated by neuronal activity, this study was designed to test whether endogenous adenosine affects tissue accumulation of FDG as assessed by positron emission tomography (PET) or by postmortem analysis of tissue radioactivity. Rats were given an intraperitoneal injection of the adenosine A1 receptor antagonist 8‐cyclopentyl‐1,3‐dipropyl‐xanthine (DPCPX, 3 mg/kg), the adenosine kinase inhibitor ABT‐702 (3 mg/kg), or vehicle 10 minutes prior to an intravenous injection of FDG (15.4 ± 0.7 MBq per rat). Rats were then subjected to a 15 minute static PET scan. Reconstructed images were normalized to FDG PET template for rats and standard uptake values (SUVs) were calculated. To examine the regional effect of active treatment compared to vehicle, statistical parametric mapping analysis was performed. Whole‐brain FDG uptake was not affected by drug treatment. Significant regional hypometabolism was detected, particularly in cerebellum, of DPCPX‐ and ABT‐702 treated rats, relative to vehicle‐treated rats. Thus, endogenous adenosine can affect FDG accumulation although this effect is modest in quiescent rats. PMID:27082948

  1. Coupling between catalysis and oligomeric structure in nucleoside diphosphate kinase.

    PubMed

    Mesnildrey, S; Agou, F; Karlsson, A; Bonne, D D; Véron, M

    1998-02-20

    A dimeric Dictyostelium nucleoside diphosphate kinase has been stabilized by the double mutation P100S-N150stop which targets residues involved in the trimer interface (Karlsson, A., Mesnildrey, S., Xu, Y., Moréra, S., Janin, J., and Veron, M. (1996) J. Biol. Chem. 271, 19928-19934). The reassociation of this dimeric form into a hexamer similar to the wild-type enzyme is induced by the presence of a nucleotide substrate. Equilibrium sedimentation and gel filtration experiments, as well as enzymatic activity measurements, show that reactivation of the enzyme closely parallels its reassociation. A phosphorylatable intermediate with low activity participates in the association pathway while the dimeric form is shown totally devoid of enzymatic activity. Our results support the hypothesis that different oligomeric species of nucleoside diphosphate kinase are involved in different cellular processes where the enzymatic activity is not required.

  2. Bacopa monniera recombinant mevalonate diphosphate decarboxylase: Biochemical characterization.

    PubMed

    Abbassi, Shakeel J; Vishwakarma, Rishi K; Patel, Parth; Kumari, Uma; Khan, Bashir M

    2015-08-01

    Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 μM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+).

  3. Phentolamine prevents the adverse effects of adenosine on glycolysis and mechanical function in isolated working rat hearts subjected to antecedent ischemia.

    PubMed

    Finegan, B A; Gandhi, M; Clanachan, A S

    2000-06-01

    Adenosine inhibits glycolysis from exogenous glucose, reduces proton production and enhances post-ischemic left ventricular minute work (LV work) following ischemia in isolated working rat hearts perfused with glucose and fatty acids. In hearts partially depleted of glycogen by antecedent ischemic stress (AIS)--two cycles of ischemia (10 min) and reperfusion (5 min)--adenosine stimulates rather than inhibits glycolysis, increases proton production and worsens recovery of post-ischemic LV work. We determined if the switch in adenosine effect on glycolysis and recovery of LV work following ischemia in hearts subject to AIS was due to the reduction in glycogen content per se or because of alpha-adrenoceptor stimulation. One series of hearts underwent a 35-min period of substrate-free Langendorff perfusion (substrate-free glycogen depletion; SFGD) and a second series of hearts was subjected to AIS. Both series of hearts had a similar glycogen content (approximately 70 micromol/g dry wt) prior to drug treatment. In SFGD hearts perfused aerobically, adenosine (500 microM) inhibited glycolysis from exogenous glucose and reduced proton production. In SFGD hearts reperfused after prolonged ischemia, adenosine exerted similar effects on glucose metabolism and enhanced recovery of post-ischemic LV work (87.2 +/- 2.2% of preischemic values) relative to untreated hearts (25.9 +/- 13.3% of preischemic values). In AIS hearts perfused aerobically or subject to ischemia and reperfusion, phentolamine (1 microM) given in combination with adenosine, prevented adenosine-induced stimulation of glycolysis from exogenous glucose and reduced calculated proton production from glucose. Recoveries of post-ischemic LV work in AIS hearts for untreated, adenosine, phentolamine and adenosine/phentolamine groups were 34.4 +/- 11.4%, 8.6 +/- 3.9%, 16.3 +/- 13.5% and 73.2 +/- 13.1% respectively, of preischemic values. Glycogen depletion in the absence of ischemia does not switch the effect of

  4. Adenosine signalling mediates the anti-inflammatory effects of the COX-2 inhibitor nimesulide.

    PubMed

    Caiazzo, Elisabetta; Maione, Francesco; Morello, Silvana; Lapucci, Andrea; Paccosi, Sara; Steckel, Bodo; Lavecchia, Antonio; Parenti, Astrid; Iuvone, Teresa; Schrader, Jürgen; Ialenti, Armando; Cicala, Carla

    2016-07-15

    Extracellular adenosine formation from ATP is controlled by ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) and ecto-5'-nucleotidase (e-5NT/CD73); the latter converts AMP to adenosine and inorganic phosphate, representing the rate limiting step controlling the ratio between extracellular ATP and adenosine. Evidence that cellular expression and activity of CD39 and CD73 may be subject to changes under pathophysiological conditions has identified this pathway as an endogenous modulator in several diseases and was shown to be involved in the molecular mechanism of drugs, such as methotrexate, salicylates , interferon-β. We evaluated whether CD73/adenosine/A2A signalling pathway is involved in nimesulide anti-inflammatory effect, in vivo and in vitro. We found that the adenosine A2A agonist, 4-[2-[[6-amino-9-(N-ethyl-β-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS21680, 2mg/kg ip.), inhibited carrageenan-induced rat paw oedema and the effect was reversed by co-administration of the A2A antagonist -(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385; 3mg/kg i.p.). Nimesulide (5mg/kg i.p.) anti-inflammatory effect was inhibited by pre-treatment with ZM241385 (3mg/kg i.p.) and by local administration of the CD73 inhibitor, adenosine 5'-(α,β-methylene)diphosphate (APCP; 400μg/paw). Furthermore, we found increased activity of 5'-nucleotidase/CD73 in paws and plasma of nimesulide treated rats, 4h following oedema induction. In vitro, the inhibitory effect of nimesulide on nitrite and prostaglandin E2 production by lipopolysaccharide-activated J774 cell line was reversed by ZM241385 and APCP. Furthermore, nimesulide increased CD73 activity in J774 macrophages while it did not inhibit nitrite accumulation by lipopolysaccharide-activated SiRNA CD73 silenced J774 macrophages. Our data demonstrate that the anti-inflammatory effect of nimesulide in part is mediated by CD73

  5. Responsiveness of renal glomeruli to adenosine in streptozotocin-induced diabetic rats dependent on hyperglycaemia level.

    PubMed

    Szczepańska-Konkel, M; Jankowski, M; Stiepanow-Trzeciak, A; Rudzik, A; Pawełczyk, T; Angielski, S

    2003-03-01

    Glomerular filtration rate (GFR) in response to adenosine precursor, NAD, and glomeruli contractility in response to adenosine were evaluated in streptozotocin-induced diabetic rats with severe (blood glucose 27.8 +/- 1.2 mmol/L) and moderate hyperglycaemia (18.2 +/- 0.9 mmol/L) compared with nondiabetic (ND)-rats. In anaesthetised rats, basal GFR was greater in moderately diabetic rats compared with severely diabetic rats (p < 0.05) and ND-rats (p < 0.02). Intravenous infusion of 5 nmol x min(-1) x kg(-1) NAD reduced GFR and renal plasma flow (RPF) in diabetic rats but had no effect on these parameters in ND-rats. Moreover, NAD-induced reduction of GFR and RPF was greater in rats with severe diabetes (41% and 30%, respectively) than in with moderate diabetes (25% and 26%, respectively). Theophylline (0.2 micromol x min(-1) x kg(-1) ) abolished renal response to NAD. Isolated glomeruli contraction in response to adenosine, assessed by glomerular 3H-inulin space reduction, was lowered in moderately diabetic-group and enhanced in severely diabetic-group. compared with ND-group (p < 0.05). Adenosine A1-receptor antagonist DPCPX inhibited adenosine-induced glomeruli contraction. This differential response of diabetic renal glomeruli to adenosine suggests that impaired glomerular contractility in response to adenosine could be responsible for hyperfiltration in moderate diabets, whereas, the increased adenosine-dependent contractility of glomeruli in severe diabetes may increase the risk of acute renal failure in this condition.

  6. Sodium-glucose cotransport

    PubMed Central

    Poulsen, Søren Brandt; Fenton, Robert A.; Rieg, Timo

    2017-01-01

    Purpose of review Sodium-glucose cotransporters (SGLTs) are important mediators of glucose uptake across apical cell membranes. SGLT1 mediates almost all sodium-dependent glucose uptake in the small intestine, while in the kidney SGLT2, and to a lesser extent SGLT1, account for more than 90% and nearly 3%, respectively, of glucose reabsorption from the glomerular ultrafiltrate. Although the recent availability of SGLT2 inhibitors for the treatment of diabetes mellitus has increased the number of clinical studies, this review has a focus on mechanisms contributing to the cellular regulation of SGLTs. Recent findings Studies have focused on the regulation of SGLT expression under different physiological/pathophysiological conditions, for example diet, age or diabetes mellitus. Several studies provide evidence of SGLT regulation via cyclic adenosine monophosphate/protein kinase A, protein kinase C, glucagon-like peptide 2, insulin, leptin, signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, mitogen-activated protein kinases (MAPKs), nuclear factor-kappaB (NF-kappaB), with-no-K[Lys] kinases/STE20/SPS1-related proline/alanine-rich kinase (Wnk/SPAK) and regulatory solute carrier protein 1 (RS1) pathways. Summary SGLT inhibitors are important drugs for glycemic control in diabetes mellitus. Although the contribution of SGLT1 for absorption of glucose from the intestine as well as SGLT2/SGLT1 for renal glucose reabsorption has been comprehensively defined, this review provides an up-to-date outline for the mechanistic regulation of SGLT1/SGLT2. PMID:26125647

  7. Pathological overproduction: the bad side of adenosine.

    PubMed

    Borea, Pier Andrea; Gessi, Stefania; Merighi, Stefania; Vincenzi, Fabrizio; Varani, Katia

    2017-03-02

    Adenosine is an endogenous ubiquitous purine nucleoside, which is increased by hypoxia, ischaemia and tissue damage and mediates a number of physiopathological effects by interacting with four GPCRs, identified as A1 , A2A , A2B and A3 . Physiological and acutely increased adenosine is mostly associated with beneficial effects that include vasodilatation and a decrease in inflammation. In contrast, chronic overproduction of adenosine occurs in important pathological states, where long-lasting increases in the nucleoside levels are responsible for the bad side of adenosine associated with chronic inflammation, fibrosis and organ damage. In this review, we describe and critically discuss the pathological overproduction of adenosine and analyse when, where and how adenosine exerts its detrimental effects throughout the body.

  8. Torsades de pointes after adenosine administration.

    PubMed

    Teodorovich, Nicholay; Margolin, Elena; Kogan, Yonatan; Paz, Ofir; Swissa, Moshe

    2016-01-01

    Adenosine can produce arrhythmias, which are generally short living. It may induce PACs and PVCs, sinus bradycardia, and atrial fibrillation. There have been reports of transient polymorphic VT (torsades de pointes) in patients with LQTS and others in people with normal QT interval. We report a case of a long episode of polymorphic VT induced by adenosine. A 27 year old woman received 6 mg adenosine for PSVT, which terminated and torsades de pointes developed, persisting for 17 seconds and terminated spontaneously. This is the longest described duration of the torsades after adenosine administration in patients with normal QT interval.

  9. Resistance to aspirin is increased by ST-elevation myocardial infarction and correlates with adenosine diphosphate levels

    PubMed Central

    Borna, Catharina; Lazarowski, Eduardo; van Heusden, Catharina; Öhlin, Hans; Erlinge, David

    2005-01-01

    Background To be fully activated platelets are dependent on two positive feedback loops; the formation of thromboxane A2 by cyclooxygenase in the platelets and the release of ADP. We wanted to evaluate the effect of aspirin on platelet function in patients with acute coronary syndromes and we hypothesized that increased levels of ADP in patients with acute coronary syndromes could contribute to aspirin resistance. Methods Platelet activity in 135 patients admitted for chest pain was assessed with PFA-100. An epinephrine-collagen cartridge (EPI-COLL) was used for the detection of aspirin resistance together with an ADP-collagen cartridge (ADP-COLL). ADP was measured with hplc from antecubital vein samples. Three subgroups were compared: chest pain with no sign of cardiac disease (NCD), NonST-elevation myocardial infarction (NSTEMI) and STEMI. Results Platelet activation was increased for the STEMI group compared NCD. Aspirin resistance defined as <193 sec in EPI-COLL was 9.7 % in NCD, and increased to 26.0 % (n.s.) in NSTEMI and 83.3 % (p < 0.001) in STEMI. Chronic aspirin treatment significantly reduced platelet aggregation in NCD and NSTEMI, but it had no effect in STEMI. Plasma levels of ADP were markedly increased in STEMI (905 ± 721 nmol/l, p < 0.01), but not in NSTEMI (317 ± 245), compared to NCD (334 ± 271, mean ± SD). ADP levels correlated with increased platelet activity measured with ADP-COLL (r = -0.30, p < 0.05). Aspirin resistant patients (EPI-COLL < 193 sec) had higher ADP levels compared to aspirin responders (734 ± 807 vs. 282 ± 187 nmol/l, mean ± SD, p < 0.05). Conclusion Platelets are activated and aspirin resistance is more frequent in STEMI, probably due to a general activation of platelets. ADP levels are increased in STEMI and correlates with platelet activation. Increased levels of ADP could be one reason for increased platelet activity and aspirin resistance. PMID:16045804

  10. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  11. Poly(glycidyl methacrylate-co-N-methylolacrylamide-co-ethylene dimethacrylate) monolith coupled to high-performance liquid chromatography for the determination of adenosine phosphates in royal jelly.

    PubMed

    Liu, Dan; Zhang, Tianbin; Cheng, Yechun; Jia, Qiong

    2014-07-01

    A polymer monolith microextraction method coupled with high-performance liquid chromatography was developed for the determination of adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate. The monolithic column was synthesized inside fused-silica capillaries using thermal initiation free-radical polymerization with glycidyl methacrylate as the monomer, ethylene dimethacrylate as the cross-linker, cyclohexanol, and 1-dodecanol as the porogen. N-Methylolacrylamide, an important hydrophilic monomer, was incorporated into the polymerization mixture to enhance the hydrophilicity of the poly(glycidyl methacrylate-co-ethylene dimethacrylate) column. The obtained poly(glycidyl methacrylate-co-N-methylolacrylamide-co-ethylene dimethacrylate) monolith was characterized by scanning electron microscopy, Fourier-transform infrared spectra, and X-ray photoelectron spectroscopy. Optimum conditions for the preconcentration and separation of the target adenosines were also investigated. Under the optimum conditions, we obtained acceptable linearities, low limits of detection, and good relative standard deviations. The developed polymer monolith microextraction with high-performance liquid chromatography method exhibited a good performance with recovery values in the range of 76.9-104.7% when applied to the determination of the adenosines in five royal jelly samples.

  12. Electrochemical aptasensor for the detection of adenosine by using PdCu@MWCNTs-supported bienzymes as labels.

    PubMed

    Wu, Dan; Ren, Xiang; Hu, Lihua; Fan, Dawei; Zheng, Yang; Wei, Qin

    2015-12-15

    A highly sensitive electrochemical adenosine aptasensor was fabricated by covalently immobilizing 3'-NH2-terminated capture probe (SSDNA1) and thionine (TH) on Au-GS modified glassy carbon electrode. 3'-SH-terminated adenosine aptamer (SSDNA2) was adsorbed onto palladium/copper alloyed supported on MWCNTs (PdCu@MWCNTs)-conjugated multiple bienzymes, glucose oxidase (GOx), and horseradish peroxidase (HRP) (SSDNA2/PdCu@MWCNTs/HRP/GOx). Then, it was immobilized onto the electrode surface through the hybridization between the adenosine aptamer and the capture probe. The signal was amplified based on the gradual electrocatalytic reduction of GOx-generated hydrogen peroxide by the multiple HRP through the mediating ability of the loaded multiple TH. However, the peak current of TH decreased in the presence of adenosine because the interaction between adenosine and its aptamer made SSDNA2/PdCu@MWCNTs/HRP/GOx release from the modified electrode. Various experimental parameters have been optimized for the detection of adenosine and tests for selectivity, reproducibility and stability have also been performed. Under the optimal condition, the proposed aptasensor displayed a wide linear range (10-400 nM) with the low detection limit (2.5 nM), which has been applied in human serum samples with satisfactory results. Thus, the combination of Au-GS as a sensor platform and PdCu@MWCNTs/HRP/GOx as labels can be a promising amplification strategy for highly sensitive adenosine detection.

  13. Domain relationships in thiamine diphosphate-dependent enzymes.

    PubMed

    Duggleby, Ronald G

    2006-08-01

    Three-dimensional structures have been determined for 13 different enzymes that use thiamine diphosphate (ThDP) as a cofactor. These enzymes fall into five families, where members within a family have similar structures. In different families, there are similarities between some domains that clearly point to a common ancestor for all of these enzymes. Where the enzyme structures differ, evolutionary relationships between families can be discerned. Here, I present an analysis of these families and propose an evolutionary pathway to explain the diversity of structures that are now known.

  14. Nuclear magnetic resonance-based quantification of organic diphosphates.

    PubMed

    Lenevich, Stepan; Distefano, Mark D

    2011-01-15

    Phosphorylated compounds are ubiquitous in life. Given their central role, many such substrates and analogs have been prepared for subsequent evaluation. Prior to biological experiments, it is typically necessary to determine the concentration of the target molecule in solution. Here we describe a method where concentrations of stock solutions of organic diphosphates and bisphosphonates are quantified using (31)P nuclear magnetic resonance (NMR) spectroscopy with standard instrumentation using a capillary tube with a secondary standard. The method is specific and is applicable down to a concentration of 200 μM. The capillary tube provides the reference peak for quantification and deuterated solvent for locking.

  15. Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors.

    PubMed

    Panjehpour, Mojtaba; Karami-Tehrani, Fatemeh

    2007-01-01

    Adenosine modulates the proliferation, survival, and apoptosis of many different cell types. The present study was performed to investigate the role of adenosine receptors in the human breast cancer cell lines MCF-7 and MDA-MB468. The biological effects of adenosine on the cells were analyzed by adenylyl cyclase and cell viability assay as well as RT-PCR of adenosine receptors. RT-PCR results show the expression of the transcript of all adenosine receptors in both cell lines. By using adenosine and selective adenosine receptor agonists or antagonists, we found that A3 stimulation reduced cell viability, which was abolished by pretreatment with A3 receptor antagonist. Moreover, we demonstrated that adenosine (natural agonist) triggers a cytotoxic signal via A3 receptor activation that was not seen for other subclasses of adenosine receptors. Intracellular cAMP concentration was changed significantly only for A3 and A2B receptor-selective agonists, which indicates the functional form of these receptors on the cell surface. In conclusion, our findings revealed the role of adenosine receptors in breast cancer cell lines on growth modulation role of A3 and functional form of A2B, although its involvement in cell growth modulation was not seen. Theses findings as well as data by others may provide a possible application of adenosine receptor agonists/antagonists in breast malignancies.

  16. Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina

    SciTech Connect

    Braas, K.M.; Zarbin, M.A.; Snyder, S.H.

    1987-06-01

    Using specific sensitive antisera against adenosine, we have immunocytochemically localized endogenous adenosine to specific layers of rat, guinea pig, monkey, and human retina. Highest adenosine immunoreactivity was observed in ganglion cells and their processes in the optic nerve fiber layer. Substantial staining was also found throughout the inner plexiform layer and in select cells in the inner nuclear layer. Adenosine A1 receptors, labeled with the agonists L-(/sup 3/H)phenylisopropyladenosine and /sup 125/I-labeled hydroxy-phenylisopropyladenosine, were autoradiographically localized. The highest levels of binding sites occurred in the nerve fiber, ganglion cell, and inner plexiform layers of the retina in all the species examined. The distribution of adenosine A1 receptor sites closely parallels that of retinal neurons and fibers containing immunoreactive adenosine. These results suggest a role for endogenous adenosine as a coneurotransmitter in ganglion cells and their fibers in the optic nerve.

  17. Structure and Function of a "Head-to-Middle" Prenyltransferase: Lavandulyl Diphosphate Synthase.

    PubMed

    Liu, Meixia; Chen, Chun-Chi; Chen, Lu; Xiao, Xiansha; Zheng, Yingying; Huang, Jian-Wen; Liu, Weidong; Ko, Tzu-Ping; Cheng, Ya-Shan; Feng, Xinxin; Oldfield, Eric; Guo, Rey-Ting; Ma, Yanhe

    2016-04-04

    We report the first X-ray structure of the unique "head-to-middle" monoterpene synthase, lavandulyl diphosphate synthase (LPPS). LPPS catalyzes the condensation of two molecules of dimethylallyl diphosphate (DMAPP) to form lavandulyl diphosphate, a precursor to the fragrance lavandulol. The structure is similar to that of the bacterial cis-prenyl synthase, undecaprenyl diphosphate synthase (UPPS), and contains an allylic site (S1) in which DMAPP ionizes and a second site (S2) which houses the DMAPP nucleophile. Both S-thiolo-dimethylallyl diphosphate and S-thiolo-isopentenyl diphosphate bind intact to S2, but are cleaved to (thio)diphosphate, in S1. His78 (Asn in UPPS) is essential for catalysis and is proposed to facilitate diphosphate release in S1, while the P1 phosphate in S2 abstracts a proton from the lavandulyl carbocation to form the LPP product. The results are of interest since they provide the first structure and structure-based mechanism of this unusual prenyl synthase.

  18. Cloning, Expression, and Characterization of cis-Polyprenyl Diphosphate Synthase from the Thermoacidophilic Archaeon Sulfolobus acidocaldarius

    PubMed Central

    Hemmi, Hisashi; Yamashita, Satoshi; Shimoyama, Takefumi; Nakayama, Toru; Nishino, Tokuzo

    2001-01-01

    cis-polyprenyl diphosphate synthases are involved in the biosynthesis of the glycosyl carrier lipid in most organisms. However, only little is known about this enzyme of archaea. In this report, we isolated the gene of cis-polyprenyl diphosphate synthase from a thermoacidophilic archaeon, Sulfolobus acidocaldarius, and characterized the recombinant enzyme. PMID:11114943

  19. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis.

    PubMed

    Dong, Ting; Xu, Zheng-Yi; Park, Youngmin; Kim, Dae Heon; Lee, Yongjik; Hwang, Inhwan

    2014-05-01

    The phytohormone abscisic acid (ABA) is crucial for plant growth and adaptive responses to various stress conditions. Plants continuously adjust the ABA level to meet physiological needs, but how ABA homeostasis occurs is not fully understood. This study provides evidence that UGT71B6, an ABA uridine diphosphate glucosyltransferase (UGT), and its two closely related homologs, UGT71B7 and UGT71B8, play crucial roles in ABA homeostasis and in adaptation to dehydration, osmotic stress, and high-salinity stresses in Arabidopsis (Arabidopsis thaliana). UGT RNA interference plants that had low levels of these three UGT transcripts displayed hypersensitivity to exogenous ABA and high-salt conditions during germination and exhibited a defect in plant growth. However, the ectopic expression of UGT71B6 in the atbg1 (for β-glucosidase) mutant background aggravated the ABA-deficient phenotype of atbg1 mutant plants. In addition, modulation of the expression of the three UGTs affects the expression of CYP707A1 to CYP707A4, which encode ABA 8'-hydroxylases; four CYP707As were expressed at higher levels in the UGT RNA interference plants but at lower levels in the UGT71B6:GFP-overexpressing plants. Based on these data, this study proposes that UGT71B6 and its two homologs play a critical role in ABA homeostasis by converting active ABA to an inactive form (abscisic acid-glucose ester) depending on intrinsic cellular and environmental conditions in plants.

  20. Comparative transcriptome analysis of Bacillus subtilis responding to dissolved oxygen in adenosine fermentation.

    PubMed

    Yu, Wen-Bang; Gao, Shu-Hong; Yin, Chun-Yun; Zhou, Ying; Ye, Bang-Ce

    2011-01-01

    Dissolved oxygen (DO) is an important factor for adenosine fermentation. Our previous experiments have shown that low oxygen supply in the growth period was optimal for high adenosine yield. Herein, to better understand the link between oxygen supply and adenosine productivity in B. subtilis (ATCC21616), we sought to systematically explore the effect of DO on genetic regulation and metabolism through transcriptome analysis. The microarrays representing 4,106 genes were used to study temporal transcript profiles of B. subtilis fermentation in response to high oxygen supply (agitation 700 r/min) and low oxygen supply (agitation 450 r/min). The transcriptome data analysis revealed that low oxygen supply has three major effects on metabolism: enhance carbon metabolism (glucose metabolism, pyruvate metabolism and carbon overflow), inhibit degradation of nitrogen sources (glutamate family amino acids and xanthine) and purine synthesis. Inhibition of xanthine degradation was the reason that low oxygen supply enhanced adenosine production. These provide us with potential targets, which can be modified to achieve higher adenosine yield. Expression of genes involved in energy, cell type differentiation, protein synthesis was also influenced by oxygen supply. These results provided new insights into the relationship between oxygen supply and metabolism.

  1. Improving nucleoside diphosphate kinase for antiviral nucleotide analogs activation.

    PubMed

    Gallois-Montbrun, Sarah; Schneider, Benoit; Chen, Yuxing; Giacomoni-Fernandes, Veronique; Mulard, Laurence; Morera, Solange; Janin, Joel; Deville-Bonne, Dominique; Veron, Michel

    2002-10-18

    Antiviral nucleoside analog therapies rely on their incorporation by viral DNA polymerases/reverse transcriptase leading to chain termination. The analogs (3'-deoxy-3'-azidothymidine (AZT), 2',3'-didehydro-2',3'-dideoxythymidine (d4T), and other dideoxynucleosides) are sequentially converted into triphosphate by cellular kinases of the nucleoside salvage pathway and are often poor substrates of these enzymes. Nucleoside diphosphate (NDP) kinase phosphorylates the diphosphate derivatives of the analogs with an efficiency some 10(4) lower than for its natural substrates. Kinetic and structural studies of Dictyostelium and human NDP kinases show that the sugar 3'-OH, absent from all antiviral analogs, is required for catalysis. To improve the catalytic efficiency of NDP kinase on the analogs, we engineered several mutants with a protein OH group replacing the sugar 3'-OH. The substitution of Asn-115 in Ser and Leu-55 in His results in an NDP kinase mutant with an enhanced ability to phosphorylate antiviral derivatives. Transfection of the mutant enzyme in Escherichia coli results in an increased sensitivity to AZT. An x-ray structure at 2.15-A resolution of the Dictyostelium enzyme bearing the serine substitution in complex with the R(p)-alpha-borano-triphosphate derivative of AZT shows that the enhanced activity reflects an improved geometry of binding and a favorable interaction of the 3'-azido group with the engineered serine.

  2. [Interaction of pyruvate dehydrogenase complex from the heart muscle with thiamine diphosphate and its derivatives].

    PubMed

    Strumilo, S A; Kiselevskiĭ, Iu V; Taranda, N I; Zabrodskaia, S V; Oparin, D A

    1989-01-01

    Inhibitory effects of 23 thiamin derivatives on the bovine heart pyruvate dehydrogenase complex (PDC) were studied. Oxythiamin diphosphate and tetrahydroxythiamin diphosphate exhibited the most pronounced effect on the PDC activity, affecting the complex by a competitive type of inhibition for thiamin diphosphate (TDP). The apparent affinity of TDP and the anticoenzyme derivatives for apo PDC depended on presence of phosphate and divalent metal ions. Phosphate considerably increased the Km values for TDP (up to 0.17 microM) and the Ki values for oxythiamin diphosphate (0.40 microM) as well as for tetrahydroxythiamin diphosphate (0.23 microM). In presence of Mn2+, Km value for TDP was 3.5-fold lower as compared with Mg2+ containing medium.

  3. Halobacterial adenosine triphosphatases and the adenosine triphosphatase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, Hordur; Sadler, Martha H.; Hochstein, Lawrence I.

    1986-01-01

    Membranes prepared from various members of the genus Halobacterium contained a Triton X-l00 activated adenosine triphosphatase. The enzyme from Halobacterium saccharovorum was unstable in solutions of low ionic strength and maximally active in the presence of 3.5 M NaCl. A variety of nucleotide triphosphates was hydrolyzed. MgADP, the product of ATP hydrolysis, was not hydrolyzed and was a competitive inhibitor with respect to MgATP. The enzyme from H. saccharovorum was composed of at least 2 and possibly 4 subunits. The 83-kDa and 60-kDa subunits represented about 90 percent of total protein. The 60-kDa subunit reacted with dicyclohexyl-carbodiimide when inhibition was carried out in an acidic medium. The enzyme from H. saccharovorum, possesses properties of an F(1)F(0) as well as an E(1)E(2) ATPase.

  4. Reexamination of magnetic isotope and field effects on adenosine triphosphate production by creatine kinase

    PubMed Central

    Crotty, Darragh; Silkstone, Gary; Poddar, Soumya; Ranson, Richard; Prina-Mello, Adriele; Wilson, Michael T.; Coey, J. M. D.

    2012-01-01

    The influence of isotopically enriched magnesium on the creatine kinase catalyzed phosphorylation of adenosine diphosphate is examined in two independent series of experiments where adenosine triphosphate (ATP) concentrations were determined by a luciferase-linked luminescence end-point assay or a real-time spectrophotometric assay. No increase was observed between the rates of ATP production with natural Mg, 24Mg, and 25Mg, nor was any significant magnetic field effect observed in magnetic fields from 3 to 1,000 mT. Our results are in conflict with those reported by Buchachenko et al. [J Am Chem Soc 130:12868–12869 (2008)], and they challenge these authors’ general claims that a large (two- to threefold) magnetic isotope effect is “universally observable” for ATP-producing enzymes [Her Russ Acad Sci 80:22–28 (2010)] and that “enzymatic phosphorylation is an ion-radical, electron-spin-selective process” [Proc Natl Acad Sci USA 101:10793–10796 (2005)]. PMID:22198842

  5. 8-Thioalkyl-adenosine derivatives inhibit Listeria monocytogenes NAD kinase through a novel binding mode.

    PubMed

    Paoletti, Julie; Assairi, Liliane; Gelin, Muriel; Huteau, Valérie; Nahori, Marie-Anne; Dussurget, Olivier; Labesse, Gilles; Pochet, Sylvie

    2016-11-29

    Increased resistance of pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials. Biosynthetic pathways of several cofactors important for bacterial growth, such as nicotinamide adenine dinucleotide phosphate (NADP), have been proposed as a promising source of antibiotic targets. Nicotinamide adenine dinucleotide kinases (NADK; EC 2.7.1.23) are attractive for inhibitor development, since they catalyze the phosphorylation of NAD to NADP, which is an essential step of NADP metabolism. We previously synthesized diadenosine derivatives that inhibited NADK from two human pathogens, Listeria monocytogenes and Staphylococcus aureus, in the micromolar range. They behave as NAD mimics with the 5',5'-diphosphate group substituted by a 8,5' thioglycolic bridge. In an attempt to improve inhibitory potency, we designed new NAD mimics based on a single adenosine moiety harboring a larger derivatization attached to the C8 position and a small group at the 5' position. Here we report the synthesis of a series of 8-thioalkyl-adenosine derivatives containing various aryl and heteroaryl moieties and their evaluation as inhibitors of L. monocytogenes NADK1, S. aureus NADK and their human counterpart. Novel, sub-micromolar inhibitors of LmNADK1 were identified. Surprisingly, most LmNADK1 inhibitors demonstrated a high selectivity index against the close staphylococcal ortholog and the human NADK. Structural characterization of enzyme-inhibitor complexes revealed the original binding mode of these novel NAD mimics.

  6. Platelet aggregation and serum adenosine deaminase (ADA) activity in pregnancy associated with diabetes, hypertension and HIV.

    PubMed

    Leal, Claudio A M; Leal, Daniela B R; Adefegha, Stephen A; Morsch, Vera M; da Silva, José E P; Rezer, João F P; Schrekker, Clarissa M L; Abdalla, Faida H; Schetinger, Maria R C

    2016-07-01

    Platelet aggregation and adenosine deaminase (ADA) activity were evaluated in pregnant women living with some disease conditions including hypertension, diabetes mellitus and human immunodeficiency virus infection. The subject population is consisted of 15 non-pregnant healthy women [control group (CG)], 15 women with normal pregnancy (NP), 7 women with hypertensive pregnancy (HP), 10 women with gestational diabetes mellitus (GDM) and 12 women with human immunodeficiency virus-infected pregnancy (HIP) groups. The aggregation of platelets was checked using an optical aggregometer, and serum ADA activity was determined using the colorimetric method. After the addition of 5 µM of agonist adenosine diphosphate, the percentage of platelet aggregation was significantly (p < 0·05) increased in NP, HP, GDM and HIP groups when compared with the CG, while the addition of 10 µM of the same agonist caused significant (p < 0·05) elevations in HP, GDM and HIP groups when compared with CG. Furthermore, ADA activity was significantly (p < 0·05) enhanced in NP, HP, GDM and HIP groups when compared with CG. In this study, the increased platelet aggregation and ADA activity in pregnancy and pregnancy-associated diseases suggest that platelet aggregation and ADA activity could serve as peripheral markers for the development of effective therapy in the maintenance of homeostasis and some inflammatory process in these pathophysiological conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Dinucleosidetetraphosphatase from Ehrlich ascites tumour cells: inhibition by adenosine, guanosine and uridine 5'-tetraphosphates.

    PubMed

    Moreno, A; Lobatón, C D; Sillero, M A; Sillero, A

    1982-01-01

    1. An enzyme has been partially purified from Ehrlich ascites tumour cells which specifically hydrolyses dinucleosidetetraphosphates, with Km values of around 2 microM. The products of the hydrolysis are the corresponding nucleoside tri- and monophosphates. Dinucleoside Tri- and diphosphates were not substrates of the reaction. 2. The enzyme requires Mg2+ or Mn2+, is maximally active at a pH value of approx. 7.5 and has a mol, wt of 19,800 as estimated by filtration on Sephadex G-75. Nucleoside mono-, di- and triphosphates were competitive inhibitors of the reaction with Ki values in the 0.1 mM range. 3. Particularly relevant is the inhibition of this enzyme by adenosine and guanosine 5'tetraphosphates. In the course of this investigation, the presence of uridine 5'-tetraphosphate was detected in a commercial preparation of UTP. Adenosine, guanosine and uridine 5'-tetraphosphates were very strong inhibitors of the reaction with Ki values in the nM range.

  8. Halogenated pyrrolopyrimidine analogues of adenosine from marine organisms: pharmacological activities and potent inhibition of adenosine kinase.

    PubMed

    Davies, L P; Jamieson, D D; Baird-Lambert, J A; Kazlauskas, R

    1984-02-01

    Two novel halogenated pyrrolopyrimidine analogues of adenosine, isolated from marine sources, have been examined for pharmacological and biochemical activities. 4-Amino-5-bromo-pyrrolo[2,3-d]pyrimidine, from a sponge of the genus Echinodictyum, had bronchodilator activity at least as potent as theophylline but with a different biochemical profile; unlike theophylline it had no antagonist activity at CNS adenosine receptors and it was quite a potent inhibitor of adenosine uptake and adenosine kinase in brain tissue. 5'-Deoxy-5-iodotubercidin, isolated from the red alga Hypnea valentiae, caused potent muscle relaxation and hypothermia when injected into mice. This compound was a very potent inhibitor of adenosine uptake into rat and guinea-pig brain slices and an extremely potent inhibitor of adenosine kinase from guinea-pig brain and rat brain and liver. Neither of these two pyrrolopyrimidine analogues was a substrate for, or an inhibitor of, adenosine deaminase. Neither compound appeared to have any direct agonist activity on guinea-pig brain adenosine-stimulated adenylate cyclase (A2 adenosine receptors). 5'-Deoxy-5-iodotubercidin is unique in two respects: it appears to be the first naturally-occurring example of a 5'-deoxyribosyl nucleoside and is the first example of a specifically iodinated nucleoside from natural sources. It may be the most potent adenosine kinase inhibitor yet described and, by virtue of its structure, may prove to be the most specific.

  9. Homeostatic control of synaptic activity by endogenous adenosine is mediated by adenosine kinase.

    PubMed

    Diógenes, Maria José; Neves-Tomé, Raquel; Fucile, Sergio; Martinello, Katiuscia; Scianni, Maria; Theofilas, Panos; Lopatár, Jan; Ribeiro, Joaquim A; Maggi, Laura; Frenguelli, Bruno G; Limatola, Cristina; Boison, Detlev; Sebastião, Ana M

    2014-01-01

    Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.

  10. Glucose Variability

    PubMed Central

    Le Floch, Jean-Pierre; Kessler, Laurence

    2016-01-01

    Background: Glucose variability has been suspected to be a major factor of diabetic complications. Several indices have been proposed for measuring glucose variability, but their interest remains discussed. Our aim was to compare different indices. Methods: Glucose variability was studied in 150 insulin-treated diabetic patients (46% men, 42% type 1 diabetes, age 52 ± 11 years) using a continuous glucose monitoring system (668 ± 564 glucose values; mean glucose value 173 ± 38 mg/dL). Results from the mean, the median, different indices (SD, MAGE, MAG, glucose fluctuation index (GFI), and percentages of low [<60 mg/dL] and high [>180 mg/dL] glucose values), and ratios (CV = SD/m, MAGE/m, MAG/m, and GCF = GFI/m) were compared using Pearson linear correlations and a multivariate principal component analysis (PCA). Results: CV, MAGE/m (ns), GCF and GFI (P < .05), MAG and MAG/m (P < .01) were not strongly correlated with the mean. The percentage of high glucose values was mainly correlated with indices. The percentage of low glucose values was mainly correlated with ratios. PCA showed 3 main axes; the first was associated with descriptive data (mean, SD, CV, MAGE, MAGE/m, and percentage of high glucose values); the second with ratios MAG/m and GCF and with the percentage of low glucose values; and the third with MAG, GFI, and the percentage of high glucose values. Conclusions: Indices and ratios provide complementary pieces of information associated with high and low glucose values, respectively. The pairs MAG+MAG/m and GFI+GCF appear to be the most reliable markers of glucose variability in diabetic patients. PMID:26880391

  11. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.

    PubMed

    Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun

    2015-01-20

    Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.

  12. Fast determination of adenosine 5'-triphosphate (ATP) and its catabolites in royal jelly using ultraperformance liquid chromatography.

    PubMed

    Zhou, Ling; Xue, XiaoFeng; Zhou, JinHui; Li, Yi; Zhao, Jing; Wu, LiMing

    2012-09-12

    To obtain insight into the metabolic regulation of adenosine 5'-triphosphate (ATP) in royal jelly and to determine whether ATP and its catabolites can be used as objective parameters to evaluate the freshness and quality of royal jelly (RJ), a rapid ultraperformance liquid chromatography (UPLC) method has been developed for feasible separation and quantitation of ATP and its catabolites in RJ, namely, adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), inosine monophosphate (IMP), inosine (HxR), and hypoxanthine (Hx). The analytes in the sample were extracted using 5% precooled perchloric acid. Chromatographic separation was performed on a Waters Acquity UPLC system with a Waters BEH Shield RP18 column and gradient elution based on a mixture of two solvents: solvent A, 50 mM phosphate buffer (pH 6.5); and solvent B, acetonitrile. The recoveries were in the range of 86.0-102.3% with RSD of no more than 3.6%. The correlation coefficients of six analytes were high (r(2) ≥ 0.9988) and within the test ranges. The limits of detection and quantification for the investigated compounds were lower, at 0.36-0.68 and 1.22-2.30 mg/kg, respectively. The overall intra- and interday RSDs were no more than 1.8%. The developed method was successfully applied to the analysis of the analytes in samples. The results showed that ATP in RJ sequentially degrades to ADP, AMP, IMP, HxR, and Hx during storage.

  13. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies

    DTIC Science & Technology

    2015-02-01

    functional and histological changes asso ciated with diabetic nephropathy in wild type diabetic mice but not in the A2AAR−/− diabetic mice (Awad et al...the beginning of streptozotocin induced diabetes at the age of eight weeks. This treatment , previously demonstrated to increase free adenosine levels in...and it was not affected by ABT 702 treatment Blood glucose levels were higher in diabetic mice compared with non diabetic groups and they were not

  14. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  15. Role of the ecto-nucleotidases in the cooperative effect of adenosine and neuropeptide-S on locomotor activity in mice.

    PubMed

    Pacheco, Robson; Pescador, Bruna Bardini; Mendonça, Bruna Pescador; Ramos, Saulo Fábio; Guerrini, Remo; Calo', Girolamo; de Andrade, Vanessa Moraes; Gavioli, Elaine Cristina; Boeck, Carina Rodrigues

    2011-10-01

    Activation of adenosine receptors modifies the action of classic neurotransmitters (i.e. dopamine, glutamate and acetylcholine) and other neuromodulators, like vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neuropeptide S (NPS). Similarly to adenosine, NPS is involved in the regulation of stimulus and response to fear and arousal. Thus, the present study investigates the effects of NPS on locomotor activity in mice treated with or without α,β-methylene adenosine 5'-diphosphate (AOPCP), the inhibitor of ecto-5'-nucleotidase. Additionally, we evaluate the activity of ecto-5'-nucleotidase in brain slices of mice treated with or without NPS. Male adult CF-1 mice received i.c.v. NPS as 0.1 nmol injection with or without pre-treatment with 1 nmol α,β-methylene adenosine 5'-diphosphate (AOPCP), the selective inhibitor of ecto-5'-nucleotidase, to evaluate locomotor activity. In another set of experiments, mice received i.c.v. infusion of 0.1 nmol NPS to assay enzymatic activity in brain slices. The results demonstrated that the pre-treatment with AOPCP, which was inactive per se, prevented NPS-induced hyperlocomotion in mice. The dose of 0.1 nmol NPS was efficient to induce hyperlocomotion in animals during the observation period in the activity cage. Regarding enzymatic activity, i.c.v. NPS injection did not induce any significant alterations in ATP and AMP hydrolysis in striatum and hippocampus brain slices of mice. The present study shows that the hyperlocomotor effect of NPS depends on the ecto-5'-nucleotidase activity.

  16. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adenosine triphosphate release assay. 864.7040... Adenosine triphosphate release assay. (a) Identification. An adenosine triphosphate release assay is a device that measures the release of adenosine triphosphate (ATP) from platelets following...

  17. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adenosine triphosphate release assay. 864.7040... Adenosine triphosphate release assay. (a) Identification. An adenosine triphosphate release assay is a device that measures the release of adenosine triphosphate (ATP) from platelets following...

  18. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adenosine triphosphate release assay. 864.7040... Adenosine triphosphate release assay. (a) Identification. An adenosine triphosphate release assay is a device that measures the release of adenosine triphosphate (ATP) from platelets following...

  19. Repeated administration of adenosine increases its cardiovascular effects in rats.

    PubMed

    Vidrio, H; García-Márquez, F; Magos, G A

    1987-01-20

    Hypotensive and negative chronotropic responses to adenosine in anesthetized rats increased after previous administration of the nucleoside. Bradycardia after adenosine in the isolated perfused rat heart was also potentiated after repeated administration at short intervals. This self-potentiation could be due to extracellular accumulation of adenosine and persistent stimulation of receptors caused by saturation or inhibition of cellular uptake of adenosine.

  20. Some aspects of adenosine triphosphate synthesis from adenine and adenosine in human red blood cells

    PubMed Central

    Whittam, R.; Wiley, J. S.

    1968-01-01

    1. The synthesis of ATP has been studied in human erythrocytes. Fresh cells showed no net synthesis of ATP when incubated with adenine or adenosine, although labelled adenine was incorporated into ATP in small amounts. 2. Cold-stored cells (3-6 weeks old) became progressively depleted of adenine nucleotides but incubation with adenosine or adenine plus inosine restored the ATP concentration to normal within 4 hr. Incorporation of labelled adenine or adenosine into the ATP of incubated stored cells corresponded to net ATP synthesis by these cells. 3. Synthesis of ATP from adenosine plus adenine together was 75% derived from adenine and only 25% from adenosine, indicating that nucleotide synthesis from adenine inhibits the simultaneous synthesis of nucleotide from adenosine. PMID:5723519

  1. Adenosine receptors as drug targets — what are the challenges?

    PubMed Central

    Chen, Jiang-Fan; Eltzschig, Holger K.; Fredholm, Bertil B.

    2014-01-01

    Adenosine signalling has long been a target for drug development, with adenosine itself or its derivatives being used clinically since the 1940s. In addition, methylxanthines such as caffeine have profound biological effects as antagonists at adenosine receptors. Moreover, drugs such as dipyridamole and methotrexate act by enhancing the activation of adenosine receptors. There is strong evidence that adenosine has a functional role in many diseases, and several pharmacological compounds specifically targeting individual adenosine receptors — either directly or indirectly — have now entered the clinic. However, only one adenosine receptor-specific agent — the adenosine A2A receptor agonist regadenoson (Lexiscan; Astellas Pharma) — has so far gained approval from the US Food and Drug Administration (FDA). Here, we focus on the biology of adenosine signalling to identify hurdles in the development of additional pharmacological compounds targeting adenosine receptors and discuss strategies to overcome these challenges. PMID:23535933

  2. [Adenosine deaminase in experimental trypanosomiasis: future implications].

    PubMed

    Pérez-Aguilar, Mary Carmen; Rondón-Mercado, Rocío

    2015-09-01

    The adenosine deaminase represents a control point in the regulation of extracellular adenosine levels, thus playing a critical role in the modulation of purinergic responses to certain pathophysiological events. Several studies have shown that serum and plasma enzyme levels are elevated in some diseases caused by microorganisms, which may represent a compensatory mechanism due to the elevated levels of adenosine and the release of inflammatory mediators. Recent research indicates that adenosine deaminase activity decreases and affects hematological parameters of infected animals with Trypanosoma evansi, so that such alterations could have implications in the pathogenesis of the disease. In addition, the enzyme has been detected in this parasite; allowing the inference that it could be associated with the vital functions of the same, similar to what occurs in mammals. This knowledge may be useful in the association of chemotherapy with specific inhibitors of the enzyme in future studies.

  3. Genetics Home Reference: adenosine deaminase 2 deficiency

    MedlinePlus

    ... This Page Bras J, Guerreiro R, Santo GC. Mutant ADA2 in vasculopathies. N Engl J Med. 2014 ... M, Anikster Y, King MC, Levy-Lahad E. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. ...

  4. Undecaprenyl diphosphate synthase, a cis-prenyltransferase synthesizing lipid carrier for bacterial cell wall biosynthesis.

    PubMed

    Teng, Kuo-Hsun; Liang, Po-Huang

    2012-11-01

    A group of prenyltransferases produce linear lipids by catalyzing consecutive condensation reactions of farnesyl diphosphate (FPP) with specific numbers of isopentenyl diphosphate (IPP), a common building block of isoprenoid compounds. Depending on the stereochemistry of the double bonds formed during IPP condensation, these prenyltransferases are categorized as cis- and trans-types. Undecaprenyl diphosphate synthase (UPPS) that catalyzes chain elongation of FPP by consecutive condensation reactions with eight IPP, to form C₅₅ lipid carrier for bacterial cell wall biosynthesis, serves as a model for understanding cis-prenyltransferases. In this review, the current knowledge in UPPS kinetics, mechanisms, structures, and inhibitors is summarized.

  5. Glycolytic intermediates and adenosine phosphates in rat liver at high altitude /3,800 m/.

    NASA Technical Reports Server (NTRS)

    Cipriano, L. F.; Pace, N.

    1973-01-01

    Liver tissue obtained from adult rats exposed to 3800 m altitude for intervals ranging from 1.5 hr to 63 days was examined by enzymatic analysis. During the first 3 hr of exposure, an immediate decrease in rephosphorylation of high-energy phosphates led to reduced glycogenesis and eventual pileup of AMP, pyruvate, fructose 1,6-diphosphate, glucose 6-phosphate, and glucose. This was accompanied by a reduction of pentose phosphate pathway activity. After 3 to 6 hr, a secondary adjustment of substrate concentrations occurred along with the apparent facilitation of phosphofructokinase. This secondary adjustment appears to increase anaerobic production of ATP and represents a significant intracellular contribution to the acclimatization process at high altitude.

  6. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation.

    PubMed

    Rose, Nicholas D; Regan, John M

    2015-12-01

    Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD(+), respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP(+), respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190 mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  7. Role of adenosine receptors in caffeine tolerance

    SciTech Connect

    Holtzman, S.G.; Mante, S.; Minneman, K.P. )

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  8. Determination of 6-thioguanosine diphosphate and triphosphate and nucleoside diphosphate kinase activity in erythrocytes: novel targets for thiopurine therapy?

    PubMed

    Karner, Susanne; Shi, Shaojun; Fischer, Christine; Schaeffeler, Elke; Neurath, Markus F; Herrlinger, Klaus R; Hofmann, Ute; Schwab, Matthias

    2010-04-01

    6-Thioguanine nucleotides are the sum of 6-thioguanosine 5'-monophosphate (TGMP), -diphosphate (TGDP), and -triphosphate (TGTP) representing essential metabolites involved in drug action of thiopurines. Elevated levels of TGDP have been associated with poor response to azathioprine therapy in patients with inflammatory bowel disease. The conversion of TGDP to TGTP is supposed to be catalyzed by nucleoside diphosphate kinase (NDPK). The aim of this work was to investigate simultaneously individual 6-thioguanosine phosphate levels and NDPK activity in red blood cells (RBCs) of patients on azathioprine therapy. Ion-pair high-performance liquid chromatography methods with fluorescence and ultraviolet detection were applied to quantify individual levels of 6-thioguanosine 5'-phosphates and NDPK activity, respectively, in RBCs. Recombinantly expressed NDPK isoforms A and B were unequivocally identified to catalyze the formation of TGTP (30.6 +/- 3.88 nmol x min x mg for NDPK A versus 41.2 +/- 1.05 nmol x min x mg for NDPK B). Comprehensive analyses on the stability of TGMP, TGDP, and TGTP and the reproducibility of NDPK activity in RBCs were performed to provide a reliable sampling protocol for clinical practice. Of note, isolation of RBCs within 6 hours followed by immediate storage at -80 degrees C is crucial for prevention of degradation of 5'-phosphates. In a clinical study of 37 patients on azathioprine, TGTP was the predominant 6-thioguanosine phosphate in RBCs. In contrast, three patients showed TGTP/(TGDP + TGTP) ratios of 57.2%, 64.3%, and 66% corresponding to elevated TGDP levels. NDPK activity ranged from 4.1 to 11.3 nmol x min x mg hemoglobin. No correlation between NDPK activity and the 6-thioguanosine phosphate levels was found. The question whether interindividual variability of NDPK activity may explain differences in 6-thioguanosine 5'-phosphates levels has to be investigated in a prospective large-scale study.

  9. General aspects of muscle glucose uptake.

    PubMed

    Alvim, Rafael O; Cheuhen, Marcel R; Machado, Silmara R; Sousa, André Gustavo P; Santos, Paulo C J L

    2015-03-01

    Glucose uptake in peripheral tissues is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. Studies have shown the existence of two major signaling pathways that lead to the translocation of GLUT4. The first, and widely investigated, is the insulin activated signaling pathway through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The second is the insulin-independent signaling pathway, which is activated by contractions. Individuals with type 2 diabetes mellitus have reduced insulin-stimulated glucose uptake in skeletal muscle due to the phenomenon of insulin resistance. However, those individuals have normal glucose uptake during exercise. In this context, physical exercise is one of the most important interventions that stimulates glucose uptake by insulin-independent pathways, and the main molecules involved are adenosine monophosphate-activated protein kinase, nitric oxide, bradykinin, AKT, reactive oxygen species and calcium. In this review, our main aims were to highlight the different glucose uptake pathways and to report the effects of physical exercise, diet and drugs on their functioning. Lastly, with the better understanding of these pathways, it would be possible to assess, exactly and molecularly, the importance of physical exercise and diet on glucose homeostasis. Furthermore, it would be possible to assess the action of drugs that might optimize glucose uptake and consequently be an important step in controlling the blood glucose levels in diabetic patients, in addition to being important to clarify some pathways that justify the development of drugs capable of mimicking the contraction pathway.

  10. Regulatory properties of ADP glucose pyrophosphorylase are required for adjustment of leaf starch synthesis in different photoperiods.

    PubMed

    Mugford, Sam T; Fernandez, Olivier; Brinton, Jemima; Flis, Anna; Krohn, Nicole; Encke, Beatrice; Feil, Regina; Sulpice, Ronan; Lunn, John E; Stitt, Mark; Smith, Alison M

    2014-12-01

    Arabidopsis (Arabidopsis thaliana) leaves synthesize starch faster in short days than in long days, but the mechanism that adjusts the rate of starch synthesis to daylength is unknown. To understand this mechanism, we first investigated whether adjustment occurs in mutants lacking components of the circadian clock or clock output pathways. Most mutants adjusted starch synthesis to daylength, but adjustment was compromised in plants lacking the GIGANTEA or FLAVIN-BINDING, KELCH REPEAT, F BOX1 components of the photoperiod-signaling pathway involved in flowering. We then examined whether the properties of the starch synthesis enzyme adenosine 5'-diphosphate-glucose pyrophosphorylase (AGPase) are important for adjustment of starch synthesis to daylength. Modulation of AGPase activity is known to bring about short-term adjustments of photosynthate partitioning between starch and sucrose (Suc) synthesis. We found that adjustment of starch synthesis to daylength was compromised in plants expressing a deregulated bacterial AGPase in place of the endogenous AGPase and in plants containing mutant forms of the endogenous AGPase with altered allosteric regulatory properties. We suggest that the rate of starch synthesis is in part determined by growth rate at the end of the preceding night. If growth at night is low, as in short days, there is a delay before growth recovers during the next day, leading to accumulation of Suc and stimulation of starch synthesis via activation of AGPase. If growth at night is fast, photosynthate is used for growth at the start of the day, Suc does not accumulate, and starch synthesis is not up-regulated.

  11. Changing ribulose diphosphate carboxylase/oxygenase activity in ripening tomato fruit.

    PubMed

    Bravdo, B A; Palgi, A; Lurie, S

    1977-08-01

    Tomato fruit (Lycopersicum esculentum Mill) from green, pink, and red stages were assayed for changes in the activity of ribulose diphosphate carboxylase and oxygenase, phosphoenolpyruvate carboxylase, changes in the levels of glycolate and respiratory gas exchange. The ribulose diphosphate carboxylase activity decreased as the fruit ripened. By comparison, the ribulose diphosphate oxygenase activity increased during the transition from the green to the pink stage, and declined afterward. The changes in the endogenous glycolate levels and the respiratory gas exchange, as observed at different stages of ripening, resembled the changes in the ribulose diphosphate oxygenase activity. The utilization of glycolate in further metabolic activity may result in the formation of peroxidases required for the onset of ripening.

  12. Mucosal adenosine stimulates chloride secretion in canine tracheal epithelium

    SciTech Connect

    Pratt, A.D.; Clancy, G.; Welsh, M.J.

    1986-08-01

    Adenosine is a local regulator of a variety of physiological functions in many tissues and has been observed to stimulate secretion in several Cl-secreting epithelia. In canine tracheal epithelium the authors found that adenosine stimulates Cl secretion from both the mucosal and submucosal surfaces. Addition of adenosine, or its analogue 2-chloroadenosine, to the mucosal surface potently stimulated Cl secretion with no effect on the rate of Na absorption. Stimulation resulted from an interaction of adenosine with adenosine receptors, because it was blocked by the adenosine receptor blocker, 8-phenyltheophylline. The adenosine receptor was a stimulatory receptor as judged by the rank-order potency of adenosine and its analogues and by the increase in cellular adenosine 3',5'-cyclic monophosphate levels produced by 2-chloroadenosine. Adenosine also stimulated Cl secretion when it was added to the submucosal surface, although the maximal increase in secretion was less and it was much less potent. The observation that mucosal 8-phenyletheophylline blocked the effect of submucosal 2-chloroadenosine, whereas submucosal 8-phenyltheophylline did not prevent a response to mucosal or submucosal 2-chloroadenosine, suggests that adenosine receptors are located on the mucosal surface. Thus submucosal adenosine may stimulate secretion by crossing the epithelium and interacting with receptors located on the mucosal surface. Because adenosine can be released from mast cells located in the airway lumen in response to inhaled material, and because adenosine stimulated secretion from the mucosal surface, it may be in a unique position to control the epithelium on a regional level.

  13. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    NASA Astrophysics Data System (ADS)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  14. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods.

    PubMed

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-08

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ~56 nm and diameter ~12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  15. Product Rearrangement from Altering a Single Residue in the Rice syn-Copalyl Diphosphate Synthase

    PubMed Central

    2016-01-01

    Through site-directed mutagenesis targeted at identification of the catalytic base in the rice (Oryza sativa) syn-copalyl diphosphate synthase OsCPS4, changes to a single residue (H501) were found to induce rearrangement rather than immediate deprotonation of the initially formed bicycle, leading to production of the novel compound syn-halimadienyl diphosphate. These mutational results are combined with quantum chemical calculations to provide insight into the underlying reaction mechanism. PMID:26878189

  16. Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis.

    PubMed

    Wang, Guodong; Dixon, Richard A

    2009-06-16

    Myrcene, which accounts for 30-50% of the essential oil in hop (Humulus lupulus L.) trichomes, derives from geranyl diphosphate (GPP), the common precursor of monoterpenes. Full-length sequences of heterodimeric GPP synthase small subunit (GPPS.SSU, belonging to the SSU I subfamily) and large subunit (LSU) cDNAs were mined from a hop trichome cDNA library. The SSU was inactive, whereas the LSU produced GPP, farnesyl diphosphate, and geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate and isopentenyl diphosphate in vitro. Coexpression of both subunits in Escherichia coli yielded a heterodimeric enzyme exhibiting altered ratios of GPP and GGPP synthase activities and greatly enhanced catalytic efficiency. Transcript analysis suggested that the heterodimeric geranyl(geranyl)diphosphate synthase [G(G)PPS] is involved in myrcene biosynthesis in hop trichomes. The critical role of the conserved CxxxC motif (where "x" can be any hydrophobic amino acid residue) in physical interactions between the 2 subunits was demonstrated by using site-directed mutagenesis, and this motif was used in informatic searches to reveal a previously undescribed SSU subfamily (SSU II) present in both angiosperms and gymnosperms. The evolution and physiological roles of SSUs are discussed.

  17. Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum.

    PubMed

    Larson, R J; Pate, J L

    1976-04-01

    Active transport of glucose in prosthecae isolated from cells of Asticcacaulis biprosthecum was stimulated by the non-physiological electron donor N, N, N', N'-tetramethyl-p-phenylenediamine dihydrochloride. Glucose uptake was mediated by two transport systems; the apparent Km of the high-affinity system was 1.8 muM and that of the low-affinity system was 34 muM. Free glucose accumulated within prosthecae at a concentration 60 to 200 times above that present externally, depending on the Km of the system being observed. The glucose transport system in prosthecae was stereospecific for D-glucose, and neither methyl alpha-D-glucopyranoside nor 2-deoxyglucose was transported. Uptake of glucose was inhibited by N-ethylmaleimide (NEM) and p-chloromercuribenzoate (PCMB), and the inhibition by PCMB but not by NEM was reversed by dithiothreitol. Glucose uptake was also inhibited by the uncoupling agents 5-chloro-3-t-butyl-2'-nitrosalicylanilide (S-13), 5-chloro-3-(p-chlorophenyl)-4'-chlorosalicylanilide (S-6), and carbonyl-cyanide m-chlorophenylhydrazone (CCCP) and by the respiratory inhibitor KCN. Efflux of glucose from preloaded prosthecae was induced by PCMB and KCN, but not by S-13 or CCCP. Glucose uptake was not affected by arsenate or an inhibitor of membrane-bound adenosine triphosphatases, N, N'-dicyclohexylcarbodiimide. The lack of inhibition by these two compounds, combined with the extremely low levels of adenosine 5'-triphosphate present in prosthecae, indicates that adenosine 5'-triphosphate is not involved in the transport of glucose by prosthecae.

  18. Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum.

    PubMed Central

    Larson, R J; Pate, J L

    1976-01-01

    Active transport of glucose in prosthecae isolated from cells of Asticcacaulis biprosthecum was stimulated by the non-physiological electron donor N, N, N', N'-tetramethyl-p-phenylenediamine dihydrochloride. Glucose uptake was mediated by two transport systems; the apparent Km of the high-affinity system was 1.8 muM and that of the low-affinity system was 34 muM. Free glucose accumulated within prosthecae at a concentration 60 to 200 times above that present externally, depending on the Km of the system being observed. The glucose transport system in prosthecae was stereospecific for D-glucose, and neither methyl alpha-D-glucopyranoside nor 2-deoxyglucose was transported. Uptake of glucose was inhibited by N-ethylmaleimide (NEM) and p-chloromercuribenzoate (PCMB), and the inhibition by PCMB but not by NEM was reversed by dithiothreitol. Glucose uptake was also inhibited by the uncoupling agents 5-chloro-3-t-butyl-2'-nitrosalicylanilide (S-13), 5-chloro-3-(p-chlorophenyl)-4'-chlorosalicylanilide (S-6), and carbonyl-cyanide m-chlorophenylhydrazone (CCCP) and by the respiratory inhibitor KCN. Efflux of glucose from preloaded prosthecae was induced by PCMB and KCN, but not by S-13 or CCCP. Glucose uptake was not affected by arsenate or an inhibitor of membrane-bound adenosine triphosphatases, N, N'-dicyclohexylcarbodiimide. The lack of inhibition by these two compounds, combined with the extremely low levels of adenosine 5'-triphosphate present in prosthecae, indicates that adenosine 5'-triphosphate is not involved in the transport of glucose by prosthecae. PMID:4425

  19. Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine.

    PubMed

    Chen, Yunjia; Liu, Yin; Cottingham, Christopher; McMahon, Lori; Jiao, Kai; Greengard, Paul; Wang, Qin

    2012-02-22

    Endogenous adenosine is an essential protective agent against neural damage by various insults to the brain. However, the therapeutic potential of adenosine receptor-directed ligands for neuroprotection is offset by side effects in peripheral tissues and organs. An increase in adenosine receptor responsiveness to endogenous adenosine would enhance neuroprotection while avoiding the confounding effects of exogenous ligands. Here we report novel regulation of adenosine-evoked responses by a neural tissue-specific protein, neurabin. Neurabin attenuated adenosine A(1) receptor (A1R) signaling by assembling a complex between the A1R and the regulator of G-protein signaling 4 (RGS4), a protein known to turn off G-protein signaling. Inactivation of the neurabin gene enhanced A1R signaling and promoted the protective effect of adenosine against excitotoxic seizure and neuronal death in mice. Furthermore, administration of a small molecule inhibitor of RGS4 significantly attenuated seizure severity in mice. Notably, the dose of kainate capable of inducing an ∼50% rate of death in wild-type (WT) mice did not affect neurabin-null mice or WT mice cotreated with an RGS4 inhibitor. The enhanced anti-seizure and neuroprotective effect achieved by disruption of the A1R/neurabin/RGS4 complex is elicited by the on-site and on-demand release of endogenous adenosine, and does not require administration of A1R ligands. These data identify neurabin-RGS4 as a novel tissue-selective regulatory mechanism for fine-tuning adenosine receptor function in the nervous system. Moreover, these findings implicate the A1R/neurabin/RGS4 complex as a valid therapeutic target for specifically manipulating the neuroprotective effects of endogenous adenosine.

  20. Efficient production of 2-deoxyribose 5-phosphate from glucose and acetaldehyde by coupling of the alcoholic fermentation system of Baker's yeast and deoxyriboaldolase-expressing Escherichia coli.

    PubMed

    Horinouchi, Nobuyuki; Ogawa, Jun; Kawano, Takako; Sakai, Takafumi; Saito, Kyota; Matsumoto, Seiichiro; Sasaki, Mie; Mikami, Yoichi; Shimizu, Sakayu

    2006-06-01

    2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker's yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker's yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.

  1. MOLECULAR PROBES FOR EXTRACELLULAR ADENOSINE RECEPTORS

    PubMed Central

    Jacobson, Kenneth A.; Ukena, Dieter; Padgett, William; Kirk, Kenneth L.; Daly, John W.

    2012-01-01

    Derivatives of adenosine receptor agonists (N6-phenyladenosines) and antagonists (1,3-dialkyl-8-phenylxanthines) bearing functionalized chains suitable for attachment to other molecules have been reported [Jacobson et al., J. med. Chem. 28, 1334 and 1341 (1985)]. The “functionalized congener” approach has been extended to the synthesis of spectroscopic and other probes for adenosine receptors that retain high affinity (Ki ~ 10−9 −10−8 M) in A1-receptor binding. The probes have been synthesized from an antagonist xanthine amine congener (XAC) and an adenosine amine congener (ADAC). [3H]ADAC has been synthesized and found to bind highly specifically to A1-adenosine receptors of rat and calf cerebral cortical membranes with KD values of 1.4 and 0.34 nM respectively. The higher affinity in the bovine brain, seen also with many of the probes derived from ADAC and XAC, is associated with phenyl substituents. The spectroscopic probes contain a reporter group attached at a distal site of the functionalized chain. These bifunctional ligands may contain a spin label (e.g. the nitroxyl radical TEMPO) for electron spin resonance spectroscopy, or a fluorescent dye, including fluorescein and 4-nitrobenz-2-oxa-1,3-diazole (NBD), or labels for 19F nuclear magnetic resonance spectroscopy. Potential applications of the spectroscopic probes in characterization of adenosine receptors are discussed. PMID:3036153

  2. Radioimmunochemical quantitation of human adenosine deaminase.

    PubMed Central

    Daddona, P E; Frohman, M A; Kelley, W N

    1979-01-01

    Markedly reduced or absent adenosine deaminase activity in man is associated with an autosomal recesive form of severe conbined immunodeficiency disease. To further define the genetic nature of this enzyme defect, we have quantitated immunologically active adenosine deaminase (CRM) in the hemolysate of homozygous deficient patients and their heterozygous parents. A highly specific radioimmunoassay was developed capable of detecting 0.05% of normal erythrocyte adenosine deaminase. Hemolysates from nine heterozygotes (five families) showed a wide range in CRM (32--100% of normal) and variable absolute specific activities with several being at least 1 SD BELOW THE NORMAL MEAN. Hemolysates from four unrelated patients showed less than 0.09% adenosine deaminase activity with CRM ranging from less than 0.06 to 5.6% of the normal mean. In conclusion, heterozygote and homozygote hemolysates from five of the eight families analyzed revealed variable levels of CRM suggesting heterogeneous genetic alteration or expression of the silent or defective allele(s) of adenosine deaminase. PMID:468994

  3. The adenosine kinase hypothesis of epileptogenesis

    PubMed Central

    Boison, Detlev

    2008-01-01

    Current therapies for epilepsy are largely symptomatic and do not affect the underlying mechanisms of disease progression, i.e. epileptogenesis. Given the large percentage of pharmacoresistant chronic epilepsies, novel approaches are needed to understand and modify the underlying pathogenetic mechanisms. Although different types of brain injury (e.g. status epilepticus, traumatic brain injury, stroke) can trigger epileptogenesis, astrogliosis appears to be a homotypic response and hallmark of epilepsy. Indeed, recent findings indicate that epilepsy might be a disease of astrocyte dysfunction. This review focuses on the inhibitory neuromodulator and endogenous anticonvulsant adenosine, which is largely regulated by astrocytes and its key metabolic enzyme adenosine kinase (ADK). Recent findings support the “ADK hypothesis of epileptogenesis”: (i) Mouse models of epileptogenesis suggest a sequence of events leading from initial downregulation of ADK and elevation of ambient adenosine as an acute protective response, to changes in astrocytic adenosine receptor expression, to astrocyte proliferation and hypertrophy (i.e. astrogliosis), to consequential overexpression of ADK, reduced adenosine and – finally – to spontaneous focal seizure activity restricted to regions of astrogliotic overexpression of ADK. (ii) Transgenic mice overexpressing ADK display increased sensitivity to brain injury and seizures. (iii) Inhibition of ADK prevents seizures in a mouse model of pharmacoresistant epilepsy. (iv) Intrahippocampal implants of stem cells engineered to lack ADK prevent epileptogenesis. Thus, ADK emerges both as a diagnostic marker to predict, as well as a prime therapeutic target to prevent, epileptogenesis. PMID:18249058

  4. Caffeine, adenosine receptors, and synaptic plasticity.

    PubMed

    Costenla, Ana Rita; Cunha, Rodrigo A; de Mendonça, Alexandre

    2010-01-01

    Few studies to date have looked at the effects of caffeine on synaptic plasticity, and those that did used very high concentrations of caffeine, whereas the brain concentrations attained by regular coffee consumption in humans should be in the low micromolar range, where caffeine exerts pharmacological actions mainly by antagonizing adenosine receptors. Accordingly, rats drinking caffeine (1 g/L) for 3 weeks, displayed a concentration of caffeine of circa 22 microM in the hippocampus. It is known that selective adenosine A1 receptor antagonists facilitate, whereas selective adenosine A2A receptor antagonists attenuate, long term potentiation (LTP) in the hippocampus. Although caffeine is a non-selective antagonist of adenosine receptors, it attenuates frequency-induced LTP in hippocampal slices in a manner similar to selective adenosine A2A receptor antagonists. These effects of low micromolar concentration of caffeine (30 microM) are maintained in aged animals, which is important when a possible beneficial effect for caffeine in age-related cognitive decline is proposed. Future studies will still be required to confirm and detail the involvement of A1 and A2A receptors in the effects of caffeine on hippocampal synaptic plasticity, using both pharmacological and genetic approaches.

  5. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    PubMed

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  6. Propioin synthesis using thiamine diphosphate-dependent enzymes.

    PubMed

    Mikolajek, Renaud J; Spiess, Antje C; Pohl, Martina; Büchs, Jochen

    2009-01-01

    Benzaldehyde lyase (BAL, EC 4.1.2.38) from Pseudomonas fluorescens and benzoylformate decarboxylase (BFD, EC 4.1.1.7) from Pseudomonas putida are thiamine diphosphate-dependent enzymes. These enzymes share a common tetrameric structure and catalyze various C--C-bond forming and breaking reactions. Here we describe a detailed study of the asymmetric synthesis of propioin from propanal catalyzed by BAL or BFD in aqueous solution in a batch reactor. Both enzymes are deactivated in the presence of high concentration of propanal. Compared to BAL, BFD is more stable under reaction conditions as well as during storage. The kinetic studies showed a typical Michaelis-Menten kinetic for BAL with a maximal specific reaction rate of 26.2 U/mg and an unusually high K(M) of 415 mM, whereas the v/[S]-plot for BFD is almost linear in the concentration range (100-1500 mM) investigated. Both enzymes produce propioin with opposite enantiomeric excess: BAL produced the (S)-propioin (ee of 35%), whereas BFD yielded the (R)-enantiomer (ee of 67%).

  7. Ribulose diphosphate carboxylase of the cyanobacterium Spirulina platensis

    SciTech Connect

    Terekhova, I.V.; Chernyad'ev, I.I.; Doman, N.G.

    1986-11-20

    The ribulose diphosphate (RDP) carboxylase activity of the cyanobacterium Spirulina platensis is represented by two peaks when a cell homogenate is centrifuged in a sucrose density gradient. In the case of differential centrifugation (40,000 g, 1 h), the activity of the enzyme was distributed between the supernatant liquid (soluble form) and the precipitate (carboxysomal form). From the soluble fraction, in which 80-95% of the total activity of the enzyme is concentrated, electrophoretically homogeneous RDP carboxylase was isolated by precipitation with ammonium sulfate and centrifugation in a sucrose density gradient. The purified enzyme possessed greater electrophoretic mobility in comparison with the RDP carboxylase of beans Vicia faba. The molecular weight of the enzyme, determined by gel filtration, was 450,000. The enzyme consists of monotypic subunits with a molecular weight of 53,000. The small subunits were not detected in electrophoresis in polyacrylamide gel in the presence of SDS after fixation and staining of the gels by various methods.

  8. Adenine and adenosine salvage in Leishmania donovani.

    PubMed

    Boitz, Jan M; Ullman, Buddy

    2013-08-01

    6-aminopurine metabolism in Leishmania is unique among trypanosomatid pathogens since this genus expresses two distinct routes for adenine salvage: adenine phosphoribosyltransferase (APRT) and adenine deaminase (AAH). To evaluate the relative contributions of APRT and AAH, adenine salvage was evaluated in Δaprt, Δaah, and Δaprt/Δaah null mutants of L. donovani. The data confirm that AAH plays the dominant role in adenine metabolism in L. donovani, although either enzyme alone is sufficient for salvage. Adenosine salvage was also evaluated in a cohort of null mutants. Adenosine is also primarily converted to hypoxanthine, either intracellularly or extracellularly, but can also be phosphorylated to the nucleotide level by adenosine kinase when the predominant pathways are genetically or pharmacologically blocked. These data provide genetic verification for the relative contributions of 6-aminopurine metabolizing pathways in L. donovani and demonstrate that all of the pathways can function under appropriate conditions of genetic or pharmacologic perturbation.

  9. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase.

    PubMed

    Demissie, Zerihun A; Erland, Lauren A E; Rheault, Mark R; Mahmoud, Soheil S

    2013-03-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.

  10. Human adenosine deaminase. Distribution and properties.

    PubMed

    Van der Weyden, M B; Kelley, W N

    1976-09-25

    Adenosine deaminase exists in multiple molecular forms in human tissue. One form of the enzyme appears to be "particulate". Three forms of the enzyme are soluble and interconvertible with apparent molecular weights of approximately 36,000, 114,000, and 298,000 (designated small, intermediate, and large, respectively). The small form of adenosine deaminase is convertible to the large form only in the presence of a protein, which has an apparent molecular weight of 200,000 and has no adenosine deaminase activity. This conversion of the small form of the enzyme to the large form occurs at 4 degrees, exhibits a pH optimum of 5.0 to 8.0, and is associated with a loss of conversion activity. The small form of the enzyme predominates in tissue preparations exhibiting the higher enzyme-specific activities and no detectable conversion activity. The large form of adenosine deaminase predominates in tissue extracts exhibiting the lower enzyme specific activities and abundant conversion activity. The small form of adenosine deaminase shows several electrophoretic variants by isoelectric focusing. The electrophoretic heterogeneity observed with the large form of the enzyme is similar to that observed with the small form, with the exception that several additional electrophoretic variants are uniformly identified. No organ specificity is demonstrable for the different electrophoretic forms. The kinetic characteristics of the three soluble molecular species of adenosine deaminase are identical except for pH optimum, which is 5.5 for the intermediate species and 7.0 to 7.4 for the large and small forms.

  11. A new class of adenosine receptors in brain: Characterization by 2-chloro( sup 3 H)adenosine binding

    SciTech Connect

    Chin, Jerome Hsicheng.

    1988-01-01

    Considerable evidence has accumulated in recent years to support a role for adenosine as an important physiological modulator in many mammalian tissues. In brain, adenosine is a potent depressant of neuronal firing and synaptic transmission. The exact mechanisms by which adenosine analogs depress nerve cell activity in the brain are not clear. Despite considerable investigation, neither the A1 nor the A2 adenosine receptors associated with adenylate cyclase have been able to account adequately for the actions of adenosine in brain. It has been proposed that additional adenosine receptors, possibly linked to calcium channels, are present in the central nervous system and are responsible for the physiological actions of adenosine. In this thesis, evidence is provided for the existence of a novel class of adenosine receptors in rat brain. The methods used to identify this new class of receptors involved radioligand binding techniques which have been successfully employed to characterize the properties of many neurotransmitter and drug receptors. 2-Chloro({sup 3}H)adenosine (Cl({sup 3}H)Ado) was selected as the ligand for these experiments since is a water-soluble, metabolically-stable analog of adenosine and a potent depressant of synaptic transmission in brain. The results demonstrate the presence of a distinct class of 2-chloro({sup 3}H)adenosine binding sites in rat forebrain membranes with an apparent K{sub D} of about 10 {mu}M and a B{sub max} of about 60 pmol per mg of protein. Specific 2-chloro ({sup 3}H)adenosine binding is highly specific for adenosine agonists and antagonists. Inhibition of binding by adenosine agonists exhibits an order of potency 2-chloroadenosine > 5{prime}-N-ethylcarboxamide adenosine > ({minus})-N{sup 6}-(R-phenylisopropyl)adenosine, which differs from that of both A1 and A2 adenosine receptors.

  12. A2a and a2b adenosine receptors affect HIF-1α signaling in activated primary microglial cells.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Stefanelli, Angela; Bencivenni, Serena; Castillo, Carlos Alberto; Varani, Katia; Gessi, Stefania

    2015-05-15

    Microglia are central nervous system (CNS)-resident immune cells, that play a crucial role in neuroinflammation. Hypoxia-inducible factor-1 (HIF-1), the main transcription factor of hypoxia-inducible genes, is also involved in the immune response, being regulated in normoxia by inflammatory mediators. Adenosine is an ubiquitous nucleoside that has an influence on many immune properties of microglia through interaction with four receptor subtypes. The aim of this study was to investigate whether adenosine may affect microglia functions by acting on HIF-1α modulation. Primary murine microglia were activated with lipopolysaccharide (LPS) with or without adenosine, adenosine receptor agonists and antagonists and HIF-1α accumulation and downstream genes regulation were determined. Adenosine increased LPS-induced HIF-1α accumulation leading to an increase in HIF-1α target genes involved in cell metabolism [glucose transporter-1 (GLUT-1)] and pathogens killing [inducible nitric-oxide synthase (iNOS)] but did not induce HIF-1α dependent genes related to angiogenesis [vascular endothelial growth factor (VEGF)] and inflammation [tumor necrosis factor-α (TNF-α)]. The stimulatory effect of adenosine on HIF-1α and its target genes was essentially exerted by activation of A2A through p44/42 and A2B subtypes via p38 mitogen-activated protein kinases (MAPKs) and Akt phosphorylation. Furthermore the nucleoside raised VEGF and decreased TNF-α levels, by activating A2B subtypes. In conclusion adenosine increases GLUT-1 and iNOS gene expression in a HIF-1α-dependent way, through A2A and A2B receptors, suggesting their role in the regulation of microglial cells function following injury. However, inhibition of TNF-α adds an important anti-inflammatory effect only for the A2B subtype. GLIA 2015.

  13. Regulation of adenosine transport by acute and chronic ethanol exposure

    SciTech Connect

    Nagy, L.E.; Casso, D.; Diamond, I.; Gordon, A.S. )

    1989-02-09

    Chronic exposure to ethanol results in a desensitization of adenosine receptor-stimulated cAMP production. Since adenosine is released by cells and is known to desensitize its own as well as other receptors, it may be involved in ethanol-induced desensitization of adenosine receptor function. Therefore, we have examine the acute and chronic effects of ethanol on the transport of adenosine via the nucleoside transport. Acute exposure to ethanol caused an inhibition of adenosine uptake in S49 lymphoma cells. This decrease in uptake resulted in accumulation of extracellular adenosine after ethanol exposure. The effect of ethanol was specific to nucleoside transport. Uptake of uridine, also transported by the nucleoside transporter, was inhibited by ethanol to the same degree as adenosine uptake, while neither isoleucine nor deoxyglucose uptake was altered by ethanol treatment. Inhibition of adenosine uptake by ethanol was non-competitive and dependent on the concentration of ethanol. After chronic exposure to ethanol, cells became tolerant to the acute effects of ethanol. There was no longer an acute inhibition of adenosine uptake, nor was these accumulation of extracellular adenosine. Chronic ethanol exposure also resulted in a decrease in the absolute rate of adenosine uptake. Binding studies using a high affinity lignad for the nucleoside transporter, nitrobenzylthioinosine (NBMPR), indicate that this decreased uptake was due to a decrease in the maximal number of binding sites. These ethanol-induced changes in adenosine transport may be important for the acute and chronic effects of ethanol.

  14. Lithium-cation conductivity and crystal structure of lithium diphosphate

    SciTech Connect

    Voronin, V.I.; Sherstobitova, E.A.; Blatov, V.A.; Shekhtman, G.Sh.

    2014-03-15

    The electrical conductivity of lithium diphosphate Li{sub 4}P{sub 2}O{sub 7} has been measured and jump-like increasing of ionic conductivity at 913 K has been found. The crystal structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction at 300–1050 K. At 913 K low temperature triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one, space group P2{sub 1}/n, a=8.8261(4) Å, b=5.2028(4) Å, c=13.3119(2) Å, β=104.372(6)°. The migration maps of Li{sup +} cations based on experimental data implemented into program package TOPOS have been explored. It was found that lithium cations in both low- and high temperature forms of Li{sub 4}P{sub 2}O{sub 7} migrate in three dimensions. Cross sections of the migrations channels extend as the temperature rises, but at the phase transition point have a sharp growth showing a strong “crystal structure – ion conductivity” correlation. -- Graphical abstract: Crystal structure of Li{sub 4}P{sub 2}O{sub 7} at 950 K. Red balls represent oxygen atoms; black lines show Li{sup +} ion migration channels in the layers perpendicular to [001] direction. Highlights: • Structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction. • At 913 K triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one. • The migration maps of Li{sup +} implemented into program package TOPOS have been explored. • Cross sections of the migrations channels at the phase transition have a sharp growth.

  15. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance.

    PubMed

    Hove-Jensen, Bjarne; Andersen, Kasper R; Kilstrup, Mogens; Martinussen, Jan; Switzer, Robert L; Willemoës, Martin

    2017-03-01

    Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.

  16. A corpora allata farnesyl diphosphate synthase in mosquitoes displaying a metal ion dependent substrate specificity

    PubMed Central

    Rivera-Perez, Crisalejandra; Nyati, Pratik; Noriega, Fernando G.

    2015-01-01

    Farnesyl diphosphate synthase (FPPS) is a key enzyme in isoprenoid biosynthesis, it catalyzes the head-to-tail condensation of dimethylallyl diphosphate (DMAPP) with two molecules of isopentenyl diphosphate (IPP) to generate farnesyl diphosphate (FPP), a precursor of juvenile hormone (JH). In this study, we functionally characterized an Aedes aegypti FPPS (AaFPPS) expressed in the corpora allata. AaFPPS is the only FPPS gene present in the genome of the yellow fever mosquito, it encodes a 49.6 kDa protein exhibiting all the characteristic conserved sequence domains on prenyltransferases. AaFPPS displays its activity in the presence of metal cofactors; and the product condensation is dependent of the divalent cation. Mg2+ ions lead to the production of FPP, while the presence of Co2+ ions lead to geranyl diphosphate (GPP) production. In the presence of Mg2+ the AaFPPS affinity for allylic substrates is GPP>DMAPP>IPP. These results suggest that AaFPPS displays “catalytic promiscuity”, changing the type and ratio of products released (GPP or FPP) depending on allylic substrate concentrations and the presence of different metal cofactors. This metal ion-dependent regulatory mechanism allows a single enzyme to selectively control the metabolites it produces, thus potentially altering the flow of carbon into separate metabolic pathways. PMID:26188328

  17. A corpora allata farnesyl diphosphate synthase in mosquitoes displaying a metal ion dependent substrate specificity.

    PubMed

    Rivera-Perez, Crisalejandra; Nyati, Pratik; Noriega, Fernando G

    2015-09-01

    Farnesyl diphosphate synthase (FPPS) is a key enzyme in isoprenoid biosynthesis, it catalyzes the head-to-tail condensation of dimethylallyl diphosphate (DMAPP) with two molecules of isopentenyl diphosphate (IPP) to generate farnesyl diphosphate (FPP), a precursor of juvenile hormone (JH). In this study, we functionally characterized an Aedes aegypti FPPS (AaFPPS) expressed in the corpora allata. AaFPPS is the only FPPS gene present in the genome of the yellow fever mosquito, it encodes a 49.6 kDa protein exhibiting all the characteristic conserved sequence domains on prenyltransferases. AaFPPS displays its activity in the presence of metal cofactors; and the product condensation is dependent of the divalent cation. Mg(2+) ions lead to the production of FPP, while the presence of Co(2+) ions lead to geranyl diphosphate (GPP) production. In the presence of Mg(2+) the AaFPPS affinity for allylic substrates is GPP > DMAPP > IPP. These results suggest that AaFPPS displays "catalytic promiscuity", changing the type and ratio of products released (GPP or FPP) depending on allylic substrate concentrations and the presence of different metal cofactors. This metal ion-dependent regulatory mechanism allows a single enzyme to selectively control the metabolites it produces, thus potentially altering the flow of carbon into separate metabolic pathways.

  18. Examination of the thiamin diphosphate binding site in yeast transketolase by site-directed mutagenesis.

    PubMed

    Meshalkina, L; Nilsson, U; Wikner, C; Kostikowa, T; Schneider, G

    1997-03-01

    The role of two conserved amino acid residues in the thiamin diphosphate binding site of yeast transketolase has been analyzed by site-directed mutagenesis. Replacement of E162, which is part of a cluster of glutamic acid residues at the subunit interface, by alanine or glutamine results in mutant enzymes with most catalytic properties similar to wild-type enzyme. The two mutant enzymes show, however, significant increases in the K0.5 values for thiamin diphosphate in the absence of substrate and in the lag of the reaction progress curves. This suggests that the interaction of E162 with residue E418, and possibly E167, from the second subunit is important for formation and stabilization of the transketolase dimer. Replacement of the conserved residue D382, which is buried upon binding of thiamin diphosphate, by asparagine and alanine, results in mutant enzymes severely impaired in thiamin diphosphate binding and catalytic efficiency. The 25-80-fold increase in K0.5 for thiamin diphosphate suggests that D382 is involved in cofactor binding, probably by electrostatic compensation of the positive charge of the thiazolium ring and stabilization of a flexible loop at the active site. The decrease in catalytic activities in the D382 mutants indicates that this residue might also be important in subsequent steps in catalysis.

  19. An enzyme-coupled continuous fluorescence assay for farnesyl diphosphate synthases.

    PubMed

    Dozier, Jonathan K; Distefano, Mark D

    2012-02-01

    Farnesyl diphosphate synthase (FDPS) catalyzes the conversion of isopentenyl diphosphate and dimethylallyl diphosphate to farnesyl diphosphate, a crucial metabolic intermediate in the synthesis of cholesterol, ubiquinone, and prenylated proteins; consequently, much effort has gone into developing inhibitors that target FDPS. Currently most FDPS assays either use radiolabeled substrates and are discontinuous or monitor pyrophosphate release and not farnesyl diphosphate (FPP) creation. Here we report the development of a continuous coupled enzyme assay for FDPS activity that involves the subsequent incorporation of the FPP product of that reaction into a peptide via the action of protein farnesyltransferase (PFTase). By using a dansylated peptide whose fluorescence quantum yield increases upon farnesylation, the rate of FDPS-catalyzed FPP production can be measured. We show that this assay is more sensitive than existing coupled assays, that it can be used to conveniently monitor FDPS activity in a 96-well plate format, and that it can reproduce IC(50) values for several previously reported FDPS inhibitors. This new method offers a simple, safe, and continuous method to assay FDPS activity that should greatly facilitate the screening of inhibitors of this important target.

  20. An enzyme-coupled continuous fluorescence assay for farnesyl diphosphate synthases

    PubMed Central

    Dozier, Jonathan K; Distefano, Mark D

    2012-01-01

    Farnesyl diphosphate synthase (FDPS) catalyzes the conversion of isopentenyl diphosphate and dimethylallyl diphosphate to farnesyl diphosphate, a crucial metabolic intermediate in the synthesis of cholesterol, ubiquinone and prenylated proteins; consequently, much effort has gone into developing inhibitors that target FDPS. Currently most FDPS assays use either radiolabeled substrates and are discontinuous, or monitor pyrophosphate release and not farnesyl diphosphate (FPP) creation. Here we report the development of a continuous coupled enzyme assay for FDPS activity that involves the subsequent incorporation of the FPP product of that reaction into a peptide via the action of protein farnesyltransferase (PFTase). By using a dansylated peptide whose fluorescence quantum yield increases upon farnesylation, the rate of FDPS-catalyzed FPP production can be measured. We show that this assay is more sensitive than existing coupled assays, that it can be used to conveniently monitor FDPS activity in a 96-well plate format and that it can reproduce IC50 values for several previously reported FDPS inhibitors. This new method offers a simple, safe and continuous method to assay FDPS activity that should greatly facilitate the screening of inhibitors of this important target. PMID:22085443

  1. The role of adenosine in Alzheimer's disease.

    PubMed

    Rahman, Anisur

    2009-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system manifested by cognitive and memory deterioration, a variety of neuropsychiatric symptoms, behavioral disturbances, and progressive impairment of daily life activities. Current pharmacotherapies are restricted to symptomatic interventions but do not prevent progressive neuronal degeneration. Therefore, new therapeutic strategies are needed to intervene with these progressive pathological processes. In the past several years adenosine, a ubiquitously released purine ribonucleoside, has become important for its neuromodulating capability and its emerging positive experimental effects in neurodegenerative diseases. Recent research suggests that adenosine receptors play important roles in the modulation of cognitive function. The present paper attempts to review published reports and data from different studies showing the evidence of a relationship between adenosinergic function and AD-related cognitive deficits. Epidemiological studies have found an association between coffee (a nonselective adenosine receptor antagonist) consumption and improved cognitive function in AD patients and in the elderly. Long-term administration of caffeine in transgenic animal models showed a reduced amyloid burden in brain with better cognitive performance. Antagonists of adenosine A2A receptors mimic these beneficial effects of caffeine on cognitive function. Neuronal cell cultures with amyloid beta in the presence of an A2A receptor antagonist completely prevented amyloid beta-induced neurotoxicity. These findings suggest that the adenosinergic system constitutes a new therapeutic target for AD, and caffeine and A2A receptor antagonists may have promise to manage cognitive dysfunction in AD.

  2. A Novel Method for Screening Adenosine Receptor Specific Agonists for Use in Adenosine Drug Development

    PubMed Central

    Jones, Karlie R.; Choi, Uimook; Gao, Ji-Liang; Thompson, Robert D.; Rodman, Larry E.; Malech, Harry L.; Kang, Elizabeth M.

    2017-01-01

    Agonists that target the A1, A2A, A2B and A3 adenosine receptors have potential to be potent treatment options for a number of diseases, including autoimmune diseases, cardiovascular disease and cancer. Because each of these adenosine receptors plays a distinct role throughout the body, obtaining highly specific receptor agonists is essential. Of these receptors, the adenosine A2AR and A2BR share many sequence and structural similarities but highly differ in their responses to inflammatory stimuli. Our laboratory, using a combination of specially developed cell lines and calcium release analysis hardware, has created a new and faster method for determining specificity of synthetic adenosine agonist compounds for the A2A and A2B receptors in human cells. A2A receptor expression was effectively removed from K562 cells, resulting in the development of a distinct null line. Using HIV-lentivector and plasmid DNA transfection, we also developed A2A and A2B receptor over-expressing lines. As adenosine is known to cause changes in intracellular calcium levels upon addition to cell culture, calcium release can be determined in these cell lines upon compound addition, providing a functional readout of receptor activation and allowing us to isolate the most specific adenosine agonist compounds. PMID:28317879

  3. Adenosine receptors and the central nervous system.

    PubMed

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.

  4. Effects of adenosine infusion into renal interstitium on renal hemodynamics

    SciTech Connect

    Pawlowska, D.; Granger, J.P.; Knox, F.G.

    1987-04-01

    This study was designed to investigate the hemodynamic effects of exogenous adenosine in the interstitium of the rat kidney. Adenosine or its analogues were infused into the renal interstitium by means of chronically implanted capsules. In fusion of adenosine decreased glomerular filtration rate (GFR) from 0.81 +/- 0.06 to 0.37 +/- 0.06 ml/min while having no effect on renal blood flow (RBF). The metabolically stable analogue, 2-chloradenosine (2-ClAdo), decreased GFR from 0.73 +/- 0.07 to 021 +/- 0.06 ml/min. Interstitial infusion of theophylline, an adenosine receptor antagonist, completely abolished the effects of adenosine and 2-ClAdo on GFR. The distribution of adenosine, when infused into the renal interstitium, was determined using radiolabeled 5'-(N-ethyl)-carboxamidoadenosine (NECA), a metabolically stable adenosine agonist. After continuous infusion, (/sup 3/H)NECA was distributed throughout the kidney. The effects of NECA to reduce GFR were similar to those of adenosine and 2-ClAdo. They conclude that increased levels of adenosine in the renal interstitium markedly decrease GFR without affecting RBF in steady-state conditions. The marked effects of adenosine agonists during their infusion into the renal interstitium and the complete blockade of these effects by theophylline suggest an extracellular action of adenosine.

  5. X-ray analysis of azido-thymidine diphosphate binding to nucleoside diphosphate kinase

    PubMed Central

    Xu, Yingwu; Sellam, Olivier; Moréra, Solange; Sarfati, Simon; Biondi, Ricardo; Véron, Michel; Janin, Joël

    1997-01-01

    To be effective as antiviral agent, AZT (3′-azido-3′-deoxythymidine) must be converted to a triphosphate derivative by cellular kinases. The conversion is inefficient and, to understand why AZT diphosphate is a poor substrate of nucleoside diphosphate (NDP) kinase, we determined a 2.3-Å x-ray structure of a complex with the N119A point mutant of Dictyostelium NDP kinase. It shows that the analog binds at the same site and, except for the sugar ring pucker which is different, binds in the same way as the natural substrate thymidine diphosphate. However, the azido group that replaces the 3′OH of the deoxyribose in AZT displaces a lysine side chain involved in catalysis. Moreover, it is unable to make an internal hydrogen bond to the oxygen bridging the β- and γ-phosphate, which plays an important part in phosphate transfer. PMID:9207061

  6. Molecular cloning and characterization of a geranyl diphosphate-specific aromatic prenyltransferase from lemon.

    PubMed

    Munakata, Ryosuke; Inoue, Tsuyoshi; Koeduka, Takao; Karamat, Fazeelat; Olry, Alexandre; Sugiyama, Akifumi; Takanashi, Kojiro; Dugrand, Audray; Froelicher, Yann; Tanaka, Ryo; Uto, Yoshihiro; Hori, Hitoshi; Azuma, Jun-Ichi; Hehn, Alain; Bourgaud, Frédéric; Yazaki, Kazufumi

    2014-09-01

    Prenyl residues confer divergent biological activities such as antipathogenic and antiherbivorous activities on phenolic compounds, including flavonoids, coumarins, and xanthones. To date, about 1,000 prenylated phenolics have been isolated, with these compounds containing various prenyl residues. However, all currently described plant prenyltransferases (PTs) have been shown specific for dimethylallyl diphosphate as the prenyl donor, while most of the complementary DNAs encoding these genes have been isolated from the Leguminosae. In this study, we describe the identification of a novel PT gene from lemon (Citrus limon), ClPT1, belonging to the homogentisate PT family. This gene encodes a PT that differs from other known PTs, including flavonoid-specific PTs, in polypeptide sequence. This membrane-bound enzyme was specific for geranyl diphosphate as the prenyl donor and coumarin as the prenyl acceptor. Moreover, the gene product was targeted to plastid in plant cells. To our knowledge, this is the novel aromatic PT specific to geranyl diphosphate from citrus species.

  7. Identification and subcellular localization of two solanesyl diphosphate synthases from Arabidopsis thaliana.

    PubMed

    Jun, Luo; Saiki, Ryoichi; Tatsumi, Kei; Nakagawa, Tsuyoshi; Kawamukai, Makoto

    2004-12-01

    Two solanesyl diphosphate synthases, designated SPS1 and SPS2, which are responsible for the synthesis of the isoprenoid side chain of either plastoquinone or ubiquinone in Arabidopsis thaliana, were identified. Heterologous expression of either SPS1 or SPS2 allowed the generation of UQ-9 in a decaprenyl diphosphate synthase-defective strain of fission yeast and also in wild-type Escherichia coli. SPS1-GFP was found to localize in the ER while SPS2-GFP localized in the plastid of tobacco BY-2 cells. These two different subcellular localizations are thought to be the reflection of their roles in solanesyl diphosphate synthesis in two different parts: presumably SPS1 and SPS2 for the side chains of ubiquinone and plastoquinone, respectively.

  8. Fruit color mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isoprenoids are a large class of compounds that are present in all living organisms. They are derived from the 5C building blocks isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In plants, IPP is synthesized in the cytoplasm from mevalonic acid via the “MVA pathway” a...

  9. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    PubMed

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes.

  10. Spectroscopic Studies on the [4Fe-4S] Cluster in Adenosine 5′-Phosphosulfate Reductase from Mycobacterium tuberculosis

    PubMed Central

    Bhave, Devayani P.; Hong, Jiyoung A.; Lee, Michael; Jiang, Wei; Krebs, Carsten; Carroll, Kate S.

    2011-01-01

    Mycobacterium tuberculosis adenosine 5′-phosphosulfate reductase (MtAPR) is an iron-sulfur protein and a validated target to develop new antitubercular agents, particularly for the treatment of latent infection. The enzyme harbors a [4Fe-4S]2+ cluster that is coordinated by four cysteinyl ligands, two of which are adjacent in the amino acid sequence. The iron-sulfur cluster is essential for catalysis; however, the precise role of the [4Fe-4S] cluster in APR remains unknown. Progress in this area has been hampered by the failure to generate a paramagnetic state of the [4Fe-4S] cluster that can be studied by electron paramagnetic resonance spectroscopy. Herein, we overcome this limitation and report the EPR spectra of MtAPR in the [4Fe-4S]+ state. The EPR signal is rhombic and consists of two overlapping S = ½ species. Substrate binding to MtAPR led to a marked increase in the intensity and resolution of the EPR signal and to minor shifts in principle g values that were not observed among a panel of substrate analogs, including adenosine 5′-diphosphate. Using site-directed mutagenesis, in conjunction with kinetic and EPR studies, we have also identified an essential role for the active site residue Lys-144, whose side chain interacts with both the iron-sulfur cluster and the sulfate group of adenosine 5′-phosphosulfate. The implications of these findings are discussed with respect to the role of the iron-sulfur cluster in the catalytic mechanism of APR. PMID:21075841

  11. Bioconversion of lactose/whey to fructose diphosphate with recombinant Saccharomyces cerevisiae cells

    SciTech Connect

    Compagno, C.; Tura, A.; Ranzi, B.M.; Martegani, E. )

    1993-07-01

    Genetically engineered Saccharomyces cerevisiae strains that express Escherichia coli [beta]-galactosidase gene are able to bioconvert lactose or whey into fructose-1,6-diphosphate (FDP). High FDP yields from whey were obtained with an appropriate ratio between cell concentration and inorganic phosphate. The biomass of transformed cells can be obtained from different carbon sources, according to the expression vector bearing the lacZ gene. The authors showed that whey can be used as the carbon source for S. cerevisiae growth and as the substrate for bioconversion to fructose diphosphate.

  12. Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate.

    PubMed Central

    Hoeffler, Jean-François; Hemmerlin, Andréa; Grosdemange-Billiard, Catherine; Bach, Thomas J; Rohmer, Michel

    2002-01-01

    In the bacterium Escherichia coli, the mevalonic-acid (MVA)-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway is characterized by two branches leading separately to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). The signature of this branching is the retention of deuterium in DMAPP and the deuterium loss in IPP after incorporation of 1-[4-(2)H]deoxy-d-xylulose ([4-(2)H]DX). Feeding tobacco BY-2 cell-suspension cultures with [4-(2)H]DX resulted in deuterium retention in the isoprene units derived from DMAPP, as well as from IPP in the plastidial isoprenoids, phytoene and plastoquinone, synthesized via the MEP pathway. This labelling pattern represents direct evidence for the presence of the DMAPP branch of the MEP pathway in a higher plant, and shows that IPP can be synthesized from DMAPP in plant plastids, most probably via a plastidial IPP isomerase. PMID:12010124

  13. The Small Subunit of Snapdragon Geranyl Diphosphate Synthase Modifies the Chain Length Specificity of Tobacco Geranylgeranyl Diphosphate Synthase in Planta[W

    PubMed Central

    Orlova, Irina; Nagegowda, Dinesh A.; Kish, Christine M.; Gutensohn, Michael; Maeda, Hiroshi; Varbanova, Marina; Fridman, Eyal; Yamaguchi, Shinjiro; Hanada, Atsushi; Kamiya, Yuji; Krichevsky, Alexander; Citovsky, Vitaly; Pichersky, Eran; Dudareva, Natalia

    2009-01-01

    Geranyl diphosphate (GPP), the precursor of many monoterpene end products, is synthesized in plastids by a condensation of dimethylallyl diphosphate and isopentenyl diphosphate (IPP) in a reaction catalyzed by homodimeric or heterodimeric GPP synthase (GPPS). In the heterodimeric enzymes, a noncatalytic small subunit (GPPS.SSU) determines the product specificity of the catalytic large subunit, which may be either an active geranylgeranyl diphosphate synthase (GGPPS) or an inactive GGPPS-like protein. Here, we show that expression of snapdragon (Antirrhinum majus) GPPS.SSU in tobacco (Nicotiana tabacum) plants increased the total GPPS activity and monoterpene emission from leaves and flowers, indicating that the introduced catalytically inactive GPPS.SSU found endogenous large subunit partner(s) and formed an active snapdragon/tobacco GPPS in planta. Bimolecular fluorescence complementation and in vitro enzyme analysis of individual and hybrid proteins revealed that two of four GGPPS-like candidates from tobacco EST databases encode bona fide GGPPS that can interact with snapdragon GPPS.SSU and form a functional GPPS enzyme in plastids. The formation of chimeric GPPS in transgenic plants also resulted in leaf chlorosis, increased light sensitivity, and dwarfism due to decreased levels of chlorophylls, carotenoids, and gibberellins. In addition, these transgenic plants had reduced levels of sesquiterpene emission, suggesting that the export of isoprenoid intermediates from the plastids into the cytosol was decreased. These results provide genetic evidence that GPPS.SSU modifies the chain length specificity of phylogenetically distant GGPPS and can modulate IPP flux distribution between GPP and GGPP synthesis in planta. PMID:20028839

  14. Direct visualization by electron microscopy of the weakly bound intermediates in the actomyosin adenosine triphosphatase cycle.

    PubMed Central

    Pollard, T D; Bhandari, D; Maupin, P; Wachsstock, D; Weeds, A G; Zot, H G

    1993-01-01

    We used a novel stopped-flow/rapid-freezing machine to prepare the transient intermediates in the actin-myosin adenosine triphosphatase (ATPase) cycle for direct observation by electron microscopy. We focused on the low affinity complexes of myosin-adenosine triphosphate (ATP) and myosin-adenosine diphosphate (ADP)-Pi with actin filaments since the transition from these states to the high affinity actin-myosin-ADP and actin-myosin states is postulated to generate the molecular motion that drives muscle contraction and other types of cellular movements. After rapid freezing and metal replication of mixtures of myosin subfragment-1, actin filaments, and ATP, the structure of the weakly bound intermediates is indistinguishable from nucleotide-free rigor complexes. In particular, the average angle of attachment of the myosin head to the actin filament is approximately 40 degrees in both cases. At all stages in the ATPase cycle, the configuration of most of the myosin heads bound to actin filaments is similar, and the part of the myosin head preserved in freeze-fracture replicas does not tilt by more than a few degrees during the transition from the low affinity to high affinity states. In contrast, myosin heads chemically cross-linked to actin filaments differ in their attachment angles from ordered at 40 degrees without ATP to nearly random in the presence of ATP when viewed by negative staining (Craig, R., L.E. Greene, and E. Eisenberg. 1985. Proc. Natl. Acad. Sci. USA. 82:3247-3251, and confirmed here), freezing in vitreous ice (Applegate, D., and P. Flicker. 1987. J. Biol. Chem. 262:6856-6863), and in replicas of rapidly frozen samples. This suggests that many of the cross-linked heads in these preparations are dissociated from but tethered to the actin filaments in the presence of ATP. These observations suggest that the molecular motion produced by myosin and actin takes place with the myosin head at a point some distance from the actin binding site or does not

  15. Perspectives in anti-infective drug design. The late steps in the biosynthesis of the universal terpenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate.

    PubMed

    Rohdich, Felix; Bacher, Adelbert; Eisenreich, Wolfgang

    2004-10-01

    A mevalonate-independent pathway for the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) that has been elucidated during the last decade is essential in plants, many eubacteria and apicomplexan parasites, but is absent in Archaea and animals. The enzymes of the pathway are potential targets for the development of novel antibiotic, antimalarial and herbicidal agents. This review is focused on the late steps of this pathway. The intermediate 2C-methyl-D-erythritol 2,4-cyclodiphosphate is converted into IPP and DMAPP via 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate by the consecutive action of the iron-sulfur proteins IspG and IspH. IPP and DMAPP can be interconverted by IPP isomerase which is essential in microorganisms using the mevalonate pathway, whereas its presence is optional in microorganisms using the non-mevalonate pathway. A hitherto unknown family of IPP isomerases using FMN as coenzyme has been discovered recently in Archaea and certain eubacteria.

  16. Adenosine thallium 201 myocardial perfusion scintigraphy

    SciTech Connect

    Verani, M.S. )

    1991-07-01

    Pharmacologic coronary vasodilation as an adjunct to myocardial perfusion imaging has become increasingly important in the evaluation of patients with coronary artery disease, in view of the large number of patients who cannot perform an adequate exercise test or in whom contraindications render exercise inappropriate. Adenosine is a very potent coronary vasodilator and when combined with thallium 201 scintigraphy produces images of high quality, with the added advantages of a very short half-life (less than 10 seconds) and the ability to adjust the dose during the infusion, which may enhance safety and curtail the duration of side effects. The reported sensitivity and specificity of adenosine thallium 201 scintigraphy for the detection of coronary artery disease are high and at least comparable with imaging after exercise or dipyridamole administration. 23 refs.

  17. Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation

    PubMed Central

    Boison, Detlev; Stewart, Kerry-Ann

    2009-01-01

    Epilepsy is a common seizure disorder affecting approximately 70 million people worldwide. Current pharmacotherapy is neuron-centered, frequently accompanied by intolerable side-effects, and fails to be effective in about one third of patients. Therefore, new therapeutic concepts are needed. Recent research suggests an astrocytic basis of epilepsy, presenting the possibility of novel therapeutic targets. In particular, dysfunction of the astrocyte-controlled, endogenous, adenosine-based seizure control system of the brain is implicated in seizure generation. Thus, astrogliosis – a pathological hallmark of the epileptic brain – is associated with upregulation of the adenosine-removing enzyme adenosine kinase (ADK), resulting in focal adenosine deficiency. Both astrogliotic upregulation of ADK in epilepsy and transgenic overexpression of ADK are associated with seizures, and inhibition of ADK prevents seizures in a mouse model of pharmacoresistant epilepsy. These findings link adenosine deficiency with seizures and predict that adenosine augmentation therapies (AATs) will likely be effective in preventing seizures. Given the widespread systemic and central side effects of systemically administered AATs, focal AATs (i.e., limited to the astrogliotic lesion) are a necessity. This Commentary will discuss the pharmacological rationale for the development of focal AATs. Additionally, several AAT strategies will be discussed: (1) adenosine released from silk-based brain implants; (2) adenosine released from locally implanted encapsulated cells; (3) adenosine released from stem cell-derived brain implants; and (4) adenosine augmenting gene therapies. Finally, new developments and therapeutic challenges in using focal AATs for epilepsy therapy will critically be evaluated. PMID:19682439

  18. Phosphorylation of Cytokinin by Adenosine Kinase from Wheat Germ 1

    PubMed Central

    Chen, Chong-Maw; Eckert, Richard L.

    1977-01-01

    Adenosine kinase was partially purified from wheat germ. This enzyme preparation, which was devoid of adenine phosphoribosyltransferase and nearly free of adenosine deaminase but contained adenylate kinase, rapidly phosphorylated adenosine and a cytokinin, N6-(δ2-isopentenyl)adenosine. Electrophoretic analysis indicated that only N6-(δ2-isopentenyl)adenosine-monophosphate was formed from the cytokinin while about 55% AMP, 45% ADP, and a trace of ATP were formed from adenosine. The biosynthesized nucleoside monophosphates were quantitatively hydrolyzed to the corresponding nucleosides by 5′-nucleotidase and the isopentenyl side chain of the phosphorylated cytokinin was not cleaved. The enzyme did not catalyze phosphorylation of inosine. The phosphorylation of the cytokinin and adenosine required ATP and Mg2+. The pH optimum was from 6.8 to 7.2 for both the cytokinin and adenosine. At pH 7 and 37 C the Km and Vmax for the cytokinin were 31 μm and 8.3 nmoles per mg protein per minute, and the values for adenosine were 8.7 μm and 46 nmoles per mg protein per minute. Crude enzyme preparations from tobacco callus tissue and wheat germ phosphorylated N6-(δ2-isopentenyl)adenosine. These preparations also phosphorylated N6-(δ2-isopentenyl)adenine when 5-phosphorylribose-1-pyrophosphate was present. PMID:16659870

  19. The Janus face of adenosine: antiarrhythmic and proarrhythmic actions.

    PubMed

    Szentmiklosi, A József; Galajda, Zoltán; Cseppento, Ágnes; Gesztelyi, Rudolf; Susán, Zsolt; Hegyi, Bence; Nánási, Péter P

    2015-01-01

    Adenosine is a ubiquitous, endogenous purine involved in a variety of physiological and pathophysiological regulatory mechanisms. Adenosine has been proposed as an endogenous antiarrhythmic substance to prevent hypoxia/ischemia-induced arrhythmias. Adenosine (and its precursor, ATP) has been used in the therapy of various cardiac arrhythmias over the past six decades. Its primary indication is treatment of paroxysmal supraventricular tachycardia, but it can be effective in other forms of supraventricular and ventricular arrhythmias, like sinus node reentry based tachycardia, triggered atrial tachycardia, atrioventricular nodal reentry tachycardia, or ventricular tachycardia based on a cAMP-mediated triggered activity. The main advantage is the rapid onset and the short half life (1- 10 sec). Adenosine exerts its antiarrhythmic actions by activation of A1 adenosine receptors located in the sinoatrial and atrioventricular nodes, as well as in activated ventricular myocardium. However, adenosine can also elicit A2A, A2B and A3 adenosine receptor-mediated global side reactions (flushing, dyspnea, chest discomfort), but it may display also proarrhythmic actions mediated by primarily A1 adenosine receptors (e.g. bradyarrhythmia or atrial fibrillation). To avoid the non-specific global adverse reactions, A1 adenosine receptor- selective full agonists (tecadenoson, selodenoson, trabodenoson) have been developed, which agents are currently under clinical trial. During long-term administration with orthosteric agonists, adenosine receptors can be internalized and desensitized. To avoid desensitization, proarrhythmic actions, or global adverse reactions, partial A1 adenosine receptor agonists, like CVT-2759, were developed. In addition, the pharmacologically "silent" site- and event specific adenosinergic drugs, such as adenosine regulating agents and allosteric modulators, might provide attractive opportunity to increase the effectiveness of beneficial actions of adenosine

  20. Berberine stimulates glucose transport through a mechanism distinct from insulin.

    PubMed

    Zhou, Libin; Yang, Ying; Wang, Xiao; Liu, Shangquan; Shang, Wenbin; Yuan, Guoyue; Li, Fengying; Tang, Jinfeng; Chen, Mingdao; Chen, Jialun

    2007-03-01

    Berberine exerts a hypoglycemic effect, but the mechanism remains unknown. In the present study, the effect of berberine on glucose uptake was characterized in 3T3-L1 adipocytes. It was revealed that berberine stimulated glucose uptake in 3T3-L1 adipocytes in a dose- and time-dependent manner with the maximal effect at 12 hours. Glucose uptake was increased by berberine in 3T3-L1 preadipocytes as well. Berberine-stimulated glucose uptake was additive to that of insulin in 3T3-L1 adipocytes, even at the maximal effective concentrations of both components. Unlike insulin, the effect of berberine on glucose uptake was insensitive to wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and SB203580, an inhibitor of p38 mitogen-activated protein kinase. Berberine activated extracellular signal-regulated kinase (ERK) 1/2, but PD98059, an ERK kinase inhibitor, only decreased berberine-stimulated glucose uptake by 32%. Berberine did not induce Ser473 phosphorylation of Akt nor enhance insulin-induced phosphorylation of Akt. Meanwhile, the expression and cellular localization of glucose transporter 4 (GLUT4) were not altered by berberine. Berberine did not increase GLUT1 gene expression. However, genistein, a tyrosine kinase inhibitor, completely blocked berberine-stimulated glucose uptake in 3T3-L1 adipocytes and preadipocytes, suggesting that berberine may induce glucose transport via increasing GLUT1 activity. In addition, berberine increased adenosine monophosphate-activated protein kinase and acetyl-coenzyme A carboxylase phosphorylation. These findings suggest that berberine increases glucose uptake through a mechanism distinct from insulin, and activated adenosine monophosphate-activated protein kinase seems to be involved in the metabolic effect of berberine.

  1. Role of adenosine in oligodendrocyte precursor maturation

    PubMed Central

    Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Dettori, Ilaria; Melani, Alessia; Pugliese, Anna Maria; Pedata, Felicita

    2015-01-01

    Differentiation and maturation of oligodendroglial cells are postnatal processes that involve specific morphological changes correlated with the expression of stage-specific surface antigens and functional voltage-gated ion channels. A small fraction of oligodendrocyte progenitor cells (OPCs) generated during development are maintained in an immature and slowly proliferative or quiescent state in the adult central nervous system (CNS) representing an endogenous reservoir of immature cells. Adenosine receptors are expressed by OPCs and a key role of adenosine in oligodendrocyte maturation has been recently recognized. As evaluated on OPC cultures, adenosine, by stimulating A1 receptors, promotes oligodendrocyte maturation and inhibits their proliferation; on the contrary, by stimulating A2A receptors, it inhibits oligodendrocyte maturation. A1 and A2A receptor-mediated effects are related to opposite modifications of outward delayed rectifying membrane K+ currents (IK) that are involved in the regulation of oligodendrocyte differentiation. Brain A1 and A2A receptors might represent new molecular targets for drugs useful in demyelinating pathologies, such as multiple sclerosis (MS), stroke and brain trauma. PMID:25964740

  2. Effects of adenosine perfusion on the metabolism and contractile activity of Rana ridibunda heart.

    PubMed

    Lazou, A; Beis, I

    1987-01-01

    The effects of adenosine were examined on the isolated perfused heart of the frog Rana ridibunda. Adenosine produced negative chronotropic and inotropic effects on frog ventricle in a concentration-dependent manner. The effects of adenosine on cardiac metabolism were also investigated by measuring the tissue content of adenine nucleotides, lactate, pyruvate, adenosine and inorganic phosphate, during adenosine perfusion. Adenosine had no effect on the tissue content of metabolites. No net synthesis of adenine nucleotides was observed during perfusion with increasing concentrations of adenosine. Lactate output from the heart decreased significantly with adenosine perfusion. Correlation of adenosine effects on cardiac muscle with the effects of hypoxia are discussed.

  3. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  4. Guanosine Diphosphate-l-Fucose Glycopeptide Fucosyltransferase Activity in Corynebacterium insidiosum1

    PubMed Central

    Sadowski, Peter L.; Strobel, Gary A.

    1973-01-01

    The biosynthesis of a phytotoxic glycopeptide of Corynebacterium insidiosum involves guanosine diphosphate-l-fucosyltransferase activity. This enzyme activity is most consistently associated with the cellular membranes fraction. The optimal pH for the transfer reaction is 7.5. The partially hydrolyzed toxin serves as an acceptor (primer) of l-fucose. PMID:4199136

  5. Effect of adenosine and adenosine analogues on cyclic AMP accumulation in cultured mesangial cells and isolated glomeruli of the rat.

    PubMed Central

    Olivera, A.; Lopez-Novoa, J. M.

    1992-01-01

    1. Changes in intracellular levels of adenosine 3':5'-cyclic monophosphate (cyclic AMP) were studied in rat isolated glomeruli and cultured glomerular mesangial cells exposed to adenosine and to the preferential A1 receptor agonist N6-R-1-methyl-2-phenylethyl adenosine (R-PIA), or the potent A2 adenosine receptor agonist 5-(N-ethylcarboxamide)adenosine (NECA). 2. Whereas NECA and adenosine triggered a dose-dependent increase in cyclic AMP values with EC50 values of approximately 10(-6) M and 3 x 10(-5) M respectively, R-PIA lowered cyclic AMP levels at concentrations of 10(-6) M or less and increased them at higher concentrations. 3. The time-course of the increase induced by 10(-6) M NECA was slower than that induced by 10(-4) M adenosine. Adenosine produced a maximal stimulation within the first minute, whereas the effect of NECA in both glomeruli and mesangial cells was noticeable only from the second minute of incubation. 4. The effects of the agonists R-PIA and NECA on the cyclic AMP system were blocked respectively by the A1 adenosine receptor antagonist, 8-cyclopentyl-1, 3-dipropylxanthihe (DPCPX) at 10(-6) M and the A2 antagonist N-(2-dimethylaminoethyl)-N-methyl-4-(2, 3, 6, 7-tetrahydro-2,b-dioxo-1, 3-dipropyl-1H-purin-8-yl) benzene sulphonamide (PD115,199) at 10(-6) M. Theophylline, a known antagonist of adenosine receptors, inhibited the action of adenosine on cyclic AMP in mesangial cells. Dipyridamole, an inhibitor of the uptake of adenosine by the cells, enhanced the response to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1330173

  6. [The involvement of adenosine and adenosine deaminase in experimental myocardial infarct].

    PubMed

    Stratone, A; Busuioc, A; Roşca, V; Bazgan, L; Popa, M; Hăulică, I

    1989-01-01

    By the ligature of the left coronary artery in the rat anesthetized with nembutal (10 mg/100 i.p.) a significant increase of the 5'-nucleotidase activity (Wooton method) was noticed 10 minutes after the left ventricle infarction (from an average value of 1038.5 +/- 187 mU/g tissue to 1537 +/- 225 mU/g fresh tissue). The adenosine desaminase levels spectrophotometrically determined by Denstedt technique, do not appear significantly modified 10 or 30 minutes after the left ventricle infarction. The chromatographically determined adenosine levels, by HPLC technique, decrease from the average value of 11.63 +/- 1.4 micrograms/mg PT to 8.60 +/- 1.0 micrograms/mg PT 30 minutes after infarction. The observed changes are explained by the conditions of hypoxia in the infarcted ventricle which lead to the raise in adenosine levels by activating the 5'-nucleotidase and their depression by a very fast metabolism of the same substance.

  7. Adenosine and inflammation: what's new on the horizon?

    PubMed

    Antonioli, Luca; Csóka, Balázs; Fornai, Matteo; Colucci, Rocchina; Kókai, Endre; Blandizzi, Corrado; Haskó, György

    2014-08-01

    Adenosine contributes to the maintenance of tissue integrity by modulating the immune system. Encouraging results have emerged with adenosine receptor ligands for the management of several inflammatory conditions in preclinical and clinical settings. However, therapeutic applications of these drugs are sometimes complicated by the occurrence of serious adverse effects. The scientific community is making intensive efforts to design novel adenosine receptor ligands endowed with greater selectivity or to develop innovative compounds acting as allosteric receptor modulators. In parallel, research is focusing on novel pharmacological entities (designated as adenosine-regulating agents) that can increase, in a site- and event-specific manner, adenosine concentrations at the inflammatory site, thereby minimizing the adverse systemic effects of adenosine.

  8. Rhodium Complex and Enzyme Couple Mediated Electrochemical Detection of Adenosine.

    PubMed

    Han, Dawoon; Kim, Hyeong-Mook; Chand, Rohit; Kim, Gyumin; Shin, Ik-Soo; Kim, Yong-Sang

    2015-10-01

    Adenosine is one of the nucleoside which plays an important role in signal transduction and neuromodulation. This work proposes a simple electrochemical assay, comprising two enzymes and rhodium complex based electron transfer mediator, for the detection of adenosine. Sequential reaction of adenosine deaminase and L-glutamic dehydrogenase and the supporting cycle between β-NADH and mediator enable quantitative analysis of adenosine. Role of electron transfer mediator is the conveyance of proton from electrode to β-NAD(+) for regeneration of β-NADH. The electrochemical characteristics of electron transfer mediator were also studied. Real-time adenosine detection was carried out using this multiple enzyme based chronoamperometric assay. The analysis results show a low limit of detection (140 μM) and good correspondence between current signal and the adenosine concentration (R (2) = 0.997).

  9. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors.

    PubMed

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  10. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    PubMed Central

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  11. Characterization of an isopentenyl diphosphate isomerase involved in the juvenile hormone pathway in Aedes aegypti.

    PubMed

    Diaz, Miguel E; Mayoral, Jaime G; Priestap, Horacio; Nouzova, Marcela; Rivera-Perez, Crisalejandra; Noriega, Fernando G

    2012-10-01

    Isopentenyl diphosphate isomerase (IPPI) is an enzyme involved in the synthesis of juvenile hormone (JH) in the corpora allata (CA) of insects. IPPI catalyzes the conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP); afterward IPP and DMAPP condense in a head-to-tail manner to produce geranyl diphosphate (GPP), this head-to-tail condensation can be repeated, by the further reaction of GPP with IPP, yielding the JH precursor farnesyl diphosphate. An IPPI expressed sequence tag (EST) was obtained from an Aedes aegypti corpora-allata + corpora cardiaca library. Its full-length cDNA encodes a 244-aa protein that shows a high degree of similarity with type I IPPIs from other organisms, particularly for those residues that have important roles in catalysis, metal coordination and interaction with the diphosphate moiety of the IPP. Heterologous expression produced a recombinant protein that metabolized IPP into DMAPP; treatment of DMAPP with phosphoric acid produced isoprene, a volatile compound that was measured with an assay based on a solid-phase micro extraction protocol and direct analysis by gas chromatography. A. aegypti IPPI (AaIPPI) required Mg(2+) or Mn(2+) but not Zn(2+) for full activity and it was entirely inhibited by iodoacetamide. Real time PCR experiments showed that AaIPPI is highly expressed in the CA. Changes in AaIPPI mRNA levels in the CA in the pupal and adult female mosquito corresponded well with changes in JH synthesis (Li et al., 2003). This is the first molecular and functional characterization of an isopentenyl diphosphate isomerase involved in the production of juvenile hormone in the CA of an insect.

  12. Two solanesyl diphosphate synthases with different subcellular localizations and their respective physiological roles in Oryza sativa.

    PubMed

    Ohara, Kazuaki; Sasaki, Kanako; Yazaki, Kazufumi

    2010-06-01

    Long chain prenyl diphosphates are crucial biosynthetic precursors of ubiquinone (UQ) in many organisms, ranging from bacteria to humans, as well as precursors of plastoquinone in photosynthetic organisms. The cloning and characterization of two solanesyl diphosphate synthase genes, OsSPS1 and OsSPS2, in Oryza sativa is reported here. OsSPS1 was highly expressed in root tissue whereas OsSPS2 was found to be high in both leaves and roots. Enzymatic characterization using recombinant proteins showed that both OsSPS1 and OsSPS2 could produce solanesyl diphosphates as their final product, while OsSPS1 showed stronger activity than OsSPS2. However, an important biological difference was observed between the two genes: OsSPS1 complemented the yeast coq1 disruptant, which does not form UQ, whereas OsSPS2 only very weakly complemented the growth defect of the coq1 mutant. HPLC analyses showed that both OsSPS1 and OsSPS2 yeast transformants produced UQ9 instead of UQ6, which is the native yeast UQ. According to the complementation study, the UQ9 levels in OsSPS2 transformants were much lower than that of OsSPS1. Green fluorescent protein fusion analyses showed that OsSPS1 localized to mitochondria, while OsSPS2 localized to plastids. This suggests that OsSPS1 is involved in the supply of solanesyl diphosphate for ubiquinone-9 biosynthesis in mitochondria, whereas OsSPS2 is involved in providing solanesyl diphosphate for plastoquinone-9 formation. These findings indicate that O. sativa has a different mechanism for the supply of isoprenoid precursors in UQ biosynthesis from Arabidopsis thaliana, in which SPS1 provides a prenyl moiety for UQ9 at the endoplasmic reticulum.

  13. Cloning, expression and characterization of an insect geranylgeranyl diphosphate synthase from Choristoneura fumiferana.

    PubMed

    Barbar, Aline; Couture, Manon; Sen, Stephanie E; Béliveau, Catherine; Nisole, Audrey; Bipfubusa, Marie; Cusson, Michel

    2013-10-01

    Geranylgeranyl diphosphate synthase (GGPPS) catalyzes the condensation of the non-allylic diphosphate, isopentenyl diphosphate (IPP; C5), with allylic diphosphates to generate the C20 prenyl chain (GGPP) used for protein prenylation and diterpenoid biosynthesis. Here, we cloned the cDNA of a GGPPS from the spruce budworm, Choristoneura fumiferana, and characterized the corresponding recombinant protein (rCfGGPPS). As shown for other type-III GGPPSs, rCfGGPPS preferred farnesyl diphosphate (FPP; C15) over other allylic substrates for coupling with IPP. Unexpectedly, rCfGGPPS displayed inhibition by its FPP substrate at low IPP concentration, suggesting the existence of a mechanism that may regulate intracellular FPP pools. rCfGGPPS was also inhibited by its product, GGPP, in a competitive manner with respect to FPP, as reported for human and bovine brain GGPPSs. A homology model of CfGGPPS was prepared and compared to human and yeast GGPPSs. Consistent with its enzymological properties, CfGGPPS displayed a larger active site cavity that can accommodate the binding of FPP and GGPP in the region normally occupied by IPP and the allylic isoprenoid tail, and the binding of GGPP in an alternate orientation seen for GGPP binding to the human protein. To begin exploring the role of CfGGPPS in protein prenylation, its transcripts were quantified by qPCR in whole insects, along with those of other genes involved in this pathway. CfGGPPS was expressed throughout insect development and the abundance of its transcripts covaried with that of other prenylation-related genes. Our qPCR results suggest that geranylgeranylation is the predominant form of prenylation in whole C. fumiferana.

  14. Mystery solved: Trehalose kickstarts autophagy by blocking glucose transport.

    PubMed

    Mardones, Pablo; Rubinsztein, David C; Hetz, Claudio

    2016-02-23

    Although vertebrates cannot synthesize the natural disaccharide trehalose, exogenous administration of trehalose to mammalian cells may be beneficial for protein misfolding disorders. In this issue, DeBosch et al. show that trehalose may also be useful in treating nonalcoholic fatty liver disease and identify inhibition of cellular glucose import through SLC2A (also known as GLUT) transporters as a mechanism by which trehalose stimulates autophagy through the adenosine monophosphate-activated protein kinase (AMPK).

  15. Cardioprotection with adenosine: 'a riddle wrapped in a mystery'.

    PubMed

    Przyklenk, Karin; Whittaker, Peter

    2005-07-01

    Review of the published literature on adenosine and cardioprotection could lead one to paraphrase the famous words of Sir Winston Churchill (Radio broadcast, 1 October 1939 (in reference to Russia)) and conclude: 'I cannot forecast to you the action of adenosine. It is a riddle wrapped in a mystery inside an enigma'. That is, although it is well-established that adenosine can render cardiomyocytes resistant to lethal ischemia/reperfusion-induced injury, new and intriguing insights continue to emerge as to the mechanisms by which adenosine might limit myocardial infarct size.

  16. Adenosine modulates LPS-induced cytokine production in porcine monocytes.

    PubMed

    Ondrackova, Petra; Kovaru, Hana; Kovaru, Frantisek; Leva, Lenka; Faldyna, Martin

    2013-03-01

    Adenosine plays an important role during inflammation, particularly through modulation of monocyte function. The objective of the present study was to evaluate the effect of synthetic adenosine analogs on cytokine production by porcine monocytes. The LPS-stimulated cytokine production was measured by flow cytometry and quantitative real-time PCR. Adenosine receptor expression was measured by quantitative real-time PCR. The present study demonstrates that adenosine analog N-ethylcarboxyamidoadenosine (NECA) down-regulates TNF-α production and up-regulates IL-8 production by LPS-stimulated porcine monocytes. The effect was more pronounced in CD163(-) subset of monocytes compared to the CD163(+) subset. Although both monocyte subsets express mRNA for A1, A2A, A2B and A3 adenosine receptors, the treatment of monocytes with various adenosine receptor agonists and antagonists proved that the effect of adenosine is mediated preferentially via A2A adenosine receptor. Moreover, the study suggests that the effect of NECA on porcine monocytes alters the levels of the cytokines which could play a role in the differentiation of naive T cells into Th17 cells. The results suggest that adenosine plays an important role in modulation of cytokine production by porcine monocytes.

  17. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment

    PubMed Central

    Ohta, Akio

    2016-01-01

    Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia–adenosine pathway for cancer immunotherapy. PMID:27066002

  18. The Role of Adenosine Signaling in Headache: A Review

    PubMed Central

    Fried, Nathan T.; Elliott, Melanie B.; Oshinsky, Michael L.

    2017-01-01

    Migraine is the third most prevalent disease on the planet, yet our understanding of its mechanisms and pathophysiology is surprisingly incomplete. Recent studies have built upon decades of evidence that adenosine, a purine nucleoside that can act as a neuromodulator, is involved in pain transmission and sensitization. Clinical evidence and rodent studies have suggested that adenosine signaling also plays a critical role in migraine headache. This is further supported by the widespread use of caffeine, an adenosine receptor antagonist, in several headache treatments. In this review, we highlight evidence that supports the involvement of adenosine signaling in different forms of headache, headache triggers, and basic headache physiology. This evidence supports adenosine A2A receptors as a critical adenosine receptor subtype involved in headache pain. Adenosine A2A receptor signaling may contribute to headache via the modulation of intracellular Cyclic adenosine monophosphate (cAMP) production or 5' AMP-activated protein kinase (AMPK) activity in neurons and glia to affect glutamatergic synaptic transmission within the brainstem. This evidence supports the further study of adenosine signaling in headache and potentially illuminates it as a novel therapeutic target for migraine. PMID:28335379

  19. An Essential Role for Adenosine Signaling in Alcohol Abuse

    PubMed Central

    Ruby, Christina L.; Adams, Chelsea; Knight, Emily J.; Nam, Hyung Wook; Choi, Doo-Sup

    2014-01-01

    In the central nervous system (CNS), adenosine plays an important role in regulating neuronal activity and modulates signaling by other neurotransmitters, including GABA, glutamate, and dopamine. Adenosine suppresses neurotransmitter release, reduces neuronal excitability, and regulates ion channel function through activation of four classes of G protein-coupled receptors, A1, A2A, A2B, and A3. Central adenosine levels are largely controlled by nucleoside transporters, which regulate adenosine levels across the plasma membrane. Adenosine has been shown to modulate cortical glutamate signaling and ventral-tegmental dopaminergic signaling, which are involved in several aspects of alcohol use disorders. Acute ethanol elevates extracellular adenosine levels by selectively inhibiting the type 1 equilibrative nucleoside transporter, ENT1. Raised adenosine levels mediate the ataxic and sedative/hypnotic effects of ethanol through activation of A1 receptors in the cerebellum, striatum, and cerebral cortex. Recently, we have shown that pharmacological inhibition or genetic deletion of ENT1 reduces the expression of excitatory amino acid transporter 2 (EAAT2), the primary regulator of extracellular glutamate, in astrocytes. These lines of evidence support a central role for adenosine-mediated glutamate signaling and the involvement of astrocytes in regulating ethanol intoxication and preference. In this paper, we discuss recent findings on the implication of adenosine signaling in alcohol use disorders. PMID:21054262

  20. Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity.

    PubMed

    Sun, Kaiqi; Zhang, Yujin; Bogdanov, Mikhail V; Wu, Hongyu; Song, Anren; Li, Jessica; Dowhan, William; Idowu, Modupe; Juneja, Harinder S; Molina, Jose G; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-03-05

    Erythrocyte possesses high sphingosine kinase 1 (SphK1) activity and is the major cell type supplying plasma sphingosine-1-phosphate, a signaling lipid regulating multiple physiological and pathological functions. Recent studies revealed that erythrocyte SphK1 activity is upregulated in sickle cell disease (SCD) and contributes to sickling and disease progression. However, how erythrocyte SphK1 activity is regulated remains unknown. Here we report that adenosine induces SphK1 activity in human and mouse sickle and normal erythrocytes in vitro. Next, using 4 adenosine receptor-deficient mice and pharmacological approaches, we determined that the A2B adenosine receptor (ADORA2B) is essential for adenosine-induced SphK1 activity in human and mouse normal and sickle erythrocytes in vitro. Subsequently, we provide in vivo genetic evidence that adenosine deaminase (ADA) deficiency leads to excess plasma adenosine and elevated erythrocyte SphK1 activity. Lowering adenosine by ADA enzyme therapy or genetic deletion of ADORA2B significantly reduced excess adenosine-induced erythrocyte SphK1 activity in ADA-deficient mice. Finally, we revealed that protein kinase A-mediated extracellular signal-regulated kinase 1/2 activation functioning downstream of ADORA2B underlies adenosine-induced erythrocyte SphK1 activity. Overall, our findings reveal a novel signaling network regulating erythrocyte SphK1 and highlight innovative mechanisms regulating SphK1 activity in normal and SCD.

  1. Metabolite gene regulation: imidazole and imidazole derivatives which circumvent cyclic adenosine 3',5'-monophosphate in induction of the Escherichia coli L-arabinose operon.

    PubMed

    Kline, E L; Bankaitis, V A; Brown, C S; Montefiori, D C

    1980-02-01

    Imidazole, histidine, histamine, histidinol phosphate, urocanic acid, or imidazolepropionic acid were shown to induce the L-arabinose operon in the absence of cyclic adenosine 3',5'-monophosphate. Induction was quantitated by measuring the increased differential rate of synthesis of L-arabinose isomerase in Escherichia coli strains which carried a deletion of the adenyl cyclase gene. The crp gene product (cyclic adenosine 3',5'-monophosphate receptor protein) and the araC gene product (P2) were essential for induction of the L-arabinose operon by imidazole and its derivatives. These compounds were unable to circumvent the cyclic adenosine 3',5'-monophosphate in the induction of the lactose or the maltose operons. The L-arabinose regulon was catabolite repressed upon the addition of glucose to a strain carrying an adenyl cyclase deletion growing in the presence of L-arabinose with imidazole. These results demonstrated that several imidazole derivatives may be involved in metabolite gene regulation (23).

  2. Ketogenic diet sensitizes glucose control of hippocampal excitability1

    PubMed Central

    Kawamura, Masahito; Ruskin, David N.; Geiger, Jonathan D.; Boison, Detlev; Masino, Susan A.

    2014-01-01

    A high-fat low-carbohydrate ketogenic diet (KD) is an effective treatment for refractory epilepsy, yet myriad metabolic effects in vivo have not been reconciled clearly with neuronal effects. A KD limits blood glucose and produces ketone bodies from β-oxidation of lipids. Studies have explored changes in ketone bodies and/or glucose in the effects of the KD, and glucose is increasingly implicated in neurological conditions. To examine the interaction between altered glucose and the neural effects of a KD, we fed rats and mice a KD and restricted glucose in vitro while examining the seizure-prone CA3 region of acute hippocampal slices. Slices from KD-fed animals were sensitive to small physiological changes in glucose, and showed reduced excitability and seizure propensity. Similar to clinical observations, reduced excitability depended on maintaining reduced glucose. Enhanced glucose sensitivity and reduced excitability were absent in slices obtained from KD-fed mice lacking adenosine A1 receptors (A1Rs); in slices from normal animals effects of the KD could be reversed with blockers of pannexin-1 channels, A1Rs, or KATP channels. Overall, these studies reveal that a KD sensitizes glucose-based regulation of excitability via purinergic mechanisms in the hippocampus and thus link key metabolic and direct neural effects of the KD. PMID:25170119

  3. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    PubMed

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  4. Adenosine: Tipping the balance towards hepatic steatosis and fibrosis

    PubMed Central

    Robson, Simon C.; Schuppan, Detlef

    2010-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the histochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:20395005

  5. Adenosine signaling in normal and sickle erythrocytes and beyond

    PubMed Central

    Zhang, Yujin; Xia, Yang

    2012-01-01

    Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A2B receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O2 release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A2A receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and progression

  6. Fermentation of Glucose, Lactose, Galactose, Mannitol, and Xylose by Bifidobacteria

    PubMed Central

    de Vries, Wytske; Stouthamer, A. H.

    1968-01-01

    For six strains of Bifidobacterium bifidum (Lactobacillus bifidus), fermentation balances of glucose, lactose, galactose, mannitol, and xylose were determined. Products formed were acetate, l(+)-lactate, ethyl alcohol, and formate. l(+)-Lactate dehydrogenase of all strains studied was found to have an absolute requirement for fructose-1,6-diphosphate. The phosphoroclastic enzyme could not be demonstrated in cell-free extracts. Cell suspensions fermented pyruvate to equimolar amounts of acetate and formate. Alcohol dehydrogenase was shown in cell-free extracts. Possible explanations have been suggested for the differences in fermentation balances found for different strains and carbon sources. By enzyme determinations, it was shown that bifidobacteria convert mannitol to fructose-6-phosphate by an inducible polyol dehydrogenase and fructokinase. For one strain of B. bifidum, molar growth yields of glucose, lactose, galactose, and mannitol were determined. The mean value of Y (ATP), calculated from molar growth yields and fermentation balances, was 11.3. PMID:5674058

  7. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    SciTech Connect

    Liang, B.T.

    1989-06-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand (3H)-8-cyclopentyl-1,3-diproylxanthine ((3H)CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or the maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that (3H) CPX is an antagonist radioligand. Competition curves for (3H) CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific (3H)CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid).

  8. Reactions of fac-[Re(CO)3(H2O)3]+ with nucleoside diphosphates and thiamine diphosphate in aqueous solution investigated by multinuclear NMR spectroscopy.

    PubMed

    Adams, Kristie M; Marzilli, Patricia A; Marzilli, Luigi G

    2007-10-29

    Products formed between monoester diphosphates (MDPs) and fac-[Re(CO)3(H2O)3]OTf at pH 3.6 were examined. Such adducts of the fac-[Re(CO)3]+ moiety have an uncommon combination of properties for an "inert" metal center in that sharp NMR signals can be observed, yet the products are equilibrating at rates allowing NMR EXSY cross-peaks to be observed. Thiamine diphosphate (TDP) and uridine 5'-diphosphate (5'-UDP) form 1:1 bidentate {Palpha,Pbeta} chelates, in which the MDP binds Re(I) via Palpha and Pbeta phosphate groups. Asymmetric centers are created at Re(I) (RRe/SRe) and Palpha (Delta/Lambda), leading to four diastereomers. The two mirror pairs of diastereomers (RReDelta/SReLambda) and (RReLambda/SReDelta) for TDP (no ribose) and for all four diastereomers (RReDelta, RReLambda, SReDelta, SReLambda) for 5'-UDP (asymmetric ribose) gave two and four sets of NMR signals for the bound MDP, respectively. 31Palpha-31Palpha EXSY cross-peaks indicate that the fac-[Re(CO)3(H2O)({Palpha,Pbeta}MDP)]- isomers interchange slowly on the NMR time scale, with an average k approximately equal to 0.8 s(-1) at 32 degrees C; the EXSY cross-peaks could arise from chirality changes at only Re(I) or at only Palpha. Guanosine 5'-diphosphate (5'-GDP), with a ribose moiety and a Re(I)-binding base, formed both possible diastereomers (RRe and SRe) of the fac-[Re(CO)3(H2O)({N7,Pbeta}GDP)]- macrochelate, with one slightly more abundant diastereomer suggested to be RRe by Mn2+ ion 1H NMR signal line-broadening combined with distances from molecular models. Interchange of the diastereomers requires that the coordination site of either N7 or Pbeta move to the H2O site. 31Palpha-31Palpha EXSY cross-peaks indicate a k approximately equal to 0.5 s(-1) at 32 degrees C for RRe-to-SRe interchange. The similarity of the rate constants for interchange of fac-[Re(CO)3(H2O)({Palpha,Pbeta}MDP)]- and fac-[Re(CO)3(H2O)({N7,Pbeta}GDP)]- adducts suggest strongly that interchange of Pbeta and H2O coordination

  9. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury.

    PubMed

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-10-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose.

  10. Carbohydrate-induced secretion of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1.

    PubMed

    Seino, Yusuke; Maekawa, Ryuya; Ogata, Hidetada; Hayashi, Yoshitaka

    2016-04-01

    Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the incretin hormones secreted from enteroendocrine K-cells and L-cells, respectively, by oral ingestion of various nutrients including glucose. K-cells, L-cells and pancreatic β-cells are glucose-responsive cells with similar glucose-sensing machinery including glucokinase and an adenosine triphosphate-sensitive K(+) channel comprising KIR6.2 and sulfonylurea receptor 1. However, the physiological role of the adenosine triphosphate-sensitive K(+) channel in GIP secretion in K-cells and GLP-1 secretion in L-cells is not elucidated. Recently, it was reported that GIP and GLP-1-producing cells are present also in pancreatic islets, and islet-derived GIP and GLP-1 contribute to glucose-induced insulin secretion from pancreatic β-cells. In this short review, we focus on GIP and GLP-1 secretion by monosaccharides, such as glucose or fructose, and the role of the adenosine triphosphate-sensitive K(+) channel in GIP and GLP-1 secretion.

  11. Borate-aided anion exchange high-performance liquid chromatography of uridine diphosphate-sugars in brain, heart, adipose and liver tissues.

    PubMed

    Oikari, Sanna; Venäläinen, Tuula; Tammi, Markku

    2014-01-03

    In this paper we describe a method optimized for the purification of uridine diphosphate (UDP)-sugars from liver, adipose tissue, brain, and heart, with highly reproducible up to 85% recoveries. Rapid tissue homogenization in cold ethanol, lipid removal by butanol extraction, and purification with a graphitized carbon column resulted in isolation of picomolar quantities of the UDP-sugars from 10 to 30mg of tissue. The UDP-sugars were baseline separated from each other, and from all major nucleotides using a CarboPac PA1 anion exchange column eluted with a gradient of acetate and borate buffers. The extraction and purification protocol produced samples with few unidentified peaks. UDP-N-acetylglucosamine was a dominant UDP-sugar in all the rat tissues studied. However, brain and adipose tissue showed high UDP-glucose levels, equal to that of UDP-N-acetylglucosamine. The UDP-N-acetylglucosamine showed 2.3-2.7 times higher levels than UDP-N-acetylgalactosamine in all tissues, and about the same ratio was found between UDP-glucose and UDP-galactose in adipose tissue and brain (2.6 and 2.8, respectively). Interestingly, the UDP-glucose/UDP-galactose ratio was markedly lower in liver (1.1) and heart (1.7). The UDP-N-acetylglucosamine/UDP-glucuronic acid ratio was also constant, between 9.7 and 7.7, except in liver with the ratio as low as 1.8. The distinct UDP-glucose/galactose ratio, and the abundance of UDP-glucuronic acid may reflect the specific role of liver in glycogen synthesis, and metabolism of hormones and xenobiotics, respectively, using these UDP-sugars as substrates.

  12. Neuroscience of glucose homeostasis.

    PubMed

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose uptake to prevent hyperglycemia. Although the term homeostasis mostly refers to stable levels, the blood glucose concentrations fluctuate over the day/night cycle, with the highest concentrations occurring just prior to the activity period in anticipation of increased caloric need. In this chapter we describe how the brain, particularly the hypothalamus, is involved in both the daily rhythm of plasma glucose concentrations and acute glucose challenges.

  13. Comorbidities in Neurology: Is adenosine the common link?

    PubMed

    Boison, Detlev; Aronica, Eleonora

    2015-10-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the 'adenosine hypothesis of comorbidities' implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic 'comorbidity model', in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain co-morbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions.

  14. Norepinephrines effect on adenosine transport in the proximal straight tubule

    SciTech Connect

    Barfuss, D.W.; McCann, W.P.; Katholi, R.E.

    1986-03-01

    The effect of norepinephrine on C/sup 14/-adenosine transport in the rabbit proximal tubule (S/sub 2/) was studied. The transepithelial transport of adenosine (0.02 mM0 from lumin to bathing solution was measured by its rate of appearance (J/sub A/) in the bathing solution and by its disappearances (J/sub D/) from the luminal fluid. Norepinephrine (0.24 ..mu..M) was added to the bathing solution after a control flux period. After three samples from the experiment period the tubules were quickly harvested and the cellular concentration of C/sup 14/-adenosine was determined. The high cellular adenosine concentration and th marked difference in adenosine appearance rate in the bathing solution compared to the luminal disappearance rate indicates the absorbed adenosine is trapped in the cells. This trapping may be due to adenosine metabolism or difficulty of crossing the basolateral membrane. Whichever is the case, norepinephrine appears to stimulate movement of adenosine or its metabolites into the bathing solution across the basolateral membrane.

  15. Comorbidities in Neurology: Is Adenosine the Common Link?

    PubMed Central

    Boison, Detlev; Aronica, Eleonora

    2015-01-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the ‘adenosine hypothesis of comorbidities’ implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic ‘comorbidity model’, in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain comorbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions. PMID:25979489

  16. Adenosine signaling promotes hematopoietic stem and progenitor cell emergence.

    PubMed

    Jing, Lili; Tamplin, Owen J; Chen, Michael J; Deng, Qing; Patterson, Shenia; Kim, Peter G; Durand, Ellen M; McNeil, Ashley; Green, Julie M; Matsuura, Shinobu; Ablain, Julien; Brandt, Margot K; Schlaeger, Thorsten M; Huttenlocher, Anna; Daley, George Q; Ravid, Katya; Zon, Leonard I

    2015-05-04

    Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1(+)/cmyb(+) HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl(+) hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP-protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates.

  17. Adenosine strongly potentiates pressor responses to nicotine in rats.

    PubMed Central

    von Borstel, R W; Renshaw, A A; Wurtman, R J

    1984-01-01

    Intravenous infusion of subhypotensive doses of adenosine strongly potentiates the pressor response of anesthetized rats to nicotine. A dose of nicotine (40 micrograms/kg, i.v.), which, given alone, elicits a peak increase in diastolic pressure of approximately equal to 15 mm Hg, increases pressure by approximately equal to 70 mm Hg when arterial plasma adenosine levels have been increased to 2 microM from a basal concentration of approximately equal to 1 microM. The pressor response to cigarette smoke applied to the lungs is also strongly potentiated during infusion of adenosine. Slightly higher adenosine concentrations (approximately equal to 4 microM) attenuate pressor responses to electrical stimulation of preganglionic sympathetic nerves, or to injections of the alpha-adrenergic agonist phenylephrine, but continue to potentiate pressor responses to nicotine. Low doses (0.25-5 micrograms/kg) of the synthetic adenosine receptor agonists 5'-N-cyclopropylcarboxamidoadenosine, 2-chloroadenosine, and N6-L-phenylisopropyladenosine also potentiate pressor responses to nicotine. Caffeine and theophylline (10 mg/kg) block the potentiating effect of adenosine, and also decrease basal responses to nicotine, suggesting that endogenous adenosine might normally potentiate some nicotine responses. The synergism between nicotine and adenosine appears to take place within sympathetic ganglia. PMID:6591207

  18. Different mechanisms of extracellular adenosine accumulation by reduction of the external Ca(2+) concentration and inhibition of adenosine metabolism in spinal astrocytes.

    PubMed

    Eguchi, Ryota; Akao, Sanae; Otsuguro, Ken-ichi; Yamaguchi, Soichiro; Ito, Shigeo

    2015-05-01

    Extracellular adenosine is a neuromodulator in the central nervous system. Astrocytes mainly participate in adenosine production, and extracellular adenosine accumulates under physiological and pathophysiological conditions. Inhibition of intracellular adenosine metabolism and reduction of the external Ca(2+) concentration ([Ca(2+)]e) participate in adenosine accumulation, but the precise mechanisms remain unclear. This study investigated the mechanisms underlying extracellular adenosine accumulation in cultured rat spinal astrocytes. The combination of adenosine kinase and deaminase (ADK/ADA) inhibition and a reduced [Ca(2+)]e increased the extracellular adenosine level. ADK/ADA inhibitors increased the level of extracellular adenosine but not of adenine nucleotides, which was suppressed by inhibition of equilibrative nucleoside transporter (ENT) 2. Unlike ADK/ADA inhibition, a reduced [Ca(2+)]e increased the extracellular level not only of adenosine but also of ATP. This adenosine increase was enhanced by ENT2 inhibition, and suppressed by sodium polyoxotungstate (ecto-nucleoside triphosphate diphosphohydrolase inhibitor). Gap junction inhibitors suppressed the increases in adenosine and adenine nucleotide levels by reduction of [Ca(2+)]e. These results indicate that extracellular adenosine accumulation by ADK/ADA inhibition is due to the adenosine release via ENT2, while that by reduction of [Ca(2+)]e is due to breakdown of ATP released via gap junction hemichannels, after which ENT2 incorporates adenosine into the cells.

  19. Metabolism of cyclic adenosine 3',5'-monophosphate and induction of tryptophanase in Escherichia coli.

    PubMed Central

    Botsford, J L

    1975-01-01

    The relationship between cyclic adenosine 3',5'-monophosphate (cyclic AMP) metabolism and the induction of tryptophanase and beta-galactosidase was studied in several strains of Escherichia coli grown with succinate, acetate, glycerol, or glucose as the carbon source. No consistent relationship between the intracellular concentration of cyclic AMP in the several strains cultured and the various carbon sources was discerned. In E. coli K-12-1 the induction of tryptophanase was found to vary in the order: succinate greater than acetate greater than glycerol greater than glucose, and that of beta-galactosidase was found in the order: glycerol greater than acetate greater than succinate greater than glucose. Rate of accumulation of cyclic AMP in the culture filtrate was in the order: succinate greater than acetate greater than glycerol greater than glucose. The addition of glycerol to E. coli K-12-1 grown in acetate caused inhibition of tryptophanase and slight inhibition of accumulation of extracellular cyclic AMP. These same conditions caused beta-galactosidase induction to be stimulated. The addition of exogenous cyclic AMP to cultures grown with four different carbon sources had an effect characteristic for each of the two enzymes studied as well as each individual carbon source. The results suggest that there are control elements distinct from cyclic AMP and its receptor protein which respond to the catabolic situation of the cell. PMID:170248

  20. Adenosine receptors and asthma in humans.

    PubMed

    Wilson, C N

    2008-10-01

    According to an executive summary of the GINA dissemination committee report, it is now estimated that approximately 300 million people (5% of the global population or 1 in 20 persons) have asthma. Despite the scientific progress made over the past several decades toward improving our understanding of the pathophysiology of asthma, there is still a great need for improved therapies, particularly oral therapies that enhance patient compliance and that target new mechanisms of action. Adenosine is an important signalling molecule in human asthma. By acting on extracellular G-protein-coupled ARs on a number of different cell types important in the pathophysiology of human asthma, adenosine affects bronchial reactivity, inflammation and airway remodelling. Four AR subtypes (A(1), A(2a), A(2b) and A(3)) have been cloned in humans, are expressed in the lung, and are all targets for drug development for human asthma. This review summarizes what is known about these AR subtypes and their function in human asthma as well as the pros and cons of therapeutic approaches to these AR targets. A number of molecules with high affinity and high selectivity for the human AR subtypes have entered clinical trials or are poised to enter clinical trials as anti-asthma treatments. With the availability of these molecules for testing in humans, the function of ARs in human asthma, as well as the safety and efficacy of approaches to the different AR targets, can now be determined.

  1. Adenosine receptors and dyskinesia in pathophysiology.

    PubMed

    Tomiyama, Masahiko

    2014-01-01

    First, the recent progress in the pathogenesis of levodopa-induced dyskinesia was described. Serotonin neurons play an important role in conversion from levodopa to dopamine and in the release of converted dopamine into the striatum in the Parkinsonian state. Since serotonin neurons lack buffering effects on synaptic dopamine concentration, the synaptic dopamine markedly fluctuates depending on the fluctuating levodopa concentration in the serum after taking levodopa. The resultant pulsatile stimulation makes the striatal direct-pathway neurons get potential that releases excessive GABA into the output nuclei of the basal ganglia. When levodopa is administered, the stored GABA is released, the output nuclei become hypoactive, and then dyskinesias emerge. Second, effects of adenosine A2A receptor antagonists on dyskinesia were described. It has been demonstrated that the expression of adenosine A2A receptors is increased in Parkinson's disease (PD) patients with dyskinesias, suggesting that blockade of A2A receptors is beneficial for dyskinesias. Preclinical studies have shown that A2A receptor antagonists reduce liability of dyskinesias in PD models. Clinical trials have demonstrated that A2A antagonists increase functional ON-time (ON without troublesome dyskinesia) in PD patients suffering from wearing-off phenomenon, although they may increase dyskinesia in patients with advanced PD.

  2. New Stetter reactions catalyzed by thiamine diphosphate dependent MenD from E. coli.

    PubMed

    Beigi, Maryam; Waltzer, Simon; Zarei, Mostafa; Müller, Michael

    2014-12-10

    The intermolecular asymmetric Stetter reaction is a rarely found biocatalysts transformation. MenD, the second enzyme of the menaquinone biosynthetic pathway, catalyzes as a physiological reaction a Stetter-like addition of α-ketoglutarate to isochorismate. The substrate range of MenD for similar 1,4-additions is highly restricted. All other thiamine diphosphate dependent enzymes known to act as stetterases are members of the PigD enzyme subfamily, which accept aliphatic and aromatic α,β-unsaturated ketones and thioesters as Michael acceptor substrates. Here, we describe the unexpected activity of MenD with short-chain α,β-unsaturated acids and derivatives as substrates in Stetter reactions. MenD possesses a characteristic substrate range with respect to Michael acceptor substrates which is distinctly different from the classical stetterases. This provides biocatalytic access to new types of products which are not related to the products currently accessible by thiamine diphosphate dependent enzyme catalysis.

  3. Molecular mechanism of allosteric substrate activation in a thiamine diphosphate-dependent decarboxylase.

    PubMed

    Versées, Wim; Spaepen, Stijn; Wood, Martin D H; Leeper, Finian J; Vanderleyden, Jos; Steyaert, Jan

    2007-11-30

    Thiamine diphosphate-dependent enzymes are involved in a wide variety of metabolic pathways. The molecular mechanism behind active site communication and substrate activation, observed in some of these enzymes, has since long been an area of debate. Here, we report the crystal structures of a phenylpyruvate decarboxylase in complex with its substrates and a covalent reaction intermediate analogue. These structures reveal the regulatory site and unveil the mechanism of allosteric substrate activation. This signal transduction relies on quaternary structure reorganizations, domain rotations, and a pathway of local conformational changes that are relayed from the regulatory site to the active site. The current findings thus uncover the molecular mechanism by which the binding of a substrate in the regulatory site is linked to the mounting of the catalytic machinery in the active site in this thiamine diphosphate-dependent enzyme.

  4. Silver Vanadium Diphosphate Ag2VP2O8: Electrochemistry and Characterization of Reduced Material providing Mechanistic Insights

    PubMed Central

    Takeuchi, Esther S.; Lee, Chia-Ying; Chen, Po-Jen; Menard, Melissa C.; Marschilok, Amy C.; Takeuchi, Kenneth J.

    2013-01-01

    Silver vanadium phosphorous oxides (AgwVxPyOz) are notable battery cathode materials due to their high energy density and demonstrated ability to form in-situ Ag metal nanostructured electrically conductive networks within the cathode. While analogous silver vanadium diphosphate materials have been prepared, electrochemical evaluations of these diphosphate based materials have been limited. We report here the first electrochemical study of a silver vanadium diphosphate, Ag2VP2O8, where the structural differences associated with phosphorous oxides versus diphosphates profoundly affect the associated electrochemistry. Reminiscent of Ag2VO2PO4 reduction, in-situ formation of silver metal nanoparticles was observed with reduction of Ag2VP2O8. However, counter to Ag2VO2PO4 reduction, Ag2VP2O8 demonstrates a significant decrease in conductivity upon continued electrochemical reduction. Structural analysis contrasting the crystallography of the parent Ag2VP2O8 with that of the proposed Li2VP2O8 reduction product is employed to gain insight into the observed electrochemical reduction behavior, where the structural rigidity associated with the diphosphate anion may be associated with the observed particle fracturing upon deep electrochemical reduction. Further, the diphosphate anion structure may be associated with the high thermal stability of the partially reduced Ag2VP2O8 materials, which bodes well for enhanced safety of batteries incorporating this material. PMID:25866419

  5. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  6. Adenosine reduces postbypass transfusion requirements in humans after heart surgery.

    PubMed Central

    Mentzer, R M; Rahko, P S; Canver, C C; Chopra, P S; Love, R B; Cook, T D; Hegge, M O; Lasley, R D

    1996-01-01

    OBJECTIVE: The objective of this study was to determine the effect, if any, of adenosine blood cardioplegia on blood component usage after heart surgery. SUMMARY BACKGROUND DATA: The most common cause of nonsurgical postcardiopulmonary bypass bleeding is platelet dysfunction. For this reason, pharmacologic agents are under investigation in an effort to reduce the need for transfusion in this setting. METHODS: A posthoc analysis of blood product usage was performed in data obtained from a Phase I, single center, open label, randomized study performed in 63 patients. The trial was designed to test the safety and tolerance of adenosine when added to blood cardioplegia in increasing doses to enhance myocardial protection. The database provided information regarding the effect of adenosine cardioplegia on venous plasma adenosine concentrations, the amount of platelets, fresh frozen plasma and packed erythrocytes used, and the association between the adenosine dose and postoperative thoracic drainage. RESULTS: The postoperative thoracic drainage at 6 hours, 24 hours, and at the time of chest tube removal in the high-dose adenosine cardioplegia group was 68%, 76%, and 75% of the placebo and low-dose adenosine cardioplegia group (p < 0.05). The highest dose of adenosine studied increased baseline adenosine venous plasma levels 360-fold, from 0.17 +/- 0.09 mumol/L to 42.30 +/- 11.20 mumol/L (p < 0.05). This marked increase was associated with a 68%, 56%, and 58% reduction in platelet, fresh frozen plasma, and packed erythrocyte usage, respectively (p < 0.05). CONCLUSIONS: In addition to enhancing the heart's tolerance to ischemia, adenosine-supplemented cardioplegic solution also may reduce bleeding after cardiopulmonary bypass. PMID:8857856

  7. Role of nucleoside diphosphate kinase in the activation of anti-HIV nucleoside analogs.

    PubMed

    Schneider, B; Sarfati, R; Deville-Bonne, D; Véron, M

    2000-06-01

    Nucleoside analogs are currently used in antiretrovirus therapies. The best known example is AZT one of the first drug to be used for the treatment of AIDS. However, only the triphosphate derivatives of these compounds act as substrates of the viral reverse transcriptase. Since they do not enter cells, nucleoside analogs are administered and phosphorylated by cellular kinases. The last step in this phosphorylation pathway is catalyzed by nucleoside diphosphate (NDP) kinase. The incorporation of the nucleoside triphosphates into nascent viral DNA chain results in termination of the elongation process. We have performed kinetics studies of the phosphorylation reaction by NDP kinase of dideoxynucleoside diphosphates such as 2',3'-dideoxy-3'-azidothymidine diphosphate (AZT-DP) and 2',3'-dideoxy-2',3'-didehydrothymidine diphosphate (d4T-DP). We show that the catalytic efficiency is strongly decreased and, therefore, that the reaction step catalyzed by NDP kinase constitutes a bottleneck in the processing pathway of anti-HIV compounds. In addition, the affinity of the analogs in the absence of catalysis was determined using a catalytically inactive NDP kinase mutant, showing a reduction of affinity by a factor of 2 to 30, depending on the analog. The structure of NDP kinase provides a structural explanation for these results. Indeed, all nucleoside analogs acting as chain terminators must lack a 3'-OH in the nucleotide deoxyribose. Unfortunately, this same substitution is detrimental for their capacity to be phosphorylated by NDP kinase. This defines the framework for the design of new nucleoside analogs with increased efficiency in antiretroviral therapies.

  8. The presence of dolichol in a lipid diphosphate N-acetylglucosamine from Saccharomyces cerevisiae (baker's yeast).

    PubMed Central

    Reuvers, F; Boer, P; Hemming, F W

    1978-01-01

    The lipid moiety of a lipid diphosphate N-acetylglucosamine, an intermediate in glycosylation of proteins, was studied. Ozonolysis of the compound gave evidence for an alpha-saturated isoprene unit. Alkaline hydrolysis of the glycolipid, followed by high-pressure liquid chromatography, showed the presence of a series of polyprenol homologues identical with those isolated directly from Saccharomyces cerevisiae (baker's yeast). No particular homologue was preferred in the enzymic transfer of N-acetylglucosamine 1-phosphate to endogenous dolichol monophosphate. PMID:348196

  9. The phase diagram of charged colloidal lipid A-diphosphate dispersions.

    PubMed

    Reichelt, Hendrik; Faunce, Chester A; Paradies, Henrich H

    2008-03-20

    Small-angle X-ray-scattering, light-scattering, and electron microscope experiments were used to determine the phase transitions of colloidal lipid A-diphosphate aqueous dispersions. The phases detected were a correlated liquid phase, a face-centered cubic (Fd3m) and a body-centered cubic (Im3m) colloidal crystal phase and a new glass phase. These experimentally determined phases were shown to be in accord with theoretically predicted equilibrium phases.

  10. Role of isopentenyl-diphosphate isomerase in heterologous cyanobacterial (Synechocystis) isoprene production.

    PubMed

    Chaves, Julie E; Romero, Paloma Rueda; Kirst, Henning; Melis, Anastasios

    2016-12-01

    Heterologous production of isoprene (C5H8) hydrocarbons in cyanobacteria, emanating from sunlight, CO2, and water, is now attracting increasing attention. The concept entails application of an isoprene synthase transgene from terrestrial plants, heterologously expressed in cyanobacteria, aiming to reprogram carbon flux in the terpenoid biosynthetic pathway toward formation and spontaneous release of this volatile chemical from the cell and liquid culture. However, flux manipulations and carbon-partitioning reactions between isoprene (the product) and native terpenoid biosynthesis for cellular needs are not yet optimized for isoprene yield. The primary reactant for isoprene biosynthesis is dimethylallyl diphosphate (DMAPP), whereas both DMAPP and its isopentenyl diphosphate (IPP) isomer are needed for cellular terpenoid biosynthesis. The present work addressed the function of an isopentenyl diphosphate (IPP) isomerase in cyanobacteria and its role in carbon partitioning between IPP and DMAPP, both of which serve, in variable ratios, as reactants for the synthesis of different cellular terpenoids. The work was approached upon the heterologous expression in Synechocystis of the "isopentenyl diphosphate isomerase" gene (FNI) from Streptococcus pneumoniae, using isoprene production as a "reporter process" for substrate partitioning between DMAPP and IPP. It is shown that transgenic expression of the FNI gene in Synechocystis resulted in a 250 % increase in the "reporter isoprene" rate and yield, suggesting that the FNI isomerase shifted the endogenous DMAPP-IPP steady-state pool size toward DMAPP, thereby enhancing rates and yield of isoprene production. The work provides insight into the significance and functional role of the IPP isomerase in these photosynthetic microorganisms.

  11. Inclusion of thiamine diphosphate and S-adenosylmethionine at their chemically active sites.

    PubMed

    Schrader, Thomas; Fokkens, Michael; Klärner, Frank-Gerrit; Polkowska, Jolanta; Bastkowski, Frank

    2005-12-09

    [structure: see text] Molecular clips functionalized by phosphonate or phosphate groups bind thiamine diphosphate (TPP) and S-adenosylmethionine (SAM) with high affinity in water; both sulfur-based cofactors transfer organic groups to biomolecules. For TPP, various analytical tools point toward a simultaneous insertion of both heterocyclic rings into the electron-rich clip cavity. Similarly, SAM is also embedded with its sulfonium moiety inside the receptor cavity. This paves the way for enzyme models and direct interference with enzymatic processes.

  12. Inhibition of isoprene biosynthesis pathway enzymes by phosphonates, bisphosphonates, and diphosphates.

    PubMed

    Cheng, Feng; Oldfield, Eric

    2004-10-07

    We have investigated the docking of a variety of inhibitors and substrates to the isoprene biosynthesis pathway enzymes farnesyl diphosphate synthase (FPPS), isopentenyl diphosphate/dimethylallyl diphosphate isomerase (IPPI) and deoxyxylulose-5-phosphate reductoisomerase (DXR) using the Lamarckian genetic alogorithm program, AutoDock. The docked ligand structures are predicted with a approximately 0.8 A rms deviation from the structures determined crystallographically. The errors found are a function of the number of atoms in the ligand (R = 0.91, p < 0.0001) and, to a lesser extent, on the resolution of the crystallographic structure (R = 0.70, p < 0.008). The structures of three isoprenoid diphosphates docked to the FPPS enzyme reveal strong electrostatic interactions with Mg(2+), lysine and arginine active site residues. Similar results are obtained with the docking of four IPPI inhibitors to the IPPI enzyme. The DXR substrate, deoxyxylulose-5-phosphate, is found to dock to Mn(2+)-NADPH-DXR in an almost identical manner as does the inhibitor fosimdomycin to Mn(2+)-DXR (ligand heavy atom rms deviation = 0.90 A) and is poised to interact with NADPH. Bisphosphonate inhibitors are found to bind to the allylic binding sites in both eukaryotic and prokaryotic FPPSs, in good accord with recent crystallographic results (a 0.4 A rms deviation from the X-ray structure with the E. coli enzyme). Overall, these results show for the first time that the geometries of a broad variety of phosphorus-containing inhibitors and substrates of isoprene biosynthesis pathway enzymes can be well predicted by using computational methods, which can be expected to facilitate the design of novel inhibitors of these enzymes.

  13. Purification and characterization of human dehydrodolychil diphosphate synthase (DHDDS) overexpressed in E. coli.

    PubMed

    Giladi, Moshe; Edri, Ilan; Goldenberg, Michal; Newman, Hadas; Strulovich, Roi; Khananshvili, Daniel; Haitin, Yoni; Loewenstein, Anat

    2017-04-01

    Protein asparagine (N)-linked glycosylation is a post-translational modification that occurs in the endoplasmic reticulum; it plays an important role in protein folding, oligomerization, quality control, sorting, and transport. Accordingly, disorders of glycosylation may affect practically every organ system. Dehydrodolichyl diphosphate synthase (DHDDS) is an eukaryotic cis prenyltransferase (cis-PT) that catalyzes chain elongation of farnesyl diphosphate via multiple condensations with isopentenyl diphosphate to form dehydrodolichyl diphosphate, a precursor for the glycosyl carrier dolichylpyrophophate involved in N-linked glycosylation. Mutations in DHDDS were shown to result in retinitis pigmentosa, ultimately leading to blindness, but the exact molecular mechanism by which the mutations affect DHDDS function remains elusive. In addition, bacterial cis-PT homologs are involved in bacterial wall synthesis and are therefore potential targets for new antibacterial agents. However, as eukaryotic cis-PT were not thoroughly characterized structurally and functionally, rational design of prokaryotic cis-PT specific drugs is currently impossible. Here, we present a simple protocol for purification of functionally active human DHDDS under non-denaturating conditions using a codon-optimized construct. The purified protein forms a stable homodimer, similar to its bacterial homologs, and shows time- and substrate-dependent activity. Purification of this protein requires the presence of a detergent for protein solubility. The protocol described here may be utilized for the overexpression of other eukaryotic cis-PT. Future structural and functional studies of the recombinant DHDDS may shed light on the mechanisms underlying DHDDS-related retinitis pigmentosa and lead to novel therapeutic approaches.

  14. Enantioselective Inhibition of Squalene Synthase by Aziridine Analogues of Presqualene Diphosphate

    PubMed Central

    Koohang, Ali; Bailey, Jessica L.; Erickson, Hans K.; Owen, David; Poulter, C. Dale

    2013-01-01

    Squalene synthase catalyzes the conversion of two molecules of (E,E)-farnesyl diphosphate to squalene via the cyclopropylcarbinyl intermediate, presqualene diphosphate (PSPP). Since this novel reaction constitutes the first committed step in sterol biosynthesis, there has been considerable interest and research on the stereochemistry and mechanism of the process and in the design of selective inhibitors of the enzyme. This paper reports the synthesis and characterization of five racemic and two enantiopure aziridine analogues of PSPP and the evaluation of their potencies as inhibitors of recombinant yeast squalene synthase. The key aziridine-2-methanol intermediates (6-OH, 7-OH, and 8-OH) were obtained by N-alkylations or by an N-acylation–reduction sequence of (±)-, (2R,3S)-, and (2S,3R)-2,3-aziridinofarnesol (9-OH) protected as tert-butyldi-methylsilyl ethers. SN2 displacements of the corresponding methanesulfonates with pyrophosphate and methanediphosphonate anions afforded aziridine 2-methyl diphosphates and methanediphosphonates bearing N-undecyl, N-bishomogeranyl, and N-(α-methylene)bishomogeranyl substituents as mimics for the 2,6,10-trimethylundeca-2,5,9-trienyl side chain of PSPP. The 2R,3S diphosphate enantiomer bearing the N-bishomogeranyl substituent corresponding in absolute stereochemistry to PSPP proved to be the most potent inhibitor (IC50 1.17 ± 0.08 μM in the presence of inorganic pyrophosphate), a value 4-fold less than that of its 2S,3R stereoisomer. The other aziridine analogues bearing the N-(α-methylene)bishomogeranyl and N-undecyl substituents, and the related methanediphosphonates, exhibited lower affinities for recombinant squalene synthase. PMID:20545375

  15. Farnesyl Diphosphate Synthase Localizes to the Cytoplasm of Trypanosoma cruzi and T.brucei

    PubMed Central

    Ferella, Marcela; Li, Zhu-Hong; Andersson, Björn; Docampo, Roberto

    2008-01-01

    The farnesyl diphosphate synthase (FPPS) has previously been characterized in trypanosomes as an essential enzyme for their survival and as the target for bisphosphonates, drugs that are effective both in vitro and in vivo against these parasites. Enzymes from the isoprenoid pathway have been assigned to different compartments in eukaryotes, including trypanosomatids. We here report that FPPS localizes to the cytoplasm of both Trypanosoma cruzi and T. brucei, and is not present in other organelles such as the mitochondria and glycosomes. PMID:18406406

  16. Incubation of 2-methylisoborneol synthase with the intermediate analog 2-methylneryl diphosphate.

    PubMed

    Chou, Wayne Kw; Gould, Colin A; Cane, David E

    2017-03-01

    Incubation of synthetic 2-methylneryl diphosphate (2-MeNPP, 10) with 2-methylisoborneol synthase (MIBS) gave a mixture of products that differed significantly from that derived from the natural substrate (E)-2-methylgeranyl diphosphate (3, 2-MeGPP). The proportion of (-)-2-methylisoborneol (1) decreased from 89 to 17% while that of 2-methylenebornane (4) increased from 10 to 26%, with the relative yields of the isomeric homo-monoterpenes 2-methyl-2-bornene (5) and 1-methylcamphene (6) remaining essentially unchanged (<1% each), as determined by chiral GC-MS analysis. The majority of the product mixture resulting from the MIBS-catalyzed cyclization of 2-MeNPP (10) consisted of the anomalous monocyclic homo-monoterpenes (±)-2-methylllimonene (15, 39%) and 2-methyl-α-terpineol (13, 10%), as well as the acylic derivatives 2-methylnerol (11, 7%) and 2-methyllinalool (14, <1%). The steady-state kinetic parameters of the MIBS-catalyzed reaction, determined using [1-(3)H]-2-methylneryl diphosphate (2-MeNPP), were kcat 0.0046±0.0003 s(-1), Km 18±6 μm and kcat/Km 2.55 × 10(2) M(-1) s(-1). In comparison, the natural substrate 2-MeGPP had a kcat 0.105±0.007 s(-1), Km 95±49 μm and kcat/Km 1.11 × 10(3) M(-1) s(-1). Taken together with earlier X-ray crystallographic studies of MIBS, as well as previous investigations of the mechanistically related plant monoterpene cyclase, bornyl diphosphate synthase, these results provide important insights into the binding and cyclization of both native substrates and intermediates and their analogs.The Journal of Antibiotics advance online publication, 1 March 2017; doi:10.1038/ja.2017.24.

  17. A cesium copper vanadyl-diphosphate: Synthesis, crystal structure and physical properties

    SciTech Connect

    Shvanskaya, Larisa; Yakubovich, Olga; Bychkov, Andrey; Shcherbakov, Vasiliy; Golovanov, Alexey; Zvereva, Elena; Volkova, Olga; Vasiliev, Alexander

    2015-02-15

    A non-centrosymmetric orthorhombic diphosphate, Cs{sub 2}Cu{sub 1+x}(VO){sub 2−x}(P{sub 2}O{sub 7}){sub 2} (x=0.1) with a=13.7364(2) Å, b=9.2666(2) Å, c=11.5678(2) Å, Z=4, has been isolated. Its 3D framework is built from Cu atoms in square pyramidal and square planar coordination, VO{sub 5} tetragonal pyramids and P{sub 2}O{sub 7} diphosphate groups, sharing vertices. Large channels are fulfilled by cesium atoms. The ESR study reveals a similarity in behaviour of two paramagnetic (Cu and V) subsystems. The temperature dependences of the ESR linewidth and static magnetic susceptibility data present evidences for a cluster type magnetic ordering in the title compound at T⁎=22 K. The weakness of the relevant anomalies reflects presumably obvious Cu{sup 2+} ions and (VO){sup 2+} units disorder in the system. It is supposed that the charge and geometry of the framework are controlled by the Cu{sup 2+}/(VO){sup 2+} ratio; its variation may lead to a design of new materials. - Graphical abstract: A microporous 3D anionic framework of the first copper vanadium-diphosphate Cs{sub 2}Cu{sub 1.1}(VO){sub 1.9}(P{sub 2}O{sub 7}){sub 2}. The similarity in behaviour of Cu and V paramagnetic subsystems revealed by ESR study. - Highlights: • The first copper vanadium-diphosphate Cs{sub 2}Cu{sub 1.1}(VO){sub 1.9}(P{sub 2}O{sub 7}){sub 2} is reported. • A 3D anionic framework is characterized by disorder in distribution of Cu and V atoms. • Structural relations with topologically similar compounds are discussed. • The similarity in behaviour of Cu and V paramagnetic subsystems has been revealed.

  18. Molecular Cloning and Characterization of a Geranyl Diphosphate-Specific Aromatic Prenyltransferase from Lemon1[W

    PubMed Central

    Munakata, Ryosuke; Inoue, Tsuyoshi; Koeduka, Takao; Karamat, Fazeelat; Olry, Alexandre; Sugiyama, Akifumi; Takanashi, Kojiro; Dugrand, Audray; Froelicher, Yann; Tanaka, Ryo; Uto, Yoshihiro; Hori, Hitoshi; Azuma, Jun-Ichi; Hehn, Alain; Bourgaud, Frédéric; Yazaki, Kazufumi

    2014-01-01

    Prenyl residues confer divergent biological activities such as antipathogenic and antiherbivorous activities on phenolic compounds, including flavonoids, coumarins, and xanthones. To date, about 1,000 prenylated phenolics have been isolated, with these compounds containing various prenyl residues. However, all currently described plant prenyltransferases (PTs) have been shown specific for dimethylallyl diphosphate as the prenyl donor, while most of the complementary DNAs encoding these genes have been isolated from the Leguminosae. In this study, we describe the identification of a novel PT gene from lemon (Citrus limon), ClPT1, belonging to the homogentisate PT family. This gene encodes a PT that differs from other known PTs, including flavonoid-specific PTs, in polypeptide sequence. This membrane-bound enzyme was specific for geranyl diphosphate as the prenyl donor and coumarin as the prenyl acceptor. Moreover, the gene product was targeted to plastid in plant cells. To our knowledge, this is the novel aromatic PT specific to geranyl diphosphate from citrus species. PMID:25077796

  19. Cloning and Characterization of Farnesyl Diphosphate Synthase Gene Involved in Triterpenoids Biosynthesis from Poria cocos

    PubMed Central

    Wang, Jianrong; Li, Yangyuan; Liu, Danni

    2014-01-01

    Poria cocos (P. cocos) has long been used as traditional Chinese medicine and triterpenoids are the most important pharmacologically active constituents of this fungus. Farnesyl pyrophosphate synthase (FPS) is a key enzyme of triterpenoids biosynthesis. The gene encoding FPS was cloned from P. cocos by degenerate PCR, inverse PCR and cassette PCR. The open reading frame of the gene is 1086 bp in length, corresponding to a predicted polypeptide of 361 amino acid residues with a molecular weight of 41.2 kDa. Comparison of the P. cocos FPS deduced amino acid sequence with other species showed the highest identity with Ganoderma lucidum (74%). The predicted P. cocos FPS shares at least four conserved regions involved in the enzymatic activity with the FPSs of varied species. The recombinant protein was expressed in Pichia pastoris and purified. Gas chromatography analysis showed that the recombinant FPS could catalyze the formation of farnesyl diphosphate (FPP) from geranyl diphosphate (GPP) and isopentenyl diphosphate (IPP). Furthermore, the expression profile of the FPS gene and content of total triterpenoids under different stages of development and methyl jasmonate treatments were determined. The results indicated that there is a positive correlation between the activity of FPS and the amount of total triterpenoids produced in P. cocos. PMID:25474088

  20. Inhibition of Geranylgeranyl Diphosphate Synthase by Bisphosphonates: A Crystallographic and Computational Investigation

    PubMed Central

    Chen, Cammy K.-M.; Hudock, Michael P.; Zhang, Yonghui; Guo, Rey-Ting; Cao, Rong; No, Joo Hwan; Liang, Po-Huang; Ko, Tzu-Ping; Chang, Tao-Hsin; Chang, Shiou-chi; Song, Yongcheng; Axelson, Jordan; Kumar, Anup; Wang, Andrew H.-J.; Oldfield, Eric

    2008-01-01

    We report the x-ray structures of several bisphosphonate inhibitors of geranylgeranyl diphosphate synthase, a target for anti-cancer drugs. Bisphosphonates containing unbranched sidechains bind to either the farnesyl diphosphate (FPP) substrate site, the geranylgeranyl diphosphate (GGPP) product site, and in one case, both sites, with the bisphosphonate moiety interacting with 3 Mg2+ that occupy the same position as found in FPP synthase. However, each of three “V-shaped” bisphosphonates binds to both the FPP and GGPP sites. Using the Glide program, we reproduced the binding modes of 10 bisphosphonates with an RMS error of 1.3Å. Activities of the bisphosphonates in GGPPS inhibition were predicted with an overall error of 2x, using a comparative molecular similarity analysis, based on a docked-structure alignment. These results show that some GGPPS inhibitors can occupy both substrate and product site, and that binding modes as well as activity can be accurately predicted, facilitating the further development of GGPPS inhibitors as anti-cancer agents. PMID:18800762

  1. A photoactive isoprenoid diphosphate analogue containing a stable phosphonate linkage: synthesis and biochemical studies with prenyltransferases

    PubMed Central

    DeGraw, Amanda J.; Zhao, Zongbao; Strickland, Corey L.; Taban, A. Huma; Hsieh, John; Michael, Jefferies; Xie, Wenshuang; Shintani, David; McMahan, Colleen; Cornish, Katrina; Distefano, Mark D.

    2008-01-01

    A number of biochemical processes rely on isoprenoids, including the post-translational modification of signaling proteins and the biosynthesis of a wide array of compounds. Photoactivatable analogues have been developed to study isoprenoid utilizing enzymes such as the isoprenoid synthases and prenyltransferases. While these initial analogues proved to be excellent structural analogues with good cross linking capability, they lack the stability needed when the goals include isolation of cross-linked species, tryptic digestion, and subsequent peptide sequencing. Here, the synthesis of a benzophenone-based farnesyl diphosphate analogue containing a stable phosphonophosphate group is described. Inhibition kinetics, photolabeling experiments, as well as x-ray crystallographic analysis with a protein prenyltransferase are described, verifying this compound as a good isoprenoid mimetic. In addition, the utility of this new analogue was explored by using it to photoaffinity label crude protein extracts obtained from Hevea brasiliensis latex. Those experiments suggest that a small protein, Rubber Elongation Factor, interacts directly with farnesyl diphosphate during rubber biosynthesis. These results indicate that this benzophenone-based isoprenoid analogue will be useful for identifying enzymes that utilize farnesyl diphosphate as a substrate. PMID:17477573

  2. A novel aptasensor for the ultra-sensitive detection of adenosine triphosphate via aptamer/quantum dot based resonance energy transfer.

    PubMed

    Li, Zheng; Wang, Yijing; Liu, Ying; Zeng, Yongyi; Huang, Aimin; Peng, Niancai; Liu, Xiaolong; Liu, Jingfeng

    2013-09-07

    We designed a novel aptamer based biosensor (aptasensor) for ultrasensitive detection of adenosine triphosphate (ATP) through resonance energy transfer (RET). The ATP aptamer was modified with Cy3 at the 3' end, and a green quantum dot (525) was attached to the 5' end of its complementary sequence respectively. The ATP aptamer and its complementary sequence could assemble into a duplex structure in the absence of target ATP, and then decrease the distance between the quantum dot and Cy3 which could produce significant RET signal. Upon ATP binding, the ATP aptamer could dissociate with its complementary sequence and then increase the distance between the quantum dot and Cy3 which would significantly decrease the RET signal. Therefore, the ATP detection could be easily achieved through detection of the fluorescence intensity ratio between 525 nm and 560 nm. The results show that the emission fluorescence intensity ratio of 525/560 is linearly related to the logarithmic concentration of ATP. The linear range of this aptasensor is from 0.1 nM to 1 μM, and the detection limit is lower down to 0.01 nM. Excellent selectivity of this aptasensor for ATP has been demonstrated through the detection of thymidine triphosphate (TTP), cytidine triphosphate (CTP), guanosine triphosphate (GTP) and adenosine diphosphate (ADP) respectively as control. The method we described here could easily detect ATP with excellent selectivity, linearity and sensitivity down to the nanomolar range, as well as avoid photobleaching.

  3. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus

    PubMed Central

    Zhang, Dali; Xiong, Wei; Jackson, Michael F.

    2016-01-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965

  4. Adenosine 2A receptors in acute kidney injury.

    PubMed

    Vincent, I S; Okusa, M D

    2015-07-01

    Acute kidney injury (AKI) is an important clinical problem that may lead to death and for those who survive, the sequelae of AKI include loss of quality of life, chronic kidney disease and end-stage renal disease. The incidence of AKI continues to rise without clear successes in humans for the pharmacological prevention of AKI or treatment of established AKI. Dendritic cells and macrophages are critical early initiators of innate immunity in the kidney and orchestrate inflammation subsequent to ischaemia-reperfusion injury. These innate cells are the most abundant leucocytes present in the kidney, and they represent a heterogeneous population of cells that are capable of responding to cues from the microenvironment derived from pathogens or endogenous inflammatory mediators such as cytokines or anti-inflammatory mediators such as adenosine. Lymphocyte subsets such as natural killer T cells and Tregs also play roles in regulating ischaemic injury by promoting and suppressing inflammation respectively. Adenosine, produced in response to IR, is generally considered as a protective signalling molecule and elicits its physiological responses through four distinct adenosine receptors. However, its short half-life, lack of specificity and rapid metabolism limit the use of adenosine as a therapeutic agent. These adenosine receptors play various roles in regulating the activity of the aforementioned hematopoietic cells in elevated levels of adenosine such as during hypoxia. This review focuses on the importance of one receptor, the adenosine 2A subtype, in blocking inflammation associated with AKI.

  5. Characterization of P1 (adenosine) purinoceptors.

    PubMed

    Jarvis, Michael F

    2013-10-08

    The purine nucleoside adenosine (ADO) is an important modulator of cellular function in mammalian tissues, modulating cellular function and neuronal excitability via interactions with different cell surface receptor subtypes that are heterogeneously distributed in both the mammalian CNS and peripheral tissues. Four ADO receptor subtypes have been cloned and characterized. Described in this unit are three radioligand binding assays for pharmacological characterization of the high-affinity ADO receptor subtypes A1, A2A, and A3 receptors. Pharmacological characterization of the low-affinity A2B receptor has been enabled by the use of tritiated xanthine PSB-603. Because receptor localization is an important criterion for differentiation of receptor subtypes, a support protocol that describes the methodology for the localization of ADO receptors in rat brain tissue using autoradiography is also included.

  6. Evidence for the involvement of a UDP-glucose-dependent group translocator in sucrose uptake into vacuoles of storage roots of red beet.

    PubMed

    Thom, M; Leigh, R A; Maretzki, A

    1986-03-01

    Vacuoles isolated from the storage roots of red beet (Beta vulgaris L.) accumulate sucrose via two different mechanisms. One mechanism transports sucrose directly, and its rate is increased by the addition of MgATP. The other mechanism utilizes uridine diphosphate glucose (UDP-glucose) to synthesize and simultaneously transport sucrose phosphate and sucrose into the vacuole. This group translocation mechanism has also been found in sugarcane vacuoles. As in sugarcane, the beet group translocator does not require fructose 6-phosphate, nor is the latter substance transported into the vacuole. The uptake of UDP[(14)C]glucose in inhibited by high concentrations of osmoticum.

  7. Adenosine and Preexcitation Variants: Reappraisal of Electrocardiographic Changes.

    PubMed

    Ali, Hussam; Lupo, Pierpaolo; Foresti, Sara; De Ambroggi, Guido; Epicoco, Gianluca; Fundaliotis, Angelica; Cappato, Riccardo

    2016-07-01

    Intravenous adenosine is a short-acting blocker of the atrioventricular node that has been used to unmask subtle or latent preexcitation, and also to enable catheter ablation in selected patients with absent or intermittent preexcitation. Depending on the accessory pathway characteristics, intravenous adenosine may produce specific electrocardiographic changes highly suggestive of the preexcitation variant. Herein, we view different ECG responses to this pharmacological test in various preexcitation patterns that were confirmed by electrophysiological studies. Careful analysis of electrocardiographic changes during adenosine test, with emphasis on P-delta interval, preexcitation degree, and atrioventricular block, can be helpful to diagnose the preexcitation variant/pattern.

  8. Diabetes and the control of pyruvate dehydrogenase in rat heart mitochondria by concentration ratios of adenosine triphosphate/adenosine diphosphate, of reduced/oxidized nicotinamide-adenine dinucleotide and of acetyl-coenzyme A/coenzyme A.

    PubMed Central

    Kerbey, A L; Radcliffe, P M; Randle, P J

    1977-01-01

    1. The proportion of active (dephosphorylated) pyruvate dehydrogenase in rat heart mitochondria was correlated with total concentration ratios of ATP/ADP, NADH/NAD+ and acetyl-CoA/CoA. These metabolites were measured with ATP-dependent and NADH-dependent luciferases. 2. Increase in the concentration ratio of NADH/NAD+ at constant [ATP]/[ADP] and [acetyl-CoA]/[CoA] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between mitochondria incubated with 0.4mM- or 1mM-succinate and mitochondria incubated with 0.4mM-succinate+/-rotenone. 3. Increase in the concentration ratio acetyl-CoA/CoA at constant [ATP]/[ADP] and [NADH][NAD+] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between incubations in 50 micrometer-palmitotoyl-L-carnitine and in 250 micrometer-2-oxoglutarate +50 micrometer-L-malate. 4. These findings are consistent with activation of the pyruvate dehydrogenase kinase reaction by high ratios of [NADH]/[NAD+] and of [acetyl-CoA]/[CoA]. 5. Comparison between mitochondria from hearts of diabetic and non-diabetic rats shows that phosphorylation and inactivation of pyruvate dehydrogenase is enhanced in alloxan-diabetes by some factor other than concentration ratios of ATP/ADP, NADH/NAD+ or acetyl-CoA/CoA. PMID:196589

  9. Specific partial reduction of geranylgeranyl diphosphate by an enzyme from the thermoacidophilic archaeon Sulfolobus acidocaldarius yields a reactive prenyl donor, not a dead-end product.

    PubMed

    Sato, Sho; Murakami, Motomichi; Yoshimura, Tohru; Hemmi, Hisashi

    2008-06-01

    Geranylgeranyl reductase from Sulfolobus acidocaldarius was shown to catalyze the reduction of geranylgeranyl groups in the precursors of archaeal membrane lipids, generally reducing all four double bonds. However, when geranylgeranyl diphosphate was subjected to the reductase reaction, only three of the four double bonds were reduced. Mass spectrometry and acid hydrolysis indicated that the allylic double bond was preserved in the partially reduced product derived from geranylgeranyl diphosphate. Thus, the reaction product was shown to be phytyl diphosphate, which is a substrate for archaeal prenyltransferases, unlike the completely reduced compound phytanyl diphosphate.

  10. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  11. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor

  12. Blood Test: Glucose

    MedlinePlus

    ... Your 1- to 2-Year-Old Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose A A A What's in this article? What ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  13. Geranylgeranyl diphosphate synthase in fission yeast is a heteromer of farnesyl diphosphate synthase (FPS), Fps1, and an FPS-like protein, Spo9, essential for sporulation.

    PubMed

    Ye, Yanfang; Fujii, Makoto; Hirata, Aiko; Kawamukai, Makoto; Shimoda, Chikashi; Nakamura, Taro

    2007-09-01

    Both farnesyl diphosphate synthase (FPS) and geranylgeranyl diphosphate synthase (GGPS) are key enzymes in the synthesis of various isoprenoid-containing compounds and proteins. Here, we describe two novel Schizosaccharomyces pombe genes, fps1(+) and spo9(+), whose products are similar to FPS in primary structure, but whose functions differ from one another. Fps1 is essential for vegetative growth, whereas, a spo9 null mutant exhibits temperature-sensitive growth. Expression of fps1(+), but not spo9(+), suppresses the lethality of a Saccharomyces cerevisiae FPS-deficient mutant and also restores ubiquinone synthesis in an Escherichia coli ispA mutant, which lacks FPS activity, indicating that S. pombe Fps1 in fact functions as an FPS. In contrast to a typical FPS gene, no apparent GGPS homologues have been found in the S. pombe genome. Interestingly, although neither fps1(+) nor spo9(+) expression alone in E. coli confers clear GGPS activity, coexpression of both genes induces such activity. Moreover, the GGPS activity is significantly reduced in the spo9 mutant. In addition, the spo9 mutation perturbs the membrane association of a geranylgeranylated protein, but not that of a farnesylated protein. Yeast two-hybrid and coimmunoprecipitation analyses indicate that Fps1 and Spo9 physically interact. Thus, neither Fps1 nor Spo9 alone functions as a GGPS, but the two proteins together form a complex with GGPS activity. Because spo9 was originally identified as a sporulation-deficient mutant, we show here that expansion of the forespore membrane is severely inhibited in spo9Delta cells. Electron microscopy revealed significant accumulation membrane vesicles in spo9Delta cells. We suggest that lack of GGPS activity in a spo9 mutant results in impaired protein prenylation in certain proteins responsible for secretory function, thereby inhibiting forespore membrane formation.

  14. Competence of Thiamin Diphosphate-Dependent Enzymes with 2'-Methoxythiamin Diphosphate Derived from Bacimethrin, a Naturally Occurring Thiamin Anti-vitamin.

    PubMed

    Nemeria, Natalia S; Shome, Brateen; DeColli, Alicia A; Heflin, Kathryn; Begley, Tadhg P; Meyers, Caren Freel; Jordan, Frank

    2016-02-23

    Bacimethrin (4-amino-5-hydroxymethyl-2-methoxypyrimidine), a natural product isolated from some bacteria, has been implicated as an inhibitor of bacterial and yeast growth, as well as in inhibition of thiamin biosynthesis. Given that thiamin biosynthetic enzymes could convert bacimethrin to 2'-methoxythiamin diphosphate (MeOThDP), it is important to evaluate the effect of this coenzyme analogue on thiamin diphosphate (ThDP)-dependent enzymes. The potential functions of MeOThDP were explored on five ThDP-dependent enzymes: the human and Escherichia coli pyruvate dehydrogenase complexes (PDHc-h and PDHc-ec, respectively), the E. coli 1-deoxy-D-xylulose 5-phosphate synthase (DXPS), and the human and E. coli 2-oxoglutarate dehydrogenase complexes (OGDHc-h and OGDHc-ec, respectively). Using several mechanistic tools (fluorescence, circular dichroism, kinetics, and mass spectrometry), it was demonstrated that MeOThDP binds in the active centers of ThDP-dependent enzymes, however, with a binding mode different from that of ThDP. While modest activities resulted from addition of MeOThDP to E. coli PDHc (6-11%) and DXPS (9-14%), suggesting that MeOThDP-derived covalent intermediates are converted to the corresponding products (albeit with rates slower than that with ThDP), remarkably strong activity (up to 75%) resulted upon addition of the coenzyme analogue to PDHc-h. With PDHc-ec and PDHc-h, the coenzyme analogue could support all reactions, including communication between components in the complex. No functional substitution of MeOThDP for ThDP was in evidence with either OGDH-h or OGDH-ec, shown to be due to tight binding of ThDP.

  15. C2-alpha-lactylthiamin diphosphate is an intermediate on the pathway of thiamin diphosphate-dependent pyruvate decarboxylation. Evidence on enzymes and models.

    PubMed

    Zhang, Sheng; Liu, Min; Yan, Yan; Zhang, Zhen; Jordan, Frank

    2004-12-24

    Thiamin diphosphate (ThDP)-dependent decarboxylations are usually assumed to proceed by a series of covalent intermediates, the first one being the C2-trimethylthiazolium adduct with pyruvate, C2-alpha-lactylthiamin diphosphate (LThDP). Herein is addressed whether such an intermediate is kinetically competent with the enzymatic turnover numbers. In model studies it is shown that the first-order rate constant for decarboxylation can indeed exceed 50 s(-1) in tetrahydrofuran as solvent, approximately 10(3) times faster than achieved in previous model systems. When racemic LThDP was exposed to the E91D yeast pyruvate decarboxylase variant, or to the E1 subunit of the pyruvate dehydrogenase complex (PDHc-E1) from Escherichia coli, it was partitioned between reversion to pyruvate and decarboxylation. Under steady-state conditions, the rate of these reactions is severely limited by the release of ThDP from the enzyme. Under pre-steady-state conditions, the rate constant for decarboxylation on exposure of LThDP to the E1 subunit of the pyruvate dehydrogenase complex was 0.4 s(-1), still more than a 100-fold slower than the turnover number. Because these experiments include binding, decarboxylation, and oxidation (for detection purposes), this is a lower limit on the rate constant for decarboxylation. The reasons for this slow reaction most likely include a slow conformational change of the free LThDP to the V conformation enforced by the enzyme. Between the results from model studies and those from the two enzymes, it is proposed that LThDP is indeed on the decarboxylation pathway of the two enzymes studied, and once LThDP is bound the protein needs to provide little assistance other than a low polarity environment.

  16. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  17. Adenosine promotes vascular barrier function in hyperoxic lung injury

    PubMed Central

    Davies, Jonathan; Karmouty‐Quintana, Harry; Le, Thuy T.; Chen, Ning‐Yuan; Weng, Tingting; Luo, Fayong; Molina, Jose; Moorthy, Bhagavatula; Blackburn, Michael R.

    2014-01-01

    Abstract Hyperoxic lung injury is characterized by cellular damage from high oxygen concentrations that lead to an inflammatory response in the lung with cellular infiltration and pulmonary edema. Adenosine is a signaling molecule that is generated extracellularly by CD73 in response to injury. Extracellular adenosine signals through cell surface receptors and has been found to be elevated and plays a protective role in acute injury situations. In particular, ADORA2B activation is protective in acute lung injury. However, little is known about the role of adenosine signaling in hyperoxic lung injury. We hypothesized that hyperoxia‐induced lung injury leads to CD73‐mediated increases in extracellular adenosine, which is protective through ADORA2B signaling pathways. To test this hypothesis, we exposed C57BL6, CD73−/−, and Adora2B−/− mice to 95% oxygen or room air and examined markers of pulmonary inflammation, edema, and monitored lung histology. Hyperoxic exposure caused pulmonary inflammation and edema in association with elevations in lung adenosine levels. Loss of CD73‐mediated extracellular adenosine production exacerbated pulmonary edema without affecting inflammatory cell counts. Furthermore, loss of the ADORA2B had similar results with worsening of pulmonary edema following hyperoxia exposure without affecting inflammatory cell infiltration. This loss of barrier function correlated with a decrease in occludin in pulmonary vasculature in CD73−/− and Adora2B−/− mice following hyperoxia exposure. These results demonstrate that exposure to a hyperoxic environment causes lung injury associated with an increase in adenosine concentration, and elevated adenosine levels protect vascular barrier function in hyperoxic lung injury through the ADORA2B‐dependent regulation of occludin. PMID:25263205

  18. The A3 adenosine receptor: history and perspectives.

    PubMed

    Borea, Pier Andrea; Varani, Katia; Vincenzi, Fabrizio; Baraldi, Pier Giovanni; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania

    2015-01-01

    By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.

  19. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    SciTech Connect

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V.

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  20. Reaction of uridine diphosphate galactose 4-epimerase with a suicide inactivator

    SciTech Connect

    Flentke, G.R.; Frey, P.A. )

    1990-03-06

    UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5{prime}-diphosphate chloroacetol (UDC) and uridine 5{prime}-diphosphate bromoacetol (UCB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a K{sub D} of 0.110 mM and k{sub inact} of 0.84 min{sup {minus}1} at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD{sup +}. The inactivation of epimerase by uridine 5{prime}-diphosphate ({sup 2}H{sub 2})chloroacetol proceeds with a primary kinetic isotope effect (k{sub H}/k{sub D}) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD{sup +} at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD{sup +} is proposed to be the chromophore with {lambda}{sub max} at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction.

  1. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  2. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.

  3. Purification, crystallization and preliminary structural analysis of nucleoside diphosphate kinase from Bacillus anthracis

    SciTech Connect

    Misra, Gauri; Aggarwal, Anita; Mittal, Sonia; Singh, Yogendra; Ramachandran, Ravishankar

    2007-12-01

    Nucleoside diphosphate kinase from B. anthracis has been crystallized. Preliminary crystallographic analysis shows that there is one monomer in the asymmetric unit of the crystal. Bacillus anthracis nucleoside diphosphate kinase (BaNdk) is an enzyme whose primary function is to maintain deoxynucleotide triphosphate (dNTP) pools by converting deoxynucleotide diphosphates to triphosphates using ATP as the major phosphate donor. Although the structures of Ndks from a variety of organisms have been elucidated, the enzyme from sporulating bacteria has not been structurally characterized to date. Crystals of the B. anthracis enzyme were grown using the vapour-diffusion method from a hanging drop consisting of 2 µl 10 mg ml{sup −1} protein in 50 mM Tris–HCl pH 8.0, 50 mM NaCl, 5 mM EDTA equilibrated against 500 µl reservoir solution consisting of 2.25 M ammonium formate and 0.1 M HEPES buffer pH 7.25. Diffraction data extending to 2.0 Å were collected at room temperature from a single crystal with unit-cell parameters a = b = 107.53, c = 52.3 Å. The crystals are hexagonal in shape and belong to space group P6{sub 3}22. The crystals contain a monomer in the asymmetric unit, which corresponds to a Matthews coefficient (V{sub M}) of 2.1 Å{sup 3} Da{sup −1} and a solvent content of about 36.9%.

  4. Relationship of isopentenyl diphosphate (IDP) isomerase activity to isoprene emission of oak leaves.

    PubMed

    Brüggemann, Nicolas; Schnitzler, Jörg-Peter

    2002-10-01

    Oaks emit large amounts of isoprene, a compound that plays an important role in tropospheric chemistry. Isopentenyl diphosphate isomerase (IDI, E.C. 5.3.3.2) catalyzes the isomerization of isopentenyl diphosphate (IDP) to dimethylallyl diphosphate (DMADP), and in isoprene-emitting plants, isoprene synthase (IS) converts the DMADP to isoprene. To study the role of IDI in isoprene biosynthesis of oak leaves, we compared IDI and IS activities in pedunculate oak (Quercus robur L.) and pubescent oak (Quercus pubescens Willd.) with the isoprene emission rates of these species. We developed a non-radioactive enzyme assay to detect IDI activity in crude leaf extracts of Q. robur. The substrate dependency of IDI activity showed biphasic kinetics with Michaelis constants (K(m)(IDP)) of 0.7 +/- 0.2 micro M for a high-affinity phase and 39.5 +/- 6.9 micro M for a low-affinity phase, potentially attributable to different IDI isoforms. Under standard assay conditions, the temperature optimum for IDI activity was about 42 degrees C, but IDI activity was detectable up to 60 degrees C. A sharp pH optimum appeared around pH 7, with 20 mM Mg(2+) also required for IDI activity. Neither IDI activity nor IS activity showed diurnal variation in Q. robur leaves. The sum of IDI activities showed a significant linear correlation with IS activity in both Q. robur and Q. pubescens leaves, and both enzyme activities showed a linear relationship to isoprene emission factors in leaves of these oak species, indicating the possible involvement of IDI in isoprene biosynthesis by oak leaves.

  5. Adenosine deaminase 1 and concentrative nucleoside transporters 2 and 3 regulate adenosine on the apical surface of human airway epithelia: implications for inflammatory lung diseases.

    PubMed

    Hirsh, Andrew J; Stonebraker, Jaclyn R; van Heusden, Catja A; Lazarowski, Eduardo R; Boucher, Richard C; Picher, Maryse

    2007-09-11

    Adenosine is a multifaceted signaling molecule mediating key aspects of innate and immune lung defenses. However, abnormally high airway adenosine levels exacerbate inflammatory lung diseases. This study identifies the mechanisms regulating adenosine elimination from the apical surface of human airway epithelia. Experiments conducted on polarized primary cultures of nasal and bronchial epithelial cells showed that extracellular adenosine is eliminated by surface metabolism and cellular uptake. The conversion of adenosine to inosine was completely inhibited by the adenosine deaminase 1 (ADA1) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA). The reaction exhibited Km and Vmax values of 24 microM and 0.14 nmol x min(-1) x cm(-2). ADA1 (not ADA2) mRNA was detected in human airway epithelia. The adenosine/mannitol permeability coefficient ratio (18/1) indicated a minor contribution of paracellular absorption. Adenosine uptake was Na+-dependent and was inhibited by the concentrative nucleoside transporter (CNT) blocker phloridzin but not by the equilibrative nucleoside transporter (ENT) blocker dipyridamole. Apparent Km and Vmax values were 17 microM and 7.2 nmol x min(-1) x cm(-2), and transport selectivity was adenosine = inosine = uridine > guanosine = cytidine > thymidine. CNT3 mRNA was detected throughout the airways, while CNT2 was restricted to nasal epithelia. Inhibition of adenosine elimination by EHNA or phloridzin raised apical adenosine levels by >3-fold and stimulated IL-13 and MCP-1 secretion by 6-fold. These responses were reproduced by the adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA) and blocked by the adenosine receptor antagonist, 8-(p-sulfophenyl) theophylline (8-SPT). This study shows that adenosine elimination on human airway epithelia is mediated by ADA1, CNT2, and CNT3, which constitute important regulators of adenosine-mediated inflammation.

  6. Adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate are synthesized by yeast acetyl coenzyme A synthetase.

    PubMed Central

    Guranowski, A; Günther Sillero, M A; Sillero, A

    1994-01-01

    Yeast (Saccharomyces cerevisiae) acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5'-tetraphosphate (P4A) and adenosine 5'-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4), with relative velocities of 7:1, respectively. Of 12 nucleotides tested as potential donors of nucleotidyl moiety, only ATP, adenosine-5'-O-[3-thiotriphosphate], and acetyl-AMP were substrates, with relative velocities of 100, 62, and 80, respectively. The Km values for ATP, P3, and acetyl-AMP were 0.16, 4.7, and 1.8 mM, respectively. The synthesis of p4A could proceed in the absence of exogenous acetate but was stimulated twofold by acetate, with an apparent Km value of 0.065 mM. CoA did not participate in the synthesis of p4A (p5A) and inhibited the reaction (50% inhibitory concentration of 0.015 mM). At pH 6.3, which was optimum for formation of p4A (p5A), the rate of acetyl-CoA synthesis (1.84 mumol mg-1 min-1) was 245 times faster than the rate of synthesis of p4A measured in the presence of acetate. The known formation of p4A (p5A) in yeast sporulation and the role of acetate may therefore be related to acetyl-CoA synthetase. Images PMID:7910605

  7. The binding mode of human nucleoside diphosphate kinase B to single-strand DNA.

    PubMed

    Agou, F; Raveh, S; Véron, M

    2000-06-01

    In this paper, we studied the interaction of the human isoform B of nucleoside diphosphate kinase (NDP kinase B) with the nuclease hypersensitive element (NHE) present in the promoter element of the c-myc oncogene. The DNA-binding properties of NDP kinase B and other NDP kinases are compared and the nucleotide requirement for binding are discussed. Using quantitative methods, we identified the DNA-binding sites on the protein and we proposed a structural model for a complex of one hexameric NDP kinase B with an oligonucleotide.

  8. Influence of donor substrate on kinetic parameters of thiamine diphosphate binding to transketolase.

    PubMed

    Ospanov, R V; Kochetov, G A; Kurganov, B I

    2007-01-01

    The two-step mechanism of interaction of thiamine diphosphate (ThDP) with transketolase (TK) has been studied: TK + ThDP <--> TK...ThDP <--> TK*-ThDP. The scheme involves the formation of inactive intermediate complex TK...ThDP followed by its transformation into catalytically active holoenzyme, TK*-ThDP. The dissociation and kinetic constants for individual stages of this process have been determined. The values of forward and backward rate constants change in the presence of the donor substrate hydroxypyruvate. This finally leads to an increase in the overall affinity of the coenzyme to TK.

  9. Strength Characteristics of Resorbable Osteoconductive Ceramics Based on Diphosphates of Calcium and Alkali Metals

    NASA Astrophysics Data System (ADS)

    Putlayev, V. I.; Evdokimov, P. V.; Garshev, A. V.; Prosvirin, D. V.; Klimashina, E. S.; Safronova, T. V.; Ivanov, V. K.

    2014-02-01

    An investigation into the strength characteristics of ceramics based on diphosphates Ca(3- x)М2 x (PO4)2 ( x = 0-1 and М = Na, K) provides evidence of composition strengthening in the range х = 0.6-0.8 containing the greatest amount of the supercooled high-temperature modification α-СаМРО4. The method of high-temperature x-ray diffractometry is used to examine thermal expansion of rhenanite phases of СаМРО4.

  10. A kinetic study of pig liver pyruvate kinase activated by fructose diphosphate

    PubMed Central

    Macfarlane, Neil; Ainsworth, Stanley

    1974-01-01

    The paper reports a study of the reaction between phosphoenolpyruvate, ADP and Mg2+ catalysed by pig liver pyruvate kinase when activated by fructose diphosphate and K+. The experimental results are consistent with two non-sequential mechanisms in which the substrates and products of the reaction are phosphoenolpyruvate, ADP, Mg2+, pyruvate and MgATP. Pyruvate release occurs before ADP binding. Two Mg2+ ions are involved, though the two Mg2+-binding sites cannot be occupied simultaneously. An isomerized enzyme complex forms before release of MgATP. Values were determined for the Michaelis constants of the reaction. Apparent MgATP inhibition constants are also given. PMID:4850216

  11. A 31P-NMR study of the interaction of Mg2+ ions with nucleoside diphosphates.

    PubMed Central

    Tran-Dinh, S; Neumann, J M

    1977-01-01

    The interaction of Mg2+ with nucleoside disphosphates : ADP, GDP, CDP and UDP has been studied by phosphorus magnetic resonance spectroscopy in aqueous solution. The results show that these four nucleotides behave similarly, the Mg2+ ion binds to the alpha but not to the beta phosphate moiety. The strength of the interaction of Mg2+ ions with nucleoside diphosphates is weaker than with nucleoside triphosphates. The association of Mg2+ on the phosphate chain is stronger in a neutral than in an acid medium. PMID:14328

  12. [Gene therapy for adenosine deaminase deficiency].

    PubMed

    Sakiyama, Yukio; Ariga, Tadashi; Ohtsu, Makoto

    2005-03-01

    A four year-old boy with adenosine deaminase (ADA-) deficient severe combined immunodeficiency(SCID) receiving PEG-ADA was treated under a gene therapy protocol targeting peripheral blood lymphocytes (PBLs) in 1995. After eleven infusions of autologous PBLs transduced with retroviral vector LASN encoding ADAcDNA, he exhibited increased levels of the CD8+ T lymphocytes, serum immunoglobulin, specific antibodies and delayed type hypersensitivity skin tests. Follow-up studies also provided evidence of long-term persistence and function of transduced PBLs with improvement in the immune function. However, the therapeutic effect of this gene therapy has been difficult to assess because of the concomitant treatment of PEG-ADA. Two ADA-SCID patients have been currently treated with autologous bone marrow CD34+ cells engineered with a retroviral vector GCsapM-ADA after discontinuation of PEG-ADA. The restoration of intracellular ADA enzymatic activity in lymphocytes and granulocytes resulted in correction of the systemic toxicity and liver function in the absence of PEG-ADA treatment. Both patients are at home where they are clinically well, and they do not experience adversed effect, with follow up being 12 months after CD34+ cells gene therapy.

  13. Detecting adenosine triphosphate in the pericellular space.

    PubMed

    Falzoni, Simonetta; Donvito, Giovanna; Di Virgilio, Francesco

    2013-06-06

    Release of adenosine triphosphate (ATP) into the extracellular space occurs in response to a multiplicity of physiological and pathological stimuli in virtually all cells and tissues. A role for extracellular ATP has been identified in processes as different as neurotransmission, endocrine and exocrine secretion, smooth muscle contraction, bone metabolism, cell proliferation, immunity and inflammation. However, ATP measurement in the extracellular space has proved a daunting task until recently. To tackle this challenge, some years ago, we designed and engineered a novel luciferase probe targeted to and expressed on the outer aspect of the plasma membrane. This novel probe was constructed by appending to firefly luciferase the N-terminal leader sequence and the C-terminal glycophosphatidylinositol anchor of the folate receptor. This chimeric protein, named plasma membrane luciferase, is targeted and localized to the outer side of the plasma membrane. With this probe, we have generated stably transfected HEK293 cell clones that act as an in vitro and in vivo sensor of the extracellular ATP concentration in several disease conditions, such as experimentally induced tumours and inflammation.

  14. Amino acids allosterically regulate the thiamine diphosphate-dependent alpha-keto acid decarboxylase from Mycobacterium tuberculosis.

    PubMed

    Werther, Tobias; Spinka, Michael; Tittmann, Kai; Schütz, Anja; Golbik, Ralph; Mrestani-Klaus, Carmen; Hübner, Gerhard; König, Stephan

    2008-02-29

    The gene rv0853c from Mycobacterium tuberculosis strain H37Rv codes for a thiamine diphosphate-dependent alpha-keto acid decarboxylase (MtKDC), an enzyme involved in the amino acid degradation via the Ehrlich pathway. Steady state kinetic experiments were performed to determine the substrate specificity of MtKDC. The mycobacterial enzyme was found to convert a broad spectrum of branched-chain and aromatic alpha-keto acids. Stopped-flow kinetics showed that MtKDC is allosterically activated by alpha-keto acids. Even more, we demonstrate that also amino acids are potent activators of this thiamine diphosphate-dependent enzyme. Thus, metabolic flow through the Ehrlich pathway can be directly regulated at the decarboxylation step. The influence of amino acids on MtKDC catalysis was investigated, and implications for other thiamine diphosphate-dependent enzymes are discussed.

  15. Adenosine acts as an inhibitor of lymphoma cell growth: a major role for the A3 adenosine receptor.

    PubMed

    Fishman, P; Bar-Yehuda, S; Ohana, G; Pathak, S; Wasserman, L; Barer, F; Multani, A S

    2000-07-01

    In this study, we demonstrated several mechanisms exploring the inhibitory effect of low-dose adenosine on lymphoma cell growth. Adenosine, a purine nucleoside present in plasma and other extracellular fluids, acts as a regulatory molecule, by binding to G-protein associated cell-surface receptors, A1, A2 and A3. Recently we showed that low-dose adenosine released by muscle cells, inhibits tumour cell growth and thus attributes to the rarity of muscle metastases. In the present work, a cytostatic effect of adenosine on the proliferation of the Nb2-11C rat lymphoma cell line was demonstrated. This effect was mediated through the induction of cell cycle arrest in the G0/G1 phase and by decreasing the telomeric signal in these cells. Adenosine was found to exert its antiproliferative effect mainly through binding to its A3 receptor. The cytostatic anticancer activity, mediated through the A3 adenosine receptor, turns it into a potential target for the development of anticancer therapies.

  16. Purinergic inhibition of glucose transport in cardiomyocytes.

    PubMed

    Fischer, Y; Becker, C; Löken, C

    1999-01-08

    ATP is known to act as an extracellular signal in many organs. In the heart, extracellular ATP modulates ionic processes and contractile function. This study describes a novel, metabolic effect of exogenous ATP in isolated rat cardiomyocytes. In these quiescent (i.e. noncontracting) cells, micromolar concentrations of ATP depressed the rate of basal, catecholamine-stimulated, or insulin-stimulated glucose transport by up to 60% (IC50 for inhibition of insulin-dependent glucose transport, 4 microM). ATP decreased the amount of glucose transporters (GLUT1 and GLUT4) in the plasma membrane, with a concomitant increase in intracellular microsomal membranes. A similar glucose transport inhibition was produced by P2 purinergic agonists with the following rank of potencies: ATP approximately ATPgammaS approximately 2-methylthio-ATP (P2Y-selective) > ADP > alpha,betameATP (P2X-selective), whereas the P1 purinoceptor agonist adenosine was ineffective. The effect of ATP was suppressed by the poorly subtype-selective P2 antagonist pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonic acid but, surprisingly, not by the nonselective antagonist suramin nor by the P2Y-specific Reactive Blue 2. Glucose transport inhibition by ATP was not affected by a drastic reduction of the extracellular concentrations of calcium (down to 10(-9) M) or sodium (down to 0 mM), and it was not mimicked by a potassium-induced depolarization, indicating that purinoceptors of the P2X family (which are nonselective cation channels whose activation leads to a depolarizing sodium and calcium influx) are not involved. Inhibition was specific for the transmembrane transport of glucose because ATP did not inhibit (i) the rate of glycolysis under conditions where the transport step is no longer rate-limiting nor (ii) the rate of [1-14C]pyruvate decarboxylation. In conclusion, extracellular ATP markedly inhibits glucose transport in rat cardiomyocytes by promoting a redistribution of glucose transporters from the

  17. Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies).

    PubMed

    Schmidt, Axel; Nagel, Raimund; Krekling, Trygve; Christiansen, Erik; Gershenzon, Jonathan; Krokene, Paal

    2011-12-01

    Norway spruce (Picea abies) defends itself against herbivores and pathogens by formation of traumatic resin ducts filled with terpenoid-based oleoresin. An important group of enzymes in terpenoid biosynthesis are the short-chain isoprenyl diphosphate synthases which produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of monoterpenes, sesquiterpenes, and diterpene resin acids, respectively. After treatment with methyl jasmonate (MJ) we investigated the expression of all isoprenyl diphosphate synthase genes characterized to date from Norway spruce and correlated this with formation of traumatic resin ducts and terpene accumulation. Formation of traumatic resin ducts correlated with higher amounts of monoterpenes, sesquiterpenes and diterpene resin acids and an upregulation of isoprenyl diphosphate synthase genes producing geranyl diphosphate or geranylgeranyl diphosphate. Among defense hormones, jasmonate and jasmonate-isoleucine conjugate accumulated to higher levels in trees with extensive traumatic resin duct formation, whereas salicylate did not. Jasmonate and ethylene are likely to both be involved in formation of traumatic resin ducts based on elevated transcripts of genes encoding lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase associated with resin duct formation. Other genes involved in defense signalling in other systems, mitogen-activated protein kinase3 and nonexpressor of pathogenesis-related gene1, were also associated with traumatic resin duct formation. These responses were detected not only at the site of MJ treatment, but also systemically up to 60 cm above the site of treatment on the trunk.

  18. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism.

  19. Role of A3 adenosine receptor in diabetic neuropathy.

    PubMed

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc.

  20. The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts.

    PubMed

    Kowalska, Ewa; Kozik, Andrzej

    2008-01-01

    Thiamin (vitamin B1) is an essential molecule for all living organisms. Its major biologically active derivative is thiamin diphosphate, which serves as a cofactor for several enzymes involved in carbohydrate and amino acid metabolism. Important new functions for thiamin and its phosphate esters have recently been suggested, e.g. in gene expression regulation by influencing mRNA structure, in DNA repair after UV illumination, and in the protection of some organelles against reactive oxygen species. Unlike higher animals, which rely on nutritional thiamin intake, yeasts can synthesize thiamin de novo. The biosynthesis pathways include the separate synthesis of two precursors, 4-amino-5-hydroxymethyl-2-methylpyrimidine diphosphate and 5-(2-hydroxyethyl)-4-methylthiazole phosphate, which are then condensed into thiamin monophosphate. Additionally, yeasts evolved salvage mechanisms to utilize thiamin and its dephosphorylated late precursors, 4-amino-5-hydroxymethyl-2-methylpyrimidine and 5-(2-hydroxyethyl)-4-methylthiazole, from the environment. The current state of knowledge on the discrete steps of thiamin biosynthesis in yeasts is far from satisfactory; many intermediates are postulated only by analogy to the much better understood biosynthesis process in bacteria. On the other hand, the genetic mechanisms regulating thiamin biosynthesis in yeasts are currently under extensive exploration. Only recently, the structures of some of the yeast enzymes involved in thiamin biosynthesis, such as thiamin diphosphokinase and thiazole synthase, were determined at the atomic resolution, and mechanistic proposals for the catalysis of particular biosynthetic steps started to emerge.

  1. Acanthamoeba polyphaga mimivirus NDK: preliminary crystallographic analysis of the first viral nucleoside diphosphate kinase

    SciTech Connect

    Jeudy, Sandra; Coutard, Bruno; Lebrun, Régine; Abergel, Chantal

    2005-06-01

    A. polyphaga mimivirus, the largest known double-stranded DNA virus, is the first virus to exhibit a nucleoside diphosphate kinase gene. The expression and crystallization of the viral NDK are reported. The complete sequence of the largest known double-stranded DNA virus, Acanthamoeba polyphaga mimivirus, has recently been determined [Raoult et al. (2004 ▶), Science, 306, 1344–1350] and revealed numerous genes not expected to be found in a virus. A comprehensive structural and functional study of these gene products was initiated [Abergel et al. (2005 ▶), Acta Cryst. F61, 212–215] both to better understand their role in the virus physiology and to obtain some clues to the origin of DNA viruses. Here, the preliminary crystallographic analysis of the viral nucleoside diphosphate kinase protein is reported. The crystal belongs to the cubic space group P2{sub 1}3, with unit-cell parameter 99.425 Å. The self-rotation function confirms that there are two monomers per asymmetric unit related by a twofold non-crystallographic axis and that the unit cell thus contains four biological entities.

  2. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. Following your health ...

  3. Blood Glucose Monitoring Devices

    MedlinePlus

    ... the Bar for Blood Glucose Meter Performance Recalls & Alerts Shasta Technologies GenStrip Blood Glucose Test Strips May ... Latest Recalls Report an Adverse Event MedWatch Safety Alerts News Releases Consumer Updates About FDA Contact FDA ...

  4. Genetic regulation of glycogen biosynthesis in Escherichia coli: in vitro effects of cyclic AMP and guanosine 5'-diphosphate 3'-diphosphate and analysis of in vivo transcripts.

    PubMed Central

    Romeo, T; Preiss, J

    1989-01-01

    Glycogen accumulation in Escherichia coli is inversely related to the growth rate and occurs most actively when cells enter the stationary phase. The levels of the three biosynthetic enzymes undergo corresponding changes under these conditions, suggesting that genetic control of enzyme biosynthesis may account for at least part of the regulation (J. Preiss, Annu. Rev. Microbiol. 38:419-458, 1984). We have begun to explore the molecular basis of this control by identifying factors which affect the expression of the glycogen genes and by determining the 5'-flanking regions required to mediate the regulatory effects. The in vitro coupled transcription-translation of two of the biosynthetic genes, glgC (ADPglucose pyrophosphorylase) and glgA (glycogen synthase), was enhanced up to 26- and 10-fold, respectively, by cyclic AMP (cAMP) and cAMP receptor protein (CRP). Guanosine 5'-diphosphate 3'-diphosphate stimulated the expression of these genes 3.6- and 1.8-fold, respectively. The expression of glgB (glycogen branching enzyme) was affected weakly or negligibly by the above-mentioned compounds. Assays which measured the in vitro formation of the first dipeptide of glgC showed that a restriction fragment which contained 0.5 kilobases of DNA upstream from the initiation codon supported cAMP-CRP-activated expression. Sequence-specific binding of cAMP-CRP to a 243-base-pair restriction fragment from the region upstream from glgC was observed by virtue of the altered electrophoretic mobility of the bound DNA. S1 nuclease protection analysis identified 5' termini of four in vivo transcripts within 0.5 kilobases of the glgC coding region. The relative concentrations of transcripts were higher in the early stationary phase than in the exponential phase. Two mutants which overproduced the biosynthesis enzymes accumulated elevated levels of specific transcripts. The 5' termini of three of the transcripts were mapped to a high resolution. Their upstream sequences showed weak

  5. Oritavancin Diphosphate

    PubMed Central

    Cada, Dennis J.; Baker, Danial E.

    2014-01-01

    Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are sent in print and are also available on-line. Monographs can be customized to meet the needs of a facility. A drug class review is now published monthly with The Formulary Monograph Service. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, call The Formulary at 800-322-4349. The December 2014 monograph topics are olodaterol, peginterferon beta-1a, testosterone nasal gel, ferric citrate corredination complex, and safinamide. The Safety MUE is on olodaterol. PMID:25673895

  6. Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.

    PubMed

    Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír

    2007-09-01

    Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine.

  7. Adenosine and protection from acute kidney injury

    PubMed Central

    Yap, Steven C.; Lee, H. Thomas

    2012-01-01

    Purpose of Review Acute Kidney Injury (AKI) is a major clinical problem without effective therapy. Development of AKI among hospitalized patients drastically increases mortality, and morbidity. With increases in complex surgical procedures together with a growing elderly population, the incidence of AKI is rising. Renal adenosine receptor (AR) manipulation may have great therapeutic potential in mitigating AKI. In this review, we discuss renal AR biology and potential clinical therapies for AKI. Recent Findings The 4 AR subtypes (A1AR, A2AAR, A2BAR and A3AR) have diverse effects on the kidney. The pathophysiology of AKI may dictate the specific AR subtype activation needed to produce renal protection. The A1AR activation in renal tubules and endothelial cells produces beneficial effects against ischemia and reperfusion (IR) injury by modulating metabolic demand, decreasing necrosis, apoptosis and inflammation. The A2AAR protects against AKI by modulating leukocyte-mediated renal and systemic inflammation whereas the A2BAR activation protects by direct activation of renal parenchymal ARs. In contrast, the A1AR antagonism may play a protective role in nephrotoxic AKI and radiocontrast induced nephropathy by reversing vascular constriction and inducing naturesis and diuresis. Furthermore, as the A3AR-activation exacerbates apoptosis and tissue damage due to renal IR, selective A3AR antagonism may hold promise to attenuate renal IR injury. Finally, renal A1AR activation also protects against renal endothelial dysfunction caused by hepatic IR injury. Summary Despite the current lack of therapies for the treatment and prevention of AKI, recent research suggests that modulation of renal ARs holds promise in treating AKI and extrarenal injury. PMID:22080856

  8. All about Blood Glucose

    MedlinePlus

    Toolkit No. 15 All About Blood Glucose Keeping your blood glucose (sugar)in your target range can prevent or delay the health problems ... Diabetes Association, Inc. 1/15 Toolkit No.15: All About Blood Glucose continued team about when and ...

  9. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity.

    PubMed

    Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung

    2015-02-01

    This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine.

  10. Attenuation of exercise vasodilatation by adenosine deaminase in anaesthetized dogs.

    PubMed Central

    Goonewardene, I P; Karim, F

    1991-01-01

    1. In dogs anaesthetized with sodium pentobarbitone and artificially ventilated, the gracilis muscles were vascularly isolated and perfused at a constant flow of 28.4 +/- 4.6 ml min-1 (100 g muscle tissue)-1 (99.8 +/- 4.5% of maximum free flow, means +/- standard error of the mean (S.E.M.), n = 9). 2. Three to five minutes of electrical stimulation of the cut peripheral end of the obturator nerve (4 Hz, 6 V, 0.2 ms) resulted in muscle contraction (0.61 +/- 0.14 kg (100 g)-1 during solvent infusion and 0.56 +/- 0.10 kg (100 g)-1 during intra-arterial adenosine deaminase infusion (50 U min-1) and an immediate decrease in arterial perfusion pressure from 184.5 +/- 8.1 mmHg to 148.2 +/- 5.7 mmHg (18.7 +/- 3.4% decrease) during solvent infusion, and from 193.5 +/- 7.16 to 142.0 +/- 10.2 mmHg (25.4 +/- 6.1% decrease) during adenosine deaminase infusion 10 s after the commencement of muscle stimulation. After about 5 min of muscle contractions, the arterial perfusion pressure decreased to 120.8 +/- 7.8 mmHg (32.9 +/- 5.8% decrease) during solvent infusion, and to 152.8 +/- 11.2 mmHg (20.9 +/- 5.3% decrease) during adenosine deaminase infusion (i.e. 37.9 +/- 6.2% attenuation of the fall in arterial perfusion pressure). The time taken for 90% recovery of the arterial perfusion pressure was 72.1 +/- 10.9 s during solvent infusion, and 51.5 +/- 9.3 s during adenosine deaminase infusion (P less than 0.05). 3. Adenosine (2 x 10(-3) mol l-1) infusion in the resting muscle during solvent infusion (final concentration in arterial blood 1.3 x 10(-4) +/- 6.0 x 10(-5) mol l-1) resulted in a 34.8 +/- 7.2% fall in arterial perfusion pressure but a fall of only 7.2 +/- 1.8% during adenosine deaminase infusion (50 U min-1; P less than 0.05; n = 5) indicating that adenosine deaminase infused at 50 U min-1 was more than adequate to metabolize endogenous adenosine produced during muscle contractions. 4. These data suggest that adenosine contributes about 40% to the sustained

  11. Differential adenosine sensitivity of diaphragm and skeletal muscle arterioles.

    PubMed

    Aaker, Aaron; Laughlin, M H

    2002-09-01

    The hyperemic response in exercising skeletal muscle is dependent on muscle fiber-type composition and fiber recruitment patterns, but the vascular control mechanisms producing exercise hyperemia in skeletal muscle remain poorly understood. The purpose of this study was to test the hypothesis that arterioles from white, low-oxidative skeletal muscle are less responsive to adenosine-induced dilation than are arterioles from diaphragm (Dia) and red, high-oxidative skeletal muscle. Second-order arterioles (2As) were isolated from the white portion of gastrocnemius muscle (WG; low-oxidative, fast-twitch muscle tissue) and two types of high-oxidative skeletal muscle [Dia and red portion of gastrocnemius muscle (RG)] of rats. Results reveal that 2As from all three types of muscle dilated in response to the endothelium-dependent dilator acetylcholine (WG: 48 +/- 3%, Dia: 51 +/- 3%, RG: 74 +/- 3%). In contrast, adenosine dilated only 2As from WG (48 +/- 4%) and Dia (46 +/- 5%) but not those from RG (5 +/- 5%). Thus adenosine-induced dilator responses differed among 2As of these different types of muscle tissue. However, the results do not support our hypothesis because 2As from Dia and WG dilated in response to adenosine, whereas 2As from RG did not. We conclude that the adenosine responsiveness of 2As from rat skeletal muscle cannot be predicted only by the fiber-type composition or oxidative capacity of the skeletal muscle tissue wherein the arteriole lies.

  12. Adenosine hypothesis of schizophrenia –opportunities for pharmacotherapy

    PubMed Central

    Boison, Detlev; Singer, Philipp; Shen, Hai-Ying; Feldon, Joram; Yee, Benjamin K.

    2011-01-01

    Pharmacotherapy of schizophrenia based on the dopamine hypothesis remains unsatisfactory for the negative and cognitive symptoms of the disease. Enhancing N-methyl-d-aspartate receptors (NMDAR) function is expected to alleviate such persistent symptoms, but successful development of novel clinically effective compounds remains challenging. Adenosine is a homeostatic bioenergetic network modulator that is able to affect complex networks synergistically at different levels (receptor dependent pathways, biochemistry, bioenergetics, and epigenetics). By affecting brain dopamine and glutamate activities it represents a promising candidate for restoring the functional imbalance in these neurotransmitter systems believed to underlie the genesis of schizophrenia symptoms, as well as restoring homeostasis of bioenergetics. Suggestion of an adenosine hypothesis of schizophrenia further posits that adenosinergic dysfunction might contribute to the emergence of multiple neurotransmitter dysfunctionscharacteristic of schizophrenia via diverse mechanisms. Given the importance of adenosine in early brain development and regulation of brain immune response, it also bears direct relevance to the aetiology of schizophrenia. Here, we provide an overview of the rationale and evidence in support of the therapeutic potential of multiple adenosinergic targets, including the high-affinity adenosine receptors (A1R and A2AR), and the regulatory enzyme adenosine kinase (ADK). Key preliminary clinical data and preclinical findings are reviewed. PMID:21315743

  13. Regioselective 1-N-Alkylation and Rearrangement of Adenosine Derivatives.

    PubMed

    Oslovsky, Vladimir E; Drenichev, Mikhail S; Mikhailov, Sergey N

    2015-01-01

    Several methods for the preparation of some N(6)-substituted adenosines based on selective 1-N-alkylation with subsequent Dimroth rearrangement were developed. The proposed methods seem to be effective for the preparation of natural N(6)-isopentenyl- and N(6)-benzyladenosines, which are known to possess pronounced biological activities. Direct 1-N-alkylation of 2',3',5'-tri-O-acetyladenosine and 3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides in N,N-dimethylformamide (DMF) in the presence of BaCO3 and KI gave 1-N-substituted derivatives with quantitative yields, whereas 1-N-alkylation of adenosine was accompanied by significant O-alkylation. Moreover, the reaction of trimethylsilyl derivatives of N(6)-acetyl-2',3',5'-tri-O-acetyladenosine and N(6)-acetyl-3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides leads to the formation of the stable 1-N-substituted adenosines. Dimroth rearrangement of 1-N-substituted adenosines in aqueous ammonia yields pure N(6)-substituted adenosines.

  14. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis.

  15. Ambulatory glucose profile: Flash glucose monitoring.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep

    2015-12-01

    Ambulatory glucose profile (AGP) is a novel way of assessing glycaemic levels on a 24 hour basis, through a minimally invasive method, known as flash glucose monitoring. This review describes the unique features of AGP, differentiates it from existing methods of glucose monitoring, and explains how it helps pursue the glycaemic pentad. The review suggests pragmatic usage of this technology, including pre-test, intra-test, and post-test counselling, and lists specific clinical scenarios where the investigation seems to be of immense benefit.

  16. Effects of AMPK activation on lipolysis in primary rat adipocytes: studies at different glucose concentrations.

    PubMed

    Szkudelski, Tomasz; Szkudelska, Katarzyna

    2017-02-01

    Adipose tissue plays a key role in energy homeostasis. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an important intracellular energy sensor. Effects of activation of AMPK by aminomidazole-4-carboxamide ribonucleotide (AICAR) on lipolysis in the rat adipocytes were determined in the presence of 3 or 12 mM glucose. Response to epinephrine or dibutyryl-cAMP was higher in the presence of 12 mM glucose. AICAR decreased lipolysis, also when glucose was replaced by alanine or succinate and without decrease in cAMP levels. AICAR attenuated epinephrine-induced decrease in adenosine triphosphate (ATP) levels, reduced glucose uptake and lactate release. These results indicate that short-term activation of AMPK by AICAR in the rat adipocytes inhibits lipolysis, due to changes in the final, followed by protein kinase A (PKA), steps of the lipolytic cascade and improves intracellular energy status. Similar effects of AICAR were observed in the presence of 3 and 12 mM glucose, which indicates that the AMPK system is operative at high glucose concentrations.

  17. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis.

    PubMed

    Xia, Xuan; Yan, Jinhua; Shen, Yunfeng; Tang, Kuanxiao; Yin, Jun; Zhang, Yanhua; Yang, Dongjie; Liang, Hua; Ye, Jianping; Weng, Jianping

    2011-02-03

    Berberine (BBR) is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French). It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK) and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase), were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS) was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1), sterol regulatory element-binding protein 1c (SREBP1) and carbohydrate responsive element-binding protein (ChREBP) were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP) level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway.

  18. Glucose screening tests during pregnancy

    MedlinePlus

    Oral glucose tolerance test - pregnancy; OGTT - pregnancy; Glucose challenge test - pregnancy; Gestational diabetes - glucose screening ... first step, you will have a glucose screening test: You DO NOT need to prepare or change ...

  19. A functional (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase exhibits diurnal regulation of expression in Stevia rebaudiana (Bertoni).

    PubMed

    Kumar, Hitesh; Kumar, Sanjay

    2013-09-15

    The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 ara<>ispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia.

  20. Evidence for a different metabolic behaviour of cytidine diphosphate choline after oral and intravenous administration to rats.

    PubMed

    Paroni, R; Cighetti, G; Del Puppo, M; Kienle, M G

    1985-09-01

    Radioactivity plasma decay was studied in rats after intravenous and oral administration of cytidine diphosphate [methyl-14C]choline at doses of 25 and 300 mg/kg. The kinetics fitted well with a two compartment open model and showed a long lasting elimination phase with a half-life ranging from 2.0 to 2.6 days for the two doses and the two administration routes. Absorption of cytidine diphosphate choline radioactivity was complete after oral treatment with the low dose and accounted for 94.5% of the dose when 300 mg/kg of cytidine diphosphate [methyl-14C]choline were administered. However the distribution of radioactivity in tissues, urine and expired air suggest metabolic differences, at least from a quantitative point of view, between the oral and intravenous treatments. In particular, the higher excretion of radioactivity associated with trimethylamine in urine found when cytidine diphosphate [methyl-14C]choline was given orally, suggest that the compound may be metabolized, at least in part, previous to its gastrointestinal absorption.

  1. Identification and partial characterization of an adenosine(5')tetraphospho(5')adenosine hydrolase on intact bovine aortic endothelial cells.

    PubMed Central

    Ogilvie, A; Lüthje, J; Pohl, U; Busse, R

    1989-01-01

    The biologically active dinucleotides adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')-triphospho(5')adenosine (Ap3A), which are both releasable into the circulation from storage pools in thrombocytes, are catabolized by intact bovine aortic endothelial cells. 1. Compared with extracellular ATP and ADP, which are very rapidly hydrolysed, the degradation of Ap4A and Ap3A by endothelial ectohydrolases is relatively slow, resulting in a much longer half-life on the endothelial surface of the blood vessel. The products of hydrolysis are further degraded and finally taken up as adenosine. 2. Ap4A hydrolase has high affinity for its substrate (Km 10 microM). 3. ATP as well as AMP transiently accumulates in the extracellular fluid, suggesting an asymmetric split of Ap4A by the ectoenzyme. 4. Mg2+ or Mn2+ at millimolar concentration are needed for maximal activity; Zn2+ and Ca2+ are inhibitory. 5. The hydrolysis of Ap4A is retarded by other nucleotides, such as ATP and Ap3A, which are released from platelets simultaneously with Ap4A. PMID:2541689

  2. Quantitative effect and regulatory function of cyclic adenosine 5'-phosphate in Escherichia coli.

    PubMed

    Narang, Atul

    2009-09-01

    Cyclic adenosine 5'-phosphate (cAMP) is a global regulator of gene expression in Escherichia coli. Despite decades of intensive study, the quantitative effect and regulatory function of cAMP remain the subjects of considerable debate. Here, we analyse the data in the literature to show that: (a) In carbon-limited cultures (including cultures limited by glucose), cAMP is at near-saturation levels with respect to expression of several catabolic promoters (including lac, ara and gal). It follows that cAMP receptor protein (CRP) cAMP-mediated regulation cannot account for the strong repression of these operons in the presence of glucose. (b) The cAMP levels in carbon-excess cultures are substantially lower than those observed in carbon-limited cultures under these conditions, the expression of catabolic promoters is very sensitive to variation of cAMP levels. (c)=CRPcAMP invariably activates the expression of catabolic promoters, but it appears to inhibit the expression of anabolic promoters. (d) These results suggest that the physiological function of cAMP is to maintain homeostatic energy levels. In carbon-limited cultures, growth is limited by the supply of energy; the cAMP levels therefore increase to enhance energy accumulation by activating the catabolic promoters and inhibiting the anabolic promoters. Conversely, in carbonexcess cultures, characterized by the availability of excess energy, the cAMP levels decrease in order to depress energy accumulation by inhibiting the catabolic promoters and activating the anabolic promoters.

  3. Targeting adenosine receptors to prevent inflammatory skin diseases.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Borea, Pier Andrea

    2014-08-01

    Adenosine mediates its effects through activation of a family of four G-protein-coupled receptors, named A1 , A2A , A2B and A3 . This nucleoside plays an important role in immunity and inflammation, and the A2A adenosine receptor subtype has a key role in the inhibition of inflammatory processes besides promoting wound healing. In this issue of Experimental Dermatology, Arasa et al. show that the topical application of a selective A2A agonist, CGS 21680, to mouse skin reduced epidermal hyperplasia as well as skin inflammation, similarly to topical corticoids, without side effects like skin atrophy. Rigorously following up this work is important for the development of novel treatment strategies for chronic hyperproliferative inflammatory dermatoses, such as targeting the A2A adenosine receptor family.

  4. Release of Adenosine and ATP During Ischemia and Epilepsy

    PubMed Central

    Dale, Nicholas; Frenguelli, Bruno G

    2009-01-01

    Eighty years ago Drury & Szent-Györgyi described the actions of adenosine, AMP (adenylic acid) and ATP (pyrophosphoric or diphosphoric ester of adenylic acid) on the mammalian cardiovascular system, skeletal muscle, intestinal and urinary systems. Since then considerable insight has been gleaned on the means by which these compounds act, not least of which in the distinction between the two broad classes of their respective receptors, with their many subtypes, and the ensuing diversity in cellular consequences their activation invokes. These myriad actions are of course predicated on the release of the purines into the extracellular milieu, but, surprisingly, there is still considerable ambiguity as to how this occurs in various physiological and pathophysiological conditions. In this review we summarise the release of ATP and adenosine during seizures and cerebral ischemia and discuss mechanisms by which the purines adenosine and ATP may be released from cells in the CNS under these conditions. PMID:20190959

  5. Correlation between blood adenosine metabolism and sleep in humans.

    PubMed

    Díaz-Muñoz, M; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yááñez, L; Aguilar-Roblero, R; Rosenthal, L; Villalobos, L; Fernández-Cancino, F; Drucker-Colín, R; Chagoya De Sanchez, V

    1999-01-01

    Blood adenosine metabolism, including metabolites and metabolizing enzymes, was studied during the sleep period in human volunteers. Searching for significant correlations among biochemical parameters found: adenosine with state 1 of slow-wave sleep (SWS); activity of 5'-nucleotidase with state 2 of SWS; inosine and AMP with state 3-4 of SWS; and activity of 5'-nucleotidase and lactate with REM sleep. The correlations were detected in all of the subjects that presented normal hypnograms, but not in those who had fragmented sleep the night of the experiment. The data demonstrate that it is possible to obtain information of complex brain operations such as sleep by measuring biochemical parameters in blood. The results strengthen the notion of a role played by adenosine, its metabolites and metabolizing enzymes, during each of the stages that constitute the sleep process in humans.

  6. Demonstration of adenosine deaminase activity in human fibroblast lysosomes.

    PubMed Central

    Lindley, E R; Pisoni, R L

    1993-01-01

    Human fibroblast lysosomes, purified on Percoll density gradients, contain an adenosine deaminase (ADA) activity that accounts for approximately 10% of the total ADA activity in GM0010A human fibroblasts. In assays of lysosomal ADA, the conversion of [3H]adenosine into [3H]inosine was proportional to incubation time and the amount of lysosomal material added to reaction mixtures. Maximal activity was observed between pH 7 and 8, and lysosomal ADA displayed a Km of 37 microM for adenosine at 25 degrees C and pH 5.5. Lysosomal ADA was completely inhibited by 2.5 mM Cu2+ or Hg2+ salts, but not by other bivalent cations (Ba2+, Cd2+, Ca2+, Fe2+, Mg2+, Mn2+ and Zn2+). Coformycin (2.5 mM), deoxycoformycin (0.02 mM), 2'-deoxyadenosine (2.5 mM), 6-methylaminopurine riboside (2.5 mM), 2'-3'-isopropylidene-adenosine (2.5 mM) and erythro-9-(2-hydroxy-3-nonyl)adenine (0.2 mM) inhibited lysosomal ADA by > 97%. In contrast, 2.5 mM S-adenosyl-L-homocysteine and cytosine were poor inhibitors. Nearly all lysosomal ADA activity is eluted as a high-molecular-mass protein (> 200 kDa) just after the void volume on a Sephacryl S-200 column, and is very heat-stable, retaining 70% of its activity after incubation at 65 degrees C for 80 min. We speculate that compartmentalization of ADA within lysosomes would allow deamination of adenosine to occur without competition by adenosine kinase, which could assist in maintaining cellular energy requirements under conditions of nutritional deprivation. PMID:8452534

  7. Why do premature newborn infants display elevated blood adenosine levels?

    PubMed

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW

  8. Intravenous Adenosine for Surgical Management of Penetrating Heart Wounds

    PubMed Central

    Kokotsakis, John; Hountis, Panagiotis; Antonopoulos, Nikolaos; Skouteli, Elian; Athanasiou, Thanos; Lioulias, Achilleas

    2007-01-01

    Accurate suturing of penetrating cardiac injuries is difficult. Heart motion, ongoing blood loss, arrhythmias due to heart manipulation, and the near-death condition of the patient can all affect the outcome. Rapid intravenous injection of adenosine induces temporary asystole that enables placement of sutures in a motionless surgical field. Use of this technique improves surgical conditions, and it is faster than other methods. Herein, we describe our experience with the use of intravenous adenosine to successfully treat 3 patients who had penetrating heart wounds. PMID:17420798

  9. Computer-assisted analysis of adenosine triphosphate data.

    PubMed

    Erkenbrecher, C W; Crabtree, S J; Stevenson, L H

    1976-09-01

    A computer program has been written to assist in the analysis of adenosine 5'-triphosphate data. The program is designed to calculate a dilution curve and to correct sample and adenosine 5'-triphosphate standard data for background and dilution effects. In addition, basic statistical parameters and estimates of biomass carbon are also calculated for each group of samples and printed in a convenient format. The versatility of the program to analyze data from both qauatic and terrestrial samples is noted as well as its potential use with various types of instrumentation and extraction techniques.

  10. Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis

    SciTech Connect

    Barta, Michael L.; Skaff, D. Andrew; McWhorter, William J.; Herdendorf, Timothy J.; Miziorko, Henry M.; Geisbrecht, Brian V.

    2011-10-28

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 {angstrom} resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 {angstrom} resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 {angstrom} resolution). Comparison of these structures provides a physical basis for the significant differences in K{sub i} values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser{sup 192} as making potential contributions to catalysis. Significantly, Ser {yields} Ala substitution of this side chain decreases k{sub cat} by {approx}10{sup 3}-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 {angstrom} cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  11. Crystal structures of Staphylococcus epidermidis mevalonate diphosphate decarboxylase bound to inhibitory analogs reveal new insight into substrate binding and catalysis.

    PubMed

    Barta, Michael L; Skaff, D Andrew; McWhorter, William J; Herdendorf, Timothy J; Miziorko, Henry M; Geisbrecht, Brian V

    2011-07-08

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in K(i) values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser(192) as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases k(cat) by ∼10(3)-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  12. Development of Coronary Vasospasm during Adenosine-Stress Myocardial Perfusion CT Imaging.

    PubMed

    Nam, Jeong Gu; Choi, Seong Hoon; Kang, Byeong Seong; Bang, Min Seo; Kwon, Woon Jeong

    2015-01-01

    Adenosine is a short-acting coronary vasodilator, and it is widely used during pharmacological stress myocardial perfusion imaging. It has a well-established safety profile, and most of its side effects are known to be mild and transient. Until now, coronary vasospasm has been rarely reported as a side effect of adenosine during or after adenosine stress test. This study reports a case of coronary vasospasm which was documented on stress myocardial perfusion CT imaging during adenosine stress test.

  13. Structure Conservation and Differential Expression of Farnesyl Diphosphate Synthase Genes in Euphorbiaceous Plants

    PubMed Central

    Guo, Dong; Li, Hui-Liang; Peng, Shi-Qing

    2015-01-01

    Farnesyl diphosphate synthase (FPS) is a key enzyme of isoprenoids biosynthesis. However, knowledge of the FPSs of euphorbiaceous species is limited. In this study, ten FPSs were identified in four euphorbiaceous plants. These FPSs exhibited similar exon/intron structure. The deduced FPS proteins showed close identities and exhibited the typical structure of plant FPS. The members of the FPS family exhibit tissue expression patterns that vary among several euphorbiaceous plant species under normal growth conditions. The expression profiles reveal spatial and temporal variations in the expression of FPSs of different tissues from Euphorbiaceous plants. Our results revealed wide conservation of FPSs and diverse expression in euphorbiaceous plants during growth and development. PMID:26389894

  14. Interaction of thiamin diphosphate with phosphorylated and dephosphorylated mammalian pyruvate dehydrogenase complex.

    PubMed

    Liu, Xiaoqing; Bisswanger, Hans

    2005-01-01

    Kinetic and binding studies were carried out on substrate and cofactor interaction with the pyruvate dehydrogenase complex from bovine heart. Fluoropyruvate and pyruvamide, previously described as irreversible and allosteric inhibitors, respectively, are strong competitive inhibitors with respect to pyruvate. Binding of thiamin diphosphate was used to study differences between the active dephosphorylated and inactive phosphorylated enzyme states by spectroscopic methods. The change in both the intrinsic tryptophan fluorescence and the fluorescence of the 6-bromoacetyl-2-dimethylaminonaphthalene-labelled enzyme complex produced on addition of the cofactor showed similar binding behaviour for both enzyme forms, with slightly higher affinity for the phosphorylated form. Changes in the CD spectrum, especially the negative Cotton effect at 330 nm as a function of cofactor concentration, both in the absence and presence of pyruvate, also revealed no drastic differences between the two enzyme forms. Thus, inactivation of the enzyme activity of the pyruvate dehydrogenase complex is not caused by impeding the binding of substrate or cofactor.

  15. Structure of uridine diphosphate N-acetylglucosamine pyrophosphorylase from Entamoeba histolytica.

    PubMed

    Edwards, Thomas E; Gardberg, Anna S; Phan, Isabelle Q H; Zhang, Yang; Staker, Bart L; Myler, Peter J; Lorimer, Donald D

    2015-05-01

    Uridine diphosphate N-acetylglucosamine pyrophosphorylase (UAP) catalyzes the final step in the synthesis of UDP-GlcNAc, which is involved in cell-wall biogenesis in plants and fungi and in protein glycosylation. Small-molecule inhibitors have been developed against UAP from Trypanosoma brucei that target an allosteric pocket to provide selectivity over the human enzyme. A 1.8 Å resolution crystal structure was determined of UAP from Entamoeba histolytica, an anaerobic parasitic protozoan that causes amoebic dysentery. Although E. histolytica UAP exhibits the same three-domain global architecture as other UAPs, it appears to lack three α-helices at the N-terminus and contains two amino acids in the allosteric pocket that make it appear more like the enzyme from the human host than that from the other parasite T. brucei. Thus, allosteric inhibitors of T. brucei UAP are unlikely to target Entamoeba UAPs.

  16. Geranyl and Neryl Triazole Bisphosphonates as Inhibitors of Geranylgeranyl Diphosphate Synthase

    PubMed Central

    Zhou, Xiang; Ferree, Sarah D.; Wills, Veronica S.; Born, Ella J.; Tong, Huaxiang; Holstein, Sarah A.

    2014-01-01

    When inhibitors of enzymes that utilize isoprenoid pyrophosphates are based on the natural substrates, a significant challenge can be to achieve selective inhibition of a specific enzyme. One element in the design process is the stereochemistry of the isoprenoid olefins. We recently reported preparation of a series of isoprenoid triazoles as potential inhibitors of geranylgeranyl transferase II but these compounds were obtained as a mixture of olefin isomers. We now have accomplished the stereoselective synthesis of these triazoles through the use of epoxy azides for the cycloaddition reaction followed by regeneration of the desired olefin. Both geranyl and neryl derivatives have been prepared as single olefin isomers through parallel reaction sequences. The products were assayed against multiple enzymes as well as in cell culture studies and surprisingly a Z-olefin isomer was found to be a potent and selective inhibitor of geranylgeranyl diphosphate synthase. PMID:24726306

  17. Protein preparation, crystallization and preliminary X-ray analysis of Trypanosoma cruzi nucleoside diphosphate kinase 1.

    PubMed

    Gómez Barroso, J A; Pereira, H; Miranda, M; Pereira, C; Garratt, R C; Aguilar, C F

    2010-07-01

    The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl(2), 20% PEG 3350. Data were collected to 3.5 A resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 A. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease.

  18. Effects of irradiation on the thorium phosphate diphosphate ceramics and consequences on its dissolution

    NASA Astrophysics Data System (ADS)

    Tamain, C.; Özgümüs, A.; Dacheux, N.; Garrido, F.; Thomé, L.

    2006-06-01

    Thorium phosphate diphosphate samples (β-TPD), proposed as a ceramic for the long term immobilization of actinides, were externally irradiated with ions at several energies in order to simulate the self-irradiation as well as with γ-rays. The influence of the electronic energy loss was first investigated. XRD measurements showed a complete amorphization of the material at 1013 cm-2 of 840 MeV krypton while no significant structural change occurred at 5 × 1013 cm-2 of 410 MeV sulfur. The dissolution of raw and irradiated pellets was studied versus several parameters such as the amorphized fraction, the radiolytic species (as instance hydrogen peroxide) produced in situ in the leachate during irradiation, the temperature and the leachate acidity. The results obtained reveal a significant increase of the kinetics of dissolution for amorphized pellets compared to the raw ceramic.

  19. Additional diterpenes from Physcomitrella patens synthesized by copalyl diphosphate/kaurene synthase (PpCPS/KS).

    PubMed

    Zhan, Xin; Bach, Søren Spanner; Hansen, Nikolaj Lervad; Lunde, Christina; Simonsen, Henrik Toft

    2015-11-01

    The bifunctional diterpene synthase, copalyl diphosphate/kaurene synthase from the moss Physcomitrella patens (PpCPS/KS), catalyses the formation of at least four diterpenes, including ent-beyerene, ent-sandaracopimaradiene, ent-kaur-16-ene, and 16-hydroxy-ent-kaurene. The enzymatic activity has been confirmed through generation of a targeted PpCPS/KS knock-out mutant in P. patens via homologous recombination, through transient expression of PpCPS/KS in Nicotiana benthamiana, and expression of PpCPS/KS in E. coli. GC-MS analysis of the knock-out mutant shows that it lacks the diterpenoids, supporting that all are products of PpCPS/KS as observed in N. benthamiana and E. coli. These results provide additional knowledge of the mechanism of this bifunctional diterpene synthase, and are in line with proposed reaction mechanisms in kaurene biosynthesis.

  20. Phosphorylation of adenosine in renal brush-border membrane vesicles by an exchange reaction catalysed by adenosine kinase.

    PubMed Central

    Sayós, J; Solsona, C; Mallol, J; Lluis, C; Franco, R

    1994-01-01

    Uptake of [3H]adenosine in brush-border membrane (BBM) vesicles from either rat or pig kidney leads to an accumulation of intravesicular [3H]AMP. The lack of significant levels of ATP and the presence of AMP in BBM indicated that a phosphotransfer between [3H]adenosine and AMP occurs. The phosphotransfer activity is inhibited by iodotubercidin, which suggests that it is performed by adenosine kinase acting in an ATP-independent manner. The existence of a similar phosphotransferase activity was demonstrated in membrane-free extracts from pig kidney. From the compounds tested it was shown that a variety of mononucleotides could act as phosphate donors. The results suggest that phosphotransfer reactions may be physiologically relevant in kidney. PMID:8110185

  1. Synthesis of 1,N6-etheno-2-aza-adenosine (2-aza-ε-adenosine): a new cytotoxic fluorescent nucleoside

    PubMed Central

    Tsou, K.C.; Yip, K.F.; Miller, E.E.; Lo, K.W.

    1974-01-01

    1,N6-Etheno-2-aza-adenosine was synthesized by treating 1,N6-etheno-adenosine with alkali, followed by nitrosation. The mechanism of formation of this novel nucleoside was elucidated using adenosine tritiated at C-8 and C-2, and was found to deformylate exclusively at C-2. This new 2-aza nucleoside fluoresces at 494 nm when excited at 358 nm. Toxicity study showed the compound is active in a rat mammary tumor tissue culture line, but inactive in HeLa and Glioma 26 tissue culture lines. It was also found to selectively inhibit the thymidine incorporation into DNA in a rat mammary tumor, but exhibits no ill effect on normal proliferative tissue. The reactive intermediate 3-β-D-ribofuranosyl-4-amino-5-(imidazol-2-yl) imidazole was identified and was found to be an active agent in tissue culture. PMID:10793738

  2. An intersubunit disulfide bridge stabilizes the tetrameric nucleoside diphosphate kinase of Aquifex aeolicus.

    PubMed

    Boissier, Fanny; Georgescauld, Florian; Moynié, Lucile; Dupuy, Jean-William; Sarger, Claude; Podar, Mircea; Lascu, Ioan; Giraud, Marie-France; Dautant, Alain

    2012-06-01

    The nucleoside diphosphate kinase (Ndk) catalyzes the reversible transfer of the γ-phosphate from nucleoside triphosphate to nucleoside diphosphate. Ndks form hexamers or two types of tetramers made of the same building block, namely, the common dimer. The secondary interfaces of the Type I tetramer found in Myxococcus xanthus Ndk and of the Type II found in Escherichia coli Ndk involve the opposite sides of subunits. Up to now, the few available structures of Ndk from thermophiles were hexameric. Here, we determined the X-ray structures of four crystal forms of the Ndk from the hyperthermophilic bacterium Aquifex aeolicus (Aa-Ndk). Aa-Ndk displays numerous features of thermostable proteins and is made of the common dimer but it is a tetramer of Type I. Indeed, the insertion of three residues in a surface-exposed spiral loop, named the Kpn-loop, leads to the formation of a two-turn α-helix that prevents both hexamer and Type II tetramer assembly. Moreover, the side chain of the cysteine at position 133, which is not present in other Ndk sequences, adopts two alternate conformations. Through the secondary interface, each one forms a disulfide bridge with the equivalent Cys133 from the neighboring subunit. This disulfide bridge was progressively broken during X-ray data collection by radiation damage. Such crosslinks counterbalance the weakness of the common-dimer interface. A 40% decrease of the kinase activity at 60°C after reduction and alkylation of the protein corroborates the structural relevance of the disulfide bridge on the tetramer assembly and enzymatic function.

  3. Stathmin slows down guanosine diphosphate dissociation from tubulin in a phosphorylation-controlled fashion.

    PubMed

    Amayed, P; Carlier, M F; Pantaloni, D

    2000-10-10

    Stathmin is an important protein that interacts with tubulin and regulates microtubule dynamics in a phosphorylation-controlled fashion. Here we show that the dissociation of guanosine 5'-diphosphate (GDP) from beta-tubulin is slowed 20-fold in the (tubulin)(2)-stathmin ternary complex (T(2)S). The kinetics of GDP or guanosine 5'-triphosphate (GTP) dissociation from tubulin have been monitored by the change in tryptophan fluorescence of tubulin upon exchanging 2-amino-6-mercapto-9-beta-ribofuranosylpurine 5'-diphosphate (S6-GDP) for tubulin-bound guanine nucleotide. At molar ratios of stathmin to tubulin lower than 0.5, biphasic kinetics were observed, indicating that the dynamics of the complex is extremely slow, consistent with its high stability. The method was used to characterize the effects of phosphorylation of stathmin on its interaction with tubulin. The serine-to-glutamate substitution of all four phosphorylatable serines of stathmin (4E-stathmin) weakens the stability of the T(2)S complex by about 2 orders of magnitude. The phosphorylation of serines 16 and 63 in stathmin has a more severe effect and weakens the stability of T(2)S 10(4)-fold. The rate of GDP dissociation is lowered only 7-fold and 4-fold in the complexes of tubulin with 4E-stathmin and diphosphostathmin, respectively. Sedimentation velocity studies support the conclusions of nucleotide exchange data and show that the T(2)S complexes formed between tubulin and 4E-stathmin or diphosphostathmin are less compact than the highly stable T(2)S complex. The correlation between the effect of phosphorylation of stathmin on the stability of T(2)S complex measured in vitro and on the function of stathmin in vivo is discussed.

  4. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality.

    PubMed

    Despinasse, Yolande; Fiorucci, Sébastien; Antonczak, Serge; Moja, Sandrine; Bony, Aurélie; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis; Jullien, Frédéric

    2017-05-01

    Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221.

  5. Inhibition of Coenzyme Qs Accumulation in Engineered Escherichia coli by High Concentration of Farnesyl Diphosphate

    PubMed Central

    Samoudi, Mojtaba; Omid Yeganeh, Negar; Shahbani Zahiri, Hossein; Shariati, Parvin; Hajhosseini, Reza

    2015-01-01

    Background: Coenzyme Q 10 (CoQ 10 ) is an isoprenoid component used widely in nutraceutical industries. Farnesyl diphosphate synthase (FPPS) is a responsible enzyme for biosynthesis of farnesyl diphosphate (FPP), a key precursor for CoQs production. This research involved investigating the effect of FPPS over-expression on CoQs production in engineered CoQ 10 -producing Escherichia coli (E. coli). Methods: Two CoQ 10 -producing strains, as referred to E. coli Ba and E. coli Br, were transformed by the encoding gene for FPPS (ispA) under the control of either the trc or P BAD promoters. Results: Over-expression of ispA under the control of P BAD promoter led to a relative increase in CoQ 10 production only in recombinant E. coli Br although induction by arabinose resulted in partial reduction of CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains. Over-expression of ispA under the control of stronger trc promoter, however, led to a severe decrease in CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains, as reflected by reductions from 629±40 to 30±13 and 564±28 to 80±14 μg/g Dried Cell Weight (DCW), respectively. The results showed high level of FPP reduces endogenous CoQ 8 production as well and that CoQs are produced in a complimentary manner, as the increase in production of one decreases the production of the other. Conclusion: The reduction in CoQ 10 production can be a result of Dds inhibition by high FPP concentration. Therefore, more effort is needed to verify the role of intermediate metabolite concentration and to optimize production of CoQ 10 . PMID:26306151

  6. In vivo assessment of coronary flow and cardiac function after bolus adenosine injection in adenosine receptor knockout mice.

    PubMed

    Teng, Bunyen; Tilley, Stephen L; Ledent, Catherine; Mustafa, S Jamal

    2016-06-01

    Bolus injections of adenosine and the A2A adenosine receptor (AR) selective agonist (regadenoson) are used clinically as a substitute for a stress test in people who cannot exercise. Using isolated tissue preparations, our lab has shown that coronary flow and cardiac effects of adenosine are mostly regulated by the AR subtypes A1, A2A, and A2B In this study, we used ultrasound imaging to measure the in vivo effects of adenosine on coronary blood flow (left coronary artery) and cardiac function in anesthetized wild-type, A1 knockout (KO), A2AKO, A2BKO, A3KO, A1, and A3 double KO (A1/3 DKO) and A2A and A2B double KO (A2A/2B DKO) mice in real time. Echocardiographic and Doppler studies were performed using a Visualsonic Vevo 2100 ultrasound system. Coronary blood flow (CBF) baseline data were obtained when animals were anesthetized with 1% isoflourane. Diameter (D) and velocity time integral (VTI) were measured on the left coronary arteries (CBF = ((π/4) × D(2) × VTI × HR)/1000). CBF changes were the highest within 2 min of injection (about 10 mg/kg). Heart rate, cardiac output, and stroke volume were measured by tracing the left ventricle long axis. Our data support a role for the A2 AR in CBF and further support our conclusions of previous studies from isolated tissues. Adenosine-mediated decreases in cardiac output and stroke volume may be A2B and/or A3 AR-mediated; however, the A1 and A2 ARs also play roles in overall cardiac function. These data further provide a powerful translational tool in studying the cardiovascular effects of adenosine in disease states.

  7. Anticancer effect of adenosine on gastric cancer via diverse signaling pathways.

    PubMed

    Tsuchiya, Ayako; Nishizaki, Tomoyuki

    2015-10-21

    Extracellular adenosine induces apoptosis in a variety of cancer cells via intrinsic and extrinsic pathways. In the former pathway, adenosine uptake into cells triggers apoptosis, and in the latter pathway, adenosine receptors mediate apoptosis. Extracellular adenosine also induces apoptosis of gastric cancer cells. Extracellular adenosine is transported into cells through an adenosine transporter and converted to AMP by adenosine kinase. In turn, AMP activates AMP-activated protein kinase (AMPK). AMPK is the factor responsible for caspase-independent apoptosis of GT3-TKB gastric cancer cells. Extracellular adenosine, on the other hand, induces caspase-dependent apoptosis of MKN28 and MKN45 gastric cancer cells by two mechanisms. Firstly, AMP, converted from intracellularly transported adenosine, initiates apoptosis, regardless of AMPK. Secondly, the A3 adenosine receptor, linked to Gi/Gq proteins, mediates apoptosis by activating the Gq protein effector, phospholipase Cγ, to produce inositol 1,4,5-trisphosphate and diacylglycerol, which activate protein kinase C. Consequently, the mechanisms underlying adenosine-induced apoptosis vary, depending upon gastric cancer cell types. Understand the contribution of each downstream target molecule of adenosine to apoptosis induction may aid the establishment of tailor-made chemotherapy for gastric cancer.

  8. The liquidlike ordering of lipid A-diphosphate colloidal crystals: the influence of Ca2+, Mg2+, Na+, and K+ on the ordering of colloidal suspensions of lipid A-diphosphate in aqueous solutions.

    PubMed

    Faunce, C A; Reichelt, H; Paradies, H H; Quitschau, P; Zimmermann, K

    2005-06-01

    A comprehensive study was performed on electrostatically stabilized aqueous dispersion of lipid A-diphosphate in the presence of bound Ca2+, Mg2+, K+, and Na+ ions at low ionic strength (0.10-10.0-mM NaCl, 25 degrees C) over a range of volume fraction of 1.0 x 10(-4)< or =phi< or =4.95 x 10(-4). These suspensions were characterized by light scattering (LS), quasielastic light scattering, small-angle x-ray scattering, transmission electron microscopy, scanning electron microscopy, conductivity measurements, and acid-base titrations. LS and electron microscopy yielded similar values for particle sizes, particle size distributions, and polydispersity. The measured static structure factor, S(Q), of lipid A-diphosphate was seen to be heavily dependent on the nature and concentration of the counterions, e.g., Ca2+ at 5.0 nM, Mg2+ at 15.0 microM, and K+ at 100.0 microM (25 degrees C). The magnitude and position of the S(Q) peaks depend not only on the divalent ion concentration (Ca2+ and Mg2+) but also on the order of addition of the counterions to the lipid A-diphosphate suspension in the presence of 0.1-microM NaCl. Significant changes in the rms radii of gyration (R2G) 1/2 of the lipid A-diphosphate particles were observed in the presence of Ca2+ (24.8+/-0.8 nm), Mg2+ (28.5+/-0.7 nm), and K+ (25.2+/-0.6 nm), whereas the Na+ salt (29.1+/-0.8 nm) has a value similar to the one found for the de-ionized lipid A-diphosphate suspensions (29.2+/-0.8 nm). Effective particle charges were determined by fits of the integral equation calculations of the polydisperse static structure factor, S(Q), to the light-scattering data and they were found to be in the range of Z*=700-750 for the lipid A-diphosphate salts under investigation. The light-scattering data indicated that only a small fraction of the ionizable surface sites (phosphate) of the lipid A-diphosphate was partly dissociated (approximately 30%). It was also discovered that a given amount of Ca2+ (1.0-5.0 nM) or K+ (100

  9. Cyclic adenosine 3',5'-monophosphate levels and activities of adenylate cyclase and cyclic adenosine 3',5'-monophosphate phosphodiesterase in Pseudomonas and Bacteroides.

    PubMed Central

    Siegel, L S; Hylemon, P B; Phibbs, P V

    1977-01-01

    A modified Gilman assay was used to determine the concentrations of cyclic adenosine 3',5'-monophosphate (cAMP) in rapidly filtered cells and in the culture filtrates of Pseudomonas aeruginosa, Escherichia coli K-12, and Bacteroides fragilis. In P. aeruginosa cultures, levels of cAMP in the filtrate increased with the culture absorbance (3.5 to 19.8 X 10(-9) M) but did not vary significantly with the carbon source used to support growth. Intracellular concentrations (0.8 to 3.2 X 10(-5) M) were substantially higher and did not vary appreciably during growth or with carbon source. Sodium cAMP (5 mM) failed to reverse the catabolite repression of inducible glucose-6-phosphate dehydrogenase (EC 1.1.1.49) synthesis caused by the addition of 10 mM succinate. Exogenous cAMP also had no discernible effect on the catabolite repression control of inducible mannitol dehydrogenase (EC 1.1.1.67). P. aeruginosa was found to contain both soluble cAMP phosphodiesterase (EC 3.1.4.17) and membrane-associated adenylate cyclase (EC 4.6.1.1) activity, and these were compared to the activities detected in crude extracts of E. coli. B. fragilis crude cell extracts contain neither of these enzyme activities, and little or no cAMP was detected in cells or culture filtrates of this anaerobic bacterium. PMID:187575

  10. Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-D-glucose uncouples energy production from growth.

    PubMed Central

    Thompson, J; Chassy, B M

    1982-01-01

    The addition of 2-deoxy-D-glucose to cultures of Streptococcus lactis 133 that were growing exponentially on sucrose or lactose reduced the growth rate by ca. 95%. Inhibition did not occur with glucose or mannose as the growth sugar. The reduction in growth rate was concomitant with rapid accumulation of the analog in phosphorylated form (2-deoxy-D-glucose 6-phosphate) via the phosphoenolpyruvate-dependent mannose:phosphotransferase system. Within 5 min the intracellular 2-deoxy-D-glucose 6-phosphate concentration reached a steady-state level of greater than 100 mM. After maximum accumulation of the sugar phosphate, the rate of sucrose metabolism (glycolysis) decreased by only 30%, but the cells were depleted of fructose-1,6-diphosphate. The addition of glucose to 2-deoxy-D-glucose 6-phosphate preloaded cells caused expulsion of 2-deoxy-D-glucose and a resumption of normal growth. S. lactis 133 contained an intracellular Mg2+-dependent, fluoride-sensitive phosphatase which hydrolyzed 2-deoxy-D-glucose 6-phosphate (and glucose 6-phosphate) to free sugar and inorganic phosphate. Because of continued dephosphorylation and efflux of the non-metabolizable analog, the maintenance of the intracellular 2-deoxy-D-glucose 6-phosphate pool during growth stasis was dependent upon continued glycolysis. This steady-state condition represented a dynamic equilibrium of: (i) phosphoenolpyruvate-dependent accumulation of 2-deoxy-D-glucose 6-phosphate, (ii) intracellular dephosphorylation, and (iii) efflux of free 2-deoxy-D-glucose. This sequence of events constitutes a futile cycle which promotes the dissipation of phosphoenolpyruvate. We conclude that 2-deoxy-D-glucose functions as an uncoupler by dissociating energy production from growth in S. lactis 133. Images PMID:6286601

  11. Purification and properties of adenylyl sulphate:ammonia adenylyltransferase from Chlorella catalysing the formation of adenosine 5' -phosphoramidate from adenosine 5' -phosphosulphate and ammonia.

    PubMed

    Fankhauser, H; Schiff, J A; Garber, L J

    1981-06-01

    Extracts of Chlorella pyrenoidosa, Euglena gracilis var. bacillaris, spinach, barley, Dictyostelium discoideum and Escherichia coli form an unknown compound enzymically from adenosine 5'-phosphosulphate in the presence of ammonia. This unknown compound shares the following properties with adenosine 5'-phosphoramidate: molar proportions of constituent parts (1 adenine:1 ribose:1 phosphate:1 ammonia released at low pH), co-electrophoresis in all buffers tested including borate, formation of AMP at low pH through release of ammonia, mass and i.r. spectra and conversion into 5'-AMP by phosphodiesterase. This unknown compound therefore appears to be identical with adenosine 5'-phosphoramidate. The enzyme that catalyses the formation of adenosine 5'-phosphoramidate from ammonia and adenosine 5'-phosphosulphate was purified 1800-fold (to homogeneity) from Chlorella by using (NH(4))(2)SO(4) precipitation and DEAE-cellulose, Sephadex and Reactive Blue 2-agarose chromatography. The purified enzyme shows one band of protein, coincident with activity, at a position corresponding to 60000-65000 molecular weight, on polyacrylamide-gel electrophoresis, and yields three subunits on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of 26000, 21000 and 17000 molecular weight, consistent with a molecular weight of 64000 for the native enzyme. Isoelectrofocusing yields one band of pI4.2. The pH optimum of the enzyme-catalysed reaction is 8.8. ATP, ADP or adenosine 3'-phosphate 5'-phosphosulphate will not replace adenosine 5'-phosphosulphate, and the apparent K(m) for the last-mentioned compound is 0.82mm. The apparent K(m) for ammonia (assuming NH(3) to be the active species) is about 10mm. A large variety of primary, secondary and tertiary amines or amides will not replace ammonia. One mol.prop. of adenosine 5'-phosphosulphate reacts with 1 mol.prop. of ammonia to yield 1 mol.prop. each of adenosine 5'-phosphoramidate and sulphate; no AMP is found. The highly purified enzyme

  12. Laser photobleaching leads to a fluorescence grade adenosine deaminase.

    PubMed

    Parola, A H; Caiolfa, V R; Bar, I; Rosenwaks, S

    1989-09-01

    The enzyme adenosine deaminase (adenosine aminohydrolase EC 3.5.4.4) from calf intestinal mucosa is commercially available at high purity grade yet, at the sensitivity at which fluorescence studies may be undertaken, a nonpeptidic fluorescence is detectable at lambda exmax = 350 nm and lambda emmax = 420 nm. A sevenfold decrease of this nonpeptidic fluorescence was obtained upon irradiation by the third harmonic (355 nm) of a Nd:YAG laser for 16 min, at 5 mJ/pulse, with a pulse width of 6 ns at a repetition rate of 10 Hz. The decline of fluorescence was accompanied by a negligible loss of enzymatic activity. Moreover, the integrity of the protein was ascertained by (i) its fluorescence (lambda exmax = 305 nm, lambda emmax = 335 nm) and lifetime distribution and (ii) its kinetics in the presence of the substrate adenosine and two inhibitors, all of which remained essentially unaltered. Laser photobleaching is a simple way to achieve a fluorescence grade adenosine deaminase.

  13. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet...

  14. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet...

  15. Quantitative changes in adenosine deaminase isoenzymes in human colorectal adenocarcinomas.

    PubMed

    ten Kate, J; Wijnen, J T; van der Goes, R G; Quadt, R; Griffioen, G; Bosman, F T; Khan, P M

    1984-10-01

    Several reports have suggested that a decrease or absence of adenosine deaminase complexing protein (ADCP) is consistently associated with cancer. However, in other studies, decreased as well as increased ADCP levels were found. In the present study, we investigated ADCP levels in 37 colorectal adenocarcinomas and correlated the results with clinicopathological characteristics in individual carcinomas. The levels of adenosine deaminase (EC 3.5.4.4) and soluble ADCP were determined in tissue samples by, respectively, a spectrophotometric assay and an ADCP specific radioimmunoassay. The values in the individual tumors were compared with their histological characteristics, such as degree of differentiation, nuclear grading, and the preoperative plasma carcinoembryonic antigen levels in the patients. It was found that ADCP was decreased in about a third of the tumors but unaltered or even increased in others. However, there was an overall 40% increase of the adenosine deaminase activity in the tumors compared to normal tissue. There seems to be no simple correlation between any of the clinicopathological parameters and the ADCP or adenosine deaminase levels. Methods detecting ADCP at single cell level might be helpful in exploring its potential use as a cancer-associated marker.

  16. Correlation of transient adenosine release and oxygen changes in the caudate-putamen.

    PubMed

    Wang, Ying; Venton, B Jill

    2017-01-01

    Adenosine is an endogenous nucleoside that modulates important physiological processes, such as vasodilation, in the central nervous system. A rapid, 2-4 s, mode of adenosine signaling has been recently discovered, but the relationship between this type of adenosine and blood flow change has not been characterized. In this study, adenosine and oxygen changes were simultaneously measured using fast-scan cyclic voltammetry. Oxygen changes occur when there is an increase in local cerebral blood flow and thus are a measure of vasodilation. About 34% of adenosine transients in the rat caudate-putamen are correlated with a subsequent transient change in oxygen. The amount of oxygen was correlated with the concentration of adenosine release and larger adenosine transients (over 0.4 μM) always had subsequent oxygen changes. The average duration of adenosine and oxygen transients was 3.2 and 3.5 s, respectively. On average, the adenosine release starts and peaks 0.2 s prior to the oxygen. The A2a antagonist, SCH442416, decreased the number of both adenosine and oxygen transient events by about 32%. However, the A1 antagonist, DPCPX, did not significantly affect simultaneous adenosine and oxygen release. The nitric oxide (NO) synthase inhibitor l-NAME also did not affect the concentration or number of adenosine and oxygen release events. These results demonstrate that both adenosine and oxygen release are modulated via A2a receptors. The correlation of transient concentrations, time delay between adenosine and oxygen peaks, and effect of A2a receptors suggests that adenosine modulates blood flow on a rapid, sub-second time scale. Read the Editorial Highlight for this article on page 10.

  17. GLUT2, glucose sensing and glucose homeostasis.

    PubMed

    Thorens, Bernard

    2015-02-01

    The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.

  18. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  19. The glucose oxidase-peroxidase assay for glucose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  20. Influence of glucose fermentation on CO₂ assimilation to acetate in homoacetogen Blautia coccoides GA-1.

    PubMed

    Liu, Chong; Li, Jianzheng; Zhang, Yupeng; Philip, Antwi; Shi, En; Chi, Xue; Meng, Jia

    2015-09-01

    Fermentation of glucose influences CO2 assimilation to acetate in homoacetogens. Blautia coccoides was investigated for a better understanding of the metabolic characteristics of homoacetogens in mixotrophic cultures. Batch cultures of the strain with H2/CO2 as a sole carbon source reached an acetate yield of 5.32 g/g dry cell weight after 240 h of incubation. Autotrophic metabolism was inhibited as glucose was added into the culture: the higher the glucose concentration the lower the autotrophic ability of the bacterium. Autotrophy was inhibited by high glucose concentration, probably due to the competition for coenzyme A between the Embden-Meyerhof-Parnas pathway and the Wood-Ljungdahl carbon fixation pathway, the energy (adenosine triphosphate) allocation for synthesis of cell carbon and reduction of CO2, in combination with the low pH caused by the accumulation of acetate.

  1. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    PubMed Central

    Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Dias, Ana Sofia; Pelletier, Julie

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders. PMID:25210228

  2. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    PubMed Central

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A1 receptors with 2-chloro-N6-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A1 receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis. PMID:22552934

  3. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release

    PubMed Central

    Nguyen, Michael D.; Venton, B. Jill

    2014-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future. PMID:26900429

  4. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.

    PubMed

    Nguyen, Michael D; Venton, B Jill

    2015-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.

  5. Transendothelial transport and metabolism of adenosine and inosine in the intact rat aorta

    SciTech Connect

    Kroll, K.; Kelm, M.K.; Buerrig, K.F.S.; Schrader, J.

    1989-06-01

    This study was aimed at defining the role of vascular endothelium in the transport and metabolism of adenosine. For this purpose, endothelium-intact and endothelium-denuded isolated rat aortas, perfused at constant flow (2 ml/min), were prelabeled with 3H-adenosine or 3H-inosine for 10 minutes at concentrations of 0.012-100 microM. Sequestration of adenosine by endothelium was determined from radioactivity recovered during selective endothelial cell removal with deoxycholic acid (0.75% for 15 seconds). In the physiological concentration range of adenosine (0.012-1 microM), fractional sequestration by endothelium was 90-92% of the total adenosine incorporation by the aorta. Endothelial sequestration of inosine at 0.1 microM was 85%. At 100 microM adenosine or inosine, fractional sequestration by aortic endothelium was 33% and 39%, respectively. Analysis of the specific radioactivity of adenine nucleotides extracted from prelabeled aortas indicated that most of the adenosine was incorporated into endothelial adenine nucleotides. Incorporation of inosine into endothelial ATP was approximately 15% that of adenosine. Inhibition of aortic adenosine deaminase with erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) did not influence sequestration of 0.1 microM adenosine, but resulted in a 49% reduction of total endothelial incorporation at 100 microM adenosine. Transfer of radioactive purines from the endothelium to underlying smooth muscle after prelabeling was equivalent to only 1%/hr of total endothelial radioactivity.

  6. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  7. Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies

    PubMed Central

    Boison, Detlev

    2009-01-01

    Deficiencies in the brain’s own adenosine-based seizure control system contribute to seizure generation. Consequently, reconstitution of adenosinergic neuromodulation constitutes a rational approach for seizure control. This review will critically discuss focal adenosine augmentation strategies and their potential for antiepileptic and disease modifying therapy. Due to systemic side effects of adenosine focal adenosine augmentation – ideally targeted to an epileptic focus – becomes a therapeutic necessity. This has experimentally been achieved in kindled seizure models as well as in post status epilepticus models of spontaneous recurrent seizures using three different therapeutic strategies that will be discussed here: (i) Polymer-based brain implants that were loaded with adenosine; (ii) Brain implants comprised of cells engineered to release adenosine and embedded in a cell-encapsulation device; (iii) Direct transplantation of stem cells engineered to release adenosine. To meet the therapeutic goal of focal adenosine augmentation, genetic disruption of the adenosine metabolizing enzyme adenosine kinase (ADK) in rodent and human cells was used as a molecular strategy to induce adenosine release from cellular brain implants, which demonstrated antiepileptic and neuroprotective properties. New developments and therapeutic challenges in using AATs for epilepsy therapy will critically be evaluated. PMID:19428218

  8. Glucose: detection and analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  9. Protective effect of adenosine against a calcium paradox in the isolated frog heart.

    PubMed

    Touraki, M; Lazou, A

    1992-01-01

    The effect of adenosine on the calcium paradox in the isolated frog heart was studied. Addition of adenosine during calcium depletion protected the frog heart against a calcium paradox. This protective effect was indicated by reduced protein and creatine kinase release, maintenance of electrical activity, and recovery of mechanical activity during reperfusion. Tissue calcium determination results showed that adenosine protected frog myocardial cells by reducing the massive calcium influx during reperfusion possibly through an action on calcium channels. Adenosine exerted its action in a dose-dependent manner; a concentration of 10 microM adenosine provided maximum protection of myocardial cells against the calcium paradox damage. Higher concentrations of adenosine produced side effects on both electrical and mechanical activity. These results are discussed in terms of the possible mechanism involved in the protective effect of adenosine.

  10. Molecular structure of tetraaqua adenosine 5'-triphosphate aluminium(III) complex: A study involving Raman spectroscopy, theoretical DFT and potentiometry

    NASA Astrophysics Data System (ADS)

    Tenório, Thaís; Silva, Andréa M.; Ramos, Joanna Maria; Buarque, Camilla D.; Felcman, Judith

    2013-03-01

    The Alzheimer's disease is one of the most common neurodegenerative diseases that affect elderly population, due to the formation of β-amyloid protein aggregate and several symptoms, especially progressive cognitive decline. The result is a decrease in capture of glucose by cells leading to obliteration, meddling in the Krebs cycle, the principal biochemical route to the energy production leading to a decline in the levels of adenosine 5'-triphosphate. Aluminium(III) is connected to Alzheimer's and its ion provides raise fluidity of the plasma membrane, decrease cell viability and aggregation of amyloid plaques. Studies reveal that AlATP complex promotes the formation of reactive fibrils of β-amyloid protein and independent amyloidogenic peptides, suggesting the action of the complex as a chaperone in the role pathogenic process. In this research, one of complexes formed by Al(III) and adenosine 5'-triphosphate in aqueous solution is analyzed by potentiometry, Raman spectroscopy and ab initio calculations. The value of the log KAlATP found was 9.21 ± 0.01 and adenosine 5'-triphosphate should act as a bidentate ligand in the complex. Raman spectroscopy and potentiometry indicate that donor atoms are the oxygen of the phosphate β and the oxygen of the phosphate γ, the terminal phosphates. Computational calculations using Density Functional Theory, with hybrid functions B3LYP and 6-311++G(d,p) basis set regarding water solvent effects, have confirmed the results. Frontier molecular orbitals, electrostatic potential contour surface, electrostatic potential mapped and Mulliken charges of the title molecule were also investigated.

  11. Adenosine Signaling Increases Proinflammatory and Profibrotic Mediators through Activation of a Functional Adenosine 2B Receptor in Renal Fibroblasts.

    PubMed

    Wilkinson, Patrick F; Farrell, Francis X; Morel, Diane; Law, William; Murphy, Suzanne

    2016-07-01

    Interstitial renal fibrosis is a major pathophysiological manifestation of patients diagnosed with Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN) and other inflammatory diseases. Adenosine signaling is an innate autocrine and paracrine cellular signaling pathway involving several key mediators that are elevated in the blood and kidneys of patients with DN. In these studies, we hypothesized that extracellular adenosine signals through one or more functional adenosine GPCRs on renal fibroblasts which increases profibrotic and proinflammatory mediators by inducing an activated fibroblast phenotype. Utilizing the renal fibroblast cell line NRK-49F, the presence and relative abundance of adenosine receptors (AR) A1, A2A, A2B, and A3 were quantified by RT-PCR. Under normal homeostatic conditions, only AR1 and AR2B were detected. The functionality of each receptor was then assessed by receptor specific pharmacological agonism and antagonism and assessed for modulation of the GPCR associated secondary messenger molecule, cyclic adenosine monophosphate (cAMP). Agonism of the AR2B receptor resulted in increased intracellular cAMP while agonism of the AR1 receptor inhibited cAMP modulation. Upon direct agonism of the AR2B receptor, transcripts for profibrotic and inflammatory mediators including SMA-α, IL-6, TGF-β, CTGF, and fibronectin were elevated between 2-4 fold. These data indicate that renal fibroblasts express a functional AR1 receptor that inhibits cAMP upon stimulation, leading to a functional AR2B receptor that increases cAMP upon stimulation and also induces an activated fibroblast phenotype resulting in increased fibrotic and inflammatory mediators.

  12. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors.

    PubMed

    Ross, Ashley E; Venton, B Jill

    2015-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate-putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 μM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2 s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7%, similar to the 54 ± 6% decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 min. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. Here, transient adenosine was shown to modulate phasic dopamine release on the order of seconds by acting at the A1 receptor. However, sustained increases in adenosine did not regulate phasic dopamine release. This study demonstrates for the first time a transient, neuromodulatory function of rapid adenosine to regulate rapid neurotransmitter release.

  13. Adenosine A2 receptors modulate haloperidol-induced catalepsy in rats.

    PubMed

    Mandhane, S N; Chopde, C T; Ghosh, A K

    1997-06-11

    The effect of adenosine A1 and A2 receptor agonists and antagonists was investigated on haloperidol-induced catalepsy in rats. Pretreatment (i.p.) with the non-selective adenosine receptor antagonist, theophylline, or the selective adenosine A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX), significantly reversed haloperidol-induced catalepsy, whereas the selective adenosine A1 receptor antagonists, 8-phenyltheophylline and 8-cyclopentyl-1,3-dipropylxanthine produced no effect. Similar administration of the adenosine A2 receptor agonists, 5'-(N-cyclopropyl)-carboxamidoadenosine and 5'-N-ethylcarboxamidoadenosine (NECA), and the mixed agonists with predominantly A1 site of action, N6-(2-phenylisopropyl) adenosine or 2-chloroadenosine, potentiated haloperidol-induced catalepsy. Higher doses of the adenosine agonists produced catalepsy when given alone. However, N6-cyclopentyladenosine, a highly selective adenosine A1 receptor agonist, was ineffective in these respects. The per se cataleptic effect of adenosine agonists was blocked by DMPX and the centrally acting anticholinergic agent, scopolamine. Scopolamine also attenuated the potentiation of haloperidol-induced catalepsy by adenosine agonists. Further, i.c.v. administration of NECA and DMPX produced a similar effect as that produced after their systemic administration. These findings demonstrate the differential influence of adenosine A1 and A2 receptors on haloperidol-induced catalepsy and support the hypothesis that the functional interaction between adenosine and dopamine mechanisms might occur through adenosine A2 receptors at the level of cholinergic neurons. The results suggest that adenosine A2, but not A1, receptor antagonists may be of potential use in the treatment of Parkinson's disease.

  14. Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis.

    PubMed Central

    Campos, N; Rodríguez-Concepción, M; Sauret-Güeto, S; Gallego, F; Lois, L M; Boronat, A

    2001-01-01

    Isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP) constitute the basic building block of isoprenoids, a family of compounds that is extraordinarily diverse in structure and function. IPP and DMAPP can be synthesized by two independent pathways: the mevalonate pathway and the recently discovered 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Although the MEP pathway is essential in most eubacteria, algae and plants and has enormous biotechnological interest, only some of its steps have been determined. We devised a system suitable for the genetic analysis of the MEP pathway in Escherichia coli. A synthetic operon coding for yeast 5-diphosphomevalonate decarboxylase, human 5-phosphomevalonate kinase, yeast mevalonate kinase and E. coli isopentenyl diphosphate isomerase was incorporated in the chromosome of this bacterium. The expression of this operon allowed the synthesis of IPP and DMAPP from mevalonate added exogenously and complementation of lethal mutants of the MEP pathway. We used this system to show that the ygbP, ychB and ygbB genes are essential in E. coli and that the steps catalysed by the products of these genes belong to the trunk line of the MEP pathway. PMID:11115399

  15. Fructose-1,6-diphosphate protects against epileptogenesis by modifying cation-chloride co-transporters in a model of amygdaloid-kindling temporal epilepticus.

    PubMed

    Ding, Yao; Wang, Shan; Jiang, Yan; Yang, Yi; Zhang, Manman; Guo, Yi; Wang, Shuang; Ding, Mei-ping

    2013-11-20

    Fructose-1,6-diphosphate (FDP) shifts the metabolism of glucose from glycolysis to the pentose phosphate pathway and has anticonvulsant activity in several acute seizure animal models. In the present study, we investigated the anti-epileptogenic effects of FDP in an amygdaloid-kindling seizure model, which is an animal model of the most common form of human temporal lobe epilepsy. We found that 1.0 g/kg FDP slowed seizure progression and shortened the corresponding after-discharge duration (ADD). FDP increased the number of stimulations needed to reach seizure stages 2-5 and prolonged the cumulative ADD prior to reaching stages 3-5. It also shortened staying days and cumulative ADD in stages 4-5. However, it demonstrated no significant protective effect when administered after the animals were fully kindled. In hippocampal neurons, cation-chloride co-transporters (CCCs) are suggested to play interesting roles in epilepsy by modulating γ-aminobutyric acid (GABA)ergic activity through controlling GABAA receptor-mediated reversal potential. We examined the potential link between FDP and the hippocampal expression of two main members of the CCCs: the neuron-specific K(+)-Cl(-)co-transporter 2 (KCC2) and Na(+)-K(+)-Cl(-)co-transporter 1 (NKCC1). FDP inhibited the kindling-induced downregulation of KCC2 expression and decreased NKCC1 expression during the kindling session. Taken together, our data reveal that FDP may have protective activity against epileptogenesis, from partial to generalized tonic-clonic seizures. Furthermore, our findings suggest that the FDP-induced imbalance between KCC2 and NKCC1 expression may be involved in the neuroprotective effect.

  16. YZGD from Paenibacillus thiaminolyticus, a pyridoxal phosphatase of the HAD (haloacid dehalogenase) superfamily and a versatile member of the Nudix (nucleoside diphosphate x) hydrolase superfamily.

    PubMed

    Tirrell, Isaac M; Wall, Jennifer L; Daley, Christopher J; Denial, Sarah J; Tennis, Frances G; Galens, Kevin G; O'Handley, Suzanne F

    2006-03-15

    YZGD from Paenibacillus thiaminolyticus is a novel bifunctional enzyme with both PLPase (pyridoxal phosphatase) and Nudix (nucleoside diphosphate x) hydrolase activities. The PLPase activity is catalysed by the HAD (haloacid dehalogenase) superfamily motif of the enzyme, and the Nudix hydrolase activity is catalysed by the conserved Nudix signature sequence within a separate portion of the enzyme, as confirmed by site-directed mutagenesis. YZGD's phosphatase activity is very specific, with pyridoxal phosphate being the only natural substrate, while YZGD's Nudix activity is just the opposite, with YZGD being the most versatile Nudix hydrolase characterized to date. YZGD's Nudix substrates include the CDP-alcohols (CDP-ethanol, CDP-choline and CDP-glycerol), the ADP-coenzymes (NADH, NAD and FAD), ADP-sugars, TDP-glucose and, to a lesser extent, UDP- and GDP-sugars. Regardless of the Nudix substrate, one of the products is always a nucleoside monophosphate, suggesting a role in nucleotide salvage. Both the PLPase and Nudix hydrolase activities require a bivalent metal cation, but while PLPase activity is supported by Co2+, Mg2+, Zn2+ and Mn2+, the Nudix hydrolase activity is Mn2+-specific. YZGD's phosphatase activity is optimal at an acidic pH (pH 5), while YZGD's Nudix activities are optimal at an alkaline pH (pH 8.5). YZGD is the first enzyme reported to be a member of both the HAD and Nudix hydrolase superfamilies, the first PLPase to be recognized as a member of the HAD superfamily and the first Nudix hydrolase capable of hydrolysing ADP-x, CDP-x and TDP-x substrates with comparable substrate specificity.

  17. Antihyperglycemic, antihyperlipidemic, anti-inflammatory and adenosine deaminase– lowering effects of garlic in patients with type 2 diabetes mellitus with obesity

    PubMed Central

    Kumar, Rahat; Chhatwal, Simran; Arora, Sahiba; Sharma, Sita; Singh, Jaswinder; Singh, Narinder; Bhandari, Vikram; Khurana, Ashok

    2013-01-01

    Introduction Type 2 diabetes mellitus is a chronic disorder characterized by chronic hyperglycemia, with long term macrovascular and microvascular complications. The treatment is lifestyle management, exercise, weight control, and antihyperglycemic drugs such as sulfonylureas, biguanides, alpha-glucosidase inhibitors, thiazolidinediones, and meglitinide. Recently, a direct association between high levels of C-reactive protein and serum adenosine deaminase levels in patients with uncontrolled diabetes with long-term complications has been seen. This study was conducted to assess the antihyperglycemic, lipid-lowering, anti-inflammatory, and improving glycemic control of garlic in type 2 diabetes patients with obesity. Materials and methods This was an open-label, prospective, comparative study, conducted on 60 patients having type 2 diabetes mellitus and obesity. The patients were divided into two groups of 30 each, of either sex. Group 1 was given metformin tablets, 500 mg twice a day (BD)/three times a day (TDS), after meals, and group 2 was given metformin tablets, 500 mg BD/TDS, after meals, along with garlic (Allium sativum) capsules, 250 mg BD. Patients were routinely investigated for fasting and postprandial blood glucose, glycosylated hemoglobin (HbA1c), serum adenosine deaminase levels and lipid profile (serum cholesterol, high-density lipoprotein cholesterol, triglycerides and low-density lipoprotein cholesterol) at the start of the study. Patients were followed up for 12 weeks, with monitoring of fasting and postprandial blood glucose at 2 week intervals, and monitoring of the other parameters at the end of study. Data obtained at the end of the study was statistically analyzed using Student’s t test. Results It was observed that both metformin alone and metformin with garlic reduced fasting blood glucose and postprandial blood glucose significantly, with a greater percentage reduction with metformin plus garlic; however, change in HbA1c levels was not

  18. Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase.

    PubMed

    Turner, Glenn W; Croteau, Rodney

    2004-12-01

    We present immunocytochemical localizations of four enzymes involved in p-menthane monoterpene biosynthesis in mint: the large and small subunits of peppermint (Mentha x piperita) geranyl diphosphate synthase, spearmint (Mentha spicata) (-)-(4S)-limonene-6-hydroxylase, peppermint (-)-trans-isopiperitenol dehydrogenase, and peppermint (+)-pulegone reductase. All were localized to the secretory cells of peltate glandular trichomes with abundant labeling corresponding to the secretory phase of gland development. Immunogold labeling of geranyl diphosphate synthase occurred within secretory cell leucoplasts, (-)-4S-limonene-6-hydroxylase labeling was associated with gland cell endoplasmic reticulum, (-)-trans-isopiperitenol dehydrogenase labeling was restricted to secretory cell mitochondria, while (+)-pulegone reductase labeling occurred only in secretory cell cytoplasm. We discuss this pathway compartmentalization in relation to possible mechanisms for the intracellular movement of monoterpene metabolites, and for monoterpene secretion into the extracellular essential oil storage cavity.

  19. Spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors, are involved in antinociception by systemically administered amitriptyline.

    PubMed

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-01-05

    The present study explored a link between spinal 5-HT(7) and adenosine A(1) receptors in antinociception by systemic amitriptyline in normal and adenosine A(1) receptor knock-out mice using the 2% formalin test. In normal mice, antinociception by systemic amitriptyline 3mg/kg was blocked by intrathecal administration of the selective adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) 10 nmol. Blockade was also seen in adenosine A(1) receptor +/+ mice, but not in -/- mice lacking these receptors. In both normal and adenosine A(1) receptor +/+ mice, the selective 5-HT(7) receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB269970) 3 μg blocked antinociception by systemic amitriptyline, but it did not prevent antinociception in adenosine A(1) receptor -/- mice. In normal mice, flinching was unaltered when the selective 5-HT(7) receptor agonist (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino)tetralin (AS-19) 20 μg was administered alone, but increased when co-administered intrathecally with DPCPX 10 nmol or SB269970 3 μg. Intrathecal AS-19 decreased flinching in adenosine A(1) receptor +/+ mice compared to -/- mice. Systemic amitriptyline appears to reduce nociception by activating spinal adenosine A(1) receptors secondarily to 5-HT(7) receptors. Spinal actions constitute only one aspect of antinociception by amitriptyline, as intraplantar DPCPX 10 nmol blocked antinociception by systemic amitriptyline in normal and adenosine A(1) receptor +/+, but not -/- mice. Adenosine A(1) receptor interactions are worthy of attention, as chronic oral caffeine (0.1, 0.3g/L, doses considered relevant to human intake levels) blocked antinociception by systemic amitriptyline in normal mice. In conclusion, adenosine A(1) receptors contribute to antinociception by systemic amitriptyline in both spinal and peripheral compartments.

  20. Properties of enzyme fraction A from Chlorella and copurification of 3' (2'), 5'-biphosphonucleoside 3' (2')-phosphohydrolase, adenosine 5'phosphosulfate sulfohydrolase and adenosine-5'-phosphosulfate cyclase activities.

    PubMed

    Lik-Shing Tsang, M; Schiff, J A

    1976-05-17

    Enzyme fraction A from Chlorella which catalyzes the formation of adenosine 5'-phosphosulfate from adenosine 3'-phosphate 5'-phosphosulfate is further characterized. Fraction A is found to contain an Mg2+ -activated and Ca2+ -inhibited 3' (2')-nucleotidase specific for 3' (2'), 5'-biphosphonucleosides. This activity has been named 3' (2), 5'-biphosphonucleoside 3' (2')-phosphohydrolase. The A fraction is also found to contain an activity which catalyzes the formation of adenosine 3':5'-monophosphate (cyclic AMP) from adenosine 5'-phosphosulfate (adenosine 5'-phosphosulfate cyclase). Under the same conditions of assay, 5'-ATP and 5'-ADP are not substrated for cyclic AMP formation. Unlike the 3' (2'), 5'-biphosphonucleoside 3' (2')-phosphohydrolase activity, the adenosine 5'-phosphosulfate cyclase activity does not require Mg2+, requires NH+4 or Na+, and is not inhibited by Ca2+. The A fraction also contains an adenosine 5'-phospho sulfate sulfohydrolase activity which forms 5'-AMP and sulfate. The three activities remain together during purification and acrylamide gel electrophoresis of the purified preparation yields a pattern where only one protein band has all three activities. The phosphohydrolase can be separated from the other two activities by affinity chromatography on agarose-hexyl-adenosine 3'n5'-bisphosphate yielding a phosphohydrolase preparation showing a single band on gel electrophoresis. The adenosine 5'-phosphosulfate cyclase may provide an alternate route of cyclic AMP formation from sulfate via ATP sulfurylase, but its regulatory significance in Chlorella, if any, remains to be demonstrated. In sulfate reduction, the phosphohydrolase may serve to provide a readily utilized pool of adenosine 5'-phosphosulfate as needed by the adenosine 5'-phosphosulfate sulfotransferase. The cyclase and sulfohydrolase activities would be regarded as side reactions incidental to this pathway, but may be of importance in other metabolic and regulatory reactions.

  1. Fission yeast decaprenyl diphosphate synthase consists of Dps1 and the newly characterized Dlp1 protein in a novel heterotetrameric structure.

    PubMed

    Saiki, Ryoichi; Nagata, Ai; Uchida, Naonori; Kainou, Tomohiro; Matsuda, Hideyuki; Kawamukai, Makoto

    2003-10-01

    The analysis of the structure and function of long chain-producing polyprenyl diphosphate synthase, which synthesizes the side chain of ubiquinone, has largely focused on the prokaryotic enzymes, and little is known about the eukaryotic counterparts. Here we show that decaprenyl diphosphate synthase from Schizosaccharomyces pombe is comprised of a novel protein named Dlp1 acting in partnership with Dps1. Dps1 is highly homologous to other prenyl diphosphate synthases but Dlp1 shares only weak homology with Dps1. We showed that the two proteins must be present simultaneously in Escherichia coli transformants before ubiquinone-10, which is produced by S. pombe but not by E. coli, is generated. Furthermore, the two proteins were shown to form a heterotetrameric complex. This is unlike the prokaryotic counterparts, which are homodimers. The deletion mutant of dlp1 lacked the enzymatic activity of decaprenyl diphosphate synthase, did not produce ubiquinone-10 and had the typical ubiquinone-deficient S. pombe phenotypes, namely hypersensitivity to hydrogen peroxide, the need for antioxidants for growth on minimal medium and an elevated production of H2S. Both the dps1 (formerly dps) and dlp1 mutants could generate ubiquinone when they were transformed with a bacterial decaprenyl diphosphate synthase, which functions in its host as a homodimer. This indicates that both dps1 and dlp1 are required for the S. pombe enzymatic activity. Thus, decaprenyl diphosphate from a eukaryotic origin has a heterotetrameric structure that is not found in prokaryotes.

  2. Adenosine receptor control of cognition in normal and disease.

    PubMed

    Chen, Jiang-Fan

    2014-01-01

    Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles

  3. Purification and characterization of two isoforms of isopentenyl-diphosphate isomerase from elicitor-treated Cinchona robusta cells.

    PubMed

    Ramos-Valdivia, A C; van der Heijden, R; Verpoorte, R; Camara, B

    1997-10-01

    In Cinchona robusta (Rubiaceae) cell suspension cultures, the activity of the enzyme isopentenyl-diphosphate isomerase (isopentenyl-POP isomerase) is transiently induced after addition of a homogenate of the phytopathogenic fungus Phytophthora cinnamomi. The enzyme catalyses the interconversion of isopentenyl-POP and dimethylallyl diphosphate (dimethylallyl-POP) and may be involved in the biosynthesis of anthraquinone phytoalexins that accumulate rapidly after elicitation of Cinchona cells. From elicitor-treated C. robusta cells, two isoforms of isopentenyl-POP isomerase have been purified to apparent homogeneity in four chromatographic steps. The purified forms are monomeric enzymes of 34 kDa (isoform I) and 29 kDa (isoform II), with Km values for isopentenyl-POP of 5.1 microM and 1.0 microM, respectively. Both isoforms require Mn2+ or Mg2+ as cofactor, isoform II showing a preference for Mn2+ with maximum activity at 1.5-2 mM. Isoform I was most active in the presence of 0.5-1.5 mM Mg2+ or in the presence of 0.5 mM Mn2+. A pH optimum of 7-7.8 was found for both forms and both were competitively inhibited by geranyl diphosphate (Ki 96 microM for isoform I) and the transition state analogue 2-(dimethylamino)ethyl diphosphate. Rechromatography of purified isoforms did not indicate any interconversion of both forms. Western blot analysis, using antibodies raised against isopentenyl-POP isomerase purified from Capsicum annuum, showed the presence of both isoforms in the crude protein extracts from C. robusta cells. Isoform II was specifically induced by elicitation, non-treated cells contained low activity of this isoform. The possible role of isopentenyl-POP isomerase in the biosynthesis of anthraquinones is discussed.

  4. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses.

    PubMed

    Manzano, David; Andrade, Paola; Caudepón, Daniel; Altabella, Teresa; Arró, Montserrat; Ferrer, Albert

    2016-09-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development.

  5. Activation of anti-reverse transcriptase nucleotide analogs by nucleoside diphosphate kinase: improvement by alpha-boranophosphate substitution.

    PubMed

    Schneider, B; Meyer, P; Sarfati, S; Mulard, L; Guerreiro, C; Boretto, J; Janin, J; Véron, M; Deville-Bonne, D; Canard, B

    2001-01-01

    Nucleoside activation by nucleoside diphosphate kinase and inhibition of HIV-1 reverse transcriptase were studied comparatively for a new class of nucleoside analogs with a borano (BH3-) or a thio (SH) group on the alpha-phosphate. Both the alpha-Rp-borano derivatives of AZT and d4T improved phosphorylation by NDP kinase, inhibition of reverse transcription as well as stability of alpha-borano nonophosphate derivatives in terminated viral DNA chain.

  6. A tailor-made chimeric thiamine diphosphate dependent enzyme for the direct asymmetric synthesis of (S)-benzoins.

    PubMed

    Westphal, Robert; Vogel, Constantin; Schmitz, Carlo; Pleiss, Jürgen; Müller, Michael; Pohl, Martina; Rother, Dörte

    2014-08-25

    Thiamine diphosphate dependent enzymes are well known for catalyzing the asymmetric synthesis of chiral α-hydroxy ketones from simple prochiral substrates. The steric and chemical properties of the enzyme active site define the product spectrum. Enzymes catalyzing the carboligation of aromatic aldehydes to (S)-benzoins have not so far been identified. We were able to close this gap by constructing a chimeric enzyme, which catalyzes the synthesis of various (S)-benzoins with excellent enantiomeric excess (>99%) and very good conversion.

  7. Feasibility of gas/solid carboligation: conversion of benzaldehyde to benzoin using thiamine diphosphate-dependent enzymes.

    PubMed

    Mikolajek, R; Spiess, A C; Büchs, J

    2007-05-10

    A carboligation was investigated for the first time as an enzymatic gas phase reaction, where benzaldehyde was converted to benzoin using thiamine diphosphate (ThDP)-dependent enzymes, namely benzaldehyde lyase (BAL) and benzoylformate decarboxylase (BFD). The biocatalyst was immobilized per deposition on non-porous support. Some limitations of the gas/solid biocatalysis are discussed based on this carboligation and it is also demonstrated that the solid/gas system is an interesting tool for more volatile products.

  8. Effects of cyclooxygenase-2 inhibitor and adenosine triphosphate-sensitive potassium channel opener in syngeneic mouse islet transplantation.

    PubMed

    Juang, J-H; Kuo, C-H

    2010-12-01

    In the initial days after transplantation, islet grafts may be attacked by cytokines via cyclooxygenase-2 (COX-2), producing primary nonfunction. In addition, chronic overstimulation of β-cells may impair insulin secretion. To enhance the function of transplanted islets, the present study investigated the effects of rofecoxib, a COX-2 inhibitor, and NN414 (6-chloro-3-[1-methylcyclopropyl]amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide), an adenosine triphosphate-sensitive potassium channel opener, on islet transplantation. Male inbred C57BL/6 mice were used as donors and recipients. One hundred fifty islets were isolated via collagenase digestion and density gradient, and syngeneically transplanted under the kidney capsule in mice with streptozotocin-induced diabetes. Recipients were treated with or without rofecoxib, 10 mg/kg/d orally, or with or without NN414, 3 mg/kg/d orally, for 4 weeks. After transplantation, recipient body weight, blood glucose concentration, and intraperitoneal glucose tolerance were measured. The grafted kidney was extracted for determination of insulin content at 4 weeks. In the rofecoxib-treated and NN414-treated groups and both control groups, body weight remained stable, and the blood glucose concentration decreased progressively. However, at 4 weeks after transplantation in the groups treated or not treated with rofecoxib or NN414, no significant difference was observed in recipient body weight, blood glucose concentration, and glucose tolerance or in insulin content of the graft. These data indicate that posttransplantation treatment with rofecoxib or NN414 has no beneficial effect on transplantation outcome in diabetic mouse recipients engrafted with a marginal islet mass.

  9. Triclinic-cubic phase transition and negative expansion in the actinide IV (Th, U, Np, Pu) diphosphates.

    PubMed

    Wallez, Gilles; Raison, Philippe E; Dacheux, Nicolas; Clavier, Nicolas; Bykov, Denis; Delevoye, Laurent; Popa, Karin; Bregiroux, Damien; Fitch, Andrew N; Konings, Rudy J M

    2012-04-02

    The AnP(2)O(7) diphosphates (An = Th, U, Np, Pu) have been synthesized by various routes depending on the stability of the An(IV) cation and its suitability for the unusual octahedral environment. Synchrotron and X-ray diffraction, thermal analysis, Raman spectroscopy, and (31)P nuclear magnetic resonance reveal them as a new family of diphosphates which probably includes the recently studied CeP(2)O(7). Although they adopt at high temperature the same cubic archetypal cell as the other known MP(2)O(7) diphosphates, they differ by a very faint triclinic distortion at room temperature that results from an ordering of the P(2)O(7) units, as shown using high-resolution synchrotron diffraction for UP(2)O(7). The uncommon triclinic-cubic phase transition is first order, and its temperature is very sensitive to the ionic radius of An(IV). The conflicting effects which control the thermal variations of the P-O-P angle are responsible for a strong expansion of the cell followed by a contraction at higher temperature. This inversion of expansion occurs at a temperature significantly higher than the phase transition, at variance with the parent compounds with smaller M(IV) cations in which the two phenomena coincide. As shown by various approaches, the P-O(b)-P linkage remains bent in the cubic form.

  10. Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway.

    PubMed

    Su, Ping; Tong, Yuru; Cheng, Qiqing; Hu, Yating; Zhang, Meng; Yang, Jian; Teng, Zhongqiu; Gao, Wei; Huang, Luqi

    2016-03-14

    Salvia miltiorrhiza Bunge is highly valued in traditional Chinese medicine for its roots and rhizomes. Its bioactive diterpenoid tanshinones have been reported to have many pharmaceutical activities, including antibacterial, anti-inflammatory, and anticancer properties. Previous studies found four different diterpenoid biosynthetic pathways from the universal diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate (GGPP) in S. miltiorrhiza. Here, we describe the functional characterization of ent-copalyl diphosphate synthase (SmCPSent), kaurene synthase (SmKS) and kaurene oxidase (SmKO) in the gibberellin (GA) biosynthetic pathway. SmCPSent catalyzes the cyclization of GGPP to ent-copalyl diphosphate (ent-CPP), which is converted to ent-kaurene by SmKS. Then, SmKO catalyzes the three-step oxidation of ent-kaurene to ent-kaurenoic acid. Our results show that the fused enzyme SmKS-SmCPSent increases ent-kaurene production by several fold compared with separate expression of SmCPSent and SmKS in yeast strains. In this study, we clarify the GA biosynthetic pathway from GGPP to ent-kaurenoic acid and provide a foundation for further characterization of the subsequent enzymes involved in this pathway. These insights may allow for better growth and the improved accumulation of bioactive tanshinones in S. miltiorrhiza through the regulation of the expression of these genes during developmental processes.

  11. Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway

    PubMed Central

    Su, Ping; Tong, Yuru; Cheng, Qiqing; Hu, Yating; Zhang, Meng; Yang, Jian; Teng, Zhongqiu; Gao, Wei; Huang, Luqi

    2016-01-01

    Salvia miltiorrhiza Bunge is highly valued in traditional Chinese medicine for its roots and rhizomes. Its bioactive diterpenoid tanshinones have been reported to have many pharmaceutical activities, including antibacterial, anti-inflammatory, and anticancer properties. Previous studies found four different diterpenoid biosynthetic pathways from the universal diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate (GGPP) in S. miltiorrhiza. Here, we describe the functional characterization of ent-copalyl diphosphate synthase (SmCPSent), kaurene synthase (SmKS) and kaurene oxidase (SmKO) in the gibberellin (GA) biosynthetic pathway. SmCPSent catalyzes the cyclization of GGPP to ent-copalyl diphosphate (ent-CPP), which is converted to ent-kaurene by SmKS. Then, SmKO catalyzes the three-step oxidation of ent-kaurene to ent-kaurenoic acid. Our results show that the fused enzyme SmKS-SmCPSent increases ent-kaurene production by several fold compared with separate expression of SmCPSent and SmKS in yeast strains. In this study, we clarify the GA biosynthetic pathway from GGPP to ent-kaurenoic acid and provide a foundation for further characterization of the subsequent enzymes involved in this pathway. These insights may allow for better growth and the improved accumulation of bioactive tanshinones in S. miltiorrhiza through the regulation of the expression of these genes during developmental processes. PMID:26971881

  12. Glabridin induces glucose uptake via the AMP-activated protein kinase pathway in muscle cells.

    PubMed

    Sawada, Keisuke; Yamashita, Yoko; Zhang, Tianshun; Nakagawa, Kaku; Ashida, Hitoshi

    2014-08-05

    The present study demonstrates that glabridin, a prenylated isoflavone in licorice, stimulates glucose uptake through the adenosine monophosphate-activated protein kinase (AMPK) pathway in L6 myotubes. Treatment with glabridin for 4h induced glucose uptake in a dose-dependent manner accompanied by the translocation of glucose transporter type 4 (GLUT4) to the plasma membrane. Glabridin needed at least 4h to increase glucose uptake, while it significantly decreased glycogen and increased lactic acid within 15 min. Pharmacological inhibition of AMPK by Compound C suppressed the glabridin-induced glucose uptake, whereas phosphoinositide 3-kinase and Akt inhibition by LY294002 and Akt1/2 inhibitor, respectively, did not. Furthermore, glabridin induced AMPK phosphorylation, and siRNA for AMPK completely abolished glabridin-induced glucose uptake. We confirmed that glabridin-rich licorice extract prevent glucose intolerance accompanied by the AMPK-dependent GLUT4 translocation in the plasma membrane of mice skeletal muscle. These results indicate that glabridin may possess a therapeutic effect on metabolic disorders, such as diabetes and hyperglycemia, by modulating glucose metabolism through AMPK in skeletal muscle cells.

  13. Caffeine and glucose homeostasis during rest and exercise in diabetes mellitus.

    PubMed

    Zaharieva, Dessi P; Riddell, Michael C

    2013-08-01

    Caffeine is a substance that has been used in our society for generations, primarily for its effects on the central nervous system that causes wakefulness. Caffeine supplementation has become increasingly more popular as an ergogenic aid for athletes and considerable scientific evidence supports its effectiveness. Because of their potential to alter energy metabolism, the effects of coffee and caffeine on glucose metabolism in diabetes have also been studied both epidemiologically and experimentally. Predominantly targeting the adenosine receptors, caffeine causes alterations in glucose homeostasis by decreasing glucose uptake into skeletal muscle, thereby causing elevations in blood glucose concentration. Caffeine intake has also been proposed to increase symptomatic warning signs of hypoglycemia in patients with type 1 diabetes and elevate blood glucose levels in patients with type 2 diabetes. Other effects include potential increases in glucose counterregulatory hormones such as epinephrine, which can also decrease peripheral glucose disposal. Despite these established physiological effects, increased coffee intake has been associated with reduced risk of developing type 2 diabetes in large-scale epidemiological studies. This review paper highlights the known effects of caffeine on glucose homeostasis and diabetes metabolism during rest and exercise.

  14. Kinetic mechanism of Toxoplasma gondii adenosine kinase and the highly efficient utilization of adenosine.

    PubMed

    Naguib, Fardos N M; Rais, Reem H; Al Safarjalani, Omar N; el Kouni, Mahmoud H

    2015-10-01

    Initial velocity and product inhibition studies of Toxoplasma gondii adenosine kinase (TgAK, EC 2.7.1.20) demonstrated that the basic mechanism of this enzyme is a hybrid random bi-uni ping-pong uni-bi. Initial velocity studies showed an intersecting pattern, consistent with substrate-enzyme-co-substrate complex formation and a binding pattern indicating that binding of the substrate interferes with the binding of the co-substrate and vice versa. Estimated kinetic parameters were KAdo=0.002±0.0002 mM, KATP=0.05±0.008 mM, and Vmax=920±35 μmol/min/mg protein. Ado exhibited substrate inhibition suggesting the presence of more than one binding site for Ado on the enzyme. ATP relieved substrate inhibition by Ado. Thus, Ado also binds to the ATP binding site. AMP was competitive with ATP, inferring that AMP binds to the same site as ATP. AMP, ADP and ATP were non-competitive with Ado, therefore, none of these nucleotides binds to the Ado binding site. Combining ATP with ADP was additive. Therefore, the binding of either ATP or ADP does not interfere with the binding of the other. It is concluded that for every ATP consumed, TgAK generates three new AMPs. These findings along with the fact that a wide range of nucleoside 5'-mono, di, and triphosphates could substitute for ATP as phosphate donors in this reaction may explain the efficient and central role played by TgAK in the utilization of Ado as the major source from which all other purines can be synthesized in T. gondii.

  15. Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses

    NASA Astrophysics Data System (ADS)

    Moore, Kimberly A.; Nicoll, Roger A.; Schmitz, Dietmar

    2003-11-01

    The release properties of synapses in the central nervous system vary greatly, not only across anatomically distinct types of synapses but also among the same class of synapse. This variation manifests itself in large part by differences in the probability of transmitter release, which affects such activity-dependent presynaptic forms of plasticity as paired-pulse facilitation and frequency facilitation. This heterogeneity in presynaptic function reflects differences in the intrinsic properties of the synaptic terminal and the activation of presynaptic neurotransmitter receptors. Here we show that the unique presynaptic properties of the hippocampal mossy fiber synapse are largely imparted onto the synapse by the continuous local action of extracellular adenosine at presynaptic A1 adenosine receptors, which maintains a low basal probability of transmitter release.

  16. Adenosine: an endogenous mediator in the pathogenesis of psoriasis*

    PubMed Central

    Festugato, Moira

    2015-01-01

    It is known that inflammatory and immune responses protect us from the invasion of micro-organisms and eliminate "wastes" from the injured sites, but they may also be responsible for significant tissue damage. Adenosine, as a purine nucleoside, which is produced in inflamed or injured sites, fulfills its role in limiting tissue damage. Although, it may have a pleiotropic effect, which signals it with a proinflammatory state in certain situations, it can be considered a potent anti-inflammatory mediator. The effects of adenosine, which acts through its receptors on T cell, on mast cell and macrophages, on endothelial cells, on neutrophils and dendritic cells, as they indicate TNF-alpha and cytokines, show that this mediator has a central role in the pathogenesis of psoriasis. The way it acts in psoriasis will be reviewed in this study. PMID:26734868

  17. Expression of human adenosine deaminase in murine hematopoietic cells.

    PubMed Central

    Belmont, J W; MacGregor, G R; Wager-Smith, K; Fletcher, F A; Moore, K A; Hawkins, D; Villalon, D; Chang, S M; Caskey, C T

    1988-01-01

    Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells. Images PMID:3072474

  18. Evidence for an A1-adenosine receptor in the guinea-pig atrium.

    PubMed Central

    Collis, M. G.

    1983-01-01

    1 The purpose of this study was to determine whether the adenosine receptor that mediates a decrease in the force of contraction of the guinea-pig atrium is of the A1- or A2-sub-type. 2 Concentration-response curves to adenosine and a number of 5'- and N6-substituted analogues were constructed and the order of potency of the purines was: 5'-N-cyclopropylcarboxamide adenosine (NCPCA) = 5'-N-ethylcarboxamide adenosine (NECA) greater than N6cyclohexyladenosine (CHA) greater than L-N6-phenylisopropyl adenosine (L-PIA) = 2-chloroadenosine- greater than adenosine greater than D-N6-phenylisopropyl adenosine (D-PIA). 3 The difference in potency between the stereoisomers D- and L-PIA was over 100 fold. 4 The adenosine transport inhibitor, dipyridamole, potentiated submaximal responses to adenosine but had no significant effect on those evoked by the other purines. 5 Theophylline antagonized responses evoked by all purines, and with D-PIA revealed a positive inotropic effect that was abolished by atenolol. 6 The results indicate the existence of an adenosine A1-receptor in the guinea-pig atrium. PMID:6297647

  19. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice

    PubMed Central

    Witts, Emily C.; Nascimento, Filipe

    2015-01-01

    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925–1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output. PMID:26311185

  20. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice.

    PubMed

    Witts, Emily C; Nascimento, Filipe; Miles, Gareth B

    2015-10-01

    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output.

  1. Evaluation of serum nucleoside diphosphate kinase A for the detection of colorectal cancer

    PubMed Central

    Otero-Estévez, Olalla; De Chiara, Loretta; Barcia-Castro, Leticia; Páez de la Cadena, María; Rodríguez-Berrocal, Francisco Javier; Cubiella, Joaquín; Hernández, Vicent; Martínez-Zorzano, Vicenta Soledad

    2016-01-01

    We previously described the over-expression of nucleoside diphosphate kinase A (NDKA) in tumours and serum from colorectal cancer (CRC) patients, suggesting its use as biomarker. In this study we evaluated the diagnostic accuracy of serum NDKA to detect advanced neoplasia (CRC or advanced adenomas). Furthermore, the performance of NDKA was compared with the faecal immunochemical test (FIT). The study population included a case-control cohort and a screening cohort (511 asymptomatic first-degree relatives of CRC patients that underwent a colonoscopy and a FIT). Serum NDKA was elevated in CRC patients in the case-control cohort (p = 0.002). In the screening cohort, NDKA levels were higher for advanced adenomas (p = 0.010) and advanced neoplasia (p = 0.006) compared to no neoplasia. Moreover, elevated NDKA was associated with severe characteristics of adenomas (≥3 lesions, size ≥ 1 cm or villous component). Setting specificity to 85%, NDKA showed a sensitivity of 30.19% and 29.82% for advanced adenomas and advanced neoplasia, respectively. NDKA combined with FIT (100 ng/mL cut-off) detected advanced adenomas and advanced neoplasia with 45.28% and 49.12% sensitivity, with specificity close to 90%. The combination of serum NDKA and FIT can improve the detection of advanced neoplasia, mainly for lesions located on the proximal colon, in asymptomatic individuals with CRC family-risk. PMID:27222072

  2. Fructose 1, 6-diphosphate regulates desmosomal proteins and collagen fibres in human skin equivalents.

    PubMed

    Choi, Hyun; Yang, Seung Ha; Bae, Il-Hong; Park, Ju-Yearl; Kim, Hyoung-June; Noh, Minsoo; Lee, Tae Ryong; Shin, Dong Wook

    2013-12-01

    We previously reported that fructose 1,6-diphosphate (FDP), a glycolytic metabolite, alleviates ultraviolet B-induced oxidative skin damage. Here, we further examined the effects of FDP on skin. FDP decreased the number of desmosomes, whereas it increased collagen fibres in skin equivalents (SEs). FDP significantly decreased the expression of corneodesmosomal components such as desmoglein 1 (DSG1), desmocollin 1 (DSC1) and corneodesmosin (CDSN), and desquamation-related proteases, kallikrein 5 (KLK 5) and kallikrein 7 (KLK7) in normal human epidermal keratinocytes (NHEKs). In addition, FDP treatment increased the phosphorylation of p38 MAPK, but the decreased expression of corneodesmosomal components is not recovered by the treatment of p38 MAPK inhibitors. Interestingly, FDP diminished the amplitude of Ca(2+) fluxes through down-regulation of SERCA2. Taken together, these results suggested that FDP induced a decrease in desmosomes and an increase in collagen fibres similar to the process of chemical peeling, the most common treatments for ageing skin.

  3. Dictyostelium discoideum Nucleoside Diphosphate Kinase C Plays a Negative Regulatory Role in Phagocytosis, Macropinocytosis and Exocytosis

    PubMed Central

    Annesley, Sarah J.; Bago, Ruzica; Bosnar, Maja Herak; Filic, Vedrana; Marinović, Maja; Weber, Igor; Mehta, Anil; Fisher, Paul R.

    2011-01-01

    Nucleoside diphosphate kinases (NDPKs) are ubiquitous phosphotransfer enzymes responsible for producing most of the nucleoside triphosphates except for ATP. This role is important for the synthesis of nucleic acids and proteins and the metabolism of sugars and lipids. Apart from this housekeeping role NDPKs have been shown to have many regulatory functions in diverse cellular processes including proliferation and endocytosis. Although the protein has been shown to have a positive regulatory role in clathrin- and dynamin-mediated micropinocytosis, its roles in macropinocytosis and phagocytosis have not been studied. The additional non-housekeeping roles of NDPK are often independent of enzyme activity but dependent on the expression level of the protein. In this study we altered the expression level of NDPK in the model eukaryotic organism Dictyostelium discoideum through antisense inhibition and overexpression. We demonstrate that NDPK levels affect growth, endocytosis and exocytosis. In particular we find that Dictyostelium NDPK negatively regulates endocytosis in contrast to the positive regulatory role identified in higher eukaryotes. This can be explained by the differences in types of endocytosis that have been studied in the different systems - phagocytosis and macropinocytosis in Dictyostelium compared with micropinocytosis in mammalian cells. This is the first report of a role for NDPK in regulating macropinocytosis and phagocytosis, the former being the major fluid phase uptake mechanism for macrophages, dendritic cells and other (non dendritic) cells exposed to growth factors. PMID:21991393

  4. The mechanism of phosphorylation of anti-HIV D4T by nucleoside diphosphate kinase.

    PubMed

    Schneider, B; Biondi, R; Sarfati, R; Agou, F; Guerreiro, C; Deville-Bonne, D; Veron, M

    2000-05-01

    The last step in the intracellular activation of antiviral nucleoside analogs is the addition of the third phosphate by nucleoside diphosphate (NDP) kinase resulting in the synthesis of the viral reverse transcriptase substrates. We have previously shown that dideoxynucleotide analogs and 3'-deoxy-3'-azidothymidine (AZT) as di- or triphosphate are poor substrates for NDP kinase. By use of protein fluorescence, we monitor the phosphotransfer between the enzyme and the nucleotide analog. Here, we have studied the reactivity of D4T (2',3'-dideoxy-2',3'-didehydrothymidine; stavudine) as di- (DP) or triphosphate (TP) at the pre-steady state. The catalytic efficiency of D4T-DP or -TP is increased by a factor of 10 compared with AZT-DP or -TP, respectively. We use an inactive mutant of NDP kinase to monitor the binding of a TP derivative, and show that the affinity for D4T-TP is in the same range as for the natural substrate deoxythymidine triphosphate, but is 30 times higher than for AZT-TP. Our results indicate that D4T should be efficiently phosphorylated after intracellular maturation of a prodrug into D4T-monophosphate.

  5. Nucleotide affinity for a stable phosphorylated intermediate of nucleoside diphosphate kinase.

    PubMed

    Schneider, Benoit; Norda, Ameli; Karlsson, Anna; Veron, Michel; Deville-Bonne, Dominique

    2002-07-01

    Nucleoside diphosphate (NDP) kinase is transiently phosphorylated on a histidine of the active site during the catalytic cycle. In the presence of a nucleotide acceptor, the phosphohistidine bond is unstable and the phosphate is transferred to the acceptor in less than 1 msec. We describe the synthesis of an analog of the phosphoenzyme intermediate with an inactive mutant of NDP kinase in which the catalytic histidine is replaced by a cysteine. In two sequential disulfide exchange reactions, a thiophosphate group reacts with the thiol function of the cysteine that had previously reacted with dithionitrobenzoate (DTNB). The thiophosphoenzyme presents a 400,000-fold increased stability in the presence of NDPs compared with the phosphoenzyme. The binding of NDP is studied at the steady state and presteady state. Data were analyzed according to a bimolecular association model. For the first time, the true equilibrium dissociation constants of NDP for the analog of the phosphoenzyme are determined in the absence of phosphotransfer, allowing a better understanding of the catalytic mechanism of the enzyme.

  6. Single strand DNA specificity analysis of human nucleoside diphosphate kinase B.

    PubMed

    Agou, F; Raveh, S; Mesnildrey, S; Véron, M

    1999-07-09

    Nucleoside diphosphate kinases (NDP kinases) form a family of oligomeric enzymes present in all organisms. Eukaryotic NDP kinases are hexamers composed of identical subunits (approximately 17 kDa). A distinctive property of human NDPK-B encoded by the gene nm23-H2 is its ability to stimulate the gene transcription. This property is independent of its catalytic activity and is possibly related to the role of this protein in cellular events including differentiation and tumor metastasis. In this paper, we report the first characterization of human NDPK-B.DNA complex formation using a filter-binding assay and fluorescence spectroscopy. We analyzed the binding of several oligonucleotides mimicking the promoter region of the c-myc oncogene including variants in sequence, structure, and length of both strands. We show that NDPK-B binds to single-stranded oligonucleotides in a nonsequence specific manner, but that it exhibits a poor binding activity to double-stranded oligonucleotides. This indicates that the specificity of recognition to DNA is a function of the structural conformation of DNA rather than of its specific sequence. Moreover, competition experiments performed with all nucleotides provide evidence for the contribution of the six active sites in the DNA.protein complex formation. We propose a mechanism through which human NDPK-B could stimulate transcription of c-myc or possibly other genes involved in cellular differentiation.

  7. Nucleotide affinity for a stable phosphorylated intermediate of nucleoside diphosphate kinase

    PubMed Central

    Schneider, Benoit; Norda, Ameli; Karlsson, Anna; Veron, Michel; Deville-Bonne, Dominique

    2002-01-01

    Nucleoside diphosphate (NDP) kinase is transiently phosphorylated on a histidine of the active site during the catalytic cycle. In the presence of a nucleotide acceptor, the phosphohistidine bond is unstable and the phosphate is transferred to the acceptor in less than 1 msec. We describe the synthesis of an analog of the phosphoenzyme intermediate with an inactive mutant of NDP kinase in which the catalytic histidine is replaced by a cysteine. In two sequential disulfide exchange reactions, a thiophosphate group reacts with the thiol function of the cysteine that had previously reacted with dithionitrobenzoate (DTNB). The thiophosphoenzyme presents a 400,000-fold increased stability in the presence of NDPs compared with the phosphoenzyme. The binding of NDP is studied at the steady state and presteady state. Data were analyzed according to a bimolecular association model. For the first time, the true equilibrium dissociation constants of NDP for the analog of the phosphoenzyme are determined in the absence of phosphotransfer, allowing a better understanding of the catalytic mechanism of the enzyme. PMID:12070317

  8. Functional and conformational transitions of mevalonate diphosphate decarboxylase from Bacopa monniera.

    PubMed

    Abbassi, Shakeel; Patel, Krunal; Khan, Bashir; Bhosale, Siddharth; Gaikwad, Sushama

    2016-02-01

    Functional and conformational transitions of mevalonate diphosphate decarboxylase (MDD), a key enzyme of mevalonate pathway in isoprenoid biosynthesis, from Bacopa monniera (BmMDD), cloned and overexpressed in Escherichia coli were studied under thermal, chemical and pH-mediated denaturation conditions using fluorescence and Circular dichroism spectroscopy. Native BmMDD is a helix dominant structure with 45% helix and 11% sheets and possesses seven tryptophan residues with two residues exposed on surface, three residues partially exposed and two situated in the interior of the protein. Thermal denaturation of BmMDD causes rapid structural transitions at and above 40°C and transient exposure of hydrophobic residues at 50°C, leading to aggregation of the protein. An acid induced molten globule like structure was observed at pH 4, exhibiting altered but compact secondary structure, distorted tertiary structure and exposed hydrophobic residues. The molten globule displayed different response at higher temperature and similar response to chemical denaturation as compared to the native protein. The surface tryptophans have predominantly positively charged amino acids around them, as indicated by higher KSV for KI as compared to that for CsCl. The native enzyme displayed two different lifetimes, τ1 (1.203±0.036 ns) and τ2 (3.473±0.12 ns) indicating two populations of tryptophan.

  9. Biphasic Elimination of Tenofovir Diphosphate and Nonlinear Pharmacokinetics of Zidovudine Triphosphate in a Microdosing Study

    PubMed Central

    Chen, Jianmeng; Flexner, Charles; Liberman, Rosa G.; Skipper, Paul L.; Louissaint, Nicolette; Tannenbaum, Steven R.; Hendrix, Craig; Fuchs, Edward

    2012-01-01

    Objective Phase 0 studies can provide initial pharmacokinetics (PK) data in humans and help to facilitate early drug development, but their predictive value for standard dosing is controversial. To evaluate the prediction of microdosing for active intracellular drug metabolites, we compared the PK profile of two antiretroviral drugs, zidovudine (ZDV) and tenofovir (TFV), in microdose and standard dosing regimens. Study Design We administered a microdose (100 μg) of 14C-labeled drug (ZDV or tenofovir disoproxil fumarate (TDF)) with or without a standard unlabelled dose (300 mg) to healthy volunteers. Both the parent drug in plasma and the active metabolite, ZDV-triphosphate (ZDV-TP) or TFV-diphosphate (TFV-DP) in PBMCs and CD4+ cells were measured by AMS. Results The intracellular ZDV-TP concentration increased less than proportionally over the dose range studied (100 μg to 300 mg), while the intracellular TFV-DP PK were linear over the same dose range. ZDV-TP concentrations were lower in CD4+ cells versus total peripheral blood mononuclear cells (PBMCs), while TFV-DP concentrations were not different in CD4+ cells and PBMCs. Conclusion Our data were consistent with a rate-limiting step in the intracellular phosphorylation of ZDV but not TFV. AMS shows promise for predicting the PK of active intracellular metabolites of nucleosides, but nonlinearity of PK may be seen with some drugs. PMID:23187888

  10. Isolation and functional analysis of two Cistus creticus cDNAs encoding geranylgeranyl diphosphate synthase.

    PubMed

    Pateraki, Irene; Kanellis, Angelos K

    2008-05-01

    Cistus creticus ssp. creticus is an indigenous shrub of the Mediterranean area. The glandular trichomes covering its leaf surfaces secrete a resin called "ladanum", which among others contains a number of specific labdane-type diterpenes that exhibit antibacterial and antifungal action as well as in vitro and in vivo cytotoxic and cytostatic activity against human cancer cell lines. In view of the properties and possible future exploitation of these metabolites, it was deemed necessary to study the geranylgeranyl diphosphate synthase enzyme (GGDPS, EC 2.5.1.30), a short chain prenyltransferase responsible for the synthesis of the precursor molecule of all diterpenes. In this work, we present the cloning, functional characterisation and expression profile at the gene and protein levels of two differentially expressed C. creticus full-length cDNAs, CcGGDPS1 and CcGGDPS2. Heterologous yeast cell expression system showed that these cDNAs exhibited GGDPS enzyme activity. Gene and protein expression analyses suggest that this enzyme is developmentally and tissue-regulated showing maximum expression in trichomes and smallest leaves (0.5-1.0cm). This work is the first attempt to study the terpenoid biosynthesis at the molecular level in C. creticus ssp. creticus.

  11. A Single Arabidopsis Gene Encodes Two Differentially Targeted Geranylgeranyl Diphosphate Synthase Isoforms1[OPEN

    PubMed Central

    Schipper, Bert; Beekwilder, Jules

    2016-01-01

    A wide diversity of isoprenoids is produced in different plant compartments. Most groups of isoprenoids synthesized in plastids, and some produced elsewhere in the plant cell derive from geranylgeranyl diphosphate (GGPP) synthesized by GGPP synthase (GGPPS) enzymes. In Arabidopsis (Arabidopsis thaliana), five genes appear to encode GGPPS isoforms localized in plastids (two), the endoplasmic reticulum (two), and mitochondria (one). However, the loss of function of the plastid-targeted GGPPS11 isoform (referred to as G11) is sufficient to cause lethality. Here, we show that the absence of a strong transcription initiation site in the G11 gene results in the production of transcripts of different lengths. The longer transcripts encode an isoform with a functional plastid import sequence that produces GGPP for the major groups of photosynthesis-related plastidial isoprenoids. However, shorter transcripts are also produced that lack the first translation initiation codon and rely on a second in-frame ATG codon to produce an enzymatically active isoform lacking this N-terminal domain. This short enzyme localizes in the cytosol and is essential for embryo development. Our results confirm that the production of differentially targeted enzyme isoforms from the same gene is a central mechanism to control the biosynthesis of isoprenoid precursors in different plant cell compartments. PMID:27707890

  12. New function of the amino group of thiamine diphosphate in thiamine catalysis.

    PubMed

    Meshalkina, L E; Kochetov, G A; Hübner, G; Tittmann, K; Golbik, R

    2009-03-01

    In this work, we investigated the rate of formation of the central intermediate of the transketolase reaction with thiamine diphosphate (ThDP) or 4'-methylamino-ThDP as cofactors and its stability using stopped-flow spectroscopy and circular dichroism (CD) spectroscopy. The intermediates of the transketolase reaction were analyzed by NMR spectroscopy. The kinetic stability of the intermediate was shown to be dependent on the state of the amino group of the coenzyme. The rates of the intermediate formation were the same in the case of the native and methylated ThDP, but the rates of the protonation or oxidation of the complex in the ferricyanide reaction were significantly higher in the complex with methylated ThDP. A new negative band was detected in the CD spectrum of the complex transketolase--4'-methylamino-ThDP corresponding to the protonated dihydroxyethyl-4'-methylamino-ThDP released from the active sites of the enzyme. These data suggest that transketolase in the complex with the NH2-methylated ThDP exhibits dihydroxyethyl-4'-methylamino-ThDP-synthase activity. Thus, the 4'-amino group of the coenzyme provides kinetic stability of the central intermediate of the transketolase reaction, dihydroxyethyl-ThDP.

  13. Thiamine diphosphate binds to intermediates in the assembly of adenovirus fiber knob trimers in Escherichia coli.

    PubMed

    Schulz, Ryan; Zhang, Yian-Biao; Liu, Chang-Jun; Freimuth, Paul

    2007-12-01

    Assembly of the adenovirus (Ad) homotrimeric fiber protein is nucleated by its C-terminal knob domain, which itself can trimerize when expressed as a recombinant protein fragment. The non-interlocked, globular structure of subunits in the knob trimer implies that trimers assemble from prefolded monomers through a dimer intermediate, but these intermediates have not been observed and the mechanism of assembly therefore remains uncharacterized. Here we report that expression of the Ad serotype 2 (Ad2) knob was toxic for thi- strains of Escherichia coli, which are defective in de novo synthesis of thiamine (vitamin B1). Ad2 knob trimers isolated from a thi+ strain copurified through multiple chromatography steps with a small molecule of mass equivalent to that of thiamine diphosphate (ThDP). Mutant analysis did not implicate any specific site for ThDP binding. Our results suggest that ThDP may associate with assembly intermediates and become trapped in assembled trimers, possibly within one of several large cavities that are partially solvent-accessible or buried completely within the trimer interior.

  14. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase.

    PubMed

    Farha, Maya A; Czarny, Tomasz L; Myers, Cullen L; Worrall, Liam J; French, Shawn; Conrady, Deborah G; Wang, Yang; Oldfield, Eric; Strynadka, Natalie C J; Brown, Eric D

    2015-09-01

    Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery.

  15. A Small-Molecule Screening Platform for the Discovery of Inhibitors of Undecaprenyl Diphosphate Synthase.

    PubMed

    Czarny, Tomasz L; Brown, Eric D

    2016-07-08

    The bacterial cell wall has long been a celebrated target for antibacterial drug discovery due to its critical nature in bacteria and absence in mammalian systems. At the heart of the cell wall biosynthetic pathway lies undecaprenyl phosphate (Und-P), the lipid-linked carrier upon which the bacterial cell wall is built. This study exploits recent insights into the link between late-stage wall teichoic acid inhibition and Und-P production, in Gram-positive organisms, to develop a cell-based small-molecule screening platform that enriches for inhibitors of undecaprenyl diphosphate synthase (UppS). Screening a chemical collection of 142,000 small molecules resulted in the identification of 6 new inhibitors of UppS. To date, inhibitors of UppS have generally shown off-target effects on membrane potential due to their physical-chemical characteristics. We demonstrate that MAC-0547630, one of the six inhibitors identified, exhibits selective, nanomolar inhibition against UppS without off-target effects on membrane potential. Such characteristics make it a unique chemical probe for exploring the inhibition of UppS in bacterial cell systems.

  16. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase

    PubMed Central

    Farha, Maya A.; Czarny, Tomasz L.; Myers, Cullen L.; Worrall, Liam J.; French, Shawn; Conrady, Deborah G.; Wang, Yang; Oldfield, Eric; Strynadka, Natalie C. J.; Brown, Eric D.

    2015-01-01

    Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery. PMID:26283394

  17. Modulation of cytoskeletal dynamics by mammalian nucleoside diphosphate kinase (NDPK) proteins.

    PubMed

    Snider, Natasha T; Altshuler, Peter J; Omary, M Bishr

    2015-02-01

    Nucleoside diphosphate kinase (NDPK) proteins comprise a family of ten human isoforms that participate in the regulation of multiple cellular processes via enzymatic and nonenzymatic functions. The major enzymatic function of NDPKs is the generation of nucleoside triphosphates, such as guanosine triphosphate (GTP). Mechanisms behind the nonenzymatic NDPK functions are not clear but likely involve context-dependent signaling roles of NDPK within multi-protein complexes. This is most evident for NDPK-A, which is encoded by the human NME1 gene, the first tumor metastasis suppressor gene to be identified. Understanding which protein interactions are most relevant for the biological and metastasis-related functions of NDPK will be important in the potential utilization of NDPK as a disease target. Accumulating evidence suggests that NDPK interacts with and affects various components and regulators of the cytoskeleton, including actin-binding proteins, intermediate filaments, and cytoskeletal attachment structures (adherens junctions, desmosomes, and focal adhesions). We review the existing literature on this topic and highlight outstanding questions and potential future directions that should clarify the impact of NDPK on the different cytoskeletal systems.

  18. Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosmin.

    PubMed

    Jiang, Jiaoyang; He, Xiaofei; Cane, David E

    2006-06-28

    Geosmin is responsible for the characteristic odor of moist soil. Incubation of recombinant germacradienol synthase, encoded by the SCO6073 (SC9B1.20) gene of the Gram-positive soil bacterium Streptomyces coelicolor, with farnesyl diphosphate (2, FPP) in the presence of Mg2+ gave a mixture of (4S,7R)-germacra-1(10)E,5E-diene-11-ol (3) (74%), (-)-(7S)-germacrene D (4) (10%), geosmin (1) (13%), and a hydrocarbon, tentatively assigned the structure of octalin 5 (3%). Individual incubations of recombinant germacradienol synthase with [1,1-2H2]FPP (2a), (1R)-[1-2H]-FPP (2b), and (1S)-[1-2H]-FPP (2c), as well as with FPP (2) in D2O, and GC-MS analysis of the resulting deuterated products supported a mechanism of geosmin formation involving proton-initiated cyclization and retro-Prins fragmentation of the initially formed germacradienol to give intermediate 5, followed by protonation of 5, 1,2-hydride shift, and capture of water.

  19. Separate nuclear genes encode cytosolic and mitochondrial nucleoside diphosphate kinase in Dictyostelium discoideum.

    PubMed

    Troll, H; Winckler, T; Lascu, I; Müller, N; Saurin, W; Véron, M; Mutzel, R

    1993-12-05

    We have previously isolated cDNA clones for the gip17 gene encoding the cytosolic nucleoside diphosphate (NDP) kinase from Dictyostelium discoideum, and partial cDNAs for guk, a second member of the NDP kinase gene family (Wallet, V., Mutzel, R., Troll, H., Barzu, O., Wurster, B., Véron, M., and Lacombe, M. L. (1990) J. Natl. Cancer Inst. 80, 1199-1202). We now characterize genomic DNA clones for both NDP kinase genes, and we show that guk defines a nuclear-encoded mitochondrial NDP kinase. Isolated D. discoideum mitochondria contain 3% of the total cellular NDP kinase activity. Antibodies which specifically recognize and inhibit the activity of either cytosolic or mitochondrial NDP kinase unambiguously distinguish between these activities. The nascent mitochondrial NDP kinase contains a presequence of 57 amino acids that is removed during import into the organelle as shown by determination of the NH2 terminus of the mature protein from mitochondria. The genes for mitochondrial and cytosolic NDP kinases contain four and two introns, respectively. The positions of the of the introns in the gene for the cytosolic enzyme match exactly the positions of the second and fourth introns in the coding region of its mitochondrial homologue. From these results we conclude that the isozymes diverged from a common ancestor, and we discuss possible phylogenetic pathways for the evolution of cytosolic and organelle NDP kinases.

  20. Fibrillin 5 Is Essential for Plastoquinone-9 Biosynthesis by Binding to Solanesyl Diphosphate Synthases in Arabidopsis

    PubMed Central

    Kim, Eun-Ha; Lee, Yongjik

    2015-01-01

    Fibrillins are lipid-associated proteins in plastids and are ubiquitous in plants. They accumulate in chromoplasts and sequester carotenoids during the development of flowers and fruits. However, little is known about the functions of fibrillins in leaf tissues. Here, we identified fibrillin 5 (FBN5), which is essential for plastoquinone-9 (PQ-9) biosynthesis in Arabidopsis thaliana. Homozygous fbn5-1 mutations were seedling-lethal, and XVE:FBN5-B transgenic plants expressing low levels of FBN5-B had a slower growth rate and were smaller than wild-type plants. In chloroplasts, FBN5-B specifically interacted with solanesyl diphosphate synthases (SPSs) 1 and 2, which biosynthesize the solanesyl moiety of PQ-9. Plants containing defective FBN5-B accumulated less PQ-9 and its cyclized product, plastochromanol-8, but the levels of tocopherols were not affected. The reduced PQ-9 content of XVE:FBN5-B transgenic plants was consistent with their lower photosynthetic performance and higher levels of hydrogen peroxide under cold stress. These results indicate that FBN5-B is required for PQ-9 biosynthesis through its interaction with SPS. Our study adds FBN5 as a structural component involved in the biosynthesis of PQ-9. FBN5 binding to the hydrophobic solanesyl moiety, which is generated by SPS1 and SPS2, in FBN5-B/SPS homodimeric complexes stimulates the enzyme activity of SPS1 and SPS2. PMID:26432861

  1. Solubility of triuranyl diphosphate tetrahydrate (TDT) and Na autunite at 23 and 50 degrees C

    SciTech Connect

    Armstrong, Christopher R.; Felmy, Andrew R.; Clark, Sue B.

    2010-11-01

    In this report we present experimental solubility data for well-characterized triuranyl diphosphate tetrahydrate (TDT: (UO2)(3)(PO4)(2)center dot 4H(2)O) and Na autunite (Na[UO2PO4]center dot xH(2)O) at 23 and 50 degrees C in NaClO4-HClO4 solutions at pC(H+) = 2. Duplicate samples of TDT in 0.1, 0.5, 1.0, 2.0 and 5.0 in solutions were equilibrated at 23 and 50 degrees C. TDT solid was synthesized and characterized with ICP-OES, ATR-IR and powder XRD before and after solubility experiments. The pH of the suspensions were monitored throughout the experiments. Equilibrium was achieved from undersaturation with respect to TDT and oversaturation for Na autunite. Steady-state conditions were achieved in all cases within 82 d. TDT was unstable at ionic strengths above 0.1 m, where its complete conversion to Na autunite was observed. The ion-interaction model was used to interpret the experimental solubility data. The solubility product, log K-sp, for TDT was determined to be -49.7 and -51.3 at 23 and 50 degrees C respectively. log K for Na autunite was determined to be -24.4 (23 degrees C) and -24.1 +/- 0.2 (50 degrees C).

  2. A novel stage-specific glycosomal nucleoside diphosphate kinase from Trypanosoma cruzi.

    PubMed

    Los Milagros Camara, Maria de; Bouvier, Leon; Reigada, Chantal; Digirolamo, Fabio A; Saye, Melisa; Pereira, Claudio A

    2017-02-17

    Nucleoside diphosphate kinases (NDPK) are key enzymes involved in the intracellular nucleotide maintenance in all living organisms, especially in trypanosomatids which are unable to synthesise purines de novo. Four putative NDPK isoforms were identified in the Trypanosoma cruzi Chagas, 1909 genome but only two of them were characterised so far. In this work, we studied a novel isoform from T. cruzi called TcNDPK3. This enzyme presents an atypical N-terminal extension similar to the DM10 domains. In T. cruzi, DM10 sequences targeted other NDPK isoform (TcNDPK2) to the cytoskeleton, but TcNDPK3 was localised in glycosomes despite lacking a typical peroxisomal targeting signal. In addition, TcNDPK3 was found only in the bloodstream trypomastigotes where glycolytic enzymes are very abundant. However, TcNDPK3 mRNA was also detected at lower levels in amastigotes suggesting regulation at protein and mRNA level. Finally, 33 TcNDPK3 gene orthologs were identified in the available kinetoplastid genomes. The characterisation of new glycosomal enzymes provides novel targets for drug development to use in therapies of trypanosomatid associated diseases.

  3. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis

    PubMed Central

    Alsharif, Khalaf F.; Thomas, Mark R.; Judge, Heather M.; Khan, Haroon; Prince, Lynne R.; Sabroe, Ian; Ridger, Victoria C.; Storey, Robert F.

    2015-01-01

    In the PLATO study, ticagrelor was associated with fewer pulmonary infections and subsequent deaths than clopidogrel. Neutrophils are a first-line defence against bacterial lung infection; ticagrelor inhibits cellular uptake of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis. We assessed whether the inhibition of adenosine uptake by ticagrelor influences neutrophil chemotaxis and phagocytosis. Neutrophils and erythrocytes were isolated from healthy volunteers. Concentration-dependent effects of adenosine on IL-8-induced neutrophil chemotaxis were investigated and the involved receptors identified using adenosine receptor antagonists. The modulatory effects of ticagrelor on adenosine-mediated changes in neutrophil chemotaxis and phagocytosis of Streptococcus pneumoniae were determined in the presence of erythrocytes to replicate physiological conditions of cellular adenosine uptake. Low-concentration adenosine (10− 8 M) significantly increased IL-8-induced neutrophil chemotaxis (% neutrophil chemotaxis: adenosine 28.7% ± 4.4 vs. control 22.6% ± 2.4; p < 0.01) by acting on the high-affinity A1 receptor. Erythrocytes attenuated the effect of adenosine, although this was preserved by ticagrelor and dipyridamole (another inhibitor of adenosine uptake) but not by control or by cangrelor. Similarly, in the presence of erythrocytes, a low concentration of adenosine (10− 8 M) significantly increased neutrophil phagocytic index compared to control when ticagrelor was present (37.6 ± 6.6 vs. 28.0 ± 6.6; p = 0.028) but had no effect in the absence of ticagrelor. We therefore conclude that the inhibition of cellular adenosine reuptake by ticagrelor potentiates the effects of a nanomolar concentration of adenosine on neutrophil chemotaxis and phagocytosis. This represents a potential mechanism by which ticagrelor could influence host defence against bacterial lung infection. PMID:25869515

  4. Extracellular adenosine levels are associated with the progression and exacerbation of pulmonary fibrosis.

    PubMed

    Luo, Fayong; Le, Ngoc-Bao; Mills, Tingting; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Molina, Jose G; Davies, Jonathan; Philip, Kemly; Volcik, Kelly A; Liu, Hong; Xia, Yang; Eltzschig, Holger K; Blackburn, Michael R

    2016-02-01

    Idiopathic pulmonary fibrosis is a devastating lung disease with limited treatment options. The signaling molecule adenosine is produced in response to injury and serves a protective role in early stages of injury and is detrimental during chronic stages of disease such as seen in lung conditions such as pulmonary fibrosis. Understanding the association of extracellular adenosine levels and the progression of pulmonary fibrosis is critical for designing adenosine based approaches to treat pulmonary fibrosis. The goal of this study was to use various models of experimental lung fibrosis to understand when adenosine levels are elevated during pulmonary fibrosis and whether these elevations were associated with disease progression and severity. To accomplish this, extracellular adenosine levels, defined as adenosine levels found in bronchioalveolar lavage fluid, were determined in mouse models of resolvable and progressive pulmonary fibrosis. We found that relative bronchioalveolar lavage fluid adenosine levels are progressively elevated in association with pulmonary fibrosis and that adenosine levels diminish in association with the resolution of lung fibrosis. In addition, treatment of these models with dipyridamole, an inhibitor of nucleoside transporters that potentiates extracellular adenosine levels, demonstrated that the resolution of lung fibrosis is blocked by the failure of adenosine levels to subside. Furthermore, exacerbating adenosine levels led to worse fibrosis in a progressive fibrosis model. Increased adenosine levels were associated with elevation of IL-6 and IL-17, which are important inflammatory cytokines in pulmonary fibrosis. These results demonstrate that extracellular adenosine levels are closely associated with the progression of experimental pulmonary fibrosis and that this signaling pathway may mediate fibrosis by regulating IL-6 and IL-17 production.

  5. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis.

    PubMed

    Alsharif, Khalaf F; Thomas, Mark R; Judge, Heather M; Khan, Haroon; Prince, Lynne R; Sabroe, Ian; Ridger, Victoria C; Storey, Robert F

    2015-08-01

    In the PLATO study, ticagrelor was associated with fewer pulmonary infections and subsequent deaths than clopidogrel. Neutrophils are a first-line defence against bacterial lung infection; ticagrelor inhibits cellular uptake of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis. We assessed whether the inhibition of adenosine uptake by ticagrelor influences neutrophil chemotaxis and phagocytosis. Neutrophils and erythrocytes were isolated from healthy volunteers. Concentration-dependent effects of adenosine on IL-8-induced neutrophil chemotaxis were investigated and the involved receptors identified using adenosine receptor antagonists. The modulatory effects of ticagrelor on adenosine-mediated changes in neutrophil chemotaxis and phagocytosis of Streptococcus pneumoniae were determined in the presence of erythrocytes to replicate physiological conditions of cellular adenosine uptake. Low-concentration adenosine (10(-8)M) significantly increased IL-8-induced neutrophil chemotaxis (% neutrophil chemotaxis: adenosine 28.7%±4.4 vs. control 22.6%±2.4; p<0.01) by acting on the high-affinity A1 receptor. Erythrocytes attenuated the effect of adenosine, although this was preserved by ticagrelor and dipyridamole (another inhibitor of adenosine uptake) but not by control or by cangrelor. Similarly, in the presence of erythrocytes, a low concentration of adenosine (10(-8)M) significantly increased neutrophil phagocytic index compared to control when ticagrelor was present (37.6±6.6 vs. 28.0±6.6; p=0.028) but had no effect in the absence of ticagrelor. We therefore conclude that the inhibition of cellular adenosine reuptake by ticagrelor potentiates the effects of a nanomolar concentration of adenosine on neutrophil chemotaxis and phagocytosis. This represents a potential mechanism by which ticagrelor could influence host defence against bacterial lung infection.

  6. Effects of adenosine metabolism in astrocytes on central nervous system oxygen toxicity.

    PubMed

    Chen, Yu-liang; Zhang, Ya-nan; Wang, Zhong-zhuang; Xu, Wei-gang; Li, Run-ping; Zhang, Jun-dong

    2016-03-15

    Hyperbaric oxygen (HBO) is widely used in military operations, especially underwater missions. However, prolonged and continuous inhalation of HBO can cause central nervous system oxygen toxicity (CNS-OT), which greatly limits HBO's application. The regulation of astrocytes to the metabolism of adenosine is involved in epilepsy. In our study, we aimed to observe the effects of HBO exposure on the metabolism of adenosine in the brain. Furthermore, we aimed to confirm the possible mechanism underlying adenosine's mediation of the CNS-OT. Firstly, anesthetized rats exposed to 5 atm absolute HBO for 80 min. The concentrations of extracellular adenosine, ATP, ADP, and AMP were detected. Secondly, free-moving rats were exposed to HBO at the same pressure for 20 min, and the activities of 5'-nucleotidase and ADK in brain tissues were measured. For the mechanism studies, we observed the effects of a series of different doses of drugs related to adenosine metabolism on the latency of CNS-OT. Results showed HBO exposure could increase adenosine content by inhibiting ADK activity and improving 5'-nucleotidase activity. And adenosine metabolism during HBO exposure may be a protective response against HBO-induced CNS-OT. Moreover, the improvement of adenosine concentration, activation of adenosine A1R, or suppression of ADK and adenosine A2AR, which are involved in the prevention of HBO-induced CNS-OT. This is the first study to demonstrate HBO exposure regulated adenosine metabolism in the brain. Adenosine metabolism and adenosine receptors are related to HBO-induced CNS-OT development. These results will provide new potential targets for the termination or the attenuation of CNS-OT.

  7. Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex.

    PubMed

    Ross, Ashley E; Nguyen, Michael D; Privman, Eve; Venton, B Jill

    2014-07-01

    Mechanical perturbations can release ATP, which is broken down to adenosine. In this work, we used carbon-fiber microelectrodes and fast-scan cyclic voltammetry to measure mechanically stimulated adenosine in the brain by lowering the electrode 50 μm. Mechanical stimulation evoked adenosine in vivo (average: 3.3 ± 0.6 μM) and in brain slices (average: 0.8 ± 0.1 μM) in the prefrontal cortex. The release was transient, lasting 18 ± 2 s. Lowering a 15-μm-diameter glass pipette near the carbon-fiber microelectrode produced similar results as lowering the actual microelectrode. However, applying a small puff of artificial cerebral spinal fluid was not sufficient to evoke adenosine. Multiple stimulations within a 50-μm region of a slice did not significantly change over time or damage cells. Chelating calcium with EDTA or blocking sodium channels with tetrodotoxin significantly decreased mechanically evoked adenosine, signifying that the release is activity dependent. An alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, did not affect mechanically stimulated adenosine; however, the nucleoside triphosphate diphosphohydrolase 1,2 and 3 (NTDPase) inhibitor POM-1 significantly reduced adenosine so a portion of adenosine is dependent on extracellular ATP metabolism. Thus, mechanical perturbations from inserting a probe in the brain cause rapid, transient adenosine signaling which might be neuroprotective. We have discovered immediate changes in adenosine concentration in the prefrontal cortex following mechanical stimulation. The adenosine increase lasts only about 20 s. Mechanically stimulated adenosine was activity dependent and mostly because of extracellular ATP metabolism. This rapid, transient increase in adenosine may help protect tissue and would occur during implantation of any electrode, such as during deep brain stimulation.

  8. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

    PubMed

    Casey, Darren P; Madery, Brandon D; Pike, Tasha L; Eisenach, John H; Dietz, Niki M; Joyner, Michael J; Wilkins, Brad W

    2009-10-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans.

  9. Severe combined immunodeficiency due to adenosine deaminase deficiency.

    PubMed

    Hussain, Waqar; Batool, Asma; Ahmed, Tahir Aziz; Bashir, Muhammad Mukarram

    2012-03-01

    Severe Combined Immunodeficiency is the term applied to a group of rare genetic disorders characterised by defective or absent T and B cell functions. Patients usually present in first 6 months of life with respiratory/gastrointestinal tract infections and failure to thrive. Among the various types of severe combined immunodeficiency, enzyme deficiencies are relatively less common. We report the case of a 6 years old girl having severe combined immunodeficiency due to adenosine deaminase deficiency.

  10. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    SciTech Connect

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2013-01-24

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

  11. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  12. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  13. Continuous Glucose Monitoring

    MedlinePlus

    ... la salud en español Health Statistics Healthy Moments Radio Broadcast Clinical Trials For Health Care Professionals Community ... A transmitter sends information about glucose levels via radio waves from the sensor to a pagerlike wireless ...

  14. Vascular Glucose Sensor Symposium

    PubMed Central

    Joseph, Jeffrey I; Torjman, Marc C.; Strasma, Paul J.

    2015-01-01

    Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, length of stay, and cost in a variety of critical care and non–critical care patient populations in the hospital. The results from prospective randomized clinical trials designed to determine the risks and benefits of intensive insulin therapy and tight glycemic control have been confusing; and at times conflicting. The limitations of point-of-care blood glucose (BG) monitoring in the hospital highlight the great clinical need for an automated real-time continuous glucose monitoring system (CGMS) that can accurately measure the concentration of glucose every few minutes. Automation and standardization of the glucose measurement process have the potential to significantly improve BG control, clinical outcome, safety and cost. PMID:26078254

  15. Glucose: Detection and analysis.

    PubMed

    Galant, A L; Kaufman, R C; Wilson, J D

    2015-12-01

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also plays a major role in modern food products, particularly where flavor and or structure are concerned. Over the years, many diverse methods for detecting and quantifying glucose have been developed; this review presents an overview of the most widely employed and historically significant, including copper iodometry, HPLC, GC, CZE, and enzyme based systems such as glucose meters. The relative strengths and limitations of each method are evaluated, and examples of their recent application in the realm of food chemistry are discussed.

  16. Glucose urine test

    MedlinePlus

    Urine sugar test; Urine glucose test; Glucosuria test; Glycosuria test ... After you provide a urine sample, it is tested right away. The health care provider uses a dipstick made with a color-sensitive pad. The ...

  17. Glucose metabolism and hyperglycemia.

    PubMed

    Giugliano, Dario; Ceriello, Antonio; Esposito, Katherine

    2008-01-01

    Islet dysfunction and peripheral insulin resistance are both present in type 2 diabetes and are both necessary for the development of hyperglycemia. In both type 1 and type 2 diabetes, large, prospective clinical studies have shown a strong relation between time-averaged mean values of glycemia, measured as glycated hemoglobin (HbA1c), and vascular diabetic complications. These studies are the basis for the American Diabetes Association's current recommended treatment goal that HbA1c should be <7%. The measurement of the HbA1c concentration is considered the gold standard for assessing long-term glycemia; however, it does not reveal any information on the extent or frequency of blood glucose excursions, but provides an overall mean value only. Postprandial hyperglycemia occurs frequently in patients with diabetes receiving active treatment and can occur even when metabolic control is apparently good. Interventional studies indicate that reducing postmeal glucose excursions is as important as controlling fasting plasma glucose in persons with diabetes and impaired glucose tolerance. Evidence exists for a causal relation between postmeal glucose increases and microvascular and macrovascular outcomes; therefore, it is not surprising that treatment with different compounds that have specific effects on postprandial glucose regulation is accompanied by a significant improvement of many pathways supposed to be involved in diabetic complications, including oxidative stress, endothelial dysfunction, inflammation, and nuclear factor-kappaB activation. The goal of therapy should be to achieve glycemic status as near to normal as safely possible in all 3 components of glycemic control: HbA1c, fasting glucose, and postmeal glucose peak.

  18. Adenosine monophosphate-activated protein kinase-based classification of diabetes pharmacotherapy.

    PubMed

    Dutta, D; Kalra, S; Sharma, M

    2016-09-21

    The current classification of both diabetes and antidiabetes medication is complex, preventing a treating physician from choosing the most appropriate treatment for an individual patient, sometimes resulting in patient-drug mismatch. We propose a novel, simple systematic classification of drugs, based on their effect on adenosine monophosphate-activated protein kinase (AMPK). AMPK is the master regular of energy metabolism, an energy sensor, activated when cellular energy levels are low, resulting in activation of catabolic process, and inactivation of anabolic process, having a beneficial effect on glycemia in diabetes. This listing of drugs makes it easier for students and practitioners to analyze drug profiles and match them with patient requirements. It also facilitates choice of rational combinations, with complementary modes of action. Drugs are classified as stimulators, inhibitors, mixed action, possible action, and no action on AMPK activity. Metformin and glitazones are pure stimulators of AMPK. Incretin-based therapies have a mixed action on AMPK. Sulfonylureas either inhibit AMPK or have no effect on AMPK. Glycemic efficacy of alpha-glucosidase inhibitors, sodium glucose co-transporter-2 inhibitor, colesevelam, and bromocriptine may also involve AMPK activation, which warrants further evaluation. Berberine, salicylates, and resveratrol are newer promising agents in the management of diabetes, having well-documented evidence of AMPK stimulation medicated glycemic efficacy. Hence, AMPK-based classification of antidiabetes medications provides a holistic unifying understanding of pharmacotherapy in diabetes. This classification is flexible with a scope for inclusion of promising agents of future.

  19. 5'-adenosine monophosphate-activated protein kinase and the metabolic syndrome.

    PubMed

    Mor, Vijay; Unnikrishnan, M K

    2011-09-01

    Lifestyle changes such as physical inactivity combined with calorie-rich, low-fibre diets have triggered an explosive surge in metabolic syndrome, outlined as a cluster of heart attack risk factors such as insulin resistance, raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure. By acting as a master-switch of energy homeostasis and associated pathophysiological phenomena, 5'-adenosine monophosphate-activated protein kinase (AMPK) appears to orchestrate the adaptive physiology of energy deficit, suggesting that the sedentary modern human could be suffering from chronic suboptimal AMPK activation. Addressing individual targets with potent ligands with high specificity may be inappropriate (it has not yielded any molecule superior to the sixty year old metformin) because this strategy cannot address a cluster of interrelated pathologies. However, spices, dietary supplements and nutraceuticals attenuate the multiple symptoms of metabolic syndrome in a collective and perhaps more holistic fashion with fewer adverse events. Natural selection could have favoured races that developed a taste for spices and dietary supplements, most of which are not only antioxidants but also activators of AMPK. The review will outline the various biochemical mechanisms and pathophysiological consequences of AMPK activation involving the cluster of symptoms that embrace metabolic syndrome and beyond. Recent advances that integrate energy homeostasis with a number of overarching metabolic pathways and physiological phenomena, including inflammatory conditions, cell growth and development, malignancy, life span, and even extending into environmental millieu, as in obesity mediated by gut microflora and others will also be outlined.

  20. A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate.

    PubMed

    Kucherenko, I S; Kucherenko, D Yu; Soldatkin, O O; Lagarde, F; Dzyadevych, S V; Soldatkin, A P

    2016-04-01

    The paper presents a simple and inexpensive reusable biosensor for determination of the concentration of adenosine-5'-triphosphate (ATP) in aqueous samples. The biosensor is based on a conductometric transducer which contains two pairs of gold interdigitated electrodes. An enzyme hexokinase was immobilized onto one pair of electrodes, and bovine serum albumin-onto another pair (thus, a differential mode of measurement was used). Conditions of hexokinase immobilization on the transducer by cross-linking via glutaraldehyde were optimized. Influence of experimental conditions (concentration of magnesium ions, ionic strength and concentration of the working buffer) on the biosensor work was studied. The reproducibility of biosensor responses and operational stability of the biosensor were checked during one week. Dry storage at -18 °C was shown to be the best conditions to store the biosensor. The biosensor was successfully applied for measurements of ATP concentration in pharmaceutical samples. The proposed biosensor may be used in future for determination of ATP and/or glucose in water samples.

  1. Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model.

    PubMed

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2009-08-14

    Measurement of intrinsic optical signals (IOSs) is an attractive technique for monitoring tissue viability in brains since it enables noninvasive, real-time monitoring of morphological characteristics as well as physiological and biochemical characteristics of tissue. We previously showed that light scattering signals reflecting cellular morphological characteristics were closely related to the IOSs associated with the redox states of cytochrome c oxidase in the mitochondrial respiratory chain. In the present study, we examined the relationship between light scattering and energy metabolism. Light scattering signals were transcranially measured in rat brains after oxygen and glucose deprivation, and the results were compared with concentrations of cerebral adenosine triphosphate (ATP) measured by luciferin-luciferase bioluminescence assay. Electrophysiological signal was also recorded simultaneously. After starting saline infusion, EEG activity ceased at 108+/-17s, even after which both the light scattering signal and ATP concentration remained at initial levels. However, light scattering started to change in three phases at 236+/-15s and then cerebral ATP concentration started to decrease at about 260s. ATP concentration significantly decreased during the triphasic scattering change, indicating that the start of scattering change preceded the loss of cerebral ATP. The mean time difference between the start of triphasic scattering change and the onset of ATP loss was about 24s in the present model. DC potential measurement showed that the triphasic scattering change was associated with anoxic depolarization. These findings suggest that light scattering signal can be used as an indicator of loss of tissue viability in brains.

  2. An acoustic glucose sensor.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-05-15

    In vivo glucose monitoring is required for tighter glycaemic control. This report describes a new approach to construct a miniature implantable device based on a magnetic acoustic resonance sensor (MARS). A ≈ 600-800 nm thick glucose-responsive poly(acrylamide-co-3-acrylamidophenylboronic acid) (poly(acrylamide-co-3-APB)) film was polymerised on the quartz disc (12 mm in diameter and 0.25 mm thick) of the MARS. The swelling/shrinking of the polymer film induced by the glucose binding to the phenylboronate caused changes in the resonance amplitude of the quartz disc in the MARS. A linear relationship between the response of the MARS and the glucose concentration in the range ≈ 0-15 mM was observed, with the optimum response of the MARS sensor being obtained when the polymer films contained ≈ 20 mol% 3-APB. The MARS glucose sensor also functioned under flow conditions (9 μl/min) with a response almost identical to the sensor under static or non-flow conditions. The results suggest that the MARS could offer a promising strategy for developing a small subcutaneously implanted continuous glucose monitor.

  3. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  4. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5’-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway

    PubMed Central

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-01-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. PMID:27935959

  5. Dissecting striatal adenosine-cannabinoid receptor interactions. New clues from rats over-expressing adenosine A2A receptors.

    PubMed

    Ferré, Sergi; Sebastião, Ana Maria

    2016-03-01

    This Editorial highlights a study by Chiodi et al. () showing that the effects mediated by cannabinoid CB1 receptor (CB1R) activation in the striatum are significantly reduced in rats with neuronal over-expression of adenosine A2A receptors (A2AR). Two hypotheses are derived from that study. Hypothesis A: two subpopulations of pre-synaptic CB1R in corticostriatal glutamatergic terminals exist, one forming and another not forming heteromers with A2AR. Hypothesis B: CB1R are predominantly forming heteromers with A2AR. In the case of hypothesis A, the A2AR might be required for CB1R-A2AR heteromeric signaling, whereas non-heteromeric CB1R activity is inhibited by A2ARs. In the case of hypothesis B, up-regulation of A2ARs may perturb heteromeric stoichiometry, thus reducing CB1R functioning. In any case, pre-synaptic striatal A2AR-CB1R heteromers emerge as important targets of the effects of cannabinoids demonstrated at the neuronal and behavioral level. Read the highlighted article 'Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors' on page 907.

  6. Cyclic adenosine monophosphate-dependent vascular responses to purinergic agonists adenosine triphosphate and uridine triphosphate in the anesthetized mouse.

    PubMed

    Shah, Mrugeshkumar K; Kadowitz, Philip J

    2002-01-01

    The mechanism by which purinergic agonist adenosine triphosphate (ATP) and uridine triphosphate (UTP) decrease systemic arterial pressure in the anesthetized mouse was investigated. Intravenous injections of adenosine triphosphate (ATP) and uridine triphosphate (UTP) produced dose-dependent decreases in systemic blood pressure in the mouse. The order of potency was ATP > UTP. Vasodilator responses to ATP and UTP were altered by the cyclic adenosine monophosphate (cAMP) phosphodiesterase inhibitor rolipram. The vascular responses to ATP and UTP were not altered by a nitric oxide synthase inhibitor, a cyclooxygenase inhibitor, a cGMP phosphodiesterase inhibitor, or a particular P2 receptor antagonist. These data suggest that ATP and UTP cause a decrease in systemic arterial pressure in the mouse via a cAMP-dependent pathway via a novel P2 receptor linked to adenylate cyclase and that nitric oxide release, prostaglandin synthesis, cGMP, and P2X1, P2Y1, and P2Y4 receptors play little or no role in the vascular effects of these purinergic agonists in the mouse.

  7. Octamerization is essential for enzymatic function of human UDP-glucose pyrophosphorylase.

    PubMed

    Führing, Jana; Damerow, Sebastian; Fedorov, Roman; Schneider, Julia; Münster-Kühnel, Anja-Katharina; Gerardy-Schahn, Rita

    2013-04-01

    Uridine diphosphate-glucose pyrophosphorylase (UGP) occupies a central position in carbohydrate metabolism in all kingdoms of life, since its product uridine diphosphate-glucose (UDP-glucose) is essential in a number of anabolic and catabolic pathways and is a precursor for other sugar nucleotides. Its significance as a virulence factor in protists and bacteria has given momentum to the search for species-specific inhibitors. These attempts are, however, hampered by high structural conservation of the active site architecture. A feature that discriminates UGPs of different species is the quaternary organization. While UGPs in protists are monomers, di- and tetrameric forms exist in bacteria, and crystal structures obtained for the enzyme from yeast and human identified octameric UGPs. These octamers are formed by contacts between highly conserved amino acids in the C-terminal β-helix. Still under debate is the question whether octamerization is required for the functionality of the human enzyme. Here, we used single amino acid replacements in the C-terminal β-helix to interrogate the impact of highly conserved residues on octamer formation and functional activity of human UGP (hUGP). Replacements were guided by the sequence of Arabidopsis thaliana UGP, known to be active as a monomer. Correlating the data obtained in blue native PAGE, size exclusion chromatography and enzymatic activity testing, we prove that the octamer is the active enzyme form. This new insight into structure-function relationships in hUGP does not only improve the understanding of the catalysis of this important enzyme, but in addition broadens the basis for studies aimed at designing drugs that selectively inhibit UGPs from pathogens.

  8. Adenosine stimulates Ca2+ fluxes and increases cytosolic free Ca2+ in cultured rat mesangial cells.

    PubMed Central

    Olivera, A; López-Rivas, A; López-Novoa, J M

    1992-01-01

    Adenosine has been associated with cellular Ca2+ metabolism in some cell types. Since adenosine is able to contract glomerular mesangial cells in culture, and since Ca2+ is the main messenger mediating contractile responses, we studied the effect of adenosine on 45Ca2+ movements into and out of mesangial cells and on the cytosolic free Ca2+ concentration ([Ca2+]i). Adenosine at 0.1 mM increased 45Ca2+ uptake (basal, 9993 +/- 216; + adenosine, 14823 +/- 410 d.p.m./mg; P less than 0.01) through verapamil-sensitive Ca2+ channels. These channels seem to be of the A1-adenosine receptor subtype. Adenosine also stimulated 45Ca2+ efflux from 45Ca(2+)-loaded mesangial cells. This effect was accompanied by a net depletion of intracellular 45Ca2+ content under isotopic equilibrium conditions (basal, 24213 +/- 978; + adenosine, 18622 +/- 885 d.p.m./mg; P less than 0.05). The increase in 45Ca2+ efflux was inhibited by a Ca(2+)-free medium or in the presence of 10 microM-verapamil. However, the intracellular Ca(2+)-release blocker TMB-8 (10 microM) only partially inhibited the adenosine-stimulated 45Ca2+ efflux. In addition, adenosine induced an elevation in [Ca2+]i in mesangial cells with an initial transient peak within 15 s (basal, 113 +/- 7; adenosine, 345 +/- 46 nM), and a secondary increase which was slower (3-4 min) and of lower magnitude than the initial peak (250 +/- 21 nM). In summary, adenosine elevates [Ca2+]i and stimulates both Ca2+ uptake from the extracellular pool and Ca2+ efflux from intracellular pools in mesangial cells. The Ca2+ release from internal stores is produced by a combination of a TMB-8-inhibitable and a non-TMB-8-inhibitable mechanism, and seems to be dependent on Ca2+ influx. PMID:1554371

  9. Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.

    2000-01-01

    It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.

  10. The global regulatory system Csr senses glucose through the phosphoenolpyruvate: carbohydrate phosphotransferase system.

    PubMed

    Pérez-Morales, Deyanira; Bustamante, Víctor H

    2016-02-01

    A novel connection between two regulatory systems controlling crucial biological processes in bacteria, the carbon storage regulator (Csr) system and the glucose-specific phosphotransferase system (PTS), is reported by Leng et al. in this issue. This involves the interaction of unphosphorylated EIIA(Glc), a component of the glucose-specific PTS, with the CsrD protein, which accelerates the decay of the CsrB and CsrC small RNAs via RNase E in Escherichia coli. As unphosphorylated EIIA(G) (lc) is generated in the presence of glucose, the PTS thus acts as a sensor of glucose for the Csr system. Interestingly, another pathway can operate for communication between the Csr system and the glucose-specific PTS. The absence of glucose generates phosphorylated EIIA(Glc) , which activates the enzyme adenylate cyclase to produce cyclic adenosine monophosphate (cAMP) that, in turn, binds to the regulator cAMP receptor protein (CRP). Leng et al. show that the complex cAMP-CRP modestly reduces CsrB decay independently of CsrD. On the other hand, a previous study indicates that the complex cAMP-CRP positively regulates the transcription of CsrB and CsrC in Salmonella enterica. Therefore, EIIA(G) (lc) could work as a molecular switch that regulates the activity of the Csr system, in response to its phosphorylation state determined by the presence or absence of glucose, in order to control gene expression.

  11. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish.

    PubMed

    Bortolotto, Josiane Woutheres; Melo, Gabriela Madalena de; Cognato, Giana de Paula; Vianna, Mônica Ryff Moreira; Bonan, Carla Denise

    2015-02-01

    Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cogn