Sample records for adenosine monophosphate accumulation

  1. Isolated adrenal cells: adrenocorticotropic hormone, calcium, steroidogenesis, and cyclic adenosine monophosphate.

    PubMed

    Sayers, G; Beall, R J; Seelig, S

    1972-03-10

    Corticosterone production by isolated adrenal cells in response to adrenocorticotropic hormone is reduced when the cells are incubated in a medium that contains no calcium. This reduction is associated with an equal reduction of accumulation of cyclic adenosine monophosphate. Production of corticosterone and accumulation of cyclic adenosine monophosphate are increased when the calcium concentration in the medium is increased (from zero to 7.65 millimolar). This is in contrast to the situation in "subcellular membrane fragments" of adrenal tissue where high calcium in the medium (> 1.0 millimolar) inhibits cyclic adenosine monophosphate accumulation. We propose that adenyl cyclase in the intact plasma membrane is located in a compartment wherein calcium concentration is low and remains unaffected by the concentration of calcium in the extracellular space. It is proposed that, as the concentration of calcium in the incubation medium is increased from zero to 7.65 millimolar, the strength of the signal generated by the interaction of adrenocorticotropic hormone with its receptor and transmitted to the adenyl cyclase compartment is proportionately increased.

  2. A novel adenosine precursor 2',3'-cyclic adenosine monophosphate inhibits formation of post-surgical adhesions.

    PubMed

    Forman, Mervyn B; Gillespie, Delbert G; Cheng, Dongmei; Jackson, Edwin K

    2014-09-01

    Intraperitoneal adenosine reduces abdominal adhesions. However, because of the ultra-short half-life and low solubility of adenosine, optimal efficacy requires multiple dosing. Here, we compared the ability of potential adenosine prodrugs to inhibit post-surgical abdominal adhesions after a single intraperitoneal dose. Abdominal adhesions were induced in mice using an electric toothbrush to damage the cecum. Also, 20 μL of 95 % ethanol was applied to the cecum to cause chemically induced injury. After injury, mice received intraperitoneally either saline (n = 18) or near-solubility limit of adenosine (23 mmol/L; n = 12); 5'-adenosine monophosphate (75 mmol/L; n = 11); 3'-adenosine monophosphate (75 mmol/L; n = 12); 2'-adenosine monophosphate (75 mmol/L; n = 12); 3',5'-cyclic adenosine monophosphate (75 mmol/L; n = 19); or 2',3'-cyclic adenosine monophosphate (75 mmol/L; n = 20). After 2 weeks, adhesion formation was scored by an observer blinded to the treatments. In a second study, intraperitoneal adenosine levels were measured using tandem mass spectrometry for 3 h after instillation of 2',3'-cyclic adenosine monophosphate (75 mmol/L) into the abdomen. The order of efficacy for attenuating adhesion formation was: 2',3'-cyclic adenosine monophosphate > 3',5'-cyclic adenosine monophosphate ≈ adenosine > 5'-adenosine monophosphate ≈ 3'-adenosine monophosphate ≈ 2'-adenosine monophosphate. The groups were compared using a one-factor analysis of variance, and the overall p value for differences between groups was p < 0.000001. Intraperitoneal administration of 2',3'-cAMP yielded pharmacologically relevant levels of adenosine in the abdominal cavity for >3 h. Administration of 2',3'-cyclic adenosine monophosphate into the surgical field is a unique, convenient and effective method of preventing post-surgical adhesions by acting as an adenosine prodrug.

  3. The effect of adenosine monophosphate deaminase overexpression on the accumulation of umami-related metabolites in tomatoes.

    PubMed

    Chew, Bee Lynn; Fisk, Ian D; Fray, Rupert; Tucker, Gregory A; Bodi, Zsuzsanna; Ferguson, Alison; Xia, Wei; Seymour, Graham B

    2017-01-01

    This study highlights the changes in umami-related nucleotide and glutamate levels when the AMP deaminase gene was elevated in transgenic tomato. Taste is perceived as one of a combination of five sensations, sweet, sour, bitter, salty, and umami. The umami taste is best known as a savoury sensation and plays a central role in food flavour, palatability, and eating satisfaction. Umami flavour can be imparted by the presence of glutamate and is greatly enhanced by the addition of ribonucleotides, such as inosine monophosphate (IMP) and guanosine monophosphate (GMP). The production of IMP is regulated by the enzyme adenosine monophosphate (AMP) deaminase which functions to convert AMP into IMP. We have generated transgenic tomato (Solanum lycopersicum) lines over expressing AMP deaminase under the control of a fruit-specific promoter. The transgenic lines showed substantially enhanced levels of AMP deaminase expression in comparison to the wild-type control. Elevated AMP deaminase levels resulted in the reduced accumulation of glutamate and increased levels of the umami nucleotide GMP. AMP concentrations were unchanged. The effects on the levels of glutamate and GMP were unexpected and are discussed in relation to the metabolite flux within this pathway.

  4. Effects of protopine on blood platelet aggregation. II. Effect on metabolic system of adenosine 3',5'-cyclic monophosphate in platelets.

    PubMed

    Shiomoto, H; Matsuda, H; Kubo, M

    1990-08-01

    The mode of action of protopine on rabbit platelet aggregation was investigated in the metabolic system of adenosine 3',5'-cyclic monophosphate (cyclic AMP) in vitro experimental models. The inhibitory activity of protopine on adenosine 5'-diphosphate induced platelet aggregation was increased in the presence of prostaglandin I2 or papaverine in platelets. Protopine elevated content of the basal cyclic AMP accumulation in platelets and enhanced activity of crude adenylate cyclase prepared from platelets, but was ineffective on cyclic AMP phosphodiesterase. It is concluded that protopine has an inhibitory activity on platelet aggregation, activates adenylate cyclase and increases cyclic AMP content in platelets, in addition to other inhibitory actions in the metabolic system of cyclic AMP.

  5. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    PubMed

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  6. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.

    PubMed

    Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel

    2011-06-01

    The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.

  7. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    PubMed Central

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  8. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  9. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to impaired capacity to clear adenosine monophosphate. AP supplementation improves serum clearance of adenosine monophosphate to adenosine. These findings represent a potential therapeutic mechanism for alkaline phosphatase infusion during cardiac surgery. New and Noteworthy We identify alkaline phosphatase (AP) as the primary soluble ectonucleotidase in infants undergoing cardiopulmonary bypass and show decreased capacity to clear AMP when AP activity decreases post-bypass. Supplementation of AP ex vivo improves this capacity and may represent the beneficial therapeutic mechanism of AP infusion seen in phase 2 studies. PMID:27384524

  10. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass.

    PubMed

    Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena

    2016-01-01

    Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to impaired capacity to clear adenosine monophosphate. AP supplementation improves serum clearance of adenosine monophosphate to adenosine. These findings represent a potential therapeutic mechanism for alkaline phosphatase infusion during cardiac surgery. We identify alkaline phosphatase (AP) as the primary soluble ectonucleotidase in infants undergoing cardiopulmonary bypass and show decreased capacity to clear AMP when AP activity decreases post-bypass. Supplementation of AP ex vivo improves this capacity and may represent the beneficial therapeutic mechanism of AP infusion seen in phase 2 studies.

  11. Interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats.

    PubMed

    Yang, Ke-Ke; Sui, Yi; Zhou, Hui-Rong; Zhao, Hai-Lu

    2017-05-01

    Renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway both play important roles in carcinogenesis, but the interplay of renin-angiotensin system and adenosine monophosphate-activated protein kinase in carcinogenesis is not clear. In this study, we researched the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase in renal carcinogenesis of uninephrectomized rats. A total of 96 rats were stratified into four groups: sham, uninephrectomized, and uninephrectomized treated with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Renal adenosine monophosphate-activated protein kinase and its downstream molecule acetyl coenzyme A carboxylase were detected by immunohistochemistry and western blot at 10 months after uninephrectomy. Meanwhile, we examined renal carcinogenesis by histological transformation and expressions of Ki67 and mutant p53. During the study, fasting lipid profiles were detected dynamically at 3, 6, 8, and 10 months. The results indicated that adenosine monophosphate-activated protein kinase expression in uninephrectomized rats showed 36.8% reduction by immunohistochemistry and 89.73% reduction by western blot. Inversely, acetyl coenzyme A carboxylase expression increased 83.3% and 19.07% in parallel to hyperlipidemia at 6, 8, and 10 months. The histopathology of carcinogenesis in remnant kidneys was manifested by atypical proliferation and carcinoma in situ, as well as increased expressions of Ki67 and mutant p53. Intervention with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker significantly prevented the inhibition of adenosine monophosphate-activated protein kinase signaling pathway and renal carcinogenesis in uninephrectomized rats. In conclusion, the novel findings suggest that uninephrectomy-induced disturbance in adenosine monophosphate-activated protein kinase signaling pathway resulted in hyperlipidemia and carcinogenesis in tubular epithelial cells, which may be largely attenuated by renin-angiotensin system blockade, implying the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats.

  12. Identification of a novel phosphatase with high affinity for nucleotides monophosphate from common bean (Phaseolus vulgaris).

    PubMed

    Cabello-Díaz, Juan Miguel; Quiles, Francisco Antonio; Lambert, Rocío; Pineda, Manuel; Piedras, Pedro

    2012-04-01

    Common bean (Phaseolus vulgaris) seedlings accumulate ureides derived from purines after germination. The first step in the conversion of purines to ureides is the removal of the 5'-phosphate group by a phosphatase that has not been established yet. Two main phosphatase activities were detected in the embryonic axes of common bean using inosine monophosphate as substrate in an in-gel assay. Both activities differed in their sensitive to the common phosphatase inhibitor molybdate, with the molybdate-resistant as the first enzyme induced after radicle protrusion. The molybdate-resistant phosphatase has been purified to electrophoretic homogeneity and this is the first enzyme which shows this resistance purified and characterized from plant tissues. The native enzyme was a monomer of 55 kDa and it showed highest activity with nucleotides as substrates, with the K(m) values in the micromolar range. Among nucleotides, the highest specific constant (V(max)/K(m)) was observed for adenosine monophosphate. Furthermore, the enzyme was inhibited by nucleosides, the products of the enzymatic reaction, with maximum effect for adenosine. Common bean seedlings imbibed in the presence of adenosine monophosphate in vivo showed the highest molybdate-resistant phosphatase activity in the axes in addition to increased ureide content. The data presented suggests that purified phosphatase is involved in nucleotide metabolism in embryonic axes from common bean. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Time-resolved photoelectron spectroscopy of adenosine and adenosine monophosphate photodeactivation dynamics in water microjets

    NASA Astrophysics Data System (ADS)

    Williams, Holly L.; Erickson, Blake A.; Neumark, Daniel M.

    2018-05-01

    The excited state relaxation dynamics of adenosine and adenosine monophosphate were studied at multiple excitation energies using femtosecond time-resolved photoelectron spectroscopy in a liquid water microjet. At pump energies of 4.69-4.97 eV, the lowest ππ* excited state, S1, was accessed and its decay dynamics were probed via ionization at 6.20 eV. By reversing the role of the pump and probe lasers, a higher-lying ππ* state was excited at 6.20 eV and its time-evolving photoelectron spectrum was monitored at probe energies of 4.69-4.97 eV. The S1 ππ* excited state was found to decay with a lifetime ranging from ˜210 to 250 fs in adenosine and ˜220 to 250 fs in adenosine monophosphate. This lifetime drops with increasing pump photon energy. Signal from the higher-lying ππ* excited state decayed on a time scale of ˜320 fs and was measureable only in adenosine monophosphate.

  14. Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes.

    PubMed

    Roy Chowdhury, Subir K; Smith, Darrell R; Saleh, Ali; Schapansky, Jason; Marquez, Alexandra; Gomes, Suzanne; Akude, Eli; Morrow, Dwane; Calcutt, Nigel A; Fernyhough, Paul

    2012-06-01

    Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3-5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway.

  15. Removal of interfering nucleotides from brain extracts containing substance p. Effect of drugs on brain concentrations of substance p

    PubMed Central

    Laszlo, I.

    1963-01-01

    Several methods for removing interfering nucleotides, adenosine-5'-monophosphate and adenosine 5'-triphosphate from brain extracts have been studied. An enzymic method, using adenylic acid deaminase, has been found suitable. This deaminates adenosine monophosphate to 5'-inosinic acid, an inactive compound which does not influence the estimations of substance P. Owing to the adenosine triphosphatase content of the enzyme extract, adenosine triphosphate was also inactivated. For the estimation of adenosine monophosphate-deaminase activity, a simple colorimetric method is described which measures the ammonia liberated from adenosine monophosphate. Substance P in mouse brain extracts was estimated after treatment of the animals with various drugs, and after the enzymic removal of interfering nucleotides from the brain extracts. The drugs had no effect on the substance P content of mouse brain. The effect of drugs on the contractions of the guinea-pig ileum induced by substance P was also investigated, and the effect of drugs on the estimations of substance P in brain extracts is discussed. PMID:14066136

  16. Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes

    PubMed Central

    Smith, Darrell R.; Saleh, Ali; Schapansky, Jason; Marquez, Alexandra; Gomes, Suzanne; Akude, Eli; Morrow, Dwane; Calcutt, Nigel A.; Fernyhough, Paul

    2012-01-01

    Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3–5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway. PMID:22561641

  17. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    MedlinePlus

    ... view the expand/collapse boxes. Description Adenosine monophosphate (AMP) deaminase deficiency is a condition that can affect ... for movement ( skeletal muscles ). In many affected individuals, AMP deaminase deficiency does not cause any symptoms. People ...

  18. Bacillus anthracis Edema Factor Substrate Specificity: Evidence for New Modes of Action

    PubMed Central

    Göttle, Martin; Dove, Stefan; Seifert, Roland

    2012-01-01

    Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5′-triphosphate, uridine 5′-triphosphate and inosine 5′-triphosphate, in addition to adenosine 5′-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3′:5′-monophosphate, cyclic uridine 3′:5′-monophosphate and cyclic inosine 3′:5′-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed. PMID:22852066

  19. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania

    2016-01-01

    In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Modulation of bicarbonate secretion in rabbit duodenum: the role of calcium.

    PubMed

    Hogan, D L; Yao, B; Isenberg, J I

    1998-01-01

    Surface epithelial bicarbonate secretion protects the proximal duodenum from acid peptic injury. Cyclic adenosine monophosphate and calcium serve as intracellular mediators of intestinal transport. Experiments were performed to examine whether calcium participates in duodenal bicarbonate transport. Stripped duodenal mucosa from rabbits was studied in Ussing chambers. HCO3- transport was stimulated by the calcium ionophore A23187, carbachol, vasoactive intestinal peptide, prostaglandin E2, dibutyryl-cyclic adenosine monophosphate, and electrical field stimulation. A23187 stimulated HCO3- secretion and Isc; tetrodotoxin failed to inhibit this effect. The calcium-channel blocker verapamil abolished HCO3- secretion stimulated by carbachol, vasoactive intestinal peptide, and electrical field stimulation, but failed to alter basal, prostaglandin E2- or dibutyryl-cyclic adenosine monophosphate-stimulated HCO3- secretion. Therefore, calcium is likely required during stimulation of duodenal epithelial HCO3- transport by carbachol, vasoactive intestinal peptide, and electrical field stimulation. Prostaglandin E2 and dibutyryl-cyclic adenosine monophosphate appear to activate duodenal HCO3- secretion by a calcium-independent pathway(s).

  1. LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase.

    PubMed

    Filippov, Sergey; Pinkosky, Stephen L; Newton, Roger S

    2014-08-01

    To review the profile of ETC-1002, as shown in preclinical and clinical studies, including LDL-cholesterol (LDL-C)-lowering activity and beneficial effects on other cardiometabolic risk markers as they relate to the inhibition of adenosine triphosphate-citrate lyase and the activation of adenosine monophosphate-activated protein kinase. ETC-1002 is an adenosine triphosphate-citrate lyase inhibitor/adenosine monophosphate-activated protein kinase activator currently in Phase 2b clinical development. In seven Phase 1 and Phase 2a clinical studies, ETC-1002 dosed once daily for 2-12 weeks has lowered LDL-C and reduced high-sensitivity C-reactive protein by up to 40%, with neutral to positive effects on glucose levels, blood pressure, and body weight. Importantly, use of ETC-1002 in statin-intolerant patients has shown statin-like lowering of LDL-C without the muscle pain and weakness responsible for discontinuation of statin use by many patients. ETC-1002 has also been shown to produce an incremental benefit, lowering LDL-C as an add-on therapy to a low-dose statin. In over 300 individuals in studies of up to 12 weeks, ETC-1002 has been well tolerated with no serious adverse effects. Because adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase play central roles in regulating lipid and glucose metabolism, pharmacological modulation of these two enzymes could provide an important therapeutic alternative for statin-intolerant patients with hypercholesterolemia.

  2. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice.

    PubMed

    Saito, Tetsuo; Nishida, Miyako; Saito, Masafumi; Tanabe, Akari; Eitsuka, Takahiro; Yuan, Shi-Hua; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-10-01

    Obesity-associated insulin resistance is a major risk factor for most metabolic diseases, including dyslipidemia and type 2 diabetes. Acanthopanax senticosus (Rupr. et Maxim.) Harms (Goka) root has been used in traditional Chinese medicine for treatment of diabetes and other conditions; however, little is known about the effects of Goka fruit (GF). Goka fruit is rich in anthocyanin, which has beneficial effects on obesity and insulin resistance via activation of adenosine monophosphate-activated protein kinase (AMPK). We hypothesized that GF can improve obesity-associated insulin resistance. The aim of the present study was to investigate whether GF improves insulin resistance in high-fat diet (HFD)-induced obese mice. High-fat diet mice treated with GF (500 and 1000 mg/kg) for 12 weeks showed an improved glucose tolerance and insulin sensitivity, as well as reduced plasma insulin and liver lipid accumulation. Moreover, GF administration to HFD mice resulted in down-regulation of fatty acid synthase expression and up-regulation of cholesterol 7-alpha-hydroxylase expression in the liver. Notably, AMPK phosphorylation in the liver increased after GF administration. In summary, GF supplementation improved obesity-associated insulin resistance and hepatic lipid accumulation through modulation of AMPK activity and lipid metabolism-associated gene expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Photo protection of RNA building blocks: Adenosine 5‧-monophosphate, cytidine 5‧-monophosphate and cytosine

    NASA Astrophysics Data System (ADS)

    Nielsen, Jakob Brun; Thøgersen, Jan; Jensen, Svend Knak; Keiding, Søren Rud

    2013-04-01

    Photoprotection of the RNA nucleotides adenosine 5'-monophosphate and cytidine 5'-monophosphate, and the nucleobase cytosine was studied using UV pump, IR probe femtosecond transient absorption spectroscopy. The excitation energy is contained in the aromatic ring system, protecting the RNA backbone. All three molecules dissipate the excitation energy by internal conversion and subsequent vibrational relaxation to the electronic ground state in less than 10 ps. In addition, a second deactivation channel is found in cytidine 5'-monophosphate, illustrated by a signal at 1563 cm-1 with a lifetime of 33 ps assigned to an nπ∗ state in agreement with observations in the UV region.

  4. Lanthanum inhibition of Vibrio cholerae and Escherichia coli enterotoxin-induced enterosorption and its effects on intestinal mucosa cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate levels.

    PubMed Central

    Leitch, G J; Amer, M S

    1975-01-01

    Several trivalent cations, including lanthanum (La3+), inhibited the secretion (enterosorption) induced by the enterotoxins of Vibrio cholerae and Escherichia coli in the rabbit ileum in vivo. High concentrations (greater than 10 mM) of La3+ were required to inhibit cholera enterotoxin (CE)-induced enterosorption, probably because of the adsorption of the La3+ often potentiated the CE-induced enterosorption. If luminal La3+ exposure followed CE exposure, some recovery of the enterosorptive response was observed. The longer the lag between the CE exposure and the La3+ exposure, the greater was the recovery of the enterosorptive response. Lanthanum inhibited HCO3- secretion more than Cl- secretion. By altering the luminal fluid pH at the time of La3+ exposure, it was found that La3+ was adsorbed to negatively charged luminal sites, having an apparent pK between 2.5 and 3.0. Although La3+ antagonized the enterosorptive response to CE, it mimicked rather than antagonized the cyclic adenosine 3',5'-monophosphate elevation and cyclic guanosine 3',5'-monophosphate depression induced by the toxin. It is therefore concluded that the La3+ inhibition of the CE-induced enterosorption must have occurred at a site following the generation of the cyclic nucleotides. Cholera enterotoxin caused complex time-dependent changes in the mucosal cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate levels, as revealed by studying tissue cyclic adenosine 3',5'-monophosphate/cyclic guanosine 3',5'-monophosphate ratios. The possible roles these two cyclic nucleotides may play in the pathogenesis of the cholera diarrhea are discussed. PMID:164410

  5. Cyclic Adenosine Monophosphate Accumulation and beta-Adrenergic Binding in Unweighted and Denervated Rat Soleus Muscle

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.

    1992-01-01

    Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.

  6. Recognition of adenosine monophosphate and H2PO4- using zinc ensemble of new hexaphenylbenzene derivative: potential bioprobe and multichannel keypad system.

    PubMed

    Bhalla, Vandana; Vij, Varun; Kumar, Manoj; Sharma, Parduman Raj; Kaur, Tandeep

    2012-02-17

    Zinc ensemble of hexaphenylbenzene derivative 3 exhibits sensitive response toward adenosine monophosphate (AMP) and H(2)PO(4)(-) ions. Further, the application of derivative 3 as a multichannel molecular keypad could be realized in the presence of inputs of Zn(2+) ions, H(2)PO(4)(-) ions, and AMP.

  7. ON THE MECHANISM OF ACTION OF ADRENOCORTICOTROPIC HORMONE: THE BINDING OF CYCLIC-3′,5′-ADENOSINE MONOPHOSPHATE TO AN ADRENAL CORTICAL PROTEIN*

    PubMed Central

    Gill, Gordon N.; Garren, Leonard D.

    1969-01-01

    The binding of cyclic 3′,5′-adenosine monophosphate (cyclic AMP) within the adrenal cortical cell was studied. Cyclic AMP binds specifically to a protein which is associated predominantly with the microsomal fraction of the cell. The binding protein was purified approximately 100-fold. PMID:4308274

  8. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    PubMed

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  9. Erythrocytic adenosine monophosphate as an alternative purine source in Plasmodium falciparum.

    PubMed

    Cassera, María B; Hazleton, Keith Z; Riegelhaupt, Paul M; Merino, Emilio F; Luo, Minkui; Akabas, Myles H; Schramm, Vern L

    2008-11-21

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum.

  10. Ribavirin suppresses hepatic lipogenesis through inosine monophosphate dehydrogenase inhibition: Involvement of adenosine monophosphate-activated protein kinase-related kinases and retinoid X receptor α.

    PubMed

    Satoh, Shinya; Mori, Kyoko; Onomura, Daichi; Ueda, Youki; Dansako, Hiromichi; Honda, Masao; Kaneko, Shuichi; Ikeda, Masanori; Kato, Nobuyuki

    2017-08-01

    Ribavirin (RBV) has been widely used as an antiviral reagent, specifically for patients with chronic hepatitis C. We previously demonstrated that adenosine kinase, which monophosphorylates RBV into the metabolically active form, is a key determinant for RBV sensitivity against hepatitis C virus RNA replication. However, the precise mechanism of RBV action and whether RBV affects cellular metabolism remain unclear. Analysis of liver gene expression profiles obtained from patients with advanced chronic hepatitis C treated with the combination of pegylated interferon and RBV showed that the adenosine kinase expression level tends to be lower in patients who are overweight and significantly decreases with progression to advanced fibrosis stages. In our effort to investigate whether RBV affects cellular metabolism, we found that RBV treatment under clinically achievable concentrations suppressed lipogenesis in hepatic cells. In this process, guanosine triphosphate depletion through inosine monophosphate dehydrogenase inhibition by RBV and adenosine monophosphate-activated protein kinase-related kinases, especially microtubule affinity regulating kinase 4, were required. In addition, RBV treatment led to the down-regulation of retinoid X receptor α (RXRα), a key nuclear receptor in various metabolic processes, including lipogenesis. Moreover, we found that guanosine triphosphate depletion in cells induced the down-regulation of RXRα, which was mediated by microtubule affinity regulating kinase 4. Overexpression of RXRα attenuated the RBV action for suppression of lipogenic genes and intracellular neutral lipids, suggesting that down-regulation of RXRα was required for the suppression of lipogenesis in RBV action. Conclusion : We provide novel insights about RBV action in lipogenesis and its mechanisms involving inosine monophosphate dehydrogenase inhibition, adenosine monophosphate-activated protein kinase-related kinases, and down-regulation of RXRα. RBV may be a potential reagent for anticancer therapy against the active lipogenesis involved in hepatocarcinogenesis. ( Hepatology Communications 2017;1:550-563).

  11. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells.

    PubMed

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-03-25

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5'-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a 'calm down' signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001.

  12. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells

    PubMed Central

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-01-01

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5’-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a ‘calm down’ signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001 PMID:24668173

  13. Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum*

    PubMed Central

    Cassera, María B.; Hazleton, Keith Z.; Riegelhaupt, Paul M.; Merino, Emilio F.; Luo, Minkui; Akabas, Myles H.; Schramm, Vern L.

    2008-01-01

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum. PMID:18799466

  14. The role of adenosine monophosphate kinase in remodeling white adipose tissue metabolism.

    PubMed

    Gaidhu, Mandeep Pinky; Ceddia, Rolando Bacis

    2011-04-01

    Recent evidence indicates that the enzyme adenosine monophosphate (AMP) kinase exerts important fat-reducing effects in the adipose tissue, which has created great interest in this enzyme as a potential target for obesity treatment. This review summarizes our findings that chronic AMP kinase activation remodels adipocyte glucose and lipid metabolism and enhances the ability of adipose tissue to dissipate energy within itself and reduce adiposity.

  15. Expression and activity of the 5'-adenosine monophosphate-activated protein kinase pathway in selected tissues during chicken embryonic development.

    PubMed

    Proszkowiec-Weglarz, M; Richards, M P

    2009-01-01

    The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a highly conserved serine-threonine protein kinase and a key part of a kinase-signaling cascade that senses cellular energy status (adenosine monophosphate:adenosine triphosphate ratio) and acts to maintain energy homeostasis by coordinately regulating energy-consuming and energy-generating metabolic pathways. The objective of this study was to investigate aspects of the AMPK pathway in the liver, brain, breast muscle, and heart from d 12 of incubation through hatch in chickens. We first determined mRNA and protein expression profiles for a major upstream AMPK kinase, LKB1, which is known to activate (phosphorylate) AMPK in response to increases in the adenosine monophosphate:adenosine triphosphate ratio. Expression of LKB1 protein was greatest in the brain, which demonstrated tissue-specific patterns for phosphorylation. Next, AMPK subunit mRNA and protein expression profiles were determined. Significant changes in AMPK subunit mRNA expression occurred in all tissues from d 12 of incubation to hatch. Differences in the levels of active (phosphorylated) AMPK as well as alpha and beta subunit proteins were observed in all 4 tissues during embryonic development. Finally, we determined the protein level and phosphorylation status of an important downstream target for AMPK, acetyl-coenzyme A carboxylase. The expression of acetyl-co-enzyme A carboxylase and phosphorylated acetyl-coenzyme A was greater in the brain than the liver, but was undetectable by Western blotting in the breast muscle and heart throughout the period of study. Together, our results are the first to demonstrate the expression and activity of the AMPK pathway in key tissues during the transition from embryonic to posthatch development in chickens.

  16. AMP Is an Adenosine A1 Receptor Agonist*

    PubMed Central

    Rittiner, Joseph E.; Korboukh, Ilia; Hull-Ryde, Emily A.; Jin, Jian; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.

    2012-01-01

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5′-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5′-monophosphonate, ACP) directly activated the adenosine A1 receptor (A1R). In contrast, AMP only activated the adenosine A2B receptor (A2BR) after hydrolysis to adenosine by ecto-5′-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A1R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A1R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A1R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A1R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine. PMID:22215671

  17. AMP is an adenosine A1 receptor agonist.

    PubMed

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J

    2012-02-17

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  18. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    PubMed

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  19. cCMP, cUMP, cTMP, cIMP and cXMP as possible second messengers: development of a hypothesis based on studies with soluble guanylyl cyclase α(1)β(1).

    PubMed

    Beste, Kerstin Y; Seifert, Roland

    2013-02-01

    Adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate are second messengers that regulate multiple physiological functions. The existence of additional cyclic nucleotides in mammalian cells was postulated many years ago, but technical problems hampered development of the field. Using highly specific and sensitive mass spectrometry methods, soluble guanylyl cyclase has recently been shown to catalyze the formation of several cyclic nucleotides in vitro. This minireview discusses the broad substrate-specificity of soluble guanylyl cyclase and the possible second messenger roles of cyclic nucleotides other than adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate. We hope that this article stimulates productive and critical research in an area that has been neglected for many years.

  20. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.

    PubMed

    Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D

    2017-01-29

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.

  1. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds

    PubMed Central

    Marín-Aguilar, Fabiola; Pavillard, Luis E.; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D.

    2017-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases. PMID:28146060

  2. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  3. Prostacyclin regulates spinal nociceptive processing through cyclic adenosine monophosphate-induced translocation of glutamate receptors.

    PubMed

    Schuh, Claus Dieter; Brenneis, Christian; Zhang, Dong Dong; Angioni, Carlo; Schreiber, Yannick; Ferreiros-Bouzas, Nerea; Pierre, Sandra; Henke, Marina; Linke, Bona; Nüsing, Rolf; Scholich, Klaus; Geisslinger, Gerd

    2014-02-01

    Prostacyclin (PGI2) is known to be an important mediator of peripheral pain sensation (nociception) whereas little is known about its role in central sensitization. The levels of the stable PGI2-metabolite 6-keto-prostaglandin F1α (6-keto-PGF1α) and of prostaglandin E2 (PGE2) were measured in the dorsal horn with the use of mass spectrometry after peripheral inflammation. Expression of the prostanoid receptors was determined by immunohistology. Effects of prostacyclin receptor (IP) activation on spinal neurons were investigated with biochemical assays (cyclic adenosine monophosphate-, glutamate release-measurement, Western blot analysis) in embryonic cultures and adult spinal cord. The specific IP antagonist Cay10441 was applied intrathecally after zymosan-induced mechanical hyperalgesia in vivo. Peripheral inflammation caused a significant increase of the stable PGI2 metabolite 6-keto-PGF1α in the dorsal horn of wild-type mice (n = 5). IP was located on spinal neurons and did not colocalize with the prostaglandin E2 receptors EP2 or EP4. The selective IP-agonist cicaprost increased cyclic adenosine monophosphate synthesis in spinal cultures from wild-type but not from IP-deficient mice (n = 5-10). The combination of fluorescence-resonance-energy transfer-based cyclic adenosine monophosphate imaging and calcium imaging showed a cicaprost-induced cyclic adenosine monophosphate synthesis in spinal cord neurons (n = 5-6). Fittingly, IP activation increased glutamate release from acute spinal cord sections of adult mice (n = 13-58). Cicaprost, but not agonists for EP2 and EP4, induced protein kinase A-dependent phosphorylation of the GluR1 subunit and its translocation to the membrane. Accordingly, intrathecal administration of the IP receptor antagonist Cay10441 had an antinociceptive effect (n = 8-11). Spinal prostacyclin synthesis during early inflammation causes the recruitment of GluR1 receptors to membrane fractions, thereby augmenting the onset of central sensitization.

  4. Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects.

    PubMed

    Dwivedi, Yogesh; Rao, Jagadeesh Sridhara; Rizavi, Hooriyah S; Kotowski, Jacek; Conley, Robert R; Roberts, Rosalinda C; Tamminga, Carol A; Pandey, Ghanshyam N

    2003-03-01

    Cyclic adenosine monophosphate response element binding protein (CREB) is a transcription factor that, on phosphorylation by protein kinases, is activated, and in response, regulates the transcription of many neuronally expressed genes. In view of the recent observations that catalytic properties and/or expression of many kinases that mediate their physiological responses through the activation of CREB are altered in the postmortem brain of subjects who commit suicide (hereafter referred to as suicide subjects), we examined the status of CREB in suicidal behavior. These studies were performed in Brodmann area (BA) 9 and hippocampus obtained from 26 suicide subjects and 20 nonpsychiatric healthy control subjects. Messenger RNA levels of CREB and neuron-specific enolase were determined in total RNA by means of quantitative reverse transcriptase-polymerase chain reaction. Protein levels and the functional characteristics of CREB were determined in nuclear fractions by means of Western blot and cyclic adenosine monophosphate response element (CRE)-DNA binding activity, respectively. In the same nuclear fraction, we determined the catalytic activity of cyclic adenosine monophosphate-stimulated protein kinase A by means of enzymatic assay. We observed a significant reduction in messenger RNA and protein levels of CREB, CRE-DNA binding activity, and basal and cyclic adenosine monophosphate-stimulated protein kinase A activity in BA 9 and hippocampus of suicide subjects, without any change in messenger RNA levels of neuron-specific enolase in BA 9. Except for protein kinase A activity, changes in CREB expression and CRE-DNA binding activity were present in all suicide subjects, irrespective of diagnosis. These changes were unrelated to postmortem intervals, age, sex, or antidepressant treatment. Given the significance of CREB in mediating various physiological functions through gene transcription, our results of decreased expression and functional characteristics of CREB in postmortem brain of suicide subjects suggest that CREB may play an important role in suicidal behavior.

  5. Effect of dibutyryl cyclic adenosine monophosphate on the gene expression of plasminogen activator inhibitor-1 and tissue factor in adipocytes.

    PubMed

    Taniguchi, Makoto; Ono, Naoko; Hayashi, Akira; Yakura, Yuwna; Takeya, Hiroyuki

    2011-10-01

    Hypertrophic adipocytes in obese states express the elevated levels of plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF). An increase in the intracellular concentration of cyclic adenosine monophosphate (cAMP) promotes triglyceride hydrolysis and may improve dysregulation of adipocyte metabolism. Here, we investigate the effect of dibutyryl-cAMP (a phosphodiesterase-resistant analog of cAMP) on the gene expression of PAI-1 and TF in adipocytes. Differentiated 3T3-L1 adipocytes were treated with dibutyryl-cAMP and agents that would be expected to elevate intracellular cAMP, including cilostazol (a phosphodiesterase inhibitor with anti-platelet and vasodilatory properties), isoproterenol (a beta adrenergic agonist) and forskolin (an adenylyl cyclase activator). The levels of PAI-1 and TF mRNAs were measured using real-time quantitative reverse transcription-PCR. The treatment of adipocytes with dibutyryl-cAMP resulted in the inhibition of both lipid accumulation and TF gene expression. However, PAI-1 gene expression was slightly but significantly increased by dibutyryl-cAMP. On the other hand, cilostazol inhibited the expression of PAI-1 without affecting lipid accumulation. When the adipocytes were treated with cilostazol in combination with isoproterenol or forskolin, the inhibitory effect of cilostazol on PAI-1 gene expression was counteracted, thus suggesting that inhibition by cilostazol may not be the result of intracellular cAMP accumulation by phosphodiesterase inhibition. These results suggest the implication of cAMP in regulation of the gene expression of TF and PAI-1 in adipocytes. Our findings will serve as a useful basis for further research in therapy for obesity-associated thrombosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Prebiotic synthesis and reactions of nucleosides and nucleotides

    NASA Astrophysics Data System (ADS)

    Ferris, J. P.; Yanagawa, H.; Hagan, W. J.

    Diiminosuccinonitrile (DISN) has been investigated as a potential prebiotic phosphorylating agent. It is formed readily by the oxidation of diaminomaleonitrile (DAMN), a tetramer of HCN, DISN effects the cyclization of 3'-adenosine monophosphate to adenosine 2',3'-cyclic phosphate in up to 40% yield. The DISN-mediated phosphorylation of uridine to uridine monophosphate does not proceed efficiently in aqueous solution. The reaction of DISN and BrCN with uridine-5'-phosphate and uridine results in the formation of 2,2'-anhydronucleotides and 2,2'-anhydronucleosides respectively, and other reaction products resulting from an initial reaction at the 2'- and 3'-hydroxyl groups. The clay mineral catalysis of the cyclization of adenosine-3'-phosphate was investigated using homoionic montmorillonites.

  7. The prebiotic chemistry of nucleotides

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Yanagawa, H.; Hagan, W. J., Jr.

    1984-01-01

    Diminosuccinonitrile (DISN), formed by the oxidation of diaminomaleonitrile, has been investigated as a potential prebiotic phosphorylating agent. DISN affects the cyclization of 3'-adenosine monophosphate to adenosine 2',3'-cyclic phosphate in up to 39 percent yield. The mechanism of this reaction was investigated. The DISN-mediated phosphorylation of uridine to uridine monophosphate does not proceed efficiencly in aqueous solution. The reaction of DISN with uridine-5'-phosphate and uridine results in the formation of 2,2'-anhydronucleotides and 2,2'-anhydronucleosides respectively, and other reaction products resulting from an initial reaction at the 2'- and 3'-hydroxyl groups. The clay mineral catalysis of the cyclization of adenosine-3'-phosphate was investigated using homoionic montmorillonites.

  8. The Prebiotic Chemistry of Nucleotides

    NASA Astrophysics Data System (ADS)

    Ferris, J. P.; Yanagawa, H.; Hagan, W. J., Jr.

    1984-12-01

    Diiminosuccinonitrile (DISN), formed by the oxidation of diaminomaleonitrile (DAMN), has been investigated as a potential prebiotic phosphorylating agent. DISN effects the cyclization of 3'-adenosine monophosphate to adenosine 2', 3'-cyclic phosphate in up to 39% yield. The mechanism of this reaction was investigated. The DISN-mediated phosphorylation of uridine to uridine monophosphate does not proceed efficiently in aqueous solution. The reaction of DISN with uridine-5'-phosphate and uridine results in the formation of 2,2'-anhydronucleotides and 2,2'-anhydronucleosides respectively, and other reaction products resulting from an initial reaction at the 2'- and 3'-hydroxyl groups. The clay mineral catalysis of the cyclization of adenosine-3'-phosphate was investigated using homoionic montmorillonites.

  9. Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer's disease.

    PubMed

    Perez-Gonzalez, Rocio; Pascual, Consuelo; Antequera, Desiree; Bolos, Marta; Redondo, Miriam; Perez, Daniel I; Pérez-Grijalba, Virginia; Krzyzanowska, Agnieszka; Sarasa, Manuel; Gil, Carmen; Ferrer, Isidro; Martinez, Ana; Carro, Eva

    2013-09-01

    Elevated levels of amyloid beta (Aβ) peptide, hyperphosphorylation of tau protein, and inflammation are pathological hallmarks in Alzheimer's disease (AD). Phosphodiesterase 7 (PDE7) regulates the inflammatory response through the cyclic adenosine monophosphate signaling cascade, and thus plays a central role in AD. The aim of this study was to evaluate the efficacy of an inhibitor of PDE7, named S14, in a mouse model of AD. We report that APP/Ps1 mice treated daily for 4 weeks with S14 show: (1) significant attenuation in behavioral impairment; (2) decreased brain Aβ deposition; (3) enhanced astrocyte-mediated Aβ degradation; and (4) decreased tau phosphorylation. These effects are mediated via the cyclic adenosine monophosphate/cyclic adenosine monophosphate response element-binding protein signaling pathway, and inactivation of glycogen synthase kinase (GSK)3. Our data support the use of PDE7 inhibitors, and specifically S14, as effective therapeutic agents for the prevention and treatment of AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. STUDIES ON THE MECHANISM OF ACTION OF CYCLIC 3’,5’-ADENOSINE MONOPHOSPHATE ON STEROID HYDROXYLATIONS IN ADRENAL HOMOGENATES,

    DTIC Science & Technology

    Cyclic 3’,5’-adenosine monophosphate (cyclic 3’,5’AMP) has recently been shown to stimulate selectively steroid C-11- beta hydroxylase activity in rat...to be mediated via stimulation of alpha- glucan phosphorylase, which in turn led to enhanced production of G-6-P from glycogen and a concomitant...increase in NADPH generation. However, if cyclic 3’,5’-AMP stimulated steroid 11- beta -hydroxylation in adrenal homogenates only by this mechanism, its

  11. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3',5'-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Ferris, J. P.

    1997-01-01

    Methyladenine and adenine N-phosphoryl derivatives of adenosine 5'-monophosphate (5'-AMP) and uridine 5'-monophosphate (5'-UMP) are synthesized, and their structures are elucidated. The oligomerization reactions of the adenine derivatives of 5'-phosphoramidates of adenosine on montmorillonite are investigated. 1-Methyladenine and 3-methyladenine derivatives on montmorillonite yielded oligoadenylates as long as undecamer, and the 2-methyladenine and adenine derivatives on montmorillonite yielded oligomers up to hexamers and pentamers, respectively. The 1-methyladenine derivative yielded linear, cyclic, and A5'ppA-derived oligonucleotides with a regioselectivity for the 3',5'-phosphodiester linkages averaging 84%. The effect of pKa and amine structure of phosphate-activating groups on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidate of adenosine are discussed. The binding and reaction of methyladenine and adenine N-phosphoryl derivatives of adenosine are described.

  12. Adenosine-derived doped carbon dots: From an insight into effect of N/P co-doping on emission to highly sensitive picric acid sensing.

    PubMed

    Li, Na; Liu, Shi Gang; Fan, Yu Zhu; Ju, Yan Jun; Xiao, Na; Luo, Hong Qun; Li, Nian Bing

    2018-07-12

    The various synthetic routes of carbon dots (C-dots) feature a considerable step toward their potential use in chemical sensors and biotechnology. Herein, by coupling phosphorus and nitrogen element introduction, the adenosine-derived N/P co-doped C-dots with fluorescence enhancement were achieved. By separately employing adenosine, adenosine monophosphate, adenosine diphosphate, and adenosine-5'-triphosphate as precursors, the effect of N/P co-doping on the fluorescence emission is discussed in detail. The formed C-dots with adenosine monophosphate exhibited strong blue fluorescence with a high quantum yield of 33.81%. Then the C-dots were employed as a fluorescent probe and utilized to develop a fast, sensitive, and selective picric acid sensor. The fluorescence of C-dots can be quenched by picric acid immediately, giving rise to a picric acid determination down to 30 nM. The possible mechanism of fluorescence quenching was discussed, which was proved to be inner filter effect and static quenching. Moreover, this method has the potential to detect picric acid in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. cAMP and forskolin decrease gamma-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes.

    PubMed Central

    Heuschneider, G; Schwartz, R D

    1989-01-01

    The effects of the cyclic nucleotide cAMP on gamma-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate inhibited muscimol-induced 36Cl- uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner (IC50 = 1.3 mM). The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the gamma-aminobutyric acid-gated Cl- channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced 36Cl- uptake and generated cAMP with similar potencies (IC50 = 14.3 microM; EC50 = 6.2 microM, respectively). Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl- channel directly. Indeed, forskolin inhibition of muscimol-induced 36Cl- uptake was extremely rapid (within 5 sec), preceding the accumulation of sufficient levels of cAMP. After 5 min, a slower phase of inhibition was seen, similar to the time course for cAMP accumulation. The data suggest that gamma-aminobutyric acid (GABAA) receptor function in brain can be regulated by cAMP-dependent phosphorylation. PMID:2468163

  14. Catalytic dephosphorylation of adenosine monophosphate (AMP) to form supramolecular nanofibers/hydrogels.

    PubMed

    Du, Xuewen; Li, Junfeng; Gao, Yuan; Kuang, Yi; Xu, Bing

    2012-02-18

    The use of enzyme to instruct the self-assembly of the nucleoside of adenosine in water provides a new class of molecular nanofibers/hydrogels as functional soft materials. This journal is © The Royal Society of Chemistry 2012

  15. Prebiotic synthesis and reactions of nucleosides and nucleotides

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Yanagawa, H.; Hagan, W. J., Jr.

    1983-01-01

    The potential of diiminosuccinonitrile (DISN) as a prebiotic phosphorylating agent is studied. This compound is formed readily by the oxidation of diaminomaleonitrile, a tetramer of HCN. DISN is shown to produce the cyclization of 3'-adenosine monophosphate to adenosine 2',3'-cyclic phosphate in up to 40 percent yield. The DISN-mediated phosphorylation of uridine to uridine monophosphate is determined not to proceed efficiently in aqueous solution. The reaction of DISN and BrCN with uridine-5'-phosphate and uridine is found to result in the formation of 2,2'-anhydronucleotides and 2,2'-anhydronucleosides, respectively, and other reaction products resulting from an initial reaction at the 2' and 3'-hydroxyl groups. Homoionic montmorillonites were employed to study the clay mineral catalysis of the cyclization of adenosine-3'-phosphate.

  16. Histone deacetylases 6 increases the cyclic adenosine monophosphate level and promotes renal cyst growth.

    PubMed

    Wu, Ming; Mei, Changlin

    2016-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by abnormal enhanced cell proliferation and fluid secretion, which are triggered by increased levels of cyclic adenosine monophosphate (cAMP). Cebotaru et al. showed that a HDAC6 inhibitor reduced the cAMP level and inhibited cyst formation in Pkd1 knockout mice, which may become a new potential therapeutic agent for ADPKD. This study also raised several intriguing questions that might advance our understanding of the molecular pathogenesis of ADPKD. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. Adenosine 5'-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice.

    PubMed

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-09

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.

  18. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice

    PubMed Central

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-01

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238

  19. Metformin augments doxorubicin cytotoxicity in mammary carcinoma through activation of adenosine monophosphate protein kinase pathway.

    PubMed

    El-Ashmawy, Nahla E; Khedr, Naglaa F; El-Bahrawy, Hoda A; Abo Mansour, Hend E

    2017-05-01

    Since the incidence of breast cancer increases dramatically all over the world, the search for effective treatment is an urgent need. Metformin has demonstrated anti-tumorigenic effect both in vivo and in vitro in different cancer types. This work was designed to examine on molecular level the mode of action of metformin in mice bearing solid Ehrlich carcinoma and to evaluate the use of metformin in conjunction with doxorubicin as a combined therapy against solid Ehrlich carcinoma. Ehrlich ascites carcinoma cells were inoculated in 60 female mice as a model of breast cancer. The mice were divided into four equal groups: Control tumor, metformin, doxorubicin, and co-treatment. Metformin (15 mg/kg) and doxorubicin (4 mg/kg) were given intraperitoneally (i.p.) for four cycles every 5 days starting on day 12 of inoculation. The anti-tumorigenic effect of metformin was mediated by enhancement of adenosine monophosphate protein kinase activity and elevation of P53 protein as well as the suppression of nuclear factor-kappa B, DNA contents, and cyclin D1 gene expression. Metformin and doxorubicin mono-treatments exhibited opposing action regarding cyclin D1 gene expression, phosphorylated adenosine monophosphate protein kinase, and nuclear factor-kappa B levels. Co-treatment markedly decreased tumor volume, increased survival rate, and improved other parameters compared to doxorubicin group. In parallel, the histopathological findings demonstrated enhanced apoptosis and absence of necrosis in tumor tissue of co-treatment group. Metformin proved chemotherapeutic effect which could be mediated by the activation of adenosine monophosphate protein kinase and related pathways. Combining metformin and doxorubicin, which exhibited different mechanisms of action, produced greater efficacy as anticancer therapeutic regimen.

  20. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    PubMed

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.

  1. Regulation of Maltodextrin Phosphorylase Synthesis in Escherichia coli by Cyclic Adenosine 3′, 5′-Monophosphate and Glucose1

    PubMed Central

    Chao, Julie; Weathersbee, Carolyn J.

    1974-01-01

    Cyclic adenosine 3′, 5′-monophosphate (AMP) stimulates maltodextrin phosphorylase synthesis in Escherichia coli cells induced with maltose. A maximal effect occurs at 2 to 3 mM cyclic AMP. The action of cyclic AMP is specific, inasmuch as adenosine triphosphate, 3′-AMP, 5′-AMP, adenosine, and dibutyryl cyclic AMP are inactive. Glucose, α-methyl glucoside, 2-deoxyglucose, and pyridoxal 5′-phosphate repress maltodextrin phosphorylase synthesis. This repression is reversed by cyclic AMP. The action of cyclic AMP appears to be at the transcriptional level, since cyclic AMP fails to stimulate phosphorylase production in induced cells in which messenger ribonucleic acid synthesis has been arrested by rifampin or by inducer removal. The two other enzymes involved in the metabolism of maltose, amylomaltase and maltose permease, are also induced in this strain of E. coli and affected by glucose and cyclic AMP in a manner similar to phosphorylase. PMID:4358043

  2. Discovery of a cAMP Deaminase That Quenches Cyclic AMP-Dependent Regulation

    PubMed Central

    Goble, Alissa M.; Feng, Youjun; Raushel, Frank M.; Cronan, John E.

    2013-01-01

    An enzyme of unknown function within the amidohydrolase superfamily was discovered to catalyze the hydrolysis of the universal second messenger, cyclic-3’, 5’-adenosine monophosphate (cAMP). The enzyme, which we have named CadD, is encoded by the human pathogenic bacterium Leptospira interrogans. Although CadD is annotated as an adenosine deaminase, the protein specifically deaminates cAMP to cyclic-3’, 5’-inosine monophosphate (cIMP) with a kcat/Km of 2.7 ± 0.4 × 105 M−1 s−1 and has no activity on adenosine, adenine, or 5’-adenosine monophosphate (AMP). This is the first identification of a deaminase specific for cAMP. Expression of CadD in Escherichia coli mimics the loss of adenylate cyclase in that it blocks growth on carbon sources that require the cAMP-CRP transcriptional activator complex for expression of the cognate genes. The cIMP reaction product cannot replace cAMP as the ligand for CRP binding to DNA in vitro and cIMP is a very poor competitor of cAMP activation of CRP for DNA binding. Transcriptional analyses indicate that CadD expression represses expression of several cAMP-CRP dependent genes. CadD adds a new activity to the cAMP metabolic network and may be a useful tool in intracellular study of cAMP-dependent processes. PMID:24074367

  3. Effects of cyclic-nucleotide derivatives on the growth of human colonic carcinoma xenografts and on cell production in the rat colonic crypt epithelium.

    PubMed Central

    Tutton, P. J.; Barkla, D. H.

    1981-01-01

    Previous studies have shown that various amine hormones are able to influence the growth rate of human colorectal carcinomas propagated as xenografts in immune-deprived mice, and it is now well known that the effects of many amine and other hormones are mediated by cyclic nucleotides, acting as second messengers within cells. In the present study the influence of various derivatives of cyclic adenosine monophosphate and cyclic guanosine monophosphate on the growth of two different lines of colorectal cancer growing in immune-deprived mice, and on the cell production rate in the colonic crypt epithelium of the rat, was assessed. Growth of each tumour line, as well as crypt-cell production, was suppressed by treatment wit N6O2' dibutyryl and N6 monobutyryl derivatives of cyclic adenosine monophosphate. Dibutyryl cyclic guanosine monophosphate, on the other hand, was found to promote the growth of Tumour HXK4 and to promote crypt cell production, but to have no significant effect on Tumour HXM2. PMID:6268136

  4. Effects of cyclic-nucleotide derivatives on the growth of human colonic carcinoma xenografts and on cell production in the rat colonic crypt epithelium.

    PubMed

    Tutton, P J; Barkla, D H

    1981-08-01

    Previous studies have shown that various amine hormones are able to influence the growth rate of human colorectal carcinomas propagated as xenografts in immune-deprived mice, and it is now well known that the effects of many amine and other hormones are mediated by cyclic nucleotides, acting as second messengers within cells. In the present study the influence of various derivatives of cyclic adenosine monophosphate and cyclic guanosine monophosphate on the growth of two different lines of colorectal cancer growing in immune-deprived mice, and on the cell production rate in the colonic crypt epithelium of the rat, was assessed. Growth of each tumour line, as well as crypt-cell production, was suppressed by treatment wit N6O2' dibutyryl and N6 monobutyryl derivatives of cyclic adenosine monophosphate. Dibutyryl cyclic guanosine monophosphate, on the other hand, was found to promote the growth of Tumour HXK4 and to promote crypt cell production, but to have no significant effect on Tumour HXM2.

  5. Further studies on the effect of adenosine cyclic monophosphate derivatives on cell proliferation in the jejunal crypts of rat.

    PubMed

    Tutton, P J; Barkla, D H

    1982-01-01

    1. Cell proliferation in the jejunal crypt epithelium of rat was measured using a stathmokinetic technique. 2. Sodium butyrate was found to promote jejunal crypt cell proliferation. 3. N6, O2'-Dibutyryl cyclic adenosine monophosphate (cAMP), N6-monobutyryl-cAMP and N6-monobutyryl-8-bromo-cAMP were found to inhibit cell proliferation when compared to sodium butyrate treated tissues. 4. 8-Chlorophenylthio-cAMP was found to inhibit cell division when compared to untreated animals. 5. O2'-Monobutyryl cAMP and 8-bromo-cAMP were not found to inhibit cell proliferation.

  6. Adaptive and regulatory mechanisms in aged rats with postoperative cognitive dysfunction

    PubMed Central

    Bi, Yanlin; Liu, Shuyun; Yu, Xinjuan; Wang, Mingshan; Wang, Yuelan

    2014-01-01

    Inflammation may play a role in postoperative cognitive dysfunction. 5′ Adenosine monophosphate-activated protein kinase, nuclear factor-kappa B, interleukin-1β, and tumor necrosis factor-α are involved in inflammation. Therefore, these inflammatory mediators may be involved in postoperative cognitive dysfunction. Western immunoblot analysis revealed 5′ adenosine monophosphate-activated protein kinase and nuclear factor-kappa B in the hippocampus of aged rats were increased 1–7 days after splenectomy. Moreover, interleukin-1β and tumor necrosis factor-α were upregulated and gradually decreased. Therefore, these inflammatory mediators may participate in the splenectomy model of postoperative cognitive dysfunction in aged rats. PMID:25206851

  7. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production.

    PubMed

    First, Eric A

    2015-08-15

    A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. An Effect of Dexamethasone on Adenosine 3′,5′ -Monophosphate Content and Adenosine 3′,5′ -Monophosphate Phosphodiesterase Activity of Cultured Hepatoma Cells

    PubMed Central

    Manganiello, Vincent; Vaughan, Martha

    1972-01-01

    The effect of dexamethasone on adenosine 3′,5′-monophosphate (cAMP) phosphodiesterase activity in cultured HTC hepatoma cells was investigated. Homogenates of these cells contain phosphodiesterase activity with two apparent Michaelis constants for cAMP (2-5 μm and 50 μm). At all substrate concentrations tested, phosphodiesterase activity was decreased 25-40% in cells incubated for 36 hr or more with 1 μm dexamethasone. Acid phosphatase activity in the same cells was not decreased. α-Methyl testosterone, 1 μm, was without effect on phosphodiesterase activity. Incubation for 10 min with epinephrine plus theophylline increased the cAMP content of the HTC cells 3- to 6-fold. In cells incubated for 72 hr with dexamethasone, the basal concentration of cAMP was slightly increased and the increment produced by epinephrine plus theophylline was markedly increased. We believe that in many cells the so-called permissive effects of steroid hormones on cAMP mediated processes may be due to an effect of these hormones on cAMP phosphodiesterase activity similar to that observed in HTC cells incubated with dexamethasone. PMID:4341439

  9. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5′-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa)

    PubMed Central

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E.; Gallo-Reynoso, Juan P.

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5′-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5′-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5′-monophosphate (IMP), adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), ATP, guanosine 5′-diphosphate (GDP), guanosine 5′-triphosphate (GTP), and xanthosine 5′-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  10. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    PubMed

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  11. 3-phosphoglycerate kinase from Hydrogenomonas facilis.

    NASA Technical Reports Server (NTRS)

    Mcfadden, B. A.; Schuster, E.

    1972-01-01

    Description of studies of the kinetics of heat inactivation of phosphoglycerate kinase in the soluble fraction from Hydrogenomonas facilis, its extensive purification, and inhibition by adenosine monophosphate (AMP). No evidence was found for an enzyme which catalyzes adenosine-triphosphate-dependent conversion of 3-phosphoglycerate to 1,3-diphosphoglycerate, AMP, and phosphate.

  12. Cyclic nucleotide content of tobacco BY-2 cells.

    PubMed

    Richards, Helen; Das, Swadipa; Smith, Christopher J; Pereira, Louisa; Geisbrecht, Alan; Devitt, Nicola J; Games, David E; van Geyschem, Jan; Gareth Brenton, A; Newton, Russell P

    2002-11-01

    The cyclic nucleotide content of cultured tobacco bright yellow-2 (BY-2) cells was determined, after freeze-killing, perchlorate extraction and sequential chromatography, by radioimmunoassay. The identities of the putative cyclic nucleotides, adenosine 3',5'-cyclic monophosphate (cyclic AMP), guanosine 3',5'-cyclic monophosphate (cyclic GMP) and cytidine 3',5'-cyclic monophosphate (cyclic CMP) were unambiguously confirmed by tandem mass spectrometry. The potential of BY-2 cell cultures as a model system for future investigations of cyclic nucleotide function in higher plants is discussed.

  13. Catecholamine-mediated arrhythmias in acute myocardial infarction. Experimental evidence and role of beta-adrenoceptor blockade.

    PubMed

    Opie, L H; Lubbe, W F

    1979-11-24

    Ventricular fibrillation is a major mechanism of sudden death. The cellular link between catecholamine activity and the development of serious ventricular arrhythmias may be in the formation of cyclic adenosine monophosphate (cAMP). Cyclic AMP and agents promoting cAMP accumulation allow development of slow responses which, especially in the presence of regional ischaemia, could develop into ventricular fibrillation. The role of beta-antagonist agents in the therapy of acute myocardial infarction is analysed in relation to the hypothesis linking cAMP and ventricular fibrillation. Reasons for the limited effectiveness of anti-arrhythmic therapy with beta-antagonist agents are given.

  14. Ticagrelor Compared with Clopidogrel Increased Adenosine and Cyclic Adenosine Monophosphate Plasma Concentration in Acute Coronary Syndrome Patients.

    PubMed

    Li, Xiaoye; Wang, Qibing; Xue, Ying; Chen, Jiahui; Lv, Qianzhou

    2017-06-01

    Ticagrelor produces a more potent antiplatelet effect than clopidogrel and inhibits cellular uptake of adenosine, which is associated with several cardiovascular consequences. We aimed to explore the correlation between adenosine and cyclic adenosine monophosphate (cAMP) plasma concentration and antiplatelet effect by clopidogrel or ticagrelor in patients with acute coronary syndrome (ACS) receiving dual antiplatelet therapy (DAPT). We conducted a prospective, observational and single-centre cohort study enrolling 68 patients with non-ST-segment elevation ACS from January 2016 to May 2016. We monitored the inhibition of platelet aggregation (IPA) and assessed adenosine, adenosine deaminase (ADA) and cAMP plasma concentrations by immunoassay on admission and 48 hr after coronary angiography. The demographic and clinical data were collected by reviewing their medical records. The two groups exhibited similar baseline characteristics including adenosine, ADA and cAMP. The mean IPA in patients receiving ticagrelor was significantly higher than that in patients receiving clopidogrel (93.5% versus 67.2%; p = 0.000). Also, we observed that patients treated with ticagrelor had a significantly higher increase in levels of adenosine and cAMP compared with those treated with clopidogrel (1.04 (0.86; 1.41) versus 0.04 (-0.25; 0.26); p = 0.029 and 0.78 (-1.67; 1.81) versus 0.60 (-1.91; 4.60); p = 0.037, respectively). And there was a weak correlation between IPA and adenosine as well as cAMP plasma concentration (r = 0.390, p = 0.001 and r = 0.335, p = 0.005, respectively). Ticagrelor increased adenosine and cAMP plasma concentration compared with clopidogrel in patients with ACS. © 2017 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  15. Neutrophil-derived 5′-Adenosine Monophosphate Promotes Endothelial Barrier Function via CD73-mediated Conversion to Adenosine and Endothelial A2B Receptor Activation

    PubMed Central

    Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.

    1998-01-01

    During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120

  16. Metabolism of Exogenous Purine Bases and Nucleosides by Salmonella typhimurium

    PubMed Central

    Hoffmeyer, J.; Neuhard, J.

    1971-01-01

    Purine-requiring mutants of Salmonella typhimurium LT2 containing additional mutations in either adenosine deaminase or purine nucleoside phosphorylase have been constructed. From studies of the ability of these mutants to utilize different purine compounds as the sole source of purines, the following conclusions may be drawn. (i) S. typhimurium does not contain physiologically significant amounts of adenine deaminase and adenosine kinase activities. (ii) The presence of inosine and guanosine kinase activities in vivo was established, although the former activity appears to be of minor significance for inosine metabolism. (iii) The utilization of exogenous purine deoxyribonucleosides is entirely dependent on a functional purine nucleoside phosphorylase. (iv) The pathway by which exogenous adenine is converted to guanine nucleotides in the presence of histidine requires a functional purine nucleoside phosphorylase. Evidence is presented that this pathway involves the conversion of adenine to adenosine, followed by deamination to inosine and subsequent phosphorolysis to hypoxanthine. Hypoxanthine is then converted to inosine monophosphate by inosine monophosphate pyrophosphorylase. The rate-limiting step in this pathway is the synthesis of adenosine from adenine due to lack of endogenous ribose-l-phosphate. PMID:4928005

  17. Metabolic intervention to affect myocardial recovery following ischemia.

    PubMed Central

    Pasque, M K; Wechsler, A S

    1984-01-01

    Myocardial recovery during reperfusion following ischemia is critical to patient survival in a broad spectrum of clinical settings. Myocardial functional recovery following ischemia correlates well with recovery of myocardial adenosine triphosphate (ATP). Adenosine triphosphate recovery is uniformly incomplete during reperfusion following moderate ischemic injury and is therefore subject to manipulation by metabolic intervention. By definition ATP recovery is limited either by (1) energy availability and application in the phosphorylation of adenosine monophosphate (AMP) to ATP or (2) availability of AMP for this conversion. Experimental data suggest that substrate energy and the mechanisms required for its application in the creation of high energy phosphate bonds (AMP conversion to ATP) are more than adequate during reperfusion following moderate ischemic injury. Adenosine monophosphate availability, however, is inadequate following ischemia due to loss of diffusable adenine nucleotide purine metabolites. These purine precursors are necessary to fuel adenine nucleotide salvage pathways. Metabolic interventions that enhance AMP recovery rather than those that improve substrate energy availability during reperfusion are therefore recommended. The mechanisms of various metabolic interventions are discussed in this framework along with the rationale for or against their clinical application. PMID:6428332

  18. Potentiation of adenosine triphosphate-induced contractile responses of the guinea-pig isolated vas deferens by adenosine monophosphate and adenosine 5'-monophosphorothioate.

    PubMed Central

    Fedan, J. S.

    1987-01-01

    The effects of incubating the guinea-pig isolated vas deferens in the presence of adenine nucleotides (adenosine triphosphate, ATP; adenosine diphosphate, ADP; and adenosine monophosphate, AMP), or in the presence of their phosphorothioate analogues (adenosine 5'-O-(3-thiotriphosphate), ATP gamma S; adenosine 5'-O-(2-thiodiphosphate), ADP beta S; and adenosine 5'-monophosphorothioate, AMP alpha S), on contractile responses to ATP were compared. After challenge with a low (1 microM) or high (300 microM) concentration of ATP to obtain control responses, one vas deferens of a pair was incubated for 5 min with one of the adenine nucleotides, while the contralateral preparation was incubated with the corresponding phosphorothioate analogue. At the conclusion of the incubation the preparations were challenged again with ATP. Incubation with AMP or AMP alpha S resulted in a transient potentiation of responses to 1 microM and 300 microM ATP. The potentiation following incubation with AMP alpha S was larger than that produced by AMP. After incubation with ADP, ADP beta S, ATP and ATP gamma S, responses to 1 microM ATP were decreased, while those to 300 microM ATP were unaffected. Thus, incubation with AMP and AMP alpha S results in potentiation, rather than inhibition, of ATP-induced responses. On the other hand, 5'-diphosphate, 5'-triphosphate, 5'-O-(2-thiodiphosphate) and 5'-O-(3-thiotriphosphate) moieties on adenosine have no effect or cause autoinhibition. These results indicate that AMP exerts a potentiating effect on reactivity to exogenous ATP. AMP arising from the enzymatic degradation of ATP might modulate the level of response to ATP released endogenously as a cotransmitter. PMID:3038248

  19. A conjugate of decyltriphenylphosphonium with plastoquinone can carry cyclic adenosine monophosphate, but not cyclic guanosine monophosphate, across artificial and natural membranes.

    PubMed

    Firsov, Alexander M; Rybalkina, Irina G; Kotova, Elena A; Rokitskaya, Tatyana I; Tashlitsky, Vadim N; Korshunova, Galina A; Rybalkin, Sergei D; Antonenko, Yuri N

    2018-02-01

    The present study demonstrated for the first time the interaction between adenosine 3',5'-cyclic monophosphate (cAMP), one of the most important signaling compounds in living organisms, and the mitochondria-targeted antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1). The data obtained on model liquid membranes and human platelets revealed the ability of SkQ1 to selectively transport cAMP, but not guanosine 3',5'-cyclic monophosphate (cGMP), across both artificial and natural membranes. In particular, SkQ1 elicited translocation of cAMP from the source to the receiving phase of a Pressman-type cell, while showing low activity with cGMP. Importantly, only conjugate with plastoquinone, but not dodecyl-triphenylphosphonium, was effective in carrying cAMP. In human platelets, SkQ1 also appeared to serve as a carrier of cAMP, but not cGMP, from outside to inside the cell, as measured by phosphorylation of the vasodilator stimulated phosphoprotein. The SkQ1-induced transfer of cAMP across the plasma membrane found here can be tentatively suggested to interfere with cAMP signaling pathways in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair

    PubMed Central

    Knott, Eric P.; Assi, Mazen; Rao, Sudheendra N. R.; Ghosh, Mousumi; Pearse, Damien D.

    2017-01-01

    A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic. PMID:28338622

  1. cAMP and forskolin decrease. gamma. -aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuschneider, G.; Schwartz, R.D.

    1989-04-01

    The effects of the cyclic nucleotide cAMP on {gamma}-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N{sup 6}, O{sup 2{prime}}-dibutyryladenosine 3{prime},5{prime}-cyclic monophosphate inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3{prime},5{prime}-cyclic monophosphate, 8-bromoadenosine 3{prime},5{prime}-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the {gamma}-aminobutyric acid-gated Cl{sup {minus}} channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, inmore » the intact synaptoneurosomes, forskolin inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl{sup {minus}} channel directly. The data suggest that {gamma}-aminobutyric acid (GABA{sub A}) receptor function in brain can be regulated by cAMP-dependent phosphorylation.« less

  2. [High performance liquid chromatogram (HPLC) determination of adenosine phosphates in rat myocardium].

    PubMed

    Miao, Yu; Wang, Cheng-long; Yin, Hui-jun; Shi, Da-zhuo; Chen, Ke-ji

    2005-04-18

    To establish method for the quantitative determination of adenosine phosphates in rat myocardium by optimized high performance liquid chromatogram (HPLC). ODS HYPERSIL C(18) column and a mobile phase of 50 mmol/L tribasic potassium phosphate buffer solution (pH 6.5), with UV detector at 254 nm were used. The average recovery rates of myocardial adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) were 99%-107%, 96%-104% and 95%-119%, respectively; relative standard deviations (RSDs) of within-day and between-days were less than 1.5% and 5.1%, respectively. The method is simple, rapid and accurate, and can be used to analyse the adenosine phosphates in myocardium.

  3. Charge transfer complexes of adenosine-5‧-monophosphate and cytidine-5‧-monophosphate with water-soluble cobalt(II) Schiff base complexes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2006-01-01

    Water-soluble cobalt(II) tetradentate Schiff base complexes have been shown to form charge transfer (CT) complexes with a series of nucleoside monophosphates including adenosine-5‧-monophosphate (AMP) and cytidine-5‧-monophosphate (CMP). The investigated water-soluble cobalt(II) Schiff base complexes are (i) disodium[{bis(5-sulfo-salicylaldehyde)-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-salophen)] (1); (ii) disodium[{bis(5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-sal-4,5-dmophen)] (2) and (iii) disodium[{bis(4-methoxy-5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-4-meosal-4,5-dmophen)] (3). The formation constant and thermodynamic parameters for charge transfer complex formation of water-soluble cobalt(II) Schiff base complexes with nucleoside monophosphates were determined spectrophotometrically in aqueous solution at constant ionic strength (I = 0.2 mol dm-3 KNO3) under physiological condition (pH 7.0) and at various temperatures between 288 and 308 K. The stoichiometry has been found to be 1:1 (water-soluble cobalt(II) Schiff base complex: nucleoside monophosphate) in each case. Our spectroscopic and thermodynamic results show that the interaction of water-soluble cobalt(II) Schiff base complexes with the investigated nucleoside monophosphates occurs mainly through the phosphate group. The trend of the interaction according to the cobalt(II) Schiff base complexes due to electronic and steric factors is as follows: Na2[Co(SO3-salophen)] > Na2[Co(SO3-sal-4,5-dmophen)] > Na2[Co(SO3-4-meosal-4,5-dmophen)]. Also the trend of the interaction of a given cobalt(II) Schiff base complex according to the nucleoside monophosphate is as follows: CMP > AMP.

  4. A short review on structure and role of cyclic-3',5'-adenosine monophosphate-specific phosphodiesterase 4 as a treatment tool.

    PubMed

    Eskandari, Nahid; Mirmosayyeb, Omid; Bordbari, Gazaleh; Bastan, Reza; Yousefi, Zahra; Andalib, Alireza

    2015-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) are known as a super-family of enzymes which catalyze the metabolism of the intracellular cyclic nucleotides, cyclic-3',5'-adenosine monophosphate (cAMP), and cyclic-3',5'-guanosine monophosphate that are expressed in a variety of cell types that can exert various functions based on their cells distribution. The PDE4 family has been the focus of vast research efforts over recent years because this family is considered as a prime target for therapeutic intervention in a number of inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, and it should be used and researched by pharmacists. This is because the major isoform of PDE that regulates inflammatory cell activity is the cAMP-specific PDE, PDE4. This review discusses the relationship between PDE4 and its inhibitor drugs based on structures, cells distribution, and pharmacological properties of PDE4 which can be informative for all pharmacy specialists.

  5. Alpha-Lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling in the skeletal muscle of aged mice

    USDA-ARS?s Scientific Manuscript database

    Skeletal muscle mitochondrial dysfunction is associated with aging and diabetes, which decreases respiratory capacity and increases reactive oxygen species. Lipoic acid (LA) possesses antioxidative and antidiabetic properties. Metabolic action of LA is mediated by activation of adenosine monophospha...

  6. Effect of nitrogen starvation on the level of adenosine 3',5'-monophosphate in Anabaena variabilis.

    PubMed

    Hood, E E; Armour, S; Ownby, J D; Handa, A K; Bressan, R A

    1979-12-03

    Low levels of adenosine 3',5'-monophosphate (cyclic AMP) were detected in the cyanobacterium Anabaena variabilis using a protein binding assay and two radioisotopic labelling methods. The basal concentration of intracellular cyclic AMP ranged from 0.27 pmol/mg protein in A. variabilis Kutz grown under heterotrophic conditions to 1.0--2.7 pmol/mg protein in A. variabilis strain 377 grown autotrophically. Extracellular cyclic AMP was found to comprise as much as 90% of the total cyclic AMP in rapidly growing cultures. When A. variabilis strain 377 was starved of nitrogen, a 3--4-fold increase in intracellular cyclic AMP was observed during the 24 h period coincident with early heterocyst development.

  7. [Phosphodiesterase-5 inhibitors for the treatment of pulmonary arterial hypertension].

    PubMed

    Beltrán-Gámez, Miguel E; Sandoval-Zárate, Julio; Pulido, Tomás

    2015-01-01

    In experimental and clinical cardiology, phosphodiesterase type 5 (PDE-5) inhibitors have brought scientific interest as a therapeutic tool in pulmonary arterial hypertension (PAH) management in recent years. Phosphodiesterases are a superfamily of enzymes that inactivate cyclic adenosine monophosphate and cyclic guanosine monophosphate, the second messengers of prostacyclin and nitric oxide. The rationale for the use of PDE-5 inhibitors in PAH is based on their capacity to overexpresss the nitric oxide pathway pursued inhibition of cyclic guanosine monophosphate hydrolysis. By increasing cyclic guanosine monophosphate levels it promotes vasodilation, antiproliferative and pro-apoptotic effects that may reverse pulmonary vascular remodeling. There is also evidence that these drugs may directly enhance right ventricular contractility through an increase in cyclic adenosine monophosphate mediated by the inhibition of the cyclic guanosine monophosphate -sensitive PDE-3. Sildenafil, tadalafil and vardenafil are 3 specific PDE-5 inhibitors in current clinical use, which share similar mechanisms of action but present some significant differences regarding potency, selectivity for PDE-5 and pharmacokinetic properties. Sildenafil received approval in 2005 by the Food and Drug Administration and the European Medicines Agency and tadalafil in 2009 by the Food and Drug Administration and the European Medicines Agency for the treatment of PAH in patients classified as NYHA/WHO functional class II and III. In Mexico, sildenafil and tadalafil were approved by Comisión Federal de Protección contra Riesgos Sanitarios for this indication in 2010 and 2011, respectively. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  8. Staphylococcus aureus synthesizes adenosine to escape host immune responses

    PubMed Central

    Thammavongsa, Vilasack; Kern, Justin W.; Missiakas, Dominique M.

    2009-01-01

    Staphylococcus aureus infects hospitalized or healthy individuals and represents the most frequent cause of bacteremia, treatment of which is complicated by the emergence of methicillin-resistant S. aureus. We examined the ability of S. aureus to escape phagocytic clearance in blood and identified adenosine synthase A (AdsA), a cell wall–anchored enzyme that converts adenosine monophosphate to adenosine, as a critical virulence factor. Staphylococcal synthesis of adenosine in blood, escape from phagocytic clearance, and subsequent formation of organ abscesses were all dependent on adsA and could be rescued by an exogenous supply of adenosine. An AdsA homologue was identified in the anthrax pathogen, and adenosine synthesis also enabled escape of Bacillus anthracis from phagocytic clearance. Collectively, these results suggest that staphylococci and other bacterial pathogens exploit the immunomodulatory attributes of adenosine to escape host immune responses. PMID:19808256

  9. Change in single cystathionine β-synthase domain-containing protein from a bent to flat conformation upon adenosine monophosphate binding.

    PubMed

    Jeong, Byung-Cheon; Park, Si Hoon; Yoo, Kyoung Shin; Shin, Jeong Sheop; Song, Hyun Kyu

    2013-07-01

    Cystathionine β-synthase (CBS) domains are small intracellular modules that can act as binding domains for adenosine derivatives, and they may regulate the activity of associated enzymes or other functional domains. Among these, the single CBS domain-containing proteins, CBSXs, from Arabidopsis thaliana, have recently been identified as redox regulators of the thioredoxin system. Here, the crystal structure of CBSX2 in complex with adenosine monophosphate (AMP) is reported at 2.2Å resolution. The structure of dimeric CBSX2 with bound-AMP is shown to be approximately flat, which is in stark contrast to the bent form of apo-CBSXs. This conformational change in quaternary structure is triggered by a local structural change of the unique α5 helix, and by moving each loop P into an open conformation to accommodate incoming ligands. Furthermore, subtle rearrangement of the dimer interface triggers movement of all subunits, and consequently, the bent structure of the CBSX2 dimer becomes a flat structure. This reshaping of the structure upon complex formation with adenosine-containing ligand provides evidence that ligand-induced conformational reorganization of antiparallel CBS domains is an important regulatory mechanism. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Simultaneous determination of 5'-monophosphate nucleotides in infant formulas by HPLC-MS.

    PubMed

    Ren, Yiping; Zhang, Jingshun; Song, Xiaodan; Chen, Xiaochun; Li, Duo

    2011-04-01

    A method was developed for simultaneous determination of 5'-monophosphate nucleotides, adenosine 5'-monophosphate, cytidine 5'-monophosphate, guanosine 5'-monophosphate, inosine 5'-monophosphate, and uridine 5'-monophosphate in infant formulas by high-performance liquid chromatography-mass spectrometry equipped with electrospray ionization source. The complete chromatographic separation of five nucleotides was achieved through a Symmetry C(18) column, after a binary gradient elution with water containing 0.1% formic acid and acetonitrile as mobile phase. The multi-reaction monitoring mode was applied for tandem mass spectrometry analysis. The established method was further validated by determining the linearity (R(2) > 0.999), recovery (92.0-105.0%), and precision (relative standard deviation ≤6.97%). To verify the applicability of the method, thirty commercially available infant formulas were randomly purchased from the supermarkets in Hangzhou, China, and then analyzed. The results showed that the developed method is validated, sensitive, and reliable for quantitation of nucleotides in infant formulas.

  11. A defect in KCa3.1 channel activity limits the ability of CD8+ T cells from cancer patients to infiltrate an adenosine-rich microenvironment.

    PubMed

    Chimote, Ameet A; Balajthy, Andras; Arnold, Michael J; Newton, Hannah S; Hajdu, Peter; Qualtieri, Julianne; Wise-Draper, Trisha; Conforti, Laura

    2018-04-24

    The limited ability of cytotoxic T cells to infiltrate solid tumors hampers immune surveillance and the efficacy of immunotherapies in cancer. Adenosine accumulates in solid tumors and inhibits tumor-specific T cells. Adenosine inhibits T cell motility through the A 2A receptor (A 2A R) and suppression of KCa3.1 channels. We conducted three-dimensional chemotaxis experiments to elucidate the effect of adenosine on the migration of peripheral blood CD8 + T cells from head and neck squamous cell carcinoma (HNSCC) patients. The chemotaxis of HNSCC CD8 + T cells was reduced in the presence of adenosine, and the effect was greater on HNSCC CD8 + T cells than on healthy donor (HD) CD8 + T cells. This response correlated with the inability of CD8 + T cells to infiltrate tumors. The effect of adenosine was mimicked by an A 2A R agonist and prevented by an A 2A R antagonist. We found no differences in A 2A R expression, 3',5'-cyclic adenosine monophosphate abundance, or protein kinase A type 1 activity between HNSCC and HD CD8 + T cells. We instead detected a decrease in KCa3.1 channel activity, but not expression, in HNSCC CD8 + T cells. Activation of KCa3.1 channels by 1-EBIO restored the ability of HNSCC CD8 + T cells to chemotax in the presence of adenosine. Our data highlight the mechanism underlying the increased sensitivity of HNSCC CD8 + T cells to adenosine and the potential therapeutic benefit of KCa3.1 channel activators, which could increase infiltration of these T cells into tumors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Amplified Peroxidase-Like Activity in Iron Oxide Nanoparticles Using Adenosine Monophosphate: Application to Urinary Protein Sensing.

    PubMed

    Yang, Ya-Chun; Wang, Yen-Ting; Tseng, Wei-Lung

    2017-03-22

    Numerous compounds such as protein and double-stranded DNA have been shown to efficiently inhibit intrinsic peroxidase-mimic activity in Fe 3 O 4 nanoparticles (NP) and other related nanomaterials. However, only a few studies have focused on finding new compounds for enhancing the catalytic activity of Fe 3 O 4 NP-related nanomaterials. Herein, phosphate containing adenosine analogs are reported to enhance the oxidation reaction of hydrogen peroxide (H 2 O 2 ) and amplex ultrared (AU) for improving the peroxidase-like activity in Fe 3 O 4 NPs. This enhancement is suggested to be a result of the binding of adenosine analogs to Fe 2+ /Fe 3+ sites on the NP surface and from adenosine 5'-monophosphate (AMP) acting as the distal histidine residue of horseradish peroxidase for activating H 2 O 2 . Phosphate containing adenosine analogs revealed the following trend for the enhanced activity of Fe 3 O 4 NPs: AMP > adenosine 5'-diphosphate > adenosine 5'-triphosphate. The peroxidase-like activity in the Fe 3 O 4 NPs progressively increased with increasing AMP concentration and polyadenosine length. The Michaelis constant for AMP attached Fe 3 O 4 NPs is 5.3-fold lower and the maximum velocity is 2.7-fold higher than those of the bare Fe 3 O 4 NPs. Furthermore, on the basis of AMP promoted peroxidase mimicking activity in the Fe 3 O 4 NPs and the adsorption of protein on the NP surface, a selective fluorescent turn-off system for the detection of urinary protein is developed.

  13. Gonadotropin stimulation of cyclic adenosine monophosphate and testosterone production without detectable high-affinity binding sites in purified Leydig cells from rat testis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, E.S.; Bhalla, V.K.

    1991-02-01

    Rat testicular interstitial cells were separated by three different gradient-density procedures and, with each, two biochemically and morphologically distinct cell fractions were isolated. The lighter density cells in fraction-I bound iodine 125-labeled human chorionic gonadotropin (hCG) with high-affinity (apparent equilibrium dissociation constant, Kd, approximately 10{sup {minus} 10} M) without producing either cyclic adenosine monophosphate or testosterone in response to hormone action. The heavier-density cells displayed morphologic features typical of Leydig cells and produced cyclic adenosine monophosphate and testosterone in the presence of hCG without detectable {sup 125}I-labeled hCG high-affinity binding. These cell fractions were further characterized by studies using deglycosylatedmore » hCG, a known antagonist to hCG action. Cell concentration-dependent studies with purified Leydig cells revealed that maximal testosterone production was achieved when lower cell concentrations (0.5 x 10(6) cells/250 microliters) were used for in vitro hCG stimulation assays. Under these conditions, the {sup 125}I-labeled hCG binding was barely detectable (2.24 fmol; 2,698 sites/cell). Furthermore, these studies revealed that the hCG-specific binding in Leydig cells is overestimated by the classic method for nonspecific binding correction using excess unlabeled hormone. An alternate method is presented.« less

  14. The formation of novel layered compounds by exfoliation and restacking of cadmium phosphorus trisulphide with the biological molecules adenosine monophosphate and cytidine monophosphate included

    NASA Astrophysics Data System (ADS)

    Westreich, Philippe

    2004-12-01

    Exfoliated single layer Cd0.8PS3 has been combined with the biological molecules cytidine monophosphate (CMP) and adenosine monophosphate (AMP) to form the novel restacked compound LixCd 0.8PS3(NMP)z(H2O) y, where N stands for cytidine or adenosine. Composition was determined using energy dispersive X-ray spectroscopy, and the structure of these compounds was studied using X-ray diffraction on oriented films. It was found that for the AMP samples, there is little influence of relative humidity (RH) in the range of 0 to 80%, after which there is a rapid expansion of the interlayer space. In the 0 to 80% range, for (AMP)0.5, a host plane spacing near 19.6 A was found. Electron density calculations on the X-ray diffraction pattern suggest a model for the arrangement of guest AMP molecules between the host layers, with an accompanying water molecule. The calculations also suggest that there is a buckling in the host layer of about +/-0.6 A. For the (CMP)0.3 samples, there is more sensitivity to relative humidity in the 0--80% range, with spacings varying from 20 to 24 A. Much of this variation is gradual, but at around 50% RH, there is a discontinous change in the spacing of about 1.8 A, corresponding to less than the size of a water molecule, that appears to arise from a modification of the CMP conformation. Possible reasons far the differences in the behaviour of the two systems are explored.

  15. Down-regulation of adenosine monophosphate-activated protein kinase activity: A driver of cancer.

    PubMed

    He, Xiaoling; Li, Cong; Ke, Rong; Luo, Lingyu; Huang, Deqiang

    2017-04-01

    Adenosine monophosphate-activated protein kinase (AMPK), a serine/threonine protein kinase, is known as "intracellular energy sensor and regulator." AMPK regulates multiple cellular processes including protein and lipid synthesis, cell proliferation, invasion, migration, and apoptosis. Moreover, AMPK plays a key role in the regulation of "Warburg effect" in cancer cells. AMPK activity is down-regulated in most tumor tissues compared with the corresponding adjacent paracancerous or normal tissues, indicating that the decline in AMPK activity is closely associated with the development and progression of cancer. Therefore, understanding the mechanism of AMPK deactivation during cancer progression is of pivotal importance as it may identify AMPK as a valid therapeutic target for cancer treatment. Here, we review the mechanisms by which AMPK is down-regulated in cancer.

  16. Hydrogels Based on Ag+ -Modulated Assembly of 5'-Adenosine Monophosphate for Enriching Biomolecules.

    PubMed

    Hu, Yuanyuan; Xie, Dong; Wu, Yang; Lin, Nangui; Song, Aixin; Hao, Jingcheng

    2017-11-07

    Supramolecular hydrogels obtained by combining 5'-adenosine monophosphate (AMP) with Ag + were fabricated in this work. Their gelation capability was enhanced by increasing the concentration of Ag + or decreasing the pH. The gels are very sensitive to light, which endows them with potential applications as visible-light photosensitive materials. Coordination between the nucleobase of AMP and Ag + , as well as π-π stacking of nucleobases, are considered to be the main driving forces for self-assembly. The hydrogels successfully achieved the encapsulation and enrichment of biomolecules. Hydrogen bonding between the amino group of guest molecules and silver nanoparticles along the nanofibers drives the enrichment and is considered to be a crucial interaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ecto-5’-Nucleotidase Overexpression Reduces Tumor Growth in a Xenograph Medulloblastoma Model

    PubMed Central

    Cappellari, Angélica R.; Pillat, Micheli M.; Souza, Hellio D. N.; Dietrich, Fabrícia; Oliveira, Francine H.; Figueiró, Fabrício; Abujamra, Ana L.; Roesler, Rafael; Lecka, Joanna; Sévigny, Jean; Battastini, Ana Maria O.; Ulrich, Henning

    2015-01-01

    Background Ecto-5’-nucleotidase/CD73 (ecto-5’-NT) participates in extracellular ATP catabolism by converting adenosine monophosphate (AMP) into adenosine. This enzyme affects the progression and invasiveness of different tumors. Furthermore, the expression of ecto-5’-NT has also been suggested as a favorable prognostic marker, attributing to this enzyme contradictory functions in cancer. Medulloblastoma (MB) is the most common brain tumor of the cerebellum and affects mainly children. Materials and Methods The effects of ecto-5’-NT overexpression on human MB tumor growth were studied in an in vivo model. Balb/c immunodeficient (nude) 6 to 14-week-old mice were used for dorsal subcutaneous xenograph tumor implant. Tumor development was evaluated by pathophysiological analysis. In addition, the expression patterns of adenosine receptors were verified. Results The human MB cell line D283, transfected with ecto-5’-NT (D283hCD73), revealed reduced tumor growth compared to the original cell line transfected with an empty vector. D283hCD73 generated tumors with a reduced proliferative index, lower vascularization, the presence of differentiated cells and increased active caspase-3 expression. Prominent A1 adenosine receptor expression rates were detected in MB cells overexpressing ecto-5’-NT. Conclusion This work suggests that ecto-5’-NT promotes reduced tumor growth to reduce cell proliferation and vascularization, promote higher differentiation rates and initiate apoptosis, supposedly by accumulating adenosine, which then acts through A1 adenosine receptors. Therefore, ecto-5’-NT might be considered an important prognostic marker, being associated with good prognosis and used as a potential target for therapy. PMID:26491983

  18. Utility of Adenosine Monophosphate Detection System for Monitoring the Activities of Diverse Enzyme Reactions.

    PubMed

    Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A

    Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD + ]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD + and enzymes that use NAD + like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.

  19. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis

    PubMed Central

    Heitmeier, Monique R.; Mayer, Allyson L.; Higgins, Cassandra B.; Crowley, Jan R.; Kraft, Thomas E.; Chi, Maggie; Newberry, Elizabeth P.; Chen, Zhouji; Finck, Brian N.; Davidson, Nicholas O.; Yarasheski, Kevin E.; Hruz, Paul W.; Moley, Kelle H.

    2016-01-01

    Trehalose is a naturally occurring disaccharide that has gained attention for its ability to induce cellular autophagy and mitigate diseases related to pathological protein aggregation. Despite decades of ubiquitous use as a nutraceutical, preservative, and humectant, its mechanism of action remains elusive. Here, we showed that trehalose inhibited members of the SLC2A (also known as GLUT) family of glucose transporters. Trehalose-mediated inhibition of glucose transport induced AMPK (adenosine 5′-monophosphate-activated protein kinase)-dependent autophagy regression of hepatic steatosis in vivo, and a reduction in the accumulation of lipid droplets in primary murine hepatocyte cultures. Our data indicated that, by inhibiting glucose transport, trehalose triggers beneficial cellular autophagy. PMID:26905426

  20. A step into the RNA world: Conditional analysis of hydrogel formation of adenosine 5'-monophosphate induced by cyanuric acid.

    PubMed

    Yokosawa, Takumi; Enomoto, Ryota; Uchino, Sho; Hirasawa, Ito; Umehara, Takuya; Tamura, Koji

    2017-12-01

    Nucleotide polymerization occurs by the nucleophilic attack of 3'-oxygen of the 3'-terminal nucleotide on the α-phosphorus of the incoming nucleotide 5'-triphosphate. The π-stacking of mononucleotides is an important factor for prebiotic RNA polymerization in terms of attaining the proximity of two reacting moieties. Adenosine and adenosine 5'-monophosphate (AMP) are known to form hydrogel in the presence of cyanuric acid at neutral pH. However, we observed that other canonical ribonucleotides did not gel under the same condition. The π-stacking-induced hydrogel formation of AMP was destroyed at pH 2.0, suggesting that the protonation of N at position 1 of adenine abolished hydrogen bonding with the NH of cyanuric acid and resulted in the deformation of the hexad of adenine and cyanuric acid. A liquid-like gel was formed in the case of adenosine with cyanuric acid and boric acid, whereas AMP caused the formation of a solid gel, implying that the negative charge inherent to AMP prevented the formation of esters of boric acid with the cis-diols of ribose. Cyanuric acid-driven oligomerizations of AMP might have been the first crucial event in the foundation of the RNA world. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. "Self-catabolite repression" of pectate lyase in Erwinia carotovora.

    PubMed Central

    Tsuyumu, S

    1979-01-01

    The induction of pectate lyase of Erwinia carotovora was repressed by a high concentration of its inducer. The concomitant addition of cyclic adenosine 3',5'-monophosphate reversed this repression. PMID:217862

  2. 21 CFR 862.1230 - Cyclic AMP test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... measure the level of adenosine 3′, 5′-monophosphate (cyclic AMP) in plasma, urine, and other body fluids...

  3. Effect of parathyroid hormone and insulin on extracellular cyclic adenosine-3',5'-monophosphate in patients with benign and malignant breast tumors.

    PubMed

    Berstein, L M; Semiglazov, V F; Vishnevski, A S; Dilman, V M

    1978-01-01

    Basal excretion of cyclic adenosine monophosphate (cAMP) and its basal level in blood plasma in breast cancer (BC) patients and those with fibroadenomatosis did not differ essentially. However, intravenous injection of parathyroid hormone (100 U) and insulin (0.08 U/kg body weight) was followed by a much less rise in urine-cAMP excretion and blood-cAMP levels in BC patients than in benign process in mammary gland. A substantial correlation between changes in plasma cAMP level and the degree of insulin-induced hypoglycemia was not observed. There was a negative correlation between reponse to parathyroid hormone and insulin and body overweight in BC patients. It was suggested that body fat content may influence the peculiarities of metabolism of extracellular cAMP in cancer patients considerably.

  4. Photoaffinity labeling of regulatory subunits of protein kinase A in cardiac cell fractions of rats

    NASA Technical Reports Server (NTRS)

    Mednieks, M. I.; Popova, I.; Grindeland, R. E.

    1992-01-01

    Photoaffinity labeling in heart tissue of rats flown on Cosmos 2044 was used to measure the regulatory (R) subunits of adenosine monophosphate-dependent protein kinase. A significant decrease of RII subunits in the particulate cell fraction extract (S2; P less than 0.05 in all cases) was observed when extracts of tissue samples from vivarium controls were compared with those from flight animals. Photoaffinity labeling of the soluble fraction (S1) was observed to be unaffected by spaceflight or any of the simulation conditions. Proteins of the S2 fraction constitute a minor (less than 10 percent) component of the total, whereas the S1 fraction contained most of the cell proteins. Changes in a relatively minor aspect of adenosine monophosphate-mediated reactions are considered to be representative of a metabolic effect.

  5. [The effects of epinephrine and adrenergic antagonists on adenosine 3', 5'-monophosphate level of bovine trabecular cells in vitro].

    PubMed

    Lu, Y; Li, M; Shen, Y

    1998-03-01

    To determine the effects of epinephrine (EPI) and adrenergic antagonists on adenosine 3', 5'-monophosphate (cAMP) level of bovine trabecular cells (BTC) in vitro. (3)H-cAMP was used in protein binding assay for measuring the intracellular level of cAMP. (1) 10(-5) mol/L EPI induced a fold increase of cAMP in cultured BTC in vitro; (2) Timilol and ICI 118, 551 blocked efficiently the effect of EPI at a lower concentration (10(-6) mol/L). (3) Bisoprolol did not efficiently block the effect of EPI unless at high concentrations (>or= 10(-5) mol/L). The effects of EPI increasing outflow facility may be associated with its increase of cAMP in trabecular cells; BTC contains beta-adrenergic receptors, and beta(2)-adrenergic receptors are dominant.

  6. Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini.

    PubMed

    Metz, D C; Patto, R J; Mrozinski, J E; Jensen, R T; Turner, R J; Gardner, J D

    1992-10-15

    In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing calcium from inositol 1,4,5-trisphosphate-sensitive intracellular stores and by increasing influx of extracellular calcium. TG also caused a small increase in basal amylase secretion, inhibited the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate, and potentiated the stimulation of amylase secretion caused by 12-O-tetradecanoylphorbol-13-acetate or secretagogues that increase cyclic adenosine 3',5'-monophosphate. Bombesin, which like TG increased free cytoplasmic calcium, also potentiated the stimulation of amylase secretion caused by secretagogues that increase cyclic adenosine 3',5'-monophosphate, but did not inhibit the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate. Finally, TG inhibited the sustained phase of cholecystokinin-stimulated amylase secretion and potentiated the time course of vasoactive intestinal peptide-stimulated amylase secretion. The present findings indicate that stimulation of amylase secretion by secretagogues that increase inositol 1,4,5-trisphosphate does not depend on increased free cytoplasmic calcium per se. In contrast, TG-induced potentiation of the stimulation of secretagogues that increase cellular cyclic adenosine 3',5'-monophosphate appears to result from increased free cytoplasmic calcium per se.

  7. The protection of meloxicam against chronic aluminium overload-induced liver injury in rats.

    PubMed

    Yang, Yang; He, Qin; Wang, Hong; Hu, Xinyue; Luo, Ying; Liang, Guojuan; Kuang, Shengnan; Mai, Shaoshan; Ma, Jie; Tian, Xiaoyan; Chen, Qi; Yang, Junqing

    2017-04-04

    The present study was designed to observe the protective effect and mechanisms of meloxicam on liver injury caused by chronic aluminium exposure in rats. The histopathology was detected by hematoxylin-eosin staining. The levels of prostaglandin E2, cyclic adenosine monophosphate and inflammatory cytokines were detected by enzyme linked immunosorbent assay. The expressions of cyclooxygenases-2, prostaglandin E2 receptors and protein kinase A were measured by western blotting and immunohistochemistry. Our experimental results showed that aluminium overload significantly damaged the liver. Aluminium also significantly increased the expressions of cyclooxygenases-2, prostaglandin E2, cyclic adenosine monophosphate, protein kinase A and the prostaglandin E2 receptors (EP1,2,4) and the levels of inflammation and oxidative stress, while significantly decreased the EP3 expression in liver. The administration of meloxicam significantly improved the impairment of liver. The contents of prostaglandin E2 and cyclic adenosine monophosphate were significantly decreased by administration of meloxicam. The administration of meloxicam also significantly decreased the expressions of cyclooxygenases-2 and protein kinase A and the levels of inflammation and oxidative stress, while significantly increased the EP1,2,3,4 expressions in rat liver. Our results suggested that the imbalance of cyclooxygenases-2 and downstream prostaglandin E2 signaling pathway is involved in the injury of chronic aluminium-overload rat liver. The protective mechanism of meloxicam on aluminium-overload liver injury is attributed to reconstruct the balance of cyclooxygenases-2 and downstream prostaglandin E2 signaling pathway.

  8. Kinetic parameters and renal clearances of plasma adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in man

    PubMed Central

    Broadus, Arthur E.; Kaminsky, Neil I.; Hardman, Joel G.; Sutherland, Earl W.; Liddle, Grant W.

    1970-01-01

    Kinetic parameters and the renal clearances of plasma adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) were evaluated in normal subjects using tritium-labeled cyclic nucleotides. Each tracer was administered both by single, rapid intravenous injection and by constant intravenous infusion, and the specific activities of the cyclic nucleotides in plasma and urine were determined. Both cyclic AMP and cyclic GMP were cleared from plasma by glomerular filtration. The kidney was found to add a variable quantity of endogenous cyclic AMP to the tubular urine, amounting to an average of approximately one-third of the total level of cyclic AMP excreted. Plasma was the source of virtually all of the cyclic GMP excreted. Plasma levels of the cyclic nucleotides appeared to be in dynamic steady state. The apparent volumes of distribution of both nucleotides exceeded extracellular fluid volume, averaging 27 and 38% of body weight for cyclic AMP and cyclic GMP, respectively. Plasma production rates ranged from 9 to 17 nmoles/min for cyclic AMP and from 7 to 13 nmoles/min for cyclic GMP. Plasma clearance rates averaged 668 ml/min for cyclic AMP and 855 ml/min for cyclic GMP. Approximately 85% of the elimination of the cyclic nucleotides from the circulation was due to extrarenal clearance. PMID:5480849

  9. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5'-monophosphate.

    PubMed

    Shi, Fan; Gong, Shixing; Xu, Li; Zhu, Huanhuan; Sun, Zhenfan; Sun, Wei

    2013-12-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5'-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. © 2013.

  10. Synthesis, conformational analysis, and biological activity of new analogues of thiazole-4-carboxamide adenine dinucleotide (TAD) as IMP dehydrogenase inhibitors.

    PubMed

    Franchetti, Palmarisa; Cappellacci, Loredana; Pasqualini, Michela; Petrelli, Riccardo; Jayaprakasan, Vetrichelvan; Jayaram, Hiremagalur N; Boyd, Donald B; Jain, Manojkumar D; Grifantini, Mario

    2005-03-15

    Thiazole-4-carboxamide adenine dinucleotide (TAD) analogues T-2'-MeAD (1) and T-3'-MeAD (2) containing, respectively, a methyl group at the ribose 2'-C-, and 3'-C-position of the adenosine moiety, were prepared as potential selective human inosine monophosphate dehydrogenase (IMPDH) type II inhibitors. The synthesis of heterodinucleotides was carried out by CDI-catalyzed coupling reaction of unprotected 2'-C-methyl- or 3'-C-methyl-adenosine 5'-monophosphate with 2',3'-O-isopropylidene-tiazofurin 5'-monophosphate, and then deisopropylidenation. Biological evaluation of dinucleotides 1 and 2 as inhibitors of recombinant human IMPDH type I and type II resulted in a good activity. Inhibition of both isoenzymes by T-2'-MeAD and T-3'-MeAD was noncompetitive with respect to NAD substrate. Binding of T-3'-MeAD was comparable to that of parent compound TAD, while T-2'-MeAD proved to be a weaker inhibitor. However, no significant difference was found in inhibition of the IMPDH isoenzymes. T-2'-MeAD and T-3'-MeAD were found to inhibit the growth of K562 cells (IC(50) 30.7 and 65.0muM, respectively).

  11. An enzyme-linked immuno-mass spectrometric assay with the substrate adenosine monophosphate.

    PubMed

    Florentinus-Mefailoski, Angelique; Soosaipillai, Antonius; Dufresne, Jaimie; Diamandis, Eleftherios P; Marshall, John G

    2015-02-01

    An enzyme-linked immuno-mass spectrometric assay (ELIMSA) with the specific detection probe streptavidin conjugated to alkaline phosphatase catalyzed the production of adenosine from the substrate adenosine monophosphate (AMP) for sensitive quantification of prostate-specific antigen (PSA) by mass spectrometry. Adenosine ionized efficiently and was measured to the femtomole range by dilution and direct analysis with micro-liquid chromatography, electrospray ionization, and mass spectrometry (LC-ESI-MS). The LC-ESI-MS assay for adenosine production was shown to be linear and accurate using internal (13)C(15)N adenosine isotope dilution, internal (13)C(15)N adenosine one-point calibration, and external adenosine standard curves with close agreement. The detection limits of LC-ESI-MS for alkaline phosphatase-streptavidin (AP-SA, ∼190,000 Da) was tested by injecting 0.1 μl of a 1 pg/ml solution, i.e., 100 attograms or 526 yoctomole (5.26E-22) of the alkaline-phosphatase labeled probe on column (about 315 AP-SA molecules). The ELIMSA for PSA was linear and showed strong signals across the picogram per milliliter range and could robustly detect PSA from all of the prostatectomy patients and all of the female plasma samples that ranged as low as 70 pg/ml with strong signals well separated from the background and well within the limit of quantification of the AP-SA probe. The results of the ELIMSA assay for PSA are normal and homogenous when independently replicated with a fresh standard over multiple days, and intra and inter diem assay variation was less than 10 % of the mean. In a blind comparison, ELIMSA showed excellent agreement with, but was more sensitive than, the present gold standard commercial fluorescent ELISA, or ECL-based detection, of PSA from normal and prostatectomy samples, respectively.

  12. In vitro anti-diabetic effect and chemical component analysis of 29 essential oils products.

    PubMed

    Yen, Hsiu-Fang; Hsieh, Chi-Ting; Hsieh, Tusty-Jiuan; Chang, Fang-Rong; Wang, Chin-Kun

    2015-03-01

    Twenty-nine commercial essential oil (EO) products that were purchased from the Taiwan market, including three different company-made Melissa officinalis essential oils, were assayed on their glucose consumption activity and lipid accumulation activity on 3T3-L1 adipocytes. The EOs of M. officinalis were significantly active in both model assays. By contrast, EOs of peppermint, lavender, bergamot, cypress, niaouli nerolidol, geranium-rose, and revensara did not increase glucose consumption activity from media, but displayed inhibited lipid accumulation activity (65-90% of lipid accumulation vs. the control 100%). Because of the promising activity of M. officinalis EOs, three different products were collected and compared for their gas chromatography chemical profiles and bioactivity. The Western blot data suggest that the key factors of the adenosine monophosphate-activated protein kinase/acetyl-CoA carboxylase pathway can be mediated by M. officinalis EOs. Together with biodata, gas chromatography-mass spectrometry profiles suggested mixtures of citrals and minor compounds of M. officinalis EOs may play an important role on effect of antidiabetes. Copyright © 2014. Published by Elsevier B.V.

  13. Determination of adenosine phosphates in rat gastrocnemius at various postmortem intervals using high performance liquid chromatography.

    PubMed

    Huang, Hong; Yan, Youyi; Zuo, Zhong; Yang, Lin; Li, Bin; Song, Yu; Liao, Linchuan

    2010-09-01

    Although the change in adenosine phosphate levels in muscles may contribute to the development of rigor mortis, the relationship between their levels and the onset and development of rigor mortis has not been well elucidated. In the current study, levels of the adenosine phosphates including adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in gastrocnemius at various postmortem intervals of 180 rats from different death modes were detected by high performance liquid chromatography. The results showed that the levels of ATP and ADP significantly decreased along with the postmortem period of rats from different death mode whereas the AMP level remained the same. In addition, it was found that changes in the ATP levels in muscles after death correlated well with the development of rigor mortis. Therefore, the ATP level could serve as a reference parameter for the deduction of rigor mortis in forensic science.

  14. Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine

    PubMed Central

    Zhang, Zhong-Rong; Leung, Wing Nang; Cheung, Ho Yee; Chan, Chun Wai

    2015-01-01

    This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one), a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP) and cyclic adenosine monophosphate (cGMP) level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine. PMID:26246843

  15. Adenosine monophosphate affects competence development and plasmid DNA transformation in Escherichia coli.

    PubMed

    Zhang, Yan; Li, Wenhua; Wang, Liming; Shen, Ping; Xie, Zhixiong

    2013-11-01

    Artificial plasmid DNA transformation of Escherichia coli induced by calcium chloride is a routine technique in molecular biology and genetic engineering processes, but its mechanism has remained elusive. Because adenosine monophosphate (AMP) has been found to regulate natural transformation in Haemophilus influenza, we aimed to investigate the effects of AMP and its derivatives on E. coli transformation by treating competence with different concentrations of them. Analysis of the transformation efficiencies revealed that AMP inhibited the artificial plasmid DNA transformation of E. coli in a concentration- and time-dependent manner. Furthermore, we found that AMP had no effect on the expression of the transformed gene but that the intracellular AMP level of the competent cells rose after a 6 h treatment. These results suggested that the intracellular AMP level had an important role in E. coli transformation. And these have useful implications for the further investigation of the mechanism of E. coli transformation.

  16. Adenosine Monophosphate Forms Ordered Arrays in Multilamellar Lipid Matrices: Insights into Assembly of Nucleic Acid for Primitive Life

    PubMed Central

    Toppozini, Laura; Dies, Hannah; Deamer, David W.; Rheinstädter, Maikel C.

    2013-01-01

    A fundamental question of biology is how nucleic acids first assembled and then were incorporated into the earliest forms of cellular life 4 billion years ago. The polymerization of nucleotides is a condensation reaction in which phosphodiester bonds are formed. This reaction cannot occur in aqueous solutions, but guided polymerization in an anhydrous lipid environment could promote a non-enzymatic condensation reaction in which oligomers of single stranded nucleic acids are synthesized. We used X-ray scattering to investigate 5′-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix composed of dimyristoylphosphatidylcholine. Bragg peaks corresponding to the lateral organization of the confined AMP molecules were observed. Instead of forming a random array, the AMP molecules are highly entangled, with the phosphate and ribose groups in close proximity. This structure may facilitate polymerization of the nucleotides into RNA-like polymers. PMID:23667523

  17. Adenosine monophosphate forms ordered arrays in multilamellar lipid matrices: insights into assembly of nucleic acid for primitive life.

    PubMed

    Toppozini, Laura; Dies, Hannah; Deamer, David W; Rheinstädter, Maikel C

    2013-01-01

    A fundamental question of biology is how nucleic acids first assembled and then were incorporated into the earliest forms of cellular life 4 billion years ago. The polymerization of nucleotides is a condensation reaction in which phosphodiester bonds are formed. This reaction cannot occur in aqueous solutions, but guided polymerization in an anhydrous lipid environment could promote a non-enzymatic condensation reaction in which oligomers of single stranded nucleic acids are synthesized. We used X-ray scattering to investigate 5'-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix composed of dimyristoylphosphatidylcholine. Bragg peaks corresponding to the lateral organization of the confined AMP molecules were observed. Instead of forming a random array, the AMP molecules are highly entangled, with the phosphate and ribose groups in close proximity. This structure may facilitate polymerization of the nucleotides into RNA-like polymers.

  18. Dibutyryl Adenosine Cyclic 3′:5′-Monophosphate Effects on Goldfish Behavior and Brain RNA Metabolism

    PubMed Central

    Shashoua, Victor E.

    1971-01-01

    Intraventricular administration of dibutyryl adenosine cyclic 3′:5′-monophosphate into goldfish brains produced hyperactive animals. A study of the effects of the drug (25-50 mg/kg) on the incorporation of [5-3H] orotic acid, as a precursor of labeled uridine and cytidine, into newly synthesized RNA showed the formation of an RNA with a uridine to cytidine ratio 20-50% higher than that of the control. In double-labeling experiments with uridine as the labeled precursor, the synthesis of a nuclear RNA fraction (not produced in the absence of drug) was demonstrated. Some of this RNA was found to migrate into the cytoplasmic fraction and to become associated with polysomes. The results suggest that cyclic AMP might function as a “metabolic demand signal” for eliciting new RNA synthesis in goldfish brain. PMID:4330944

  19. Adenosine Monophosphate-Based Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  20. Synthesis of 13 C-labeled 5-Aminoimidazole-4-carboxamide-1-β-D-[13 C5 ] ribofuranosyl 5'-monophosphate.

    PubMed

    Zarkin, Allison K; Elkins, Phyllis D; Gilbert, Amanda; Jester, Teresa L; Seltzman, Herbert H

    2018-06-14

    5-Aminoimidazole-4-carboxamide-1-β-D-[ 13 C 5 ] ribofuranosyl 5'-monophosphate ([ 13 C 5 ribose] AICAR-PO 3 H 2 ) (6) has been synthesized from [ 13 C 5 ]adenosine. Incorporation of the mass-label into [ 13 C 5 ribose] AICAR-PO 3 H 2 provides a useful standard to aid in metabolite identification and quantification in monitoring metabolic pathways. A synthetic route to the 13 C-labeled compound has not been previously reported. Our method employs a hybrid enzymatic and chemical synthesis approach that applies an enzymatic conversion from adenosine to inosine followed by a ring-cleavage of the protected inosine. A direct phosphorylation of the resulting 2',3'-isopropylidine acadesine (5) was developed to yield the title compound in 99% purity following ion exchange chromatography. This article is protected by copyright. All rights reserved.

  1. Cyclic di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions.

    PubMed

    Zeden, Merve S; Schuster, Christopher F; Bowman, Lisa; Zhong, Qiyun; Williams, Huw D; Gründling, Angelika

    2018-03-02

    Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered signaling molecule important for the survival of Firmicutes, a large bacterial group that includes notable pathogens such as Staphylococcus aureus However, the exact role of this molecule has not been identified. dacA , the S. aureus gene encoding the diadenylate cyclase enzyme required for c-di-AMP production, cannot be deleted when bacterial cells are grown in rich medium, indicating that c-di-AMP is required for growth in this condition. Here, we report that an S. aureus dacA mutant can be generated in chemically defined medium. Consistent with previous findings, this mutant had a severe growth defect when cultured in rich medium. Using this growth defect in rich medium, we selected for suppressor strains with improved growth to identify c-di-AMP-requiring pathways. Mutations bypassing the essentiality of dacA were identified in alsT and opuD, encoding a predicted amino acid and osmolyte transporter, the latter of which we show here to be the main glycine betaine-uptake system in S. aureus. Inactivation of these transporters likely prevents the excessive osmolyte and amino acid accumulation in the cell, providing further evidence for a key role of c-di-AMP in osmotic regulation. Suppressor mutations were also obtained in hepS, hemB, ctaA, and qoxB, coding proteins required for respiration. Furthermore, we show that dacA is dispensable for growth in anaerobic conditions. Together, these findings reveal an essential role for the c-di-AMP signaling network in aerobic, but not anaerobic, respiration in S. aureus . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The adipokine adiponectin has potent anti-fibrotic effects mediated via adenosine monophosphate-activated protein kinase: novel target for fibrosis therapy

    PubMed Central

    2012-01-01

    Introduction Fibrosis in scleroderma is associated with collagen deposition and myofibroblast accumulation. Peroxisome proliferator activated receptor gamma (PPAR-γ), a master regulator of adipogenesis, inhibits profibrotic responses induced by transforming growth factor-ß (TGF-β), and its expression is impaired in scleroderma. The roles of adiponectin, a PPAR-γ regulated pleiotropic adipokine, in regulating the response of fibroblasts and in mediating the effects of PPAR-γ are unknown. Methods Regulation of fibrotic gene expression and TGF-ß signaling by adiponectin and adenosine monophosphate protein-activated (AMP) kinase agonists were examined in normal fibroblasts in monolayer cultures and in three-dimensional skin equivalents. AdipoR1/2 expression on skin fibroblasts was determined by real-time quantitative PCR. Results Adiponectin, an adipokine directly regulated by PPAR-γ, acts as a potent anti-fibrotic signal in normal and scleroderma fibroblasts that abrogates the stimulatory effects of diverse fibrotic stimuli and reduces elevated collagen gene expression in scleroderma fibroblasts. Adiponectin responses are mediated via AMP kinase, a fuel-sensing cellular enzyme that is necessary and sufficient for down-regulation of fibrotic genes by blocking canonical Smad signaling. Moreover, we demonstrate that endogenous adiponectin accounts, at least in part, for the anti-fibrotic effects exerted by ligands of PPAR-γ. Conclusions These findings reveal a novel link between cellular energy metabolism and extracellular matrix homeostasis converging on AMP kinase. Since the levels of adiponectin as well as its receptor are impaired in scleroderma patients with progressive fibrosis, the present results suggest a potential role for defective adiponectin expression or function in progressive fibrogenesis in scleroderma and other chronic fibrosing conditions. Restoring the adiponectin signaling axis in fibroblasts might, therefore, represent a novel pharmacological approach to controlling fibrosis. PMID:23092446

  3. Allosteric Effect of Adenosine Triphosphate on Peptide Recognition by 3'5'-Cyclic Adenosine Monophosphate Dependent Protein Kinase Catalytic Subunits.

    PubMed

    Kivi, Rait; Solovjova, Karina; Haljasorg, Tõiv; Arukuusk, Piret; Järv, Jaak

    2016-12-01

    The allosteric influence of adenosine triphosphate (ATP) on the binding effectiveness of a series of peptide inhibitors with the catalytic subunit of 3'5'-cyclic adenosine monophosphate dependent protein kinase was investigated, and the dependence of this effect on peptide structure was analyzed. The allosteric effect was calculated as ratio of peptide binding effectiveness with the enzyme-ATP complex and with the free enzyme, quantified by the competitive inhibition of the enzyme in the presence of ATP excess, and by the enzyme-peptide complex denaturation assay, respectively It was found that the principle "better binding-stronger allostery" holds for interactions of the studied peptides with the enzyme, indicating that allostery and peptide binding with the free enzyme are governed by the same specificity pattern. This means that the allosteric regulation does not include new ligand-protein interactions, but changes the intensity (strength) of the interatomic forces that govern the complex formation in the case of each individual ligand. We propose that the allosteric regulation can be explained by the alteration of the intrinsic dynamics of the protein by ligand binding, and that this phenomenon, in turn, modulates the ligand off-rate from its binding site as well as the binding affinity. The positive allostery could therefore be induced by a reduction in the enzyme's overall intrinsic dynamics.

  4. Regulation of cyclic adenosine monophosphate response element binding protein on renin expression in kidney via complex cyclic adenosine monophosphate response element-binding-protein-binding protein/P300 recruitment.

    PubMed

    Li, Pei; Zhang, Jing; Zhu, Yuanfang; Liu, Ming; Xuan, Jin

    2015-11-01

    Renin synthesis and release is the rate-limiting step in the renin-angiotensin system, because cyclic adenosine monophosphate (cAMP) has been identified as dominant pathway for renin gene expression, and cAMP response element-binding protein (CREB) is found in the human and mouse renin promoter. This study aimed to evaluate the role of CREB in expression of the renin gene. We created conditional deletion of CREB in mice with low-sodium diet, specifically in renin cells of the kidney. To assess the effect of CREB on renin expression, immunostaining of renin was used in samples from wild-type mice and mice with gene knock-down of CREB. Cyclic AMP response element-binding-protein-binding protein (CBP) and p300 were measured in cultured renin cells of the mice, and RNA detection was done with real-time polymerase chain reaction. With low-sodium diet, renin was expressed along the whole wall of the afferent glomerular arterioles in wild-type mice, while there was no increase or even decrease in renin expression in CREB-specific deletion mice; RNA level of renin in cultured cells decreased by 50% with single knock-down of CREB, CBP, or p300, and decreased 70% with triple knock-down of CREB, CBP, and p300. This study found that CREB was important for renin synthesis and the role of CREB can be achieved through the recruitment of co-activators CBP and p300.

  5. A newly developed solution enhances thirty-hour preservation in a canine lung transplantation model.

    PubMed

    Liu, C J; Ueda, M; Kosaka, S; Hirata, T; Yokomise, H; Inui, K; Hitomi, S; Wada, H

    1996-09-01

    Ischemia and reperfusion cause the production of oxygen free radicals. These damage grafts or disrupt normal vascular homeostatic mechanisms, with a parallel reduction in endothelial nitric oxide and adenosine 3',5'-cyclic monophosphate levels. We hypothesized that lung preservation failure may be related to these events. To improve lung preservation, we prepared a new ET-Kyoto solution, which contains N-acetylcysteine (a radical scavenger), nitroglycerin (to elevate the nitric oxide level), and dibutyryl adenosine 3',5'-cyclic monophosphate (to elevate the adenosine 3',5'-cyclic monophosphate level) and examined its efficacy in a canine single-lung transplantation model. Lungs were flushed with new ET-Kyoto solution (group I, n = 9), basal ET-Kyoto solution (group II, n = 6), basal ET-Kyoto solution plus ethanol and propylene glycol (solvents of nitroglycerin; group III, n = 6), or low-potassium dextran glucose solution (group IV, n = 6), and stored at 4 degrees C for 30 hours. After left single-lung transplantation, the right main bronchus and right pulmonary artery were ligated and the functions of the transplanted lung were assessed for 6 hours. Arterial oxygen tension was significantly higher in group I than in groups II, III, and IV (p < 0.05). Peak inspiratory pressure and wet-to-dry lung weight ratio were significantly lower in group I than in groups II and IV (p < 0.01). Histologic and ultrastructural studies showed better preservation in group I than in groups II, III, and IV. We conclude that the new ET-Kyoto solution provides enhanced 30-hour lung preservation.

  6. Role of CNPase in the Oligodendrocytic Extracellular 2′,3′-cAMP-Adenosine Pathway

    PubMed Central

    Verrier, Jonathan D.; Jackson, Travis C.; Gillespie, Delbert G.; Janesko-Feldman, Keri; Bansal, Rashmi; Goebbels, Sandra; Nave, Klaus-Armin; Kochanek, Patrick M.; Jackson, Edwin K.

    2014-01-01

    Extracellular adenosine 3′,5′-cyclic monophosphate (3′,5′-cAMP) is an endogenous source of localized adenosine production in many organs. Recent studies suggest that extracellular 2′,3′-cAMP (positional isomer of 3′,5′-cAMP) is also a source of adenosine, particularly in the brain in vivo post-injury. Moreover, in vitro studies show that both microglia and astrocytes can convert extracellular 2′,3′-cAMP to adenosine. Here we examined the ability of primary mouse oligodendrocytes and neurons to metabolize extracellular 2′,3′-cAMP and their respective adenosine monophosphates (2′-AMP and 3′-AMP). Cells were also isolated from mice deficient in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase). Oligodendrocytes metabolized 2′,3′-cAMP to 2′-AMP with 10-fold greater efficiency than did neurons (and also more than previously examined microglia and astrocytes); whereas, the production of 3′-AMP was minimal in both oligodendrocytes and neurons. The production of 2′-AMP from 2′,3′-cAMP was reduced by 65% in CNPase -/- versus CNPase +/+ oligodendrocytes. Oligodendrocytes also converted 2′-AMP to adenosine, and this was also attenuated in CNPase -/- oligodendrocytes. Inhibition of classic 3′,5′-cAMP-3′-phosphodiesterases with 3-isobutyl-1-methylxanthine did not block metabolism of 2′,3′-cAMP to 2′-AMP and inhibition of classic ecto-5′-nucleotidase (CD73) with α,β-methylene-adenosine-5′-diphosphate did not attenuate the conversion of 2′-AMP to adenosine. These studies demonstrate that oligodendrocytes express the extracellular 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP → adenosine). This pathway is more robustly expressed in oligodendrocytes than in all other CNS cell types because CNPase is the predominant enzyme that metabolizes 2′,3′-cAMP to 2-AMP in CNS cells. By reducing levels of 2′,3′-cAMP (a mitochondrial toxin) and increasing levels of adenosine (a neuroprotectant), oligodendrocytes may protect axons from injury. PMID:23922219

  7. AMP-guided tumour-specific nanoparticle delivery via adenosine A1 receptor.

    PubMed

    Dai, Tongcheng; Li, Na; Han, Fajun; Zhang, Hua; Zhang, Yuanxing; Liu, Qin

    2016-03-01

    Active targeting-ligands have been increasingly used to functionalize nanoparticles for tumour-specific clinical applications. Here we utilize nucleotide adenosine 5'-monophosphate (AMP) as a novel ligand to functionalize polymer-based fluorescent nanoparticles (NPs) for tumour-targeted imaging. We demonstrate that AMP-conjugated NPs (NPs-AMP) efficiently bind to and are following internalized into colon cancer cell CW-2 and breast cancer cell MDA-MB-468 in vitro. RNA interference and inhibitor assays reveal that the targeting effects mainly rely on the specific binding of AMP to adenosine A1 receptor (A1R), which is greatly up-regulated in cancer cells than in matched normal cells. More importantly, NPs-AMP specifically accumulate in the tumour site of colon and breast tumour xenografts and are further internalized into the tumour cells in vivo via tail vein injection, confirming that the high in vitro specificity of AMP can be successfully translated into the in vivo efficacy. Furthermore, NPs-AMP exhibit an active tumour-targeting behaviour in various colon and breast cancer cells, which is positively related to the up-regulation level of A1R in cancer cells, suggesting that AMP potentially suits for more extensive A1R-overexpressing cancer models. This work establishes AMP to be a novel tumour-targeting ligand and provides a promising strategy for future diagnostic or therapeutic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of salinity on regulation mechanism of neuroendocrine-immunoregulatory network in Litopenaeus vannamei.

    PubMed

    Zhao, Qun; Pan, Luqing; Ren, Qin; Wang, Lin; Miao, Jingjing

    2016-02-01

    The effects of low salinity (transferred from 31‰ to 26‰, 21‰, and 16‰) on the regulation pathways of neuroendocrine-immunoregulatory network were investigated in Litopenaeus vannamei. The results showed that the hormones (corticotrophin-releasing hormone, adrenocorticotropic hormone) and biogenic amines (dopamine, noradrenaline, 5-hydroxytryptamine) concentrations in lower salinity groups increased significantly within 12 h. The gene expression of biogenic amine receptors showed that dopamine receptor D4 and α2 adrenergic receptor in lower salinity groups decreased significantly within 12 h, whereas the 5-HT7 receptor significantly increased within 1d. The second messenger synthetases (adenylyl cyclase, phospholipase C) and the second messengers (cyclic adenosine monophosphate, cyclic guanosine monophosphate) of lower salinity groups shared a similar trend in which adenylyl cyclase and cyclic adenosine monophosphate reached the maximum at 12 h, whereas phospholipase C and cyclic guanosine monophosphate reached the minimum. The immune parameters (total hemocyte count, phenoloxidase activity, phagocytic activity, crustin expression, antibacterial activity, C-type lectin expression, hemagglutinating activity) in lower salinity groups decreased significantly within 12 h. Except for the total hemocyte count, all the parameters recovered to the control levels afterwards. Therefore, it may be concluded that the neuroendocrine-immunoregulatory network plays a principal role in adapting to salinity changes as the main center for sensing the stress and causes immune response in L. vannamei. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of adenosine 5'-monophosphate on epidermal turnover.

    PubMed

    Furukawa, Fukumi; Kanehara, Shoko; Harano, Fumiki; Shinohara, Shigeo; Kamimura, Junko; Kawabata, Shigekatsu; Igarashi, Sachiyo; Kawamura, Mitsuaki; Yamamoto, Yuki; Miyachi, Yoshiki

    2008-10-01

    The structure and function of the epidermis is maintained by cell renewal based on epidermal turnover. Epidermal turnover is delayed by aging, and it is thought that the delay of the epidermal turnover is a cause of aging alternation of skin. The epidermal turnover is related to the energy metabolism of epidermal basal cells. Adenosine 5'-triphosphate (ATP) is needed for cell renewal: cell division, and adenosine 5'-monophosphate (AMP) increases the amount of intracellular ATP. These findings suggest that AMP accelerates the epidermal turnover delayed by aging. This study investigated whether AMP and adenosine 5'-monophosphate disodium salt (AMP2Na) accelerates the epidermal turnover. An effect of AMP2Na on cell proliferation was examined by our counting of keratinocytes. An effect of AMP2Na on cell cycle was examined by our counting of basal cells in DNA synthetic period of hairless rats. The effects of AMP2Na (or AMP) on the epidermal turnover were examined by our measuring stratum corneum transit time by use of guinea pigs, and by our measuring stratum corneum surface area by use of hairless rats and in a clinical pharmacological study. The AMP2Na showed two different profiles on the proliferation of primary cultured keratinocytes. At a low concentration it induced cell growth, whereas at a high concentration it inhibited cell growth. The number of basal cells in the DNA synthetic period of AMP2Na was significantly higher than that of the vehicle in hairless rats. The stratum corneum transit time of AMP2Na was significantly shorter than that of the vehicle in guinea pigs. The corneocyte surface area of emulsion containing AMP2Na was significantly smaller than that of the vehicle in volunteers. We conclude that AMP promotes the cell proliferation and the cell cycle progression of epidermal basal cells and accelerates epidermal turnover safely. In addition, AMP is useful for skin rejuvenation in dermatology and aesthetic dermatology.

  10. Neurological basis of AMP-dependent thermoregulation and its relevance to central and peripheral hyperthermia

    PubMed Central

    Muzzi, Mirko; Blasi, Francesco; Masi, Alessio; Coppi, Elisabetta; Traini, Chiara; Felici, Roberta; Pittelli, Maria; Cavone, Leonardo; Pugliese, Anna Maria; Moroni, Flavio; Chiarugi, Alberto

    2013-01-01

    Therapeutic hypothermia is of relevance to treatment of increased body temperature and brain injury, but drugs inducing selective, rapid, and safe cooling in humans are not available. Here, we show that injections of adenosine 5′-monophosphate (AMP), an endogenous nucleotide, promptly triggers hypothermia in mice by directly activating adenosine A1 receptors (A1R) within the preoptic area (POA) of the hypothalamus. Inhibition of constitutive degradation of brain extracellular AMP by targeting ecto 5′-nucleotidase, also suffices to prompt hypothermia in rodents. Accordingly, sensitivity of mice and rats to the hypothermic effect of AMP is inversely related to their hypothalamic 5′-nucleotidase activity. Single-cell electrophysiological recording indicates that AMP reduces spontaneous firing activity of temperature-insensitive neurons of the mouse POA, thereby retuning the hypothalamic thermoregulatory set point towards lower temperatures. Adenosine 5′-monophosphate also suppresses prostaglandin E2-induced fever in mice, having no effects on peripheral hyperthermia triggered by dioxymetamphetamine (ecstasy) overdose. Together, data disclose the role of AMP, 5′-nucleotidase, and A1R in hypothalamic thermoregulation, as well and their therapeutic relevance to treatment of febrile illness. PMID:23093068

  11. Effects of different concentrations of metal ions on degradation of adenosine triphosphate in common carp (Cyprinus carpio) fillets stored at 4°C: An in vivo study.

    PubMed

    Li, Dapeng; Qin, Na; Zhang, Longteng; Lv, Jian; Li, Qingzheng; Luo, Yongkang

    2016-11-15

    The impact of different concentrations of Na(+), K(+), Ca(2+), Mg(2+), Fe(2+), and Zn(2+) on the degradation of adenosine triphosphate (ATP) and the influence of these ions on the activity of adenosine monophosphate deaminase (AMP-deaminase) and acid phosphatase (ACP) in common carp fillets (in vivo) during 4°C storage was examined. The content of ATP, inosine monophosphate (IMP), and hypoxanthine (Hx), and the activity of AMP-deaminase and ACP were determined. Results indicated that the effects of different concentrations of six kinds of metal ions on AMP-deaminase and ACP were not the same. Na(+), K(+), Fe(2+), and Zn(2+) enhanced AMP-deaminase activity, which led to the rapid degradation of ATP and to the generation of a large quantity of IMP within a short time. Ca(2+) and Mg(2+) delayed the change in AMP-deaminase and ACP activity in carp and caused a further delay in the degradation of ATP. Fe(2+) and Zn(2+) inhibited ACP activity, which reduced the decomposition of IMP and the formation of Hx. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. THE SHARK RECTAL GLAND MODEL: A CHAMPION OF RECEPTOR MEDIATED CHLORIDE SECRETION THROUGH CFTR

    PubMed Central

    FORREST, JOHN N.

    2016-01-01

    The dogfish shark salt gland was predicted by Smith and discovered by Burger at the Mount Desert Island Biological Laboratory in Salisbury Cove, Maine. It is an epithelial organ in the intestine composed of tubules that serve a single function: the secretion of hypertonic NaCl. Many G protein receptors are present on the basolateral surface of these tubules, including stimulatory receptors for vasoactive intestinal peptide, adenosine A2, growth hormone releasing hormone, and inhibitory receptors for somatostatin and adenosine A1. An entirely different class of stimulatory receptors is present as C-type natriuretic peptide receptors. Each stimulatory receptor evokes powerful NaCl secretion. G protein receptors bind to Gαs to activate the catalytic unit of adenylate cyclase to form cyclic adenosine monophosphate (cAMP) and protein kinase A that phosphorylates the regulatory domain of cystic fibrosis transmembrane conductance regulator, opening the channel. The C-type natriuretic peptide receptor stimulates by activating guanylate cyclase and endogenous cyclic guanosine monophosphate which inhibits type 3 phosphodiesterase, the enzyme that breaks down cAMP, thereby elevating cAMP and activating the protein kinase A pathway. PMID:28066051

  13. Cultured astrocytes do not release adenosine during hypoxic conditions

    PubMed Central

    Fujita, Takumi; Williams, Erika K; Jensen, Tina K; Smith, Nathan A; Takano, Takahiro; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Recent reports based on a chemiluminescent enzymatic assay for detection of adenosine conclude that cultured astrocytes release adenosine during mildly hypoxic conditions. If so, astrocytes may suppress neural activity in early stages of hypoxia. The aim of this study was to reevaluate the observation using high-performance liquid chromatography (HPLC). The HPLC analysis showed that exposure to 20 or 120 minutes of mild hypoxia failed to increase release of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine from cultured astrocytes. Similar results were obtained using a chemiluminescent enzymatic assay. Moreover, since the chemiluminescent enzymatic assay relies on hydrogen peroxide generation, release of free-radical scavengers from hypoxic cells can interfere with the assay. Accordingly, adenosine added to samples collected from hypoxic cultures could not be detected using the chemiluminescent enzymatic assay. Furthermore, addition of free-radical scavengers sharply reduced the sensitivity of adenosine detection. Conversely, use of a single-step assay inflated measured values due to the inability of the assay to distinguish adenosine and its metabolite inosine. These results show that cultured astrocytes do not release adenosine during mild hypoxia, an observation consistent with their high resistance to hypoxia. PMID:21989480

  14. RNA Initiation with Dinucleoside Monophosphates during Transcription of Bacteriophage T4 DNA with RNA Polymerase of Escherichia coli

    PubMed Central

    Hoffman, David J.; Niyogi, Salil K.

    1973-01-01

    The effects of dinucleoside monophosphates on the transcription of phage T4 DNA by E. coli RNA polymerase have been examined at various concentrations of the sigma subunit and extremely low concentration of ribonucleoside triphosphate. The following conclusions were reached: (i) Labeled specific dinucleoside monophosphates are incorporated as chain initiators. (ii) When the ratio of sigma factor to core enzyme is small, there is a general stimulation by most 5′-guanosyl dinucleoside monophosphates. (iii) When the ratio is increased or holoenzyme is present, ApU, CpA, UpA, and GpU are the most effective stimulators. (iv) At high concentrations of sigma factor, only certain adenosine-containing dinucleoside monophosphates (ApU, CpA, UpA, and ApA) stimulate the reaction. (v) Competition hybridization studies indicate that the RNAs stimulated by dinucleoside monophosphates (ApU, CpA, UpA, and GpU) are of the T4 “early” type. (vi) Studies involving both combinations of stimulatory dinucleoside monophosphates and competitive effects of these compounds on chain initiation by ATP and GTP suggest that the stimulatory dinucleoside monophosphates act as chain initiators and may recognize part of a continuous sequence in a promoter region. Studies based on the incorporation of 3H-labeled stimulatory dinucleoside monophosphates support the above conclusions. PMID:4568732

  15. cGMP and cyclic nucleotide-gated channels participate in mouse sperm capacitation.

    PubMed

    Cisneros-Mejorado, Abraham; Sánchez Herrera, Daniel P

    2012-01-20

    During capacitation of mammalian sperm intracellular [Ca(2+)] and cyclic nucleotides increase, suggesting that CNG channels play a role in the physiology of sperm. Here we study the effect of capacitation, 8Br-cAMP (8-bromoadenosine 3',5'-cyclic monophosphate) and 8Br-cGMP (8-bromoguanosine 3',5'-cyclic monophosphate) on the macroscopic ionic currents of mouse sperm, finding the existence of different populations of sperm, in terms of the recorded current and its response to cyclic nucleotides. Our results show that capacitation and cyclic nucleotides increase the ionic current, having a differential sensitivity to cGMP (cyclic guanosine monophosphate) and cAMP (cyclic adenosine monophosphate). Using a specific inhibitor we determine the contribution of CNG channels to macroscopic current and capacitation. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition.

    PubMed

    Kutryb-Zajac, Barbara; Mateuszuk, Lukasz; Zukowska, Paulina; Jasztal, Agnieszka; Zabielska, Magdalena A; Toczek, Marta; Jablonska, Patrycja; Zakrzewska, Agnieszka; Sitek, Barbara; Rogowski, Jan; Lango, Romuald; Slominska, Ewa M; Chlopicki, Stefan; Smolenski, Ryszard T

    2016-11-01

    Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular inflammation and improved endothelial function. This study highlights the importance of extracellular nucleotides and adenosine metabolism in the atherosclerotic vessel in both experimental and clinical setting. The increased eADA activity marks an early stage of atherosclerosis, contributes to its progression and could represent a novel target for therapy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  17. Adenosine receptor subtypes in the airways responses to 5'-adenosine monophosphate inhalation of sensitized guinea-pigs.

    PubMed

    Smith, N; Broadley, K J

    2008-09-01

    Endogenous adenosine levels are raised in the lungs during asthma attacks. 5'-adenosine monophosphate (5'-AMP) inhalation in asthmatics causes bronchoconstriction and in sensitized guinea-pigs induces early (EAR) and late asthmatic responses (LAR), airway hyper-reactivity (AHR) and inflammatory cell recruitment to the lungs. The aim of this study was to investigate the roles of A(1), A(2A), A(2B) and A(3) adenosine receptors in these responses to inhaled 5'-AMP in sensitized guinea-pigs. Comparisons were made with the effect of dexamethasone treatment on 5'-AMP-induced responses. Functional airways responses to inhaled 5'-AMP (3 and 300 mM) of actively sensitized, conscious guinea-pigs were determined by whole-body plethysmography following administration of selective adenosine receptor antagonists or their vehicles. AHR to inhaled histamine (1 mM) and inflammatory cell influx in bronchoalveolar lavage fluid were determined. 5'-AMP at 3 mM caused an immediate bronchoconstriction (EAR), whereas 300 mM caused bronchodilatation. Both responses were followed at 6 h by a LAR, together with inflammatory cell influx and AHR to histamine. The A(2A) receptor antagonist, ZM241385, further enhanced cell influx after 5'-AMP inhalation (3 and 300 mM), and blocked the immediate bronchodilator response to 300 mM 5'-AMP, exposing an EAR. The A(2B) receptor antagonist, MRS1706 (in the presence of ZM241385), inhibited the LAR, AHR and cell influx, following inhalation of 5'-AMP (300 mM). The A(3) receptor antagonist, MRS1220, inhibited 5'-AMP-induced inflammatory cell influx. The A(1) receptor antagonist, DPCPX (in the presence of ZM241385), inhibited the EAR following 5'-AMP inhalation (300 mM). Dexamethasone inhibited the LAR, AHR and cell influx following inhalation of 5'-AMP (300 mM). All four adenosine receptor subtypes play various roles in the airways responses to inhaled 5'-AMP in sensitized guinea-pigs.

  18. Molecular recognition of nucleotides in micelles and the development and expansion of a chemistry outreach program

    NASA Astrophysics Data System (ADS)

    Schechinger, Linda Sue

    I. To investigate the delivery of nucleotide-based drugs, we are studying molecular recognition of nucleotide derivatives in environments that are similar to cell membranes. The Nowick group previously discovered that membrane-like surfactant micelles tetradecyltrimethylammonium bromide (TTAB) micelle facilitate molecular of adenosine monophosphate (AMP) recognition. The micelles bind nucleotides by means of electrostatic interactions and hydrogen bonding. We observed binding by following 1H NMR chemical shift changes of unique hexylthymine protons upon addition of AMP. Cationic micelles are required for binding. In surfactant-free or sodium dodecylsulfate solutions, no hydrogen bonding is observed. These observations suggest that the cationic surfactant headgroups bind the nucleotide phosphate group, while the intramicellar base binds the nucleotide base. The micellar system was optimized to enhance binding and selectivity for adenosine nucleotides. The selectivity for adenosine and the number of phosphate groups attached to the adenosine were both investigated. Addition of cytidine, guanidine, or uridine monophosphates, results in no significant downfield shifting of the NH resonance. Selectivity for the phosphate is limited, since adenosine mono-, di-, and triphosphates all have similar binding constants. We successfully achieved molecular recognition of adenosine nucleotides in micellar environments. There is significant difference in the binding interactions between the adenosine nucleotides and three other natural nucleotides. II. The UCI Chemistry Outreach Program (UCICOP) addresses the declining interest of the nations youth for science. UCICOP brings fun and exciting chemistry experiments to local high schools, to remind students that science is fun and has many practical uses. Volunteer students and alumni of UCI perform the demonstrations using scripts and material provided by UCICOP. The preparation of scripts and materials is done by two coordinators. These coordinators organize the program and provide continuity to the program. The success of UCICOP can be measured by the high praise and gratitude expressed by the teachers, students and volunteers.

  19. Antinociceptive effect of purine nucleotides.

    PubMed

    Mello, C F; Begnini, J; De-La-Vega, D D; Lopes, F P; Schwartz, C C; Jimenez-Bernal, R E; Bellot, R G; Frussa-Filho, R

    1996-10-01

    The antinociceptive effect of purine nucleotides administered systematically (sc) was determined using the formalin and writhing tests in adult male albino mice. The mechanisms underlying nucleotide-induced antinociception were investigated by preinjecting the animals (sc) with specific antagonists for opioid (naloxone, 1 mg/kg), purinergic P1 (caffeine, 5, 10, of 30 mg/kg); theophylline, 10 mg/kg) or purinergic P2 receptors (suramin, 100 mg/kg; Coomassie blue, 30-300 mg/kg; quinidine, 10 mg/kg). Adenosine, adenosine monophosphate (AMP), diphosphate (ADP) and triphosphate (ATP) caused a reduction in the number of writhes and in the time of licking the formalin-injected paw. Naloxone had no effect on adenosine- or adenine nucleotide-induced antinociception. Caffeine (30 mg/kg) and theophylline (10 mg/kg) reversed the antinociceptive action of adenosine and adenine nucleotide derivatives in both tests. P2 antagonists did not reverse adenine nucleotide-induced antinociception. These results suggest that antinociceptive effect of adenine nucleotides is mediated by adenosine.

  20. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats.

    PubMed

    Qiu, Linan; Luo, Yuju; Chen, Xiaojuan

    2018-07-01

    Despite the severity of osteoarthritis (OA), current medical therapy strategies for OA aim at symptom control and pain reduction, as there is no ideal drug for effective OA treatment. OA rat model was used to explore the therapeutic function of quercetin on remission of OA, by determining the reactive oxygen species (ROS) levels, mitochondrial function and extracellular matrix integrity. Quercetin could attenuate ROS generation and augment the glutathione (GSH) and glutathione peroxidase (GPx) expression levels in OA rat. Quercetin not only enhanced mitochondrial membrane potential, oxygen consumption, adenosine triphosphate (ATP) levels in mitochondria, but also increased the mitochondrial copy number. Furthermore, the interlukin (IL)-1β-induced accumulation of nitric oxide (NO), matrixmetalloproteinase (MMP)-3) and MMP-13 could be suppressed by quercetin. Finally, we confirmed that the therapeutic properties of quercetin on OA might function through the adenosine monophosphate-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway. In summary, quercetin could alleviate OA through attenuating the ROS levels, reversing the mitochondrial dysfunction and keeping the integrality of extracellular matrix of joint cartilage. The underlying mechanism might involve the regulation of AMPK/SIRT1 signaling pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Evidence for the role of hydrophobic forces on the interactions of nucleotide-monophosphates with cationic liposomes.

    PubMed

    Cuomo, Francesca; Mosca, Monica; Murgia, Sergio; Avino, Pasquale; Ceglie, Andrea; Lopez, Francesco

    2013-11-15

    In this work, the interaction of nucleotide-monophosphates (NMPs) with unilamellar liposomes made of 1,2-Dioleoyl-3-Trimethylammonium-Propane (DOTAP) and 1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine (DOPE) was investigated. Here, we demonstrate how adsorption is affected by the type of nucleotide-monophosphate. Dynamic light scattering (DLS) results revealed, for each NMP, that a distinguishable concentration exists at which a significant growth of the aggregates occurs. Adenosine 5'-monophosphate (AMP) and guanosine 5'-monophosphate (GMP) have shown a higher propensity to induce liposome aggregation process and in particular GMP appears to be the most effective. From ζ-potential experiments we found that liposomes loaded with purine based nucleotides (AMP and GMP) are able to decrease the ζ-potential values to a greater extent in comparison with the pyrimidine based nucleotides thimydine 5'-monophosphate (TMP) and uridine 5'-monophosphate (UMP). Moreover, a careful analysis of nucleotide-liposome interactions revealed that nucleotides have different capacity to induce the formation of nucleotide-liposome complexes, and purine based nucleotides have higher affinities with lipid membranes. On the whole, the data emphasize that the mechanisms driving the interactions between liposomes and NMPs are also influenced by the existence of hydrophobic forces. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Prostaglandin E2 Stimulates EP2, Adenylate Cyclase, Phospholipase C, and Intracellular Calcium Release to Mediate Cyclic Adenosine Monophosphate Production in Dental Pulp Cells.

    PubMed

    Chang, Mei-Chi; Lin, Szu-I; Lin, Li-Deh; Chan, Chiu-Po; Lee, Ming-Shu; Wang, Tong-Mei; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2016-04-01

    Prostaglandin E2 (PGE2) plays a crucial role in pulpal inflammation and repair. However, its induction of signal transduction pathways is not clear but is crucial for future control of pulpal inflammation. Primary dental pulp cells were exposed to PGE2 and 19R-OH PGE2 (EP2 agonist) or sulprostone (EP1/EP3 agonist) for 5 to 40 minutes. Cellular cyclic adenosine monophosphate (cAMP) levels were measured using the enzyme-linked immunosorbent assay. In some experiments, cells were pretreated with SQ22536 (adenylate cyclase inhibitor), H89 (protein kinase A inhibitor), dorsomorphin (adenosine monophosphate-activated protein kinase inhibitor), U73122 (phospholipase C inhibitor), thapsigargin (inhibitor of intracellular calcium release), W7 (calmodulin antagonist), verapamil (L-type calcium channel blocker), and EGTA (extracellular calcium chelator) for 20 minutes before the addition of PGE2. PGE2 and 19R-OH PGE2 (EP2 agonist) stimulated cAMP production, whereas sulprostone (EP1/EP3 agonist) shows little effect. PGE2-induced cAMP production was attenuated by SQ22536 and U73122 but not H89 and dorsomorphin. Intriguingly, thapsigargin and W7 prevented PGE2-induced cAMP production, but verapamil and EGTA showed little effect. These results indicate that PGE2-induced cAMP production is associated with EP2 receptor and adenylate cyclase activation. These events are mediated by phospholipase C, intracellular calcium release, and calcium-calmodulin signaling. These results are helpful for understanding the role of PGE2 in pulpal inflammation and repair and possible future drug intervention. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. A randomized, double-blind, crossover, placebo-controlled comparative clinical trial of arginine aspartate plus adenosine monophosphate for the intermittent treatment of male erectile dysfunction.

    PubMed

    Neuzillet, Y; Hupertan, V; Cour, F; Botto, H; Lebret, T

    2013-03-01

    Efficacy and safety of l-arginine aspartate 8 g combined with 200 mg of adenosine monophosphate (AA) with placebo (PL) alone for intermittent treatment of mild-to-moderate erectile dysfunction (ED) were compared. The study design was a double-blind, PL-controlled, two-way crossover randomized clinical trial with 26 patients. Efficacy was assessed by International Index of Erectile Function (IIEF) and two additional validated questionnaires [the Erection Hardness Score (EHS) and the Erectile Dysfunction Inventory of Treatment Satisfaction (EDITS). During each crossover period, separated by a 2-week wash-out period, drugs were administered orally, 1-2 h before sexual intercourse. Primary endpoint was a change in the IIEF. Secondary endpoints were patient and investigator assessments of treatment success. Investigators' and patients' assessment of efficacy was significantly improved by the combination vs. PL (p = 0.01 and p = 0.04 respectively]. EHS and EDITS questionnaires were both improved by the combination (p = 0.015 and p = 0.017 respectively). There was no significant difference in terms of tolerance between AA and PL or severe adverse events. ED patients demonstrated significant improvements in all IIEF domains with the exception of the Sexual Desire and Orgasmic Domains when treated with AA compared with PL. This pilot phase II study showed that the on-demand oral administration at a high dosage of l-arginine aspartate-adenosine monophosphate combination may be effective in patients with mild-to-moderate ED, is very well tolerated and could be tested as a safe first-line therapy in a larger size phase III study. © 2012 American Society of Andrology and European Academy of Andrology.

  4. Nucleotide and Nucleotide Sugar Analysis by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry on Surface-Conditioned Porous Graphitic Carbon

    PubMed Central

    2010-01-01

    We examined the analysis of nucleotides and nucleotide sugars by chromatography on porous graphitic carbon with mass spectrometric detection, a method that evades contamination of the MS instrument with ion pairing reagent. At first, adenosine triphosphate (ATP) and other triphosphate nucleotides exhibited very poor chromatographic behavior on new columns and could hardly be eluted from columns previously cleaned with trifluoroacetic acid. Satisfactory performance of both new and older columns could, however, be achieved by treatment with reducing agent and, unexpectedly, hydrochloric acid. Over 40 nucleotides could be detected in cell extracts including many isobaric compounds such as ATP, deoxyguanosine diphosphate (dGTP), and phospho-adenosine-5′-phosphosulfate or 3′,5′-cyclic adenosine 5'-monophosphate (AMP) and its much more abundant isomer 2′,3′-cylic AMP. A fast sample preparation procedure based on solid-phase extraction on carbon allowed detection of very short-lived analytes such as cytidine 5'-monophosphate (CMP)-2-keto-deoxy-octulosonic acid. In animal cells and plant tissues, about 35 nucleotide sugars were detected, among them rarely considered metabolites such as uridine 5'-diphosphate (UDP)-l-arabinopyranose, UDP-l-arabinofuranose, guanosine 5'-diphosphate (GDP)-l-galactofuranose, UDP-l-rhamnose, and adenosine diphosphate (ADP)-sugars. Surprisingly, UDP-arabinopyranose was also found in Chinese hamster ovary (CHO) cells. Due to the unique structural selectivity of graphitic carbon, the method described herein distinguishes more nucleotides and nucleotide sugars than previously reported approaches. PMID:21043458

  5. Interactions of 1,12-diamino-4,9-dioxadodecane (OSpm) and Cu(II) ions with pyrimidine and purine nucleotides: adenosine-5'-monophosphate (AMP) and cytidine-5'-monophosphate (CMP).

    PubMed

    Lomozik, L; Gasowska, A; Krzysko, G

    2006-11-01

    The interactions of Cu(II) ions with adenosine-5'-monophosphate (AMP), cytidine-5'-monophosphate (CMP) and 1,12-diamino-4,9-dioxadodecane (OSpm) were studied. A potentiometric method was applied to determine the composition and stability constants of complexes formed, while the mode of interactions was analysed by spectral methods (ultraviolet and visible spectroscopy (UV-Vis), electron paramagnetic resonance (EPR), (13)C NMR, (31)P NMR). In metal-free systems, molecular complexes nucleotide-polyamine (NMP)H(x)(OSpm) were formed. The endocyclic nitrogen atoms of the purine ring N(1), N(7), the nitrogen atom of the pyrimidine ring N(3), the oxygen atoms of the phosphate group of the nucleotide and the protonated nitrogen atoms of the polyamine were the reaction centres. The mode of interaction of the metal ion with OSpm and the nucleotides (AMP or CMP) in the coordination compounds was established. In the system Cu(II)/OSpm the dinuclear complex Cu(2)(OSpm) forms, while in the ternary systems Cu(II)/nucleotide/OSpm the species type MH(x)LL' and MLL' appear. In the MH(x)LL' type species, the main centres of copper (II) ion binding in the nucleotide are the phosphate groups. The protonated amino groups of OSpm are involved in non-covalent interaction with the nitrogen atoms N(1), N(7) or N(3) of the purine or pyrimidine ring, whereas at higher pH, deprotonated nitrogen atoms of polyamine are engaged in metallation in MLL' species.

  6. Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3',5'-monophosphate, but by Ca2+ signaling followed by phospholipase-A2 activation and potentiated by an adenosine derivative.

    PubMed

    Kimura, T; Okajima, F; Sho, K; Kobayashi, I; Kondo, Y

    1995-01-01

    The production of hydrogen peroxide (H2O2) as an essential process for iodide organification is a key reaction in TSH-induced thyroid hormone synthesis. Here we characterize the signal transduction pathway involved in TSH-induced H2O2 production in FRTL-5 thyroid cells. At higher than 1 nM TSH, N6-(L-2-phenylisopropyl)adenosine (PIA), an adenosine receptor agonist having, by itself, no influence on H2O2 generation, potentiated this TSH action, whereas the TSH increase and PIA addition reduced cAMP accumulation. RO 20-1724, a phosphodiesterase inhibitor, amplified the TSH-induced cAMP accumulation, but did not change H2O2 generation in the whole range of TSH used. Ca(2+)-mobilizing agonists, GTP and ATP, also induced H2O2 production without stimulating cAMP accumulation. Chelation of intracellular Ca2+ markedly inhibited the TSH action, but intracellular Ca2+ increases by either thapsigargin or ionomycin mimicking it. All of the findings show the participation of Ca2+, but not cAMP, in the action of TSH. Desensitization of protein kinase-C (PKC) did not influence the receptor-mediated H2O2 production, suggesting the reduced importance of PKC activation compared to Ca2+ signaling to the reaction. A rise in intracellular Ca2+ independent of receptor activation also induced H2O2 production as well as arachidonate release, and both were potentiated by PIA. In addition, inhibitors of phospholipase-A2 and the arachidonate metabolic pathway depressed H2O2 generation, suggesting the participation of an arachidonate cascade in the Ca(2+)-dependent H2O2 production. Lipoxygenase inhibitors depressed the Ca2+ action without influencing arachidonate release, suggesting the involvement of a lipoxygenase product(s) of arachidonate in the Ca(2+)-signaling mechanism. In conclusion, in FRTL-5 cells, TSH-induced H2O2 production is mediated not by cAMP, but by the phospholipase-C/Ca2+ cascade, possibly followed by the Ca(2+)-dependent phospholipase-A2/arachidonate cascade. PIA amplifies TSH-induced H2O2 production at the steps of phospholipase-C and phospholipase-A2 activation in a pertussis toxin-sensitive manner.

  7. Effects of nucleotides adenosine monophosphate and adenosine triphosphate in combination with L-arginine on male rabbit corpus cavernosum tissue.

    PubMed

    Hupertan, V; Neuzillet, Y; Stücker, O; Pons, C; Leammel, E; Lebret, T

    2012-12-01

    Purines and more specifically adenosine monophosphate (AMP) and adenosine triphosphate (ATP) have a strong relaxant effect on smooth muscle cells of the dog, rabbit and human corpus cavernosum, to approximately the same degree as nitric oxide (NO). However, purines are considered as modulators of erectile function rather than key mediators. This suggests that the use of purines combined with NO donors could be effective to treat some specific erectile disorders. The relaxation induced by the combination of l-arginine (Arg), a natural substrate for NO synthase, was assessed with a purine-nucleotide (AMP, ATP) on a rabbit corpus cavernosum model, to determine if these substances could potentiate each other's effect. When a pre-contraction was induced by phenylephrine, AMP alone induced a 43% CC relaxation rate and ATP alone a 26% rate. The relaxation rate induced by Arg was lower in comparison (8% at 5.10(-4) m vs. 25% at AMP 5.10(-4) m and 15% at ATP 5.10(-4) m). NO synthase inhibitor n-nitro-l-arginine did not modify the relaxing effect provoked by AMP suggesting that the mechanism of action of this nucleotide does not involve the NO pathway. The combination of Arg at 5.10(-4) m with either AMP or ATP at different doses ranging from 5.10(-4) to 10(-3) m significantly enhanced the relaxing response reaching rates of 62 and 80% respectively, leading to a synergistic effect. The present data indicate that a 'NO donor' combined with an 'adenosine donor' could be an effective therapeutic approach. © 2012 The Authors. International Journal of Andrology © 2012 European Academy of Andrology.

  8. Protective mechanisms of adenosine 5'-monophosphate in platelet activation and thrombus formation.

    PubMed

    Fuentes, E; Badimon, L; Caballero, J; Padró, T; Vilahur, G; Alarcón, M; Pérez, P; Palomo, I

    2014-03-03

    Platelet activation is relevant to a variety of acute thrombotic events. We sought to examine adenosine 5'-monophosphate (AMP) mechanisms of action in preventing platelet activation, thrombus formation and platelet-related inflammatory response. We assessed the effect of AMP on 1) P-selectin expression and GPIIb/IIIa activation by flow cytometry; 2) Platelet aggregation and ATP secretion induced by ADP, collagen, TRAP-6, convulxin and thrombin; 3) Platelet rolling and firm adhesion, and platelet-leukocyte interactions under flow-controlled conditions; and, 4) Platelet cAMP levels, sP-selectin, sCD40L, IL-1β, TGF-β1 and CCL5 release, PDE3A activity and PKA phosphorylation. The effect of AMP on in vivo thrombus formation was also evaluated in a murine model. The AMP docking with respect to A2 adenosine receptor was determined by homology. AMP concentration-dependently (0.1 to 3 mmol/l) inhibited P-selectin expression and GPIIb/IIIa activation, platelet secretion and aggregation induced by ADP, collagen, TRAP-6 and convulxin, and diminished platelet rolling and firm adhesion. Furthermore, AMP induced a marked increase in the rolling speed of leukocytes retained on the platelet surface. At these concentrations AMP significantly decreased inflammatory mediator from platelet, increased intraplatelet cAMP levels and inhibited PDE3A activity. Interestingly, SQ22536, ZM241385 and SCH58261 attenuated the antiplatelet effect of AMP. Docking experiments revealed that AMP had the same orientation that adenosine inside the A2 adenosine receptor binding pocket. These in vitro antithrombotic properties were further supported in an in vivo model of thrombosis. Considering the successful use of combined antiplatelet therapy, AMP may be further developed as a novel antiplatelet agent.

  9. Efficacy of cimetidin in the prevention of ulcer formation in the stomach during immobilization stress

    NASA Technical Reports Server (NTRS)

    Dorofeyev, G. I.; Litovskiy, I. A.; Gavrovskaya, L. K.; Ivashkin, V. T.

    1982-01-01

    The effect of stress on the formation of ulcers in the mucous membrane of the stomach, the increase in cyclic adenosine monophosphate level in the gastric tissues, and parietal cell structure alteration. Use of cimetidin prevents these effects

  10. [Development of Fluorescence Resonance Energy Transfer Sensor for Determination of Adenosine Monophosphate in Biological Drug].

    PubMed

    Dong, Ling-yu; Du, Hong-ming; Wang, Peng; Wang, Li-yun; Li, Yi-ke; Zhai, Hong; Feng, Ting; Wang, Xiang-feng; Zhu, Qiao-you; Xie, Meng-xia

    2015-11-01

    The biological drug of the calf-blood dialysate has various pharmacological effects. It can promote the oxygen and glucose uptake for the hypoxia cells, and has beneficial effects on the malfunction of the blood circulation and trophic disturbances in the brain, and the impairment of peripheral blood circulation. Furthermore, it is favorable to wound healing and can regulate the central nervous system. Adenosine monophosphate (AMP) is a main active ingredient of the biological drug. In this report, a fluorescence resonance energy transfer (FRET) sensor has been developed with β-CD-capped ZnS QDs as energy donor and 3-hydroxyflavone (3-HF) as energy acceptor. The results showed that AMP can lead to the fluorescence quenching of the FRET sensor at 526 nm, and the Stern-Volmer curve between the fluorescence quenching and the concentrations of AMP present a satisfactory linearity with the correlation coefficient of 0.996. The developed sensor has successfully applied for determination of the AMP in the biological drug.

  11. Identification of Direct Activator of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by Structure-Based Virtual Screening and Molecular Docking Approach.

    PubMed

    Huang, Tonghui; Sun, Jie; Zhou, Shanshan; Gao, Jian; Liu, Yi

    2017-06-30

    Adenosine monophosphate-activated protein kinase (AMPK) plays a critical role in the regulation of energy metabolism and has been targeted for drug development of therapeutic intervention in Type II diabetes and related diseases. Recently, there has been renewed interest in the development of direct β1-selective AMPK activators to treat patients with diabetic nephropathy. To investigate the details of AMPK domain structure, sequence alignment and structural comparison were used to identify the key amino acids involved in the interaction with activators and the structure difference between β1 and β2 subunits. Additionally, a series of potential β1-selective AMPK activators were identified by virtual screening using molecular docking. The retrieved hits were filtered on the basis of Lipinski's rule of five and drug-likeness. Finally, 12 novel compounds with diverse scaffolds were obtained as potential starting points for the design of direct β1-selective AMPK activators.

  12. Adenosine monophosphate deaminase 3 activation shortens erythrocyte half-life and provides malaria resistance in mice.

    PubMed

    Hortle, Elinor; Nijagal, Brunda; Bauer, Denis C; Jensen, Lora M; Ahn, Seong Beom; Cockburn, Ian A; Lampkin, Shelley; Tull, Dedreia; McConville, Malcolm J; McMorran, Brendan J; Foote, Simon J; Burgio, Gaetan

    2016-09-01

    The factors that determine red blood cell (RBC) lifespan and the rate of RBC aging have not been fully elucidated. In several genetic conditions, including sickle cell disease, thalassemia, and G6PD deficiency, erythrocyte lifespan is significantly shortened. Many of these diseases are also associated with protection from severe malaria, suggesting a role for accelerated RBC senescence and clearance in malaria resistance. Here, we report a novel, N-ethyl-N-nitrosourea-induced mutation that causes a gain of function in adenosine 5'-monophosphate deaminase (AMPD3). Mice carrying the mutation exhibit rapid RBC turnover, with increased erythropoiesis, dramatically shortened RBC lifespan, and signs of increased RBC senescence/eryptosis, suggesting a key role for AMPD3 in determining RBC half-life. Mice were also found to be resistant to infection with the rodent malaria Plasmodium chabaudi. We propose that resistance to P. chabaudi is mediated by increased RBC turnover and higher rates of erythropoiesis during infection. © 2016 by The American Society of Hematology.

  13. Cyclic adenosine monophosphate modulates cell morphology and behavior of a cultured renal epithelial.

    PubMed

    Amsler, K

    1990-07-01

    The role of cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) in modulating functions of differentiated renal cells is well established. Its importance in controlling their growth and differentiation is less clear. We have used somatic cell genetic techniques to probe the role of PKA in controlling morphology and behavior of a renal epithelial cell line, LLC-PK1, which acquires many properties characteristic of the renal proximal tubular cell. Mutants of this line altered in PKA activity have been isolated and their behavior compared to that of the parent line. The results indicate that PKA is involved, either directly or indirectly, in maintenance of cell morphology, cell-cell and cell-substratum interactions, density-dependent growth regulation, and expression of one function characteristic of the renal proximal tubular cell, Na-hexose symport. The relevance of these results to the role of PKA in controlling growth and differentiation of renal epithelial cells in vivo is discussed.

  14. Reconsideration of the sequence of rigor mortis through postmortem changes in adenosine nucleotides and lactic acid in different rat muscles.

    PubMed

    Kobayashi, M; Takatori, T; Iwadate, K; Nakajima, M

    1996-10-25

    We examined the changes in adenosine triphosphate (ATP), lactic acid, adenosine diphosphate (ADP) and adenosine monophosphate (AMP) in five different rat muscles after death. Rigor mortis has been thought to occur simultaneously in dead muscles and hence to start in small muscles sooner than in large muscles. In this study we found that the rate of decrease in ATP was significantly different in each muscle. The greatest drop in ATP was observed in the masseter muscle. These findings contradict the conventional theory of rigor mortis. Similarly, the rates of change in ADP and lactic acid, which are thought to be related to the consumption or production of ATP, were different in each muscle. However, the rate of change of AMP was the same in each muscle.

  15. Inhibition of AMP deaminase as therapeutic target in cardiovascular pathology.

    PubMed

    Zabielska, Magdalena A; Borkowski, Tomasz; Slominska, Ewa M; Smolenski, Ryszard T

    2015-08-01

    AMP deaminase (AMPD; EC 3.5.4.6) catalyzes hydrolysis of the amino group from the adenine ring of AMP resulting in production of inosine 5'-monophosphate (IMP) and ammonia. This reaction helps to maintain healthy cellular energetics by removing excess AMP that accumulates in energy depleted cells. Furthermore, AMPD permits the synthesis of guanine nucleotides from the larger adenylate pool. This enzyme competes with cytosolic 5'-nucleotidases (c5NT) for AMP. Adenosine, a product of c5NT is a vasodilator, antagonizes inotropic effects of catecholamines and exerts anti-platelet, anti-inflammatory and immunosuppressive activities. The ratio of AMPD/c5NT defines the amount of adenosine produced in adenine nucleotide catabolic pathway. Inhibition of AMPD could alter this ratio resulting in increased adenosine production. Besides the potential effect on adenosine production, elevation of AMP due to inhibition of AMPD could also lead to activation of AMP regulated protein kinase (AMPK) with myriad of downstream events including enhanced energetic metabolism, mitochondrial biogenesis and cytoprotection. While the benefits of these processes are well appreciated in cells such as skeletal or cardiac myocytes its role in protection of endothelium could be even more important. Therapeutic use of AMPD inhibition has been limited due to difficulties with obtaining compounds with adequate characteristics. However, endothelium seems to be the easiest target as effective inhibition of AMPD could be achieved at much lower concentration than in the other types of cells. New generation of AMPD inhibitors has recently been established and its testing in context of endothelial and organ protection could provide important basic knowledge and potential therapeutic tools. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Relaxation effect of abacavir on rat basilar arteries.

    PubMed

    Li, Rachel Wai Sum; Yang, Cui; Chan, Shun Wan; Hoi, Maggie Pui Man; Lee, Simon Ming Yuen; Kwan, Yiu Wa; Leung, George Pak Heng

    2015-01-01

    The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels. The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5' nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate. Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5' nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries. Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to endothelial dysfunction as abacavir does not impair relaxation of blood vessels. The most likely explanation of increased cardiovascular risk may be increased platelet aggregation as suggested by other studies.

  17. Relaxation Effect of Abacavir on Rat Basilar Arteries

    PubMed Central

    Li, Rachel Wai Sum; Yang, Cui; Chan, Shun Wan; Hoi, Maggie Pui Man; Lee, Simon Ming Yuen; Kwan, Yiu Wa; Leung, George Pak Heng

    2015-01-01

    Background The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels. Methods The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5′ nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate. Results Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5’ nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries. Conclusion Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to endothelial dysfunction as abacavir does not impair relaxation of blood vessels. The most likely explanation of increased cardiovascular risk may be increased platelet aggregation as suggested by other studies. PMID:25853881

  18. AMP and adenosine are both ligands for adenosine 2B receptor signaling.

    PubMed

    Holien, Jessica K; Seibt, Benjamin; Roberts, Veena; Salvaris, Evelyn; Parker, Michael W; Cowan, Peter J; Dwyer, Karen M

    2018-01-15

    Adenosine is considered the canonical ligand for the adenosine 2B receptor (A 2B R). A 2B R is upregulated following kidney ischemia augmenting post ischemic blood flow and limiting tubular injury. In this context the beneficial effect of A 2B R signaling has been attributed to an increase in the pericellular concentration of adenosine. However, following renal ischemia both kidney adenosine monophosphate (AMP) and adenosine levels are substantially increased. Using computational modeling and calcium mobilization assays, we investigated whether AMP could also be a ligand for A 2B R. The computational modeling suggested that AMP interacts with more favorable energy to A 2B R compared with adenosine. Furthermore, AMPαS, a non-hydrolyzable form of AMP, increased calcium uptake by Chinese hamster ovary (CHO) cells expressing the human A 2B R, indicating preferential signaling via the G q pathway. Therefore, a putative AMP-A 2B R interaction is supported by the computational modeling data and the biological results suggest this interaction involves preferential G q activation. These data provide further insights into the role of purinergic signaling in the pathophysiology of renal IRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Adenosine monophosphate as a mediator of ATP effects at P1 purinoceptors

    PubMed Central

    Ross, Fiona M; Brodie, Martin J; Stone, Trevor W

    1998-01-01

    When perfused with a medium containing no added magnesium and 4-aminopyridine (4AP) (50 μM) hippocampal slices generated epileptiform bursts of an interictal nature. We have shown in a previous study that adenosine 5′-triphosphate (ATP) depressed epileptiform activity and that this effect was blocked by the adenosine A1 receptor antagonist cyclopentyltheophylline but was not affected by adenosine deaminase. This implied that ATP might act indirectly at P1 receptors or at a xanthine-sensitive P2 receptor. The aim of the present study was to investigate further the action of ATP on epileptiform activity.ATP can be metabolized by ecto-nucleotidases to adenosine 5′-diphosphate (ADP), adenosine 5′-monophosphate (AMP) and adenosine, respectively. Each of these metabolites can activate receptors in its own right: P2 receptors for ADP and P1 receptors for AMP and adenosine.We now show that both AMP and ATP (50 μM) significantly decrease epileptiform discharge rate in a rapid and reversible manner. 5′Adenylic acid deaminase (AMP deaminase, AMPase) (0.2 u ml−1), when perfused alone did not significantly alter the discharge rate over the 10 min superfusion period used for drug application. When perfused concurrently with AMP (50 μM), AMP deaminase prevented the depressant effect of AMP on discharge rate.AMP deaminase, at a concentration of 0.2 u ml−1 which annulled the effect of AMP (50 μM), prevented the inhibitory activity of ATP (50 μM). A higher concentration of ATP (200 μM) depressed the frequency of spontaneous bursts to approximately 30% control and this response was also prevented by AMP deaminase.Superfusion of the slices with 5′-nucleotidase also prevented the inhibitory activity of ATP on epileptiform discharges.The results suggest that AMP mediates the inhibitory effects of ATP on epileptiform activity, a conclusion which can explain the earlier finding that cyclopentyltheophylline but not adenosine deaminase inhibited the effect of ATP. A corollary to this is that, when examining the pharmacology of ATP, care must be taken to inactivate AMP with AMP deaminase, as well as adenosine with adenosine deaminase, before a direct action of ATP on P1 receptors can be postulated. Failure to do so may have led to erroneous conclusions in some previous studies of nucleotide activity on nucleotside receptors. PMID:9690876

  20. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor.

    PubMed

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew; Mundell, Stuart J

    2016-12-08

    Ticagrelor is a potent antagonist of the P2Y 12 receptor (P2Y 12 R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5'-diphosphate (ADP)-induced Ca 2+ release in washed platelets vs other P2Y 12 R antagonists. This additional effect of ticagrelor beyond P2Y 12 R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of G s -coupled adenosine A 2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor-independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y 12 R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y 12 R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y 12 R, limiting basal G i -coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca 2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y 12 R that contribute to its effective inhibition of platelet activation. © 2016 by The American Society of Hematology.

  1. Adenylate Energy Charge in Escherichia coli During Growth and Starvation

    PubMed Central

    Chapman, Astrid G.; Fall, Lana; Atkinson, Daniel E.

    1971-01-01

    The value of the adenylate energy charge, [(adenosine triphosphate) + ½ (adenosine diphosphate)]/[(adenosine triphosphate) + (adenosine diphosphate) + (adenosine monophosphate)], in Escherichia coli cells during growth is about 0.8. During the stationary phase after cessation of growth, or during starvation in carbon-limited cultures, the energy charge declines slowly to a value of about 0.5, and then falls more rapidly. During the slow decline in energy charge, all the cells are capable of forming colonies, but a rapid fall in viability coincides with the steep drop in energy charge. These results suggest that growth can occur only at energy charge values above about 0.8, that viability is maintained at values between 0.8 and 0.5, and that cells die at values below 0.5. Tabulation of adenylate concentrations previously reported for various organisms and tissues supports the prediction, based on enzyme kinetic observations in vitro, that the energy charge is stabilized near 0.85 in intact metabolizing cells of a wide variety of types. PMID:4333317

  2. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury

    PubMed Central

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-01-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose. PMID:26434492

  3. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury.

    PubMed

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-10-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose.

  4. Neurochemical Measurement of Adenosine in Discrete Brain Regions of Five Strains of Inbred Mice

    PubMed Central

    Pani, Amar K.; Jiao, Yun; Sample, Kenneth J.; Smeyne, Richard J.

    2014-01-01

    Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754

  5. Benzodiazepines modulate the A2 adenosine binding sites on 108CC15 neuroblastoma X glioma hybrid cells.

    PubMed Central

    Snell, C. R.; Snell, P. H.

    1984-01-01

    We have demonstrated high affinity diazepam binding sites of the Ro5-4864 benzodiazepine receptor subtype on 108CC15 neuroblastoma X glioma hybrid cells. These cells were previously shown to have purinoceptors of the A2 adenosine subtype and we have now found that [3H]-adenosine can be displaced from this binding site by the benzodiazepines and related compounds that can also bind to the Ro5-4864 site. Diazepam was found to have no intrinsic activity at the A2-receptor as measured by the stimulation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) production in this cell line. At concentrations sufficient to compete for the A2-receptor, diazepam was shown to facilitate, by approximately 2 fold, the stimulation of cyclic AMP by adenosine. These effects are not due to inhibition of adenosine uptake or phosphodiesterase activity, but are probably a consequence of modulation of the coupling of the A2-receptor to cyclic AMP production in this hybrid cell line. PMID:6150742

  6. 5'-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers.

    PubMed Central

    Madara, J L; Patapoff, T W; Gillece-Castro, B; Colgan, S P; Parkos, C A; Delp, C; Mrsny, R J

    1993-01-01

    Neutrophil transmigration across intestinal epithelia is thought to contribute to epithelial dysfunction and characterizes many inflammatory intestinal diseases. Neutrophils activated by factors, normally present in the lumen, release a neutrophil-derived secretagogue activity to which intestinal epithelia respond with an electrogenic chloride secretion, the transport event which underlies secretory diarrhea. Using sequential ultrafiltration, column chromatographic, and mass and Raman spectroscopic techniques, neutrophil-derived secretagogue was identified as 5'-AMP. Additional studies suggested that neutrophil-derived 5'-AMP is subsequently converted to adenosine at the epithelial cell surface by ecto-5'-nucleotidase and that adenosine subsequently activates intestinal secretion through adenosine receptors on the apical membrane of target intestinal epithelial cells. These findings suggest that this ATP metabolite may serve as a neutrophil-derived paracrine mediator that contributes to secretory diarrhea in states of intestinal inflammation. PMID:8486793

  7. REGULATION OF THE T-CELL RESPONSE BY CD39

    PubMed Central

    Takenaka, Maisa C.; Robson, Simon; Quintana, Francisco J.

    2016-01-01

    The ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, or CD39) catalyzes the phosphohydrolysis of extracellular adenosine triphosphate (eATP) and diphosphate (eADP) released under conditions of inflammatory stress and cell injury. CD39 generates adenosine monophosphate (AMP), which is in turn used by the ecto-5’-nucleotidase CD73 to synthesize adenosine. These ectonucleotidases have major impacts on the dynamic equilibrium of pro-inflammatory eATP and ADP nucleotides vs. immunosuppressive adenosine nucleosides. Indeed, CD39 plays a dominant role in the purinergic regulation of inflammation and the immune response because its expression is influenced by genetic and environmental factors. Here, we review the specific role of CD39 in the kinetic regulation of cellular immune responses in the evolution of disease. We focus on the effects of CD39 on T cells and explore potential clinical applications in autoimmunity, chronic infections and cancer. PMID:27236363

  8. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: a review.

    PubMed

    Wang, Jing; Ke, Weixin; Bao, Rui; Hu, Xiaosong; Chen, Fang

    2017-06-01

    In recent years, metabolic syndromes (MetSs), including diabetes mellitus, dyslipidemia, and cardiovascular diseases, have become a common health problem in both developed and developing countries. Accumulating data have suggested that traditional herbs might be able to provide a wide range of remedies in prevention and treatment of MetSs. Ginger (Zingiber officinale Roscoe, Zingiberaceae) has been documented to ameliorate hyperlipidemia, hyperglycemia, oxidative stress, and inflammation. These beneficial effects are mediated by transcription factors, such as peroxisome proliferator-activated receptors, adenosine monophosphate-activated protein kinase, and nuclear factor κB. This review focuses on recent findings regarding the beneficial effects of ginger on obesity and related complications in MetS and discusses its potential mechanisms of action. This review provides guidance for further applications of ginger for personalized nutrition and medicine. © 2017 New York Academy of Sciences.

  9. Retinoic acid receptor-related orphan receptor α-induced activation of adenosine monophosphate-activated protein kinase results in attenuation of hepatic steatosis.

    PubMed

    Kim, Eun-Jin; Yoon, Young-Sil; Hong, Suckchang; Son, Ho-Young; Na, Tae-Young; Lee, Min-Ho; Kang, Hyun-Jin; Park, Jinyoung; Cho, Won-Jea; Kim, Sang-Gun; Koo, Seung-Hoi; Park, Hyeung-geun; Lee, Mi-Ock

    2012-05-01

    There is increasing evidence that the retinoic acid receptor-related orphan receptor α (RORα) plays an important role in the regulation of metabolic pathways, particularly of fatty acid and cholesterol metabolism; however, the role of RORα in the regulation of hepatic lipogenesis has not been studied. Here, we report that RORα attenuates hepatic steatosis, probably via activation of the adenosine monophosphate (AMP)-activated protein kinase (AMPK) and repression of the liver X receptor α (LXRα). First, RORα and its activator, cholesterol sulfate (CS), induced phosphorylation of AMPK, which was accompanied by the activation of serine-threonine kinase liver kinase B1 (LKB1). Second, the activation of RORα, either by transient transfection or CS treatment, decreased the TO901317-induced transcriptional expression of LXRα and its downstream target genes, such as the sterol regulatory element binding protein-1 (SREBP-1) and fatty acid synthase. RORα interacted physically with LXRα and inhibited the LXRα response element in the promoter of LXRα, indicating that RORα interrupts the autoregulatory activation loop of LXRα. Third, infection with adenovirus encoding RORα suppressed the lipid accumulation that had been induced by a free-fatty-acid mixture in cultured cells. Furthermore, we observed that the level of expression of the RORα protein was decreased in the liver of mice that were fed a high-fat diet. Restoration of RORα via tail-vein injection of adenovirus (Ad)-RORα decreased the high-fat-diet-induced hepatic steatosis. Finally, we synthesized thiourea derivatives that activated RORα, thereby inducing activation of AMPK and repression of LXRα. These compounds decreased hepatic triglyceride levels and lipid droplets in the high-fat-diet-fed mice. We found that RORα induced activation of AMPK and inhibition of the lipogenic function of LXRα, which may be key phenomena that provide the beneficial effects of RORα against hepatic steatosis. Copyright © 2012 American Association for the Study of Liver Diseases.

  10. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.

    PubMed

    Ueda, Atsushi; Wu, Chun-Fang

    2012-03-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss factors that could contribute to the effectiveness of counterbalancing interactions between dnc and rut mutations for phenotypic rescue.

  11. Extracellular cyclic AMP-adenosine pathway in isolated adipocytes and adipose tissue.

    PubMed

    Strouch, Marci B; Jackson, Edwin K; Mi, Zaichuan; Metes, Nicole A; Carey, Gale B

    2005-06-01

    Our goal was to evaluate the presence and lipolytic impact of the extracellular cyclic adenosine monophosphate (AMP)-adenosine pathway in adipose tissue. Sixteen miniature Yucatan swine (Sus scrofa) were used for these in vitro and in situ experiments. Four microdialysis probes were implanted into subcutaneous adipose tissue and perfused at 2 microL/min with Ringer's solution containing no addition, varying levels of cyclic AMP, 10 microM isoproterenol, or 10 microM isoproterenol plus 1 mM alpha,beta-methylene adenosine 5'-diphosphate (AMPCP), a 5'-nucleotidase inhibitor. Dialysate was assayed for AMP, adenosine, inosine, hypoxanthine, and glycerol. Freshly isolated adipocytes were incubated with buffer, 1 microM isoproterenol, or 1 microM isoproterenol plus 0.1 mM AMPCP, and extracellular levels of AMP, adenosine, inosine, hypoxanthine, and glycerol were measured. Perfusion of adipose tissue with exogenous cyclic AMP caused a significant increase in AMP and adenosine appearance. Perfusion with AMPCP, in the presence or absence of isoproterenol, significantly increased the levels of AMP and glycerol, whereas it significantly reduced the level of adenosine and its metabolites. However, the AMPCP-provoked increase in lipolysis observed in situ and in vitro was not temporally associated with a decrease in adenosine. These data suggest the existence of a cyclic AMP-adenosine pathway in adipocytes and adipose tissue. The role of this pathway in the regulation of lipolysis remains to be clarified.

  12. A Genomic Response to Trace Fear Conditioning in the Amygdala of Female Rats After Developmental Exposure to Manganese

    EPA Science Inventory

    Increases in brain-derived neurotrophic factor (Bdnf), Ca2+/calmodulin-dependent protein kinase II alpha (Camk2a), and cyclic adenosine monophosphate (cAMP) response element binding (Creb1) gene expression have been associated with learning in a variety of different rodent studie...

  13. Adenosine Monophosphate Binding Stabilizes the KTN Domain of the Shewanella denitrificans Kef Potassium Efflux System.

    PubMed

    Pliotas, Christos; Grayer, Samuel C; Ekkerman, Silvia; Chan, Anthony K N; Healy, Jess; Marius, Phedra; Bartlett, Wendy; Khan, Amjad; Cortopassi, Wilian A; Chandler, Shane A; Rasmussen, Tim; Benesch, Justin L P; Paton, Robert S; Claridge, Timothy D W; Miller, Samantha; Booth, Ian R; Naismith, James H; Conway, Stuart J

    2017-08-15

    Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.

  14. 5'- Adenosine monophosphate induced hypothermia reduces early stage myocardial ischemia/reperfusion injury in a mouse model.

    PubMed

    Tao, Zhenyin; Zhao, Zhaoyang; Lee, Cheng Chi

    2011-08-15

    Early intervention using hypothermia treatment has been shown to reduce early inflammation, apoptosis and infarct size in animal models of cardiac ischemia/reperfusion. We have shown that 5'-adenosine monophosphate (5'-AMP) can induce a reversible deep hypothermia in mammals. We hypothesize that 5'-AMP-induced hypothermia (AIH) may reduce ischemic/reperfusion damage following myocardial infarct. C57BL/6J male mice were subjected to myocardial ischemia by ligating the left anterior descending coronary artery (LAD) followed by reperfusion. Compared to euthermic controls, mice given AIH treatment exhibited significant inhibition of neutrophil infiltration and a reduction in matrix metallopeptidase 9 (MMP-9) expressions in the infarcted myocardium. A decrease in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive nuclei in the left ventricle myocardium were also observed. The overall infarct size of the heart was significantly smaller in AIH treated mice. Myocardial ischemia in mice given 5'-AMP without hypothermia had similar ischemia/reperfusion injuries as the euthermic control. Thus, the AIH cardio-protective effects were primarily hypothermia based.

  15. Alterations in phosphorylated cyclic adenosine monophosphate response element of binding protein activity: a pathway for fetal alcohol syndrome-related neurotoxicity.

    PubMed

    Roberson, Robin; Cameroni, Irene; Toso, Laura; Abebe, Daniel; Bissel, Stephanie; Spong, Catherine Y

    2009-02-01

    Fetal alcohol syndrome (FAS) is the leading cause of a spectrum of preventable nongenetic learning and behavioral disorders. In adult (FAS) mice, we measured phosphorylated cyclic adenosine monophosphate response element of binding protein (pCREB) staining in hippocampal subregions to evaluate a possible mechanism underlying FAS learning deficits. Pregnant C57BL6/J mice were treated on gestational day 8 with alcohol or control (saline). After learning assessment, the offspring were perfused for immunohistochemistry and brain sections probed using SER 133 pCREB antibody. Relative staining density was assessed using National Institutes of Health Image software. Statistical analysis included analysis of variance with P < .05 considered significant. In all hippocampal subregions, pCREB staining was greater in the control animals than in the alcohol-treated group (P < or = .0001). In utero alcohol exposure decreased pCREB activity in hippocampal subregions of adult mice. The dentate gyrus had the most robust cumulative decrease in pCREB staining, suggesting FAS adult learning deficits may correlate to enhanced dentate gyrus neurodegeneration.

  16. DNA sequence polymorphism within the bovine adenosine monophosphate deaminase 1 (AMPD1) is associated with production traits in Chinese cattle.

    PubMed

    Wei, C-B; Wang, J-Q; Chen, F-Y; Niu, H; Li, K

    2015-02-06

    The objectives of the present study were to detect an 18-bp deletion mutation in the bovine adenosine monophosphate deaminase 1 (AMPD1) gene and analyze its effect on growth traits in 2 Chinese cattle breeds using DNA sequencing and agarose electrophoresis. The five 19-bp polymerase chain reaction products of the AMPD1 gene exhibited 3 genotypes and 2 alleles: WW: homozygote genotype (wild-type); DD: homozygote genotype (mutant-type); WD: heterozygote genotype. Frequencies of the W allele varied from 66.15-70.35%. The associations between the 18-bp deletion mutation in the AMPD1 gene with production traits in 226 Jia-Xian red cattle was analyzed. The animals with genotype WW showed significantly higher heart girth and body weight than those with genotypes WD and DD at 24 months (P < 0.01). Our results indicate that the deletion mutation in the AMPD1 gene is associated with production traits, and may be used for marker-assisted selection in beef cattle breeding programs.

  17. Cyclic 3',5'-adenosine monophosphate (cAMP) signaling in the anterior pituitary gland in health and disease.

    PubMed

    Hernández-Ramírez, Laura C; Trivellin, Giampaolo; Stratakis, Constantine A

    2018-03-05

    The cyclic 3',5'-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy. Copyright © 2017. Published by Elsevier B.V.

  18. Adenosine Monophosphate Binding Stabilizes the KTN Domain of the Shewanella denitrificans Kef Potassium Efflux System

    PubMed Central

    2017-01-01

    Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme–substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding. PMID:28656748

  19. Methylene blue induces macroautophagy through 5′ adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation

    PubMed Central

    Xie, Luokun; Li, Wenjun; Winters, Ali; Yuan, Fang; Jin, Kunlin; Yang, Shaohua

    2013-01-01

    Methylene blue has been shown to be neuroprotective in multiple experimental neurodegenerative disease models. However, the mechanisms underlying the neuroprotective effects have not been fully elucidated. Previous studies have shown that macroautophagy has multiple beneficial roles for maintaining normal cellular homeostasis and that induction of macroautophagy after myocardial ischemia is protective. In the present study we demonstrated that methylene blue could protect HT22 hippocampal cell death induced by serum deprivation, companied by induction of macroautophagy. We also found that methylene blue-mediated neuroprotection was abolished by macroautophagy inhibition. Interestingly, 5′ adenosine monophosphate-activated protein kinase (AMPK) signaling, but not inhibition of mammalian target of rapamycin signaling, was activated at 12 and 24 h after methylene blue treatment in a dose-dependent manner. Methylene blue-induced macroautophagy was blocked by AMPK inhibitor. Consistent with in vitro data, macroautophagy was induced in the cortex and hippocampus of mouse brains treated with methylene blue. Our findings suggest that methylene blue-induced neuroprotection is mediated, at least in part, by macroautophagy though activation of AMPK signaling. PMID:23653592

  20. Methylene blue induces macroautophagy through 5' adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation.

    PubMed

    Xie, Luokun; Li, Wenjun; Winters, Ali; Yuan, Fang; Jin, Kunlin; Yang, Shaohua

    2013-01-01

    Methylene blue has been shown to be neuroprotective in multiple experimental neurodegenerative disease models. However, the mechanisms underlying the neuroprotective effects have not been fully elucidated. Previous studies have shown that macroautophagy has multiple beneficial roles for maintaining normal cellular homeostasis and that induction of macroautophagy after myocardial ischemia is protective. In the present study we demonstrated that methylene blue could protect HT22 hippocampal cell death induced by serum deprivation, companied by induction of macroautophagy. We also found that methylene blue-mediated neuroprotection was abolished by macroautophagy inhibition. Interestingly, 5' adenosine monophosphate-activated protein kinase (AMPK) signaling, but not inhibition of mammalian target of rapamycin signaling, was activated at 12 and 24 h after methylene blue treatment in a dose-dependent manner. Methylene blue-induced macroautophagy was blocked by AMPK inhibitor. Consistent with in vitro data, macroautophagy was induced in the cortex and hippocampus of mouse brains treated with methylene blue. Our findings suggest that methylene blue-induced neuroprotection is mediated, at least in part, by macroautophagy though activation of AMPK signaling.

  1. Mechanism of fever induction in rabbits.

    PubMed Central

    Siegert, R; Philipp-Dormston, W K; Radsak, K; Menzel, H

    1976-01-01

    Three exogenous pyrogens (Escherichia coli lipopolysaccharide, synthetic double-stranded ribonucleic acid. Newcastle disease virus) were compared with respect to their mechanisms of fever induction in rabbits. All inducers stimulated the production of an endogenous pyrogen demonstrated in the blood as well as prostaglandins of the E group, and of cyclic adenosine 3',5'-monophosphate in the cerebrospinal fluid. The concentrations of these compounds were elevated approximately twofold as compared to the controls. Independently of the mode of induction, the fever reaction could be prevented by pretreatment with 5 mg of cycloheximide per kg, although the three fever mediators were induced as in febrile animals. Consequently, at least one additional fever mediator that is sensitive to a 30 to 50% inhibition of protein synthesis by cycloheximide has to be postulated. The comparable reactions of the rabbits after administration of different pyrogens argues for a similar fever mechanism. In contrast to fever induction there was no stimulation of endogenous pyrogen, prostaglandins of the E group, and cyclic adenosine 3',5'-monophosphate in hyperthermia as a consequence of exposure of the animals to exogenous overheating. Furthermore, hyperthermia could not be prevented by cycloheximide. PMID:185148

  2. Sensitivity of fructose-1,6-biphosphatase from yeast, liver and skeletal muscle to fructose-2,6-biphosphate and 5'-adenosine monophosphate.

    PubMed

    von Herrath, M; Holzer, H

    1988-05-01

    As a prerequisite for future studies on the possible effect of sulphite, an anti-microbial agent, on gluconeogenesis in yeast, a comparative study of fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis, from yeast, liver and skeletal muscle is reported. In contrast to FBPase from yeast or liver, FBPase from skeletal muscle is approximately 1000-fold more sensitive to inhibition by 5' adenosine monophosphate and 30 to 250-fold less sensitive to inhibition by fructose-2,6-bisphosphate. The kinetic properties of the FBPases, determined by the ratios R(Mg2+/Mn2+) and R (pH 7/9) of the enzyme activities, measured at 10 mM Mg2+ and 2 mM Mn2+ and at pH 7.0 and 9.0, respectively, show a drastic difference between the skeletal muscle and the yeast or liver enzymes. The data support the idea that the enzymes from yeast and liver function in gluconeogenesis, whereas the enzyme from skeletal muscle is involved in other biological functions.

  3. DARPP chocolate: a caffeinated morsel of striatal signaling.

    PubMed

    Bastia, Elena; Schwarzschild, Michael A

    2003-01-14

    The psychomotor stimulant effects of caffeine, the most widely consumed psychoactive substance, are mediated through its antagonism of extracellular adenosine receptors in the basal ganglia. In the absence of caffeine, adenosine stimulates inhibitory striatopallidal neurons that suppress motor activity by binding to A2A receptors, thereby activating a cyclic adenosine 3',5'-monophosphate (cAMP) and protein kinase A signaling pathway. Bastia and Schwarzschild discuss recent research implicating DARRP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kilodaltons) as an attractive mediator of the sustained psychomotor stimulant effect seen with low doses of caffeine. They highlight the role of postsynaptic A2A receptor blockade, but leave open the possibility that antagonism of presynaptic or postsynaptic A1 receptors also contributes to DARPP-32-dependent psychomotor stimulation by caffeine.

  4. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma.

    PubMed

    Schuller, Hildegard M; Al-Wadei, Hussein A N; Majidi, Mourad

    2008-10-01

    Pulmonary adenocarcinoma (PAC) is the leading type of lung cancer in smokers and non-smokers that arises in most cases from small airway epithelial cells. PAC has a high mortality due to its aggressive behavior and resistance to cancer therapeutics. We have shown previously that the proliferation of human PAC cells NCI-H322 and immortalized human small airway epithelial cells HPL1D is stimulated by cyclic adenosine monophosphate (cAMP)/protein kinase A-dependent phosphorylation of cyclic adenosine monophosphate response element-binding (CREB) protein and transactivation of the epidermal growth factor receptor and that this pathway is activated by beta-1-adrenoreceptors (beta(1)-ARs) and the non-genomic estrogen receptor beta. Our current in vitro studies with HPL1D and NCI-H322 cells showed that signaling via the gamma-amino butyric acid receptor (GABA(B)R) strongly inhibited base level and isoproterenol-induced cAMP, p-CREB, cyclic adenosine monophosphate response element-luciferase activity and p-extracellular regulated kinase-1 (ERK1)/2 and effectively blocked DNA synthesis and cell migration. The inhibitory effects of gamma-amino butyric acid (GABA) were disinhibited by the GABA(B)R antagonist CGP-35348 or GABA(B)R knockdown. Immunohistochemical investigation of hamster lungs showed significant underexpression of GABA in animals with small airway-derived PACs induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These findings suggest that GABA may have tumor suppressor function in small airway epithelia and the PACs derived from them and that downregulation of GABA by NNK may contribute to the development of this cancer in smokers. Our findings suggest that marker-guided treatment with GABA or a GABA(B)R agonist of individuals with downregulated pulmonary GABA may provide a novel targeted approach for the prevention of PAC in smokers.

  5. Interaction of Tl +3 with mononucleotides: metal ion binding and sugar conformation

    NASA Astrophysics Data System (ADS)

    Nafisi, Sh.; Mohajerani, N.; Hadjiakhoondi, A.; Monajemi, M.; Garib, F.

    2001-05-01

    The interaction of Tl 3+ with sodium salts of adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), cytidine-5'-monophosphate (5'-CMP), thymidine 5'-monophosphate (5'-dTMP) in ratios 1 and 2 have been studied in neutral pH. The solid complexes were isolated and characterized by Fourier transform infrared (FTIR) and 1H NMR spectroscopy. In the Tl 2(AMP) 3, Tl 3+ binds directly to N-7 and indirectly to the N-1 position of the pyrimidine ring and phosphate group with sugar moiety in C2'-endoanti. The crystalline salt of Tl 2(GMP) 3 show direct Tl-N-7 and Tl-PO 3(inner-sphere) binding. The conformation of ribose moiety in Tl 2(GMP) 3 is C3'-endoanti. In the Tl 2(CMP) 3, Tl 3+ bind directly to N-3 and PO32- (inner-sphere). The conformation of ribose moiety in Tl 2(CMP) 3 is C2'-endoanti. In the Tl 2(dTMP) 3, Tl 3+ bind indirectly to carbonyl group. The sugar moiety in Tl 2(dTMP) 3 is C3'-endoanti.

  6. Effect of Trichlorfon on Hepatic Lipid Accumulation in Crucian Carp Carassius auratus gibelio

    PubMed Central

    Xu, WeiNa; Liu, WenBin; Shao, XianPing; Jiang, GuangZhen; Li, XianngFei

    2012-01-01

    This study evaluated the toxic effects of the organophosphate pesticide trichlorfon on hepatic lipid accumulation in crucian carp Carassius auratus gibelio. Seventy-five fish were divided into five groups (each group in triplicate), and then exposed to 0, 0.5, 1.0, 2.0, and 4.0 mg/L of trichlorfon and fed with commercial feed for 30 d. At the end of the experiment, plasma and hepatic lipid metabolic biochemical status were analyzed. Triglyceride contents were significantly (P < 0.05) increased in liver but decreased in plasma after 1.0, 2.0, and 4.0 mg/L trichlorfon treatments. Plasma insulin contents were markedly (P < 0.05) increased when trichlorfon concentrations were 0.5, 1.0, and 4.0 mg/L. There were no significant differences in hepatic hormone-sensitive lipase contents between the trichlorfon-treated fish and the controls. Hepatic cyclic adenosine 3′, 5′-monophosphate, very-low-density lipoprotein, and apolipoprotein B100 contents were decreased in the fish when trichlorfon concentration was 2.0 mg/L. Furthermore, electron microscope observations showed rough endoplasmic reticulum dilatation and mitochondrial vacuolization in hepatocytes with trichlorfon exposure. On the basis of morphological and physiological evidence, trichlorfon influenced crucian carp hepatic pathways of lipid metabolism and hepatocellular ultrastructure, which resulted in lipid accumulation in the liver. PMID:22897202

  7. Application of artificial neural network to investigate the effects of 5-fluorouracil on ribonucleotides and deoxyribonucleotides in HepG2 cells

    PubMed Central

    Guo, Jianru; Chen, QianQian; Lam, Christopher Wai Kei; Wang, Caiyun; Wong, Vincent Kam Wai; Xu, Fengguo; Jiang, ZhiHong; Zhang, Wei

    2015-01-01

    Endogenous ribonucleotides and deoxyribonucleotides are essential metabolites that play important roles in a broad range of key cellular functions. Their intracellular levels could also reflect the action of nucleoside analogues. We investigated the effects of 5-fluorouracil (5-FU) on ribonucleotide and deoxyribonucleotide pool sizes in cells upon exposure to 5-FU for different durations. Unsupervised and supervised artificial neural networks were compared for comprehensive analysis of global responses to 5-FU. As expected, deoxyuridine monophosphate (dUMP) increased after 5-FU incubation due to the inhibition of thymine monophosphate (TMP) synthesis. Interestingly, the accumulation of dUMP could not lead to increased levels of deoxyuridine triphosphate (dUTP) and deoxyuridine diphosphate (dUDP). After the initial fall in intracellular deoxythymidine triphosphate (TTP) concentration, its level recovered and increased from 48 h exposure to 5-FU, although deoxythymidine diphosphate (TDP) and TMP continued to decrease compared with the control group. These findings suggest 5-FU treatment caused unexpected changes in intracellular purine polls, such as increases in deoxyadenosine triphosphate (dATP), adenosine-triphosphate (ATP), guanosine triphosphate (GTP) pools. Further elucidation of the mechanism of action of 5-FU in causing these changes should enhance development of strategies that will increase the anticancer activity of 5-FU while decreasing its resistance. PMID:26578061

  8. Medicinal Chemistry of the Noncanonical Cyclic Nucleotides cCMP and cUMP.

    PubMed

    Schwede, Frank; Rentsch, Andreas; Genieser, Hans-Gottfried

    2017-01-01

    After decades of intensive research on adenosine-3',5'-cyclic monophosphate (cAMP)- and guanosine-3',5'-cyclic monophosphate (cGMP)-related second messenger systems, also the noncanonical congeners cyclic cytidine-3',5'-monophosphate (cCMP) and cyclic uridine-3',5'-monophosphate (cUMP) gained more and more interest. Until the late 1980s, only a small number of cCMP and cUMP analogs with sometimes undefined purities had been described. Moreover, most of these compounds had been rather synthesized as precursors of antitumor and antiviral nucleoside-5'-monophosphates and hence had not been tested for any second messenger activity. Along with the recurring interest in cCMP- and cUMP-related signaling in the early 2000s, it became evident that well-characterized small molecule analogs with reliable purities would serve as highly valuable tools for the evaluation of a putative second messenger role of cyclic pyrimidine nucleotides. Meanwhile, for this purpose new cCMP and cUMP derivatives have been developed, and already known analogs have been resynthesized and highly purified. This chapter summarizes early medicinal chemistry work on cCMP and cUMP and analogs thereof, followed by a description of recent synthetic developments and an outlook on potential future directions.

  9. Traditional Chinese medical therapy for erectile dysfunction

    PubMed Central

    Li, Hao; Jiang, Hongyang

    2017-01-01

    Traditional Chinese medicine (TCM), including acupuncture and Chinese herbs, is used as an alternative therapy to increase the curative effect for erectile dysfunction (ED). A large number of studies have been conducted to investigate the effect and mechanism of TCM for treating ED. The therapeutic effect of acupuncture on ED is still controversial at present. However, some Chinese herbs exhibited satisfying outcomes and they might improve erectile function by activating nitric oxide synthase (NOS)-cyclic guanosine monophosphate (cGMP) pathway, increasing cyclic adenosine monophosphate (cAMP) expression, elevating testosterone level, reducing intracellular Ca2+ concentration, down-regulating transforming growth factor β1 (TGFβ1)/Smad2 signaling pathway, or ameliorating the oxidative stress. PMID:28540226

  10. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase.

    PubMed

    Townley, Robert; Shapiro, Lawrence

    2007-03-23

    The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular ATP (adenosine triphosphate) and AMP concentrations. Here, we report crystal structures at 2.9 and 2.6 A resolution for ATP- and AMP-bound forms of a core alphabetagamma adenylate-binding domain from the fission yeast AMPK homolog. ATP and AMP bind competitively to a single site in the gamma subunit, with their respective phosphate groups positioned near function-impairing mutants. Unexpectedly, ATP binds without counterions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.

  11. Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine

    PubMed Central

    Zylka, Mark J.; Sowa, Nathaniel A.; Taylor-Blake, Bonnie; Twomey, Margaret A.; Herrala, Annakaisa; Voikar, Vootele; Vihko, Pirkko

    2008-01-01

    SUMMARY Thiamine monophosphatase (TMPase, also known as Fluoride-Resistant Acid Phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. The molecular identity of TMPase is currently unknown. We found that TMPase is identical to the transmembrane isoform of Prostatic Acid Phosphatase (PAP), an enzyme with unknown molecular and physiological functions. We then found that PAP knockout mice have normal acute pain sensitivity but enhanced sensitivity in chronic inflammatory and neuropathic pain models. In gain-of-function studies, intraspinal injection of PAP protein has potent anti-nociceptive, anti-hyperalgesic and anti-allodynic effects that last longer than the opioid analgesic morphine. PAP suppresses pain by functioning as an ecto-5’-nucleotidase. Specifically, PAP dephosphorylates extracellular adenosine monophosphate (AMP) to adenosine and activates A1-adenosine receptors in dorsal spinal cord. Our studies reveal molecular and physiological functions for PAP in purine nucleotide metabolism and nociception and suggest a novel use for PAP in the treatment of chronic pain. PMID:18940592

  12. Nucleotide and nucleoside involvement in immunomodulation in experimental Chagas disease.

    PubMed

    do Carmo, Guilherme M; de Sá, Mariângela F; Baldissera, Matheus D; Grando, Thirssa H; Mendes, Ricardo E; Cardoso, Valesca V; Casali, Emerson A; Moritz, Cesar Eduardo J; Monteiro, Silvia G; Da Silva, Aleksandro S

    2018-02-05

    The aim of this study was to evaluate whether Trypanosma cruzi infections cause alterations in the levels of seric purines, which could contribute to host immunomodulation. Twelve mice were divided into two groups identified as control (uninfected) and infected (T. cruzi) groups. The influence of the disease on seric purine levels was verified on day 20 post-infection (PI) by HPLC. Infected mice had circulating trypomastigotes during the experiment, as well as amastigote forms in the heart associated with inflammatory infiltrates. Increases on adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine (ADO), inosine (INO), and uric acid (URIC) levels were observed in the infected animals, while the adenosine monophosphate (AMP) and xanthine (XAN) levels were reduced compared with mice of the control group, indicating a possible impairment on the purinergic system, and consequently, on the immune system during the clinical course of the disease. In summary, the T. cruzi infection alters the seric purine levels, and consequently, modulates the immune system.

  13. Synthesis of protein in intestinal cells exposed to cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-11-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells andmore » Chinese hamster ovary cells exposed to cholera toxin. An increase in (/sup 3/H) leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of (/sup 35/S) methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed.« less

  14. c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria

    PubMed Central

    Fahmi, Tazin; Port, Gary C.

    2017-01-01

    Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an attractive antimicrobial drug target and therefore has been the focus of intensive study in several important pathogens. PMID:28783096

  15. A surrogate analyte-based liquid chromatography-tandem mass spectrometry method for the determination of endogenous cyclic nucleotides in rat brain.

    PubMed

    Chen, Jie; Tabatabaei, Ali; Zook, Doug; Wang, Yan; Danks, Anne; Stauber, Kathe

    2017-11-30

    A robust high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and qualified for the measurement of cyclic nucleotides (cNTs) in rat brain tissue. Stable isotopically labeled 3',5'-cyclic adenosine- 13 C 5 monophosphate ( 13 C 5 -cAMP) and 3',5'-cyclic guanosine- 13 C, 15 N 2 monophosphate ( 13 C 15 N 2 -cGMP) were used as surrogate analytes to measure endogenous 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP). Pre-weighed frozen rat brain samples were rapidly homogenized in 0.4M perchloric acid at a ratio of 1:4 (w/v). Following internal standard addition and dilution, the resulting extracts were analyzed using negative ion mode electrospray ionization LC-MS/MS. The calibration curves for both analytes ranged from 5 to 2000ng/g and showed excellent linearity (r 2 >0.996). Relative surrogate analyte-to-analyte LC-MS/MS responses were determined to correct concentrations derived from the surrogate curves. The intra-run precision (CV%) for 13 C 5 -cAMP and 13 C 15 N 2 -cGMP was below 6.6% and 7.4%, respectively, while the inter-run precision (CV%) was 8.5% and 5.8%, respectively. The intra-run accuracy (Dev%) for 13 C 5 -cAMP and 13 C 15 N 2 -cGMP was <11.9% and 10.3%, respectively, and the inter-run Dev% was <6.8% and 5.5%, respectively. Qualification experiments demonstrated high analyte recoveries, minimal matrix effects and low autosampler carryover. Acceptable frozen storage, freeze/thaw, benchtop, processed sample and autosampler stability were shown in brain sample homogenates as well as post-processed samples. The method was found to be suitable for the analysis of rat brain tissue cAMP and cGMP levels in preclinical biomarker development studies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. [Prognostic significance of the cyclic AMP concentration in acute leukemias].

    PubMed

    Paietta, E; Mittermayer, K; Schwarzmeier, J D

    1979-01-01

    In patients with acute leukemia (myeloblastic, lymphoblastic, undifferentiated) proliferation kinetics and cyclic adenosine-3', 5'-monophosphate (cAMP) concentration of the leukemic cells were studied for their significance in the prediction of responsiveness to cytostatic therapy. Patients with good clinical response had significantly faster turnover and lower cAMP-levels than those who failed to respond to treatment.

  17. A Temporal-Specific and Transient cAMP Increase Characterizes Odorant Classical Conditioning

    ERIC Educational Resources Information Center

    Cui, Wen; Smith, Andrew; Darby-King, Andrea; Harley, Carolyn W.; McLean, John H.

    2007-01-01

    Increases in cyclic adenosine monophosphate (cAMP) are proposed to initiate learning in a wide variety of species. Here, we measure changes in cAMP in the olfactory bulb prior to, during, and following a classically conditioned odor preference trial in rat pups. Measurements were taken up to the point of maximal CREB phosphorylation in olfactory…

  18. A fluorescent nucleic acid nanodevice quantitatively images elevated cyclic adenosine monophosphate in membrane-bound compartments.

    PubMed

    Sharma, Suruchi; Zaveri, Anisha; Visweswariah, Sandhya S; Krishnan, Yamuna

    2014-11-12

    cAMPhor: In the presence of cAMP, cAMPhor folds into a structure that binds DFHBI (green), increasing its fluorescence, while Alexa 647 (red) functions as a normalizing dye. It can thus be used to spatially image cAMP quantitatively in membrane-bound compartments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 5'-adenosine monophosphate-induced hypothermia attenuates brain ischemia/reperfusion injury in a rat model by inhibiting the inflammatory response.

    PubMed

    Miao, Yi-Feng; Wu, Hui; Yang, Shao-Feng; Dai, Jiong; Qiu, Yong-Ming; Tao, Zhen-Yi; Zhang, Xiao-Hua

    2015-01-01

    Hypothermia treatment is a promising therapeutic strategy for brain injury. We previously demonstrated that 5'-adenosine monophosphate (5'-AMP), a ribonucleic acid nucleotide, produces reversible deep hypothermia in rats when the ambient temperature is appropriately controlled. Thus, we hypothesized that 5'-AMP-induced hypothermia (AIH) may attenuate brain ischemia/reperfusion injury. Transient cerebral ischemia was induced by using the middle cerebral artery occlusion (MCAO) model in rats. Rats that underwent AIH treatment exhibited a significant reduction in neutrophil elastase infiltration into neuronal cells and matrix metalloproteinase 9 (MMP-9), interleukin-1 receptor (IL-1R), tumor necrosis factor receptor (TNFR), and Toll-like receptor (TLR) protein expression in the infarcted area compared to euthermic controls. AIH treatment also decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling- (TUNEL-) positive neuronal cells. The overall infarct volume was significantly smaller in AIH-treated rats, and neurological function was improved. By contrast, rats with ischemic brain injury that were administered 5'-AMP without inducing hypothermia had ischemia/reperfusion injuries similar to those in euthermic controls. Thus, the neuroprotective effects of AIH were primarily related to hypothermia.

  20. [Qualitative analysis of bis-(3'-5')-cyclic dimeric adenosine monophosphate of Porphyromonas gingivalis by high performance liquid chromatography coupled with mass spectrometry].

    PubMed

    Yongmei, Tan; Xiaojun, Yang; Juan, Du; Wanghong, Zhao; Xiaodan, Chen; Jin, Hou

    2016-06-01

    To test whether Porphyromonas gingivalis (P. gingivalis) could produce bacterial signal molecule, bis-(3'-5')-cyclic dimeric adenosine monophosphate (c-di-AMP) and lay the foundation for explorations of its roles in life metabolism and periodontitis immunity of P. gingivalis. P. gingivalis standard strain ATCC33277 was used as the experimental strain to extract nucleic acids from the bacteria. Then, c-di-AMP was detected using high performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Subsequently, HPLC was used to validate the sample further. Based on the signal/noise (S/N) for 3 : 1, the limit of determination of HPLC-MS/MS for peak time of c-di-AMP standard substances was 7.49 min and nucleic acid extractions from P. gingivalis was 8.82 min (S/N > 3). Further confirmation of HPLC showed that nucleic acid extractions from both P. gingivalis and c-di-AMP standard substances pre- sented goal absorbent peaks at 15.7 min, with the same ultraviolet absorbent spectrum. The nucleic acid extrac- tions from P. gingivalis contained c-di-AMP, which shows that P. gingivalis could produce c-di-AMP.

  1. Application and optimization of the tenderization of pig Longissimus dorsi muscle by adenosine 5'-monophosphate (AMP) using the response surface methodology.

    PubMed

    Deng, Shaoying; Wang, Daoying; Zhang, Muhan; Geng, Zhiming; Sun, Chong; Bian, Huan; Xu, Weimin; Zhu, Yongzhi; Liu, Fang; Wu, Haihong

    2016-03-01

    Based on single factor experiments, NaCl concentration, adenosine 5'-monophosphate (AMP) concentration and temperature were selected as independent variables for a three-level Box-Behnken experimental design, and the shear force and cooking loss were response values for regression analysis. According to the statistical models, it showed that all independent variables had significant effects on shear force and cooking loss, and optimal values were at the NaCl concentration of 4.15%, AMP concentration of 22.27 mmol/L and temperature of 16.70°C, which was determined with three-dimensional response surface diagrams and contour plots. Under this condition, the observed shear force and cooking loss were 0.625 kg and 8.07%, respectively, exhibiting a good agreement with their predicted values, showing the good applicability and feasibility of response surface methodology (RSM) for improving pork tenderness. Compared with control pig muscles, AMP combined with NaCl treatment demonstrated significant effects on improvement of meat tenderness and reduction of cooking loss. Therefore, AMP could be regarded as an effective tenderization agent for pork. © 2015 Japanese Society of Animal Science.

  2. Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety.

    PubMed

    Wallace, Tanya L; Stellitano, Kathryn E; Neve, Rachael L; Duman, Ronald S

    2004-08-01

    Chronic antidepressant administration increases the cyclic adenosine monophosphate response element binding protein (CREB) in the amygdala, a critical neural substrate involved in the physiologic responses to stress, fear, and anxiety. To determine the role of CREB in the amygdala in animal models of depression and anxiety, a viral gene transfer approach was used to selectively express CREB in this region of the rat brain. In the learned helplessness model of depression, induction of CREB in the basolateral amygdala after training decreased the number of escape failures, an antidepressant response. However, expression of CREB before training increased escape failures, and increased immobility in the forced swim test, depressive effects. Expression of CREB in the basolateral amygdala also increased behavioral measures of anxiety in both the open field test and the elevated plus maze, and enhanced cued fear conditioning. Taken together, these data demonstrate that CREB expression in the basolateral amygdala influences behavior in models of depression, anxiety, and fear. Moreover, in the basolateral amygdala, the temporal expression of CREB in relation to learned helplessness training, determines the qualitative outcome in this animal model of depression.

  3. Lysophosphatidic acid and adenylyl cyclase inhibitor increase proliferation of senescent human diploid fibroblasts by inhibiting adenosine monophosphate-activated protein kinase.

    PubMed

    Rhim, Ji-Heon; Jang, Ik-Soon; Song, Kye-Yong; Ha, Moon-Kyung; Cho, Sung-Chun; Yeo, Eui-Ju; Park, Sang Chul

    2008-08-01

    This study was designed to elucidate the molecular mechanism underlying lysophosphatidic acid (LPA) and adenylyl cyclase inhibitor SQ22536 (ACI)-induced senescent human diploid fibroblast (HDF) proliferation. Because adenosine monophosphate (AMP)-activated protein kinase (AMPK) is known to inhibit cell proliferation, we examined the phosphorylation status of AMPK and p53 and the expression level of p21(waf1/cip1) after treating HDFs with LPA and ACI. Phosphorylation of AMPKalpha on threonine-172 (p-Thr172-AMPKalpha) increases its catalytic activity but phosphorylation on serine-485/491 (p-Ser485/491-AMPKalpha) reduces the accessibility of the Thr172 phosphorylation site thereby inhibiting its catalytic activity. LPA increased p-Ser485/491-AMPKalpha, presumably by activating cAMP-dependent protein kinase (PKA). However, ACI reduced p-Thr172-AMPKalpha by inhibiting the LKB signaling. Our data demonstrated that both LPA and ACI inhibit the catalytic activity of AMPKalpha and p53 by differentially regulating phosphorylation of AMPKalpha, causing increased senescent cell proliferation. These findings suggest that the proliferation potential of senescent HDFs can be modulated through the regulation of the AMPK signaling pathway.

  4. Activation of Cyclic Adenosine Monophosphate Pathway Increases the Sensitivity of Cancer Cells to the Oncolytic Virus M1.

    PubMed

    Li, Kai; Zhang, Haipeng; Qiu, Jianguang; Lin, Yuan; Liang, Jiankai; Xiao, Xiao; Fu, Liwu; Wang, Fang; Cai, Jing; Tan, Yaqian; Zhu, Wenbo; Yin, Wei; Lu, Bingzheng; Xing, Fan; Tang, Lipeng; Yan, Min; Mai, Jialuo; Li, Yuan; Chen, Wenli; Qiu, Pengxin; Su, Xingwen; Gao, Guangping; Tai, Phillip W L; Hu, Jun; Yan, Guangmei

    2016-02-01

    Oncolytic virotherapy is a novel and emerging treatment modality that uses replication-competent viruses to destroy cancer cells. Although diverse cancer cell types are sensitive to oncolytic viruses, one of the major challenges of oncolytic virotherapy is that the sensitivity to oncolysis ranges among different cancer cell types. Furthermore, the underlying mechanism of action is not fully understood. Here, we report that activation of cyclic adenosine monophosphate (cAMP) signaling significantly sensitizes refractory cancer cells to alphavirus M1 in vitro, in vivo, and ex vivo. We find that activation of the cAMP signaling pathway inhibits M1-induced expression of antiviral factors in refractory cancer cells, leading to prolonged and severe endoplasmic reticulum (ER) stress, and cell apoptosis. We also demonstrate that M1-mediated oncolysis, which is enhanced by cAMP signaling, involves the factor, exchange protein directly activated by cAMP 1 (Epac1), but not the classical cAMP-dependent protein kinase A (PKA). Taken together, cAMP/Epac1 signaling pathway activation inhibits antiviral factors and improves responsiveness of refractory cancer cells to M1-mediated virotherapy.

  5. Cyclic adenosine 3′,5′-monophosphate in human lymphocytes. Alterations after phytohemagglutinin stimulation

    PubMed Central

    Smith, Jay W.; Steiner, Alton L.; Newberry, W. Marcus; Parker, Charles W.

    1971-01-01

    We have studied cyclic adenosine 3′,5′-monophosphate (cyclic AMP) concentrations in human peripheral blood lymphocytes after stimulation with phytohemagglutinin (PHA), isoproterenol, prostaglandins, and aminophylline. Purified lymphocytes were obtained by nylon fiber chromatography, and low speed centrifugation to remove platelets. Cyclic AMP levels were determined by a highly sensitive radioimmunoassay. At concentrations of 0.1-1.0 mmoles/liter isoproterenol and aminophylline produced moderate increases in cyclic AMP concentrations, whereas prostaglandins produced marked elevations. High concentrations of PHA produced 25-300% increases in cyclic AMP levels, alterations being demonstrated within 1-2 min. The early changes in cyclic AMP concentration appear to precede previously reported metabolic changes in PHA-stimulated cells. After 6 hr cyclic AMP levels in PHA-stimulated cells had usually fallen to the levels of control cells. After 24 hr the level in PHA-stimulated cells was characteristically below that of the control cells. Adenyl cyclase, the enzyme which converts ATP to cyclic AMP, was measured in lymphocyte homogenates. Adenyl cyclase activity was rapidly stimulated by fluoride, isoproterenol, prostaglandins, and PHA. Since adenyl cyclase is characteristically localized in external cell membranes, our results are consistent with an initial action of PHA at this level. PMID:4395563

  6. Switching Cyclic Nucleotide-Selective Activation of Cyclic Adenosine Monophosphate-Dependent Protein Kinase Holoenzyme Reveals Distinct Roles of Tandem Cyclic Nucleotide-Binding Domains.

    PubMed

    He, Daniel; Lorenz, Robin; Kim, Choel; Herberg, Friedrich W; Lim, Chinten James

    2017-12-15

    The cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKA and PKG) are key effectors of cyclic nucleotide signaling. Both share structural features that include tandem cyclic nucleotide-binding (CNB) domains, CNB-A and CNB-B, yet their functions are separated through preferential activation by either cAMP or cGMP. Based on structural studies and modeling, key CNB contact residues have been identified for both kinases. In this study, we explored the requirements for conversion of PKA activation from cAMP-dependent to cGMP-dependent. The consequences of the residue substitutions T192R/A212T within CNB-A or G316R/A336T within CNB-B of PKA-RIα on cyclic nucleotide binding and holoenzyme activation were assessed in vitro using purified recombinant proteins, and ex vivo using RIα-deficient mouse embryonic fibroblasts genetically reconstituted with wild-type or mutant PKA-RIα. In vitro, a loss of binding and activation selectivity was observed when residues in either one of the CNB domains were mutated, while mutations in both CNB domains resulted in a complete switch of selectivity from cAMP to cGMP. The switch in selectivity was also recapitulated ex vivo, confirming their functional roles in cells. Our results highlight the importance of key cyclic nucleotide contacts within each CNB domain and suggest that these domains may have evolved from an ancestral gene product to yield two distinct cyclic nucleotide-dependent protein kinases.

  7. Inhibition of Cyclic Adenosine Monophosphate-Specific Phosphodiesterase by Various Food Plant-Derived Phytotherapeutic Agents

    PubMed Central

    Pacjuk, Olga; Hernández-Huguet, Silvia; Körner, Johanna; Scherer, Katharina; Richling, Elke

    2017-01-01

    Background: Phosphodiesterases (PDEs) play a major role in the regulation of cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-mediated pathways. Their inhibitors exhibit anti-inflammatory, vasodilatory and antithrombotic effects. Therefore, consumption of foods with PDE-inhibiting potential may possess beneficial influence on the risk of cardiovascular diseases. Methods: Four plant extracts (Arbutus unedo, Camellia sinensis, Cynara scolymus, Zingiber officinale) with promising ingredient profiles and physiological effects were tested for their ability to inhibit cAMP-specific PDE in vitro in a radioactive assay. Results: Strawberry tree fruit (Arbutus unedo) and tea (Camellia sinensis) extracts did not inhibit PDE markedly. Alternatively, artichoke (Cynara scolymus) extract had a significant inhibitory influence on PDE activity (IC50 = 0.9 ± 0.1 mg/mL) as well as its flavone luteolin (IC50 = 41 ± 10 μM) and 3,4-dicaffeoylquinic acid (IC50 > 1.0 mM). Additionally, the ginger (Zingiber officinale) extract and one of its constituents, [6]-gingerol, significantly inhibited PDE (IC50 = 1.7 ± 0.2 mg/mL and IC50 > 1.7 mM, respectively). Crude fractionation of ginger extract showed that substances responsible for PDE inhibition were in the lipoid fraction (IC50 = 455 ± 19 μg/mL). Conclusions: A PDE-inhibitory effect was shown for artichoke and ginger extract. Whether PDE inhibition in vivo can be achieved through ingestion of artichoke or ginger extracts leading to physiological effects concerning cardiovascular health should be addressed in future research. PMID:29113064

  8. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  9. Deep-Red Fluorescent Gold Nanoclusters for Nucleoli Staining: Real-Time Monitoring of the Nucleolar Dynamics in Reverse Transformation of Malignant Cells.

    PubMed

    Wang, Xiaojuan; Wang, Yanan; He, Hua; Ma, Xiqi; Chen, Qi; Zhang, Shuai; Ge, Baosheng; Wang, Shengjie; Nau, Werner M; Huang, Fang

    2017-05-31

    Nucleoli are important subnuclear structures inside cells. We report novel fluorescent gold nanoclusters (K-AuNCs) that are able to stain the nucleoli selectively and make it possible to explore the nucleolar morphology with fluorescence imaging technique. This novel probe is prepared through an easy synthesis method by employing a tripeptide (Lys-Cys-Lys) as the surface ligand. The properties, including deep-red fluorescence emission (680 nm), large Stocks shift, broad excitation band, low cytotoxicity, and good photostability, endow this probe with potential for bioanalytical applications. Because of their small size and their positively charged surface, K-AuNCs are able to accumulate efficiently at the nucleolar regions and provide precise morphological information. K-AuNCs are also used to monitor the nucleolar dynamics along the reverse-transformation process of malignant cells, induced by the agonist of protein A, 8-chloro-cyclic adenosine monophosphate. This gives a novel approach for investigating the working mechanism of antitumor drugs.

  10. AMPD2 Regulates GTP Synthesis and is Mutated in a Potentially-Treatable Neurodegenerative Brainstem Disorder

    PubMed Central

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K.; Vleet, Jeremy Van; Fenstermaker, Ali G.; Silhavy, Jennifer L.; Scheliga, Judith S.; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma Mujgan; Celep, Figen; Oraby, Azza; Zaki, Maha S.; Al-Baradie, Raidah; Faqeih, Eissa; Saleh, Mohammad; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W.; Gleeson, Joseph G.

    2013-01-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acids synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a new distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH), due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a new, potentially treatable early-onset neurodegenerative disease. PMID:23911318

  11. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder.

    PubMed

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K; Van Vleet, Jeremy; Fenstermaker, Ali G; Silhavy, Jennifer L; Scheliga, Judith S; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma M; Celep, Figen; Oraby, Azza; Zaki, Maha S; Al-Baradie, Raidah; Faqeih, Eissa A; Saleh, Mohammed A M; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W; Gleeson, Joseph G

    2013-08-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. 3',5'-cIMP as Potential Second Messenger in the Vascular Wall.

    PubMed

    Leung, Susan W S; Gao, Yuansheng; Vanhoutte, Paul M

    2017-01-01

    Traditionally, only the 3',5'-cyclic monophosphates of adenosine and guanosine (produced by adenylyl cyclase and guanylyl cyclase, respectively) are regarded as true "second messengers" in the vascular wall, despite the presence of other cyclic nucleotides in different tissues. Among these noncanonical cyclic nucleotides, inosine 3',5'-cyclic monophosphate (cIMP) is synthesized by soluble guanylyl cyclase in porcine coronary arteries in response to hypoxia, when the enzyme is activated by endothelium-derived nitric oxide. Its production is associated with augmentation of vascular contraction mediated by stimulation of Rho kinase. Based on these findings, cIMP appears to meet most, if not all, of the criteria required for it to be accepted as a "second messenger," at least in the vascular wall.

  13. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine

    PubMed Central

    Laver, Derek R; Lenz, Gerlinde K E; Lamb, Graham D

    2001-01-01

    Nucleotide activation of skeletal muscle ryanodine receptors (RyRs) was studied in planar lipid bilayers in order to understand RyR regulation in vivo under normal and fatigued conditions. With ‘resting’ calcium (100 nm cytoplasmic and 1 mm luminal), RyRs had an open probability (Po) of ∼0.01 in the absence of nucleotides and magnesium. ATP reversibly activated RyRs with Po at saturation (Pmax) ∼0.33 and Ka (concentration for half-maximal activation) ∼0.36 mm and with a Hill coefficient (nH) of ∼1.8 in RyRs when Pmax < 0.5 and ∼4 when Pmax > 0.5. AMP was a much weaker agonist (Pmax∼0.09) and adenosine was weaker still (Pmax∼0.01–0.02), whereas inosine monophosphate (IMP), the normal metabolic end product of ATP hydrolysis, produced no activation at all. Adenosine acted as a competitive antagonist that reversibly inhibited ATP- and AMP-activated RyRs with nH∼1 and Ki∼0.06 mm at [ATP] < 0.5 mm, increasing 4-fold for each 2-fold increase in [ATP] above 0.5 mm. This is explained by the binding of a single adenosine preventing the cooperative binding of two ATP or AMP molecules, with dissociation constants of 0.4, 0.45 and 0.06 mm for ATP, AMP and adenosine, respectively. Importantly, IMP (≤ 8 mm) had no inhibitory effect whatsoever on ATP-activated RyRs. Mean open (τo) and closed (τc) dwell-times were more closely related to Po than to the nucleotide species or individual RyRs. At Po < 0.2, RyR regulation occurred via changes in τc, whereas at higher Po this also occurred via changes in τo. The detailed properties of activation and competitive inhibition indicated complex channel behaviour that could be explained in terms of a model involving interactions between different subunits of the RyR homotetramer. The results also show how deleterious adenosine accumulation is to the function of RyRs in skeletal muscle and, by comparison with voltage sensor-controlled Ca2+ release, indicate that voltage sensor activation requires ATP binding to the RyR to be effective. PMID:11744753

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, I.S.; Gaa, S.T.; Rogers, T.B.

    The muscarinic cholinergic agonist, carbachol, and pertussis toxin were used to examine the functional status of the guanine nucleotide-binding protein that inhibits adenylate cyclase (G{sub i}) in cultured neonatal rat heart myocytes. The isoproterenol stimulation of adenylate cyclase activity in myocyte membranes and adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) accumulation in intact cells (4 days in culture) were insensitive to carbachol. However, in cells cultured for 11 days, carbachol inhibited isoproterenol-stimulated cAMP accumulation by 30%. Angiotensin II (ANG II) was also found to inhibit isoproterenol-stimulated cAMP accumulation in day 11 cells in a dose-dependent manner. Pertussis toxin treatment reversed the inhibitory effectsmore » of both ANG II and carbachol, suggesting a role for G{sub i} in the process. Carbachol binding to membranes from day 4 cells was relatively insensitive to guanine nucleotides when compared with binding to membranes from day 11 or adult cells. Furthermore, pertussis toxin-mediated {sup 32}P incorporation into a 39- to 41-kDa substrate in day 11 membranes was increased 3.2-fold over that measured in day 4 membranes. These findings support the view that, although G{sub i} is expressed, it is nonfunctional in 4-day-old cultured neonatal rat heart myocytes and acquisition of functional G{sub i} is dependent on culture conditions. Furthermore, the ANG II receptor can couple to G{sub i} in heart.« less

  15. Endogenous Production of Extracellular Adenosine by Trabecular Meshwork Cells: Potential Role in Outflow Regulation

    PubMed Central

    Wu, Jing; Li, Guorong; Luna, Coralia; Spasojevic, Ivan; Epstein, David L.; Gonzalez, Pedro

    2012-01-01

    Purpose. To investigate the mechanisms for endogenous production of extracellular adenosine in trabecular meshwork (TM) cells and evaluate its physiological relevance to the regulation of aqueous humor outflow facility. Methods. Extra-cellular levels of adenosine monophosphate (AMP) and adenosine in porcine trabecular meshwork (PTM) cells treated with adenosine triphosphate (ATP), AMP, cAMP or forskolin with or without specific inhibitors of phosphodiesterases (IBMX) and CD73 (AMPCP) were determined by high-pressure liquid chromatography fluorometry. Extracellular adenosine was also evaluated in cell cultures subjected to cyclic mechanical stress (CMS) (20% stretching; 1 Hz) and after disruption of lipid rafts with methyl-β-cyclodextrin. Expression of CD39 and CD73 in porcine TM cells and tissue were examined by Q-PCR and Western blot. The effect of inhibition of CD73 on outflow facility was evaluated in perfused living mouse eyes. Results. PTM cells generated extracellular adenosine from extracellular ATP and AMP but not from extracellular cAMP. Increased intracellular cAMP mediated by forskolin led to a significant increase in extracellular adenosine production that was not prevented by IBMX. Inhibition of CD73 resulted, in all cases, in a significant decrease in extracellular adenosine. CMS induced a significant activation of extracellular adenosine production. Inhibition of CD73 activity with AMPCP in living mouse eyes resulted in a significant decrease in outflow facility. Conclusions. These results support the concept that the extracellular adenosine pathway might play an important role in the homeostatic regulation of outflow resistance in the TM, and suggest a novel mechanism by which pathologic alteration of the TM, such as increased tissue rigidity, could lead to abnormal elevation of IOP in glaucoma. PMID:22997289

  16. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides

    USDA-ARS?s Scientific Manuscript database

    The cyclic AMP (cAMP)-PKA pathway is a central signaling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signaling in fungal biology has been well documented. Two key conserved components, adenylate cyclase (AC) and ca...

  17. The reproducibility of adenosine monophosphate bronchial challenges in mild, steroid-naive asthmatics

    PubMed Central

    Singh, Dave; Fairwood, Jennifer; Murdoch, Robert; Weeks, Amanda; Russell, Paul; Roy, Kay; Langley, Steve; Woodcock, Ashley

    2008-01-01

    WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Repeated adenosine monophosphate (AMP) challenges are used to assess drug effects in asthma clinical trials, but may be prone to tachyphylaxis when repeated at short intervals. Possible tachyphylaxis at 12- and 24-h intervals has not been studied. WHAT THIS STUDY ADDS Clinically relevant tachyphylaxis after repeated AMP challenges does not occur when repeated at 12- and 24-h intervals. AMP challenges at these intervals can be used to assess drug effects in clinical trials. AIMS Repeated adenosine monophosphate (AMP) challenges are used to assess drug efficacy in clinical trials of mild, steroid-naive asthmatics. Refractoriness has been reported after repeated challenges over short intervals. This study evaluated possible tachyphylaxis after repeated AMP challenges at 12 and 24 h in mild, steroid-naive asthmatics. METHODS This was an open, three-way crossover study. Twenty-six steroid-naive asthmatic subjects were randomized to the following AMP challenge regimens separated by 7–14 days: (A) challenge at 08.00 h, repeated 24 h later; (B) challenge at 08.00 h, repeated 12 and 24 h later; (C) challenge at 20.00 h, repeated 12 h later. Comparisons within day were assessed using 90% confidence intervals (CIs). Non-inferiority approach taken with 1 doubling concentration (DC) as a clinically relevant difference. RESULTS Regimen A: Significant increase in AMP reactivity at 24 h. Mean DC difference was 0.6 (90% CI 0.24, 0.96). Regimen B: No evidence of difference between AMP reactivity at 08.00 h and a repeated challenge 12 h later. Repeated challenge at 24 h caused a significant increase in provocation concentration (PC)20 compared with 12 h (mean DC difference 0.48, 90% CI 0.02, 0.95) and 0 h (mean DC difference 0.82, 90% CI 0.49, 1.14 – the upper CI exceeds the criteria of 1 DC). Challenge regimen C: No difference between challenges; mean DC difference of 0.28 (90% CI −0.2, 0.76). CONCLUSION The small decline in AMP reactivity during repeated challenges was not consistently observed, and was small compared with the known effects of inhaled drugs. PMID:18507658

  18. Effects of adenosine monophosphate used in combination with L-arginine on female rabbit corpus cavernosum tissue.

    PubMed

    Stücker, Olivier; Pons, Catherine; Neuzillet, Yann; Laemmel, Elisabeth; Lebret, Thierry

    2014-04-01

    Sexual dysfunction is significantly more prevalent in women than in men. However, to date, no satisfactory oral treatment is yet available. The aim of this study was to study the effects of adenosine monophosphate (AMP) alone or its combination with L-Arginine on the relaxation of the female rabbit corpus cavernosum. Cylinder strips from the corporal body of the excised clitoris from female New Zealand White rabbits were incubated in Krebs solution. Phenylephrine (PE) precontraction was achieved, then the drugs AMP and L-Arginine were administered either independently or in sequential combinations to the strips under precontracted conditions. Contraction percentages were compared. When precontraction was induced by PE 8 μM or 20 μM, AMP was shown to induce relaxation up to 25% in a dose-dependent manner. The relaxation induced by L-Arginine reached 15.6% at 5.10(-4) M vs. 16.5% at AMP 5.10(-4) M under the same experimental conditions. Nitric oxide (NO) synthase inhibitor N-nitro-L-arginine strongly inhibited the relaxing effect provoked by AMP, suggesting that the action mechanism of this nucleotide is related to the NO pathway. The combination of L-Arginine at 5.10(-4) M with AMP at different doses ranging from 5.10(-4) M to 10(-3) M significantly amplified the relaxing response up to 40.7% and 58%, respectively. Our results demonstrate that AMP induces a relaxing effect on the female rabbit corpora. They also show that L-Arginine and AMP can potentiate each other and that a synergistic effect can be obtained by their combined use. Because only slight differences exist between both sexes in response to NO donors and/or nucleotide purines or in their use together, it is very likely that close biochemical mechanisms, although not to the same degree and not quite similar, are involved in the engorgement of the penis and the clitoris of New Zealand White rabbits. Stücker O, Pons C, Neuzillet Y, Laemmel E, and Lebret T. Original research-sexual medicine: Effects of adenosine monophosphate used in combination with L-Arginine on female rabbit corpus cavernosum tissue. Sex Med 2014;2:1-7.

  19. Bone marrow-derived mesenchymal stem cells ameliorate sodium nitrite-induced hypoxic brain injury in a rat model

    PubMed Central

    Ali, Elham H.A.; Ahmed-Farid, Omar A.; Osman, Amany A. E.

    2017-01-01

    Sodium nitrite (NaNO2) is an inorganic salt used broadly in chemical industry. NaNO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissue specific cells and MSC therapy is a potential method for improving brain functions. This work aims to investigate the possible therapeutic role of bone marrow-derived MSCs against NaNO2 induced hypoxic brain injury. Rats were divided into control group (treated for 3 or 6 weeks), hypoxic (HP) group (subcutaneous injection of 35 mg/kg NaNO2 for 3 weeks to induce hypoxic brain injury), HP recovery groups N-2wR and N-3wR (treated with the same dose of NaNO2 for 2 and 3 weeks respectively, followed by 4-week or 3-week self-recovery respectively), and MSCs treated groups N-2wSC and N-3wSC (treated with the same dose of NaNO2 for 2 and 3 weeks respectively, followed by one injection of 2 × 106 MSCs via the tail vein in combination with 4 week self-recovery or intravenous injection of NaNO2 for 1 week in combination with 3 week self-recovery). The levels of neurotransmitters (norepinephrine, dopamine, serotonin), energy substances (adenosine monophosphate, adenosine diphosphate, adenosine triphosphate), and oxidative stress markers (malondialdehyde, nitric oxide, 8-hydroxy-2′-deoxyguanosine, glutathione reduced form, and oxidized glutathione) in the frontal cortex and midbrain were measured using high performance liquid chromatography. At the same time, hematoxylin-eosin staining was performed to observe the pathological change of the injured brain tissue. Compared with HP group, pathological change of brain tissue was milder, the levels of malondialdehyde, nitric oxide, oxidized glutathione, 8-hydroxy-2′-deoxyguanosine, norepinephrine, serotonin, glutathione reduced form, and adenosine triphosphate in the frontal cortex and midbrain were significantly decreased, and glutathione reduced form/oxidized glutathione and adenosine monophosphate/adenosine triphosphate ratio were significantly increased in the MSCs treated groups. These findings suggest that bone marrow-derived MSCs exhibit neuroprotective effects against NaNO2-induced hypoxic brain injury through exerting anti-oxidative effects and providing energy to the brain. PMID:29323037

  20. Crystal structures of RIalpha subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase complexed with (Rp)-adenosine 3',5'-cyclic monophosphothioate and (Sp)-adenosine 3',5'-cyclic monophosphothioate, the phosphothioate analogues of cAMP.

    PubMed

    Wu, Jian; Jones, John M; Nguyen-Huu, Xuong; Ten Eyck, Lynn F; Taylor, Susan S

    2004-06-01

    Cyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.4 and 2.3 A resolution, respectively. While the structures are similar to each other and to the crystal structure of RIalpha bound to cAMP, differences in the dynamical properties of the protein when (R(p))-cAMPS is bound are apparent. The structures highlight the critical importance of the exocyclic oxygen's interaction with the invariant arginine in the phosphate binding cassette (PBC) and the importance of this interaction for the dynamical properties of the interactions that radiate out from the PBC. The conformations of the phosphate binding cassettes containing two invariant arginine residues (Arg209 on domain A, and Arg333 on domain B) are somewhat different due to the sulfur interacting with this arginine. Furthermore, the B-site ligand together with the entire domain B show significant differences in their overall dynamic properties in the crystal structure of Delta(1-91) RIalpha complexed with (R(p))-cAMPS phosphothioate analogue ((R(p))-RIalpha) compared to the cAMP- and (S(p))-cAMPS-bound type I and II regulatory subunits, based on the temperature factors. In all structures, two structural solvent molecules exist within the A-site ligand binding pocket; both mediate water-bridged interactions between the ligand and the protein. No structured waters are in the B-site pocket. Owing to the higher resolution data, the N-terminal segment (109-117) of the RIalpha subunit can also be traced. This strand forms an intermolecular antiparallel beta-sheet with the same strand in an adjacent molecule and implies that the RIalpha subunit can form a weak homodimer even in the absence of its dimerization domain.

  1. Involvement of a cyclic adenosine monophosphate-dependent signal in the diet-induced canalicular trafficking of adenosine triphosphate-binding cassette transporter g5/g8.

    PubMed

    Yamazaki, Yasuhiro; Yasui, Kenta; Hashizume, Takahiro; Suto, Arisa; Mori, Ayaka; Murata, Yuzuki; Yamaguchi, Masahiko; Ikari, Akira; Sugatani, Junko

    2015-10-01

    The adenosine triphosphate-binding cassette (ABC) half-transporters Abcg5 and Abcg8 promote the secretion of neutral sterol into bile. Studies have demonstrated the diet-induced gene expression of these transporters, but the regulation of their trafficking when the nutritional status changes in the liver remains to be elucidated. Here, we generated a novel in vivo kinetic analysis that can monitor the intracellular trafficking of Abcg5/Abcg8 in living mouse liver by in vivo transfection of the genes of fluorescent protein-tagged transporters and investigated how hypernutrition affects the canalicular trafficking of these transporters. The kinetic analysis showed that lithogenic diet consumption accelerated the translocation of newly synthesized fluorescent-tagged transporters to intracellular pools in an endosomal compartment and enhanced the recruitment of these pooled gene products into the bile canalicular membrane in mouse liver. Because some ABC transporters are reported to be recruited from intracellular pools to the bile canaliculi by cyclic adenosine monophosphate (cAMP) signaling, we next evaluated the involvement of this machinery in a diet-induced event. Administration of a protein kinase A inhibitor, N-(2-{[3-(4-bromophenyl)-2-propenyl]amino}ethyl)-5-isoquinolinesulfonamide, decreased the canalicular expression of native Abcg5/Abcg8 in lithogenic diet-fed mice, and injection of a cAMP analog, dibutyryl cAMP, transiently increased their levels in standard diet-fed mice, indicating the involvement of cAMP signaling. Indeed, canalicular trafficking of the fluorescent-tagged Abcg5/Abcg8 was enhanced by dibutyryl cAMP administration. These observations suggest that diet-induced lipid loading into liver accelerates the trafficking of Abcg5/Abcg8 to the bile canalicular membrane through cAMP signaling machinery. © 2015 by the American Association for the Study of Liver Diseases.

  2. The effect of adenosine 5'-monophosphate (AMP) on tenderness, microstructure and chemical-physical index of duck breast meat.

    PubMed

    Wang, Daoying; Deng, Shaoying; Zhang, Muhan; Geng, Zhiming; Sun, Chong; Bian, Huan; Xu, Weimin; Zhu, Yongzhi; Liu, Fang; Wu, Haihong

    2016-03-30

    Adenosine 5'-monophosphate (AMP) is often used in meat and poultry soups as a flavor enhancer (flavor modifier), or as food additives for specific nutritional purposes. Our previous research as well as evidence from others showed that actomyosin could be dissociated into myosin and actin by AMP in extracted muscle solution. However, there is no report available on the application of AMP to dissociate actomyosin and to improve meat tenderness. The objectives of this study were to evaluate the effect of AMP on duck meat tenderness and other quality traits and to explore the mechanism of the action of AMP on meat tenderness. Duck breast muscle was treated with 0, 10, 20, 30, 40 mmol L(-1) AMP at 5 °C for 10 h and examined for shear force, microstructure, actomyosin dissociation, myofibril fragmentation index (MFI), pH, water content, cooking loss, CIE* color (L*, a*, b*), inosine monophosphate (IMP) and free amino acid (FAA) contents. Results showed that shear force, cooking loss, L* and b* of the muscles significantly decreased after AMP treatment (P < 0.05); actomyosin dissociation, MFI, pH, water content, fiber diameter, sarcomere length, IMP and ammonia significantly increased (P < 0.05); no significant change in a* or other FAA content was observed (P > 0.05), and muscle shrinkage in transverse and longitudinal directions were restrained after AMP treatment. The results suggest that AMP could notably improve meat tenderness, and this effect was probably mainly through increasing muscle pH, promoting actomyosin dissociation and disrupting the Z-line; meanwhile, the conversion of AMP to IMP may contribute to the flavor of meat. © 2015 Society of Chemical Industry.

  3. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon.

    PubMed Central

    Yokoyama, S; Watanabe, T; Murao, K; Ishikura, H; Yamaizumi, Z; Nishimura, S; Miyazawa, T

    1985-01-01

    Proton NMR analyses have been made to elucidate the conformational characteristics of modified nucleotides as found in the first position of the anticodon of tRNA [derivatives of 5-methyl-2-thiouridine 5'-monophosphate (pxm5s2U) and derivatives of 5-hydroxyuridine 5'-monophosphate (pxo5U)]. In pxm5s2U, the C3'-endo form is extraordinarily more stable than the C2'-endo form for the ribose ring, because of the combined effects of the 2-thiocarbonyl group and the 5-substituent. By contrast, in pxo5U, the C2'-endo form is much more stable than the C3'-endo form, because of the interaction between the 5-substituent and the 5'-phosphate group. The enthalpy differences between the C2'-endo form and the C3'-endo form have been obtained as 1.1, -0.7, and 0.1 kcal/mol (1 cal = 4.184 J) for pxm5s2U, pxo5U, and unmodified uridine 5'-monophosphate, respectively. These findings lead to the conclusion that xm5s2U in the first position of the anticodon exclusively takes the C3'-endo form to recognize adenosine (but not uridine) as the third letter of the codon, whereas xo5U takes the C2'-endo form as well as the C3'-endo form to recognize adenosine, guanosine, and uridine as the third letter of the codon on ribosome. Accordingly, the biological significance of such modifications of uridine to xm5s2U/xo5U is in the regulation of the conformational rigidity/flexibility in the first position of the anticodon so as to guarantee the correct and efficient translation of codons in protein biosynthesis. PMID:3860833

  4. Glycolytic potential and activity of adenosine monophosphate kinase (AMPK), glycogen phosphorylase (GP) and glycogen debranching enzyme (GDE) in steer carcasses with normal (<5.8) or high (>5.9) 24h pH determined in M. longissimus dorsi.

    PubMed

    Apaoblaza, A; Galaz, A; Strobel, P; Ramírez-Reveco, A; Jeréz-Timaure, N; Gallo, C

    2015-03-01

    Muscle glycogen concentration (MGC) and lactate (LA), activity of glycogen debranching enzyme (GDE), glycogen phosphorylase (GP) and adenosine monophosphate kinase (AMPK) were determined at 0.5h (T0) and 24h (T24) post-mortem in Longissimus dorsi samples from 38 steers that produced high pH (>5.9) and normal pH (<5.8) carcasses at 24h postmortem. MGC, LA and glycolytic potential were higher (P<0.05) in normal pH carcasses. GDE activity was similar (P>0.05) in both pH categories. GP activity increased between T0 and T24 only in normal pH carcasses. AMPK activity was four times higher in normal pH v/s high pH carcasses, without changing its activity over time. Results reinforce the idea that differences in postmortem glycogenolytic/glycolytic flow in L. dorsi of steers showing normal v/s high muscle pH at 24h, could be explained not only by the higher initial MGC in normal pH carcasses, but also by a high and sustained activity of AMPK and an increased GP activity at 24h postmortem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. "Preconditioning" with latrepirdine, an adenosine 5'-monophosphate-activated protein kinase activator, delays amyotrophic lateral sclerosis progression in SOD1(G93A) mice.

    PubMed

    Coughlan, Karen S; Mitchem, Mollie R; Hogg, Marion C; Prehn, Jochen H M

    2015-02-01

    Adenosine 5'-monophosphate-activated protein kinase (AMPK) is a master regulator of energy balance. As energy imbalance is documented as a key pathologic feature of amyotrophic lateral sclerosis (ALS), we investigated AMPK as a pharmacologic target in SOD1(G93A) mice. We noted a strong activation of AMPK in lumbar spinal cords of SOD1(G93A) mice. Pharmacologic activation of AMPK has shown protective effects in neuronal "preconditioning" models. We tested the hypothesis that "preconditioning" with a small molecule activator of AMPK, latrepirdine, exerts beneficial effects on disease progression. SOD1(G93A) mice (n = 24 animals per group; sex and litter matched) were treated with latrepirdine (1 μg/kg, intraperitoneal) or vehicle from postnatal day 70 to 120. Treatment with latrepirdine increased AMPK activity in primary mouse motor neuron cultures and in SOD1(G93A) lumbar spinal cords. Mice "preconditioned" with latrepirdine showed a delayed symptom onset and a significant increase in life span (p < 0.01). Our study suggests that "preconditioning" with latrepirdine may represent a possible therapeutic strategy for individuals harboring ALS-associated gene mutations who are at risk for developing ALS. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Synthesis and Release of Cyclic Adenosine 3′:5′-Monophosphate by Ochromonas malhamensis1

    PubMed Central

    Bressan, Ray A.; Handa, Avtar K.; Quader, Hartmut; Filner, Philip

    1980-01-01

    The chrysophycean alga, Ochromonas malhamensis Pringsheim, was shown to synthesize cyclic adenosine 3′:5′-monophosphate (cAMP) and to release it into the culture medium. Cells contained 3 to 3,000 picomoles per gram fresh weight; medium contained up to 20 times the amount in the cells. Putative [32P]cAMP was purified from cultures supplied [32P]phosphate. The compound was identified as [32P]cAMP by co-chromatography with authentic cAMP through 10 serial steps; by chemical deamination at the same rate as authentic cAMP, to a 32P compound with the chromatographic behavior of cIMP; and by its conversion through the action of cyclic nucleotide phosphodiesterase to a 32P compound with the chromatographic behavior of 5′-AMP. A two-step procedure involving chromatography on alumina and on Dowex 50 purified the unlabeled compound from cells or medium sufficiently for it to be assayable by competitive inhibition of binding of [3H]cAMP to cAMP-binding protein (Gilman assay) or by stimulation of cAMP-dependent protein kinase. The activity was destroyed by cyclic nucleotide phosphodiesterase with the same kinetics as authentic cAMP, provided that an endogenous inhibitor of the phosphodiesterase was first removed by an additional purification step. Images PMID:16661154

  7. Metabolism of Cytokinin 1

    PubMed Central

    Chen, Chong-Maw; Kristopeit, Susan M.

    1981-01-01

    Two forms (F-I and F-II) of 5′-nucleotidases (5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) which catalyze the dephosphorylation of N6-(Δ2-isopentenyl)adenosine 5′-monophosphate and AMP to form the corresponding nucleosides were partially purified from the cytosol of wheat (Triticum aestivum) germ. Both the F-I (molecular weight, 57,000) and F-II (molecular weight, 110,000) 5′-nucleotidases dephosphorylate the ribonucleotides at an optimum pH of 7. The Km values for the cytokinin nucleotide are 3.5 micromolar (F-I enzyme) and 12.8 micromolar (F-II enzyme) in 100 millimolar Tris-maleate buffer (pH 7) at 37 C. The F-I enzyme is less rapidly inactivated by heating than is the F-II enzyme. Both nucleotidases hydrolyze purine ribonucleoside 5′-phosphates, AMP being the preferred substrate. N6-(Δ2-isopentenyl)Adenosine 5′-monophosphate is hydrolyzed at a rate 72 and 86% that of AMP by the F-I and F-II nucleotides, respectively. Phenylphosphate and 3′-AMP are not substrates for the enzymes. It is proposed that dephosphorylation of cytokinin nucleotide by cytosol 5′-nucleotidases may play an important role in regulating levels of “active cytokinin” in plant cells. PMID:16661701

  8. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters

    PubMed Central

    Lynge, J; Juel, C; Hellsten, Y

    2001-01-01

    The existence of adenosine transporters in plasma membrane giant vesicles from rat skeletal muscles and in primary skeletal muscle cell cultures was investigated. In addition, the contribution of intracellularly or extracellularly formed adenosine to the overall extracellular adenosine concentration during muscle contraction was determined in primary skeletal muscle cell cultures. In plasma membrane giant vesicles, the carrier-mediated adenosine transport demonstrated saturation kinetics with Km= 177 ± 36 μm and Vmax= 1.9 ± 0.2 nmol ml−1 s−1 (0.7 nmol (mg protein)−1 s−1). The existence of an adenosine transporter was further evidenced by the inhibition of the carrier-mediated adenosine transport in the presence of NBMPR (nitrobenzylthioinosine; 72 % inhibition) or dipyridamol (64 % inhibition; P < 0.05). In primary skeletal muscle cells, the rate of extracellular adenosine accumulation was 5-fold greater (P < 0.05) with electrical stimulation than without electrical stimulation. Addition of the adenosine transporter inhibitor NBMPR led to a 57 % larger (P < 0.05) rate of extracellular adenosine accumulation in the electro-stimulated muscle cells compared with control cells, demonstrating that adenosine is taken up by the skeletal muscle cells during contractions. Inhibition of ecto-5′-nucleotidase with AOPCP in electro-stimulated cells resulted in a 70 % lower (P < 0.05) rate of extracellular adenosine accumulation compared with control cells, indicating that adenosine to a large extent is formed in the extracellular space during contraction. The present study provides evidence for the existence of an NBMPR-sensitive adenosine transporter in rat skeletal muscle. Our data furthermore demonstrate that the increase in extracellular adenosine observed during electro-stimulation of skeletal muscle is due to production of adenosine in the extracellular space of skeletal muscle and that adenosine is taken up rather than released by the skeletal muscle cells during contraction. PMID:11731589

  9. Taraxacum official (dandelion) leaf extract alleviates high-fat diet-induced nonalcoholic fatty liver.

    PubMed

    Davaatseren, Munkhtugs; Hur, Haeng Jeon; Yang, Hye Jeong; Hwang, Jin-Taek; Park, Jae Ho; Kim, Hyun-Jin; Kim, Min Jung; Kwon, Dae Young; Sung, Mi Jeong

    2013-08-01

    The purpose of this study is to determine the protective effect of Taraxacum official (dandelion) leaf extract (DLE) on high-fat-diet (HFD)-induced hepatic steatosis, and elucidate the molecular mechanisms behind its effects. To determine the hepatoprotective effect of DLE, we fed C57BL/6 mice with normal chow diet (NCD), high-fat diet (HFD), HFD supplemented with 2g/kg DLE DLE (DL), and HFD supplemented with 5 g/kg DLE (DH). We found that the HFD supplemented by DLE dramatically reduced hepatic lipid accumulation compared to HFD alone. Body and liver weights of the DL and DH groups were significantly lesser than those of the HFD group, and DLE supplementation dramatically suppressed triglyceride (TG), total cholesterol (TC), insulin, fasting glucose level in serum, and Homeostatic Model Assessment Insulin Resistance (HOMA-IR) induced by HFD. In addition, DLE treatment significantly increased activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) in liver and muscle protein. DLE significantly suppressed lipid accumulation in the liver, reduced insulin resistance, and lipid in HFD-fed C57BL/6 mice via the AMPK pathway. These results indicate that the DLE may represent a promising approach for the prevention and treatment of obesity-related nonalcoholic fatty liver disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Selective Phosphonylation of 5'-Adenosine Monophosphate (5'-AMP) via Pyrophosphite [PPi(III)].

    PubMed

    Kaye, Karl; Bryant, David E; Marriott, Katie E R; Ohara, Shohei; Fishwick, Colin W G; Kee, Terence P

    2016-11-01

    We describe here experiments which demonstrate the selective phospho-transfer from a plausibly prebiotic condensed phosphorus (P) salt, pyrophosphite [H 2 P 2 O 5 2- ; PPi(III)], to the phosphate group of 5'-adenosine mono phosphate (5'-AMP). We show further that this P-transfer process is accelerated both by divalent metal ions (M 2+ ) and by organic co-factors such as acetate (AcO - ). In this specific case of P-transfer from PPi(III) to 5'-AMP, we show a synergistic enhancement of transfer in the combined presence of M 2+ & AcO - . Isotopic labelling studies demonstrate that hydrolysis of the phosphonylated 5'-AMP, [P(III)P(V)-5'-AMP], proceeds via nuceophilic attack of water at the Pi(III) terminus.

  11. Adenosinergic Immunosuppression by Human Mesenchymal Stromal Cells Requires Co-Operation with T cells.

    PubMed

    Kerkelä, Erja; Laitinen, Anita; Räbinä, Jarkko; Valkonen, Sami; Takatalo, Maarit; Larjo, Antti; Veijola, Johanna; Lampinen, Milla; Siljander, Pia; Lehenkari, Petri; Alfthan, Kaija; Laitinen, Saara

    2016-03-01

    Mesenchymal stem/stromal cells (MSCs) have the capacity to counteract excessive inflammatory responses. MSCs possess a range of immunomodulatory mechanisms, which can be deployed in response to signals in a particular environment and in concert with other immune cells. One immunosuppressive mechanism, not so well-known in MSCs, is mediated via adenosinergic pathway by ectonucleotidases CD73 and CD39. In this study, we demonstrate that adenosine is actively produced from adenosine 5'-monophosphate (AMP) by CD73 on MSCs and MSC-derived extracellular vesicles (EVs). Our results indicate that although MSCs express CD39 at low level and it colocalizes with CD73 in bulge areas of membranes, the most efficient adenosine production from adenosine 5'-triphosphate (ATP) requires co-operation of MSCs and activated T cells. Highly CD39 expressing activated T cells produce AMP from ATP and MSCs produce adenosine from AMP via CD73 activity. Furthermore, adenosinergic signaling plays a role in suppression of T cell proliferation in vitro. In conclusion, this study shows that adenosinergic signaling is an important immunoregulatory mechanism of MSCs, especially in situations where ATP is present in the extracellular environment, like in tissue injury. An efficient production of immunosuppressive adenosine is dependent on the concerted action of CD39-positive immune cells with CD73-positive cells such as MSCs or their EVs. © 2016 AlphaMed Press.

  12. Effects of tofacitinib on nucleic acid metabolism in human articular chondrocytes.

    PubMed

    Koizumi, Hideki; Arito, Mitsumi; Endo, Wataru; Kurokawa, Manae S; Okamoto, Kazuki; Omoteyama, Kazuki; Suematsu, Naoya; Beppu, Moroe; Kato, Tomohiro

    2015-07-01

    In our previous screening of chondrocyte protein profiles, the amount of adenosine monophosphate deaminase (AMPD) 2 was found to be decreased by tofacitinib. Extending the study, here we confirmed the decrease of AMPD2 by tofacitinib and further investigated effects of tofacitinib on purine nucleotide metabolism. Human articular chondrocytes and a chondrosarcoma cell line: OUMS-27 were stimulated with tofacitinib. Then the levels of AMPD2 and its related enzymes were investigated by Western blot. The levels of AMP and adenosine were assessed by mass spectrometry. We confirmed the significant decrease of AMPD2 by tofacitinib in chondrocytes (p = 0.025). The levels of adenosine kinase and 5'-nucleotidase were decreased in chondrocytes, although they did not meet statistical significance (p = 0.067 and p = 0.074, respectively). The results from OUMS-27 were similar to those from the chondrocytes. The cellular adenosine levels were significantly decreased by tofacitinib in OUMS-27 (p = 0.014). The cellular AMP levels were increased, although they did not meet statistical significance in OUMS-27 (p = 0.066). Our data indicate that tofacitinib increases the cellular levels of adenosine, which is known to have anti-inflammatory activity, through the downregulation of AMPD2. This would be a novel functional aspect of tofacitinib.

  13. A selective phosphodiesterase 10A inhibitor reduces l-dopa-induced dyskinesias in parkinsonian monkeys.

    PubMed

    Beck, Goichi; Maehara, Shunsuke; Chang, Phat Ly; Papa, Stella M

    2018-03-06

    Phosphodiesterase 10A is a member of the phosphodiesterase family whose brain expression is restricted to the striatum. Phosphodiesterase 10A regulates cyclic adenosine monophosphate and cyclic guanosine monophosphate, which mediate responses to dopamine receptor activation, and the levels of these cyclic nucleotides are decreased in experimental models of l-dopa-induced dyskinesia. The elevation of cyclic adenosine monophosphate/cyclic guanosine monophosphate levels by phosphodiesterase 10A inhibition may thus be targeted to reduce l-dopa-induced dyskinesia. The present study was aimed at determining the potential antidyskinetic effects of phosphodiesterase 10A inhibitors in a primate model of Parkinson's disease (PD). The experiments performed in this model were also intended to provide translational data for the design of future clinical trials. Five MPTP-treated macaques with advanced parkinsonism and reproducible l-dopa-induced dyskinesia were used. MR1916, a selective phosphodiesterase 10A inhibitor, at doses 0.0015 to 0.05 mg/kg, subcutaneously, or its vehicle (control test) was coadministered with l-dopa methyl ester acutely (predetermined optimal and suboptimal subcutaneous doses) and oral l-dopa chronically as daily treatment for 5 weeks. Standardized scales were used to assess motor disability and l-dopa-induced dyskinesia by blinded examiners. Pharmacokinetics was also examined. MR1916 consistently reduced l-dopa-induced dyskinesia in acute tests of l-dopa optimal and suboptimal doses. Significant effects were present with every MR1916 dose tested, but the most effective was 0.015 mg/kg. None of the MR1916 doses tested affected the antiparkinsonian action of l-dopa at the optimal dose. The anti-l-dopa-induced dyskinesia effect of MR1916 (0.015 mg/kg, subcutaneously) was sustained with chronic administration, indicating that tolerance did not develop over the 5-week treatment. No adverse effects were observed after MR1916 administration acutely or chronically. Results show that regulation of striatal cyclic nucleotides by phosphodiesterase 10A inhibition could be a useful therapeutic approach for l-dopa-induced dyskinesia, and therefore data support further studies of selective phosphodiesterase 10A inhibitors for PD therapy. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  14. Effects of berberine and cinnamic acid on palmitic acid-induced intracellular triglyceride accumulation in NIT-1 pancreatic β cells.

    PubMed

    Zhao, Li; Jiang, Shu-Jun; Lu, Fu-Er; Xu, Li-Jun; Zou, Xin; Wang, Kai-Fu; Dong, Hui

    2016-07-01

    To investigate the effects of berberine (BBR) and cinnamic acid (CA), the main active components in Jiaotai Pill (, JTP), on palmitic acid (PA)-induced intracellular triglyceride (TG) accumulation in NIT-1 pancreatic β cells. Cells were incubated in culture medium containing PA (0.25 mmol/L) for 24 h. Then treatments with BBR (10 μmol/L), CA (100 μmol/L) and the combination of BBR and CA (BBR+CA) were performed respectively. Intracellular lipid accumulation was assessed by Oil Red O staining and TG content was measured by colorimetric assay. The expression of adenosine monophosphate-activated protein kinase (AMPK) protein and its downstream lipogenic and fatty acid oxidation genes, including fatty acid synthase (FAS), acetyl-coA carboxylase (ACC), phosphorylation acetyl-coA carboxylase (pACC), carnitine acyl transferase 1 (CPT-1) and sterol regulating element binding protein 1c (SREBP-1c) were determined by Western blot or real time polymerase chain reaction. PA induced an obvious lipid accumulation and a significant increase in intracellular TG content in NIT-1 cells. PA also induced a remarkable decrease in AMPK protein expression and its downstream targets such as pACC and CPT-1. Meanwhile, AMPK downstream lipogenic genes including SREBP-1c mRNA, FAS and ACC protein expressions were increased. Treatments with BBR and BBR+CA, superior to CA, significantly reversed the above genes changes in NIT-1 pancreatic β cells. However, the synergistic effect of BBR and CA on intracellular TG content was not observed in the present study. It can be concluded that in vitro, BBR and BBR+CA could inhibit PA-induced lipid accumulation by decreasing lipogenesis and increasing lipid oxidation in NIT-1 pancreatic β cells.

  15. Isolation of an N-acetyl-DL-phenylalanine beta-naphthyl esterase from rabbit peritoneal polymorphonuclear leukocytes.

    PubMed

    Tsung, P; Kegeles, S W; Showell, H J; Becker, E L

    1975-09-22

    An N-acetyl-DL-phenylalanine beta-naphthyl esterase has been purified 26-fold from rabbit peritoneal polymorphonuclear leukocytes. The purified enzyme was inhibited by 10(-7) M p-nitrophenylethyl-5-chloropentylphosphonate. The apparent Km for hydrolysis of N-acetyl-DL-phenylalanine beta-naphthyl ester is 71 muM. Optimal reaction rates were observed at pH 6-8. No divalent cation requirement for the activation of the enzyme activity was observed. The esterase activity was neither inhibited nor stimulated by bacterial factor, complement component C5a, guanosine 3',5'-monophosphate (cyclic GMP) and adenosine 3',5'-monophosphate (cyclic AMP) which are attractants or repellents for polymorphonuclear leukocytes. High chemotactic activity was observed in the partially purified fraction of the enzyme. The chemotactic activity, like the enzyme activity, was completely inhibited by 10(-7) M phosphonate.

  16. Inhibition of Dengue Virus RNA Synthesis by an Adenosine Nucleoside ▿ †

    PubMed Central

    Chen, Yen-Liang; Yin, Zheng; Duraiswamy, Jeyaraj; Schul, Wouter; Lim, Chin Chin; Liu, Boping; Xu, Hao Ying; Qing, Min; Yip, Andy; Wang, Gang; Chan, Wai Ling; Tan, Hui Pen; Lo, Melissa; Liung, Sarah; Kondreddi, Ravinder Reddy; Rao, Ranga; Gu, Helen; He, Handan; Keller, Thomas H.; Shi, Pei-Yong

    2010-01-01

    We recently reported that (2R,3R,4R,5R)-2-(4-amino-pyrrolo[2,3-d]pyrimidin-7-yl)-3-ethynyl-5-hydroxy-methyl-tetrahydro-furan-3,4-diol is a potent inhibitor of dengue virus (DENV), with 50% effective concentration (EC50) and cytotoxic concentration (CC50) values of 0.7 μM and >100 μM, respectively. Here we describe the synthesis, structure-activity relationship, and antiviral characterization of the inhibitor. In an AG129 mouse model, a single-dose treatment of DENV-infected mice with the compound suppressed peak viremia and completely prevented death. Mode-of-action analysis using a DENV replicon indicated that the compound blocks viral RNA synthesis. Recombinant adenosine kinase could convert the compound to a monophosphate form. Suppression of host adenosine kinase, using a specific inhibitor (iodotubercidin) or small interfering RNA (siRNA), abolished or reduced the compound's antiviral activity in cell culture. Studies of rats showed that 14C-labeled compound was converted to mono-, di-, and triphosphate metabolites in vivo. Collectively, the results suggest that this adenosine inhibitor is phosphorylated to an active (triphosphate) form which functions as a chain terminator for viral RNA synthesis. PMID:20457821

  17. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine.

    PubMed

    Laver, D R; Lenz, G K; Lamb, G D

    2001-12-15

    1. Nucleotide activation of skeletal muscle ryanodine receptors (RyRs) was studied in planar lipid bilayers in order to understand RyR regulation in vivo under normal and fatigued conditions. With 'resting' calcium (100 nM cytoplasmic and 1 mM luminal), RyRs had an open probability (P(o)) of approximately 0.01 in the absence of nucleotides and magnesium. ATP reversibly activated RyRs with P(o) at saturation (P(max)) approximately 0.33 and K(a) (concentration for half-maximal activation) approximately 0.36 mM and with a Hill coefficient (n(H)) of approximately 1.8 in RyRs when P(max) < 0.5 and approximately 4 when P(max) > 0.5. 2. AMP was a much weaker agonist (P(max) approximately 0.09) and adenosine was weaker still (P(max) approximately 0.01-0.02), whereas inosine monophosphate (IMP), the normal metabolic end product of ATP hydrolysis, produced no activation at all. 3. Adenosine acted as a competitive antagonist that reversibly inhibited ATP- and AMP-activated RyRs with n(H) approximately 1 and K(i) approximately 0.06 mM at [ATP] < 0.5 mM, increasing 4-fold for each 2-fold increase in [ATP] above 0.5 mM. This is explained by the binding of a single adenosine preventing the cooperative binding of two ATP or AMP molecules, with dissociation constants of 0.4, 0.45 and 0.06 mM for ATP, AMP and adenosine, respectively. Importantly, IMP (< or = 8 mM) had no inhibitory effect whatsoever on ATP-activated RyRs. 4. Mean open (tau(o)) and closed (tau(c)) dwell-times were more closely related to P(o) than to the nucleotide species or individual RyRs. At P(o) < 0.2, RyR regulation occurred via changes in tau(c), whereas at higher P(o) this also occurred via changes in tau(o). The detailed properties of activation and competitive inhibition indicated complex channel behaviour that could be explained in terms of a model involving interactions between different subunits of the RyR homotetramer. 5. The results also show how deleterious adenosine accumulation is to the function of RyRs in skeletal muscle and, by comparison with voltage sensor-controlled Ca(2+) release, indicate that voltage sensor activation requires ATP binding to the RyR to be effective.

  18. Inhibition of Transient Receptor Potential Channel Mucolipin-1 (TRPML1) by Lysosomal Adenosine Involved in Severe Combined Immunodeficiency Diseases*

    PubMed Central

    Zhong, Xi Zoë; Zou, Yuanjie; Sun, Xue; Dong, Gaofeng; Cao, Qi; Pandey, Aditya; Rainey, Jan K.; Zhu, Xiaojuan; Dong, Xian-Ping

    2017-01-01

    Impaired adenosine homeostasis has been associated with numerous human diseases. Lysosomes are referred to as the cellular recycling centers that generate adenosine by breaking down nucleic acids or ATP. Recent studies have suggested that lysosomal adenosine overload causes lysosome defects that phenocopy patients with mutations in transient receptor potential channel mucolipin-1 (TRPML1), a lysosomal Ca2+ channel, suggesting that lysosomal adenosine overload may impair TRPML1 and then lead to subsequent lysosomal dysfunction. In this study, we demonstrate that lysosomal adenosine is elevated by deleting adenosine deaminase (ADA), an enzyme responsible for adenosine degradation. We also show that lysosomal adenosine accumulation inhibits TRPML1, which is rescued by overexpressing ENT3, the adenosine transporter situated in the lysosome membrane. Moreover, ADA deficiency results in lysosome enlargement, alkalinization, and dysfunction. These are rescued by activating TRPML1. Importantly, ADA-deficient B-lymphocytes are more vulnerable to oxidative stress, and this was rescued by TRPML1 activation. Our data suggest that lysosomal adenosine accumulation impairs lysosome function by inhibiting TRPML1 and subsequently leads to cell death in B-lymphocytes. Activating TRPML1 could be a new therapeutic strategy for those diseases. PMID:28087698

  19. Heterotrimeric G Stimulatory Protein α Subunit Is Required for Intestinal Smooth Muscle Contraction in Mice.

    PubMed

    Qin, Xiaoteng; Liu, Shangming; Lu, Qiulun; Zhang, Meng; Jiang, Xiuxin; Hu, Sanyuan; Li, Jingxin; Zhang, Cheng; Gao, Jiangang; Zhu, Min-Sheng; Feil, Robert; Li, Huashun; Chen, Min; Weinstein, Lee S; Zhang, Yun; Zhang, Wencheng

    2017-04-01

    The α subunit of the heterotrimeric G stimulatory protein (Gsa), encoded by the guanine nucleotide binding protein, α-stimulating gene (Gnas, in mice), is expressed ubiquitously and mediates receptor-stimulated production of cyclic adenosine monophosphate and activation of the protein kinase A signaling pathway. We investigated the roles of Gsa in vivo in smooth muscle cells of mice. We performed studies of mice with Cre recombinase-mediated disruption of Gnas in smooth muscle cells (Gsa SMKO and SM22-CreER T2 , induced in adult mice by tamoxifen). Intestinal tissues were collected for histologic, biochemical, molecular, cell biology, and physiology analyses. Intestinal function was assessed in mice using the whole-gut transit time test. We compared gene expression patterns of intestinal smooth muscle from mice with vs without disruption of Gnas. Biopsy specimens from ileum of patients with chronic intestinal pseudo-obstruction and age-matched control biopsies were analyzed by immunohistochemistry. Disruption of Gnas in smooth muscle of mice reduced intestinal motility and led to death within 4 weeks. Tamoxifen-induced disruption of Gnas in adult mice impaired contraction of intestinal smooth muscle and peristalsis. More than 80% of these died within 3 months of tamoxifen exposure, with features of intestinal pseudo-obstruction characterized by chronic intestinal dilation and dysmotility. Gsa deficiency reduced intestinal levels of cyclic adenosine monophosphate and transcriptional activity of the cyclic adenosine monophosphate response element binding protein 1 (CREB1); this resulted in decreased expression of the forkhead box F1 gene (Foxf1) and protein, and contractile proteins, such as myosin heavy chain 11; actin, α2, smooth muscle, aorta; calponin 1; and myosin light chain kinase. We found decreased levels of Gsa, FOXF1, CREB1, and phosphorylated CREB1 proteins in intestinal muscle layers of patients with chronic intestinal pseudo-obstruction, compared with tissues from controls. Gsa is required for intestinal smooth muscle contraction in mice, and its levels are reduced in ileum biopsies of patients with chronic intestinal pseudo-obstruction. Mice with disruption of Gnas might be used to study human chronic intestinal pseudo-obstruction. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Possible role of Prussian blue nanoparticles in chemical evolution: interaction with ribose nucleotides

    NASA Astrophysics Data System (ADS)

    Sharma, Rachana; Iqubal, Md. Asif; Kamaluddin

    2016-01-01

    Ribonucleotides (RMPs) are the building blocks of genetic material consisting of a sugar group, a phosphate group and a nucleobase. Prussian blue (PB) is an ancient compound which is supposed to have formed under the conditions of primitive Earth. The interaction between nucleotides and mineral surfaces is of primary importance in the context of prebiotic chemistry. In the present work, the adsorption of RMPs on PB has been studied in the concentration range 0.4 × 10-4-3.0 × 10-4 M of RMPs at pH 7.5, T = 27°C and found to be 53.1, 41.7, 25.8 and 24.0% for adenosine 5'-monophosphate (5'-AMP), guanosine 5'-monophosphate, cytidine 5'-monophosphate and uridine 5'-monophosphate, respectively. Optimum conditions for the adsorption were studied as a function of concentration, time, amount of adsorbent and pH and data obtained were found to fit the Langmuir adsorption isotherm. Langmuir constants (K L and X m ) values were calculated. Fourier transform infrared spectroscopy, Raman spectroscopy, field-emission scanning electron microscopy and X-ray diffractometry techniques were used to investigate the interaction of RMPs on PB surface. Adsorption kinetics of 5'-AMP on PB has been found to be pseudo-second order. Results obtained from this study should prove valuable for a better understanding of the mechanism of RMP-PB interaction.

  1. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage.

    PubMed

    Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A; Song, Anren; Yoshida, Tatsuro; Dunham, Andrew; Wither, Matthew J; Francis, Richard O; Roach, Robert C; Dzieciatkowska, Monika; Rogers, Stephen C; Doctor, Allan; Kriebardis, Anastasios; Antonelou, Marianna; Papassideri, Issidora; Young, Carolyn T; Thomas, Tiffany A; Hansen, Kirk C; Spitalnik, Steven L; Xia, Yang; Zimring, James C; Hod, Eldad A; D'Alessandro, Angelo

    2018-02-01

    Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1-7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13 C 1 -aspartate or 13 C 5 -adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and - preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates. Copyright© 2018 Ferrata Storti Foundation.

  2. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage

    PubMed Central

    Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A.; Song, Anren; Yoshida, Tatsuro; Dunham, Andrew; Wither, Matthew J.; Francis, Richard O.; Roach, Robert C.; Dzieciatkowska, Monika; Rogers, Stephen C.; Doctor, Allan; Kriebardis, Anastasios; Antonelou, Marianna; Papassideri, Issidora; Young, Carolyn T.; Thomas, Tiffany A.; Hansen, Kirk C.; Spitalnik, Steven L.; Xia, Yang; Zimring, James C.; Hod, Eldad A.; D’Alessandro, Angelo

    2018-01-01

    Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1–7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and – preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo. Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates. PMID:29079593

  3. Innate Immune Response to Burkholderia mallei

    DTIC Science & Technology

    2017-02-16

    stimulate immune responses via TLR4 activation that may contribute to persistent infection. Summary Mortality is high due to septicemia and immune...phosphorylation of adenosine monophosphate- activated protein kinase (AMPK); regulators of NF-κB signaling pathway (e.g. IκBα, GSK3β, Src, and STAT1) and mitogen... activated protein kinases (e.g. p38, ERK1/2 and c-Myc) (13). The degrees in which target host proteins or processes are modulated correlated to the

  4. An evaluation of short-term corticosteroid response in perennial allergic rhinitis using histamine and adenosine monophosphate nasal challenge

    PubMed Central

    Wilson, Andrew M; Sims, Erika J; Orr, Linda C; Robb, Fiona; Lipworth, Brian J

    2003-01-01

    Aims To evaluate the role of AMP nasal challenge as a measure of short-term treatment response in patients receiving intranasal corticosteroids. Adenosine monophosphate (AMP) challenge has been shown to be a good inflammatory surrogate in the lower airways, but it has not been properly evaluated as a nasal challenge test. Methods Fourteen patients with perennial allergic rhinitis (PAR) were randomized to receive 2 weeks treatment with placebo (PL) or 200 µg intranasal mometasone furoate (MF) once daily in a randomized single-blind crossover study. AMP (25–800 mg ml−1) and histamine (0.25–8 mg ml−1) nasal challenge testing were performed after each treatment period with 30% decrease in minimal cross-sectional area (MCA). Domiciliary symptom data were collected. Results There was a significant (P < 0.05) improvement in PC30 MCA and nasal volume with AMP but not with histamine comparing MF vs PL. This amounted to a 2.8 (95% CI 1.5, 4.0) and 0.7 (95% CI −0.5, 1.9) doubling-dose change for AMP and histamine challenges, respectively. There were significant (P < 0.05) improvements in nasal symptoms and quality of life. Conclusions AMP nasal challenge using acoustic rhinometry may be a useful test to assess short-term treatment response in patient with PAR. PMID:12680883

  5. Bronchodilator responses after methacholine and adenosine 5'-monophosphate (AMP) challenges in children with asthma: their relationships with eosinophil markers.

    PubMed

    Yoo, Young; Seo, Sung Chul; Kim, Young Il; Chung, Bo Hyun; Song, Dae Jin; Choung, Ji Tae

    2012-09-01

    Bronchodilator responsiveness (BDR) and eosinophilic inflammation are characteristic features of asthma. Objective. The aim of this study was to compare the relationships of BDR after methacholine challenge or adenosine 5'-monophosphate (AMP) challenge to blood eosinophil markers in children with asthma. Methacholine and AMP challenges were performed on 69 children with mild intermittent to moderate persistent asthma. BDR was calculated as the change in forced expiratory volume in 1 second, expressed as percentage change of the value immediately after the each challenge and the value after inhalation of salbutamol. Serum total IgE levels, blood eosinophil counts, and serum eosinophil cationic protein (ECP) levels were determined for each subject. A positive relationship between serum total IgE levels and BDR was found only after the AMP challenge (R(2) = 0.345, p = .001) rather than after the methacholine challenge (R(2) = 0.007, p = .495). Peripheral blood eosinophil counts correlated more significantly with BDR after AMP challenge (R(2) = 0.212, p = .001) than BDR after methacholine challenge (R(2) = 0.002, p = .724). Both BDR after methacholine challenge (R(2) = 0.063, p = .038) and BDR after AMP challenge (R(2) = 0.192, p = .001) were significantly correlated with serum ECP levels. BDR after AMP challenge may be more closely related to eosinophilic inflammation, compared with that after methacholine challenge.

  6. Genistein promotes insulin action through adenosine monophosphate-activated protein kinase activation and p70 ribosomal protein S6 kinase 1 inhibition in the skeletal muscle of mice fed a high energy diet.

    PubMed

    Arunkumar, Elumalai; Anuradha, Carani Venkatraman

    2012-08-01

    Genistein (GEN), a soy isoflavone, exerts insulin-sensitizing actions in animals; however, the underlying mechanisms have not been determined. Because GEN is a known activator of adenosine monophosphate-activated protein kinase (AMPK), we hypothesize that GEN activates insulin signaling through AMPK activation. To test this hypothesis, a high fat-high fructose diet (HFFD)-fed mice model of insulin resistance was administered GEN, and the insulin signaling pathway proteins in the skeletal muscle were examined. Hyperglycemia and hyperinsulinemia observed in HFFD-fed mice were significantly lowered by GEN. GEN increased insulin-stimulated tyrosine phosphorylation of insulin receptor-β and insulin receptor substrate (IRS) 1 but down-regulated IRS-1 serine phosphorylation in the skeletal muscle of HFFD-fed mice. Furthermore, GEN treatment improved muscle IRS-1-associated phospatidylinositol-3 kinase expression, phosphorylation of Akt at Ser(473), and translocation of glucose transporter subtype 4. Phosphorylation of AMPK at Thr(172) and acetyl coenzyme A carboxylase (ACC) at Ser(79) was augmented, whereas phosphorylation of p70 ribosomal protein S6 kinase 1 at Thr(389) was significantly decreased after GEN treatment in the skeletal muscle of HFFD-fed mice. These results suggest that GEN might improve insulin action in the skeletal muscle by targeting AMPK. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells.

    PubMed

    Tedong, Leonard; Madiraju, Padma; Martineau, Louis C; Vallerand, Diane; Arnason, John T; Desire, Dzeufiet D P; Lavoie, Louis; Kamtchouing, Pierre; Haddad, Pierre S

    2010-12-01

    Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria. Activation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts.

    PubMed

    Kunanusornchai, Wanlop; Muanprasat, Chatchai; Chatsudthipong, Varanuj

    2016-12-01

    Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca 2+ influx via a mechanosensitive L-type Ca 2+ channel, which subsequently raises intracellular Ca 2+ and activates AMPK via Ca 2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca 2+ -channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization's ability to alleviate OA symptoms.

  9. Direct Activation of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by PF-06409577 Inhibits Flavivirus Infection through Modification of Host-Cell Lipid Metabolism.

    PubMed

    Jiménez de Oya, Nereida; Blázquez, Ana-Belén; Casas, Josefina; Saiz, Juan-Carlos; Martín Acebes, Miguel A

    2018-04-30

    Mosquito-borne flaviviruses are a group of RNA viruses that constitute global threats for human and animal health. Replication of these pathogens is strictly dependent on cellular lipid metabolism. We have evaluated the effect of the pharmacological activation of Adenosine Monophosphate-activated Protein Kinase (AMPK), a master regulator of lipid metabolism, on the infection of three medically relevant flaviviruses: West Nile virus (WNV), Zika virus (ZIKV) and dengue virus (DENV). WNV is responsible for recurrent outbreaks of meningitis and encephalitis affecting humans and horses worldwide. ZIKV has caused a recent pandemic associated with birth defects (microcephaly), reproductive disorders, and severe neurological complications (Guillain-Barré syndrome). DENV is the etiological agent of the most prevalent mosquito-borne viral disease that can induce a potentially lethal complication called severe dengue. Our results showed, for the first time, that activation of AMPK using the specific small molecule activator PF-06409577 reduced both WNV, ZIKV, and DENV infection. This antiviral effect was associated to an impairment of viral replication due to the modulation of host cell lipid metabolism exerted by the compound. These results support that the pharmacological activation of AMPK, which currently constitutes an important pharmacological target for human diseases, could also provide a feasible approach for broad-spectrum host-directed antiviral discovery. Copyright © 2018 American Society for Microbiology.

  10. Purification and characterization of fructose bisphosphate aldolase from the ground squirrel, Spermophilus lateralis: enzyme role in mammalian hibernation.

    PubMed

    MacDonald, Justin A; Storey, Kenneth B

    2002-12-15

    Fructose-1,6-bisphosphate (F1,6P(2)) aldolase was purified to homogeneity from skeletal muscle of the golden-mantled ground squirrel, Spermophilus lateralis. Enzyme properties were examined at temperatures characteristic of euthermia (37 degrees C) and hibernation (5 degrees C); parallel studies assessed rabbit muscle aldolase for comparison. Kinetic properties of each enzyme were differentially affected by assay temperature. For example, the K(m) for F1,6P(2) of ground squirrel aldolase was 0.9+/-0.05 microM at 37 degrees C and 50% higher (1.45+/-0.04 microM) at 5 degrees C, whereas the K(m) of rabbit aldolase increased threefold over the same temperature range. The inhibitory effects of adenylates were similar at both temperatures for the ground squirrel enzyme, but inhibition by adenosine 5(')-diphosphate, adenosine 5(')-monophosphate, and inosine 5(')-monophosphate was substantially reduced at 5 degrees C for rabbit aldolase. Inhibition by inorganic phosphate increased at lower temperatures for both enzymes; for ground squirrel aldolase, the K(i) was 1.18+/-0.1mM at 37 degrees C and 0.23+/-0.05 mM at 5 degrees C. Inhibition of aldolase by inorganic phosphate could be one factor that helps to shut down glycolysis during hibernation. Thus, mammalian hibernators may exploit low-temperature characteristics of aldolase to benefit the metabolic needs of the hibernating state.

  11. Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate

    PubMed Central

    Wu, Jyun-Yi; Chen, Chia-Hsin; Yeh, Li-Yin; Yeh, Ming-Long; Ting, Chun-Chan; Wang, Yan-Hsiung

    2013-01-01

    Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cells were irradiated (660 nm) daily with doses of 0, 1, 2 or 4 J⋅cm−2. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J⋅cm−2 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J⋅cm−2 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration. PMID:23788285

  12. Administration of exogenous adenosine triphosphate to ischemic skeletal muscle induces an energy-sparing effect: role of adenosine receptors.

    PubMed

    Maldonado, Claudio; Pushpakumar, Sathnur B; Perez-Abadia, Gustavo; Arumugam, Sengodagounder; Lane, Andrew N

    2013-05-01

    Ischemia-reperfusion injury is a devastating complication that occurs in allotransplantation and replantation of limbs. Over the years, several preservation strategies have been used to conserve the critical levels of intracellular adenosine triphosphate (ATP) during ischemia to sustain the ion gradients across the membranes and thus the tissue viability. The administration of exogenous ATP to ischemic tissues is known to provide beneficial effects during reperfusion, but it is unclear whether it provides protection during ischemia. The purpose of the present study was to determine the effect of ATP administration on high-energy phosphate levels in ischemic skeletal muscle and to examine the role of purinergic and adenosine receptors in mediating the response to exogenous ATP. The extensor digitorum longus muscles of Fischer rats were subjected to ischemia and treated with different concentrations of ATP with or without purinergic and adenosine receptor blockers. Phosphorus-31 nuclear magnetic resonance spectroscopy was used to measure the rate of decay of ATP, phosphocreatine (PCr), and the formation of adenosine monophosphate and acidification. Phosphorylated compounds were analyzed using a simple model of energy metabolism, and the PCr half-life was used as an index of internal depletion of ATP to distinguish between intracellular and extracellular ATP. PCr decay was rapid in all muscle groups and was followed by gradual ATP decay. The half-life of PCr was significantly longer in the ATP-treated muscles than in the vehicle controls and was maximally prolonged by treating with slow hydrolyzing adenosine 5'-O-(3-thio)triphosphate. Purinoceptor (P2X) blockade with ATP treatment significantly increased the half-life of PCr, and adenosine receptor blockers blunted the response. Administration of adenosine to ischemic muscles significantly increased the half-life of PCr compared with that in the vehicle controls. Exogenous ATP administration to ischemic skeletal muscles appears to spare intracellular energy by acting primarily through adenosine receptors. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The influence of dibutyryl adenosine cyclic monophosphate on cell proliferation in the epithelium of the jejunal crypts, the colonic crypts and in colonic carcinomata of rat.

    PubMed

    Tutton, P J; Barkla, D H

    1980-01-01

    1. Cell proliferation in the jejunal crypts, the colonic crypts and in dimethylhydrazine (DMH)-induced adenocarcinomata of rat colon was measured using a stathmokinetic technique. 2. Dibutryl cyclic adneosine monophosphate (dibutyryl cAMP) was found to inhibit cell proliferation in colonic crypts and in colonic adenocarcinomata. 3. Dibutryl cAMP at very high doses was found to inhibit jejunal crypt cell proliferation but at lower doses was found to accelerate jejunal crypt cell proliferation. 4. Neither bilateral adrenalectomy nor chemical sympathectomy was found to abolish the ability of dibutryl cAMP to stimulate jejunal crypt cell proliferation. 5. The present results are difficult to interpret in terms of known hormonal influences on cell proliferation in the tissues examined and of established actions, of these hormones on cyclic nucleotide metabolism in other tissues.

  14. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design

    NASA Astrophysics Data System (ADS)

    Howard, Brittany L.; Thompson, Philip E.; Manallack, David T.

    2011-08-01

    The similarity between Plasmodium falciparum phosphodiesterase enzymes ( PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.

  15. The flower of Edgeworthia gardneri (wall.) Meisn. suppresses adipogenesis through modulation of the AMPK pathway in 3T3-L1 adipocytes.

    PubMed

    Gao, Die; Zhang, Yong-Lan; Yang, Feng-Qing; Li, Fan; Zhang, Qi-Hui; Xia, Zhi-Ning

    2016-09-15

    The flower of Edgeworthia gardneri (Wall.) Meisn., locally named "Lvluohua, ", has been widely used as Tibetan folk medicine for the treatment of metabolic diseases for a long time. To evaluate the anti-adipogenesis effect of ethyl acetate extract of the flower of E. gardneri (EEG extract) in 3T3-L1 adipocytes. Obesity-related parameters such as lipid accumulation and TG content were determined by Oil red O staining and enzymatic kit, respectively. Western blotting was used to determine the expressions of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein-α (C/EBPα), phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). Moreover, main constituents of EEG extract were analyzed by high performance liquid chromatography (HPLC). EEG extract decreased the lipid and triglyceride (TG) accumulations during the differentiation process and down-regulated the adipogenesis-related transcriptional factors PPARγ and C/EBPα. EEG extract treatment increased AMPK and ACC phosphorylation. In addition, pretreatment with AMPK inhibitor, weakened the inhibitory effects of EEG extract on the expressions of PPARγand C/EBPα. HPLC analysis indicated that tiliroside was the main constituent in EEG extract. These results suggest that EEG extract may exert anti-adipogenic effects through modulation of the AMPK signaling pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    NASA Technical Reports Server (NTRS)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  17. Determination of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in human plasma and animal tissues by solid phase extraction on silica and liquid chromatography-triple quadrupole mass spectrometry.

    PubMed

    Van Damme, Thomas; Zhang, Yanhua; Lynen, Frédéric; Sandra, Pat

    2012-11-15

    3',5'-Cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are essential second messenger molecules. They are involved in signal transduction within cells, in physiological functions such as neurotransmission and in the modulation of cell growth and differentiation of organisms, respectively. A quantitative solid phase extraction method (SPE) based on hydrophilic interaction on silica was developed and applied to both plasma and tissue samples. The stable isotope-labeled internal standards ²D₁, ¹⁵N₃-3',5'-cGMP and ¹³C₁₀, ¹⁵N₅-3',5'-cAMP were added prior to the sample preparation to ensure high precision and accuracy. The samples were analyzed by reversed-phase liquid chromatography (RP-LC). Negative electrospray (ESI)-MS/MS was used to selectively monitor several transitions of each metabolite. The method for the analysis of 3',5'-cAMP and 3',5'-cGMP in plasma was validated in the range of 0.15-20 ng/mL (R²=0.9996 and 0.9994 for 3',5'-cAMP and 3',5'-cGMP, respectively). Basal plasma concentrations for fifteen healthy human patients determined with this method varied between 4.66-9.20 ng/mL for 3',5'-cAMP and between 0.30-1.20 ng/mL for 3',5'-cGMP, with precisions better than 9.1%. 3',5'-cGMP and 3',5'-cAMP together with their 2',3'-isomers were also determined in a semi quantitative way in animal tissues. The structures of the isomers were confirmed by analysis with LC-high resolution time-of-flight MS and subsequently by comparison of retention times with standards. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    NASA Astrophysics Data System (ADS)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  19. Systems analysis of phosphate-limitation-induced lipid accumulation by the oleaginous yeast Rhodosporidium toruloides.

    PubMed

    Wang, Yanan; Zhang, Sufang; Zhu, Zhiwei; Shen, Hongwei; Lin, Xinping; Jin, Xiang; Jiao, Xiang; Zhao, Zongbao Kent

    2018-01-01

    Lipid accumulation by oleaginous microorganisms is of great scientific interest and biotechnological potential. While nitrogen limitation has been routinely employed, low-cost raw materials usually contain rich nitrogenous components, thus preventing from efficient lipid production. Inorganic phosphate (Pi) limitation has been found sufficient to promote conversion of sugars into lipids, yet the molecular basis of cellular response to Pi limitation and concurrent lipid accumulation remains elusive. Here, we performed multi-omic analyses of the oleaginous yeast Rhodosporidium toruloides to shield lights on Pi-limitation-induced lipid accumulation. Samples were prepared under Pi-limited as well as Pi-repleted chemostat conditions, and subjected to analysis at the transcriptomic, proteomic, and metabolomic levels. In total, 7970 genes, 4212 proteins, and 123 metabolites were identified. Results showed that Pi limitation facilitates up-regulation of Pi-associated metabolism, RNA degradation, and triacylglycerol biosynthesis while down-regulation of ribosome biosynthesis and tricarboxylic acid cycle. Pi limitation leads to dephosphorylation of adenosine monophosphate and the allosteric activator of isocitrate dehydrogenase key to lipid biosynthesis. It was found that NADPH, the key cofactor for fatty acid biosynthesis, is limited due to reduced flux through the pentose phosphate pathway and transhydrogenation cycle and that this can be overcome by over-expression of an endogenous malic enzyme. These phenomena are found distinctive from those under nitrogen limitation. Our data suggest that Pi limitation activates Pi-related metabolism, RNA degradation, and TAG biosynthesis while inhibits ribosome biosynthesis and TCA cycle, leading to enhanced carbon fluxes into lipids. The information greatly enriches our understanding on microbial oleaginicity and Pi-related metabolism. Importantly, systems data may facilitate designing advanced cell factories for production of lipids and related oleochemicals.

  20. Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores.

    PubMed

    Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Niemeyer, Christof M; Mafe, Salvador; Ensinger, Wolfgang

    2016-04-01

    The label-free detection of pyrophosphate (PPi) anions with a nanofluidic sensing device based on asymmetric nanopores is demonstrated. The pore surface is functionalized with zinc complexes based on two di(2-picolyl)amine [bis(DPA)] moieties using carbodiimide coupling chemistry. The complexation of zinc (Zn(2+) ) ion is achieved by exposing the modified pore to a solution of zinc chloride to form bis(Zn(2+) -DPA) complexes. The chemical functionalization is demonstrated by recording the changes in the observed current-voltage (I-V) curves before and after pore modification. The bis(Zn(2+) -DPA) complexes on the pore walls serve as recognition sites for pyrophosphate anion. The experimental results show that the proposed nanofluidic sensor has the ability to sense picomolar concentrations of PPi anion in the surrounding environment. On the contrary, it does not respond to other phosphate anions, including monohydrogen phosphate, dihydrogen phosphate, adenosine monophosphate, adenosine diphosphate, and adenosine triphosphate. The experimental results are described theoretically by using a model based on the Poisson-Nernst-Planck equations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of dietary starch types on early postmortem muscle energy metabolism in finishing pigs.

    PubMed

    Li, Y J; Gao, T; Li, J L; Zhang, L; Gao, F; Zhou, G H

    2017-11-01

    This study aimed to investigate the effects of different dietary starch types on early postmortem muscle energy metabolism in finishing pigs. Ninety barrows (68.0±2.0kg) were randomly allotted to three experimental diets with five replicates of six pigs, containing pure waxy maize starch (WMS), nonwaxy maize starch (NMS), and pea starch (PS) (amylose/amylopectin were 0.07, 0.19 and 0.28 respectively). Compared with the WMS diet, pigs fed the PS diet exhibited greater creatine kinase activity, higher adenosine triphosphate and adenosine diphosphate contents, lower phosphocreatine (PCr), adenosine monophosphate and glycogen contents, and lower glycolytic potential (P<0.05). Moreover, the PS diet led to reduced percentage of bound hexokinase activity, decreased level of phosphorylated AKT (P<0.05) and increased level of hypoxia-inducible factor-1α (P<0.05). In conclusion, diet with high amylose content might promote PCr degradation and inhibit the rate of glycolysis, followed by attenuation of early postmortem glycolysis in finishing pigs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Metabolite signatures in hydrophilic extracts of mouse lungs exposed to cigarette smoke revealed by 1H NMR metabolomics investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian Z.; Wang, Xuan; Feng, Ju

    Herein, 1H-NMR metabolomics are carried out to evaluate the changes of metabolites in lungs of mice exposed to cigarette smoke. It is found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine are significantly fluctuated in the lungs of mice exposed to cigarette smoke compared with those of controls regardless the mouse is obese or regular weight. The decreased ATP, ADP, AMP and elevated inosine predict that the deaminases in charge of adenosine derivatives to inosine derivatives conversion are altered in lungs of mice exposed to cigarette smoke. Transcriptional analysis reveals that the concentrations ofmore » adenosine monophosphate deaminase and adenosine deaminase are different in the lungs of mice exposed to cigarette smoke, confirming the prediction from metabolomics studies. We also found, for the first time, that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) is significantly increased in the lungs of obese mice compared with regular weight mice. The ratio of GPC/PC is further elevated in the lungs of obese group by cigarette smoke exposure. Since GPC/PC ratio is a known biomarker for cancer, these results may suggest that obese group is more susceptible to lung cancer when exposed to cigarette smoke.« less

  3. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.

    PubMed

    Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun

    2015-01-20

    Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.

  4. Metabolite signatures in hydrophilic extracts of mouse lungs exposed to cigarette smoke revealed by 1H NMR metabolomics investigation

    DOE PAGES

    Hu, Jian Z.; Wang, Xuan; Feng, Ju; ...

    2015-05-12

    Herein, 1H-NMR metabolomics are carried out to evaluate the changes of metabolites in lungs of mice exposed to cigarette smoke. It is found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine are significantly fluctuated in the lungs of mice exposed to cigarette smoke compared with those of controls regardless the mouse is obese or regular weight. The decreased ATP, ADP, AMP and elevated inosine predict that the deaminases in charge of adenosine derivatives to inosine derivatives conversion are altered in lungs of mice exposed to cigarette smoke. Transcriptional analysis reveals that the concentrations ofmore » adenosine monophosphate deaminase and adenosine deaminase are different in the lungs of mice exposed to cigarette smoke, confirming the prediction from metabolomics studies. We also found, for the first time, that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) is significantly increased in the lungs of obese mice compared with regular weight mice. The ratio of GPC/PC is further elevated in the lungs of obese group by cigarette smoke exposure. Since GPC/PC ratio is a known biomarker for cancer, these results may suggest that obese group is more susceptible to lung cancer when exposed to cigarette smoke.« less

  5. Purines: forgotten mediators in traumatic brain injury.

    PubMed

    Jackson, Edwin K; Boison, Detlev; Schwarzschild, Michael A; Kochanek, Patrick M

    2016-04-01

    Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI. © 2016 International Society for Neurochemistry.

  6. Houttuynia cordata attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells.

    PubMed

    Kang, Hyun; Koppula, Sushruta

    2014-01-01

    Houttuynia cordata (H. cordata) from the family Saururaceae is a perennial herb native to Southeast Asia. It possesses a range of medicinal properties to treat several disease symptoms including allergic inflammation and anaphylaxis. In the present investigation, we provided the molecular mechanisms underlying the role of H. cordata extract (HCE) in the prevention of high glucose-induced lipid accumulation in human HepG2 hepatocytes. HepG2 cells were pre-treated with various concentrations of HCE (0, 10, 20, 40, and 80 μg/mL) and treated with serum-free medium with normal glucose (5 mM) for 1 h, followed by exposure to high glucose (25 mM D-glucose) for 24 h. HCE significantly and dose-dependently attenuated lipid accumulation in human HepG2 hepatocytes when exposed to high glucose (25 mM D-glucose) (p < 0.05, p < 0.01 and p < 0.001 at 20, 40, and 80 μg/mL concentrations, respectively). Further, HCE attenuated the expression of fatty acid synthase (FAS), sterol regulatory element-binding protein-1 and glycerol 3-phosphate acyltransferases (GPATs). The adenosine monophosphate-activated protein kinase (AMPK) was also activated by HCE treatment when exposed to high glucose (25 mM D-glucose) in human HepG2 hepatocytes. This study suggests the hypolipidemic effects of HCE by the inhibition of lipid biosynthesis mediated through AMPK signaling, which may play an active role and can be developed as an anti-obesity agent.

  7. Infrared multiple photon dissociation action spectroscopy of deprotonated RNA mononucleotides: gas-phase conformations and energetics.

    PubMed

    Nei, Y-w; Crampton, K T; Berden, G; Oomens, J; Rodgers, M T

    2013-10-17

    The IRMPD action spectra of the deprotonated forms of the four common RNA mononucleotides, adenosine-5'-monophosphate (A5'p), guanosine-5'-monophosphate (G5'p), cytidine-5'-monophosphate (C5'p), and uridine-5'-monophosphate (U5'p), are measured to probe their gas-phase structures. The IRMPD action spectra of all four deprotonated RNA mononucleotides exhibit distinct IR signatures in the frequency region investigated, 570-1900 cm(-1), that allows these deprotonated mononucleotides to be easily differentiated from one other. Comparison of the measured IRMPD action spectra to the linear IR spectra calculated at the B3LYP/6-31+G(d,p) level of theory finds that the most stable conformations of the deprotonated forms of A5'p, C5'p, and U5'p are accessed in the experiments, and these conformers adopt the C3' endo conformation of the ribose moiety and the anti conformation of the nucleobase. In the case of deprotonated G5'p, the most stable conformer is also accessed in the experiments. However, the ground-state conformer differs from the other three deprotonated RNA mononucleotides in that it adopts the syn rather than anti conformation for the nucleobase. Present results are compared to results previously obtained for the deprotonated forms of the four common DNA mononucleotides to examine the fundamental conformational differences between these species, and thus elucidate the effects of the 2'-hydroxyl group on their structure, stability, and fragmentation behavior.

  8. Autonomic dysfunction in patients with Brugada syndrome: further biochemical evidence of altered signaling pathways.

    PubMed

    Paul, Matthias; Meyborg, Matthias; Boknik, Peter; Gergs, Ulrich; Schmitz, Wilhelm; Breithardt, Günter; Wichter, Thomas; Neumann, Joachim

    2011-09-01

    In patients with Brugada syndrome (BrS), life-threatening ventricular tachyarrhythmias predominantly occur during vagal stimulation at rest or during sleep. Previous imaging studies displayed an impaired autonomic function in BrS patients. However, it remains unclear whether these alterations primarily stem from a reduction of synaptic release of norepinephrine (NE) or an enhanced presynaptic reuptake. Both conditions could lead to reduced NE concentrations in the synaptic cleft. Therefore, we analyzed key components of the sympathoadrenergic signaling pathways in patients with BrS. Endomyocardial biopsies were obtained from eight BrS patients (seven male; age 49 ± 15 years) and five controls (three male; age 43 ± 13 years; P = ns). The concentrations of NE, epinephrine (Epi), NE transport (NET) carrier protein, cyclic adenosine 5'monophosphate (cyclic adenosine monophosphate [cAMP]), inhibitory G-proteins (G(i1,2) α), troponin-I (TNI), and phosphorylated TNI were analyzed. Levels of NET, G(i1,2) α, TNI, Epi, and phosphorylated TNI were comparable between the groups. Compared to controls, patients with BrS showed reduced cAMP and NE concentrations. The current findings expand the concept of adrenergic dysfunction in BrS: the reduction of NE in BrS could lead to an impaired stimulation of β-adrenoceptors resulting in a reduction of cAMP and alterations of the subsequent signaling pathway with potential implication for arrhythmogenesis. ©2011, The Authors. Journal compilation ©2011 Wiley Periodicals, Inc.

  9. Adenosine monophosphate is elevated in the bronchoalveolar lavage fluid of mice with acute respiratory toxicity induced by nanoparticles with high surface hydrophobicity.

    PubMed

    Dailey, Lea Ann; Hernández-Prieto, Raquel; Casas-Ferreira, Ana Maria; Jones, Marie-Christine; Riffo-Vasquez, Yanira; Rodríguez-Gonzalo, Encarnación; Spina, Domenico; Jones, Stuart A; Smith, Norman W; Forbes, Ben; Page, Clive; Legido-Quigley, Cristina

    2015-02-01

    Inhaled nanomaterials present a challenge to traditional methods and understanding of respiratory toxicology. In this study, a non-targeted metabolomics approach was used to investigate relationships between nanoparticle hydrophobicity, inflammatory outcomes and the metabolic fingerprint in bronchoalveolar fluid. Measures of acute lung toxicity were assessed following single-dose intratracheal administration of nanoparticles with varying surface hydrophobicity (i.e. pegylated lipid nanocapsules, polyvinyl acetate nanoparticles and polystyrene beads; listed in order of increasing hydrophobicity). Broncho-alveolar lavage (BAL) fluid was collected from mice exposed to nanoparticles at a surface area dose of 220 cm(2) and metabolite fingerprints were acquired via ultra pressure liquid chromatography-mass spectrometry-based metabolomics. Particles with high surface hydrophobicity were pro-inflammatory. Multivariate analysis of the resultant small molecule fingerprints revealed clear discrimination between the vehicle control and polystyrene beads (p < 0.05), as well as between nanoparticles of different surface hydrophobicity (p < 0.0001). Further investigation of the metabolic fingerprints revealed that adenosine monophosphate (AMP) concentration in BAL correlated with neutrophilia (p < 0.01), CXCL1 levels (p < 0.05) and nanoparticle surface hydrophobicity (p < 0.001). Our results suggest that extracellular AMP is an intermediary metabolite involved in adenine nucleotide-regulated neutrophilic inflammation as well as tissue damage, and could potentially be used to monitor nanoparticle-induced responses in the lung following pulmonary administration.

  10. Stepwise hydration and evaporation of adenosine monophosphate nucleotide anions: a multiscale theoretical study.

    PubMed

    Calvo, F; Douady, J

    2010-04-14

    The structure and finite-temperature properties of hydrated nucleotide anion adenosine 5'-monophosphate (AMP) have been theoretically investigated with a variety of methods. Using a polarizable version of the Amber force field and replica-exchange molecular dynamics simulations, putative lowest-energy structures have been located for the AMP(-)(H(2)O)(n) cluster anions with n = 0-20. The hydration energies obtained with the molecular mechanics potential slightly overestimate experimental measurements. However, closer values are found after reoptimizing the structures locally at more sophisticated levels, namely semi-empirical (PM6) and density-functional theory (B3LYP/6-31+G*). Upon heating the complexes, various indicators such as the heat capacity, number of hydrogen bonds or surface area provide evidence that the water cluster melts below 200 K but remains bonded to the AMP anion. The sequential loss of water molecules after sudden heating has been studied using a statistical approach in which unimolecular evaporation is described using the orbiting transition state version of phase space theory, together with anharmonic densities of vibrational states. The evaporation rates are calibrated based on the results of molecular dynamics trajectories at high internal energy. Our results indicate that between 4 and 10 water molecules are lost from AMP(-)(H(2)O)(20) after one second depending on the initial heating in the 250-350 K range, with a concomitant cooling of the remaining cluster by 75-150 K.

  11. Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate.

    PubMed

    Yu, Cheng-Ju; Tseng, Wei-Lung

    2008-11-04

    A new colorimetric sensor for sensing Hg2+ in a high-salinity solution has been developed using gold nanoparticles (AuNPs) decorated with 3-mercaptopropionate acid (MPA) and adenosine monophosphate (AMP). Because of the high negative charge density of AMP on each AuNP surface, MPA/AMP-capped AuNPs are well dispersed in a high-salt solution. In contrast, the aggregation of MPA-capped AuNPs was induced by sodium ions, which shield the negative charges of the carboxylic groups of MPA. Through the coordination between the carboxylic group of MPA and Hg2+, the selectivity of MPA/AMP-capped AuNPs for Hg2+ in a high-salt solution is remarkably high over that of the other metals without the addition of a masking agent or a change in the temperature. We have carefully investigated the effect of the AMP concentration on the stability and sensitivity of MPA/AMP-capped AuNPs. Under optimum conditions, the lowest detectable concentration of Hg2+ using this probe was 500 nM on the basis of the measurement of the ratio of absorption at 620 nm to that at 520 nm. The sensitivity to Hg2+ can be further improved by modifying the MPA/AMP-capped AuNPs with highly fluorescent rhodamine 6G (R6G). By monitoring the fluorescence enhancement, the lowest detectable concentration of Hg2+ using R6G/MPA/AMP-capped AuNPs was 50 nM.

  12. Effects of tiletamine on the adenosine monophosphate-activated protein kinase signaling pathway in the rat central nervous system.

    PubMed

    Su, Li-Xue; Shi, Xing-Xing; Yang, Peng; Chen, Hao; Li, Xin; Fan, Hong-Gang; Wang, Hong-Bin

    2017-10-01

    The dissociative anesthetic tiletamine, which acts on the central nervous system (CNS), is widely used in veterinary medicine and animal experiments. Recent studies indicate that adenosine 5'-monophosphate activated protein kinase (AMPK) plays a key role in the analgesic action of tiletamine. In the present study, the effects of tiletamine on the AMPK signaling pathway in rats were investigated. Sprague-Dawley rats were injected intraperitoneally with tiletamine and executed at 10, 20, 40 and 60min post injection. The cerebral cortex, hippocampus, thalamus, cerebellum and brainstem were immediately taken out to evaluate the mRNA and protein phosphorylation levels of liver kinase B1 (LKB1), AMPKα and eIF4E-binding protein 1 (4EBP1) using quantitative real-time polymerase chain reaction and western blot analysis. Tiletamine increased AMPK mRNA expression in the rat brain (P<0.01). Increased mRNA expression of AMPK was accompanied by an increase in phosphorylation of LKB1, resulting in significant decreases in the phosphorylation levels of 4EBP1 in the corresponding brain regions (P<0.01). In summary, the findings indicate that tiletamine regulates the mRNA expression and protein phosphorylation levels of LKB1, AMPK and 4EBP1 in the CNS, suggesting that the analgesic effect of the anesthetic is mediated, at least in part, by the AMPK signaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Adenosine monophosphate-activated protein kinase attenuates cardiomyocyte hypertrophy through regulation of FOXO3a/MAFbx signaling pathway.

    PubMed

    Chen, Baolin; Wu, Qiang; Xiong, Zhaojun; Ma, Yuedong; Yu, Sha; Chen, Dandan; Huang, Shengwen; Dong, Yugang

    2016-09-01

    Control of cardiac muscle mass is thought to be determined by a dynamic balance of protein synthesis and degradation. Recent studies have demonstrated that atrophy-related forkhead box O 3a (FOXO3a)/muscle atrophy F-box (MAFbx) signaling pathway plays a central role in the modulation of proteolysis and exert inhibitory effect on cardiomyocyte hypertrophy. In this study, we tested the hypothesis that adenosine monophosphate-activated protein kinase (AMPK) activation attenuates cardiomyocyte hypertrophy by regulating FOXO3a/MAFbx signaling pathway and its downstream protein degradation. The results showed that activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) attenuated cardiomyocyte hypertrophy induced by angiotensin II (Ang II). The antihypertrophic effects of AICAR were blunted by AMPK inhibitor Compound C. In addition, AMPK dramatically increased the activity of transcription factor FOXO3a, up-regulated the expression of its downstream ubiquitin ligase MAFbx, and enhanced cardiomyocyte proteolysis. Meanwhile, the effects of AMPK on protein degradation and cardiomyocyte hypertrophy were blocked after MAFbx was silenced by transfection of cardiomyocytes with MAFbx-siRNA. These results indicate that AMPK plays an important role in the inhibition of cardiomyocyte hypertrophy by activating protein degradation via FOXO3a/MAFbx signaling pathway. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. [Activation of the alternative oxidase of Yarrowia lipolytica by adenosine 5'-monophosphate].

    PubMed

    Medentsev, A G; Arinbasarova, A Iu; Smirnova, N M; Akimenko, V K

    2004-01-01

    The study of the effect of nucleoside phosphates on the activity of cyanide-resistant oxidase in the mitochondria and the submitochondrial particles of Yarrowia lipolytica showed that adenosine monophosphate (5'-AMP, AMP) did not stimulate the respiration of the intact mitochondria. The incubation of the mitochondria at room temperature (25 degrees C) for 3-5 h or their treatment with ultrasound, phospholipase A, and detergent Triton X-100 at a low temperature inactivated the cyanide-resistant alternative oxidase. The inactivated alternative oxidase could be reactivated by AMP. The reactivating effect of AMP was enhanced by azolectin. Some other nucleoside phosphates also showed reactivating ability in the following descending order. AMP = GMP > GDP > GTP > XMP > IMP. The apparent reaction rate constant Km for AMP upon the reactivation of the alternative oxidase of mitochondria treated with Triton X-100 or incubated at 25 degrees C was 12.5 and 20 microM, respectively. The Km for AMP upon the reactivation of the alternative oxidase of submitochondrial particles was 15 microM. During the incubation of yeast cells under conditions promoting the development of alternative oxidase, the content of adenine nucleotides (AMP, ADP, and ATP) in the cells and their respiration tended to decrease. The subsequent addition of cyanide to the cells activated their respiration, diminished the intracellular content of ATP three times, and augmented the content of AMP five times. These data suggest that the stimulation of cell respiration by cyanide may be due to the activation of alternative oxidase by AMP.

  15. Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro.

    PubMed

    Schlegel, Nicolas; Baumer, Yvonne; Drenckhahn, Detlev; Waschke, Jens

    2009-05-01

    To determine whether cyclic adenosine monophosphate (cAMP) is critically involved in lipopolysaccharide (LPS)-induced breakdown of endothelial barrier functions in vivo and in vitro. Experimental laboratory research. Research laboratory. Wistar rats and cultured human microvascular endothelial cells. Permeability measurements in single postcapillary venules in vivo and permeability measurements and cell biology techniques in vitro. We demonstrate that within 120 minutes LPS increased endothelial permeability in rat mesenteric postcapillary venules in vivo and caused a barrier breakdown in human dermal microvascular endothelial cells in vitro. This was associated with the formation of large intercellular gaps and fragmentation of vascular endothelial cadherin immunostaining. Furthermore, claudin 5 immunostaining at cell borders was drastically reduced after LPS treatment. Interestingly, activity of the small GTPase Rho A, which has previously been suggested to mediate the LPS-induced endothelial barrier breakdown, was not increased after 2 hours. However, activity of Rac 1, which is known to be important for maintenance of endothelial barrier functions, was significantly reduced to 64 +/- 8% after 2 hours. All LPS-induced changes of endothelial cells were blocked by a forskolin-mediated or rolipram-mediated increase of cAMP. Consistently, enzyme-linked immunosorbent assay-based measurements demonstrated that LPS significantly decreased intracellular cAMP. In summary, our data demonstrate that LPS disrupts endothelial barrier properties by decreasing intracellular cAMP. This mechanism may involve inactivation of Rac 1 rather than activation of Rho A.

  16. Regulatory actions of 3',5'-cyclic adenosine monophosphate on osteoclast function: possible roles of Epac-mediated signaling.

    PubMed

    Jeevaratnam, Kamalan; Salvage, Samantha C; Li, Mengye; Huang, Christopher L-H

    2018-05-30

    Alterations in cellular levels of the second messenger 3',5'-cyclic adenosine monophosphate ([cAMP] i ) regulate a wide range of physiologically important cellular signaling processes in numerous cell types. Osteoclasts are terminally differentiated, multinucleated cells specialized for bone resorption. Their systemic regulator, calcitonin, triggers morphometrically and pharmacologically distinct retraction (R) and quiescence (Q) effects on cell-spread area and protrusion-retraction motility, respectively, paralleling its inhibition of bone resorption. Q effects were reproduced by cholera toxin-mediated G s -protein activation known to increase [cAMP] i , unaccompanied by the [Ca 2+ ] i changes contrastingly associated with R effects. We explore a hypothesis implicating cAMP signaling involving guanine nucleotide-exchange activation of the small GTPase Ras-proximate-1 (Rap1) by exchange proteins directly activated by cAMP (Epac). Rap1 activates integrin clustering, cell adhesion to bone matrix, associated cytoskeletal modifications and signaling processes, and transmembrane transduction functions. Epac activation enhanced, whereas Epac inhibition or shRNA-mediated knockdown compromised, the appearance of markers for osteoclast differentiation and motility following stimulation by receptor activator of nuclear factor kappa-Β ligand (RANKL). Deficiencies in talin and Rap1 compromised in vivo bone resorption, producing osteopetrotic phenotypes in genetically modified murine models. Translational implications of an Epac-Rap1 signaling hypothesis in relationship to N-bisphosphonate actions on prenylation and membrane localization of small GTPases are discussed. © 2018 New York Academy of Sciences.

  17. Estrogen regulates energy metabolic pathway and upstream adenosine 5'-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia.

    PubMed

    Tamrakar, Pratistha; Ibrahim, Baher A; Gujar, Amit D; Briski, Karen P

    2015-02-01

    The ability of estrogen to shield the brain from the bioenergetic insult hypoglycemia is unclear. Estradiol (E) prevents hypoglycemic activation of the energy deficit sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) in hindbrain metabolosensory A2 noradrenergic neurons. This study investigates the hypothesis that estrogen regulates A2 AMPK through control of fuel metabolism and/or upstream protein kinase/phosphatase enzyme expression. A2 cells were harvested by laser microdissection after insulin or vehicle (V) injection of E- or oil (O)-implanted ovariectomized female rats. Cell lysates were evaluated by immunoblot for glycolytic, tricarboxylic acid cycle, respiratory chain, and acetyl-CoA-malonyl-CoA pathway enzymes. A2 phosphofructokinase (PFKL), isocitrate dehydrogenase, pyruvate dehydrogenase, and ATP synthase subunit profiles were elevated in E/V vs. O/V; hypoglycemia augmented PFKL and α-ketoglutarate dehydrogenase expression in E only. Hypoglycemia increased A2 Ca(2+) /calmodulin-dependent protein kinase-β in O and reduced protein phosphatase in both groups. A2 phospho-AMPK levels were equivalent in O/V vs. E/V but elevated during hypoglycemia in O only. These results implicate E in compensatory upregulation of substrate catabolism and corresponding maintenance of energy stability of A2 metabolosensory neurons during hypoglycemia, outcomes that support the potential viability of molecular substrates for hormone action as targets for therapies alleviating hypoglycemic brain injury. © 2014 Wiley Periodicals, Inc.

  18. Adenosine monophosphate-activated kinase, AMPK, is involved in the maintenance of the quality of extended boar semen during long-term storage.

    PubMed

    Martin-Hidalgo, David; Hurtado de Llera, Ana; Yeste, Marc; Cruz Gil, M; Bragado, M Julia; Garcia-Marin, Luis J

    2013-09-01

    Boar semen preservation for later use in artificial insemination is performed by diluting semen in an appropriate medium and then lowering the temperature to decrease spermatozoa metabolism. The adenosine monophosphate-activated kinase, AMPK, is a key cell energy sensor that controls cell metabolism and recently has been identified in boar spermatozoa. Our aim was to investigate the role of AMPK in spermatozoa functional parameters including motility, mitochondrial membrane potential, plasma membrane integrity, acrosome integrity, and cell viability during long-term boar semen storage at 17 °C in Beltsville thawing solution. Boar seminal doses were diluted in Beltsville thawing solution in the presence or absence of different concentrations of AMPK inhibitor, compound C (1, 10, and 30 μM) and evaluations were performed at 1, 2, 4, 7, or 10 days. Data demonstrate that AMPK becomes phosphorylated at threonine(172) (active) during storage of boar semen reaching maximum levels at Day 7. Moreover, AMPK inhibition during boar semen storage causes: (1) a potent inhibition of spermatozoa motility; (2) a reduction in the percentage of spermatozoa showing high mitochondria membrane potential; (3) a rise in the percentage of spermatozoa displaying high plasma membrane scrambling; and (4) a loss of acrosomal membrane integrity. Our study suggests that AMPK activity plays an important role in the maintenance of the spermatozoa quality during long-term storage of boar semen. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. A calmodulin inhibitor, W-7 influences the effect of cyclic adenosine 3', 5'-monophosphate signaling on ligninolytic enzyme gene expression in Phanerochaete chrysosporium

    PubMed Central

    2012-01-01

    The capacity of white-rot fungi to degrade wood lignin may be highly applicable to the development of novel bioreactor systems, but the mechanisms underlying this function are not yet fully understood. Lignin peroxidase (LiP) and manganese peroxidase (MnP), which are thought to be very important for the ligninolytic property, demonstrated increased activity in Phanerochaete chrysosporium RP-78 (FGSC #9002, ATCC MYA-4764™) cultures following exposure to 5 mM cyclic adenosine 3', 5'-monophosphate (cAMP) and 500 μM 3'-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that transcription of most LiP and MnP isozyme genes was statistically significantly upregulated in the presence of the cAMP and IBMX compared to the untreated condition. However, 100 μM calmodulin (CaM) inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), which had insignificant effects on fungal growth and intracellular cAMP concentration, not only offset the increased activity and transcription induced by the drugs, but also decreased them to below basal levels. Like the isozyme genes, transcription of the CaM gene (cam) was also upregulated by cAMP and IBMX. These results suggest that cAMP signaling functions to increase the transcription of LiP and MnP through the induction of cam transcription. PMID:22273182

  20. Myocardial Response to Milrinone in Single Right Ventricle Heart Disease.

    PubMed

    Nakano, Stephanie J; Nelson, Penny; Sucharov, Carmen C; Miyamoto, Shelley D

    2016-07-01

    Empiric treatment with milrinone, a phosphodiesterase (PDE) 3 inhibitor, has become increasingly common in patients with single ventricle heart disease of right ventricular (RV) morphology (SRV); our objective was to characterize the myocardial response to PDE3 inhibition (PDE3i) in the pediatric population with SRV. Cyclic adenosine monophosphate levels, PDE activity, and phosphorylated phospholamban (PLN) were determined in explanted human ventricular myocardium from nonfailing pediatric donors (n = 10) and pediatric patients transplanted secondary to SRV. Subjects with SRV were further classified by PDE3i treatment (n = 13 with PDE3i and n = 12 without PDE3i). In comparison with nonfailing RV myocardium (n = 8), cyclic adenosine monophosphate levels are lower in patients with SRV treated with PDE3i (n = 12, P = .021). Chronic PDE3i does not alter total PDE or PDE3 activity in SRV myocardium. Compared with nonfailing RV myocardium, SRV myocardium (both with and without PDE3i) demonstrates equivalent phosphorylated PLN at the protein kinase A phosphorylation site. As evidenced by preserved phosphorylated PLN, the molecular adaptation associated with SRV differs significantly from that demonstrated in pediatric heart failure because of dilated cardiomyopathy. These alterations support a pathophysiologically distinct mechanism of heart failure in pediatric patients with SRV, which has direct implications regarding the presumed response to PDE3i treatment in this population. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. GROWTH AND DEVELOPMENT SYMPOSIUM: Adenosine monophosphate-activated protein kinase and mitochondria in Rendement Napole pig growth.

    PubMed

    Scheffler, T L; Gerrard, D E

    2016-09-01

    The Rendement Napole mutation (RN-), which is well known to influence pork quality, also has a profound impact on metabolic characteristics of muscle. Pigs with RN- possess a SNP in the γ3 subunit of adenosine monophosphate (AMP)-activated protein kinase (AMPK); AMPK, a key energy sensor in skeletal muscle, modulates energy producing and energy consuming pathways to maintain cellular homeostasis. Importantly, AMPK regulates not only acute response to energy stress but also facilitates long-term adaptation via changes in gene and protein expression. The RN- allele increases AMPK activity, which alters the metabolic phenotype of skeletal muscle by increasing mitochondrial content and oxidative capacity. Fibers with greater oxidative capacity typically exhibit increased protein turnover and smaller fiber size, which indicates that RN- pigs may exhibit decreased efficiency and growth potential. However, whole body and muscle growth of RN- pigs appear similar to that of wild-type pigs and despite increased oxidative capacity, fibers maintain the capacity for hypertrophic growth. This indicates that compensatory mechanisms may allow RN- pigs to achieve rates of muscle growth similar to those of wild-type pigs. Intriguingly, lipid oxidation and mitochondria function are enhanced in RN- pig muscle. Thus far, characteristics of RN- muscle are largely based on animals near market weight. To better understand interaction between energy signaling and protein accretion in muscle, further work is needed to define age-dependent relationships between AMPK signaling, metabolism, and muscle growth.

  2. Adenosine monophosphate-activated protein kinase-based classification of diabetes pharmacotherapy

    PubMed Central

    Dutta, D; Kalra, S; Sharma, M

    2017-01-01

    The current classification of both diabetes and antidiabetes medication is complex, preventing a treating physician from choosing the most appropriate treatment for an individual patient, sometimes resulting in patient-drug mismatch. We propose a novel, simple systematic classification of drugs, based on their effect on adenosine monophosphate-activated protein kinase (AMPK). AMPK is the master regular of energy metabolism, an energy sensor, activated when cellular energy levels are low, resulting in activation of catabolic process, and inactivation of anabolic process, having a beneficial effect on glycemia in diabetes. This listing of drugs makes it easier for students and practitioners to analyze drug profiles and match them with patient requirements. It also facilitates choice of rational combinations, with complementary modes of action. Drugs are classified as stimulators, inhibitors, mixed action, possible action, and no action on AMPK activity. Metformin and glitazones are pure stimulators of AMPK. Incretin-based therapies have a mixed action on AMPK. Sulfonylureas either inhibit AMPK or have no effect on AMPK. Glycemic efficacy of alpha-glucosidase inhibitors, sodium glucose co-transporter-2 inhibitor, colesevelam, and bromocriptine may also involve AMPK activation, which warrants further evaluation. Berberine, salicylates, and resveratrol are newer promising agents in the management of diabetes, having well-documented evidence of AMPK stimulation medicated glycemic efficacy. Hence, AMPK-based classification of antidiabetes medications provides a holistic unifying understanding of pharmacotherapy in diabetes. This classification is flexible with a scope for inclusion of promising agents of future. PMID:27652986

  3. In Vivo Activation of cAMP Signaling Induces Growth Arrest and Differentiation in Acute Promyelocytic Leukemia

    PubMed Central

    Guillemin, Marie-Claude; Raffoux, Emmanuel; Vitoux, Dominique; Kogan, Scott; Soilihi, Hassane; Lallemand-Breitenbach, Valérie; Zhu, Jun; Janin, Anne; Daniel, Marie-Thérèse; Gourmel, Bernard; Degos, Laurent; Dombret, Hervé; Lanotte, Michel; de Thé, Hugues

    2002-01-01

    Differentiation therapy for acute myeloid leukemia uses transcriptional modulators to reprogram cancer cells. The most relevant clinical example is acute promyelocytic leukemia (APL), which responds dramatically to either retinoic acid (RA) or arsenic trioxide (As2O3). In many myeloid leukemia cell lines, cyclic adenosine monophosphate (cAMP) triggers growth arrest, cell death, or differentiation, often in synergy with RA. Nevertheless, the toxicity of cAMP derivatives and lack of suitable models has hampered trials designed to assess the in vivo relevance of theses observations. We show that, in an APL cell line, cAMP analogs blocked cell growth and unraveled As2O3-triggered differentiation. Similarly, in RA-sensitive or RA-resistant mouse models of APL, continuous infusions of 8-chloro-cyclic adenosine monophosphate (8-Cl-cAMP) triggered major growth arrest, greatly enhanced both spontaneous and RA- or As2O3-induced differentiation and accelerated the restoration of normal hematopoiesis. Theophylline, a well-tolerated phosphodiesterase inhibitor which stabilizes endogenous cAMP, also impaired APL growth and enhanced spontaneous or As2O3-triggered cell differentiation in vivo. Accordingly, in an APL patient resistant to combined RA–As2O3 therapy, theophylline induced blast clearance and restored normal hematopoiesis. Taken together, these results demonstrate that in vivo activation of cAMP signaling contributes to APL clearance, independently of its RA-sensitivity, thus raising hopes that other myeloid leukemias may benefit from this therapeutic approach. PMID:12438428

  4. Accelerating axon growth to overcome limitations in functional recovery after peripheral nerve injury.

    PubMed

    Gordon, Tessa; Chan, K Ming; Sulaiman, Olawale A R; Udina, Esther; Amirjani, Nasim; Brushart, Thomas M

    2009-10-01

    Injured peripheral nerves regenerate at very slow rates. Therefore, proximal injury sites such as the brachial plexus still present major challenges, and the outcomes of conventional treatments remain poor. This is in part attributable to a progressive decline in the Schwann cells' ability to provide a supportive milieu for the growth cone to extend and to find the appropriate target. These challenges are compounded by the often considerable delay of regeneration across the site of nerve laceration. Recently, low-frequency electrical stimulation (as brief as an hour) has shown promise, as it significantly accelerated regeneration in animal models through speeding of axon growth across the injury site. To test whether this might be a useful clinical tool, we carried out a randomized controlled trial in patients who had experienced substantial axonal loss in the median nerve owing to severe compression in the carpal tunnel. To further elucidate the potential mechanisms, we applied rolipram, a cyclic adenosine monophosphate agonist, to rats after axotomy of the femoral nerve. We demonstrated that effects similar to those observed in animal studies could also be attained in humans. The mechanisms of action of electrical stimulation likely operate through up-regulation of neurotrophic factors and cyclic adenosine monophosphate. Indeed, the application of rolipram significantly accelerated nerve regeneration. With new mechanistic insights into the influencing factors of peripheral nerve regeneration, the novel treatments described above could form part of an armament of synergistic therapies that could make a meaningful difference to patients with peripheral nerve injuries.

  5. Cyclic Adenosine Monophosphate Regulation of Ion Transport in Porcine Vocal Fold Mucosae

    PubMed Central

    Sivasankar, Mahalakshmi; Nofziger, Charity; Blazer-Yost, Bonnie

    2012-01-01

    Objectives/Hypothesis Cyclic adenosine monophosphate (cAMP) is an important biological molecule that regulates ion transport and inflammatory responses in epithelial tissue. The present study examined whether the adenylyl cyclase activator, forskolin, would increase cAMP concentration in porcine vocal fold mucosa and whether the effects of increased cAMP would be manifested as a functional increase in transepithelial ion transport. Additionally, changes in cAMP concentrations following exposure to an inflammatory mediator, tumor necrosis factor-α (TNFα) were investigated. Study Design In vitro experimental design with matched treatment and control groups. Methods Porcine vocal fold mucosae (N = 30) and tracheal mucosae (N = 20) were exposed to forskolin, TNFα, or vehicle (dimethyl sulfoxide) treatment. cAMP concentrations were determined with enzyme-linked immunosorbent assay. Ion transport was measured using electrophysiological techniques. Results Thirty minute exposure to forskolin significantly increased cAMP concentration and ion transport in porcine vocal fold and tracheal mucosae. However, 30-minute and 2-hour exposure to TNFα did not significantly alter cAMP concentration. Conclusions We demonstrate that forskolin-sensitive adenylyl cyclase is present in vocal fold mucosa, and further, that the product, cAMP increases vocal fold ion transport. The results presented here contribute to our understanding of the intracellular mechanisms underlying vocal fold ion transport. As ion transport is important for maintaining superficial vocal fold hydration, data demonstrating forskolin-stimulated ion transport in vocal fold mucosa suggest opportunities for developing pharmacological treatments that increase surface hydration. PMID:18596479

  6. Thermal Degradation of Small Molecules: A Global Metabolomic Investigation.

    PubMed

    Fang, Mingliang; Ivanisevic, Julijana; Benton, H Paul; Johnson, Caroline H; Patti, Gary J; Hoang, Linh T; Uritboonthai, Winnie; Kurczy, Michael E; Siuzdak, Gary

    2015-11-03

    Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online ( xcmsonline.scripps.edu ). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo significant time-sensitive alterations when exposed to elevated temperatures, especially those conditions that mimic sample preparation and analysis in GC/MS experiments.

  7. Effect of MeJA treatment on polyamine, energy status and anthracnose rot of loquat fruit.

    PubMed

    Cao, Shifeng; Cai, Yuting; Yang, Zhenfeng; Joyce, Daryl C; Zheng, Yonghua

    2014-02-15

    The effect of methyl jasmonate (MeJA) on changes in polyamines content and energy status and their relation to disease resistance was investigated. Freshly harvested loquat fruit were treated with 10 μmol l(-1) MeJA and wound inoculated with Colletotrichum acutatum spore suspension (1.0 × 10(5) spores ml(-1)) after 24h, and then stored at 20 °C for 6 days. MeJA treatment significantly reduced decay incidence. MeJA treated fruit manifested higher contents of polyamines (putrescine, spermidine and spermine) compared with the control fruit, during storage. MeJA treatment also maintained higher levels of adenosine triphosphate, and suppressed an increase in adenosine monophosphate content in loquat fruit. These results suggest that MeJA treatment may inhibit anthracnose rot by increasing polyamine content and maintaining the energy status. Copyright © 2013. Published by Elsevier Ltd.

  8. Measurement of cAMP in an undergraduate teaching laboratory, using ALPHAscreen technology.

    PubMed

    Bartho, Joseph D; Ly, Kien; Hay, Debbie L

    2012-02-14

    Adenosine 3',5'-monophosphate (cAMP) is a cellular second messenger with central relevance to pharmacology, cell biology, and biochemistry teaching programs. cAMP is produced from adenosine triphosphate by adenylate cyclase, and its production is reduced or enhanced upon activation of many G protein-coupled receptors. Therefore, the measurement of cAMP serves as an indicator of receptor activity. Although there are many assays available for measuring cAMP, few are suitable for large class teaching, and even fewer seem to have been adapted for this purpose. Here, we describe the use of bead-based ALPHAscreen (Amplified Luminescent Proximity Homogenous Assay) technology for teaching a class of more than 300 students the practical aspects of detecting signal transduction. This technology is applicable to the measurement of many different signaling pathways. This resource is designed to provide a practical guide for instructors and a useful model for developing other classes using similar technologies.

  9. Ribose in the heart.

    PubMed

    Herrick, James; St Cyr, John

    2008-01-01

    Every cell needs energy, i.e., adenosine triphosphate (ATP), to carry out its function. Decreased oxygen levels, decreased blood flow, and other stressful conditions can drastically effect the intracellular concentrations of these energy compounds. Skeletal muscle, unlike the heart, can address this drop in ATP by employing the myokinase reaction, ultimately producing ATP with a subsequent elevation in adenosine monophosphate (AMP). Ribose, a naturally occurring 5-carbon monosaccharide, is a key component of RNA, DNA (which has deoxyribose), acetyl coenzyme A, and ATP. Each cell produces its own ribose, involved in the pentose phosphate pathway (PPP), to aid in ATP production. States of ischemia and/or hypoxia can severely lower levels of cellular energy compounds in the heart, with an associated compromise in cellular processes, ultimately reflected in altered function. Ribose appears to provide a solution to the problem in replenishing the depressed ATP levels and improving functional status of patients afflicted with cardiovascular diseases.

  10. Increased NTPDase Activity in Lymphocytes during Experimental Sepsis

    PubMed Central

    Bertoncheli, Claudia de Mello; Zimmermann, Carine Eloise Prestes; Jaques, Jeandre Augusto dos Santos; Leal, Cláudio Alberto Martins; Ruchel, Jader Betsch; Rocha, Bruna Cipolatto; Pinheiro, Kelly de Vargas; Souza, Viviane do Carmo Gonçalves; Stainki, Daniel Roulim; Luz, Sônia Cristina Almeida; Schetinger, Maria Rosa Chitolina; Leal, Daniela Bitencourt Rosa

    2012-01-01

    We investigated in rats induced to sepsis the activity of ectonucleoside triphosphate diphosphohydrolase (NTPDase; CD39; E.C. 3.6.1.5), an enzyme involved in the modulation of immune responses. After 12 hours of surgery, lymphocytes were isolated from blood and NTPDase activity was determined. It was also performed the histology of kidney, liver, and lung. The results demonstrated an increase in the hydrolysis of adenosine-5′-triphosphate (ATP) (P < 0.01), but no changes regarding adenosine-5′-monophosphate (ADP) hydrolysis (P > 0.05). Histological analysis showed several morphological changes in the septic group, such as vascular congestion, necrosis, and infiltration of mononuclear cells. It is known that the intracellular milieu contains much more ATP nucleotides than the extracellular. In this context, the increased ATPasic activity was probably induced as a dynamic response to clean up the elevated ATP levels resulting from cellular death. PMID:22645477

  11. Exogenous adenosine 5'-phosphoramidate behaves as a signal molecule in plants; it augments metabolism of phenylpropanoids and salicylic acid in Arabidopsis thaliana seedlings.

    PubMed

    Pietrowska-Borek, Małgorzata; Nuc, Katarzyna; Guranowski, Andrzej

    2015-09-01

    Cells contain various congeners of the canonical nucleotides. Some of these accumulate in cells under stress and may function as signal molecules. Their cellular levels are enzymatically controlled. Previously, we demonstrated a signaling function for diadenosine polyphosphates and cyclic nucleotides in Arabidopsis thaliana and grape, Vitis vinifera. These compounds increased the expression of genes for and the specific activity of enzymes of phenylpropanoid pathways resulting in the accumulation of certain products of these pathways. Here, we show that adenosine 5'-phosphoramidate, whose level can be controlled by HIT-family proteins, induced similar effects. This natural nucleotide, when added to A. thaliana seedlings, activated the genes for phenylalanine:ammonia lyase, 4-coumarate:coenzyme A ligase, cinnamate-4-hydroxylase, chalcone synthase, cinnamoyl-coenzyme A:NADP oxidoreductase and isochorismate synthase, which encode proteins catalyzing key reactions of phenylpropanoid pathways, and caused accumulation of lignins, anthocyanins and salicylic acid. Adenosine 5'-phosphofluoridate, a synthetic congener of adenosine 5'-phosphoramidate, behaved similarly. The results allow us to postulate that adenosine 5'-phosphoramidate should be considered as a novel signaling molecule. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Anti-obesity effects of hispidin and Alpinia zerumbet bioactives in 3T3-L1 adipocytes.

    PubMed

    Tu, Pham Thi Be; Tawata, Shinkichi

    2014-10-15

    Obesity and its related disorders have become leading metabolic diseases. In the present study, we used 3T3-L1 adipocytes to investigate the anti-obesity activity of hispidin and two related compounds that were isolated from Alpinia zerumbet (alpinia) rhizomes. The results showed that hispidin, dihydro-5,6-dehydrokawain (DDK), and 5,6-dehydrokawain (DK) have promising anti-obesity properties. In particular, all three compounds significantly increased intracellular cyclic adenosine monophosphate (cAMP) concentrations by 81.2% ± 0.06%, 67.0% ± 1.62%, and 56.9% ± 0.19%, respectively. Hispidin also stimulated glycerol release by 276.4% ± 0.8% and inhibited lipid accumulation by 47.8% ± 0.16%. Hispidin and DDK decreased intracellular triglyceride content by 79.5% ± 1.37% and 70.2% ± 1.4%, respectively, and all three compounds inhibited glycerol-3-phosphate dehydrogenase (GPDH) and pancreatic lipase, with hispidin and DDK being the most potent inhibitors. Finally, none of the three compounds reduced 3T3-L1 adipocyte viability. These results highlight the potential for developing hispidin and its derivatives as anti-obesity compounds.

  13. Ketone esters increase brown fat in mice and overcome insulin resistance in other tissues in the rat.

    PubMed

    Veech, Richard L

    2013-10-01

    Brown adipose tissue (BAT) is classically activated by sympathetic nervous stimulation resulting from exposure to cold. Feeding a high-fat diet also induces development of brown fat, but is decreased by caloric restriction. Blood ketone bodies, which function as alternative energy substrates to glucose, are increased during caloric restriction. Here we discuss the unexpected observation that feeding an ester of ketone bodies to the mouse, which increases blood ketone body concentrations, results in an activation of brown fat. The mechanism of this activation of brown fat is similar to that occurring from cold exposure in that cyclic adenosine monophosphate (AMP) levels are increased as are levels of the transcription factor cyclic AMP-responsive element-binding protein, which is also increased by ketone ester feeding. Other effects of feeding ketone esters, in addition to their ability to induce brown fat, are discussed such as their ability to overcome certain aspects of insulin resistance and to ameliorate the accumulation of amyloid and phosphorylated tau protein in brain, and improve cognitive function, in a triple transgenic mouse model of Alzheimer's disease. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  14. Short fasting does not protect perfused ex vivo rat liver against ischemia-reperfusion. On the importance of a minimal cell energy charge.

    PubMed

    Papegay, Bérengère; Stadler, Michaela; Nuyens, Vincent; Kruys, Véronique; Boogaerts, Jean G; Vamecq, Joseph

    2017-03-01

    Dietary restriction or reduced food intake was supported to protect against renal and hepatic ischemic injury. In this vein, short fasting was recently shown to protect in situ rat liver against ischemia-reperfusion. Here, perfused ex vivo instead of in situ livers were exposed to ischemia-reperfusion to study the impact of disconnecting liver from extrahepatic supply in energetic substrates on the protection given by short-term fasting. Perfused ex vivo livers using short (18 h) fasted compared with fed rats were submitted to ischemia-reperfusion and studied for release of cytolysis markers in the perfusate. Energetic stores are differently available in time and cell energetic charges (ratio of adenosine triphosphate plus half of the adenosine diphosphate concentrations to the sum of adenosine triphosphate + adenosine diphosphate + adenosine monophosphate concentrations), adenosine phosphates, and glycogen, which were further measured at different time points in livers. Short fasting versus feeding failed to protect perfused ex vivo rat livers against ischemia/reperfusion, increasing the release of cytolysis markers (potassium, cytochrome c, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase) in the perfusate during reoxygenation phase. Toxicity of short fasting versus feeding was associated with lower glycogen and energetic charges in livers and lower lactate levels in the perfusate. High energetic charge, intracellular content in glycogen, and glycolytic activity may protect liver against ischemia/reperfusion injury. This work does not question how much the protective role previously demonstrated in the literature for dietary restriction and short fasting. In fact, it suggests that exceeding the energy charge threshold value of 0.3 might trigger the effectiveness of this protective role. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The Effect of Endogenous Adenosine on Neuronal Activity in Rats: An FDG PET Study

    PubMed Central

    Paul, Soumen; Zhang, Dali; Mzengeza, Shadreck; Ko, Ji Hyun

    2016-01-01

    ABSTRACT 2–18F‐fluorodeoxy‐D‐glucose (FDG) is a glucose analog that is taken up by cells and phosphorylated. The amount of FDG accumulated by cells is a measure of the rate of glycolysis, which reflects cellular activity. As the levels and actions of the neuromodulator adenosine are dynamically regulated by neuronal activity, this study was designed to test whether endogenous adenosine affects tissue accumulation of FDG as assessed by positron emission tomography (PET) or by postmortem analysis of tissue radioactivity. Rats were given an intraperitoneal injection of the adenosine A1 receptor antagonist 8‐cyclopentyl‐1,3‐dipropyl‐xanthine (DPCPX, 3 mg/kg), the adenosine kinase inhibitor ABT‐702 (3 mg/kg), or vehicle 10 minutes prior to an intravenous injection of FDG (15.4 ± 0.7 MBq per rat). Rats were then subjected to a 15 minute static PET scan. Reconstructed images were normalized to FDG PET template for rats and standard uptake values (SUVs) were calculated. To examine the regional effect of active treatment compared to vehicle, statistical parametric mapping analysis was performed. Whole‐brain FDG uptake was not affected by drug treatment. Significant regional hypometabolism was detected, particularly in cerebellum, of DPCPX‐ and ABT‐702 treated rats, relative to vehicle‐treated rats. Thus, endogenous adenosine can affect FDG accumulation although this effect is modest in quiescent rats. PMID:27082948

  16. The ABCD's of 5'-adenosine monophosphate-activated protein kinase and adrenoleukodystrophy.

    PubMed

    Weidling, Ian; Swerdlow, Russell H

    2016-07-01

    This Editorial highlights a study by Singh and coworkers in the current issue of Journal of Neurochemistry, in which the authors present additional evidence that AMPKα1 is reduced in X-linked adrenoleukodystrophy (X-ALD). They make a case for increasing AMPKα1 activity for therapeutic purposes in this disease, and indicate how this goal may be achieved. Read the highlighted article 'Metformin-induced mitochondrial function and ABCD2 up regulation in X-linked adrenoleukodystrophy involves AMP activated protein kinase' on page 86. © 2016 International Society for Neurochemistry.

  17. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases

    PubMed Central

    Raker, Verena Katharina; Becker, Christian; Steinbrink, Kerstin

    2016-01-01

    Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the immune system, cyclic adenosine monophosphate (cAMP) is well established as a potent regulator of innate and adaptive immune cell functions. Therapeutic strategies to interrupt or enhance cAMP generation or effects have immunoregulatory potential in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic AMP axis and its role as a regulator of immune functions and discuss the clinical and translational relevance of interventions with these processes. PMID:27065076

  18. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells.

    PubMed

    Jung, Seung-Nam; Yang, Woo Kyeom; Kim, Joungmok; Kim, Hak Su; Kim, Eun Ju; Yun, Hee; Park, Hyunsung; Kim, Sung Soo; Choe, Wonchae; Kang, Insug; Ha, Joohun

    2008-04-01

    Hypoxia-inducible factor (HIF-1) plays a central role in the cellular adaptive response to hypoxic conditions, which are closely related to pathophysiological conditions, such as cancer. Although reactive oxygen species (ROS) have been implicated in the regulation of hypoxic and non-hypoxic induction of HIF-1 under various conditions, the role of ROS is quite controversial, and the mechanism underlying the HIF-1 regulation by ROS is not completely understood yet. Here, we investigated the biochemical mechanism for the ROS-induced HIF-1 by revealing a novel role of adenosine monophosphate-activated protein kinase (AMPK) and the upstream signal components. AMPK plays an essential role as energy-sensor under adenosine triphosphate-deprived conditions. Here we report that ROS induced by a direct application of H(2)O(2) and menadione to DU145 human prostate carcinoma resulted in accumulation of HIF-1alpha protein by attenuation of its degradation and activation of its transcriptional activity in an AMPK-dependent manner. By way of contrast, AMPK was required only for the transcriptional activity of HIF-1 under hypoxic condition, revealing a differential role of AMPK in these two stimuli. Furthermore, our data show that inhibition of AMPK enhances HIF-1alpha ubiquitination under ROS condition. Finally, we show that the regulation of HIF-1 by AMPK in response to ROS is under the control of c-Jun N-terminal kinase and Janus kinase 2 pathways. Collectively, our findings identify AMPK as a key determinant of HIF-1 functions in response to ROS and its possible role in the sophisticated HIF-1 regulatory mechanisms.

  19. Non-covalent and coordination interactions in Cu(II) systems with uridine, uridine 5'-monophosphate and triamine or tetramine as biogenic amine analogues in aqueous solutions.

    PubMed

    Łomozik, Lechosław; Jastrzab, Renata

    2003-10-01

    Reactions of metallation and non-covalent interactions have been studied in ternary systems of Cu(II) ions with uridine, uridine 5'-monophosphate and diamines or triamines. It has been found that in metal-free systems the reaction centres of the nucleoside with the polyamine are the donor nitrogen atoms N(3) and protonated -NH(x) groups of the amines. In comparison to systems with adenosine or cytidine, the pH range of complex formation is shifted towards higher values. It is a consequence of significantly higher basicity of uridine and in agreement with the ion-ion, ion-dipole interaction model assumed. Formation of molecular complexes of uridine 5'-monophosphate with polyamines at a low pH is the result of activity of the phosphate group which plays the role of a negatively charged reaction site. Non-covalent interactions interfere in processes of bioligand metallation. Centres of weak interactions are simultaneously binding sites of metal ions. In protonated Cu(Urd)(PA)H(x) complexes, coordination has been found to involve the N(3) atom from the nucleoside and two donor nitrogen atoms from the polyamine (PA). In the heteroligand species Cu(Urd)(PA), despite deprotonation of all amine groups, one of these groups is located outside the inner coordination sphere. In complexes with uridine-5'-monophosphate, the phosphate group is active in metallation. Moreover, in certain coordination compounds this group is engaged in non-covalent interactions with PA molecules, despite binding Cu ions, as has been shown on the basis of equilibrium and spectral studies.

  20. Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis.

    PubMed

    Collins, Angela C; Cai, Haocheng; Li, Tuo; Franco, Luis H; Li, Xiao-Dong; Nair, Vidhya R; Scharn, Caitlyn R; Stamm, Chelsea E; Levine, Beth; Chen, Zhijian J; Shiloh, Michael U

    2015-06-10

    Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Phosphodiesterases regulate airway smooth muscle function in health and disease.

    PubMed

    Krymskaya, Vera P; Panettieri, Reynold A

    2007-01-01

    On the basis of structure, regulation, and kinetic properties, phosphodiesterases (PDEs) represent a superfamily of enzymes divided into 11 subfamilies that catalyze cytosolic levels of 3',5'-cyclic adenosine monophosphate (cAMP) or 3',5'-cyclic guanosine monophosphate (cGMP) to 5'-AMP or 5'-GMP, respectively. PDE4 represents the major PDE expressed in inflammatory cells as well as airway smooth muscle (ASM), and selective PDE4 inhibitors provide a broad spectrum of anti-inflammatory effects such as abrogating cytokine and chemokine release from inflammatory cells and inhibiting inflammatory cell trafficking. Due to cell- and tissue-specific gene expression and regulation, PDEs modulate unique organ-based functions. New tools or compounds that selectively inhibit PDE subfamilies and genetically engineered mice deficient in selective isoforms have greatly enhanced our understanding of PDE function in airway inflammation and resident cell function. This chapter will focus on recent advances in our understanding of the role of PDE in regulating ASM function.

  2. Contents Changes of Triterpenic Acids, Nucleosides, Nucleobases, and Saccharides in Jujube (Ziziphus jujuba) Fruit During the Drying and Steaming Process.

    PubMed

    Guo, Sheng; Duan, Jin-Ao; Zhang, Ying; Qian, Dawei; Tang, Yuping; Zhu, Zhenhua; Wang, Hanqing

    2015-12-12

    Chinese jujube (Ziziphus jujuba), a medicinal and edible plant, is widely consumed in Asian countries owing to the remarkable health activities of its fruits. To facilitate selection of the suitable processing method for jujube fruits, in this study their contents of triterpenic acids, nucleosides, nucleobases and saccharides after drying and steaming treatment were determined using ultra-high performance liquid chromatography and high performance liquid chromatography coupled with evaporative light scattering detector methods. The results showed that except for sucrose, the content levels of most analytes were increasing in the jujube fruits during drying treatment at 45 °C. The levels of cyclic nucleotides such as adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, were significantly decreased after the fruits were steamed. Therefore, owing to the bioactivities of these components for human health, the dried fruits would be the better choice as medicinal material or functional food, and dried jujube fruit should not be further steamed.

  3. Enzymatic production of 5'-inosinic acid by AMP deaminase from a newly isolated Aspergillus oryzae.

    PubMed

    Li, Shubo; Chen, Leitao; Hu, Yangjun; Fang, Guohui; Zhao, Mouming; Guo, Yuan; Pang, Zongwen

    2017-02-01

    5'-adenylic acid deaminase (AMP deaminase), an important enzyme for the food industry, can catalyze the irreversible hydrolysis of adenosine monophosphate (AMP) to inosine monophosphate (IMP) and ammonia. In this study, a new strain was screened that efficiently produces 3191.6U/g of AMP deaminase at 32°C. After purification, the optimal temperature and pH of the AMP deaminase were found to be 40°C and 6.0, respectively, but it was partially inhibited by Fe(3+), Cu(2+), Al(3+), and Zn(2+). With amplification of the AMP deaminase production system, 6mL of crude enzyme could produce 2.00mg/g of IMP from 2.04mg/g of dried yeast with an 84.8% molar yield after 40min. These results provide a new insight into AMP deaminase production and offer a potential platform for producing 5'-IMP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The adenosine salvage pathway as an alternative to mitochondrial production of ATP in maturing mammalian oocytes.

    PubMed

    Scantland, Sara; Tessaro, Irene; Macabelli, Carolina H; Macaulay, Angus D; Cagnone, Gaël; Fournier, Éric; Luciano, Alberto M; Robert, Claude

    2014-09-01

    Although the oocyte is the largest cell in the body and an unavoidable phase in life, its physiology is still poorly understood, and other cell types provide little insight into its unique nature. Even basic cellular functions in the oocyte such as energy metabolism are not yet fully understood. It is known that the mitochondria of the female gamete exhibit an immature form characterized by limited energy production from glucose and oxidative phosphorylation. We show that the bovine oocyte uses alternative means to maintain ATP production during maturation, namely, the adenosine salvage pathway. Meiosis resumption is triggered by destruction of cyclic AMP by phosphodiesterases producing adenosine monophosphate that is converted into ATP by adenylate kinases and creatine kinases. Inhibition of these enzymes decreased ATP production, and addition of their substrates restored ATP production in denuded oocytes. Addition of phosphocreatine to the oocyte maturation medium influenced the phenotype of the resulting blastocysts. We propose a model in which adenylate kinases and creatine kinases act as drivers of ATP production from added AMP during oocyte maturation. © 2014 by the Society for the Study of Reproduction, Inc.

  5. An easy and fast adenosine 5'-diphosphate quantification procedure based on hydrophilic interaction liquid chromatography-high resolution tandem mass spectrometry for determination of the in vitro adenosine 5'-triphosphatase activity of the human breast cancer resistance protein ABCG2.

    PubMed

    Wagmann, Lea; Maurer, Hans H; Meyer, Markus R

    2017-10-27

    Interactions with the human breast cancer resistance protein (hBCRP) significantly influence the pharmacokinetic properties of a drug and can even lead to drug-drug interactions. As efflux pump from the ABC superfamily, hBCRP utilized energy gained by adenosine 5'-triphosphate (ATP) hydrolysis for the transmembrane movement of its substrates, while adenosine 5'-diphosphate (ADP) and inorganic phosphate were released. The ADP liberation can be used to detect interactions with the hBCRP ATPase. An ADP quantification method based on hydrophilic interaction liquid chromatography (HILIC) coupled to high resolution tandem mass spectrometry (HR-MS/MS) was developed and successfully validated in accordance to the criteria of the guideline on bioanalytical method validation by the European Medicines Agency. ATP and adenosine 5'-monophosphate were qualitatively included to prevent interferences. Furthermore, a setup consisting of six sample sets was evolved that allowed detection of hBCRP substrate or inhibitor properties of the test compound. The hBCRP substrate sulfasalazine and the hBCRP inhibitor orthovanadate were used as controls. To prove the applicability of the procedure, the effect of amprenavir, indinavir, nelfinavir, ritonavir, and saquinavir on the hBCRP ATPase activity was tested. Nelfinavir, ritonavir, and saquinavir were identified as hBCRP ATPase inhibitors and none of the five HIV protease inhibitors turned out to be an hBCRP substrate. These findings were in line with a pervious publication. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sepsis induced by cecal ligation and perforation (CLP) alters nucleotidase activities in platelets of rats.

    PubMed

    Pereira, Renata S; Bertoncheli, Claudia M; Adefegha, Stephen A; Castilhos, Lívia G; Silveira, Karine L; Rezer, João Felipe P; Doleski, Pedro H; Abdalla, Fátima H; Santos, Karen F; Leal, Claudio A M; Santos, Roberto C V; Casali, Emerson A; Moritz, Cesar E J; Stainki, Daniel R; Leal, Daniela B R

    2017-10-01

    Sepsis is a potentially lethal condition, and it is associated with platelet alterations. The present study sought to investigate the activity of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), E-5'-nucleotidase, and ecto-adenosine deaminase (E-ADA) in the platelets of rats that were induced with sepsis. Male Wistar rats were divided into three groups of ten animals each: a negative control group (normal; NC); a group that underwent surgical procedures (sham); and a group that underwent cecal ligation and perforation (CLP). The induction of sepsis was confirmed by bacteremia, and the causative pathogen identified was Escherichia coli. Hematological parameters showed leukocytosis and thrombocytopenia in animals in the septic group. The results also revealed that there were significant (p < 0.05) increases in adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolyses, and in the deamination of adenosine in the CLP group compared to the sham and control groups. Conversely, ADP hydrolysis was significantly decreased (p < 0.05) in the CLP group compared to the sham and control groups. Purine levels were analyzed by high-performance liquid chromatography (HPLC) in serum samples from control, sham, and CLP groups. Increased concentrations of ATP, adenosine, and inosine were found in the CLP group compared to the sham and control groups. Conversely, the concentrations of ADP and AMP in the CPL group were not significantly altered. We suggest that alterations in hematological parameters, nucleotide hydrolysis in platelets, and nucleotide concentrations in serum samples of rats with induced sepsis may be related to thromboembolic events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Adenosine production by human B cells and B cell–mediated suppression of activated T cells

    PubMed Central

    Saze, Zenichiro; Schuler, Patrick J.; Hong, Chang-Sook; Cheng, Dongmei; Jackson, Edwin K.

    2013-01-01

    Antibody-independent role of B cells in modulating T-cell responses is incompletely understood. Freshly isolated or cultured B cells isolated from the peripheral blood of 30 normal donors were evaluated for CD39 and CD73 coexpression, the ability to produce adenosine 5′-monophosphate (AMP) and adenosine (ADO) in the presence of exogenous adenosine triphosphate (ATP) as well as A1, A2A, A2B, and A3 adenosine receptor (ADOR) expression. Human circulating B cells coexpress ectonucleotidases CD39 and CD73, hydrolyze exogenous ATP to 5′-AMP and ADO, and express messenger RNA for A1R, A2AR, and A3R. 2-chloroadenosine inhibited B-cell proliferation and cytokine expression, and only A3R selective antagonist restored B-cell functions. This suggested that B cells use the A3R for autocrine signaling and self-regulation. Mediated effects on B-cell growth ± ADOR antagonists or agonists were tested in carboxyfluorescein diacetate succinimidyl ester assays. In cocultures, resting B cells upregulated functions of CD4+ and CD8+ T cells. However, in vitro–activated B cells downregulated CD73 expression, mainly produced 5′-AMP, and inhibited T-cell proliferation and cytokine production. These B cells acquire the ability to restrict potentially harmful effects of activated T cells. Thus, B cells emerge as a key regulatory component of T cell–B cell interactions, and their dual regulatory activity is mediated by the products of ATP hydrolysis, 5′-AMP, and ADO. PMID:23678003

  8. Activation of hepatic Nogo-B receptor expression—A new anti-liver steatosis mechanism of statins

    PubMed Central

    Zhang, Wenwen; Yang, Xiaoxiao; Chen, Yuanli; Hu, Wenquan; Liu, Lipei; Zhang, Xiaomeng; Liu, Mengyang; Sun, Lei; Liu, Ying; Yu, Miao; Li, Xiaoju; Li, Luyuan; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-01-01

    Deficiency of hepatic Nogo-B receptor (NgBR) expression activates liver X receptor α (LXRα) in an adenosine monophosphate-activated protein kinase α (AMPKα)-dependent manner, thereby inducing severe hepatic lipid accumulation and hypertriglyceridemia. Statins have been demonstrated non-cholesterol lowering effects including anti-nonalcoholic fatty liver disease (NAFLD). Herein, we investigated if the anti-NAFLD function of statins depends on activation of NgBR expression. In vivo, atorvastatin protected apoE deficient or NgBR floxed, but not hepatic NgBR deficient mice, against Western diet (WD)-increased triglyceride levels in liver and serum. In vitro, statins reduced lipid accumulation in nonsilencing small hairpin RNA-transfected (shNSi), but not in NgBR small hairpin RNA-transfected (shNgBRi) HepG2 cells. Inhibition of cellular lipid accumulation by atorvastatin is related to activation of AMPKα, and inactivation of LXRα and lipogenic genes. Statin also inhibited expression of oxysterol producing enzymes. Associated with changes of hepatic lipid levels by WD or atorvastatin, NgBR expression was inversely regulated. At cellular levels, statins increased NgBR mRNA and protein expression, and NgBR protein stability. In contrast to reduced cellular cholesterol levels by statin or β-cyclodextrin, increased cellular cholesterol levels decreased NgBR expression suggesting cholesterol or its synthesis intermediates inhibit NgBR expression. Indeed, mevalonate, geranylgeraniol or geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate or farnesol, blocked atorvastatin-induced NgBR expression. Furthermore, we determined that induction of hepatic NgBR expression by atorvastatin mainly depended on inactivation of extracellular signal-regulated kinases 1/2 (ERK1/2) and protein kinase B (Akt). Taken together, our study demonstrates that statins inhibit NAFLD mainly through activation of NgBR expression. PMID:29217477

  9. Mechanisms of Cachexia in Chronic Disease States.

    PubMed

    Yoshida, Tadashi; Delafontaine, Patrice

    2015-10-01

    Sarcopenia and cachexia are muscle wasting syndromes associated with aging and with many chronic diseases, such as congestive heart failure (CHF), diabetes, cancer, chronic obstructive pulmonary disease and chronic kidney disease (CKD). While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme inhibitor treatment improves weight loss. It was found that Ang II infusion in rodents leads to skeletal muscle wasting. Ang II increases cytokines and circulating hormones, such as tumor necrosis factor-α, interleukin-6, serum amyloid-A and glucocorticoids, which regulate muscle protein synthesis and degradation. Ang II-induced muscle wasting is caused by alterations in insulin-like growth factor-1 signaling, enhanced muscle protein breakdown via the ubiquitin-proteasome system and decreased appetite resulting from the downregulation of hypothalamic orexigenic neuropeptides, such as Npy and orexin. Ang II also inhibits 5' adenosine monophosphate-activated protein kinase activity and disrupts normal energy balance via the activation of 5' adenosine monophosphate-activated protein kinase phosphatase PP2Cα. Furthermore, Ang II inhibits skeletal muscle stem (satellite) cell proliferation, leading to lowered muscle regenerative capacity. Distinct satellite cell angiotensin receptor subtypes have different effects on different stages of differentiation and are critical for the regulation of muscle regeneration. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states, and it is a promising target for the treatment of muscle atrophy in patients with diseases such as CHF and CKD.

  10. Hypothermia induced by adenosine 5'-monophosphate attenuates injury in an L-arginine-induced acute pancreatitis rat model.

    PubMed

    Wang, Yunlong; Guo, Weiting; Li, Yuan; Pan, Xinting; Lv, Wenshan; Cui, Lingling; Li, Changgui; Wang, Yangang; Yan, Shengli; Zhang, Jidong; Liu, Bin

    2014-04-01

    This study sought to investigate the effects of hypothermia induced by adenosine 5'-monophosphate (5'-AMP) on L-arginine (L-Arg)-induced acute pancreatitis in rats. The rats were divided into four groups: the control group, the acute pancreatitis group, the 5'-AMP pretreatment group, and the 5'-AMP posttreatment group. Rats in all groups, except for the control group, received two injections of 2.5 g/kg body weight (intraperitoneally) L-Arg, with an interval of 1 h between the injections. Subsequently, the rats were observed to assess whether hypothermia induced by 5'-AMP could effectively inhibit inflammation associated with L-Arg-induced acute pancreatitis in rats. Hypothermia induced by 5'-AMP produced protective effects in our acute pancreatitis model. These effects exhibited the following manifestations: (i) a significant reduction in rat mortality rates; (ii) a significant decrease in the occurrence of pancreatic edema; (iii) significant reductions in serum amylase (P < 0.001), interleukin-6 (P < 0.001), interleukin-1β (P < 0.001) and tumor necrosis factor-α (P < 0.001); (iv) the significant inhibition of nuclear factor-κB (NF-κB) activation in rats that were pre- and posttreated with 5'-AMP compared with rats that were only injected with L-Arg; and (v) significant decreases in the occurrence of pancreatic interstitial edema, inflammatory cell infiltration, hemorrhage, and acinar cell necrosis. Hypothermia induced by 5'-AMP could inhibit the acute inflammatory reaction and NF-κB activation associated with acute pancreatitis. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  11. Cows are not mice: the role of cyclic AMP, phosphodiesterases, and adenosine monophosphate-activated protein kinase in the maintenance of meiotic arrest in bovine oocytes.

    PubMed

    Bilodeau-Goeseels, Sylvie

    2011-01-01

    Meiotic maturation in mammalian oocytes is initiated during fetal development, and is then arrested at the dictyate stage - possibly for several years. Oocyte meiosis resumes in preovulatory follicles in response to the lutenizing hormone (LH) surge or spontaneously when competent oocytes are removed from follicles and cultured. The mechanisms involved in meiotic arrest and resumption in bovine oocytes are not fully understood, and several studies point to important differences between oocytes from rodent and livestock species. This paper reviews earlier and contemporary studies on the effects of cAMP-elevating agents and phosphodiesterase (PDE) enzyme inhibitors on the maintenance of meiotic arrest in bovine oocytes in vitro. Contrary to results obtained with mouse oocytes, bovine oocyte meiosis is inhibited by activators of the energy sensor adenosine monophosphate-activated protein kinase (AMPK, mammalian gene PRKA), which is activated by AMP, the degradation product of cAMP. It is not clear whether or not the effects were due to AMPK activation, and they may depend on culture conditions. Evidence suggests that other signaling pathways (for example, the cGMP/nitric oxide pathway) are involved in bovine oocyte meiotic arrest, but further studies are needed to understand the interactions between the signaling pathways that lead to maturation promoting factor (MPF) being inactive or active. An improved understanding of the mechanisms involved in the control of bovine oocyte meiosis will facilitate better control of the process in vitro, resulting in increased developmental competence and increased efficiency of in vitro embryo production procedures. Copyright © 2011 Wiley Periodicals, Inc.

  12. Relationships of methacholine and adenosine monophosphate responsiveness with serum vascular endothelial growth factor in children with asthma.

    PubMed

    Yoo, Young; Choi, Ic Sun; Byeon, Jung Hye; Lee, Seung Min; La, Kyong Suk; Choi, Byung Min; Park, Sang Hee; Choung, Ji Tae

    2010-01-01

    Airway hyperresponsiveness, which is a characteristic feature of asthma, is usually measured by means of bronchial challenge with direct or indirect stimuli. Vascular endothelial growth factor (VEGF) increases vascular permeability and angiogenesis, leads to mucosal edema, narrows the airway diameter, and reduces airway flow. To examine the relationships between serum VEGF level and airway responsiveness to methacholine and adenosine monophosphate (AMP) in children with asthma. Peripheral blood eosinophil counts, serum eosinophil cationic protein (ECP) concentrations, and serum VEGF concentrations were measured in 31 asthmatic children and 26 control subjects. Methacholine and AMP bronchial challenges were performed on children with asthma. Children with asthma had a significantly higher mean (SD) level of VEGF than controls (361.2 [212.0] vs 102.7 [50.0] pg/mL; P < .001). Blood eosinophil counts and serum ECP levels significantly correlated inversely with AMP provocation concentration that caused a decrease in forced expiratory volume in 1 second of 20% (PC20) (r = -0.474, P =.01; r = -0.442, P =.03, respectively), but not with methacholine PC20 (r = -0.228, P = .26; r = -0.338, P =.10, respectively). Serum VEGF levels significantly correlated with airway responsiveness to AMP (r = -0.462; P = .009) but not to methacholine (r = -0.243; P = .19). Serum VEGF levels were increased in children with asthma and were related to airway responsiveness to AMP but not to methacholine. Increased VEGF levels in asthmatic children may result in increased airway responsiveness by mechanisms related to airway inflammation or increased permeability of airway vasculature.

  13. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    PubMed

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3. © 2016 The Author. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  14. Bronchial hyperresponsiveness to methacholine and adenosine monophosphate and the degree of atopy in children with allergic rhinitis.

    PubMed

    Kim, Chang Keun; Choi, Soo Jeon; Lee, Ju Kyung; Suh, Dong In; Koh, Young Yull

    2011-01-01

    nonasthmatic patients with allergic rhinitis often have bronchial hyperresponsiveness (BHR). Not only the presence but also the degree of atopy are important factors in BHR of patients with asthma. BHR is commonly evaluated by bronchial challenges using direct or indirect stimuli. to assess BHR to methacholine (direct) and to adenosine monophosphate (AMP) (indirect) in children with allergic rhinitis and to compare their relationships with the degree of atopy. methacholine and AMP challenges were performed in 88 children with allergic rhinitis, and a provocative concentration causing a 20% decrease in forced expiratory volume in 1 second (PC(20)) was calculated for each challenge. The degree of atopy was measured using serum total IgE levels, number of positive skin prick test results, and atopic scores (sum of graded wheal size). BHR to methacholine (PC(20) <8 mg/mL) and to AMP (PC(20) <200 mg/mL) was observed in 22 (25%) and 30 (34%) patients, respectively. No association was found between BHR to methacholine and any atopy parameter. In contrast, serum total IgE levels and atopic scores were higher in the group with BHR to AMP than in the group without BHR to AMP. Furthermore, a significant association was found between the degree of these 2 parameters and BHR to AMP (score for trend, P < .001 and P = .03, respectively). both BHR to methacholine and BHR to AMP were detected in a significant proportion of children with allergic rhinitis. The degree of atopy seems to be an important factor in BHR to AMP but not in BHR to methacholine.

  15. Preparation, chromatographic evaluation and application of adenosine 5'-monophosphate modified ZrO2/SiO2 stationary phase in hydrophilic interaction chromatography.

    PubMed

    Wang, Qing; Luo, Zhi-Yuan; Ye, Mao; Wang, Yu-Zhuo; Xu, Li; Shi, Zhi-Guo; Xu, Lanying

    2015-02-27

    The zirconia-coated silica (ZrO2/SiO2) material was obtained by coupling layer-by-layer (LbL) self-assembly method and sol-gel technology, to take dual advantages of the suitable porous structure of SiO2 and basic resistance of ZrO2. Adenosine 5'-monophosphate (5'-AMP) was then self-assembled onto ZrO2/SiO2 via Lewis acid-base interaction, generating 5'-AMP-ZrO2/SiO2. The chromatographic properties of 5'-AMP-ZrO2/SiO2 were systemically studied by evaluating the effect of acetonitrile content, pH and buffer concentration in the mobile phase. The results demonstrated that the 5'-AMP-ZrO2/SiO2 possessed hydrophilic interaction chromatographic (HILIC) property comprising hydrophilic, hydrogen-bonding, electrostatic and ion-exchange interactions. For basic analytes, the column efficiency of ZrO2/SiO2 and 5'-AMP-ZrO2/SiO2 was superior to the bare ZrO2, and different selectivity was obtained after the introduction of 5'-AMP. For acidic analytes, good resolution was obtained on 5'-AMP-ZrO2/SiO2 while the analysis failed on the bare ZrO2 column owing to strong adsorption. Hence, the proposed 5'-AMP-ZrO2/SiO2 had great potential in analyzing acidic compounds in HILIC mode. It was an extended application of ZrO2 based SP. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Balanol analogues probe specificity determinants and the conformational malleability of the cyclic 3',5'-adenosine monophosphate-dependent protein kinase catalytic subunit.

    PubMed

    Akamine, Pearl; Madhusudan; Brunton, Laurence L; Ou, Horng D; Canaves, Jaume M; Xuong, Nguyen-huu; Taylor, Susan S

    2004-01-13

    The protein kinase family is a prime target for therapeutic agents, since unregulated protein kinase activities are linked to myriad diseases. Balanol, a fungal metabolite consisting of four rings, potently inhibits Ser/Thr protein kinases and can be modified to yield potent inhibitors that are selective-characteristics of a desirable pharmaceutical compound. Here, we characterize three balanol analogues that inhibit cyclic 3',5'-adenosine monophosphate-dependent protein kinase (PKA) more specifically and potently than calcium- and phospholipid-dependent protein kinase (PKC). Correlation of thermostability and inhibition potency suggests that better inhibitors confer enhanced protection against thermal denaturation. Crystal structures of the PKA catalytic (C) subunit complexed to each analogue show the Gly-rich loop stabilized in an "intermediate" conformation, disengaged from important phosphoryl transfer residues. An analogue that perturbs the PKA C-terminal tail has slightly weaker inhibition potency. The malleability of the PKA C subunit is illustrated by active site residues that adopt alternate rotamers depending on the ligand bound. On the basis of sequence homology to PKA, a preliminary model of the PKC active site is described. The balanol analogues serve to test the model and to highlight differences in the active site local environment of PKA and PKC. The PKA C subunit appears to tolerate balanol analogues with D-ring modifications; PKC does not. We attribute this difference in preference to the variable B helix and C-terminal tail. By understanding the details of ligand binding, more specific and potent inhibitors may be designed that differentiate among closely related AGC protein kinase family members.

  17. Mulberry leaf polyphenol extract induced apoptosis involving regulation of adenosine monophosphate-activated protein kinase/fatty acid synthase in a p53-negative hepatocellular carcinoma cell.

    PubMed

    Yang, Tzi-Peng; Lee, Huei-Jane; Ou, Ting-Tsz; Chang, Ya-Ju; Wang, Chau-Jong

    2012-07-11

    The polyphenols in mulberry leaf possess the ability to inhibit cell proliferation, invasion, and metastasis of tumors. It was reported that the p53 status plays an important role in switching apoptosis and the cell cycle following adenosine monophosphate-activated protein kinase (AMPK) activation. In this study, we aimed to detect the effect of the mulberry leaf polyphenol extract (MLPE) on inducing cell death in p53-negative (Hep3B) and p53-positive (Hep3B with transfected p53) hepatocellular carcinoma cells and also to clarify the role of p53 in MLPE-treated cells. After treatment of the Hep3B cells with MLPE, apoptosis was induced via the AMPK/PI3K/Akt and Bcl-2 family pathways. Transient transfection of p53 into Hep3B cells led to switching autophagy instead of apoptosis by MLPE treatment. We demonstrated that acridine orange staining and protein expressions of LC-3 and beclin-1 were increased in p53-transfected cells. These results implied induction of apoptosis or autophagy in MLPE-treated hepatocellular carcinoma cells can be due to the p53 status. We also found MLPE can not only activate AMPK but also diminish fatty acid synthase, a molecular target for cancer inhibition. At present, our results indicate MLPE can play an active role in mediating the cell death of hepatocellular carcinoma cells and the p53 might play an important role in regulating the death mechanisms.

  18. Crisaborole Topical Ointment, 2%: A Nonsteroidal, Topical, Anti-Inflammatory Phosphodiesterase 4 Inhibitor in Clinical Development for the Treatment of Atopic Dermatitis.

    PubMed

    Jarnagin, Kurt; Chanda, Sanjay; Coronado, Dina; Ciaravino, Vic; Zane, Lee T; Guttman-Yassky, Emma; Lebwohl, Mark G

    2016-04-01

    Crisaborole topical ointment, 2% (formerly known as AN2728) is a benzoxaborole, nonsteroidal, topical, anti-inflammatory phosphodiesterase 4 (PDE4) inhibitor investigational compound that recently completed phase 3 studies for the treatment of mild to moderate atopic dermatitis (AD). The unique configuration of boron within the crisaborole molecule enables selective targeting and inhibition of PDE4, an enzyme that converts the intracellular second messenger 3'5'-cyclic adenosine monophosphate (cAMP) into the active metabolite adenosine monophosphate (AMP). By inhibiting PDE4 and thus increasing levels of cAMP, crisaborole controls inflammation. The use of boron chemistry enabled synthesis of a low-molecular-weight compound (251 daltons), thereby facilitating effective penetration of crisaborole through human skin. In vitro experiments showed that crisaborole inhibits cytokine production from peripheral blood mononuclear cells in a pattern similar to other PDE4 inhibitors and distinct from corticosteroids. Crisaborole also displayed topical anti-inflammatory activity in a skin inflammation model. Once crisaborole reaches systemic circulation after topical application, it is metabolized to inactive metabolites. This limits systemic exposure to crisaborole and systemic PDE4 inhibition. In phase 1 and 2 clinical studies, crisaborole ointment, 2% was generally well tolerated and improved AD disease severity scores, pruritus, and all other AD signs and symptoms. Two large, randomized, controlled, phase 3, pivotal clinical trials assessing the efficacy and safety of crisaborole topical ointment, 2% in children, adolescents, and adults with mild to moderate AD were recently completed with positive results.

  19. The Clinical Correlation of Regulatory T Cells and Cyclic Adenosine Monophosphate in Enterovirus 71 Infection

    PubMed Central

    Wang, Shih-Min; Chen, I-Chun; Liao, Yu-Ting; Liu, Ching-Chuan

    2014-01-01

    Background Brainstem encephalitis (BE) and pulmonary edema (PE) are notable complications of enterovirus 71 (EV71) infection. Objective This study investigated the immunoregulatory characterizations of EV71 neurological complications by disease severity and milrinone treatment. Study Design Patients <18 years with virologically confirmed EV71 infections were enrolled and divided into 2 groups: the hand, foot, and mouth disease (HFMD) or BE group, and the autonomic nervous system (ANS) dysregulation or PE group. Cytokine and cyclic adenosine monophosphate (cAMP) levels, and the regulatory T cell (Tregs) profiles of the patients were determined. Results Patients with ANS dysregulation or PE exhibited significantly low frequency of CD4+CD25+Foxp3+ and CD4+Foxp3+ T cells compared with patients with HFMD or BE. The expression frequency of CD4−CD8− was also significantly decreased in patients with ANS dysregulation or PE. Among patients with ANS dysregulation or PE, the expression frequency of CD4+Foxp3+ increased markedly after milrinone treatment, and was associated with reduction of plasma levels IL-6, IL-8 and IL-10. Plasma concentrations of cAMP were significantly decreased in patients with ANS dysregulation or PE compared with patients with HFMD or BE; however, cAMP levels increased after milrinone treatment. Conclusions These findings suggested decreased different regulatory T populations and cAMP expression correlate with increased EV71 disease severity. Improved outcome after milrinone treatment may associate with increased regulatory T populations, cAMP expression and modulation of cytokines levels. PMID:25010330

  20. Metabolic control mechanisms in mammalian systems. Involvement of adenosine 3′:5′-cyclic monophosphate in androgen action

    PubMed Central

    Singhal, Radhey L.; Parulekar, M. R.; Vijayvargiya, R.; Robison, G. Alan

    1971-01-01

    1. The ability of exogenously administered cyclic AMP (adenosine 3′:5′-monophosphate) to exert andromimetic action on certain carbohydrate-metabolizing enzymes was investigated in the rat prostate gland and seminal vesicles. 2. Cyclic AMP, when injected concurrently with theophylline, produced marked increases in hexokinase, phosphofructokinase, glyceraldehyde phosphate dehydrogenase, pyruvate kinase, and two hexose monophosphate-shunt enzymes, as well as α-glycerophosphate dehydrogenase activity in accessory sexual tissues of castrated rats. The 6-N,2′-O-dibutyryl analogue of cyclic AMP caused increases of enzyme activity that were greater than those induced by the parent compound. 3. Time-course studies demonstrated that, whereas significant increases in the activities of most enzymes occurred within 4h after the injection of cyclic AMP, maximal increases were attained at 16–24h. 4. Increase in the activity of the various prostatic and vesicular enzymes was dependent on the dose of cyclic AMP; in most instances, 2.5mg of the cyclic nucleotide/rat was sufficient to elicit a statistically significant response. 5. Administration of cyclic AMP and theophylline also produced stimulation of enzyme activities in secondary sexual tissues of immature rats. 6. Cyclic AMP and theophylline did not affect significantly any of the enzymes studied in hepatic tissue. 7. Stimulation of various carbohydrate-metabolizing enzymes in the prostate gland and seminal vesicles by cyclic AMP was independent of adrenal function. 8. Concurrent treatment with actinomycin or cycloheximide prevented the cyclic AMP- and theophylline-induced increases in enzyme activities in both castrated and adrenalectomized–castrated animals. 9. Administration of a single dose of testosterone propionate (5.0mg/100g) to castrated rats caused a significant increase in cyclic AMP concentration in both accessory sexual tissues. 10. In addition, treatment with theophylline potentiated the effects of a submaximal dose of testosterone (1.0mg/100g) on all those prostatic and seminal-vesicular enzymes that are increased by exogenous cyclic AMP. 11. The evidence indicates that cyclic AMP may be involved in triggering the known metabolic actions of androgens on secondary sexual tissues of the rat. PMID:4110460

  1. Adenosine regulation of microtubule dynamics in cardiac hypertrophy.

    PubMed

    Fassett, John T; Xu, Xin; Hu, Xinli; Zhu, Guangshuo; French, Joel; Chen, Yingjie; Bache, Robert J

    2009-08-01

    There is evidence that endogenous extracellular adenosine reduces cardiac hypertrophy and heart failure in mice subjected to chronic pressure overload, but the mechanism by which adenosine exerts these protective effects is unknown. Here, we identified a novel role for adenosine in regulation of the cardiac microtubule cytoskeleton that may contribute to its beneficial effects in the overloaded heart. In neonatal cardiomyocytes, phenylephrine promoted hypertrophy and reorganization of the cytoskeleton, which included accumulation of sarcomeric proteins, microtubules, and desmin. Treatment with adenosine or the stable adenosine analog 2-chloroadenosine, which decreased hypertrophy, specifically reduced accumulation of microtubules. In hypertrophied cardiomyocytes, 2-chloroadenosine or adenosine treatment preferentially targeted stabilized microtubules (containing detyrosinated alpha-tubulin). Consistent with a role for endogenous adenosine in reducing microtubule stability, levels of detyrosinated microtubules were elevated in hearts of CD73 knockout mice (deficient in extracellular adenosine production) compared with wild-type mice (195%, P < 0.05). In response to aortic banding, microtubules increased in hearts of wild-type mice; this increase was exaggerated in CD73 knockout mice, with significantly greater amounts of tubulin partitioning into the cold-stable Triton-insoluble fractions. The levels of this stable cytoskeletal fraction of tubulin correlated strongly with the degree of heart failure. In agreement with a role for microtubule stabilization in promoting cardiac dysfunction, colchicine treatment of aortic-banded mice reduced hypertrophy and improved cardiac function compared with saline-treated controls. These results indicate that microtubules contribute to cardiac dysfunction and identify, for the first time, a role for adenosine in regulating cardiomyocyte microtubule dynamics.

  2. Improved circadian sleep-wake cycle in infants fed a day/night dissociated formula milk.

    PubMed

    Cubero, J; Narciso, D; Aparicio, S; Garau, C; Valero, V; Rivero, M; Esteban, S; Rial, R; Rodríguez, A B; Barriga, C

    2006-06-01

    On the basis of the circadian nutritional variations present in breast milk, and of the implications for the sleep/wake cycle of the nutrients present in infant formula milks, we designed a formula milk nutritionally dissociated into a Day/Night composition. The goal was to improve the bottle-fed infant's sleep/wake circadian rhythm. A total of 21 infants aged 4-20 weeks with sleeping difficulties were enrolled in the three-week duration study. The sleep analysis was performed using an actimeter (Actiwatch) placed on an ankle of each infant to uninterruptedly record movements during the three weeks. The dissociated Day milk, designed to be administered from 06:00 to 18:00, contained low levels of tryptophan (1.5g/100g protein) and carbohydrates, high levels of proteins, and the nucleotides Cytidine 5 monophosphate, Guanosine 5 monophosphate and Inosine 5 monophosphate. The dissociated Night milk, designed to be administered from 18.00 to 06.00, contained high levels of tryptophan (3.4g/100g protein) and carbohydrates, low levels of protein, and the nucleotides Adenosine 5 monophosphate and Uridine 5 monophosphate. Three different milk-feeding experiments were performed in a double-blind procedure covering three weeks. In week 1 (control), the infants received both by day and by night a standard formula milk; in week 2 (inverse control), they received the dissociated milk inversely (Night/Day instead of Day/Night); and in week 3, they received the Day/Night dissociated formula concordant with the formula design. When the infants were receiving the Day/Night dissociated milk in concordance with their environment, they showed improvement in all the nocturnal sleep parameters analyzed: total hours of sleep, sleep efficiency, minutes of nocturnal immobility, nocturnal awakenings, and sleep latency. In conclusion, the use of a chronobiologically adjusted infant formula milk seems to be effective in improving the consolidation of the circadian sleep/wake cycle in bottle-fed infants.

  3. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronstein, B.N.; Eberle, M.A.; Levin, R.I.

    1991-03-15

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, the authors determined whether a 48-hr pretreatment with methotrexate affected adenosine release from ({sup 14}C)adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts. The effect of methotrexate on adenosine release was not due to cytotoxicity since cells treated with maximal concentrations of methotrexate took up ({sup 14}C)adenine and released {sup 14}C-labeled purine (a measure of cell injury) in a mannermore » identical to control cells. Methotrexate treatment of fibroblasts dramatically inhibited adherence to fibroblasts by both unstimulated neutrophils and stimulated neutrophils. One hypothesis that explains the effect of methotrexate on adenosine release is that, by inhibition of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase, methotrexate induces the accumulation of AICAR, the nucleoside precursor of which has previously been shown to cause adenosine release from ischemic cardiac tissue. The observation that the antiinflammatory actions of methotrexate are due to the capacity of methotrexate to induce adenosine release may form the basis for the development of an additional class of antiinflammatory drugs.« less

  4. cGMP stimulates bile acid-independent bile formation and biliary bicarbonate excretion.

    PubMed

    Myers, N C; Grune, S; Jameson, H L; Sawkat-Anwer, M

    1996-03-01

    The effect of guanosine 3',5'-cyclic monophosphate (cGMP) on hepatic bile formation was studied in isolated perfused rat livers and rat hepatocytes. Studies in isolated perfused rat livers showed that infusion of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 3 micromol/min or 100 microM) 1) increased bile flow without affecting biliary excretion of simultaneously infused taurocholate, 2) increased biliary concentration and excretion of HCO3(-) but did not affect biliary excretion of glutathione, and 3) increased net perfusate H+ efflux without affecting hepatic O2 uptake. Studies in isolated rat hepatocytes showed that 1) 8-BrcGMP increased intracellular pH in the presence (but not in the absence) of extracellular HCO-3, and effect inhibited by 4,4' -diisothiocyanostilbene-2,2'-disulfonic acid and Na+ replacement, 2) 8-BrcGMP did not affect taurocholate uptake and intracellular [Ca2+], and 3) bile acids, like ursodeoxycholate and cholate, did not increase cellular cGMP. Taken together, these results indicate that cGMP stimulates bile acid-independent bile formation, in part by stimulating biliary HCO3- excretion. cGMP may increase HCO3- excretion by stimulating sinusoidal Na+ - HCO3- cotransport, but not Na+/H+ exchange. cGMP, unlike adenosine 3',5'-cyclic monophosphate, may not regulate hepatic taurocholate transport, and bile acid-induced HCO3- rich choleresis may not be mediated via cGMP.

  5. Nicotine-induced stimulation of steroidogenesis in adrenocortical cells of the cat.

    PubMed Central

    Rubin, R P; Warner, W

    1975-01-01

    1. The effect of nicotine on steroid production and release from trypsin-dispersed cat adrenocortical cells was investigated. 2. Nicotine, like adrenocorticotrophin (ACTH), elicited a dose-dependent increase in steroidogenesis, which depended upon the presence of calcium in the medium. 3. Augmented steroid production evoked by submaximal concentrations of ACTH monobutyryl cyclic adenosine 3',5'-monophosphate (AMP), or prostaglandin E2 was further enhanced by steroidogenic concentrations of nicotine. 4. These results are discussed in relation to the possible mode of action of nicotine on cortical cells and to the potential consequences of smoking during stress. PMID:165845

  6. Polynucleotides. XXXII. Further studies on the synthesis of oligonucleotides containing 8,2'-S-cycloadenosine.

    PubMed Central

    Ikehara, M; Tezuka, T

    1975-01-01

    A dinucleoside monophosphate, 8,2'-anhydro-8-mercapto-9-beta-D-arabinofuranosyladenine phosphoryl-(3'-5')-inosine (AspI) was synthesized by the condensation of protected 8-mercapto-adenosine 2',3'-cyclic phosphate and 2',3'-isopropylideneinosine with diphenylphosphorochloridate. 8-Mercaptoadenosine 2',3'-cyclic phosphate was polymerized by using tetraphenyl pyrophosphate as the condensing reagent. As oligonucleotides, thus obtained, contained some uncyclized 8-mercaptoadenosine residues and were cleaved at these sites with 0.3N KOH. As 5'-phosphate was synthesized and polymerized with DCC to give oligonucleotides with chain lengths 2 to 9. PMID:170595

  7. Structure, recognition and adaptive binding in RNA aptamer complexes.

    PubMed

    Patel, D J; Suri, A K; Jiang, F; Jiang, L; Fan, P; Kumar, R A; Nonin, S

    1997-10-10

    Novel features of RNA structure, recognition and discrimination have been recently elucidated through the solution structural characterization of RNA aptamers that bind cofactors, aminoglycoside antibiotics, amino acids and peptides with high affinity and specificity. This review presents the solution structures of RNA aptamer complexes with adenosine monophosphate, flavin mononucleotide, arginine/citrulline and tobramycin together with an example of hydrogen exchange measurements of the base-pair kinetics for the AMP-RNA aptamer complex. A comparative analysis of the structures of these RNA aptamer complexes yields the principles, patterns and diversity associated with RNA architecture, molecular recognition and adaptive binding associated with complex formation.

  8. Effects of selective phosphodiesterases-4 inhibitors on learning and memory: a review of recent research.

    PubMed

    Peng, Sheng; Sun, Haiyan; Zhang, Xiaoqing; Liu, Gongjian; Wang, Guanglei

    2014-09-01

    Phosphodiesterase-4 (PDE-4) regulates the intracellular level of cyclic adenosine monophosphate. Recent studies demonstrated that PDE-4 inhibitors can counteract deficits in long-term memory caused by aging or increased expression of mutant forms of human amyloid precursor proteins, and can influence the process of memory function and cognitive enhancement. Therapeutics, such as ketamine, a drug used in clinical anesthesia, can also cause memory deficits as adverse effects. Targeting PDE-4 with selective inhibitors may offer a novel therapeutic strategy to prevent, slow the progress, and, eventually, treat memory deficits.

  9. Exquisite Modulation of the Active Site of Methanocaldococcus jannaschii Adenylosuccinate Synthetase in Forward Reaction Complexes.

    PubMed

    Karnawat, Vishakha; Mehrotra, Sonali; Balaram, Hemalatha; Puranik, Mrinalini

    2016-05-03

    In enzymes that conduct complex reactions involving several substrates and chemical transformations, the active site must reorganize at each step to complement the transition state of that chemical step. Adenylosuccinate synthetase (ADSS) utilizes a molecule each of guanosine 5'-monophosphate (GTP) and aspartate to convert inosine 5'-monophosphate (IMP) into succinyl adenosine 5'-monophosphate (sAMP) through several kinetic intermediates. Here we followed catalysis by ADSS through high-resolution vibrational spectral fingerprints of each substrate and intermediate involved in the forward reaction. Vibrational spectra show differential ligand distortion at each step of catalysis, and band positions of substrates are influenced by binding of cosubstrates. We found that the bound IMP is distorted toward its N1-deprotonated form even in the absence of any other ligands. Several specific interactions between GTP and active-site amino acid residues result in large Raman shifts and contribute substantially to intrinsic binding energy. When both IMP and GTP are simultaneously bound to ADSS, IMP is converted into an intermediate 6-phosphoryl inosine 5'-monophosphate (6-pIMP). The 6-pIMP·ADSS complex was found to be stable upon binding of the third ligand, hadacidin (HDA), an analogue of l-aspartate. We find that in the absence of HDA, 6-pIMP is quickly released from ADSS, is unstable in solution, and converts back into IMP. HDA allosterically stabilizes ADSS through local conformational rearrangements. We captured this complex and determined the spectra and structure of 6-pIMP in its enzyme-bound state. These results provide important insights into the exquisite tuning of active-site interactions with changing substrate at each kinetic step of catalysis.

  10. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV).

    PubMed

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-10-12

    Zr(IV) can form phosphate and Zr(IV) (-PO₃ 2- -Zr 4+ -) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A 520nm / A 650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.

  11. Adenosine 5'-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation.

    PubMed

    Yang, Xiao; Zhan, Yibei; Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa

    2017-01-24

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5'-monophsphate (5'-AMP). We demonstrated that co-administration of APAP and 5'-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5'-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5'-AMP formulation could prevent APAP-induced hepatotoxicity.

  12. Adenosine 5′-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation

    PubMed Central

    Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa

    2017-01-01

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5′-monophsphate (5′-AMP). We demonstrated that co-administration of APAP and 5′-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5′-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5′-AMP formulation could prevent APAP-induced hepatotoxicity. PMID:28031524

  13. Limonene protects osteoblasts against methylglyoxal-derived adduct formation by regulating glyoxalase, oxidative stress, and mitochondrial function.

    PubMed

    Suh, Kwang Sik; Chon, Suk; Choi, Eun Mi

    2017-12-25

    Methylglyoxal (MG) is a potent protein glycating agent and an important precursor of advanced glycation end products, which are involved in the pathogenesis of diabetic osteopathy. In this study, we investigated the effects of limonene on MG-induced damage in osteoblastic MC3T3-E1 cells. Pretreating cells with limonene prevented MG-induced protein adduct formation, tumor necrosis factor alpha and interleukin-6 release, mitochondrial superoxide production, and cardiolipin peroxidation. In addition, limonene increased glyoxalase I activity, and glutathione and heme oxygenase-1 levels in the presence of MG. Pretreatment with limonene prior to MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation and adenosine triphosphate loss, and reduced the levels of adenosine monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ coactivator 1α, and nitric oxide. These results demonstrate that limonene may prevent the development of diabetic osteopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism

    PubMed Central

    Madrigal-Perez, Luis Alberto; Ramos-Gomez, Minerva

    2016-01-01

    Resveratrol (3,4′,5-trihydroxy-trans-stilbene, RSV) has emerged as an important molecule in the biomedical area. This is due to its antioxidant and health benefits exerted in mammals. Nonetheless, early studies have also demonstrated its toxic properties toward plant-pathogenic fungi of this phytochemical. Both effects appear to be opposed and caused by different molecular mechanisms. However, the inhibition of cellular respiration is a hypothesis that might explain both toxic and beneficial properties of resveratrol, since this phytochemical: (1) decreases the production of energy of plant-pathogenic organisms, which prevents their proliferation; (2) increases adenosine monophosphate/adenosine diphosphate (AMP/ADP) ratio that can lead to AMP protein kinase (AMPK) activation, which is related to its health effects, and (3) increases the reactive oxygen species generation by the inhibition of electron transport. This pro-oxidant effect induces expression of antioxidant enzymes as a mechanism to counteract oxidative stress. In this review, evidence is discussed that supports the hypothesis that cellular respiration is the main target of resveratrol. PMID:26999118

  15. New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus.

    PubMed

    Bowman, Lisa; Zeden, Merve S; Schuster, Christopher F; Kaever, Volkhard; Gründling, Angelika

    2016-12-30

    Nucleotide signaling networks are key to facilitate alterations in gene expression, protein function, and enzyme activity in response to diverse stimuli. Cyclic di-adenosine monophosphate (c-di-AMP) is an important secondary messenger molecule produced by the human pathogen Staphylococcus aureus and is involved in regulating a number of physiological processes including potassium transport. S. aureus must ensure tight control over its cellular levels as both high levels of the dinucleotide and its absence result in a number of detrimental phenotypes. Here we show that in addition to the membrane-bound Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterase (PDE) GdpP, S. aureus produces a second cytoplasmic DHH/DHHA1 PDE Pde2. Although capable of hydrolyzing c-di-AMP, Pde2 preferentially converts linear 5'-phosphadenylyl-adenosine (pApA) to AMP. Using a pde2 mutant strain, pApA was detected for the first time in S. aureus, leading us to speculate that this dinucleotide may have a regulatory role under certain conditions. Moreover, pApA is involved in a feedback inhibition loop that limits GdpP-dependent c-di-AMP hydrolysis. Another protein linked to the regulation of c-di-AMP levels in bacteria is the predicted regulator protein YbbR. Here, it is shown that a ybbR mutant S. aureus strain has increased acid sensitivity that can be bypassed by the acquisition of mutations in a number of genes, including the gene coding for the diadenylate cyclase DacA. We further show that c-di-AMP levels are slightly elevated in the ybbR suppressor strains tested as compared with the wild-type strain. With this, we not only identified a new role for YbbR in acid stress resistance in S. aureus but also provide further insight into how c-di-AMP levels impact acid tolerance in this organism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Purine analogue ENERGI-F706 induces apoptosis of 786-O renal carcinoma cells via 5'-adenosine monophosphate-activated protein kinase activation.

    PubMed

    Hsu, Chao-Yu; Lin, Chun-Hsiang; Lin, Jiun-Tsai; Cheng, Yi-Fang; Chen, Han-Min; Kao, Shao-Hsuan

    2015-09-01

    Purine compounds are known to activate 5'-adenosine monophosphate-activated protein kinase (AMPK), which has important roles in treatments for renal cell carcinoma. The present study was aimed to investigate the effects of the purine analogue ENERGI‑F706 on the human renal carcinoma cell line 786‑O and the underlying mechanisms. The results revealed that ENERGI‑F706 (0.2‑0.6 mg/ml) significantly decreased the cell viability to up to 36.4±2.4% of that of the control. Compared to 786‑O cells, ENERGI‑F706 exerted less suppressive effects on the viability of the human non‑tumorigenic renal cell line HK‑2. Flow cytometric analysis showed that ENERGI‑F706 contributed to cell cycle arrest at S‑phase and triggered apoptosis of 786‑O cells. Immunoblot analysis revealed that anti‑apoptotic B‑cell lymphoma 2 (Bcl‑2) levels were reduced and pro‑apoptotic Bcl‑2‑associated X protein levels were diminished. In addition, activation of caspase‑9, caspase‑3 and poly(adenosine diphosphate ribose) polymerase (PARP) was promoted in 786‑O cells in response to ENERGI‑F706. Effects of ENERGI‑F706 on AMPK cascades were investigated and the results showed that ENERGI‑F706 enhanced phosphorylation of AMPKα (T172) and p53 (S15), a downstream target of AMPK. In addition, the AMPK activation, p53 (S15) phosphorylation, reduction of Bcl‑2, cleavage of caspase‑3 and PARP as well as suppressed cell viability induced by ENERGI‑F706 were reversed in the presence of AMPK inhibitor compound C (dorsomorphin). In conclusion, the findings of the present study revealed that ENERGI‑F706 significantly suppressed the viability of 786‑O cells via induction of cell cycle arrest and apoptosis, attributing to AMPK and p53 activation and subsequent cell cycle regulatory and apoptotic signaling. It was therefore indicated that ENERGI‑F706 may be suitable for the treatment of renal cell carcinoma.

  17. New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus*

    PubMed Central

    Bowman, Lisa; Zeden, Merve S.; Kaever, Volkhard

    2016-01-01

    Nucleotide signaling networks are key to facilitate alterations in gene expression, protein function, and enzyme activity in response to diverse stimuli. Cyclic di-adenosine monophosphate (c-di-AMP) is an important secondary messenger molecule produced by the human pathogen Staphylococcus aureus and is involved in regulating a number of physiological processes including potassium transport. S. aureus must ensure tight control over its cellular levels as both high levels of the dinucleotide and its absence result in a number of detrimental phenotypes. Here we show that in addition to the membrane-bound Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterase (PDE) GdpP, S. aureus produces a second cytoplasmic DHH/DHHA1 PDE Pde2. Although capable of hydrolyzing c-di-AMP, Pde2 preferentially converts linear 5′-phosphadenylyl-adenosine (pApA) to AMP. Using a pde2 mutant strain, pApA was detected for the first time in S. aureus, leading us to speculate that this dinucleotide may have a regulatory role under certain conditions. Moreover, pApA is involved in a feedback inhibition loop that limits GdpP-dependent c-di-AMP hydrolysis. Another protein linked to the regulation of c-di-AMP levels in bacteria is the predicted regulator protein YbbR. Here, it is shown that a ybbR mutant S. aureus strain has increased acid sensitivity that can be bypassed by the acquisition of mutations in a number of genes, including the gene coding for the diadenylate cyclase DacA. We further show that c-di-AMP levels are slightly elevated in the ybbR suppressor strains tested as compared with the wild-type strain. With this, we not only identified a new role for YbbR in acid stress resistance in S. aureus but also provide further insight into how c-di-AMP levels impact acid tolerance in this organism. PMID:27834680

  18. Abnormal regulation of adenosine 3′,5′-monophosphate and corticosterone formation in an adrenocortical carcinoma

    PubMed Central

    Ney, R. L.; Hochella, N. J.; Grahame-Smith, D. G.; Dexter, R. N.; Butcher, R. W.

    1969-01-01

    A spontaneously occurring rat adrenocortical carcinoma which produces corticosterone was maintained by transplantation. The carcinoma appeared to utilize corticosterone biosynthetic steps similar to those of the normal adrenal, but the tumor produced only about 1-10% as much corticosterone per unit tissue weight as nontumorous adrenal glands. The tumor demonstrated little or no increase in corticosterone production in response to adrenocorticotropic hormone (ACTH) either in vivo or in vitro. In normal adrenals, ACTH increases the activity of adenyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to adenosine-3′,5′-monophosphate (cyclic AMP), the latter then serving as an intracellular regulator of steroidogenesis. ACTH failed to increase cyclic AMP levels in the tumor in vivo or in slices in vitro, conditions under which there were 50- and 20-fold increases in nontumorous adrenals. However, in homogenates fortified with exogenous ATP, adenyl cyclase activity was comparable in the tumor and adrenals, and cyclic AMP formation was increased 3-fold by ACTH in each. As measured in homogenates, the tumor did not possess a greater ability to destroy cyclic AMP than did normal adrenals. Although ATP levels in the carcinoma were found to be considerably lower than those in normal adrenals, it was not clear that this finding can explain the inability of ACTH to increase cyclic AMP levels in intact tumor cells. While the failure to normally influence cyclic AMP levels in the carcinoma cells could be an important factor in the lack of a steroid response to ACTH, several lines of evidence suggest that the tumor possesses one or more additional abnormalities in the regulation of steroidogenesis. First, in the absence of ACTH stimulation, the tissue concentrations of cyclic AMP were comparable in the tumor and in nontumorous adrenals, but these cyclic AMP levels were associated with a lower level of steroidogenesis in the tumor. Second, tumor slices failed to increase corticosterone production when incubated with cyclic AMP, in contrast to 5-fold increases observed with nontumorous adrenals. PMID:4390412

  19. Increased activity of TNAP compensates for reduced adenosine production and promotes ectopic calcification in the genetic disease ACDC

    PubMed Central

    Jin, Hui; Hilaire, Cynthia St.; Huang, Yuting; Yang, Dan; Dmitrieva, Natalia I.; Negro, Alejandra; Schwartzbeck, Robin; Liu, Yangtengyu; Yu, Zhen; Walts, Avram; Davaine, Jean-Michel; Lee, Duck-Yeon; Donahue, Danielle; Hsu, Kevin S.; Chen, Jessica; Cheng, Tao; Gahl, William; Chen, Guibin; Boehm, Manfred

    2017-01-01

    ACDC (arterial calcification due to deficiency of CD73) is an autosomal recessive disease resulting from loss-of-function mutations in NT5E, which encodes CD73, a 5′-ectonucleotidase that converts extracellular adenosine monophosphate to adenosine. ACDC patients display progressive calcification of lower extremity arteries, causing limb ischemia. Tissue-nonspecific alkaline phosphatase (TNAP), which converts pyrophosphate (PPi) to inorganic phosphate (Pi), and extracellular purine metabolism play important roles in other inherited forms of vascular calcification. Compared to cells from healthy subjects, induced pluripotent stem cell–derived mesenchymal stromal cells (iMSCs) from ACDC patients displayed accelerated calcification and increased TNAP activity when cultured under conditions that promote osteogenesis. TNAP activity generated adenosine in iMSCs derived from ACDC patients but not in iMSCs from control subjects, which have CD73. In response to osteogenic stimulation, ACDC patient–derived iMSCs had decreased amounts of the TNAP substrate PPi, an inhibitor of extracellular matrix calcification, and exhibited increased activation of AKT, mechanistic target of rapamycin (mTOR), and the 70-kDa ribosomal protein S6 kinase (p70S6K), a pathway that promotes calcification. In vivo, teratomas derived from ACDC patient cells showed extensive calcification and increased TNAP activity. Treating mice bearing these teratomas with an A2b adenosine receptor agonist, the mTOR inhibitor rapamycin, or the bisphosphonate etidronate reduced calcification. These results show that an increase of TNAP activity in ACDC contributes to ectopic calcification by disrupting the extracellular balance of PPi and Pi and identify potential therapeutic targets for ACDC. PMID:27965423

  20. Purinergic signaling modulates the cerebral inflammatory response in experimentally infected fish with Streptococcus agalactiae: an attempt to improve the immune response.

    PubMed

    Souza, Carine F; Baldissera, Matheus D; Bottari, Nathiele B; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Baldisserotto, Bernardo

    2018-06-01

    Appropriate control of the immune response is a critical determinant of fish health, and the purinergic cascade has an important role in the immune and inflammatory responses. This cascade regulates the levels of adenosine triphosphate (ATP), adenosine diphosphate, adenosine monophosphate and adenosine (Ado), molecules involved in physiological or pathological events as inflammatory and anti-inflammatory mediators. Thus, the aim of this study was to evaluate whether purinergic signaling, through the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase, and adenosine deaminase (ADA), is capable of modulating the cerebral immune and inflammatory responses in silver catfish that is experimentally infected with Streptococcus agalactiae. Cerebral NTPDase (with ATP as substrate) and 5'-nucleotidase activities increased, while ADA activity decreased in silver catfish that is experimentally infected with S. agalactiae, compared to the control group. Moreover, the cerebral levels of ATP and Ado increased in infected animals compared to the uninfected control group. Brain histopathology in infected animals revealed inflammatory demyelination (the presence of occasional bubbly collections), increased cellular density in the area near to pia-mater and intercellular edema. Based on this evidence, the modulation of the purinergic cascade by the enzymes NTPDase, 5'-nucleotidase, and ADA exerts an anti-inflammatory profile due to the regulation of ATP and Ado levels. This suggests involvement of purinergic enzymes on streptococcosis pathogenesis, through regulating cerebral ATP and Ado levels, molecules known to participate in physiological or pathological events as inflammatory and anti-inflammatory mediators, respectively. In summary, the modulation of the cerebral purinergic cascade exerts an anti-inflammatory profile in an attempt to reduce inflammatory damage.

  1. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods.

    PubMed

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-08

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ~56 nm and diameter ~12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  2. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    NASA Astrophysics Data System (ADS)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  3. Energy status of pig donor organs after ischemia is independent of donor type.

    PubMed

    Stadlbauer, Vanessa; Stiegler, Philipp; Taeubl, Philipp; Sereinigg, Michael; Puntschart, Andreas; Bradatsch, Andrea; Curcic, Pero; Seifert-Held, Thomas; Zmugg, Gerda; Stojakovic, Tatjana; Leopold, Barbara; Blattl, Daniela; Horki, Vera; Mayrhauser, Ursula; Wiederstein-Grasser, Iris; Leber, Bettina; Jürgens, Günther; Tscheliessnigg, Karlheinz; Hallström, Seth

    2013-04-01

    Literature is controversial whether organs from living donors have a better graft function than brain dead (BD) and non-heart-beating donor organs. Success of transplantation has been correlated with high-energy phosphate (HEP) contents of the graft. HEP contents in heart, liver, kidney, and pancreas from living, BD, and donation after cardiac death in a pig model (n=6 per donor type) were evaluated systematically. BD was induced under general anesthesia by inflating a balloon in the epidural space. Ten hours after confirmation, organs were retrieved. Cardiac arrest was induced by 9V direct current. After 10min of ventricular fibrillation without cardiac output, mechanical and medical reanimation was performed for 30min before organ retrieval. In living donors, organs were explanted immediately. Freeze-clamped biopsies were taken before perfusion with Celsior solution (heart) or University of Wisconsin solution (abdominal organs) in BD and living donors or with Histidine-Tryptophan-Ketoglutaric solution (all organs) in non-heart-beating donors, after perfusion, and after cold ischemia (4h for heart, 6h for liver and pancreas, and 12h for kidney). HEPs (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, and phosphocreatine), xanthine, and hypoxanthine were measured by high-performance liquid chromatography. Energy charge and adenosine triphosphate-to-adenosine diphosphate ratio were calculated. After ischemia, organs from different donor types showed no difference in energy status. In all organs, a decrease of HEP and an increase in hypoxanthine contents were observed during perfusion and ischemia, irrespective of the donor type. Organs from BD or non-heart-beating donors do not differ from living donor organs in their energy status after average tolerable ischemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The role of microorganisms in the degradation of adenosine triphosphate (ATP) in chill-stored common carp (Cyprinus carpio) fillets.

    PubMed

    Li, Dapeng; Zhang, Longteng; Song, Sijia; Wang, Zhiying; Kong, Chunli; Luo, Yongkang

    2017-06-01

    Biochemical and microbial changes after harvest strongly affect the final quality and shelf life of fish and fish products. In this study, the role of microbes in the degradation of adenosine triphosphate (ATP), and the origin of adenosine monophosphate deaminase (AMPD) and acid phosphatase (ACP) in common carp fillets during different stages of chilled storage (at 4°C) were investigated. The content of ATP, ADP, AMP, IMP, HxR, and Hx, the activity of AMPD and ACP, and the total count of viable, Aeromonas, Pseudomonas, H 2 S-producing bacteria, and lactic acid bacteria were examined. Results indicated that the population of microbial communities in control samples increased with storage time, and Pseudomonas peaked on the 10th day of storage. Changes in AMPD activity were less related to the abundance of microbes during the entire storage period. However, ACP was derived from both fish muscle and microbial secretion during the middle and late stages of storage. Degradation of ATP to IMP was not affected by spoilage bacteria, but the hydrolysis of IMP, and the transformation of HxR to Hx was affected considerably by the spoilage bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Effects of +Gx load on energy metabolism of brain tissue in rats].

    PubMed

    Wu, Bin; Xie, Bao-sheng; You, Guang-xing; Liu, Xing-hua; Lu, Sheng-qiang; Huang, Wei-fen

    2002-12-01

    Objective. To observe the changes of energy metabolism of brain tissue in rats under +Gx loads, and to explore its possible role in changes of brain function and work efficiency induced by +Gx stress. Method. Forty-five male Wistar rats were randomly divided into control, +5 Gx, +10 Gx, +15 Gx and +20 Gx group. Each group was exposed to the corresponding G value for 3 min. After that, cortical adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid (LA) content, lactate dehydrogenase (LDH) activity were measured. Result. Compared with the control group, the cortical (LA) content increased significantly after +5 Gx, +10 Gx, +15 Gx and +20 Gx exposure (P<0.01). Cortical ADP content and ratio of ADP/AMP and AMP/ATP increased significantly after +10 Gx, +15 Gx and +20 Gx exposure (P<0.01), whereas ATP content, energy charge and LDH activity decreased significantly (P<0.05 or 0.01). Cortical AMP content increased significantly after +15 Gx and +20 Gx exposure (P<0.05 and 0.01). Conclusion. It is suggested that +Gx load can result in obvious depression of brain energy metabolism, which could be an important reason for the change of brain function and work efficiency induced by +Gx stress.

  6. Colorimetric sensor for triphosphates and their application as a viable staining agent for prokaryotes and eukaryotes.

    PubMed

    Ghosh, Amrita; Shrivastav, Anupama; Jose, D Amilan; Mishra, Sanjiv K; Chandrakanth, C K; Mishra, Sandhya; Das, Amitava

    2008-07-15

    The chromogenic complex 1 x Zn (where 1 is (E)-4-(4-dimethylamino-phenylazo)-N,N-bispyridin-2-ylmethyl-benzenesulfonamide) showed high affinity toward the phosphate ion in tetrabutylammonium phosphate in acetonitrile solution and could preferentially bind to adenosine triphosphate (ATP) in aqueous solution at physiological pH. This binding caused a visual change in color, whereas no such change was noticed with other related anions (adenosine monophosphate, adenosine diphosphate, pyrophosphate, and phosphate) of biological significance. Thus, 1 x Zn could be used as a staining agent for different biological cells through binding to the ATP, generated in situ by the mitochondria (in eukaryotes). For prokaryotes (bacteria) the cell membrane takes care of the cells' energy conversion, since they lack mitochondria. ATP is produced in their unique cell structure on the cell membrane, which is not found in any eukaryotes. These stained cells could be viewed with normal light microscopy. This reagent could even be used for distinguishing the gram-positive and the gram-negative bacteria (prokaryotes). This dye was found to be nonlipophilic in nature and nontoxic to living microbes (eukaryotes and prokaryotes). Further, stained cells were found to grow in their respective media, and this confirmed the maintenance of viability of the microbes even after staining, unlike with many other dyes available commercially.

  7. Effects of chlorogenic acid, caffeine and coffee on components of the purinergic system of streptozotocin-induced diabetic rats.

    PubMed

    Stefanello, Naiara; Schmatz, Roberta; Pereira, Luciane Belmonte; Cardoso, Andréia Machado; Passamonti, Sabina; Spanevello, Rosélia Maria; Thomé, Gustavo; de Oliveira, Giovanna Medeiros Tavares; Kist, Luiza Wilges; Bogo, Maurício Reis; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2016-12-01

    We evaluated the effect of chlorogenic acid (CGA), caffeine (CA) and coffee (CF) on components of the purinergic system from the cerebral cortex and platelets of streptozotocin-induced diabetic rats. Animals were divided into eight groups: control animals treated with (I) water (WT), (II) CGA (5 mg/kg), (III) CA (15 mg/kg) and (IV) CF (0.5 g/kg), and diabetic animals treated with (V) WT, (VI) CGA (5 mg/kg), (VII) CA (15 mg/kg) and (VIII) CF (0.5 g/kg). Our results showed an increase (173%) in adenosine monophosphate (AMP) hydrolysis in the cerebral cortex of diabetic rats. In addition, CF treatment increased adenosine diphosphate (ADP) and AMP hydrolysis in group VIII synaptosomes. Platelets showed an increase in ectonucleotidase activity in group V, and all treatments reduced the increase in adenosine triphosphate and ADP hydrolysis. Furthermore, there was an increase in platelet aggregation of 72% in the diabetic rats, and CGA and CF treatment reduced platelet aggregation by nearly 60% when compared to diabetic rats. In this context, we can suggest that CGA and CF treatment should be considered a therapeutic and scientific target to be investigated in diseases associated with hyperglycemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The significance of nitrogen limited condition in the initiation of lipid biosynthesis in Aurantiochytrium sp. SW1

    NASA Astrophysics Data System (ADS)

    Haladu, Zangoma Maryam; Ibrahim, Izyanti; Hamid, Aidil Abdul

    2018-04-01

    The manner of the onset of lipid synthesis in Aurantiochytrium sp. SW1 as well as the possible role of NAD+ dependent isocitrate dehydrogenase (NAD+: ICDH) in the initiation of lipid biosynthesis were studied. The initiation of lipid synthesis in the microalgae was not associated with the cessation of growth, but commence at the early phase of growth. Substantial amount of lipid (30 %, g/g biomass) was accumulated during the active growth phase at 48 h with growth rate decreasing from 0.11 g/L/h during active growth to 0.02 g/L/h in the limited growth phase. At that period the activity of NAD+: ICDH was still detectable although it slightly decreased to 20 nmol/min/mg in 48 h from 25 nmol/min/mg at 24 h. Analysis of ammonium sulfate fractionated of NAD+: ICDH activity showed that NAD+: ICDH was not completely dependent on adenosine monophosphate (AMP) for its activity, although the presence of AMP increased the enzyme's affinity towards its substrate (isocitrate) indicated by the low Km value of the enzyme for isocitrate. While citrate acts as inhibitor of the enzyme only at high concentration. The probable implications of these properties to the regulation of lipid are discussed.

  9. Mating-Induced Shedding of Cell Walls, Removal of Walls from Vegetative Cells, and Osmotic Stress Induce Presumed Cell Wall Genes in Chlamydomonas1

    PubMed Central

    Hoffmann, Xenia-Katharina; Beck, Christoph F.

    2005-01-01

    The first step in sexual differentiation of the unicellular green alga Chlamydomonas reinhardtii is the formation of gametes. Three genes, GAS28, GAS30, and GAS31, encoding Hyp-rich glycoproteins that presumably are cell wall constituents, are expressed in the late phase of gametogenesis. These genes, in addition, are activated by zygote formation and cell wall removal and by the application of osmotic stress. The induction by zygote formation could be traced to cell wall shedding prior to gamete fusion since it was seen in mutants defective in cell fusion. However, it was absent in mutants defective in the initial steps of mating, i.e. in flagellar agglutination and in accumulation of adenosine 3′,5′-cyclic monophosphate in response to this agglutination. Induction of the three GAS genes was also observed when cultures were exposed to hypoosmotic or hyperosmotic stress. To address the question whether the induction seen upon cell wall removal from both gametes and vegetative cells was elicited by osmotic stress, cell wall removal was performed under isosmotic conditions. Also under such conditions an activation of the genes was observed, suggesting that the signaling pathway(s) is (are) activated by wall removal itself. PMID:16183845

  10. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia.

    PubMed

    Perez, Dominique R; Smagley, Yelena; Garcia, Matthew; Carter, Mark B; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S; Sklar, Larry A; Chigaev, Alexandre

    2016-06-07

    Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3'-5'-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing.

  11. Trans-10, cis-12-conjugated linoleic acid alters hepatic gene expression in a polygenic obese line of mice displaying hepatic lipidosis.

    PubMed

    Ashwell, Melissa S; Ceddia, Ryan P; House, Ralph L; Cassady, Joseph P; Eisen, Eugene J; Eling, Thomas E; Collins, Jennifer B; Grissom, Sherry F; Odle, Jack

    2010-09-01

    The trans-10, cis-12 isomer of conjugated linoleic acid (CLA) causes a rapid reduction of body and adipose mass in mice. In addition to changes in adipose tissue, numerous studies have reported alterations in hepatic lipid metabolism. Livers of CLA-fed mice gain mass, partly due to lipid accumulation; however, the precise molecular mechanisms are unknown. To elucidate these mechanisms, we examined fatty acid composition and gene expression profiles of livers from a polygenic obese line of mice fed 1% trans-10, cis-12-CLA for 14 days. Analysis of gene expression data led to the identification of 1393 genes differentially expressed in the liver of CLA-fed male mice at a nominal P value of .01, and 775 were considered significant using a false discovery rate (FDR) threshold of .05. While surprisingly few genes in lipid metabolism were impacted, pathway analysis found that protein kinase A (PKA) and cyclic adenosine monophosphate (cAMP) pathways signaling pathways were affected by CLA treatment and 98 of the 775 genes were found to be regulated by hepatocyte nuclear factor 4alpha, a transcription factor important in controlling liver metabolic status. Copyright 2010 Elsevier Inc. All rights reserved.

  12. AMP Affects Intracellular Ca2+ Signaling, Migration, Cytokine Secretion and T Cell Priming Capacity of Dendritic Cells

    PubMed Central

    Panther, Elisabeth; Dürk, Thorsten; Ferrari, Davide; Di Virgilio, Francesco; Grimm, Melanie; Sorichter, Stephan; Cicko, Sanja; Herouy, Yared; Norgauer, Johannes; Idzko, Marco; Müller, Tobias

    2012-01-01

    The nucleotide adenosine-5′-monophosphate (AMP) can be released by various cell types and has been shown to elicit different cellular responses. In the extracellular space AMP is dephosphorylated to the nucleoside adenosine which can then bind to adenosine receptors. However, it has been shown that AMP can also activate A1 and A2a receptors directly. Here we show that AMP is a potent modulator of mouse and human dendritic cell (DC) function. AMP increased intracellular Ca2+ concentration in a time and dose dependent manner. Furthermore, AMP stimulated actin-polymerization in human DCs and induced migration of immature human and bone marrow derived mouse DCs, both via direct activation of A1 receptors. AMP strongly inhibited secretion of TNF-α and IL-12p70, while it enhanced production of IL-10 both via activation of A2a receptors. Consequently, DCs matured in the presence of AMP and co-cultivated with naive CD4+CD45RA+ T cells inhibited IFN-γ production whereas secretion of IL-5 and IL-13 was up-regulated. An enhancement of Th2-driven immune response could also be observed when OVA-pulsed murine DCs were pretreated with AMP prior to co-culture with OVA-transgenic naïve OTII T cells. An effect due to the enzymatic degradation of AMP to adenosine could be ruled out, as AMP still elicited migration and changes in cytokine secretion in bone-marrow derived DCs generated from CD73-deficient animals and in human DCs pretreated with the ecto-nucleotidase inhibitor 5′-(alpha,beta-methylene) diphosphate (APCP). Finally, the influence of contaminating adenosine could be excluded, as AMP admixed with adenosine desaminase (ADA) was still able to influence DC function. In summary our data show that AMP when present during maturation is a potent regulator of dendritic cell function and point out the role for AMP in the pathogenesis of inflammatory disorders. PMID:22624049

  13. Elevated Airway Purines in COPD

    PubMed Central

    Lazaar, Aili L.; Bordonali, Elena; Qaqish, Bahjat; Boucher, Richard C.

    2011-01-01

    Background: Adenosine and related purines have established roles in inflammation, and elevated airway concentrations are predicted in patients with COPD. However, accurate airway surface purine measurements can be confounded by stimulation of purine release during collection of typical respiratory samples. Methods: Airway samples were collected noninvasively as exhaled breath condensate (EBC) from 36 healthy nonsmokers (NS group), 28 healthy smokers (S group), and 89 subjects with COPD (29 with GOLD [Global Initiative for Chronic Obstructive Lung Disease] stage II, 29 with GOLD stage III, and 31 with GOLD stage IV) and analyzed with mass spectrometry for adenosine, adenosine monophosphate (AMP), and phenylalanine, plus urea as a dilution marker. Variable dilution of airway secretions in EBC was controlled using ratios to urea, and airway surface concentrations were calculated using EBC to serum urea-based dilution factors. Results: EBC adenosine to urea ratios were similar in NS (0.20 ± 0.21) and S (0.22 ± 0.20) groups but elevated in those with COPD (0.32 ± 0.30, P < .01 vs NS). Adenosine to urea ratios were highest in the most severely affected cohort (GOLD IV, 0.35 ± 0.34, P < .01 vs NS) and negatively correlated with FEV1 (r = −0.27, P < .01). Elevated AMP to urea ratios were also observed in the COPD group (0.58 ± 0.97 COPD, 0.29 ± 0.35 NS, P < .02), but phenylalanine to urea ratios were similar in all groups. Airway surface adenosine concentrations calculated in a subset of subjects were 3.2 ± 2.7 μM in those with COPD (n = 28) relative to 1.7 ± 1.5 μM in the NS group (n = 16, P < .05). Conclusions: Airway purines are present on airway surfaces at physiologically significant concentrations, are elevated in COPD, and correlate with markers of COPD severity. Purinergic signaling pathways are potential therapeutic targets in COPD, and EBC purines are potential noninvasive biomarkers. PMID:21454402

  14. 5-Aminoimidazole-4-carboxamide ribonucleoside-mediated adenosine monophosphate-activated protein kinase activation induces protective innate responses in bacterial endophthalmitis.

    PubMed

    Kumar, Ajay; Giri, Shailendra; Kumar, Ashok

    2016-12-01

    The retina is considered to be the most metabolically active tissue in the body. However, the link between energy metabolism and retinal inflammation, as incited by microbial infection such as endophthalmitis, remains unexplored. In this study, using a mouse model of Staphylococcus aureus (SA) endophthalmitis, we demonstrate that the activity (phosphorylation) of 5' adenosine monophosphate-activated protein kinase alpha (AMPKα), a cellular energy sensor and its endogenous substrate; acetyl-CoA carboxylase is down-regulated in the SA-infected retina. Intravitreal administration of an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), restored AMPKα and acetyl-CoA carboxylase phosphorylation. AICAR treatment reduced both the bacterial burden and intraocular inflammation in SA-infected eyes by inhibiting NF-kB and MAP kinases (p38 and JNK) signalling. The anti-inflammatory effects of AICAR were diminished in eyes pretreated with AMPK inhibitor, Compound C. The bioenergetics (Seahorse) analysis of SA-infected microglia and bone marrow-derived macrophages revealed an increase in glycolysis, which was reinstated by AICAR treatment. AICAR also reduced the expression of SA-induced glycolytic genes, including hexokinase 2 and glucose transporter 1 in microglia, bone marrow-derived macrophages and the mouse retina. Interestingly, AICAR treatment enhanced the bacterial phagocytic and intracellular killing activities of cultured microglia, macrophages and neutrophils. Furthermore, AMPKα1 global knockout mice exhibited increased susceptibility towards SA endophthalmitis, as evidenced by increased inflammatory mediators and bacterial burden and reduced retinal function. Together, these findings provide the first evidence that AMPK activation promotes retinal innate defence in endophthalmitis by modulating energy metabolism and that it can be targeted therapeutically to treat ocular infections. © 2016 John Wiley & Sons Ltd.

  15. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase

    NASA Astrophysics Data System (ADS)

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-01

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2‧,3‧-O-(2,4,6-trinitrophenyl)adenosine 5‧-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase.

  16. 6-Gingerol modulates proinflammatory responses in dextran sodium sulfate (DSS)-treated Caco-2 cells and experimental colitis in mice through adenosine monophosphate-activated protein kinase (AMPK) activation.

    PubMed

    Chang, Kuei-Wen; Kuo, Cheng-Yi

    2015-10-01

    6-gingerol has been reported to have anti-inflammatory effects in different experimental settings. The present study aimed at evaluating the effect of 6-gingerol on dextran sodium sulfate (DSS)-induced barrier impairment and inflammation in vitro and in vivo. a differentiated Caco-2 monolayer was exposed to DSS and treated with different concentrations of 6-gingerol (0, 1, 5, 10, 50, and 100 μM). Changes in intestinal barrier function were determined using transepithelial electrical resistance (TEER). The anti-inflammatory activity of 6-gingerol was examined as changes in the expression of proinflammatory cytokine using quantitative real-time PCR. Western blotting was employed to determine the activation of adenosine monophosphate-activated protein kinase (AMPK). Mice with DSS-induced colitis were given different oral dosages of 6-gingerol daily for 14 days. Body weight and colon inflammation were evaluated, and level of proinflammatory cytokines in colon tissues was measured. 6-gingerol treatment was shown to restore impaired intestinal barrier function and to suppress proinflammatory responses in DSS-treated Caco-2 monolayers. We found that AMPK was activated on 6-gingerol treatment in vitro. In animal studies, 6-gingerol significantly ameliorated DSS-induced colitis by restoration of body weight loss, reduction in intestinal bleeding, and prevention of colon length shortening. In addition, 6-gingerol suppressed DSS-elevated production of proinflammatory cytokines (IL-1β, TNFα, and IL-12). our findings highlight the protective effects of 6-gingerol against DSS-induced colitis. We concluded that 6-gingerol exerts anti-inflammatory effects through AMPK activation. It is suggested that 6-gingerol has a promising role in treatment of IBD.

  17. Adenosine monophosphate-activated protein kinase is required for pulmonary artery smooth muscle cell survival and the development of hypoxic pulmonary hypertension.

    PubMed

    Ibe, Joyce Christina F; Zhou, Qiyuan; Chen, Tianji; Tang, Haiyang; Yuan, Jason X-J; Raj, J Usha; Zhou, Guofei

    2013-10-01

    Human pulmonary artery smooth muscle cells (HPASMCs) express both adenosine monophosphate-activated protein kinase (AMPK) α1 and α2. We investigated the distinct roles of AMPK α1 and α2 in the survival of HPASMCs during hypoxia and hypoxia-induced pulmonary hypertension (PH). The exposure of HPASMCs to hypoxia (3% O2) increased AMPK activation and phosphorylation, and the inhibition of AMPK with Compound C during hypoxia decreased their viability and increased lactate dehydrogenase activity and apoptosis. Although the suppression of either AMPK α1 or α2 expression led to increased cell death, the suppression of AMPK α2 alone increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. It also resulted in the decreased expression of myeloid cell leukemia sequence 1 (MCL-1). The knockdown of MCL-1 or MCL-1 inhibitors increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. On the other hand, the suppression of AMPK α1 expression alone prevented hypoxia-mediated autophagy. The inhibition of autophagy induced cell death in HPASMCs. Our results suggest that AMPK α1 and AMPK α2 play differential roles in the survival of HPASMCs during hypoxia. The activation of AMPK α2 maintains the expression of MCL-1 and prevents apoptosis, whereas the activation of AMPK α1 stimulates autophagy, promoting HPASMC survival. Moreover, treatment with Compound C, which inhibits both isoforms of AMPK, prevented and partly reversed hypoxia-induced PH in mice. Taking these results together, our study suggests that AMPK plays a key role in the pathogenesis of pulmonary arterial hypertension, and AMPK may represent a novel therapeutic target for the treatment of pulmonary arterial hypertension.

  18. Magnesium Lithospermate B Implicates 3'-5'-Cyclic Adenosine Monophosphate/Protein Kinase A Pathway and N-Methyl-d-Aspartate Receptors in an Experimental Traumatic Brain Injury.

    PubMed

    Chang, Chih-Zen; Wu, Shu-Chuan; Kwan, Aij-Lie; Lin, Chih-Lung

    2015-10-01

    Decreased 3'-5'-cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and increased N-methyl-d-aspartate (NMDA) related apoptosis were observed in traumatic brain injury (TBI). It is of interest to examine the effect of magnesium lithospermate B (MLB) on cAMP/PKA pathway and NMDAR in TBI. A rodent weight-drop TBI model was used. Administration of MLB was initiated 1 week before (precondition) and 24 hours later (reversal). Cortical homogenates were harvested to measure cAMP (enzyme-linked immunosorbent assay), soluble guanylyl cyclases, PKA and NMDA receptor-2β (Western blot). In addition, cAMP kinase antagonist and H-89 dihydrochloride hydrate were used to test MLB's effect on the cytoplasm cAMP/PKA pathway after TBI. Morphologically, vacuolated neuron and activated microglia were observed in the TBI groups but absent in the MLB preconditioning and healthy controls. Induced cAMP, soluble guanylyl cyclase α1, and PKA were observed in the MLB groups, when compared with the TBI group (P < 0.01) Administration of H-89 dihydrochloride hydrate reversed the effect of MLB on cortical PKA and NMDA-2β expression after TBI. This study showed that MLB exerted an antioxidant effect on the enhancement of cytoplasm cAMP and PKA. This compound also decreased NMDA-2β levels, which may correspond to its neuroprotective effects. This finding lends credence to the presumption that MLB modulates the NMDA-2β neurotoxicity through a cAMP-dependent mechanism in the pathogenesis of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Maximal degree of airway narrowing induced by methacholine and adenosine monophosphate: relationship with the decrease in forced vital capacity.

    PubMed

    Prieto, Luis; Lopez, Victoria; Perez-Frances, Carmen; Marin, Julio

    2010-12-01

    Changes in forced vital capacity (FVC) may represent an indirect method for the detection of plateau in response to inhaled bronchoconstrictor agents. To determine the relationship between the level of plateau obtained with either methacholine or adenosine monophosphate (AMP) and the decrease in FVC induced by each bronchoconstrictor agent. Airway responsiveness to high concentrations of methacholine and AMP was determined in patients with intermittent asthma (n = 41) or allergic rhinitis (n = 26). Furthermore, allergen-induced changes in the response to each bronchoconstrictor agent were investigated in 18 pollen-sensitive patients. Concentration-response curves were characterized by the slope of the FVC values recorded at each step of the challenge against the corresponding forced expiratory volume in 1 second (FEV1) values and, if possible, by the level of plateau. The slope FVC vs FEV1 was similar in patients with plateau and in those without plateau. In patients with pollen allergy, the mean (95% confidence interval) for the level of plateau detected with methacholine increased from 16.8% (11.8%-22.0%) before the pollen season to 21.7% (14.8%-28.6%, P = .008) during the pollen season, whereas pollen-induced changes in the slope FVC vs FEV1 were not significant. Similar results were obtained with AMP. In patients with allergic rhinitis or intermittent asthma, methacholine or AMP-induced changes in FVC are not significantly related to the presence or level of plateau. Furthermore, these 2 constituents of the concentration-response curve can be modified independently by a proinflammatory stimulus. These results suggest that the bronchoconstrictor-induced change in FVC cannot be used as a surrogate estimation of the level of plateau. Copyright © 2010 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Parallel effect of 4-octylphenol and cyclic adenosine monophosphate (cAMP) alters steroidogenesis, cell viability and ROS production in mice Leydig cells.

    PubMed

    Jambor, Tomas; Greifova, Hana; Kovacik, Anton; Kovacikova, Eva; Tvrda, Eva; Forgacs, Zsolt; Massanyi, Peter; Lukac, Norbert

    2018-05-01

    Over the last decade, there is growing incidence of male reproductive malfunctions. It has been documented that numerous environmental contaminants, such as endocrine disruptors (EDs) may adversely affect the reproductive functions of humans as well as wildlife species. The aim of this in vitro study was to examine the effects of 4-octylphenol (4-OP) on the steroidogenesis in mice Leydig cells. We evaluated the impact of this endocrine disruptor on the cholesterol levels and hormone secretion in a primary culture. Subsequently, we determined the cell viability and generation of reactive oxygen species (ROS) following 4-OP treatment. Isolated mice Leydig cells were cultured in the presence of different 4-OP concentrations (0.04-5.0 μg/mL) and 1 mM cyclic adenosine-monophosphate during 44 h. Cholesterol levels were determined from the culture medium using photometry. Quantification of steroid secretion was performed by enzyme-linked immunosorbent assay. The cell viability was assessed using the metabolic activity assay, while ROS production was assessed by the chemiluminescence technique. Slightly increased cholesterol levels were recorded following exposure to the whole applied range of 4-OP, without significant changes (P>0.05). In contrast, the secretion of steroid hormones, specifically dehydroepiandrosterone, androstenedione, and testosterone was decreased following exposure to 4-OP. Experimental doses of 4-OP did not affect cell viability significantly; however a moderate decrease was recorded following the higher doses (2.5 and 5.0 μg/mL) of 4-OP. Furthermore, relative treatment of 4-OP (5.0 μg/mL) caused a significant (P < 0.001) ROS overproduction in the exposed cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase.

    PubMed

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-05

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nitric oxide synthesis-promoting effects of valsartan in human umbilical vein endothelial cells via the Akt/adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway.

    PubMed

    Zhao, Yingshuai; Wang, Liuyi; He, Shanshan; Wang, Xiaoyan; Shi, Weili

    2017-05-20

    Valsartan (VAL), an antagonist of angiotensin II receptor type 1, has antihypertensive and multiple cardiovascular protective effects. The pleiotropic functions of VAL are related to the increased synthesis and biological activity of intravascular nitric oxide (NO). In this study, the role and mechanisms of VAL in the synthesis of NO were examined in human umbilical vein endothelial cells (HUVECs). Ten µmol/L of VAL was used to treat EA.hy926 cells for 30 minutes, 1, 3, 6, 12, and 24 hours, and three concentrations of VAL (i.e., 10, 1, and 0.1 µmol/L) were used to treat EA.hy926 cells for 24 hours. The cells were divided into five groups: control, VAL, VAL + Compound C (adenosine monophosphate-activated protein kinase [AMPK] inhibitor, 1 µmol/L), VAL + LY294002 (Akt [protein kinase B] inhibitor, 10 µmol/L), and VAL + L-nitro-arginine methyl ester (L-NAME, endothelial NO synthase [eNOS] inhibitor, 500 µmol/L) groups. The NO content in the VAL-treated HUVEC line (EA.hy926) was detected using the nitrate reductase method, and western blot was used to detect the phosphorylation of Akt, AMPK, and eNOS, as well as the changes in total protein levels. VAL increased NO synthesis in EA.hy926 cells in time- and dose-dependent manners (p < 0.05) and the intracellular phosphorylation levels of Akt, AMPK, and eNOS at the corresponding time points. LY294002, Compound C, and L-NAME could inhibit the VAL-promoted NO synthesis. VAL activated Akt, AMPK, and eNOS, thus promoting NO synthesis and playing a protective role in endothelial cells. These results partially explained the mechanisms underlying the cardiovascular protective effects of VAL.

  3. Modifications in forced vital capacity during adenosine monophosphate-induced bronchoconstriction in asthma: relationship with the response to methacholine and the effect of inhaled corticosteroids.

    PubMed

    Prieto, Luis; López, Victoria; Catalan, Pablo; Barato, Desiree; Marín, Julio

    2009-05-01

    The effect of adenosine monophosphate (AMP) on forced vital capacity (FVC) has never been systematically investigated. To compare methacholine- and AMP-induced changes in FVC, as a marker of air trapping, in asthmatic patients treated and not treated with inhaled corticosteroids (ICSs). Airway responsiveness to equipotent concentrations of AMP and methacholine was obtained in asthmatic patients treated (n = 32) and not treated (n = 18) with ICSs. The response was expressed by the provocation concentration of agonist that caused a decrease in forced expiratory volume in 1 second (FEV1) of 20% (PC20) and by the slope of the FVC values recorded at each step of the challenge against the corresponding FEV1 values (sFVC). Although methacholine and AMP PC20 values were similar in patients treated and not treated with ICSs, the mean (95% confidence interval) methacholine sFVC (but not AMP sFVC) was higher in those treated with ICSs (0.91; 0.77-1.06) than in those not taking ICSs (0.69; 0.57-0.81; P = .03). No significant correlation was found between sFVC and PC20 values obtained with either methacholine or AMP. Methacholine and AMP sFVC values were significantly related, but only in the group treated with ICSs (r = 0.60, P < .001). Although the AMP-induced decline in FVC in asthmatic patients is similar to that observed with equipotent concentrations of methacholine, the apparently different effect of ICSs on changes in FVC induced by each agonist suggests that the information provided by the 2 bronchoconstrictor agents is not interchangeable and that the information generated by the analysis of the effect of each agonist on FEV1 and FVC may be complementary.

  4. Methacholine and adenosine 5'-monophosphate (AMP) responsiveness, and the presence and degree of atopy in children with asthma.

    PubMed

    Suh, Dong I; Lee, Ju K; Kim, Chang K; Koh, Young Y

    2011-02-01

    The relationship between atopy and bronchial hyperresponsiveness (BHR), both key features of asthma, remains to be clarified. BHR is commonly evaluated by bronchial challenges using direct and indirect stimuli. The aim of this study was to investigate the degree of BHR to methacholine (direct stimulus) and adenosine 5'-monophosphate (AMP) (indirect stimulus) according to the presence and degree of atopy in children with asthma. We performed a retrospective analysis of data from 120 children presenting with a diagnosis of asthma. These children were characterized by skin-prick tests (SPTs), spirometry and bronchial challenges with methacholine and AMP. Atopy was defined by at least one positive reaction to SPTs, and its degree was measured using serum total IgE levels, number of positive SPTs and atopic scores (sum of graded wheal size). A provocative concentration causing a 20% decline in FEV(1) (PC(20) ) was determined for each challenge. Patients with atopy(n=94) had a significantly lower AMP PC(20) than non-atopic patients (n=26), whereas methacholine PC(20) was not different between the two groups. Among the patients with atopy, there was no association between methacholine PC(20) and any atopy parameter. In contrast, a significant association was found between AMP PC(20) and the degree of atopy reflected in serum total IgE, number of positive SPTs and atopic scores (anova trend test, p=0.002, 0.001, 0.003, respectively). AMP responsiveness was associated with the presence and degree of atopy, whereas such a relationship was not observed for methacholine responsiveness. These findings suggest that atopic status may be better reflected by bronchial responsiveness assessed by AMP than by methacholine. © 2011 John Wiley & Sons A/S.

  5. Adenosine Monophosphate-Activated Protein Kinase Abates Hyperglycaemia-Induced Neuronal Injury in Experimental Models of Diabetic Neuropathy: Effects on Mitochondrial Biogenesis, Autophagy and Neuroinflammation.

    PubMed

    Yerra, Veera Ganesh; Kumar, Ashutosh

    2017-04-01

    Impaired adenosine monophosphate kinase (AMPK) signalling under hyperglycaemic conditions is known to cause mitochondrial dysfunction in diabetic sensory neurons. Facilitation of AMPK signalling is previously reported to ameliorate inflammation and induce autophagic response in various complications related to diabetes. The present study assesses the role of AMPK activation on mitochondrial biogenesis, autophagy and neuroinflammation in experimental diabetic neuropathy (DN) using an AMPK activator (A769662). A769662 (15 and 30 mg/kg, i.p) was administered to Sprague-Dawley rats (250-270 g) for 2 weeks after 6 weeks of streptozotocin (STZ) injection (55 mg/kg, i.p.). Behavioural parameters (mechanical/thermal hyperalgesia) and functional characteristics (motor/sensory nerve conduction velocities (MNCV and SNCV) and sciatic nerve blood flow (NBF)) were assessed. For in vitro studies, Neuro2a (N2A) cells were incubated with 25 mM glucose to simulate high glucose condition and then studied for mitochondrial dysfunction and protein expression changes. STZ administration resulted in significant hyperglycaemia (>250 mg/dl) in rats. A769662 treatment significantly improved mechanical/thermal hyperalgesia threshold and enhanced MNCV, SNCV and NBF in diabetic animals. A769662 exposure normalised the mitochondrial superoxide production, membrane depolarisation and markedly increased neurite outgrowth of N2A cells. Further, AMPK activation also abolished the NF-κB-mediated neuroinflammation. A769662 treatment increased Thr-172 phosphorylation of AMPK results in stimulated PGC-1α-directed mitochondrial biogenesis and autophagy induction. Our study supports that compromised AMPK signalling in hyperglycaemic conditions causes defective mitochondrial biogenesis ultimately leading to neuronal dysfunction and associated deficits in DN and activation of AMPK can be developed as an attractive therapeutic strategy for the management of DN.

  6. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway.

    PubMed

    Wang, Pei; Xu, Tian-Ying; Guan, Yun-Feng; Tian, Wei-Wei; Viollet, Benoit; Rui, Yao-Cheng; Zhai, Qi-Wei; Su, Ding-Feng; Miao, Chao-Yu

    2011-02-01

    Stroke is a leading cause of mortality and disability. Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme in mammalian nicotinamide adenine dinucleotide (NAD)(+) biosynthesis and contributes to cell fate decisions. However, the role of Nampt in brain and stroke remains to be investigated. We used lentivirus-mediated Nampt overexpression and knockdown to manipulate Nampt expression and explore the effects of Nampt in neuronal survival on ischemic stress both in vivo and in vitro. We also used adenosine monophosphate (AMP)-activated kinase-α2 (AMPKα2) and silent mating type information regulation 2 homolog 1 (SIRT1) knockout mice to investigate the underlying mechanisms of Nampt neuroprotection. Nampt inhibition by a highly-specific Nampt inhibitor, FK866, aggravated brain infarction in experimentally cerebral ischemia rats, whereas Nampt overexpression in local brain and Nampt enzymatic product nicotinamide mononucleotide (NMN) reduced ischemia-induced cerebral injuries. Nampt overexpression and knockdown regulated neuron survival via the AMPK pathway. Neuroprotection of Nampt was abolished in AMPKα2(-/-) neurons. In neurons, Nampt positively modulated NAD(+) levels and thereby controlled SIRT1 activity. SIRT1 coprecipitated with serine/threonine kinase 11 (LKB1), an upstream kinase of AMPK, and promoted LKB1 deacetylation in neurons. Nampt-induced LKB1 deacetylation and AMPK activation disappeared in SIRT1(-/-) neurons. In contrast, Ca(2+) /calmodulin-dependent protein kinase kinase-β (CaMKK-β), another upstream kinase of AMPK, was not involved in the neuroprotection of Nampt. More important, Nampt overexpression-induced neuroprotection was abolished in SIRT1(+/-) and AMPKα2(-/-) mice. Our findings reveal that Nampt protects against ischemic stroke through rescuing neurons from death via the SIRT1-dependent AMPK pathway and indicate that Nampt is a new therapeutic target for stroke. Copyright © 2011 American Neurological Association.

  7. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells.

    PubMed

    Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li

    2015-12-15

    Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Requirement of the cyclic adenosine monophosphate response element-binding protein for hepatitis B virus replication.

    PubMed

    Kim, Bo Kyung; Lim, Seoung Ok; Park, Yun Gyu

    2008-08-01

    The cyclic adenosine monophosphate-response element (CRE)-transcription factor complex participates in the regulation of viral gene expression and pathologic processes caused by various viruses. The hepatitis B virus (HBV) enhancer I directs liver-specific transcription of viral genes and contains a CRE sequence (HBV-CRE); however, whether the HBV-CRE and CRE-binding protein (CREB) are required for the HBV life cycle remains to be determined. This study was designed to investigate the role of CREB in HBV replication and gene expression. Sequence-comparison analysis of 984 HBVs reported worldwide showed that the HBV-CRE sequence is highly conserved, indicating the possibility that it plays an important role in the HBV life cycle. The binding of CREB to the HBV-CRE site was markedly inhibited by oligonucleotides containing HBV-CRE and consensus CRE sequences in vitro and in vivo. The HBV promoter activity was demonstrated to be dependent upon the transactivation activity of CREB. Treatment with CRE decoy oligonucleotides reduced HBV promoter activity, and this was reversed by CREB overexpression. The levels of viral transcripts, DNA, and antigens were remarkably decreased in response to the overexpression of CREB mutants or treatment with the CRE decoy oligonucleotides, whereas enhancing CREB activity increased the levels of viral transcripts. In addition, introduction of a three-base mutation into the HBV-CRE led to a marked reduction in HBV messenger RNA synthesis. Taken together, our results demonstrate that both replication and gene expression of HBV require a functional CREB and HBV-CRE. We have also demonstrated that CRE decoy oligonucleotides and the overexpression of CREB mutants can effectively block the HBV life cycle, suggesting that interventions against CREB activity could provide a new avenue to treat HBV infection.

  9. Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway.

    PubMed

    Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Liu, Ping-Yen; Lee, Cheng-Han; Cho, Chung-Lung; Wu, Hua-Lin; Chen, Jyh-Hong

    2016-04-01

    Cilostazol is an antiplatelet agent with vasodilatory effects that works by increasing intracellular concentrations of cyclic adenosine monophosphate (cAMP). This study investigated the effects of cilostazol in preventing high glucose (HG)-induced impaired angiogenesis and examined the potential mechanisms involving activation of AMP-activated protein kinase (AMPK). Assays for colony formation, adhesion, proliferation, migration, and vascular tube formation were used to determine the effect of cilostazol in HG-treated endothelial progenitor cells (EPCs) or human umbilical vein endothelial cells (HUVECs). Animal-based assays were performed in hyperglycemic ICR mice undergoing hind limb ischemia. An immnunoblotting assay was used to identify the expression and activation of signaling molecules in vitro and in vivo. Cilostazol treatment significantly restored endothelial function in EPCs and HUVECs through activation of AMPK/acetyl-coenzyme A carboxylase (ACC)-dependent pathways and cAMP/protein kinase A (PKA)-dependent pathways. Recovery of blood flow in the ischemic hind limb and the population of circulating CD34(+) cells were significantly improved in cilostazol-treated mice, and these effects were abolished by local AMPK knockdown. Cilostazol increased the phosphorylation of AMPK/ACC and Akt/endothelial nitric oxide synthase signaling molecules in parallel with or downstream of the cAMP/PKA-dependent signaling pathway in vitro and in vivo. Cilostazol prevents HG-induced endothelial dysfunction in EPCs and HUVECs and enhances angiogenesis in hyperglycemic mice by interactions with a broad signaling network, including activation of AMPK/ACC and probably cAMP/PKA pathways. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  10. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides.

    PubMed

    Guo, Li; Breakspear, Andrew; Zhao, Guoyi; Gao, Lixin; Kistler, H Corby; Xu, Jin-Rong; Ma, Li-Jun

    2016-02-01

    The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway is a central signalling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signalling in fungal biology has been well documented and the key conserved components, adenylate cyclase (AC) and the catalytic subunit of PKA (CPKA), have been functionally characterized. However, other genes involved in this signalling pathway and their regulation are not well understood in filamentous fungi. Here, we performed a comparative transcriptomics analysis of AC and CPKA mutants in two closely related fungi: Fusarium graminearum (Fg) and F. verticillioides (Fv). Combining available Fg transcriptomics and phenomics data, we reconstructed the Fg cAMP signalling pathway. We developed a computational program that combines sequence conservation and patterns of orthologous gene expression to facilitate global transcriptomics comparisons between different organisms. We observed highly correlated expression patterns for most orthologues (80%) between Fg and Fv. We also identified a subset of 482 (6%) diverged orthologues, whose expression under all conditions was at least 50% higher in one genome than in the other. This enabled us to dissect the conserved and unique portions of the cAMP-PKA pathway. Although the conserved portions controlled essential functions, such as metabolism, the cell cycle, chromatin remodelling and the oxidative stress response, the diverged portions had species-specific roles, such as the production and detoxification of secondary metabolites unique to each species. The evolution of the cAMP-PKA signalling pathway seems to have contributed directly to fungal divergence and niche adaptation. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  11. Aquaporin 3 expression in human fetal membranes and its up-regulation by cyclic adenosine monophosphate in amnion epithelial cell culture.

    PubMed

    Wang, Shengbiao; Amidi, Fataneh; Beall, Marie; Gui, Lizhen; Ross, Michael G

    2006-04-01

    The cell membrane water channel protein aquaporins (AQPs) may be important in regulating the intramembranous (IM) pathway of amniotic fluid (AF) resorption. The objective of the present study was to determine whether aquaporin 3 (AQP3) is expressed in human fetal membranes and to further determine if AQP3 expression in primary human amnion cell culture is regulated by second-messenger cyclic adenosine monophosphate (cAMP). AQP3 expression in human fetal membranes of normal term pregnancy was studied by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). To determine the effect of cAMP on AQP3 expression, primary human amnion cell cultures were treated in either heat-inactivated medium alone (control), or heat-inactivated medium containing: (1) SP-cAMP, a membrane-permeable and phosphodiesterase resistant cAMP agonist, or (2) forskolin, an adenylate cyclase stimulator. Total RNA was isolated and multiplex real-time RT-PCR employed for relative quantitation of AQP3 expression. We detected AQP3 expression in placenta, chorion, and amnion using RT-PCR. Using IHC, we identified AQP3 protein expression in placenta syncytiotrophoblasts and cytotrophoblasts, chorion cytotrophoblasts, and amnion epithelia. In primary amnion epithelial cell culture, AQP3 mRNA significantly increased at 2 hours following forskolin or SP-cAMP, remained elevated at 10 hours following forskolin, and returned to baseline levels by 20 hours following treatment. This study provides evidence of AQP3 expression in human fetal membranes and demonstrates that AQP3 expression in primary human amnion cell culture is up-regulated by second-messenger cAMP. As AQP3 is permeable to water, urea, and glycerol, modulation of its expression in fetal membranes may contribute to AF homeostasis.

  12. A preliminary investigation of alpha-lipoic acid treatment of antipsychotic drug-induced weight gain in patients with schizophrenia.

    PubMed

    Kim, Eosu; Park, Dong-Wha; Choi, Song-Hee; Kim, Jae-Jin; Cho, Hyun-Sang

    2008-04-01

    Weight gain and other metabolic disturbances have now become discouraging, major side effects of atypical antipsychotic drugs (AAPDs). The novel strategies required to counteract these serious consequences, however, should avoid modulating the activities of the neurotransmitter receptors involved because those receptors are the therapeutic targets of AAPDs. Adenosine monophosphate-activated protein kinase is an enzyme that plays a pivotal role in energy homeostasis. We hypothesized that alpha-lipoic acid (ALA), which is known to modulate adenosine monophosphate-activated protein kinase activity in the hypothalamus and peripheral tissues, would ameliorate AAPD-induced weight gain. We describe the case series of a 12-week ALA trial in schizophrenia patients treated with AAPDs. Two of 7 enrolled subjects were dropped from the study because of noncompliance and demand for new medication to treat depressive symptoms, respectively. The mean (SD) weight loss was 3.16 (3.20) kg (P = 0.043, last observation carried forward; median, 3.03 kg; range, 0-8.85 kg). On average, body mass index showed a significant reduction (P = 0.028) over the 12 weeks. During the same period, a statistically significant reduction was also observed in total cholesterol levels (P = 0.042), and there was a weak trend toward the reduction in insulin resistance (homeostasis model assessment of insulin resistance) (P = 0.080). Three subjects reported increased energy subjectively. The total scores on the Brief Psychiatric Rating Scale and the Montgomery-Asberg Depression Rating Scale did not vary significantly during the study. These preliminary data suggest the possibility that ALA can ameliorate the adverse metabolic effects induced by AAPDs. To confirm the benefits of ALA, more extended study is warranted.

  13. Variable p-CREB expression depicts different asthma phenotypes.

    PubMed

    Chiappara, G; Chanez, P; Bruno, A; Pace, E; Pompeo, F; Bousquet, J; Bonsignore, G; Gjomarkaj, M

    2007-07-01

    Chromatin modification may play a role in inflammatory gene regulation in asthma. Cyclic adenosine mono-phosphate response element-binding protein (CREB), with the specific co-activator, the CREB-binding protein (CBP), contributes to the acetylation of chromatin and to the transcription of pro-inflammatory genes. To evaluate the expression of CBP and of phospho-CREB (p-CREB) in bronchial biopsies and in peripheral blood mononuclear cells (PBMC) of controls (C), untreated (UA), inhaled steroid treated (ICS) and steroid-dependent asthmatic (SDA) patients. We used immunohistochemistry in bronchial biopsies and western blot analysis and immunocytochemistry in PBMC. Cyclic adenosine mono-phosphate response element-binding protein expression, in the epithelium was similar in all groups, while p-CREB expression was increased in UA and in SDA in comparison with ICS and C subjects (C vs UA P = 0.002, C vs SDA P = 0.007), (ICS vs SDA P = 0.005), (ICS vs UA P = 0.001). Interestingly, also in the submucosa, p-CREB was increased in UA and SDA in comparison with ICS and C subjects (C vs UA P = 0.0004) (C vs SDA P < 0.0001) (ICS vs UA P = 0.002) (ICS vs SDA P < 0.0001) and positively correlated with leukocyte infiltration within the bronchi (CD45RB+ cells). Similar results were obtained with PBMC isolated from the same patient groups. Incubation of PBMC in vitro, with fluticasone propionate, decreased the p-CREB expression induced by cytokine activation (interferon-gamma, tumor necrosis factor-alpha). This study demonstrates that the expression of p-CREB is related, in asthma, to the persistent inflammation according to the disease severity. p-CREB expression can be modulated by glucocorticoids in responsive patients.

  14. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    PubMed

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effect of electromagnetic field on cyclic adenosine monophosphate (cAMP) in a human mu-opioid receptor cell model.

    PubMed

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-01-01

    During the cell communication process, endogenous and exogenous signaling affect normal as well as pathological developmental conditions. Exogenous influences such as extra-low-frequency electromagnetic field (EMF) have been shown to effect pain and inflammation by modulating G-protein receptors, down-regulating cyclooxygenase-2 activity, and affecting the calcium/calmodulin/nitric oxide pathway. Investigators have reported changes in opioid receptors and second messengers, such as cyclic adenosine monophosphate (cAMP), in opiate tolerance and dependence by showing how repeated exposure to morphine decreases adenylate cyclase activity causing cAMP to return to control levels in the tolerant state, and increase above control levels during withdrawal. Resonance responses to biological systems using exogenous EMF signals suggest that frequency response characteristics of the target can determine the EMF biological response. In our past research we found significant down regulation of inflammatory markers tumor necrosis factor alpha (TNF-α) and nuclear factor kappa B (NFκB) using 5 Hz EMF frequency. In this study cAMP was stimulated in Chinese Hamster Ovary (CHO) cells transfected with human mu-opioid receptors, then exposed to 5 Hz EMF, and outcomes were compared with morphine treatment. Results showed a 23% greater inhibition of cAMP-treating cells with EMF than with morphine. In order to test our results for frequency specific effects, we ran identical experiments using 13 Hz EMF, which produced results similar to controls. This study suggests the use of EMF as a complementary or alternative treatment to morphine that could both reduce pain and enhance patient quality of life without the side-effects of opiates.

  16. Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC.

    PubMed

    Rieg, Timo; Tang, Tong; Uchida, Shinichi; Hammond, H Kirk; Fenton, Robert A; Vallon, Volker

    2013-01-01

    Arginine vasopressin (AVP) affects kidney function via vasopressin V2 receptors that are linked to activation of adenylyl cyclase (AC) and an increase in cyclic adenosine monophosphate formation. AVP/cyclic adenosine monophosphate enhance the phosphorylation of the Na-K-2Cl cotransporter (NKCC2) at serine residue 126 (pS126 NKCC2) and of the Na-Cl cotransporter (NCC) at threonine 58 (pT58 NCC). The isoform(s) of AC involved in these responses, however, were unknown. Phosphorylation of S126 NKCC2 and T58 NCC, induced by the V2 receptor agonist (1-desamino-8-D-arginine vasopressin) in wild-type mice, is lacking in knockout mice for AC isoform 6 (AC6). With regard to NKCC2 phosphorylation, the stimulatory effect of 1-desamino-8-D-AVP and the defect in AC6(-/-) mice seem to be restricted to the medullary portion of the thick ascending limb. AC6 is also a stimulator of total renal NKCC2 protein abundance in medullary and cortical thick ascending limb. Consequently, mice lacking AC6 have lower NKCC2 expression and a mild Bartter syndrome-like phenotype, including lower plasma concentrations of K+ and H+ and compensatory upregulation of NCC. Increased AC6-independent phosphorylation of NKCC2 at S126 might help to stabilize NKCC2 activity in the absence of AC6. Renal AC6 determines total NKCC2 expression and mediates vasopressin-induced NKCC2/NCC phosphorylation. These regulatory mechanisms, which are defective in AC knockout mice, are likely responsible for the observed mild Bartter syndrome. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Effects of drugs affecting endogenous amines or cyclic nucleotides on ethanol withdrawal head twitches in mice.

    PubMed Central

    Collier, H O; Hammond, M D; Schneider, C

    1976-01-01

    1 Twenty-four hours after ethanol withdrawal, dependent mice exhibited frequent head twitching. Naive mice exhibited similar twitching 15 min after treatment with 5-hydroxytryptophan (5-HTP) or 6 h after alpha-methyl-p-tyrosine (AMPT). Ethanol lessened the incidence of head twitches induced by any of these treatments. 5-HTP and AMPT each increased the incidence of head twitches induced by withdrawal of ethanol from dependent mice. 2 Drugs that affect the amount or activity of endogenous amines or cyclic nucleotides modified the incidence of head twitches. Nearly all drugs acted in the same direction on twitching elicited by any of these three treatments. 3 The incidence was lessened by: (a) methysergide, methergoline, MA 1420, p-chlorophenylalanine and p-chloroamphetamine; (b) dopamine, noradrenaline, L-DOPA, amphetamine and apomorphine; (c) hyoscine and nicotine; and (d) adenosine triphosphate, dibutyryl cyclic adenosine-3',5'-monophosphate (db cyclic AMP) and prostaglandins E1 and E2. 4 The incidence was increased by: (a) acetylcholine, carbachol and physostigmine; and (b) guanosine triphosphate, dibutyryl cyclic guanosine monophosphate (db cyclic GMP), theophylline and 3-isobutyl-1-methyl-xanthine. 5 These findings suggest that head twitching induced by these three treatments arises from a common biochemical mechanism, which may ultimately be a change in favour of cyclic GMP of the balance between this nucleotide and cyclic AMP within appropriate neurones. This imbalance appears to be elicited or increased by 5-hydroxytryptamine and acetylcholine and to be decreased by dopamine, noradrenaline and E prostaglandins. 6 Neither actinomycin D nor cycloheximide, given during the induction of ethanol dependence, altered the incidence of head twitches after ethanol withdrawal. PMID:987821

  18. Modulation of glycogen and breast meat processing ability by nutrition in chickens: effect of crude protein level in 2 chicken genotypes.

    PubMed

    Jlali, M; Gigaud, V; Métayer-Coustard, S; Sellier, N; Tesseraud, S; Le Bihan-Duval, E; Berri, C

    2012-02-01

    The aim of the study was to evaluate the impact of 2 isoenergetic growing diets with different CP (17 vs. 23%) on the performance and breast meat quality of 2 lines of chicken divergently selected for abdominal fatness [i.e., fat and lean (LL) lines]. Growth performance, breast and abdominal fat yields, breast meat quality parameters (pH, color, drip loss), and muscle glycogen storage at death were measured. Increased dietary CP resulted in increased BW, increased breast meat yield, and reduced abdominal fatness at slaughter regardless of genotype (P < 0.001). By contrast, dietary CP affected glycogen storage and the related meat quality parameters only in the LL chickens. Giving LL chickens the low-CP diet led to reduced concentration of muscle glycogen (P < 0.01), and as a result, breast meat with a higher (P < 0.001) ultimate pH, decreased (P < 0.001) lightness, and reduced (P < 0.001) drip loss during storage. The decreased muscle glycogen content observed in LL receiving the low-CP diet compared with the high-CP diet occurred concomitantly with greater phosphorylation amount for the α-catalytic subunit of adenosine monophosphate-activated protein kinase and glycogen synthase. This was consistent with the reduced muscle glycogen content observed in LL fed the low-CP diet because adenosine monophosphate-activated protein kinase inhibits glycogen synthesis through its action on glycogen synthase. Our results demonstrated that nutrition is an effective means of modulating breast meat properties in the chicken. The results also highlighted the need to take into account interaction with the genetic background of the animal to select nutritional strategies to improve meat quality traits in poultry.

  19. Ginsenoside Compound K suppresses the hepatic gluconeogenesis via activating adenosine-5'monophosphate kinase: A study in vitro and in vivo.

    PubMed

    Wei, Shengnan; Li, Wei; Yu, Yang; Yao, Fan; A, Lixiang; Lan, Xiaoxin; Guan, Fengying; Zhang, Ming; Chen, Li

    2015-10-15

    Compound K (CK) is a final intestinal metabolite of protopanaxadiol-type ginsenoside. We have reported that CK presented anti-diabetic effect via diminishing the expressions of hepatic gluconeogenesis key enzyme. Here, we further explore the possible mechanism of CK on suppression hepatic gluconeogenesis via activation of adenosine-5'monophosphate kinase (AMPK) on type 2 diabetes mice in vivo and in HepG2 cells. Type 2 diabetes mice model was developed by high fat diet combined with STZ injection. 30mg/kg/d CK was orally administrated for 4weeks, the fasting blood glucose level and 2h OGTT were conducted, and the protein expression of AMPK, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) were examined. The mechanism of Compound K on hepatic gluconeogenesis was further explored in HepG2 hepatocytes. Glucose production, the protein expression of AMPK, PEPCK, G6pase and PGC-1α, hepatic nuclear factor 4α (HNF-4α) and forkhead transcription factor O1 (FOXO1) were determined after Compound K treatment at the presence of AMPK inhibitor Compound C. We observed that CK inhibited the expression of PEPCK and G6Pase in the liver and in HepG2 hepatocytes. Meanwhile, CK treatment remarkably increased the activation of AMPK, while decreasing the expressions of PGC-1α, HNF-4α and FOXO1. However, AMPK inhibitor Compound C could reverse these effects of CK on gluconeogenesis in part. The results indicated that the effect of CK on suppression hepatic gluconeogenesis might be via the activation the AMPK activity. Copyright © 2015. Published by Elsevier Inc.

  20. Effects of inhaled fluticasone and oral prednisolone on clinical and inflammatory parameters in patients with asthma

    PubMed Central

    Meijer, R; Kerstjens, H; Arends, L; Kauffman, H; Koeter, G; Postma, D

    1999-01-01

    BACKGROUND—Guidelines state that oral and inhaled corticosteroids are the cornerstone of asthma treatment. The effect of both types of treatment can be assessed by measuring lung and systemic parameters. Treatment for two weeks with either oral prednisolone (30 mg/day), high dose fluticasone propionate (2000 µg/day, FP2000), or lower dose FP (500 µg/day, FP500), both given by a dry powder inhaler, were compared.
METHODS—One hundred and twenty patients with asthma were treated for two weeks in a double blind parallel group design. Lung function, asthma symptoms, airway hyperresponsiveness (PC20 methacholine and adenosine-5'-monophosphate), sputum eosinophil and eosinophilic cationic protein (ECP) levels were measured as lung parameters. In addition, morning serum blood cortisol, blood eosinophil, and serum ECP levels were measured as systemic parameters.
RESULTS—PC20 methacholine and adenosine-5'-monophosphate showed significantly greater improvement with FP2000 (1.99 and 4.04 doubling concentrations (DC), respectively) than prednisolone (0.90 DC, p = 0.02; 2.15 DC, p = 0.05) and marginally more than with FP500 (1.69 and 3.54 DC). Changes in sputum eosinophil and ECP concentrations showed similar trends; the decrease in ECP was significantly greater with FP2000 than with FP500. In contrast, the systemic parameters of steroid activity (cortisol, peripheral blood eosinophils, and serum ECP) decreased to a similar extent with FP2000 and prednisolone but significantly less with FP500.
CONCLUSIONS—Oral prednisolone (30 mg/day) was inferior to FP2000 in improving airway hyperresponsiveness to both methacholine and AMP, with similar trends in forced expiratory volume in one second (FEV1), sputum eosinophil and ECP concentrations. Systemic effects were similar with prednisolone and FP2000 and less with FP500.

 PMID:10491451

  1. Fermentation of Xylose Causes Inefficient Metabolic State Due to Carbon/Energy Starvation and Reduced Glycolytic Flux in Recombinant Industrial Saccharomyces cerevisiae

    PubMed Central

    Matsushika, Akinori; Nagashima, Atsushi; Goshima, Tetsuya; Hoshino, Tamotsu

    2013-01-01

    In the present study, comprehensive, quantitative metabolome analysis was carried out on the recombinant glucose/xylose-cofermenting S. cerevisiae strain MA-R4 during fermentation with different carbon sources, including glucose, xylose, or glucose/xylose mixtures. Capillary electrophoresis time-of-flight mass spectrometry was used to determine the intracellular pools of metabolites from the central carbon pathways, energy metabolism pathways, and the levels of twenty amino acids. When xylose instead of glucose was metabolized by MA-R4, glycolytic metabolites including 3- phosphoglycerate, 2- phosphoglycerate, phosphoenolpyruvate, and pyruvate were dramatically reduced, while conversely, most pentose phosphate pathway metabolites such as sedoheptulose 7- phosphate and ribulose 5-phosphate were greatly increased. These results suggest that the low metabolic activity of glycolysis and the pool of pentose phosphate pathway intermediates are potential limiting factors in xylose utilization. It was further demonstrated that during xylose fermentation, about half of the twenty amino acids declined, and the adenylate/guanylate energy charge was impacted due to markedly decreased adenosine triphosphate/adenosine monophosphate and guanosine triphosphate/guanosine monophosphate ratios, implying that the fermentation of xylose leads to an inefficient metabolic state where the biosynthetic capabilities and energy balance are severely impaired. In addition, fermentation with xylose alone drastically increased the level of citrate in the tricarboxylic acid cycle and increased the aromatic amino acids tryptophan and tyrosine, strongly supporting the view that carbon starvation was induced. Interestingly, fermentation with xylose alone also increased the synthesis of the polyamine spermidine and its precursor S-adenosylmethionine. Thus, differences in carbon substrates, including glucose and xylose in the fermentation medium, strongly influenced the dynamic metabolism of MA-R4. These results provide a metabolic explanation for the low ethanol productivity on xylose compared to glucose. PMID:23874849

  2. Hepatic oxidative stress in ovariectomized transgenic mice expressing the hepatitis C virus polyprotein is augmented through suppression of adenosine monophosphate-activated protein kinase/proliferator-activated receptor gamma co-activator 1 alpha signaling.

    PubMed

    Tomiyama, Yasuyuki; Nishina, Sohji; Hara, Yuichi; Kawase, Tomoya; Hino, Keisuke

    2014-10-01

    Oxidative stress plays an important role in hepatocarcinogenesis of hepatitis C virus (HCV)-related chronic liver diseases. Despite the evidence of an increased proportion of females among elderly patients with HCV-related hepatocellular carcinoma (HCC), it remains unknown whether HCV augments hepatic oxidative stress in postmenopausal women. The aim of this study was to determine whether oxidative stress was augmented in ovariectomized (OVX) transgenic mice expressing the HCV polyprotein and to investigate its underlying mechanisms. OVX and sham-operated female transgenic mice expressing the HCV polyprotein and non-transgenic littermates were assessed for the production of reactive oxygen species (ROS), expression of inflammatory cytokines and antioxidant potential in the liver. Compared with OVX non-transgenic mice, OVX transgenic mice showed marked hepatic steatosis and ROS production without increased induction of inflammatory cytokines, but there was no increase in ROS-detoxifying enzymes such as superoxide dismutase 2 and glutathione peroxidase 1. In accordance with these results, OVX transgenic mice showed less activation of peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α), which is required for the induction of ROS-detoxifying enzymes, and no activation of adenosine monophosphate-activated protein kinase-α (AMPKα), which regulates the activity of PGC-1α. Our study demonstrated that hepatic oxidative stress was augmented in OVX transgenic mice expressing the HCV polyprotein by attenuation of antioxidant potential through inhibition of AMPK/PGC-1α signaling. These results may account in part for the mechanisms by which HCV-infected women are at high risk for HCC development when some period has passed after menopause. © 2013 The Japan Society of Hepatology.

  3. Role of activation of 5'-adenosine monophosphate-activated protein kinase in gastric ulcer healing in diabetic rats.

    PubMed

    Baraka, Azza M; Deif, Maha M

    2011-01-01

    The potential utility of 5'-adenosine monophosphate-activated protein kinase (AMPK)-activating agents, such as metformin, in inducing angiogenesis, could be a promising approach to promote healing of gastric ulcers complicated by diabetes mellitus. The aim of the present study was to assess the effect of a drug that activates AMPK, namely metformin, in gastric ulcer healing in streptozotocin-induced diabetic rats. Forty male Wistar albino rats were made diabetic by intraperitoneal (i.p.) streptozotocin injection and 10 rats were injected i.p. by a single dose of physiological saline. Six weeks following streptozotocin or saline injection, gastric ulcers were induced by serosal application of acetic acid. Three days after acetic acid application, rats were divided into group 1 (nondiabetic control), group 2 (streptozotocin-injected rats), groups 3-5 (streptozotocin-injected rats treated with metformin or metformin and an inhibitor of AMPK, namely compound C or pioglitazone) for 7 days following acetic acid application. Administration of metformin, but not pioglitazone, resulted in a significant decrease in the gastric ulcer area, a significant increase in epithelial regeneration assessed histologically, a significant increase in the number of microvessels in the ulcer margin, a significant increase in gastric vascular endothelial growth factor concentration and gastric von Willebrand factor as well as a significant increase in gastric phospho-AMPK. Compound C, an inhibitor of AMPK, blocked metformin-induced changes in assessed parameters suggesting that the effect of metformin was mediated mainly through activation of AMPK. Our results suggest the feasibility of a novel treatment strategy, namely drugs activating AMPK, for patients in whom impairment of ulcer healing constitutes a secondary complication of diabetes mellitus. Copyright © 2011 S. Karger AG, Basel.

  4. Metformin, an AMPK activator, stimulates the phosphorylation of aquaporin 2 and urea transporter A1 in inner medullary collecting ducts.

    PubMed

    Klein, Janet D; Wang, Yanhua; Blount, Mitsi A; Molina, Patrick A; LaRocque, Lauren M; Ruiz, Joseph A; Sands, Jeff M

    2016-05-15

    Nephrogenic diabetes insipidus (NDI) is characterized by production of very large quantities of dilute urine due to an inability of the kidney to respond to vasopressin. Congenital NDI results from mutations in the type 2 vasopressin receptor (V2R) in ∼90% of families. These patients do not have mutations in aquaporin-2 (AQP2) or urea transporter UT-A1 (UT-A1). We tested adenosine monophosphate kinase (AMPK) since it is known to phosphorylate another vasopressin-sensitive transporter, NKCC2 (Na-K-2Cl cotransporter). We found AMPK expressed in rat inner medulla (IM). AMPK directly phosphorylated AQP2 and UT-A1 in vitro. Metformin, an AMPK activator, increased phosphorylation of both AQP2 and UT-A1 in rat inner medullary collecting ducts (IMCDs). Metformin increased the apical plasma membrane accumulation of AQP2, but not UT-A1, in rat IM. Metformin increased both osmotic water permeability and urea permeability in perfused rat terminal IMCDs. These findings suggest that metformin increases osmotic water permeability by increasing AQP2 accumulation in the apical plasma membrane but increases urea permeability by activating UT-A1 already present in the membrane. Lastly, metformin increased urine osmolality in mice lacking a V2R, a mouse model of congenital NDI. We conclude that AMPK activation by metformin mimics many of the mechanisms by which vasopressin increases urine-concentrating ability. These findings suggest that metformin may be a novel therapeutic option for congenital NDI due to V2R mutations. Copyright © 2016 the American Physiological Society.

  5. Metformin, an AMPK activator, stimulates the phosphorylation of aquaporin 2 and urea transporter A1 in inner medullary collecting ducts

    PubMed Central

    Wang, Yanhua; Blount, Mitsi A.; Molina, Patrick A.; LaRocque, Lauren M.; Ruiz, Joseph A.

    2016-01-01

    Nephrogenic diabetes insipidus (NDI) is characterized by production of very large quantities of dilute urine due to an inability of the kidney to respond to vasopressin. Congenital NDI results from mutations in the type 2 vasopressin receptor (V2R) in ∼90% of families. These patients do not have mutations in aquaporin-2 (AQP2) or urea transporter UT-A1 (UT-A1). We tested adenosine monophosphate kinase (AMPK) since it is known to phosphorylate another vasopressin-sensitive transporter, NKCC2 (Na-K-2Cl cotransporter). We found AMPK expressed in rat inner medulla (IM). AMPK directly phosphorylated AQP2 and UT-A1 in vitro. Metformin, an AMPK activator, increased phosphorylation of both AQP2 and UT-A1 in rat inner medullary collecting ducts (IMCDs). Metformin increased the apical plasma membrane accumulation of AQP2, but not UT-A1, in rat IM. Metformin increased both osmotic water permeability and urea permeability in perfused rat terminal IMCDs. These findings suggest that metformin increases osmotic water permeability by increasing AQP2 accumulation in the apical plasma membrane but increases urea permeability by activating UT-A1 already present in the membrane. Lastly, metformin increased urine osmolality in mice lacking a V2R, a mouse model of congenital NDI. We conclude that AMPK activation by metformin mimics many of the mechanisms by which vasopressin increases urine-concentrating ability. These findings suggest that metformin may be a novel therapeutic option for congenital NDI due to V2R mutations. PMID:26962099

  6. Negundoside, an iridiod glycoside from leaves of Vitex negundo, protects human liver cells against calcium-mediated toxicity induced by carbon tetrachloride

    PubMed Central

    Tasduq, Sheikh A; Kaiser, Peerzada J; Gupta, Bishan D; Gupta, Vijay K; Johri, Rakesh K

    2008-01-01

    AIM: To evaluate the protective effect of 2'-p-hydroxybenzoylmussaenosidic acid [negundoside (NG), against carbon tetrachloride (CCl4)-induced toxicity in HuH-7 cells. METHODS: CCl4 is a well characterized hepatotoxin, and inducer of cytochrome P450 2E1 (CYP2E1)-mediated oxidative stress. In addition, lipid peroxidation and accumulation of intracellular calcium are important steps in the pathway involved in CCl4 toxicity. Liver cells (HuH-7) were treated with CCl4, and the mechanism of the cytoprotective effect of NG was assessed. Silymarin, a known hepatoprotective drug, was used as control. RESULTS: NG protected HuH-7 cells against CCl4 toxicity and loss of viability without modulating CYP2E1 activity. Prevention of CCl4 toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species (ROS), a decrease in lipid peroxidation and accumulation of intracellular Ca2+ levels and maintenance of intracellular glutathione homeostasis. Decreased mitochondrial membrane potential (MMP), induction of caspases mediated DNA fragmentation and cell cycle arrest, as a result of CCl4 treatment, were also blocked by NG. The protection afforded by NG seemed to be mediated by activation of cyclic adenosine monophosphate (cAMP) synthesis and inhibition of phospholipases (cPLA2). CONCLUSION: NG exerts a protective effect on CYP2E1-dependent CCl4 toxicity via inhibition of lipid peroxidation, followed by an improved intracellular calcium homeostasis and inhibition of Ca2+-dependent proteases. PMID:18595136

  7. Inosine-5'-monophosphate is a candidate agent to resolve rigor mortis of skeletal muscle.

    PubMed

    Matsuishi, Masanori; Tsuji, Mariko; Yamaguchi, Megumi; Kitamura, Natsumi; Tanaka, Sachi; Nakamura, Yukinobu; Okitani, Akihiro

    2016-11-01

    The object of the present study was to reveal the action of inosine-5'-monophosphate (IMP) toward myofibrils in postmortem muscles. IMP solubilized isolated actomyosin within a narrow range of KCl concentration, 0.19-0.20 mol/L, because of the dissociation of actomyosin into actin and myosin, but it did not solubilize the proteins in myofibrils with 0.2 mol/L KCl. However, IMP could solubilize both proteins in myofibrils with 0.2 mol/L KCl in the presence of 1 m mol/L pyrophosphate or 1.0-3.3 m mol/L adenosine-5'-diphosphate (ADP). Thus, we presumed that pyrophosphate and ADP released thin filaments composed of actin, and thick filaments composed of myosin from restraints of myofibrils, and then both filaments were solubilized through the IMP-induced dissociation of actomyosin. Thus, we concluded that IMP is a candidate agent to resolve rigor mortis because of its ability to break the association between thick and thin filaments. © 2016 Japanese Society of Animal Science.

  8. Formulation of yeast-leavened bread with reduced salt content by using a Lactobacillus plantarum fermentation product.

    PubMed

    Valerio, Francesca; Conte, Amalia; Di Biase, Mariaelena; Lattanzio, Veronica M T; Lonigro, S Lisa; Padalino, Lucia; Pontonio, Erica; Lavermicocca, Paola

    2017-04-15

    A Lactobacillus plantarum fermentation product (Bio21B), obtained after strain growth (14h) in a wheat flour-based medium, was applied in the bread-making process as taste enhancer, in order to obtain a yeast-leavened bread with reduced salt content (20% and 50%) with respect to a reference bread (REF) not containing the fermentation product. Sensory analysis indicated that the Bio21B bread with salt reduced by 50% had a pleasant taste similar to the salt-containing bread (REF). l-Glutamate and total free amino acid content did not differ between REF and Bio21B breads, while the acids lactic, acetic, phenyllactic, 4-OH-phenyllactic and indole-3-lactic were present only in Bio21B breads. Moreover, the presence of several umami (uridine monophosphate, inosine monophosphate, adenosine, and guanosine) and kokumi (γ-l-glutamyl-l-valine) taste-related molecules was ascertained both in REF and in Bio21B breads. Therefore, a possible role of the acidic molecules in compensating the negative perception of salt reduction can be hypothesized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Identification of sensory attributes, instrumental and chemical measurements important for consumer acceptability of grilled lamb Longissimus lumborum.

    PubMed

    Oltra, O R; Farmer, L J; Gordon, A W; Moss, B W; Birnie, J; Devlin, D J; Tolland, E L C; Tollerton, I J; Beattie, A M; Kennedy, J T; Farrell, D

    2015-02-01

    In this study, important eating quality attributes that influence consumer liking for grilled lamb loin have been identified using preference mapping techniques. The eating quality attributes identified as driving the consumer liking of lamb loin steaks were “tenderness”, “sweet flavour”, “meaty aftertaste”, “roast lamb flavour” and “roast lamb aftertaste”. In contrast, the texture attribute “rubbery” and the flavour attributes “bitter flavour” and "bitter aftertaste" had a negative influence on consumer perceptions. Associations were observed between eating quality and a number of instrumental and chemical measurements. Warner Bratzler Shear Force showed an association with “rubbery” texture and a negative association with “tenderness” and consumer liking scores. The compounds, glucose, glucose-6-phosphate, inosine, inosine monophosphate and adenosine monophosphate were associated with the attributes, “sweet flavour”,“meaty aftertaste”, “roast lamb flavour”, “roast lamb aftertaste” and with consumer scores for liking of lamb which is probably caused by the role some of these compounds play as precursors of flavour and as taste compounds.

  10. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy.

    PubMed

    Michalakis, Stylianos; Becirovic, Elvir; Biel, Martin

    2018-03-07

    The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca 2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.

  11. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy

    PubMed Central

    Biel, Martin

    2018-01-01

    The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application. PMID:29518895

  12. Alpha 1 adrenergic receptor mediated polyphosphoinositide breakdown in DDT1-MF2 cells. Lack of evidence of desensitization after prolonged exposure to epinephrine.

    PubMed

    Rosenbaum, J S; Azhar, S; Hoffman, B B

    1987-12-15

    The DDT1-MF2 cell line is a transformed smooth muscle cell line which is known to possess both alpha 1 and beta 2 adrenergic receptors. We have utilized these cells to compare the effects of epinephrine pretreatment on the functional capabilities of these two different adrenergic receptors. Pretreatment of the cells grown in suspension with 10(-7) M epinephrine for 6 hr resulted in desensitization of beta receptor stimulated cyclic AMP accumulation. The maximal response to isoproterenol was decreased to 46 +/- 6% of the value in controls (P less than 0.05); there was also a decrease in the sensitivity of the cells to isoproterenol (log EC50 = -6.65 +/- 0.22 vs -7.26 +/- 0.11 in controls, P less than 0.05). Also, there was a decrease in the number of beta receptors from 257 +/- 29 to 163 +/- 22 fmol/mg protein. In contrast, pretreatment with 10(-6) M epinephrine for 6 hr failed to induce a loss of sensitivity in the ability of the alpha 1 receptor agonist phenylephrine to stimulate inositol triphosphate accumulation (log EC50 = -5.59 +/- 0.18 vs -5.42 +/- 0.44 in control cells). A 2-fold increase in basal inositol monophosphate accumulation was observed after epinephrine pretreatment (P less than 0.05); however, there was no change in maximal phenylephrine-stimulated inositol monophosphate accumulation in these cells. There was a small decrease in the alpha 1 receptor number after epinephrine pretreatment (Bmax = 457 +/- 89 fmol/mg protein vs 540 +/- 94 in control cells, P less than 0.05). In contrast to epinephrine pretreatment, pretreatment of cells in suspension with 10(-7) M 12-O-tetradecanoylphorbol-13-acetate (TPA) for 15 min resulted in a nearly complete blunting in the ability of both norepinephrine and phenylephrine to stimulate inositol phosphate accumulation: after norepinephrine stimulation, 774 +/- 34 dpm in TPA-pretreated cells vs 2590 +/- 10 in control cells; inositol monophosphate accumulation after phenylephrine stimulation 576 +/- 25 dpm in TPA-pretreated cells vs 1660 +/- 27 in control cells. Basal levels of inositol monophosphate remained unchanged at 544 +/- 28 dpm vs 505 +/- 31 in TPA-pretreated cells compared to control cells. These data indicate that protein kinase C may exert a negative feedback control on the alpha 1 receptor in these cells and that direct activation of protein kinase C by phorbol esters may have a different effect on the alpha 1 adrenergic receptor system in DDT1-MF2 cells than does prolonged exposure to epinephrine.

  13. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    PubMed

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  14. Variation in the excitability of developed D. discoideum cells as a function of agar concentration in the substrate

    NASA Astrophysics Data System (ADS)

    Oikawa, Noriko; Bae, Albert; Amselem, Gabriel; Bodenschatz, Eberhard

    2010-03-01

    In the absence of nutrients, Dictyostelium discoideum cells enter a developmental cycle--they signal each other, aggregate, and ultimately form fruiting bodies. During the signaling stage, the cells relay waves of cyclic adenosine 3',5' monophosphate (cAMP). We observed a transition from spiral to circular patterns in the signaling wave, depending on the agar concentration of the substrate. In this talk we will present the changes in the times for the onset of signaling and synchronization versus agar concentration, as measured by spectral entropy. We also will discuss the origin of these effects.

  15. Natural-abundance 17O NMR spectra of some inorganic and biologically important phosphates

    NASA Astrophysics Data System (ADS)

    Gerothanassis, Ioannis P.; Sheppard, Norman

    A number of optimization techniques were employed to obtain 17O NMR spectra at natural abundance for a variety of inorganic and orgnic phosphates and polyphosphates. 17O chemical shifts and some JPO coupling constants are reported for the orthophosphate series of ions from H 3PO 4 to PO 43-, the pyrophosphate ion, P 2O 74-, the linear tripolyphosphate ion, P 3O 105-, and the cyclic trimetaphosphate ion, P 3O 93-; and for disodium DL-α-glycerophosphate and monosodium adenosine monophosphate. 17O- depleted water enables much improved results to be obtained in acqueous solutions.

  16. Hypothermia in mouse is caused by adenosine A1 and A3 receptor agonists and AMP via three distinct mechanisms.

    PubMed

    Carlin, Jesse Lea; Jain, Shalini; Gizewski, Elizabeth; Wan, Tina C; Tosh, Dilip K; Xiao, Cuiying; Auchampach, John A; Jacobson, Kenneth A; Gavrilova, Oksana; Reitman, Marc L

    2017-03-01

    Small mammals have the ability to enter torpor, a hypothermic, hypometabolic state, allowing impressive energy conservation. Administration of adenosine or adenosine 5'-monophosphate (AMP) can trigger a hypothermic, torpor-like state. We investigated the mechanisms for hypothermia using telemetric monitoring of body temperature in wild type and receptor knock out (Adora1 -/- , Adora3 -/- ) mice. Confirming prior data, stimulation of the A 3 adenosine receptor (AR) induced hypothermia via peripheral mast cell degranulation, histamine release, and activation of central histamine H 1 receptors. In contrast, A 1 AR agonists and AMP both acted centrally to cause hypothermia. Commonly used, selective A 1 AR agonists, including N 6 -cyclopentyladenosine (CPA), N 6 -cyclohexyladenosine (CHA), and MRS5474, caused hypothermia via both A 1 AR and A 3 AR when given intraperitoneally. Intracerebroventricular dosing, low peripheral doses of Cl-ENBA [(±)-5'-chloro-5'-deoxy-N 6 -endo-norbornyladenosine], or using Adora3 -/- mice allowed selective stimulation of A 1 AR. AMP-stimulated hypothermia can occur independently of A 1 AR, A 3 AR, and mast cells. A 1 AR and A 3 AR agonists and AMP cause regulated hypothermia that was characterized by a drop in total energy expenditure, physical inactivity, and preference for cooler environmental temperatures, indicating a reduced body temperature set point. Neither A 1 AR nor A 3 AR was required for fasting-induced torpor. A 1 AR and A 3 AR agonists and AMP trigger regulated hypothermia via three distinct mechanisms. Published by Elsevier Ltd.

  17. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV)

    PubMed Central

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-01-01

    Zr(IV) can form phosphate and Zr(IV) (–PO32−–Zr4+–) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP. PMID:27754349

  18. Oral Adenosine-5'-triphosphate (ATP) Administration Increases Postexercise ATP Levels, Muscle Excitability, and Athletic Performance Following a Repeated Sprint Bout.

    PubMed

    Purpura, Martin; Rathmacher, John A; Sharp, Matthew H; Lowery, Ryan P; Shields, Kevin A; Partl, Jeremy M; Wilson, Jacob M; Jäger, Ralf

    2017-01-01

    Oral adenosine-5'-triphosphate (ATP) administration has failed to increase plasma ATP levels; however, chronic supplementation with ATP has shown to increase power, strength, lean body mass, and blood flow in trained athletes. The purpose of this study was to investigate the effects of ATP supplementation on postexercise ATP levels and on muscle activation and excitability and power following a repeated sprint bout. In a double-blind, placebo-controlled, randomized design, 42 healthy male individuals were given either 400 mg of ATP as disodium salt or placebo for 2 weeks prior to an exercise bout. During the exercise bout, muscle activation and excitability (ME, ratio of power output to muscle activation) and Wingate test peak power were measured during all sprints. ATP and metabolites were measured at baseline, after supplementation, and immediately following exercise. Oral ATP supplementation prevented a drop in ATP, adenosine-5'-diphosphate (ADP), and adenosine-5'-monophosphate (AMP) levels postexercise (p < 0.05). No group by time interaction was observed for muscle activation. Following the supplementation period, muscle excitability significantly decreased in later bouts 8, 9, and 10 in the placebo group (-30.5, -28.3, and -27.9%, respectively; p < 0.02), whereas ATP supplementation prevented the decline in later bouts. ATP significantly increased Wingate peak power in later bouts compared to baseline (bout 8: +18.3%, bout 10: +16.3%). Oral ATP administration prevents exercise-induced declines in ATP and its metabolite and enhances peak power and muscular excitability, which may be beneficial for sports requiring repeated high-intensity sprinting bouts.

  19. Self-Assembled Tb3+ Complex Probe for Quantitative Analysis of ATP during Its Enzymatic Hydrolysis via Time-Resolved Luminescence in Vitro and in Vivo.

    PubMed

    Jung, Sung Ho; Kim, Ka Young; Lee, Ji Ha; Moon, Cheol Joo; Han, Noh Soo; Park, Su-Jin; Kang, Dongmin; Song, Jae Kyu; Lee, Shim Sung; Choi, Myong Yong; Jaworski, Justyn; Jung, Jong Hwa

    2017-01-11

    To more accurately assess the pathways of biological systems, a probe is needed that may respond selectively to adenosine triphosphate (ATP) for both in vitro and in vivo detection modes. We have developed a luminescence probe that can provide real-time information on the extent of ATP, ADP, and AMP by virtue of the luminescence and luminescence lifetime observed from a supramolecular polymer based on a C 3 symmetrical terpyridine complex with Tb 3+ (S1-Tb). The probe shows remarkable selective luminescence enhancement in the presence of ATP compared to other phosphate-displaying nucleotides including adenosine diphosphate (ADP), adenosine monophosphate (AMP), guanosine triphosphate (GTP), thymidine triphosphate (TTP), H 2 PO 4 - (Pi), and pyrophosphate (PPi). In addition, the time-resolved luminescence lifetime and luminescence spectrum of S1-Tb could facilitate the quantitative measurement of the exact amount of ATP and similarly ADP and AMP within living cells. The time-resolved luminescence lifetime of S1-Tb could also be used to quantitatively monitor the amount of ATP, ADP, and AMP in vitro following the enzymatic hydrolysis of ATP. The long luminescence lifetime, which was observed into the millisecond range, makes this S1-Tb-based probe particularly attractive for monitoring biological ATP levels in vivo, because any short lifetime background fluorescence arising from the complex molecular environment may be easily eliminated.

  20. The impact of stunning methods on stress conditions and quality of silver carp (Hypophthalmichthys molitrix) fillets stored at 4°C during 72h postmortem.

    PubMed

    Zhang, Longteng; Li, Qian; Lyu, Jian; Kong, Chunli; Song, Sijia; Luo, Yongkang

    2017-02-01

    This study aimed to evaluate different stunning methods [percussion (T1), immersion in ice/water slurry (T2), and gill cut (T3)] on quality and stress conditions of silver carp (Hypophthalmichthys molitrix) fillets stored at 4°C in 72h postmortem. Rigor index (RI%), behavioral analysis, levels of lactic acid and muscle glycogen were measured for stress level evaluation. Meanwhile, sensory assessment, texture properties, cooking loss, adenosine triphosphate (ATP) related compounds, adenosine monophosphate deaminase (ADA) activity, and acid phosphatase (ACP) activity were analyzed. The least stress condition, significantly (P<0.05) higher initial glycogen content was observed in T1. Ice/water stunning reduced the rate of ATP degradation, reflected in the lowest K value during 72h. Aversive behaviors, significantly (P<0.05) higher cooking loss, hypoxanthine riboside (HxR) content, and lower sensory score were observed in T3. The results indicated that gill cut in aquatic processing industry should be avoided for inferior quality and aversive reactions during stunning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Characterization of a diadenosine tetraphosphate-receptor distinct from the ATP-purinoceptor in human tracheal gland cells.

    PubMed

    Saleh, A; Picher, M; Kammouni, W; Figarella, C; Merten, M D

    1999-11-12

    Human submucosal tracheal glands are now believed to play a major role in the physiopathology of cystic fibrosis, a genetic disease in which ATP is used as a therapeutic agent. However, actions of ATP on tracheal gland cells are not well known. ATP binds to P2 receptors and induced secretory leucocyte protease inhibitor (SLPI) secretion through formation of cyclic adenosine monophosphate and mobilization of intracellular [Ca(2+)]. Since diadenosine polyphosphates (ApnA) are also endogenous effectors of P2 receptors, we investigated their effects in a cell line (MM39) of human tracheal gland cells. Diadenosine tetraphosphates (Ap4A) induced significant stimulation (+50+/-12%) of SLPI secretion and to a similar extent to that of ATP (+65+/-10%). No significant effects were observed with diadenosine triphosphate (Ap3A), diadenosine pentaphosphate (Ap5A), ADP and 2-methylthio-adenosine triphosphate (2-MeS-ATP). Since Ap4A was weakly hydrolyzed (<2% of total), and the hydrolysis product was only inosine which is ineffective on cells, this Ap4A effect was not due to Ap4A hydrolysis in ATP and adenosine monophosphate (AMP). A mixture of Ap4A and ATP elicited only partial additive effects on SLPI secretion. ADP was shown to be a potent antagonist of ATP and Ap4A receptors, with IC(50)s of 0.8 and 2 microM, respectively. 2-MeS-ATP also showed antagonistic properties with IC(50)s of 20 and 30 microM for ATP- and Ap4A-receptors, respectively. Single cell intracellular calcium ([Ca(2+)](i)) measurements showed similar transient increases of [Ca(2+)](i) after ATP or Ap4A challenges. ATP desensitized the cell [Ca(2+)](i) responses to ATP and Ap4A, and Ap4A also desensitized the cell response to Ap4A. Nevertheless, Ap4A did not desensitize the cell [Ca(2+)](i) responses to ATP. In conclusion, both P2Y2-ATP-receptors and Ap4A-P2D-receptors seem to be present in tracheal gland cells. Ap4A may only bind to P2D-receptors whilst ATP may bind to both Ap4A- and ATP-receptors.

  2. High Endogenous Accumulation of ω-3 Polyunsaturated Fatty Acids Protect against Ischemia-Reperfusion Renal Injury through AMPK-Mediated Autophagy in Fat-1 Mice.

    PubMed

    Gwon, Do Hyeong; Hwang, Tae Woong; Ro, Ju-Ye; Kang, Yoon-Joong; Jeong, Jin Young; Kim, Do-Kyung; Lim, Kyu; Kim, Dong Woon; Choi, Dae Eun; Kim, Jwa-Jin

    2017-09-30

    Regulated autophagy is involved in the repair of renal ischemia-reperfusion injury (IRI). Fat-1 transgenic mice produce ω3-Polyunsaturated fatty acids (ω3-PUFAs) from ω6-Polyunsaturated fatty acids (ω6-PUFAs) without a dietary ω3-PUFAs supplement, leading to a high accumulation of omega-3 in various tissues. ω3-PUFAs show protective effects against various renal injuries and it has recently been reported that ω3-PUFAs regulate autophagy. We assessed whether ω3-PUFAs attenuated IR-induced acute kidney injury (AKI) and evaluated its associated mechanisms. C57Bl/6 background fat-1 mice and wild-type mice (wt) were divided into four groups: wt sham ( n = 10), fat-1 sham ( n = 10), wt IRI (reperfusion 35 min after clamping both the renal artery and vein; n = 15), and fat-1 IRI ( n = 15). Kidneys and blood were harvested 24 h after IRI and renal histological and molecular data were collected. The kidneys of fat-1 mice showed better renal cell survival, renal function, and pathological damage than those of wt mice after IRI. In addition, fat-1 mice showed less oxidative stress and autophagy impairment; greater amounts of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, Beclin-1, and Atg7; lower amounts of p62; and, higher levels of renal cathepsin D and ATP6E than wt kidneys. They also showed more adenosine monophosphate-activated protein kinase (AMPK) activation, which resulted in the inhibition of phosphorylation of the mammalian target of rapamycin (mTOR). Collectively, ω3-PUFAs in fat-1 mice contributed to AMPK mediated autophagy activation, leading to a renoprotective response.

  3. A Potential Role for Endoplasmic Reticulum Stress in Progesterone Deficiency in Obese Women.

    PubMed

    Takahashi, Nozomi; Harada, Miyuki; Hirota, Yasushi; Zhao, Lin; Azhary, Jerilee M K; Yoshino, Osamu; Izumi, Gentaro; Hirata, Tetsuya; Koga, Kaori; Wada-Hiraike, Osamu; Fujii, Tomoyuki; Osuga, Yutaka

    2017-01-01

    Obesity in reproductive-aged women is associated with a shorter luteal phase and lower progesterone levels. Lipid accumulation in follicles of obese women compromises endoplasmic reticulum (ER) function, activating ER stress in granulosa cells. We hypothesized that ER stress activation in granulosa-lutein cells (GLCs) would modulate progesterone production and contribute to obesity-associated progesterone deficiency. Pretreatment with an ER stress inducer, tunicamycin or thapsigargin, inhibited human chorionic gonadotropin (hCG)-stimulated progesterone production in cultured human GLCs. Pretreatment of human GLCs with tunicamycin inhibited hCG-stimulated expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) messenger RNAs (mRNAs) without affecting expression of cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), as determined by real-time quantitative polymerase chain reaction. Pretreatment with tunicamycin also inhibited hCG-stimulated expression of StAR protein and 3β-HSD enzyme activity in cultured human GLCs, as determined by Western blot analysis and an enzyme immunoassay, respectively, but did not affect hCG-induced intracellular 3',5'-cyclic adenosine monophosphate accumulation. Furthermore, tunicamycin attenuated hCG-induced protein kinase A and extracellular signal-regulated kinase activation, as determined by Western blot analysis. In vivo administration of tunicamycin to pregnant mare serum gonadotropin-treated immature mice prior to hCG treatment inhibited the hCG-stimulated increase in serum progesterone levels and hCG-induced expression of StAR and 3β-HSD mRNA in the ovary without affecting serum estradiol levels or the number of corpora lutea. Our findings indicate that ER stress in the follicles of obese women contributes to progesterone deficiency by inhibiting hCG-induced progesterone production in granulosa cells. Copyright © 2017 by the Endocrine Society.

  4. Dehydroepiandrosterone reduces accumulation of lipid droplets in primary chicken hepatocytes by biotransformation mediated via the cAMP/PKA-ERK1/2 signaling pathway.

    PubMed

    Li, Longlong; Ge, Chongyang; Wang, Dian; Yu, Lei; Zhao, Jinlong; Ma, Haitian

    2018-06-01

    Dehydroepiandrosterone (DHEA) is commonly used as a nutritional supplement to control fat deposition, but the mechanism of this action is poorly understood. In this study, we demonstrated that DHEA increased phosphorylation of AMP-activated protein kinase (p-AMPK). Elevated p-AMPK levels resulted in reduced expression of sterol regulatory element binding protein-1c, acetyl CoA carboxylase, fatty acid synthase and enhanced expression of peroxisome proliferators-activated receptor α and carnitine palmitoyl transferase-I, ultimately leading to the reduction of lipid droplet accumulation in primary chicken hepatocytes. We found that DHEA activates the cyclic adenosine 3', 5'-monophosphate/protein kinase A - extracellular signal-regulated kinase 1/2 (cAMP/PKA-ERK1/2) signaling pathway, which regulates the conversion of DHEA into testosterone and estradiol by increasing the 17β-hydroxysteroid dehydrogenase and aromatase protein expression. Importantly, the fat-reducing effects of DHEA are more closely associated with the conversion of DHEA into estradiol than with the action of DHEA itself as an active biomolecule, or to its alternative metabolite, testosterone. Taken together, our results indicate that DHEA is converted into active hormones through activation of the cAMP/PKA-ERK1/2 signaling pathway; the fat-reducing effects of DHEA are achieved through its conversion into estradiol, not testosterone, and not through direct action of DHEA itself, which led to the activation of the p-AMPK in primary chicken hepatocytes. These data provide novel insight into the mechanisms underlying the action of DHEA in preventing fat deposition, and suggest potential applications for DHEA treatment to control fat deposition or as an agent to treat disorders related to lipid metabolism in animals and humans. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Biased activity of soluble guanylyl cyclase: the Janus face of thymoquinone.

    PubMed

    Detremmerie, Charlotte; Vanhoutte, Paul M; Leung, Susan

    2017-07-01

    The natural compound thymoquinone, extracted from Nigella sativa (black cumin), is widely used in humans for its anti-oxidative properties. Thymoquinone is known for its acute endothelium-independent vasodilator effects in isolated rat aortae and pulmonary arteries, depending in part on activation of adenosine triphosphate-sensitive potassium channels and inhibition of voltage-dependent calcium channels. The compound also improves endothelial dysfunction in mesenteric arteries of ageing rodents and in aortae of rabbits treated with pyrogallol, by inhibiting oxidative stress. Serendipitously, thymoquinone was found to augment contractions in isolated arteries with endothelium of both rats and pigs. The endothelium-dependent augmentation it causes counterintuitively depends on biased activation of soluble guanylyl cyclase (sGC) producing inosine 3',5'-cyclic monophosphate (cyclic IMP) rather than guanosine 3',5'-cyclic monophosphate. This phenomenon shows a striking mechanistic similarity to the hypoxic augmentation previously observed in porcine coronary arteries. The cyclic IMP preferentially produced under thymoquinone exposure causes an increased contractility of arterial smooth muscle by interfering with calcium homeostasis. This brief review summarizes the vascular pharmacology of thymoquinone, focussing in particular on how the compound causes endothelium-dependent contractions by biasing the activity of sGC.

  6. Superchilled storage (-2.5 ± 1°C) extends the retention of taste-active and volatile compounds of yellow-feather chicken soup.

    PubMed

    Li, Xiao; Zhu, Jing; Qi, Jun; Wang, Peng; Xu, Xinglian; Zhou, Guanghong

    2018-06-01

    This work investigated the effects of refrigerated storage (RS: 4 ± 1°C) and superchilled storage (SS: -2.5 ± 1°C) on non-volatile and volatile compounds in chicken soup made from Chinese yellow-feather broilers. The results from total viable count (TVC) and coliform analysis showed that soups were safe for human consumption after a storage period of 42 days. SS resulted in a significantly (p < .05) higher content of free amino acids (umami and sweet taste) and 5'-nucleotides (inosine 5'-monophosphate and adenosine 5'-monophosphate) from 21 to 42 days compared to RS. Hexanal, (E)-2-decenal, (E,E)-2,4-decadienal and 2-pentyl furan were described as the primary odorants. SS showed significantly lower values (p < .05) for ketones and hydrocarbons, higher values for aldehydes and alcohols from 14 to 42 days, when compared to RS. The results suggest that SS improved the flavor retention of chicken soup after 21 days of storage and is a potential alternative treatment compared to RS. © 2018 Japanese Society of Animal Science.

  7. Guanosine-5'-monophosphate induces cell death in rat hippocampal slices via ionotropic glutamate receptors activation and glutamate uptake inhibition.

    PubMed

    Molz, Simone; Dal-Cim, Tharine; Tasca, Carla I

    2009-12-01

    Guanine derivatives modulate the glutamatergic system through displacement of binding of glutamate to its receptors acting as antagonist of glutamate receptors in moderate to high micromolar concentrations. Guanosine-5'-monophosphate (GMP) is shown to be neuroprotective against glutamate- or oxygen/glucose deprivation-induced neurotoxicity and also against NMDA-induced apoptosis in hippocampal slices. However, in this study we are showing that high extracellular GMP concentrations (5mM) reduced cell viability in hippocampal brain slices. The toxic effect of GMP was not blocked by dipyridamole, a nucleoside transport inhibitor, nor mimicked by guanosine, suggesting an extracellular mode of action to GMP which does not involve its hydrolysis to guanosine. GMP-dependent cell damage was not blocked by P1 purinergic receptor antagonists, neither altered by adenosine A(1) or A(2A) receptor agonists. The blockage of the ionotropic glutamate receptors AMPA or NMDA, but not KA or metabotropic glutamate receptors, reversed the toxicity induced by GMP. GMP (5mM) induced a decrease in glutamate uptake into hippocampal slices, which was reversed by dl-TBOA. Therefore, GMP-induced hippocampal cell damage involves activation of ionotropic glutamate receptors and inhibition of glutamate transporters activity.

  8. Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational considerations.

    PubMed

    Heckman, P R A; Blokland, A; Bollen, E P P; Prickaerts, J

    2018-04-01

    The corticostriatal and hippocampal circuits contribute to the neurobiological underpinnings of several neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease and schizophrenia. Based on biological function, these circuits can be clustered into motor circuits, associative/cognitive circuits and limbic circuits. Together, dysfunctions in these circuits produce the wide range of symptoms observed in related neuropsychiatric disorders. Intracellular signaling in these circuits is largely mediated through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway with an additional role for the cyclic guanosine monophosphate (cGMP)/ protein kinase G (PKG) pathway, both of which can be regulated by phosphodiesterase inhibitors (PDE inhibitors). Through their effects on cAMP response element-binding protein (CREB) and Dopamine- and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32), cyclic nucleotide pathways are involved in synaptic transmission, neuron excitability, neuroplasticity and neuroprotection. In this clinical review, we provide an overview of the current clinical status, discuss the general mechanism of action of PDE inhibitors in relation to the corticostriatal and hippocampal circuits and consider several translational challenges. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Cyclic AMP system in muscle tissue during prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Antipenko, Y. A.; Bubeyev, Y. A.; Korovkin, B. F.; Mikhaleva, N. P.

    1980-01-01

    Components of the cyclic Adenosine-cyclic-35-monophosphate (AMP) system in the muscle tissue of white rats were studied during 70-75 days of hypokinesia, created by placing the animals in small booths which restricted their movements, and during the readaptation period. In the initial period, cyclic AMP levels and the activities of phosphodiesterase and adenylate cyclase in muscle tissue were increased. The values for these indices were roughly equal for controls and experimental animals during the adaptation period, but on the 70th day of the experiment cAMP levels dropped, phosphodiesterase activity increased, and the stimulative effect of epinephrine on the activity of adenylate cyclase decreased. The indices under study normalized during the readaptation period.

  10. A cAMP-Regulated Chloride Channel in Lymphocytes that is Affected in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Chen, Jennifer H.; Schulman, Howard; Gardner, Phyllis

    1989-02-01

    A defect in regulation of a chloride channel appears to be the molecular basis for cystic fibrosis (CF), a common lethal genetic disease. It is shown here that a chloride channel with kinetic and regulatory properties similar to those described for secretory epithelial cells is present in both T and B lymphocyte cell lines. The regulation of the channels by adenosine 3',5'-monophosphate (cAMP)--dependent protein kinase in transformed B cells from CF patients is defective. Thus, lymphocytes may be an accessible source of CF tissue for study of this defect, for cloning of the chloride channel complex, and for diagnosis of the disease.

  11. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, C.; Matozaki, T.; Nagao, M.

    1987-09-01

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate (Gpp(NH)p)>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg/sup 2 +/. When pancreatic acini were treated withmore » 1 ..mu..g/ml pertussis toxin for 4 h, subsequent /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor.« less

  12. Prostaglandin E/sub 2/ localization and receptor identification within the developing murine secondary palate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.

    1986-01-01

    Transient elevations in murine secondary palatal adenosine 3',5'-monophosphate (cAMP) levels occur during palate ontogeny. Since palatal processes exposed to dibutyryl cAMP differentiate precociously, increases in palatal cAMP levels are of interest. Prostaglandin E/sub 2/ (PGE/sub 2/), which is synthesized by murine embryonic palate mesenchyme cells (MEPM), regulates cAMP levels in adult tissues via specific membrane bound receptors coupled to adenylate cyclase. Therefore, a PGE/sub 2/ receptor-adenylate cyclase systems was proposed in the developing murine secondary palate. Utilizing a radioligand binding assay, it was determined that murine palatal tissue on day 13 of gestation contained PGE/sub 2/ receptors that were saturable,more » of high affinity and low capacity. Specific (/sup 3/H)-PGE/sub 2/ binding was reversible by 30 min. The order of prostanoid binding affinity at specific PGE/sub 2/ binding sites was E/sub 2/ > F/sub 2//sub ..cap alpha../ > A/sub 2/ > E/sub 1/ = D/sub 2/ indicating specificity of the receptor for PGE/sub 2/. The ability of MEPM cells to respond to PGE/sub 2/ with dose-dependent accumulations of intracellular cAMP demonstrated the functional nature of these binding sites. Analysis of palatal PGE/sub 2/ receptor characteristics on days 12 and 14 of palate development indicated temporal alterations in receptor affinity and density during palate ontogeny.« less

  13. cAMP Signaling Regulates Synchronised Growth of Symbiotic Epichloë Fungi with the Host Grass Lolium perenne

    PubMed Central

    Voisey, Christine R.; Christensen, Michael T.; Johnson, Linda J.; Forester, Natasha T.; Gagic, Milan; Bryan, Gregory T.; Simpson, Wayne R.; Fleetwood, Damien J.; Card, Stuart D.; Koolaard, John P.; Maclean, Paul H.; Johnson, Richard D.

    2016-01-01

    The seed-transmitted fungal symbiont, Epichloë festucae, colonizes grasses by infecting host tissues as they form on the shoot apical meristem (SAM) of the seedling. How this fungus accommodates the complexities of plant development to successfully colonize the leaves and inflorescences is unclear. Since adenosine 3′, 5′-cyclic monophosphate (cAMP)-dependent signaling is often essential for host colonization by fungal pathogens, we disrupted the cAMP cascade by insertional mutagenesis of the E. festucae adenylate cyclase gene (acyA). Consistent with deletions of this gene in other fungi, acyA mutants had a slow radial growth rate in culture, and hyphae were convoluted and hyper-branched suggesting that fungal apical dominance had been disrupted. Nitro blue tetrazolium (NBT) staining of hyphae showed that cAMP disruption mutants were impaired in their ability to synthesize superoxide, indicating that cAMP signaling regulates accumulation of reactive oxygen species (ROS). Despite significant defects in hyphal growth and ROS production, E. festucae ΔacyA mutants were infectious and capable of forming symbiotic associations with grasses. Plants infected with E. festucae ΔacyA were marginally less robust than the wild-type (WT), however hyphae were hyper-branched, and leaf tissues heavily colonized, indicating that the tight regulation of hyphal growth normally observed in maturing leaves requires functional cAMP signaling. PMID:27833620

  14. A Citrus bergamia Extract Decreases Adipogenesis and Increases Lipolysis by Modulating PPAR Levels in Mesenchymal Stem Cells from Human Adipose Tissue

    PubMed Central

    Lo Furno, Debora; Avola, Rosanna; Bonina, Francesco; Mannino, Giuliana

    2016-01-01

    The aim of this research was to assess the impact of a well-characterized extract from Citrus bergamia juice on adipogenesis and/or lipolysis using mesenchymal stem cells from human adipose tissue as a cell model. To evaluate the effects on adipogenesis, some cell cultures were treated with adipogenic medium plus 10 or 100 μg/mL of extract. To determine the properties on lipolysis, additional mesenchymal stem cells were cultured with adipogenic medium for 14 days and after this time added with Citrus bergamia for further 14 days. To verify adipogenic differentiation, oil red O staining at 7, 14, 21, and 28 days was performed. Moreover, the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ), adipocytes fatty acid-binding protein (A-FABP), adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), monoglyceride lipase (MGL), 5′-adenosine monophosphate-activated protein kinase (AMPK)α1/2, and pAMPKα1/2 was evaluated by Western blot analysis and the release of glycerol by colorimetric assay. Citrus bergamia extract suppressed the accumulation of intracellular lipids in mesenchymal stem cells during adipogenic differentiation and promoted lipolysis by repressing the expression of adipogenic genes and activating lipolytic genes. Citrus bergamia extract could be a useful natural product for improving adipose mobilization in obesity-related disorders. PMID:27403151

  15. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis*

    PubMed Central

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E.; Rhee, Kyu Y.; Jacobs, William R.; Berney, Michael; Blanchard, John S.

    2016-01-01

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests that Mtb relies mainly on fatty acid catabolism in the host. However, Mtb also maintains a functional glycolytic pathway and its role in the cellular metabolism of Mtb has yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and the Mtb genome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show that pykA encodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion of pykA prevents Mtb growth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism in Mtb. PMID:26858255

  16. Tenebrio molitor Larvae Inhibit Adipogenesis through AMPK and MAPKs Signaling in 3T3-L1 Adipocytes and Obesity in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Seo, Minchul; Goo, Tae-Won; Chung, Mi Yeon; Baek, Minhee; Hwang, Jae-Sam; Kim, Mi-Ae; Yun, Eun-Young

    2017-01-01

    Despite the increasing interest in insect-based bioactive products, the biological activities of these products are rarely studied adequately. Larvae of Tenebrio molitor, the yellow mealworm, have been eaten as a traditional food and provide many health benefits. Therefore, we hypothesized that T. molitor larvae might influence adipogenesis and obesity-related disorders. In the present study, we investigated the anti-adipogenic and antiobesity effects of T. molitor larvae in vitro and in vivo. The lipid accumulation and triglyceride content in mature adipocytes was reduced significantly (up to 90%) upon exposure to an ethanol extract of T. molitor larvae, without a reduction in cell viability. Exposure also resulted in key adipogenic and lipogenic transcription factors. Additionally, in adipogenic differentiation medium the extract induced phosphorylation of adenosine monophosphate (AMP)-activated protein kinase and mitogen-activated protein kinases. Daily oral administration of T. molitor larvae powder to obese mice fed high-fat diet attenuated body weight gain. We also found that the powder efficiently reduced hepatic steatosis as well as aspartate and alanine transaminase enzyme levels in mice fed a high-fat diet. Our results suggest that T. molitor larvae extract has an antiobesity effect when administered as a food supplement and has potential as a therapeutic agent for obesity. PMID:28264489

  17. Tenebrio molitor Larvae Inhibit Adipogenesis through AMPK and MAPKs Signaling in 3T3-L1 Adipocytes and Obesity in High-Fat Diet-Induced Obese Mice.

    PubMed

    Seo, Minchul; Goo, Tae-Won; Chung, Mi Yeon; Baek, Minhee; Hwang, Jae-Sam; Kim, Mi-Ae; Yun, Eun-Young

    2017-02-28

    Despite the increasing interest in insect-based bioactive products, the biological activities of these products are rarely studied adequately. Larvae of Tenebrio molitor , the yellow mealworm, have been eaten as a traditional food and provide many health benefits. Therefore, we hypothesized that T. molitor larvae might influence adipogenesis and obesity-related disorders. In the present study, we investigated the anti-adipogenic and antiobesity effects of T. molitor larvae in vitro and in vivo. The lipid accumulation and triglyceride content in mature adipocytes was reduced significantly (up to 90%) upon exposure to an ethanol extract of T. molitor larvae, without a reduction in cell viability. Exposure also resulted in key adipogenic and lipogenic transcription factors. Additionally, in adipogenic differentiation medium the extract induced phosphorylation of adenosine monophosphate (AMP)-activated protein kinase and mitogen-activated protein kinases. Daily oral administration of T. molitor larvae powder to obese mice fed high-fat diet attenuated body weight gain. We also found that the powder efficiently reduced hepatic steatosis as well as aspartate and alanine transaminase enzyme levels in mice fed a high-fat diet. Our results suggest that T. molitor larvae extract has an antiobesity effect when administered as a food supplement and has potential as a therapeutic agent for obesity.

  18. Role of hindbrain adenosine 5'-monophosphate-activated protein kinase (AMPK) in hypothalamic AMPK and metabolic neuropeptide adaptation to recurring insulin-induced hypoglycemia in the male rat.

    PubMed

    Mandal, Santosh K; Shrestha, Prem K; Alenazi, Fahaad S H; Shakya, Manita; Alhamami, Hussain; Briski, Karen P

    2017-12-01

    Glucose counter-regulatory dysfunction correlates with impaired activation of the hypothalamic metabolic sensor adenosine 5'-monophosphate-activated protein kinase (AMPK). Hypothalamic AMPK is controlled by hindbrain energy status; we examined here whether hindbrain AMPK regulates hypothalamic AMPK and metabolic neurotransmitter maladaptation to recurring insulin-induced hypoglycemia (RIIH). Brain tissue was harvested after single versus serial insulin (I) dosing for Western blot analysis of AMPK, phospho-AMPK (pAMPK), and relevant biosynthetic enzyme/neuropeptide expression in micro-punch dissected arcuate (ARH), ventromedial (VMH), dorsomedial (DMH) nuclei and lateral hypothalamic area (LHA) tissue. The AMPK inhibitor compound c (Cc) or vehicle was administered to the caudal fourth ventricle ahead of antecedent I injections. RIIH caused site-specific elevation (ARH, VMH, LHA) or reduction (DMH) of total AMPK protein versus acute hypoglycemia; Cc respectively exacerbated or attenuated this response in the ARH and VMH. Hindbrain AMPK correspondingly inhibited or stimulated LHA and DMH pAMPK expression during RIIH. RIIH elicited Cc-reversible augmentation of VMH glutamate decarboxylase profiles, but stimulated (ARH pro-opiomelanocortin; LHA orexin-A) or decreased (VMH nitric oxide synthase) other metabolic neurotransmitters without hindbrain sensor involvement. Results demonstrate acclimated up-regulation of total AMPK protein expression in multiple hypothalamic loci during RIIH, and document hindbrain sensor contribution to amplification of this protein profile in the VMH. Concurrent lack of net change in ARH and VMH tissue pAMPK implies adaptive reductions in local sensor activity, which may/may not reflect positive gain in energy state. It remains unclear if 'glucose-excited' VMH GABAergic and/or ARH pro-opiomelanocortin neurons exhibit AMPK habituation to RIIH, and whether diminished sensor activation in these and other mediobasal hypothalamic neurotransmitter populations may contribute to HAAF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia].

    PubMed

    Yang, Yang; Wang, Wen-Sheng; Qiu, Yuan; Sun, Li-Hua; Yang, Hua

    2013-05-01

    To investigate the role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia. Intestinal epithelial barrier was established by Caco-2 monolayers. Cells were divided into four groups: normoxia (Nx), normoxia plus Forskolin(Nx+FSK), hypoxia(Hx), hypoxia plus SQ22536(Hx+SQ22536). cAMP concentrations of different groups were assessed by cAMP enzyme immunoassay kit. RT-PCR and Western blotting were used to detect the mRNA and protein expressions of claudin-1 and occludin under normoxic and hypoxic condition. Caco-2 monolayers were grown on Millicell filters, and transepithelial electrical resistance(TER) was measured using a Millipore electric resistance system. The concentration of cAMP under hypoxic conditions(Hx group) was higher compared with Nx group [(6.30±0.50) pmol/L vs. (2.38±0.18) pmol/L, P<0.01]. At the same time, both mRNA and protein expressions of claudin-1 and occluding were lower in Hx group than those in Nx group(all P<0.05). TER decreased by 76.30±0.64(P<0.01). When the monolayers were exposed to hypoxia plus SQ22536 (Hx+SQ22536 group), the concentration of cAMP was(2.12±0.23) pmol/L, which was lower than that under hypoxic conditions(Hx group, P<0.01). Both mRNA and protein expressions of claudin-1 and occludin were higher compared to Hx group (all P<0.01). TER increased by 32.96±2.16 (P<0.05). When Caco-2 cells are exposed to hypoxia, barrier function, claudin-1 and occludin expression are diminished in parallel with a high level of intracellular cAMP compared with the normoxic condition. Inhibition of the intracellular cAMP level under hypoxia can maintain the intestinal epithelial function through regulating the claudin-1 and occludin expression and attenuate the permeability of intestinal mucosa.

  20. [Alteration of metabolic characteristics on the masseter muscle fiber of unilateral chewing rats and its adenosine monophosphate activated protein kinase regulatory mechanism].

    PubMed

    Andi, Shi; Lin, Zeng; Jing, Liu

    2017-06-01

    This study aims to determine the influence of unilateral chewing on metabolic characteristics of masseter muscle fibers in rats and the regulatory effect of an adenosine monophosphate activated protein kinase (AMPK) signal pathway on metabolism. Rats were submitted to exodontia of all the right maxillary molars and divided into 2, 4, 6, and 8 weeks groups, and corresponding control groups were set as well. Sections were stained by nicotine adenine dinucleotide tetrazolim reductase(NADH-TRase) to demonstrate the types, proportion, and density of masseter muscle fibers. AMPKα1 and p-AMPK(Thr172) levels in bilateral masseter muscles were detected by Western blot. In the 2-week group, the percentage of dark fibers augmented in the ipsilateral side, whereas the percentage of intermediary fibers in the contralateral side was increased accompanied by a decrease of light fibers, compared with the control group (P<0.05). The percentage of dark fibers was increased in the bilateral sides, whereas the percentage of dark fiber in the ipsilateral sides surpassed that of the contralateral sides in the 4, 6, and 8-week groups. The percentage of intermediary fibers was decreased in the bilateral sides in the 6 and 8-week groups (P<0.05). The percentage of light fibers was reduced in the ipsilateral sides in the 8-week group, whereas no alteration was observed in contralateral sides (P>0.05). In the ipsilateral sides, p-AMPK (Thr172)/AMPKα1 levels were increased in the 2 and 4-week groups (P<0.05), whereas no change was observed in the contralateral sides in either group (P>0.05). Unilateral chewing increases the oxidative metabolic ability in bilateral masseter muscle fibers especially in the non-working side accompanied with change of muscle fiber types. The improvement of aerobic metabolism ability is related to the AMPK signal pathway.
.

  1. Relationships of methacholine and adenosine 5'-monophosphate (AMP) responsiveness to the postbronchodilator FEV₁/FVC ratio in children with asthma.

    PubMed

    Suh, Dong In; Choi, Sun Hee; Lee, Ju Kyung; Kim, Jin-Tack; Koh, Young Yull

    2011-05-01

    Airway remodeling has been assumed to cause bronchial hyperresponsiveness (BHR). A low postbronchodilator FEV₁/FVC ratio has been suggested to be a functional surrogate marker of airway remodeling in asthma. BHR is commonly assessed by bronchial challenges using direct or indirect stimuli. The aim of this study was to compare BHR to methacholine and adenosine 5'-monophosphate (AMP) with regard to their relationship with a marker of airway remodeling in children with asthma. Methacholine and AMP challenge tests were performed in 129 children with asthma, aged 12 years, and a provocative concentration causing a 20% fall in FEV₁ (PC₂₀) was calculated for each challenge. All subjects also underwent pre- and postbronchodilator spirometry. A postbronchodilator FEV₁/FVC ratio below the lower limits of normal was used as a marker of airway remodeling. A low postbronchodilator FEV₁/FVC ratio was found in 17 subjects (13.2%). These subjects had a significantly lower methacholine PC₂₀ (geometric mean: 0.63 mg/mL, range of 1 SD: 0.17-2.29) than those (n = 112) with a normal postbronchodilator FEV₁/FVC ratio (2.42 mg/mL, 0.57-10.32, p = .000), whereas AMP PC₂₀ was similar between the two groups (22.1 mg/mL, 3.9-125.9 vs. 27.7 mg/mL, 4.2-183.5, p = .231). In the whole group of subjects, methacholine PC₂₀, but not AMP PC₂₀, correlated significantly with the postbronchodilator FEV₁/FVC ratio (r = 0.340, p = .000, and r = 0.056, p = .526, respectively). Our results provide evidence, though indirect, that BHR to methacholine is related to airway remodeling in children with asthma and suggest that BHR to methacholine may be a better marker of airway remodeling than BHR to AMP.

  2. Difference in protective effects of GIP and GLP-1 on endothelial cells according to cyclic adenosine monophosphate response.

    PubMed

    Lim, Dong-Mee; Park, Keun-Young; Hwang, Won-Min; Kim, Ju-Young; Kim, Byung-Joon

    2017-05-01

    Receptors for glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are present in vascular endothelial cells. Previous studies investigating euglycemic status have demonstrated that GIP is directly involved in the physiology of blood vessels by controlling the blood flow rate of portal veins and that GLP-1 has a protective effect on blood vessels by acting on endothelial cells. However, to the best of our knowledge, the effects of GIP and GLP-1 on endothelial cells in patients with hyperglycemia remain unknown. Therefore, the present study investigated whether the effect of the incretin hormones GLP-1 and GIP differed with regards to the reversal of endothelial cell dysfunction caused by hyperglycemia. The production of nitric oxide (NO) was measured using the Griess reagent system kit and the expression of cyclic adenosine monophosphate (cAMP) in the cell was measured at a wavelength of 405 nm with the ELISA reader using the cyclic AMP EIA kit. Exposure of human umbilical vein endothelial cells (HUVEC) to a high glucose concentration decreased NO and endothelial nitric oxide synthase (eNOS) levels but increased inducible NOS (iNOS) levels. However, when HUVECs were pretreated with GLP-1, a reduction of iNOS expression was observed and the expression of eNOS and NO were increased, as opposed to pretreatment with GIP. The results differed according to the response of cAMP, the second messenger of incretin hormones: The GIP pretreatment group did not exhibit an increase in cAMP levels while the GLP-1 pretreatment group did. The results of the present study provide evidence that GLP-1, but not GIP, has a protective effect on endothelial function associated with cardiovascular disease, as it is associated with increased eNOS expression and the levels of NO. This effect may be due to an increase in the cAMP concentration during hyperglycemic events.

  3. Effect of bucladesine, pentoxifylline, and H-89 as cyclic adenosine monophosphate analog, phosphodiesterase, and protein kinase A inhibitor on acute pain.

    PubMed

    Salehi, Forouz; Hosseini-Zare, Mahshid S; Aghajani, Haleh; Seyedi, Seyedeh Yalda; Hosseini-Zare, Maryam S; Sharifzadeh, Mohammad

    2017-08-01

    The aim of this study was to determine the effects of cyclic adenosine monophosphate (cAMP) and its dependent pathway on thermal nociception in a mouse model of acute pain. Here, we studied the effect of H-89 (protein kinase A inhibitor), bucladesine (Db-cAMP) (membrane-permeable analog of cAMP), and pentoxifylline (PTX; nonspecific phosphodiesterase (PDE) inhibitor) on pain sensation. Different doses of H-89 (0.05, 0.1, and 0.5 mg/100 g), PTX (5, 10, and 20 mg/100 g), and Db-cAMP (50, 100, and 300 nm/mouse) were administered intraperitoneally (I.p.) 15 min before a tail-flick test. In combination groups, we injected the first and the second compounds 30 and 15 min before the tail-flick test, respectively. I.p. administration of H-89 and PTX significantly decreased the thermal-induced pain sensation in their low applied doses. Db-cAMP, however, decreased the pain sensation in a dose-dependent manner. The highest applied dose of H-89 (0.5 mg/100 g) attenuated the antinociceptive effect of Db-cAMP in doses of 50 and 100 nm/mouse. Surprisingly, Db-cAMP decreased the antinociceptive effect of the lowest dose of H-89 (0.05 mg/100 g). All applied doses of PTX reduced the effect of 0.05 mg/100 g H-89 on pain sensation; however, the highest dose of H-89 compromised the antinociceptive effect of 20 mg/100 g dose of PTX. Co-administration of Db-cAMP and PTX increased the antinociceptive effect of each compound on thermal-induced pain. In conclusion, PTX, H-89, and Db-cAMP affect the thermal-induced pain by probably interacting with intracellular cAMP and cGMP signaling pathways and cyclic nucleotide-dependent protein kinases. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  4. Adenosine monophosphate is not superior to histamine for bronchial provocation test for assessment of asthma control and symptoms.

    PubMed

    Wu, Fan; Guan, Wei-Jie; Gao, Yi; An, Jia-Ying; Xie, Yan-Qing; Liu, Wen-Ting; Yu, Xin-Xin; Zheng, Jin-Ping

    2017-07-01

    Adenosine monophosphate (AMP) may reflect airway inflammation and hyperresponsiveness, but relationship between AMP and histamine (His, a conventional stimulus) bronchial provocation test (BPT) in asthma is not fully elucidated. To compare both BPTs and determine their utility in reflecting changes of asthmatic symptoms. BPTs were performed in a cross-over fashion, at 2-4 day intervals. Cumulative doses eliciting 20% FEV 1 fall (PD 20 FEV 1 ), diagnostic performance and adverse events (AEs) were compared. Patients with PD 20 FEV 1 lower than geometric mean were defined as responders, otherwise poor responders. Patients with uncontrolled and partly controlled asthma, who maintained their original inhaled corticosteroids therapy, underwent reassessment of airway responsiveness and asthmatic symptoms 3 and 6 months after. Nineteen uncontrolled, 22 partly controlled and 19 controlled asthmatic patients and 24 healthy subjects were recruited. Lower PD 20 FEV 1 geometric means were associated with poorer asthma control in His-BPT (0.424 μmol vs 1.684 μmol vs 3.757 μmol), but not AMP-BPT (11.810 μmol vs 7.781 μmol vs 10.220 μmol). Both BPTs yielded similar overall diagnostic performance in asthma (area under curve: 0.842 in AMP-BPT vs 0.850 in His-BPT). AEs, including wheezing and tachypnea, were similar and mild. Ten patients with uncontrolled and 10 partly controlled asthma were followed-up. At months 3 and 6, we documented an increase in PD 20 FEV 1 -AMP and PD 20 FEV 1 -His, which did not correlate with reduction asthmatic symptom scores. This overall applied in responders and poor responders of AMP-BPT and His-BPT. Despite higher screening capacity of well-controlled asthma, AMP-BPT confers similar diagnostic performance and safety with His-BPT. AMP-BPT might not preferentially reflect changes asthmatic symptoms. © 2015 John Wiley & Sons Ltd.

  5. Simultaneous interaction with base and phosphate moieties modulates the phosphodiester cleavage of dinucleoside 3',5'-monophosphates by dinuclear Zn2+ complexes of di(azacrown) ligands.

    PubMed

    Wang, Qi; Lönnberg, Harri

    2006-08-23

    Five dinucleating ligands (1-5) and one trinucleating ligand (6) incorporating 1,5,9-triazacyclododecan-3-yloxy groups attached to an aromatic scaffold have been synthesized. The ability of the Zn(2+) complexes of these ligands to promote the transesterification of dinucleoside 3',5'-monophosphates to a 2',3'-cyclic phosphate derived from the 3'-linked nucleoside by release of the 5'-linked nucleoside has been studied over a narrow pH range, from pH 5.8 to 7.2, at 90 degrees C. The dinuclear complexes show marked base moiety selectivity. Among the four dinucleotide 3',5'-phosphates studied, viz. adenylyl-3',5'-adenosine (ApA), adenylyl-3',5'-uridine (ApU), uridylyl-3',5'-adenosine (UpA), and uridylyl-3',5'-uridine (UpU), the dimers containing one uracil base (ApU and UpA) are cleaved up to 2 orders of magnitude more readily than those containing either two uracil bases (UpU) or two adenine bases (ApA). The trinuclear complex (6), however, cleaves UpU as readily as ApU and UpA, while the cleavage of ApA remains slow. UV spectrophotometric and (1)H NMR spectroscopic studies with one of the dinucleating ligands (3) verify binding to the bases of UpU and ApU at less than millimolar concentrations, while no interaction with the base moieties of ApA is observed. With ApU and UpA, one of the Zn(2+)-azacrown moieties in all likelihood anchors the cleaving agent to the uracil base of the substrate, while the other azacrown moiety serves as a catalyst for the phosphodiester transesterification. With UpU, two azacrown moieties are engaged in the base moiety binding. The catalytic activity is, hence, lost, but it can be restored by addition of a third azacrown group on the cleaving agent.

  6. Early glycogen synthase kinase-3β and protein phosphatase 2A independent tau dephosphorylation during global brain ischaemia and reperfusion following cardiac arrest and the role of the adenosine monophosphate kinase pathway.

    PubMed

    Majd, Shohreh; Power, John H T; Koblar, Simon A; Grantham, Hugh J M

    2016-08-01

    Abnormal tau phosphorylation (p-tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p-tau is controlled by Glycogen Synthase Kinase (GSK)-3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p-tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser(396) and Ser(262) after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK-3β sensitive but AMPK insensitive residues, Ser(202) /Thr(205) (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK-3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p-AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p-tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK-3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Biobehavioral modulation of the exosome transcriptome in ovarian carcinoma.

    PubMed

    Lutgendorf, Susan K; Thaker, Premal H; Arevalo, Jesusa M; Goodheart, Michael J; Slavich, George M; Sood, Anil K; Cole, Steve W

    2018-02-01

    Social factors in the patient macroenvironment have been shown to influence molecular events in the tumor microenvironment and thereby influence cancer progression. However, biomarkers providing a window into the longitudinal effects of biobehavioral factors on tumor biology over time are lacking. Exosome analysis is a novel strategy for in vivo monitoring of dynamic changes in tumor cells. This study examined exosomal profiles from patients with low or high levels of social support for epithelial-mesenchymal transition (EMT) polarization and gene expression related to inflammation and β-adrenergic signaling. Exosomes were isolated from plasma sampled from a series of 40 women before primary surgical resection of advanced-stage, high-grade ovarian carcinoma. Samples were selected for analysis on the basis of extremes of low and high levels of social support. After exosomal isolation and RNA extraction, a microarray analysis of the transcriptome was performed. Primary analyses identified significant upregulation of 67 mesenchymal-characteristic gene transcripts and downregulation of 63 epithelial-characteristic transcripts in patients with low social support; this demonstrated increased EMT polarization (P = .0002). Secondary analyses using promoter sequence bioinformatics supported a priori hypotheses linking low social support to 1) increased activity of cyclic adenosine monophosphate response element binding protein (CREB)/activating transcription factor (ATF) family transcription factors that mediate the β-adrenergic response to catecholamines via the cyclic adenosine monophosphate/protein kinase A signaling pathway (mean fold change for CREB: 2.24 ± 0.65; P = .0019; mean fold change for ATF: 2.00 ± 0.55; P = .0049) and 2) increased activity of the proinflammatory nuclear factor κB/Rel family of transcription factors (mean fold change: 2.10 ± 0.70; P = .0109). These findings suggest the possibility of leveraging exosomes as a noninvasive assessment of biobehavioral factors to help to direct personalized treatment approaches. Cancer 2018;124:580-6. © 2017 American Cancer Society. © 2017 American Cancer Society.

  8. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner.

    PubMed

    Gurd, Brendon J; Holloway, Graham P; Yoshida, Yuko; Bonen, Arend

    2012-05-01

    In selected cell lines, it appears (a) that metabolic stressors induce the translocation of SIRT3 from the nucleus to mitochondria and (b) that SIRT3 may contribute to the regulation of mitochondrial biogenesis and/or fatty acid utilization. We have examined in mammalian muscle (1) the association between SIRT3 protein content and muscle oxidative capacity and mitochondrial fatty acid oxidation, (2) the subcellular location of SIRT3, (3) whether exercise induces the translocation of SIRT3 from the nucleus to the mitochondria, and (4) the response of SIRT3 protein to stressors known to induce mitochondrial biogenesis (chronic muscle stimulation and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside administration). SIRT3 protein displayed hierarchical expression based on oxidative potential of muscle tissues (heart > red > white). In contrast to studies in some cell lines, metabolic stress (exercise) did not induce the translocation of SIRT3 from the nucleus to mitochondria, as SIRT3 was only present in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria, not in the nucleus. Chronic stimulation increased muscle mitochondrial content and SIRT3 protein in SS (+33%) and IMF (+27%) mitochondria (P < .05). In contrast, chronic 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside administration, while inducing mitochondrial biogenesis, did not alter SS or IMF mitochondrial SIRT3 protein content. These studies have shown that, in muscle, SIRT3 (a) scales with muscle oxidative capacity and with enzymes regulating fatty acid oxidation, (b) in resting muscle is localized to SS and IMF mitochondria and not nuclei, (c) in contracting muscle is not acutely translocated to mitochondria, and (d) is upregulated with chronic stimulation in an adenosine monophosphate-activated protein kinase-independent manner. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. SIRT1/Adenosine Monophosphate-Activated Protein Kinase α Signaling Enhances Macrophage Polarization to an Anti-inflammatory Phenotype in Rheumatoid Arthritis

    PubMed Central

    Park, So Youn; Lee, Sung Won; Lee, Sang Yeob; Hong, Ki Whan; Bae, Sun Sik; Kim, Koanhoi; Kim, Chi Dae

    2017-01-01

    Macrophages are crucially involved in the pathogenesis of rheumatoid arthritis (RA). Macrophages of the M1 phenotype act as pro-inflammatory mediators in synovium, whereas those of the M2 phenotype suppress inflammation and promote tissue repair. SIRT1 is a class 3 histone deacetylase with anti-inflammatory characteristics. However, the role played by SIRT1 in macrophage polarization has not been defined in RA. We investigated whether SIRT1 exerts anti-inflammatory effects by modulating M1/M2 polarization in macrophages from RA patients. In this study, SIRT1 activation promoted the phosphorylation of an adenosine monophosphate-activated protein kinase (AMPK) α/acetyl-CoA carboxylase in macrophages exposed to interleukin (IL)-4, and that this resulted in the expressions of M2 genes, including MDC, FcεRII, MrC1, and IL-10, at high levels. Furthermore, these expressions were inhibited by sirtinol (an inhibitor of SIRT1) and compound C (an inhibitor of AMPK). Moreover, SIRT1 activation downregulated LPS/interferon γ-mediated NF-κB activity by inhibiting p65 acetylation and the expression of M1 genes, such as CCL2, iNOS, IL-12 p35, and IL-12 p40. Macrophages from SIRT1 transgenic (Tg)-mice exhibited enhanced polarization of M2 phenotype macrophages and reduced polarization of M1 phenotype macrophages. In line with these observations, SIRT1-Tg mice showed less histological signs of arthritis, that is, lower TNFα and IL-1β expressions and less severe arthritis in the knee joints, compared to wild-type mice. Taken together, the study shows activation of SIRT1/AMPKα signaling exerts anti-inflammatory activities by regulating M1/M2 polarization, and thereby reduces inflammatory responses in RA. Furthermore, it suggests that SIRT1 signaling be viewed as a therapeutic target in RA. PMID:28966618

  10. Impact of Hyperpolarization-activated, Cyclic Nucleotide-gated Cation Channel Type 2 for the Xenon-mediated Anesthetic Effect: Evidence from In Vitro and In Vivo Experiments.

    PubMed

    Mattusch, Corinna; Kratzer, Stephan; Buerge, Martina; Kreuzer, Matthias; Engel, Tatiana; Kopp, Claudia; Biel, Martin; Hammelmann, Verena; Ying, Shui-Wang; Goldstein, Peter A; Kochs, Eberhard; Haseneder, Rainer; Rammes, Gerhard

    2015-05-01

    The thalamus is thought to be crucially involved in the anesthetic state. Here, we investigated the effect of the inhaled anesthetic xenon on stimulus-evoked thalamocortical network activity and on excitability of thalamocortical neurons. Because hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are key regulators of neuronal excitability in the thalamus, the effect of xenon on HCN channels was examined. The effects of xenon on thalamocortical network activity were investigated in acutely prepared brain slices from adult wild-type and HCN2 knockout mice by means of voltage-sensitive dye imaging. The influence of xenon on single-cell excitability in brain slices was investigated using the whole-cell patch-clamp technique. Effects of xenon on HCN channels were verified in human embryonic kidney cells expressing HCN2 channels. Xenon concentration-dependently diminished thalamocortical signal propagation. In neurons, xenon reduced HCN channel-mediated Ih current amplitude by 33.4 ± 12.2% (at -133 mV; n = 7; P = 0.041) and caused a left-shift in the voltage of half-maximum activation (V1/2) from -98.8 ± 1.6 to -108.0 ± 4.2 mV (n = 8; P = 0.035). Similar effects were seen in human embryonic kidney cells. The impairment of HCN channel function was negligible when intracellular cyclic adenosine monophosphate level was increased. Using HCN2 mice, we could demonstrate that xenon did neither attenuate in vitro thalamocortical signal propagation nor did it show sedating effects in vivo. Here, we clearly showed that xenon impairs HCN2 channel function, and this impairment is dependent on intracellular cyclic adenosine monophosphate levels. We provide evidence that this effect reduces thalamocortical signal propagation and probably contributes to the hypnotic properties of xenon.

  11. Dan-gua fang improves glycolipid metabolic disorders by promoting hepatic adenosine 5'-monophosphate activated protein kinase expression in diabetic Goto-Kakizaki rats.

    PubMed

    Lan, Yuan-long; Huang, Su-ping; Heng, Xian-pei; Chen, Ling; Li, Peng-hui; Wu, Jing; Yang, Liu-qing; Pan, Xu-dong; Lin, Tong; Cheng, Xin-ling; Lin, Qing; Chen, Si-xin

    2015-03-01

    To investigate the effect of Dan-gua Fang on adenosine 5'-monophosphate (AMP) activated protein kinase (AMPK) α expression in liver and subsequent improvement of glucose and lipid metabolism. Forty 13-week-old diabetic Goto-Kakizaki (GK) rats were randomly divided into model, Dan-gua Fang, metformin and simvastatin groups (n=10 for each), and fed high-fat diet ad libitum. Ten Wistar rats were used as normal group and fed normal diet. After 24 weeks, liver expression of AMPKα mRNA was assessed by real-time PCR. AMPKα and phospho-AMPKα protein expression in liver was evaluated by Western blot. Liver histomorphology was carried out after hematoxylin-eosin staining, and blood glucose (BG), glycosylated hemoglobin A1c (HbA1c), food intake and body weight recorded. Similar AMPKα mRNA levels were found in the Dan-gua Fang group and normal group, slightly higher than the values obtained for the remaining groups (P<0.05). AMPKα protein expression in the Dan-gua Fang group animals was similar to other diabetic rats, whereas phospho-AMPKα (Thr-172) protein levels were markedly higher than in the metformin group and simvastatin group (P<0.05), respectively. However, phosphor-AMPKα/AMPKα ratios were similar in all groups. Dan-gua Fang reduced fasting blood glucose with similar strength to metformin, and was superior in reducing cholesterol, triglycerides, high-density lipoprotein cholesterol as well as improving low-density lipoprotein cholesterol in comparison with simvastatin and metformin. Dan-gua Fang decreases plasma alanine aminotransferase (ALT) significantly. Dan-gua Fang, while treating phlegm-stasis, could decrease BG and lipid in type 2 diabetic GK rats fed with high-fat diet, and effectively protect liver histomorphology and function. This may be partly explained by increased AMPK expression in liver. Therefore, Dan-gua Fang might be an ideal drug for comprehensive intervention for glucose and lipid metabolism disorders in type 2 diabetes mellitus.

  12. Dynamic coupling between the LID and NMP domain motions in the catalytic conversion of ATP and AMP to ADP by adenylate kinase

    NASA Astrophysics Data System (ADS)

    Jana, Biman; Adkar, Bharat V.; Biswas, Rajib; Bagchi, Biman

    2011-01-01

    The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations.

  13. Hepatoprotective effect of Caesalpinia gilliesii and Cajanus cajan proteins against acetoaminophen overdose-induced hepatic damage.

    PubMed

    Rizk, Maha Z; Aly, Hanan F; Abo-Elmatty, Dina M; Desoky, M M; Ibrahim, N; Younis, Eman A

    2016-05-01

    This study aims to evaluate two proteins derived from the seeds of the plants Cajanus cajan (Leguminosae) and Caesalpinia gilliesii (Leguminosae) for their abilities to ameliorate the toxic effects of chronic doses of acetoaminphen (APAP) through the determination of certain biochemical parameters including liver marker enzymes: alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and total bilirubin. Also, total protein content and hepatic marker enzyme, lactate dehydrogenase were studied. Moreover, liver antioxidants, glutathione (GSH), nitric oxide, and lipid peroxides were determined in this study. Hepatic adenosine triphosphatase (ATPase), adenylate energy charge (ATP, adenosine diphosphate, adenosine monophosphate, and inorganic phosphate), and phosphate potential, serum interleukin-6, tumor necrosis factor-α, and myeloperoxidase were also examined in the present study. On the other hand, histopathological examination of intoxicated and liver treated with both proteins was taken into consideration. The present results show disturbances in all biochemical parameters and hepatic toxicity signs including mild vascular congestion, moderate inflammatory changes with moderate congested sinusoids, moderate nuclear changes (pyknosis), moderate centrilobular necrosis, fatty changes, nuclear pyknosis vascular congestion, and change in fatty centrilobular necrosis liver. Improvement in all biochemical parameters studied was noticed as a result of treatment intoxicated liver with C. gilliesii and C. cajan proteins either paracetamol with or post paracetamol treatment. These results were documented by the amelioration signs in rat's hepatic architecture. Thus, both plant protein extracts can upregulate and counteract the inflammatory process, minimize damage of the liver, delay disease progression, and reduce its complications. © The Author(s) 2014.

  14. Schwann Cells Metabolize Extracellular 2′,3′-cAMP to 2′-AMP

    PubMed Central

    Verrier, Jonathan D.; Kochanek, Patrick M.

    2015-01-01

    The 3′,5′-cAMP–adenosine pathway (3′,5′-cAMP→5′-AMP→adenosine) and the 2′,3′-cAMP–adenosine pathway (2′,3′-cAMP→2′-AMP/3′-AMP→adenosine) are active in the brain. Oligodendrocytes participate in the brain 2′,3′-cAMP–adenosine pathway via their robust expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase; converts 2′,3′-cAMP to 2′-AMP). Because Schwann cells also express CNPase, it is conceivable that the 2′,3′-cAMP–adenosine pathway exists in the peripheral nervous system. To test this and to compare the 2′,3′-cAMP–adenosine pathway to the 3′,5′-cAMP–adenosine pathway in Schwann cells, we examined the metabolism of 2′,3′-cAMP, 2′-AMP, 3′-AMP, 3′,5′-cAMP, and 5′-AMP in primary rat Schwann cells in culture. Addition of 2′,3′-cAMP (3, 10, and 30 µM) to Schwann cells increased levels of 2′-AMP in the medium from 0.006 ± 0.002 to 21 ± 2, 70 ± 3, and 187 ± 10 nM/µg protein, respectively; in contrast, Schwann cells had little ability to convert 2′,3′-cAMP to 3′-AMP or 3′,5′-cAMP to either 3′-AMP or 5′-AMP. Although Schwann cells slightly converted 2′,3′-cAMP and 2′-AMP to adenosine, they did so at very modest rates (e.g., 5- and 3-fold, respectively, more slowly compared with our previously reported studies in oligodendrocytes). Using transected myelinated rat sciatic nerves in culture medium, we observed a time-related increase in endogenous intracellular 2′,3′-cAMP and extracellular 2′-AMP. These findings indicate that Schwann cells do not have a robust 3′,5′-cAMP–adenosine pathway but do have a 2′,3′-cAMP–adenosine pathway; however, because the pathway mostly involves 2′-AMP formation rather than 3′-AMP, and because the conversion of 2′-AMP to adenosine is slow, metabolism of 2′,3′-cAMP mostly results in the accumulation of 2′-AMP. Accumulation of 2′-AMP in peripheral nerves postinjury could have pathophysiological consequences. PMID:25998049

  15. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation.

    PubMed

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. BCX4430 - A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease.

    PubMed

    Taylor, Raymond; Kotian, Pravin; Warren, Travis; Panchal, Rekha; Bavari, Sina; Julander, Justin; Dobo, Sylvia; Rose, Angela; El-Kattan, Yahya; Taubenheim, Brian; Babu, Yarlagadda; Sheridan, William P

    2016-01-01

    The adenosine nucleoside analog BCX4430 is a direct-acting antiviral drug under investigation for the treatment of serious and life-threatening infections from highly pathogenic viruses, such as the Ebola virus. Cellular kinases phosphorylate BCX4430 to a triphosphate that mimics ATP; viral RNA polymerases incorporate the drug's monophosphate nucleotide into the growing RNA chain, causing premature chain termination. BCX4430 is active in vitro against many RNA viral pathogens, including the filoviruses and emerging infectious agents such as MERS-CoV and SARS-CoV. In vivo, BCX4430 is active after intramuscular, intraperitoneal, and oral administration in a variety of experimental infections. In nonclinical studies involving lethal infections with Ebola virus, Marburg virus, Rift Valley fever virus, and Yellow Fever virus, BCX4430 has demonstrated pronounced efficacy. In experiments conducted in several models, both a reduction in the viral load and an improvement in survival were found to be related to the dose of BCX4430. A Phase 1 clinical trial of intramuscular administration of BCX4430 in healthy subjects is currently ongoing. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. All rights reserved.

  17. Utilization of 2,6-diaminopurine by Salmonella typhimurium.

    PubMed Central

    Garber, B B; Gots, J S

    1980-01-01

    The pathway for the utilization of 2,6-diaminopurine (DAP) as an exogenous purine source in Salmonella typhimurium was examined. In strains able to use DAP as a purine source, mutant derivatives lacking either purine nucleoside phosphorylase or adenosine deaminase activity lost the ability to do so. The implied pathway of DAP utilization was via its conversion to DAP ribonucleoside by purine nucleoside phosphorylase, followed by deamination to guanosine by adenosine deaminase. Guanosine can then enter the established purine salvage pathways. In the course of defining this pathway, purine auxotrophs able to utilize DAP as sole purine source were isolated and partially characterized. These mutants fell into several classes, including (i) strains that only required an exogenous source of guanine nucleotides (e.g., guaA and guaB strains); (ii) strains that had a purF genetic lesion (i.e., were defective in alpha-5-phosphoribosyl 1-pyrophosphate amidotransferase activity); and (iii) strains that had constitutive levels of purine nucleoside phosphorylase. Selection among purine auxotrophs blocked in the de novo synthesis of inosine 5'-monophosphate, for efficient growth on DAP as sole source of purine nucleotides, readily yielded mutants which were defective in the regulation of their deoxyribonucleoside-catabolizing enzymes (e.g., deoR mutants). PMID:6782081

  18. Jasmonic acid-amino acid conjugation enzyme assays.

    PubMed

    Rowe, Martha L; Staswick, Paul E

    2013-01-01

    Jasmonic acid (JA) is activated for signaling by its conjugation to isoleucine (Ile) through an amide linkage. The Arabidopsis thaliana JASMONIC ACID RESISTANT1 (JAR1) enzyme carries out this Mg-ATP-dependent reaction in two steps, adenylation of the free carboxyl of JA, followed by condensation of the activated group to Ile. This chapter details the protocols used to detect and quantify the enzymatic activity obtained from a glutathione-S-transferase:JAR1 fusion protein produced in Escherichia coli, including an isotope exchange assay for the adenylation step and assays for the complete reaction that involve the high-performance liquid chromatography quantitation of adenosine monophosphate, a stoichiometric by-product of the reaction, and detection of the conjugation product by thin-layer chromatography or gas -chromatography/mass spectrometry.

  19. Glucose and cyclic adenosine monophosphate stimulate activities of adenylate cyclase and guanylate cyclase of Tetrahymena pyriformis infusoria.

    PubMed

    Shpakov, A O; Derkach, K V; Uspenskaya, Z I

    2012-02-01

    The sensitivities of cyclase enzymes adenylate cyclase and guanylate cyclase to glucose and extracellular cAMP were studied in Tetrahymena pyriformis infusoria. Glucose effectively stimulated activities of both cyclase enzymes, while cAMP more effectively stimulated adenylate cyclase. It was shown that [6-(14)C]glucose specifically bound to Tetrahymena pyriformis infusoria at dissociation constant (K(D)) and number of binding sites (B(max)) 43 nM and 7.53 fmol glucose per 100,000 cells and [8-(3)H]cAMP bound at 19 nM and 4.46 fmol cAMP per 100,000 cells, respectively. Hence, glucose and cAMP specifically bound to Tetrahymena pyriformis cells and stimulated activities of cyclases in these infusoria.

  20. AMP sensing by DEAD-box RNA helicases

    PubMed Central

    Putnam, Andrea A.; Jankowsky, Eckhard

    2013-01-01

    In eukaryotes, cellular levels of adenosine monophosphate (AMP) signal the metabolic state of the cell. AMP concentrations increase significantly upon metabolic stress, such as glucose deprivation in yeast. Here we show that several DEAD-box RNA helicases are sensitive to AMP, which is not produced during ATP hydrolysis by these enzymes. We find that AMP potently inhibits RNA binding and unwinding by the yeast DEAD-box helicases Ded1p, Mss116p, and eIF4A. However, the yeast DEAD-box helicases Sub2p and Dbp5p are not inhibited by AMP. Our observations identify a subset of DEAD-box helicases as enzymes with the capacity to directly link changes in AMP concentrations to RNA metabolism. PMID:23702290

  1. AMP sensing by DEAD-box RNA helicases.

    PubMed

    Putnam, Andrea A; Jankowsky, Eckhard

    2013-10-23

    In eukaryotes, cellular levels of adenosine monophosphate (AMP) signal the metabolic state of the cell. AMP concentrations increase significantly upon metabolic stress, such as glucose deprivation in yeast. Here, we show that several DEAD-box RNA helicases are sensitive to AMP, which is not produced during ATP hydrolysis by these enzymes. We find that AMP potently inhibits RNA binding and unwinding by the yeast DEAD-box helicases Ded1p, Mss116p, and eIF4A. However, the yeast DEAD-box helicases Sub2p and Dbp5p are not inhibited by AMP. Our observations identify a subset of DEAD-box helicases as enzymes with the capacity to directly link changes in AMP concentrations to RNA metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Regulation of gonadotropin-releasing hormone neurons by glucose

    PubMed Central

    Roland, Alison V.; Moenter, Suzanne M.

    2011-01-01

    Reproduction is influenced by energy balance, but the physiological pathways mediating their relationship have not been fully elucidated. As the central regulators of fertility, gonadotropin-releasing hormone (GnRH) neurons integrate numerous physiological signals, including metabolic cues. Circulating glucose levels regulate GnRH release and may in part mediate the effects of negative energy balance on fertility. Existing evidence suggests that neural pathways originating in the hindbrain, as well as in the hypothalamic feeding nuclei, transmit information concerning glucose availability to GnRH neurons. Here we review recent evidence suggesting that GnRH neurons may directly sense changes in glucose availability by a mechanism involving adenosine monophosphate-activated protein kinase (AMPK). These findings expand our understanding of how metabolic signaling in the brain regulates reproduction. PMID:21855365

  3. Inactivation of phosphorylase b by potassium ferrate. Identification of a tyrosine residue involved in the binding of adenosine 5'-monophosphate.

    PubMed

    Lee, Y M; Benisek, W F

    1978-08-10

    The site of reaction of potassium ferrate (K2FeO4) with rabbit muscle phosphorylase b has been further characterized in an extension of previously published studies (Lee, Y. M., and Benisek, W. F. (1976) J. Biol, Chem. 251, 1553-1560) reporting inactivation of the enzyme by this reagent. The tryptic peptide composed of residues 70 to 80 of the enzyme's polypeptide chain was shown to contain a tyrosine residue which is chemically modified by ferrate and which is protected by 5'-AMP. The sequence of this peptide obtained from both untreated and ferrate-treated phosphorylase b was determined, and the results showed that tyrosine-75 was the residue with which ferrate reacts.

  4. Adenosine 3′,5′-cyclic monophosphate (cAMP)-dependent phosphoregulation of mitochondrial complex I is inhibited by nucleoside reverse transcriptase inhibitors

    PubMed Central

    Lund, Kaleb C.; Wallace, Kendall B.

    2008-01-01

    Nucleoside analog reverse transcriptase inhibitors (NRTI) are known to directly inhibit mitochondrial complex I activity as well as various mitochondrial kinases. Recent observations that complex I activity and superoxide production are modulated through cAMP-dependent phosphorylation suggests a mechanism through which NRTIs may affect mitochondrial respiration via kinase-dependent protein phosphorylation. In the current study we examine the potential for NRTIs to inhibit the cAMP-dependent phosphorylation of complex I and the associated NADH:CoQ oxidoreductase activities and rates of superoxide production using HepG2 cells. Phosphoprotein staining of immunocaptured complex I revealed that 3′-azido-3′-deoxythymidine (AZT; 10 and 50 μM), AZT monophosphate (150 μM), and 2′,3′-dideoxycytidine (ddC; 1μM) prevented the phosphorylation of the NDUFB11 subunit of complex I. This was associated with a decrease in complex I activity with AZT and AZT monophosphate only. In the presence of succinate, superoxide production was increased with 2′,3′-dideoxyinosine (ddI; 10 μM) and ddC (1 μM). In the presence of succinate + cAMP AZT showed an inverse dose-dependent effect on superoxide production. None of the NRTIs examined inhibit PKA activity suggesting that the observed effects are due to a direct interaction with complex I. These data demonstrate a direct effect of NRTIs on cAMP-dependent regulation of mitochondrial bioenergetics independent of DNA polymerase-γ activity; in the case of AZT these observations may provide a mechanism for the observed long-term toxicity with this drug. PMID:17904600

  5. ATP catabolism by tissue nonspecific alkaline phosphatase contributes to development of ARDS in influenza-infected mice.

    PubMed

    Woods, Parker S; Doolittle, Lauren M; Hickman-Davis, Judy M; Davis, Ian C

    2018-01-01

    Influenza A viruses are highly contagious respiratory pathogens that are responsible for significant morbidity and mortality worldwide on an annual basis. We have shown previously that influenza infection of mice leads to increased ATP and adenosine accumulation in the airway lumen. Moreover, we demonstrated that A 1 -adenosine receptor activation contributes significantly to influenza-induced acute respiratory distress syndrome (ARDS). However, we found that development of ARDS in influenza-infected mice does not require catabolism of ATP to adenosine by ecto-5'-nucleotidase (CD73). Hence, we hypothesized that increased adenosine generation in response to infection is mediated by tissue nonspecific alkaline phosphatase (TNAP), which is a low-affinity, high-capacity enzyme that catabolizes nucleotides in a nonspecific manner. In the current study, we found that whole lung and BALF TNAP expression and alkaline phosphatase enzymatic activity increased as early as 2 days postinfection (dpi) of C57BL/6 mice with 10,000 pfu/mouse of influenza A/WSN/33 (H1N1). Treatment at 2 and 4 dpi with a highly specific quinolinyl-benzenesulfonamide TNAP inhibitor (TNAPi) significantly reduced whole lung alkaline phosphatase activity at 6 dpi but did not alter TNAP gene or protein expression. TNAPi treatment attenuated hypoxemia, lung dysfunction, histopathology, and pulmonary edema at 6 dpi without impacting viral replication or BALF adenosine. Treatment also improved epithelial barrier function and attenuated cellular and humoral immune responses to influenza infection. These data indicate that TNAP inhibition can attenuate influenza-induced ARDS by reducing inflammation and fluid accumulation within the lung. They also further emphasize the importance of adenosine generation for development of ARDS in influenza-infected mice.

  6. Inactivation of Pde8b enhances memory, motor performance, and protects against age-induced motor coordination decay

    PubMed Central

    Tsai, Li-Chun Lisa; Chan, Guy Chiu-Kai; Nangle, Shannon N.; Shimizu-Albergine, Masami; Jones, Graham; Storm, Daniel R.; Beavo, Joseph A.; Zweifel, Larry S.

    2012-01-01

    Phosphodiesterases (PDEs) are critical regulatory enzymes in cyclic nucleotide signaling. PDEs have diverse expression patterns within the central nervous system (CNS), show differing affinities for cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), and regulate a vast array of behaviors. Here, we investigated the expression profile of the PDE8 gene family members Pde8a and Pde8b in the mouse brain. We find that Pde8a expression is largely absent in the CNS; by contrast, Pde8b is expressed in select regions of the hippocampus, ventral striatum, and cerebellum. Behavioral analysis of mice with Pde8b gene inactivation (PDE8B KO) demonstrate an enhancement in contextual fear, spatial memory, performance in an appetitive instrumental conditioning task, motor-coordination, and have an attenuation of age-induced motor coordination decline. In addition to improvements observed in select behaviors, we find basal anxiety levels to be increased in PDE8B KO mice. These findings indicate that selective antagonism of PDE8B may be an attractive target for enhancement of cognitive and motor functions; however, possible alterations in affective state will need to be weighed against potential therapeutic value. PMID:22925203

  7. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-01

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5'-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  8. Role of carbonic anhydrase in basal and stimulated bicarbonate secretion by the guinea pig duodenum.

    PubMed

    Muallem, R; Reimer, R; Odes, H S; Schwenk, M; Beil, W; Sewing, K F

    1994-05-01

    The role of carbonic anhydrase in the process of proximal duodenal mucosal bicarbonate secretion was investigated in the guinea pig. In a series of experiments in vivo, the duodenum was perfused with 24 mmol/liter NaHCO3 solution (+ NaCl for isotonicity) to ensure that active duodenal HCO3- secretion against a concentration gradient was measured. Acetazolamide (80 mg/kg) was infused intravenously to examine the role of carbonic anhydrase on basal and agonist-stimulated HCO3- secretion. Acetazolamide abolished basal HCO3- secretion and significantly decreased HCO3- secretion after stimulation with dibutyryl 5'-cyclic adenosine monophosphate (dBcAMP, 10(-5) mol/kg), dibutyryl 5'-cyclic guanosine monophosphate (dBcGMP, 10(-5) mol/kg), prostaglandin E2 (PGE2, 10(-6) mol/kg), PGF2 alpha (10(-6) mol/kg), tetradecanoyl-phorbol-acetate (TPA, 10(-7) mol/kg), glucagon (10(-7) mol/kg), vasoactive intestinal polypeptide (VIP, 10(-8) mol/kg), and carbachol (10(-8) mol/kg). Utilizing a fluorescence technique, we could detect the enzyme carbonic anhydrase in equal amounts in villous and crypt cells of the proximal duodenal epithelium; no activity was demonstrated in tissues pretreated with acetazolamide. In conclusion, carbonic anhydrase is required for both basal and stimulated duodenal HCO3- secretion.

  9. Role of fetal DNA in preeclampsia (review).

    PubMed

    Konečná, Barbora; Vlková, Barbora; Celec, Peter

    2015-02-01

    Preeclampsia is an autoimmune disorder characterized by hypertension. It begins with abnormal cytotrophoblast apoptosis, which leads to inflammation and an increase in the levels of anti-angiogenic factors followed by the disruption of the angiogenic status. Increased levels of fetal DNA and RNA coming from the placenta, one of the most commonly affected organs in pregnancies complicated by preeclampsia, have been found in pregnant women with the condition. However, it remains unknown as to whether this is a cause or a consequence of preeclampsia. Few studies have been carried out on preeclampsia in which an animal model of preeclampsia was induced by an injection of different types of DNA that are mimic fetal DNA and provoke inflammation through Toll-like receptor 9 (TLR9) or cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). The specific mechanisms involved in the development of preeclampsia are not yet fully understood. It is hypothesized that the presence of different fragments of fetal DNA in maternal plasma may cause for the development of preeclampsia. The function of DNase during preeclampsia also remains unresolved. Studies have suggested that its activity is decreased or the DNA is protected against its effects. Further research is required to uncover the pathogenesis of preeclampsia and focus more on the condition of patients with the condition.

  10. Vacuum ultraviolet photoionization of carbohydrates and nucleotides.

    PubMed

    Shin, Joong-Won; Bernstein, Elliot R

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  11. Role of melatonin on diabetes-related metabolic disorders

    PubMed Central

    Espino, Javier; Pariente, José A; Rodríguez, Ana B

    2011-01-01

    Melatonin is a circulating hormone that is mainly released from the pineal gland. It is best known as a regulator of seasonal and circadian rhythms, its levels being high during the night and low during the day. Interestingly, insulin levels are also adapted to day/night changes through melatonin-dependent synchronization. This regulation may be explained by the inhibiting action of melatonin on insulin release, which is transmitted through both the pertussis-toxin-sensitive membrane receptors MT1 and MT2 and the second messengers 3’,5’-cyclic adenosine monophosphate, 3’,5’-cyclic guanosine monophosphate and inositol 1,4,5-trisphosphate. Melatonin may influence diabetes and associated metabolic disturbances not only by regulating insulin secretion, but also by providing protection against reactive oxygen species, since pancreatic β-cells are very susceptible to oxidative stress because they possess only low-antioxidative capacity. On the other hand, in several genetic association studies, single nucleotide polymorphysms of the human MT2 receptor have been described as being causally linked to an elevated risk of developing type 2 diabetes. This suggests that these individuals may be more sensitive to the actions of melatonin, thereby leading to impaired insulin secretion. Therefore, blocking the melatonin-induced inhibition of insulin secretion may be a novel therapeutic avenue for type 2 diabetes. PMID:21860691

  12. Mechanisms of hypoxia-induced cerebrovascular dilation in the newborn pig.

    PubMed

    Leffler, C W; Smith, J S; Edrington, J L; Zuckerman, S L; Parfenova, H

    1997-03-01

    The hypothesis that endothelium-dependent components contribute to the cerebromicrovascular dilation to hypoxia in the newborn pig was addressed. Piglets anesthetized with ketamine-acepromazine and maintained on alpha-chloralose were equipped with closed cranial windows. Injury to the endothelium of pial arterioles was produced by light activation of fluorescein dye. Light/dye injury reduced the pial arteriolar dilation to hypoxia (5 min, arterial PO2 approximately 30 mmHg) from 57 +/- 9 to 19 +/- 5%. Light/dye injury abolished the pial arteriolar dilation to hypercapnia but did not affect dilation to sodium nitroprusside. The pial arteriolar dilation to hypoxia was not affected by tetrodotoxin, N(omega)-nitro-L-arginine, glibenclamide, iberiotoxin, charybdotoxin, tetraethylammonium, or 8-phenyltheophylline. Hypoxia caused increases in the cerebral cortical production of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate. Cerebral vasodilation to hypoxia was inhibited by 5,8,11,14-eicosatetraynoic acid but was not greatly affected by cyclooxygenase or lipoxygenase inhibitors. In contrast, the cytochrome P-450 epoxygenase inhibitor miconazol decreased cerebral vasodilation to hypoxia from 45 +/- 5 to 17 +/- 4%. Therefore, the vascular endothelium appears to participate in cerebral microvascular dilation to hypoxia in newborn pigs. The mechanism may include cytochrome P-450 epoxygenase metabolites of arachidonic acid.

  13. Identification and characterization of a gene encoding for a nucleotidase from Phaseolus vulgaris.

    PubMed

    Cabello-Díaz, Juan Miguel; Gálvez-Valdivieso, Gregorio; Caballo, Cristina; Lambert, Rocío; Quiles, Francisco Antonio; Pineda, Manuel; Piedras, Pedro

    2015-08-01

    Nucleotidases are phosphatases that catalyze the removal of phosphate from nucleotides, compounds with an important role in plant metabolism. A phosphatase enzyme, with high affinity for nucleotides monophosphate previously identified and purified in embryonic axes from French bean, has been analyzed by MALDI TOF/TOF and two internal peptides have been obtained. The information of these peptide sequences has been used to search in the genome database and only a candidate gene that encodes for the phosphatase was identified (PvNTD1). The putative protein contains the conserved domains (motif I-IV) for haloacid dehalogenase-like hydrolases superfamily. The residues involved in the catalytic activity are also conserved. A recombinant protein overexpressed in Escherichia coli has shown molybdate resistant phosphatase activity with nucleosides monophosphate as substrate, confirming that the identified gene encodes for the phosphatase with high affinity for nucleotides purified in French bean embryonic axes. The activity of the purified protein was inhibited by adenosine. The expression of PvNTD1 gene was induced at the specific moment of radicle protrusion in embryonic axes. The gene was also highly expressed in young leaves whereas the level of expression in mature tissues was minimal. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. Organization of Nucleotides in Different Environments and the Formation of Pre-Polymers

    NASA Astrophysics Data System (ADS)

    Himbert, Sebastian; Chapman, Mindy; Deamer, David W.; Rheinstädter, Maikel C.

    2016-08-01

    RNA is a linear polymer of nucleotides linked by a ribose-phosphate backbone. Polymerization of nucleotides occurs in a condensation reaction in which phosphodiester bonds are formed. However, in the absence of enzymes and metabolism there has been no obvious way for RNA-like molecules to be produced and then encapsulated in cellular compartments. We investigated 5‧-adenosine monophosphate (AMP) and 5‧-uridine monophosphate (UMP) molecules confined in multi-lamellar phospholipid bilayers, nanoscopic films, ammonium chloride salt crystals and Montmorillonite clay, previously proposed to promote polymerization. X-ray diffraction was used to determine whether such conditions imposed a degree of order on the nucleotides. Two nucleotide signals were observed in all matrices, one corresponding to a nearest neighbour distance of 4.6 Å attributed to nucleotides that form a disordered, glassy structure. A second, smaller distance of 3.4 Å agrees well with the distance between stacked base pairs in the RNA backbone, and was assigned to the formation of pre-polymers, i.e., the organization of nucleotides into stacks of about 10 monomers. Such ordering can provide conditions that promote the nonenzymatic polymerization of RNA strands under prebiotic conditions. Experiments were modeled by Monte-Carlo simulations, which provide details of the molecular structure of these pre-polymers.

  15. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

    PubMed Central

    Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2008-01-01

    Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377

  16. Donor pretreatment with adenosine monophosphate-activated protein kinase activator protects cardiac grafts from cold ischaemia/reperfusion injury.

    PubMed

    Yang, Chao; Xu, Honglai; Cai, Lanjun; Du, Xiaoxiao; Jiang, Yinan; Zhang, Yong; Zhou, Hongmin; Chen, Zhonghua Klaus

    2016-05-01

    Adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of energy metabolism and has been shown to be protective in ischaemia/reperfusion injury (IRI). We hypothesized that preactivation of AMPK with an activator before donor heart procurement could protect heart grafts from cold IRI. Donor Sprague-Dawley rats were injected intravenously with AMPK activator 5-amino-imidazole-4-carboxamide ribonucleotide (AICAR) or vehicle 30 min before heart procurement. Heart grafts were then preserved in histidine-tryptophan-ketoglutarate (HTK) solution at 4°C for 8 h. After preservation, grafts were immediately mounted on the Langendorff perfusion system and perfused with Krebs-Henseleit buffer at 37°C for 1 h. Adenosine triphosphate (ATP) and malondialdehyde (MDA) content in graft tissue were quantified post-preservation and post-reperfusion. After reperfusion, isolated heart function was assessed using a pressure transducer; cumulative release of creatine kinase (CK) and lactate dehydrogenase (LDH) into the perfusate was measured to assess cardiomyocyte necrosis; ultrastructural changes in the mitochondria of the grafts were examined using transmission electron microscopy (TEM). After preservation, myocardial ATP content in the pretreated hearts was significantly higher than in the control hearts (3.247 ± 0.3034 vs 1.817 ± 0.2533 µmol/g protein; P < 0.05). AICAR-pretreated heart grafts exhibited significantly higher coronary flow (9.667 ± 0.3159 vs 8.033 ± 0.2459 ml/min; P < 0.05) and left ventricular developing pressure (58.67 ± 2.894 vs 42.67 ± 3.333 mmHg; P < 0.05) than the vehicle treated after reperfusion. Cumulative release of CK (300.0 ± 25.30 vs 431.7 ± 42.39 U/l; P < 0.05) and LDH (228.0 ± 16.68 vs 366.8 ± 57.41 U/l; P < 0.05) in the perfusate was significantly lower in the AICAR-pretreated group than that in the control group. Myocardial MDA content was also reduced in the pretreated group (0.5167 ± 0.1046 vs 0.9333 ± 0.1333 nmol/mg protein; P < 0.05). TEM suggested that the mitochondrial structure of AICAR-pretreated hearts was much better preserved. Moreover, AICAR-pretreated hearts significantly diminished cytosolic cytochrome c release after reperfusion. This study demonstrates that pretreatment with AMPK activator AICAR significantly protects heart grafts from extended cold IRI. This novel protocol may be useful and feasible in clinical heart transplantation. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Carbohydrate management, anaerobic metabolism, and adenosine levels in the armoured catfish, Liposarcus pardalis (castelnau), during hypoxia.

    PubMed

    Maccormack, Tyson James; Lewis, Johanne Mari; Almeida-Val, Vera Maria Fonseca; Val, Adalberto Luis; Driedzic, William Robert

    2006-04-01

    The armoured catfish, Liposarcus pardalis, tolerates severe hypoxia at high temperatures. Although this species can breathe air, it also has a strong anaerobic metabolism. We assessed tissue to plasma glucose ratios and glycogen and lactate in a number of tissues under "natural" pond hypoxia, and severe aquarium hypoxia without aerial respiration. Armour lactate content and adenosine in brain and heart were also investigated. During normoxia, tissue to plasma glucose ratios in gill, brain, and heart were close to one. Hypoxia increased plasma glucose and decreased tissue to plasma ratios to less than one, suggesting glucose phosphorylation is activated more than uptake. High normoxic white muscle glucose relative to plasma suggests gluconeogenesis or active glucose uptake. Excess muscle glucose may serve as a metabolic reserve since hypoxia decreased muscle to plasma glucose ratios. Mild pond hypoxia changed glucose management in the absence of lactate accumulation. Lactate was elevated in all tissues except armour following aquarium hypoxia; however, confinement in aquaria increased armour lactate, even under normoxia. A stress-associated acidosis may contribute to armour lactate sequestration. High plasma lactate levels were associated with brain adenosine accumulation. An increase in heart adenosine was triggered by confinement in aquaria, although not by hypoxia alone.

  18. Screening of Biochemical and Molecular Mechanisms of Secondary Injury and Repair in the Brain after Experimental Blast-Induced Traumatic Brain Injury in Rats

    PubMed Central

    Dixon, C. Edward; Shellington, David K.; Shin, Samuel S.; Bayır, Hülya; Jackson, Edwin K.; Kagan, Valerian E.; Yan, Hong Q.; Swauger, Peter V.; Parks, Steven A.; Ritzel, David V.; Bauman, Richard; Clark, Robert S.B.; Garman, Robert H.; Bandak, Faris; Ling, Geoffrey; Jenkins, Larry W.

    2013-01-01

    Abstract Explosive blast-induced traumatic brain injury (TBI) is the signature insult in modern combat casualty care and has been linked to post-traumatic stress disorder, memory loss, and chronic traumatic encephalopathy. In this article we report on blast-induced mild TBI (mTBI) characterized by fiber-tract degeneration and axonal injury revealed by cupric silver staining in adult male rats after head-only exposure to 35 psi in a helium-driven shock tube with head restraint. We now explore pathways of secondary injury and repair using biochemical/molecular strategies. Injury produced ∼25% mortality from apnea. Shams received identical anesthesia exposure. Rats were sacrificed at 2 or 24 h, and brain was sampled in the hippocampus and prefrontal cortex. Hippocampal samples were used to assess gene array (RatRef-12 Expression BeadChip; Illumina, Inc., San Diego, CA) and oxidative stress (OS; ascorbate, glutathione, low-molecular-weight thiols [LMWT], protein thiols, and 4-hydroxynonenal [HNE]). Cortical samples were used to assess neuroinflammation (cytokines, chemokines, and growth factors; Luminex Corporation, Austin, TX) and purines (adenosine triphosphate [ATP], adenosine diphosphate, adenosine, inosine, 2′-AMP [adenosine monophosphate], and 5′-AMP). Gene array revealed marked increases in astrocyte and neuroinflammatory markers at 24 h (glial fibrillary acidic protein, vimentin, and complement component 1) with expression patterns bioinformatically consistent with those noted in Alzheimer's disease and long-term potentiation. Ascorbate, LMWT, and protein thiols were reduced at 2 and 24 h; by 24 h, HNE was increased. At 2 h, multiple cytokines and chemokines (interleukin [IL]-1α, IL-6, IL-10, and macrophage inflammatory protein 1 alpha [MIP-1α]) were increased; by 24 h, only MIP-1α remained elevated. ATP was not depleted, and adenosine correlated with 2′-cyclic AMP (cAMP), and not 5′-cAMP. Our data reveal (1) gene-array alterations similar to disorders of memory processing and a marked astrocyte response, (2) OS, (3) neuroinflammation with a sustained chemokine response, and (4) adenosine production despite lack of energy failure—possibly resulting from metabolism of 2′-3′-cAMP. A robust biochemical/molecular response occurs after blast-induced mTBI, with the body protected from blast and the head constrained to limit motion. PMID:23496248

  19. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final accumulation of the nucleoside. The transcript levels of the five TvNTPDases gene sequences were analyzed by qRT-PCR and the highest gene expressions were found for TvNTPDase 2 and 4. The extracellular guanosine uptake was observed as (13C)GTP nucleotide into parasite DNA and it was lower than that observed for adenosine, labeled as (13C)ATP. These findings indicate the T. vaginalis preference for adenosine uptake and the accumulation of guanosine in the extracellular milieu, corroborating with HPLC data. Our data demonstrate, for the first time, the cascade of guanine nucleotides in T. vaginalis and open possibilities on the study of guanine-related purines other than the classical intracellular activity of G proteins for signal transduction. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sarco(endo)plasmic reticulum ATPase is a molecular partner of Wolfram syndrome 1 protein, which negatively regulates its expression

    PubMed Central

    Zatyka, Malgorzata; Da Silva Xavier, Gabriela; Bellomo, Elisa A.; Leadbeater, Wendy; Astuti, Dewi; Smith, Joel; Michelangeli, Frank; Rutter, Guy A.; Barrett, Timothy G.

    2015-01-01

    Wolfram syndrome is an autosomal recessive disorder characterized by neurodegeneration and diabetes mellitus. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER)-resident transmembrane protein that is involved in the regulation of the unfolded protein response (UPR), intracellular ion homeostasis, cyclic adenosine monophosphate production and regulation of insulin biosynthesis and secretion. In this study, single cell Ca2+ imaging with fura-2 and direct measurements of free cytosolic ATP concentration ([ATP]CYT) with adenovirally expressed luciferase confirmed a reduced and delayed rise in cytosolic free Ca2+ concentration ([Ca2+]CYT), and additionally, diminished [ATP]CYT rises in response to elevated glucose concentrations in WFS1-depleted MIN6 cells. We also observed that sarco(endo)plasmic reticulum ATPase (SERCA) expression was elevated in several WFS1-depleted cell models and primary islets. We demonstrated a novel interaction between WFS1 and SERCA by co-immunoprecipitation in Cos7 cells and with endogenous proteins in human neuroblastoma cells. This interaction was reduced when cells were treated with the ER stress inducer dithiothreitol. Treatment of WFS1-depleted neuroblastoma cells with the proteasome inhibitor MG132 resulted in reduced accumulation of SERCA levels compared with wild-type cells. Together these results reveal a role for WFS1 in the negative regulation of SERCA and provide further insights into the function of WFS1 in calcium homeostasis. PMID:25274773

  1. Effect of curcumin (Curcuma longa extract) on LPS-induced acute lung injury is mediated by the activation of AMPK.

    PubMed

    Kim, Joungmin; Jeong, Seong-Wook; Quan, Hui; Jeong, Cheol-Won; Choi, Jeong-Il; Bae, Hong-Beom

    2016-02-01

    Curcumin, a biphenolic compound extracted from turmeric (Curcuma longa), possesses potent anti-inflammatory activity. The present study investigated whether curcumin could increase 5' adenosine monophosphate-activated protein kinase (AMPK) activity in macrophages and modulate the severity of lipopolysaccharide (LPS)-induced acute lung injury. Macrophages were treated with curcumin and then exposed (or not) to LPS. Acute lung injury was induced by intratracheal administration of LPS in BALB/c mice. Curcumin increased phosphorylation of AMPK and acetyl-CoA carboxylase (ACC), a downstream target of AMPK, in a time- and concentration-dependent manner. Curcumin did not increase phosphorylation of liver kinase B1, a primary kinase upstream of AMPK. STO-609, an inhibitor of calcium(2+)/calmodulin-dependent protein kinase kinase, diminished curcumin-induced AMPK phosphorylation, but transforming growth factor-beta-activated kinase 1 inhibitor did not. Curcumin also diminished the LPS-induced increase in phosphorylation of inhibitory κB-alpha and the production of tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein (MIP)-2, and interleukin (IL)-6 by macrophages. Systemic administration of curcumin significantly decreased the production of TNF-α, MIP-2, and IL-6 as well as neutrophil accumulation in bronchoalveolar lavage fluid, and also decreased pulmonary myeloperoxidase levels and the wet/dry weight ratio in mice subjected to LPS treatment. These results suggest that the protective effect of curcumin on LPS-induced acute lung injury is associated with AMPK activation.

  2. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent

    PubMed Central

    Song, Anren; Zhang, Yujin; Han, Leng; Yegutkin, Gennady G.; Liu, Hong; Sun, Kaiqi; D'Alessandro, Angelo; Li, Jessica; Karmouty-Quintana, Harry; Iriyama, Takayuki; Weng, Tingting; Zhao, Shushan; Wang, Wei; Wu, Hongyu; Nemkov, Travis; Subudhi, Andrew W.; Jameson-Van Houten, Sonja; Julian, Colleen G.; Lovering, Andrew T.; Hansen, Kirk C.; Zhang, Hong; Bogdanov, Mikhail; Dowhan, William; Jin, Jianping; Kellems, Rodney E.; Eltzschig, Holger K.; Blackburn, Michael; Roach, Robert C.; Xia, Yang

    2017-01-01

    Faster acclimatization to high altitude upon re-ascent is seen in humans; however, the molecular basis for this enhanced adaptive response is unknown. We report that in healthy lowlanders, plasma adenosine levels are rapidly induced by initial ascent to high altitude and achieved even higher levels upon re-ascent, a feature that is positively associated with quicker acclimatization. Erythrocyte equilibrative nucleoside transporter 1 (eENT1) levels are reduced in humans at high altitude and in mice under hypoxia. eENT1 deletion allows rapid accumulation of plasma adenosine to counteract hypoxic tissue damage in mice. Adenosine signalling via erythrocyte ADORA2B induces PKA phosphorylation, ubiquitination and proteasomal degradation of eENT1. Reduced eENT1 resulting from initial hypoxia is maintained upon re-ascent in humans or re-exposure to hypoxia in mice and accounts for erythrocyte hypoxic memory and faster acclimatization. Our findings suggest that targeting identified purinergic-signalling network would enhance the hypoxia adenosine response to counteract hypoxia-induced maladaptation. PMID:28169986

  3. Transcriptome and Metabolome Analyses in Exogenous FABP4- and FABP5-Treated Adipose-Derived Stem Cells

    PubMed Central

    Sugaya, Takeshi; Oikawa, Tsuyoshi; Matsumoto, Megumi; Funahashi, Yasuhito; Matsukawa, Yoshihisa; Gotoh, Momokazu; Miura, Tetsuji

    2016-01-01

    Adipose-derived stem cells (ADSC), which exist near adipocytes in adipose tissue, have been used as a potential tool of regenerative medicine. Lipid chaperones, fatty acid-binding protein 4 (FABP4) and 5 (FABP5), are abundantly expressed in adipocytes. FABP4 has recently been shown to be secreted from adipocytes during lipolysis in a non-classical pathway and may act as an adipokine. Here, we investigated the role of exogenous FABP4 and FABP5 in transcriptional and metabolic regulation in ADSC. FABP4 and FABP5 were little expressed in ADSC. However, both FABP4 and FABP5 were significantly induced after adipocyte differentiation of ADSC and were secreted from the differentiated adipocytes. Analysis of microarray data, including gene ontology enrichment analysis and cascade analysis of the protein-protein interaction network using a transcription factor binding site search, demonstrated that treatment of ADSC with FABP4 or FABP5 affected several kinds of genes related to inflammatory and metabolic responses and the process of cell differentiation. Notably, myogenic factors, including myocyte enhancer factors, myogenic differentiation 1 and myogenin, were modulated by treatment of ADSC with FABP4, indicating that exogenous FABP4 treatment is partially associated with myogenesis in ADSC. Metabolome analysis showed that treatment of ADSC with FABP4 and with FABP5 similarly, but differently in extent, promoted hydrolysis and/or uptake of lipids, consequentially together with enhancement of β oxidation, inhibition of downstream of the glycolysis pathway, accumulation of amino acids, reduction of nucleic acid components and increase in the ratio of reduced and oxidized nicotinamide adenine dinucleotide phosphates (NADPH/NADP+), an indicator of reducing power, and the ratio of adenosine triphosphate and adenosine monophosphate (ATP/AMP), an indicator of the energy state, in ADSC. In conclusion, secreted FABP4 and FABP5 from adipocytes as adipokines differentially affect transcriptional and metabolic regulation in ADSC near adipocytes. The adiposity condition in the host of regenerative medicine may affect characteristics of ADSC by exposure of the balance of FABP4 and FABP5. PMID:27936164

  4. Transcriptome and Metabolome Analyses in Exogenous FABP4- and FABP5-Treated Adipose-Derived Stem Cells.

    PubMed

    Yamamoto, Tokunori; Furuhashi, Masato; Sugaya, Takeshi; Oikawa, Tsuyoshi; Matsumoto, Megumi; Funahashi, Yasuhito; Matsukawa, Yoshihisa; Gotoh, Momokazu; Miura, Tetsuji

    2016-01-01

    Adipose-derived stem cells (ADSC), which exist near adipocytes in adipose tissue, have been used as a potential tool of regenerative medicine. Lipid chaperones, fatty acid-binding protein 4 (FABP4) and 5 (FABP5), are abundantly expressed in adipocytes. FABP4 has recently been shown to be secreted from adipocytes during lipolysis in a non-classical pathway and may act as an adipokine. Here, we investigated the role of exogenous FABP4 and FABP5 in transcriptional and metabolic regulation in ADSC. FABP4 and FABP5 were little expressed in ADSC. However, both FABP4 and FABP5 were significantly induced after adipocyte differentiation of ADSC and were secreted from the differentiated adipocytes. Analysis of microarray data, including gene ontology enrichment analysis and cascade analysis of the protein-protein interaction network using a transcription factor binding site search, demonstrated that treatment of ADSC with FABP4 or FABP5 affected several kinds of genes related to inflammatory and metabolic responses and the process of cell differentiation. Notably, myogenic factors, including myocyte enhancer factors, myogenic differentiation 1 and myogenin, were modulated by treatment of ADSC with FABP4, indicating that exogenous FABP4 treatment is partially associated with myogenesis in ADSC. Metabolome analysis showed that treatment of ADSC with FABP4 and with FABP5 similarly, but differently in extent, promoted hydrolysis and/or uptake of lipids, consequentially together with enhancement of β oxidation, inhibition of downstream of the glycolysis pathway, accumulation of amino acids, reduction of nucleic acid components and increase in the ratio of reduced and oxidized nicotinamide adenine dinucleotide phosphates (NADPH/NADP+), an indicator of reducing power, and the ratio of adenosine triphosphate and adenosine monophosphate (ATP/AMP), an indicator of the energy state, in ADSC. In conclusion, secreted FABP4 and FABP5 from adipocytes as adipokines differentially affect transcriptional and metabolic regulation in ADSC near adipocytes. The adiposity condition in the host of regenerative medicine may affect characteristics of ADSC by exposure of the balance of FABP4 and FABP5.

  5. The alterations in adenosine nucleotides and lactic acid in striated muscles of rats during Rigor mortis following death with drowning or cervical dislocation.

    PubMed

    Pençe, Halime Hanim; Pençe, Sadrettin; Kurtul, Naciye; Yilmaz, Necat; Kocoglu, Hasan; Bakan, Ebubekir

    2003-01-01

    In this study, adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid in the muscles of masseter, triceps, and quadriceps obtained from right and left sides of Spraque-Dawley rats following death were investigated. The samples were taken immediately and 120 minutes after death occurred. The rats were killed either by cervical dislocation or drowning. ATP concentrations in the muscles of masseter, triceps, and quadriceps were lower in samples obtained 120 minutes after death than in those obtained immediately after death. ADP, AMP, and lactic acid concentrations in these muscles were higher in samples obtained 120 minutes after death than those obtained immediately after death. A positive linear correlation was determined between ATP and ADP concentrations in quadriceps muscles of the rats killed with cervical dislocation and in triceps muscles of the rats killed with drowning. When rats killed with cervical dislocation and with drowning were compared, ADP, AMP, and lactic acid concentrations were lower in the former than in the latter for both times (immediately and 120 minutes after death occurred). In the case of drowning, ATP is consumed faster because of hard exercise or severe physical activity, resulting in a faster rigor mortis. Higher lactic acid levels were determined in muscles of the rats killed with drowning than the other group. In the control and electric shock rats, ATP decreased in different levels in the three different muscle types mentioned above in control group, being much decline in masseter and then in quadriceps. This may be caused by lower mass and less glycogen storage of masseter. No different ATP levels were measured in drowning group with respect to the muscle type possibly because of the severe activity of triceps and quadriceps and because of smaller mass of masseter. One can conclude that the occurrence of rigor mortis is closely related to the mode of death.

  6. Additional hydrogen bonds and base-pair kinetics in the symmetrical AMP-DNA aptamer complex.

    PubMed Central

    Nonin-Lecomte, S; Lin, C H; Patel, D J

    2001-01-01

    The solution structure of an adenosine monophosphate (AMP)-DNA aptamer complex has been determined previously [Lin, C. H., and Patel, D. J. (1997) Chem. Biol. 4:817-832]. On a symmetrical aptamer complex containing the same binding loop, but with better resolved spectra, we have identified two additional hydrogen bond-mediated associations in the binding loop. One of these involves a rapidly exchanging G imino proton. The phosphate group of the AMP ligand was identified as the acceptor by comparison with other aptamer complexes. Imino proton exchange measurements also yielded the dissociation constants of the stem and binding loop base pairs. This study shows that nuclear magnetic resonance-based imino proton exchange is a good probe for detection of weak hydrogen-bond associations. PMID:11721004

  7. Use of a rapid brain-sampling technique in a physiologic preparation: effects of morphine, ketamine, and halothane on tissue energy intermediates.

    PubMed

    Dedrick, D F; Sherer, Y D; Biebuyck, J F

    1975-06-01

    A new method of rapid sampling of brain tissue, "freeze-blowing," has been used to compare the neurochemistry of the brain during anesthesia with that in the awake state. The method avoids anoxia associated with the sampling process. Physiologic variables, including body temperature, blood-gas tensions and blood pressure, were carefully monitored and controlled in the experimental animals. None of the agents tested (halothane, morphine, and ketamine) reduced the brain tissue high-energy phosphate reserved. All three drugs doubled glucose levels. Morphine lowered both lactate and the lactate/pyruvate ratio. Uniformly, the three anesthetic agents led to twofold increases of brain cyclic 3'-5' adenosine monophosphate concentrations. These changes suggest a possible role for cyclic nucleotides in central neurotransmission.

  8. The nature of the binding between LSD and a 5-HT receptor

    PubMed Central

    Berridge, M.J.; Prince, W.T.

    1974-01-01

    1 (+)-Lysergic acid diethylamide (LSD) mimicked 5-hydroxytryptamine (5-HT) in its ability to stimulate fluid secretion, to change transepithelial and intracellular potentials as well as to increase the cyclic 3′,5′-adenosine monophosphate (cyclic AMP) concentrations of isolated salivary glands of Calliphora. 2 Unlike 5-HT, LSD disengages slowly from the receptor and fluid secretion continues despite repeated washing. 3 Both 5-HT and tryptamine prevented LSD from acting on the glands. 4 LSD bound to the receptor was slowly displaced when glands were treated with agonists (tryptamine) or antagonists (gramine). 5 The property of LSD which permits it to function as an agonist despite remaining tightly bound to the receptor is discussed as a possible basis for its profound effects within the central nervous system. PMID:4375525

  9. pH sensing via bicarbonate-regulated “soluble” adenylyl cyclase (sAC)

    PubMed Central

    Rahman, Nawreen; Buck, Jochen; Levin, Lonny R.

    2013-01-01

    Soluble adenylyl cyclase (sAC) is a source of the second messenger cyclic adenosine 3′, 5′ monophosphate (cAMP). sAC is directly regulated by bicarbonate (HCO−3) ions. In living cells, HCO−3 ions are in nearly instantaneous equilibrium with carbon dioxide (CO2) and pH due to the ubiquitous presence of carbonic anhydrases. Numerous biological processes are regulated by CO2, HCO−3, and/or pH, and in a number of these, sAC has been shown to function as a physiological CO2/HCO3/pH sensor. In this review, we detail the known pH sensing functions of sAC, and we discuss two highly-studied, pH-dependent pathways in which sAC might play a role. PMID:24324443

  10. Flow-Driven Waves and Phase-Locked Self-Organization in Quasi-One-Dimensional Colonies of Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Gholami, A.; Steinbock, O.; Zykov, V.; Bodenschatz, E.

    2015-01-01

    We report experiments on flow-driven waves in a microfluidic channel containing the signaling slime mold Dictyostelium discoideum. The observed cyclic adenosine monophosphate (cAMP) wave trains developed spontaneously in the presence of flow and propagated with the velocity proportional to the imposed flow velocity. The period of the wave trains was independent of the flow velocity. Perturbations of flow-driven waves via external periodic pulses of the signaling agent cAMP induced 1 ∶1 , 2 ∶1 , 3 ∶1 , and 1 ∶2 frequency responses, reminiscent of Arnold tongues in forced oscillatory systems. We expect our observations to be generic to active media governed by reaction-diffusion-advection dynamics, where spatially bound autocatalytic processes occur under flow conditions.

  11. Adaptation of red cell enzymes and intermediates in metabolic disorders.

    PubMed

    Goebel, K M; Goebel, F D; Neitzert, A; Hausmann, L; Schneider, J

    1975-01-01

    The metabolic activity of the red cell glycolytic pathway hexose monophosphate shunt (HMP) with dependent glutathione system was studied in patients with hyperthyroidism (n = 10), hyperlipoproteinemia (n = 16), hypoglycemia (n = 25) and hyperglycemia (n = 23). In uncontrolled diabetics and patients with hyperthyroidism the mean value of glucose phosphate isomerase (GPI), glucose-6-phosphate dehydrogenase (G-6-PD), glutathione reductase (GR) was increased, whereas these enzyme activities were reduced in patients with hypoglycemia. Apart from a few values of hexokinase (HK) which were lower than normal the results in hyperlipoproteinemia patients remained essentially unchanged, including the intermediates such as 2,3-diphosphoglycerate (2,3-DPG), adenosine triphosphate (ATP) and reduced glutathione (GSH). While increased rates of 2,3-DPG and ATP in hypoglycemia patients were obtained, these substrates were markedly reduced in diabetics.

  12. DNA adsorption characteristics of hollow spherule allophane nano-particles.

    PubMed

    Matsuura, Yoko; Iyoda, Fumitoshi; Arakawa, Shuichi; John, Baiju; Okamoto, Masami; Hayashi, Hidetomo

    2013-12-01

    To understand the propensity of natural allophane to adsorb the DNA molecules, the adsorption characteristics were assessed against natural allophane (AK70), using single-stranded DNA (ss-DNA) and adenosine 5'-monophosphate (5'-AMP) as a reference molecule. The adsorption capacity of ss-DNA on AK70 exhibited one order of magnitude lower value as compared with that of 5'-AMP. The adsorption capacity of ss-DNA decreased with increasing pH due to the interaction generated between phosphate groups of ss-DNA and functional Al-OH groups on the wall perforations through deprotonating, associated with higher energy barrier for the adsorption of ss-DNA. The adsorption morphologies consisting of the individual ss-DNA with mono-layer coverage of the clustered allophane particle were observed successfully through transmission electron microscopy analysis. © 2013.

  13. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling

    PubMed Central

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-01-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after αCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve αCD3/CD28-stimulated CD8 cells. Consequently, αCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs. PMID:19740334

  14. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling.

    PubMed

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-09-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after alphaCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve alphaCD3/CD28-stimulated CD8 cells. Consequently, alphaCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs.

  15. TOR induced resistance to toxic adenosine analogs in Leishmania brought about by the internalization and degradation of the adenosine permease

    PubMed Central

    Detke, Siegfried

    2007-01-01

    TOR is an atypical multidrug resistance protein present in the human protozoan parasite, Leishmania. Resistance to the toxic adenosine analog tubercidin was brought about by redirecting the adenosine permease from the plasma membrane to the multivesicular tubule lysosome. The cells became resistant to tubercidin because they were unable to take up and accumulate this toxic purine. The domain which was recognized by TOR in this internalization pathway was identified by expressing portions of this transporter in Leishmania and assessing whether they were capable of hindering the multidrug resistance capability of TOR. This approach identified the adenosine permease region spanning Met289 to Trp305. This region was also the epitope recognized by the internalization mechanism. An internal deletion mutant lacking Met289-Trp305 was functionally active but could no longer be internalized in cells with high TOR levels. The internalization and altered trafficking of the adenosine permease by TOR was observed in yeast and human embryonic kidney cells co-expressing these two Leishmania proteins indicating that the internalization process was conserved in evolutionary diverse organisms. The inability of Saccharomyces with a temperature sensitive ubiquitin ligase to internalize adenosine permease suggested that ubiquitination was involved in this altered trafficking. PMID:17428463

  16. TOR-induced resistance to toxic adenosine analogs in Leishmania brought about by the internalization and degradation of the adenosine permease.

    PubMed

    Detke, Siegfried

    2007-05-15

    TOR is an atypical multidrug resistance protein present in the human protozoan parasite, Leishmania. Resistance to the toxic adenosine analog tubercidin was brought about by redirecting the adenosine permease from the plasma membrane to the multivesicular tubule lysosome. The cells became resistant to tubercidin because they were unable to take up and accumulate this toxic purine. The domain, which was recognized by TOR in this internalization pathway, was identified by expressing portions of this transporter in Leishmania and assessing whether they were capable of hindering the multidrug resistance capability of TOR. This approach identified the adenosine permease region spanning Met289 to Trp305. This region was also the epitope recognized by the internalization mechanism. An internal deletion mutant lacking Met289-Trp305 was functionally active but could no longer be internalized in cells with high TOR levels. The internalization and altered trafficking of the adenosine permease by TOR was observed in yeast and human embryonic kidney cells co-expressing these two Leishmania proteins indicating that the internalization process was conserved in evolutionary diverse organisms. The inability of Saccharomyces with a temperature-sensitive ubiquitin ligase to internalize adenosine permease suggested that ubiquitination was involved in this altered trafficking.

  17. Extracellular adenosine production by ecto-5′-nucleotidase (CD73) enhances radiation-induced lung fibrosis

    PubMed Central

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V.; Gau, Eva; Thompson, Linda F.; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W.; Blackburn, Michael R.; Westendorf, Astrid M.; Stuschke, Martin; Jendrossek, Verena

    2016-01-01

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks post-irradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately three-fold. Histological evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P<0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase (PEG-ADA) or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacological strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. PMID:26921334

  18. Treatment of heterotopic ossification through remote ATP hydrolysis.

    PubMed

    Peterson, Jonathan R; De La Rosa, Sara; Eboda, Oluwatobi; Cilwa, Katherine E; Agarwal, Shailesh; Buchman, Steven R; Cederna, Paul S; Xi, Chuanwu; Morris, Michael D; Herndon, David N; Xiao, Wenzhong; Tompkins, Ronald G; Krebsbach, Paul H; Wang, Stewart C; Levi, Benjamin

    2014-09-24

    Heterotopic ossification (HO) is the pathologic development of ectopic bone in soft tissues because of a local or systemic inflammatory insult, such as burn injury or trauma. In HO, mesenchymal stem cells (MSCs) are inappropriately activated to undergo osteogenic differentiation. Through the correlation of in vitro assays and in vivo studies (dorsal scald burn with Achilles tenotomy), we have shown that burn injury enhances the osteogenic potential of MSCs and causes ectopic endochondral heterotopic bone formation and functional contractures through bone morphogenetic protein-mediated canonical SMAD signaling. We further demonstrated a prevention strategy for HO through adenosine triphosphate (ATP) hydrolysis at the burn site using apyrase. Burn site apyrase treatment decreased ATP, increased adenosine 3',5'-monophosphate, and decreased phosphorylation of SMAD1/5/8 in MSCs in vitro. This ATP hydrolysis also decreased HO formation and mitigated functional impairment in vivo. Similarly, selective inhibition of SMAD1/5/8 phosphorylation with LDN-193189 decreased HO formation and increased range of motion at the injury site in our burn model in vivo. Our results suggest that burn injury-exacerbated HO formation can be treated through therapeutics that target burn site ATP hydrolysis and modulation of SMAD1/5/8 phosphorylation. Copyright © 2014, American Association for the Advancement of Science.

  19. (S)-α-Chlorohydrin Inhibits Protein Tyrosine Phosphorylation through Blocking Cyclic AMP - Protein Kinase A Pathway in Spermatozoa

    PubMed Central

    Zheng, Weiwei; Yang, Bei; Pi, Jingbo; He, Gengsheng; Qu, Weidong

    2012-01-01

    α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 µM to isolated rat epididymal sperm inhibited PTP. Sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activities, the intracellular adenosine 5′-triphosphate (ATP) levels, 3′-5′-cyclic adenosine monophosphate (cAMP) levels and phosphorylation of protein kinase A (PKA) substrates in rat sperm were diminished dramatically, indicating that both glycolysis and the cAMP/PKA signaling pathway were impaired by SACH. The inhibition of both PTP and phosphorylation of PKA substrates by SACH could be restored by addition of cAMP analog dibutyryl-cAMP (dbcAMP) and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Moreover, addition of glycerol protected glycolysis, ATP levels, phosphorylation of PKA substrates and PTP against the influence of SACH. These results suggested SACH inhibited PTP through blocking cAMP/PKA pathway in sperm, and PTP inhibition may play a role in infertility associated with SACH. PMID:22916194

  20. Protective Mechanisms of S. lycopersicum Aqueous Fraction (Nucleosides and Flavonoids) on Platelet Activation and Thrombus Formation: In Vitro, Ex Vivo and In Vivo Studies.

    PubMed

    Fuentes, Eduardo; Pereira, Jaime; Alarcón, Marcelo; Valenzuela, Claudio; Pérez, Pablo; Astudillo, Luis; Palomo, Iván

    2013-01-01

    The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5'-monophosphate) by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P < 0.05). Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1  μ m(2) (P < 0.001). After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P < 0.001). Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study) and thrombosis formation in vivo (murine model) were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids) to processed foods.

  1. Protective Mechanisms of S. lycopersicum Aqueous Fraction (Nucleosides and Flavonoids) on Platelet Activation and Thrombus Formation: In Vitro, Ex Vivo and In Vivo Studies

    PubMed Central

    Fuentes, Eduardo; Pereira, Jaime; Alarcón, Marcelo; Valenzuela, Claudio; Pérez, Pablo; Astudillo, Luis; Palomo, Iván

    2013-01-01

    The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5′-monophosphate) by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P < 0.05). Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1 μm2 (P < 0.001). After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P < 0.001). Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study) and thrombosis formation in vivo (murine model) were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids) to processed foods. PMID:24159349

  2. Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry.

    PubMed

    Finnigan, William; Thomas, Adam; Cromar, Holly; Gough, Ben; Snajdrova, Radka; Adams, Joseph P; Littlechild, Jennifer A; Harmer, Nicholas J

    2017-03-20

    Carboxylic acid reductase enzymes (CARs) meet the demand in synthetic chemistry for a green and regiospecific route to aldehydes from their respective carboxylic acids. However, relatively few of these enzymes have been characterized. A sequence alignment with members of the ANL (Acyl-CoA synthetase/ NRPS adenylation domain/Luciferase) superfamily of enzymes shed light on CAR functional dynamics. Four unstudied enzymes were selected by using a phylogenetic analysis of known and hypothetical CARs, and for the first time, a thorough biochemical characterization was performed. Kinetic analysis of these enzymes with various substrates shows that they have a broad but similar substrate specificity. Electron-rich acids are favored, which suggests that the first step in the proposed reaction mechanism, attack by the carboxylate on the α-phosphate of adenosine triphosphate (ATP), is the step that determines the substrate specificity and reaction kinetics. The effects of pH and temperature provide a clear operational window for the use of these CARs, whereas an investigation of product inhibition by NADP + , adenosine monophosphate, and pyrophosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first. This study consolidates CARs as important and exciting enzymes in the toolbox for sustainable chemistry and provides specifications for their use as a biocatalyst.

  3. X-ray-structure of a cytidylyl-3',5'-adenosine-proflavine complex: a self-paired parallel-chain double helical dimer with an intercalated acridine dye.

    PubMed Central

    Westhof, E; Sundaralingam, M

    1980-01-01

    The non-self-complementary dinucleoside monophosphate cytidylyl-3',5'-adenosine (CpA) forms a base-paired parallel-chain dimer with an intercalated proflavine. The dimer complex possesses a right-handed helical twist. The dimer helix has an irregular girth with a neutral adenine-adenine (A-A) pair, hydrogen-bonded through the N6 and N7 sites (C1'...C1' separation of 10.97 A), and a triply hydrogen-bonded protonated cytosine-cytosine (C-C) pair with a proton shared between the base N3 sites (Cl'...Cl' separation of 9.59 A). The torsion angles of the sugar-phosphate backbone are within their most preferred ranges and the sugar puckering sequence (5' leads to 3') is C3'-endo, C2'-endo. There is also a second proflavine molecule sandwiched between CpA dimers on the 21-axis. Both proflavines are necessarily disordered, being on dyad axis, and this suggests possible insights into the dynamics of intercalation of planar drugs. This structure shows that intercalation of planar drugs in nucleic acids may not be restricted to antiparallel complementary Watson-Crick pairing regions and provides additional mechanisms for acridine mutagenesis. PMID:6929524

  4. (S)-α-chlorohydrin inhibits protein tyrosine phosphorylation through blocking cyclic AMP - protein kinase A pathway in spermatozoa.

    PubMed

    Zhang, Hao; Yu, Huan; Wang, Xia; Zheng, Weiwei; Yang, Bei; Pi, Jingbo; He, Gengsheng; Qu, Weidong

    2012-01-01

    α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 µM to isolated rat epididymal sperm inhibited PTP. Sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activities, the intracellular adenosine 5'-triphosphate (ATP) levels, 3'-5'-cyclic adenosine monophosphate (cAMP) levels and phosphorylation of protein kinase A (PKA) substrates in rat sperm were diminished dramatically, indicating that both glycolysis and the cAMP/PKA signaling pathway were impaired by SACH. The inhibition of both PTP and phosphorylation of PKA substrates by SACH could be restored by addition of cAMP analog dibutyryl-cAMP (dbcAMP) and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Moreover, addition of glycerol protected glycolysis, ATP levels, phosphorylation of PKA substrates and PTP against the influence of SACH. These results suggested SACH inhibited PTP through blocking cAMP/PKA pathway in sperm, and PTP inhibition may play a role in infertility associated with SACH.

  5. Long-QT mutation p.K557E-Kv7.1: dominant-negative suppression of IKs, but preserved cAMP-dependent up-regulation.

    PubMed

    Spätjens, Roel L H M G; Bébarová, Markéta; Seyen, Sandrine R M; Lentink, Viola; Jongbloed, Roselie J; Arens, Yvonne H J M; Heijman, Jordi; Volders, Paul G A

    2014-10-01

    Mutations in KCNQ1, encoding for Kv7.1, the α-subunit of the IKs channel, cause long-QT syndrome type 1, potentially predisposing patients to ventricular tachyarrhythmias and sudden cardiac death, in particular, during elevated sympathetic tone. Here, we aim at characterizing the p.Lys557Glu (K557E) Kv7.1 mutation, identified in a Dutch kindred, at baseline and during (mimicked) increased adrenergic tone. K557E carriers had moderate QTc prolongation that augmented significantly during exercise. IKs characteristics were determined after co-expressing Kv7.1-wild-type (WT) and/or K557E with minK and Yotiao in Chinese hamster ovary cells. K557E caused IKs loss of function with slowing of the activation kinetics, acceleration of deactivation kinetics, and a rightward shift of voltage-dependent activation. Together, these contributed to a dominant-negative reduction in IKs density. Confocal microscopy and western blot indicated that trafficking of K557E channels was not impaired. Stimulation of WT IKs by 3'-5'-cyclic adenosine monophosphate (cAMP) generated strong current up-regulation that was preserved for K557E in both hetero- and homozygosis. Accumulation of IKs at fast rates occurred both in WT and in K557E, but was blunted in the latter. In a computational model, K557E showed a loss of action potential shortening during β-adrenergic stimulation, in accordance with the lack of QT shortening during exercise in patients. K557E causes IKs loss of function with reduced fast rate-dependent current accumulation. cAMP-dependent stimulation of mutant IKs is preserved, but incapable of fully compensating for the baseline current reduction, explaining the long QT intervals at baseline and the abnormal QT accommodation during exercise in affected patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  6. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet-fed mice.

    PubMed

    Santos, Izabelle Barcellos; de Bem, Graziele Freitas; Cordeiro, Viviane Silva Cristino; da Costa, Cristiane Aguiar; de Carvalho, Lenize Costa Reis Marins; da Rocha, Ana Paula Machado; da Costa, Gisele França; Ognibene, Dayane Teixeira; de Moura, Roberto Soares; Resende, Angela Castro

    2017-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. The Vitis vinifera L. grape skin extract (ACH09) is an important source of polyphenols, which are related to its antioxidant and antihyperglycemic activities. We hypothesized that ACH09 could also exert beneficial effects on metabolic disorders associated with obesity and evaluated ACH09's influence on high-fat (HF) diet-induced hepatic steatosis and insulin resistance in C57BL/6 mice. The animals were fed a standard diet (10% fat, control) or an HF diet (60% fat, HF) with or without ACH09 (200mg/[kg d]) for 12weeks. Our results showed that ACH09 reduced HF diet-induced body weight gain, prevented hepatic lipid accumulation and steatosis, and improved hyperglycemia and insulin resistance. The underlying mechanisms of these beneficial effects of ACH09 may involve the activation of hepatic insulin-signaling pathway because the expression of phosphorylated insulin receptor substrate-1, phosphatidylinositol 3-kinase, phosphorylated Akt serine/threonine kinase 1, and glucose transporter 2 was increased by ACH09 and correlated with improvement of hyperglycemia, hyperinsulinemia, and insulin resistance. ACH09 reduced the expression of the lipogenic factor sterol regulatory-element binding protein-1c in the liver and upregulated the lipolytic pathway (phosphorylated liver kinase B1/phosphorylated adenosine-monophosphate-activated protein kinase), which was associated with normal hepatic levels of triglyceride and cholesterol and prevention of steatosis. ACH09 prevented the hepatic oxidative damage in HF diet-fed mice probably by restoration of antioxidant activity. In conclusion, ACH09 protected mice from HF diet-induced obesity, insulin resistance, and hepatic steatosis. The regulation of hepatic insulin signaling pathway, lipogenesis, and oxidative stress may contribute to ACH09's protective effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of adenosine monophosphate on induction of therapeutic hypothermia and neuronal damage after cardiopulmonary resuscitation in rats.

    PubMed

    Knapp, Jürgen; Schneider, Andreas; Nees, Corinna; Bruckner, Thomas; Böttiger, Bernd W; Popp, Erik

    2014-09-01

    Animal studies and pathophysiological considerations suggest that therapeutic hypothermia after cardiopulmonary resuscitation is the more effective the earlier it is induced. Therefore this study is sought to examine whether pharmacological facilitated hypothermia by administration of 5'-adenosine monophosphate (AMP) is neuroprotective in a rat model of cardiac arrest (CA) and resuscitation. Sixty-one rats were subjected to CA. After 6 min of ventricular fibrillation advanced cardiac life support was started. After successful return of spontaneous circulation (ROSC, n=40), animals were randomized either to placebo group (n=14) or AMP group (800 mg/kg body weight, n=14). Animals were kept at an ambient temperature of 18°C for 12 h after ROSC and core body temperature was measured using a telemetry temperature probe. Neuronal damage was analyzed by counting Nissl-positive (i.e. viable) neurons and TUNEL-positive (i.e. apoptotic) cells in coronal brain sections 7 days after ROSC. Functional status evaluated on days 1, 3 and 7 after ROSC by a tape removal test. Time until core body temperature dropped to <34.0°C was 31 min [28; 45] in AMP-treated animals and 125 min [90; 180] in the control group (p=0.003). Survival until 7 days after ROSC was comparable in both groups. Also number of Nissl-positive cells (AMP: 1 [1; 7] vs. placebo: 2 [1; 3] per 100 pixel; p=0.66) and TUNEL-positive cells (AMP: 56 [44; 72] vs. placebo: 53 [41; 67] per 100 pixel; p=0.70) did not differ. Neither did AMP affect functional neurological outcome up to 7 days after ROSC. Mean arterial pressure 20 min after ROSC was 49 [45; 55] mmHg in the AMP group in comparison to 91 [83; 95] mmHg in the control group (p<0.001). Although application of AMP reduced the time to reach a core body temperature of <34°C neither survival was improved nor neuronal damage attenuated. Reason for this is probably induction of marked hypotension as an adverse reaction to AMP treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Single and short-term dosing effects of levocetirizine on adenosine monophosphate bronchoprovocation in atopic asthma

    PubMed Central

    Lee, Daniel K C; Gray, Robert D; Wilson, Andrew M; Robb, Fiona M; Soutar, Patricia C; Lipworth, Brian J

    2004-01-01

    Aims Adenosine monophosphate (AMP) acts indirectly via primed airway mast cells to induce bronchial hyper-responsiveness, which in turn correlates with eosinophilic asthmatic inflammation and atopic disease expression. We evaluated single and short-term dosing effects of a modern histamine H1-receptor antagonist, levocetirizine, given at the usual clinically recommended dose, on the primary outcome of AMP bronchoprovocation. Methods Fifteen atopic asthmatics were randomized in double-blind, cross-over fashion to receive for 1 week either levocetirizine 5 mg or placebo. There was a 1-week washout period prior to each randomized treatment. The provocative concentration of AMP producing a 20% fall in FEV1 (PC20) was measured after each washout at baseline and at 4–6 h following the first and last doses of each randomized treatment. Results Baseline mean ± SEM values after washout prior to each randomized treatment comparing levocetirizine vs placebo were not significantly different for prechallenge FEV1 (% predicted) 83 ± 4 vs 82 ± 4, or AMP PC20 (mg ml−1) 45 ± 24 vs 45 ± 22, respectively. Airway calibre as prechallenge FEV1 for levocetirizine vs placebo was not significantly different following the first dose 86 ± 4 vs 82 ± 4, or the last dose 85 ± 4 vs 83 ± 4, respectively. There were significant improvements (P< 0.05) in AMP PC20 comparing levocetirizine vs placebo following the first dose 123 ± 73 vs 48 ± 24, a 1.4 doubling dilution difference (95% CI 0.8, 1.9), and the last dose 127 ± 74 vs 53 ± 29, a 1.2 doubling dilution difference (95% CI 0.5, 2.0). AMP PC20 was also improved (P< 0.05) by the first and last doses of levocetirizine but not placebo, vs respective baseline values, with there being no difference in the degree of protection between first and last doses. Conclusions Single and short-term dosing with levocetirizine conferred similar improvements in bronchial hyper-responsiveness to AMP challenge, which was unrelated to prechallenge airway calibre. Further studies are indicated to evaluate the longer-term effects of levocetirizine on asthma exacerbations. PMID:15206990

  9. Roles of p300 and cyclic adenosine monophosphate response element binding protein in high glucose-induced hypoxia-inducible factor 1α inactivation under hypoxic conditions.

    PubMed

    Ding, Lingtao; Yang, Minlie; Zhao, Tianlan; Lv, Guozhong

    2017-05-01

    Given the high prevalence of diabetes and burn injuries worldwide, it is essential to dissect the underlying mechanism of delayed burn wound healing in diabetes patients, especially the high glucose-induced hypoxia-inducible factor 1 (HIF-1)-mediated transcription defects. Human umbilical vein endothelial cells were cultured with low or high concentrations of glucose. HIF-1α-induced vascular endothelial growth factor (VEGF) transcription was measured by luciferase assay. Immunofluorescence staining was carried out to visualize cyclic adenosine monophosphate response element binding protein (CREB) localization. Immunoprecipitation was carried out to characterize the association between HIF-1α/p300/CREB. To test whether p300, CREB or p300+CREB co-overexpression was sufficient to rescue the HIF-1-mediated transcription defect after high glucose exposure, p300, CREB or p300+CREB co-overexpression were engineered, and VEGF expression was quantified. Finally, in vitro angiogenesis assay was carried out to test whether the high glucose-induced angiogenesis defect is rescuable by p300 and CREB co-overexpression. Chronic high glucose treatment resulted in impaired HIF-1-induced VEGF transcription and CREB exclusion from the nucleus. P300 or CREB overexpression alone cannot rescue high glucose-induced HIF-1α transcription defects. In contrast, co-overexpression of p300 and CREB dramatically ameliorated high glucose-induced impairment of HIF-1-mediated VEGF transcription, as well as in vitro angiogenesis. Finally, we showed that co-overexpression of p300 and CREB rectifies the dissociation of HIF-1α-p300-CREB protein complex in chronic high glucose-treated cells. Both p300 and CREB are required for the function integrity of HIF-1α transcription machinery and subsequent angiogenesis, suggesting future studies to improve burn wound healing might be directed to optimization of the interaction between p300, CREB and HIF-1α. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  10. Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion.

    PubMed

    Soares, Juliana Mikaelly Dias; Pereira Leal, Ana Ediléia Barbosa; Silva, Juliane Cabral; Almeida, Jackson R G S; de Oliveira, Helinando Pequeno

    2017-01-01

    The development of alternatives for insulin secretion control in vivo or in vitro represents an important aspect to be investigated. In this direction, natural products have been progressively explored with this aim. In particular, flavonoids are potential candidates to act as insulin secretagogue. To study the influence of flavonoid on overall modulation mechanisms of insulin secretion. The research was conducted in the following databases and platforms: PubMed, Scopus, ISI Web of Knowledge, SciELO, LILACS, and ScienceDirect, and the MeSH terms used for the search were flavonoids, flavones, islets of Langerhans, and insulin-secreting cells. Twelve articles were included and represent the basis of discussion on mechanisms of insulin secretion of flavonoids. Papers in ISI Web of Knowledge were in number of 1, Scopus 44, PubMed 264, ScienceDirect 511, and no papers from LILACS and SciELO databases. According to the literature, the majority of flavonoid subclasses can modulate insulin secretion through several pathways, in an indication that corresponding molecule is a potential candidate for active materials to be applied in the treatment of diabetes. The action of natural products on insulin secretion represents an important investigation topic due to their importance in the diabetes controlIn addition to their typical antioxidant properties, flavonoids contribute to the insulin secretionThe modulation of insulin secretion is induced by flavonoids according to different mechanisms. Abbreviations used: K ATP channels: ATP-sensitive K + channels, GLUT4: Glucose transporter 4, ERK1/2: Extracellular signal-regulated protein kinases 1 and 2, L-VDCCs: L-type voltage-dependent Ca +2 channels, GLUT1: Glucose transporter 1, AMPK: Adenosine monophosphate-activated protein kinase, PTP1B: Protein tyrosine phosphatase 1B, GLUT2: Glucose transporter 2, cAMP: Cyclic adenosine monophosphate, PKA: Protein kinase A, PTK: Protein tyrosine kinase, CaMK II: Ca 2+ /calmodulin-dependent protein kinase II, GSIS: Glucose-stimulated insulin secretion, Insig-1: Insulin-induced gene 1, IRS-2: Insulin receptor substrate 2, PDX-1: Pancreatic and duodenal homeobox 1, SREBP-1c: Sterol regulatory element binding protein-1c, DMC: Dihydroxy-6'-methoxy-3',5'-dimethylchalcone, GLP-1: Glucagon-like peptide-1, GLP-1R: Glucagon-like peptide 1 receptor.

  11. The prostaglandin receptor EP2 activates multiple signaling pathways and β-arrestin1 complex formation during mouse skin papilloma development

    PubMed Central

    Chun, Kyung-Soo; Lao, Huei-Chen; Trempus, Carol S.; Okada, Manabu; Langenbach, Robert

    2009-01-01

    Prostaglandin E2 (PGE2) is elevated in many tumor types, but PGE2's contributions to tumor growth are largely unknown. To investigate PGE2's roles, the contributions of one of its receptors, EP2, were studied using the mouse skin initiation/promotion model. Initial studies indicated that protein kinase A (PKA), epidermal growth factor receptor (EGFR) and several effectors—cyclic adenosine 3′,5′-monophosphate response element-binding protein (CREB), H-Ras, Src, protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2—were activated in 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted papillomas and that PKA and EGFR inhibition (H89 and AG1478, respectively) decreased papilloma formation. EP2's contributions to the activation of these pathways and papilloma development were determined by inhibiting endogenous TPA-induced PGE2 production with indomethacin (Indo) and concomitantly treating with the EP2 agonist, CAY10399 (CAY). CAY treatment restored papilloma formation in TPA/Indo-treated mice and increased cyclic adenosine 3′,5′-monophosphate and PKA activation as measured by p-CREB formation. CAY treatment also increased EGFR and Src activation and their inhibition by AG1478 and PP2 indicated that Src was upstream of EGFR. CAY also increased H-Ras, ERK1/2 and AKT activation, and AG1478 decreased their activation indicating EGFR being upstream. Supporting EP2's contribution, EP2−/− mice exhibited 65% fewer papillomas and reduced Src, EGFR, H-Ras, AKT and ERK1/2 activation. G protein-coupled receptor (GPCR) activation of EGFR has been reported to involve Src's activation via a GPCR–β-arrestin–Src complex. Indeed, immunoprecipitation of β-arrestin1 or p-Src indicated the presence of an EP2–β-arrestin1–p-Src complex in papillomas. The data indicated that EP2 contributed to tumor formation via activation of PKA and EGFR and that EP2 formed a complex with β-arrestin1 and Src that contributed to signaling and/or EP2 desensitization. PMID:19587094

  12. Involvement of adenosine monophosphate activated kinase in interleukin-6 regulation of steroidogenic acute regulatory protein and cholesterol side chain cleavage enzyme in the bovine zona fasciculata and zona reticularis.

    PubMed

    De Silva, Matharage S I; Dayton, Adam W; Rhoten, Lance R; Mallett, John W; Reese, Jared C; Squires, Mathieu D; Dalley, Andrew P; Porter, James P; Judd, Allan M

    2018-06-01

    In bovine adrenal zona fasciculata (ZF) and NCI-H295R cells, interleukin-6 (IL-6) increases cortisol release, increases expression of steroidogenic acute regulatory protein (StAR), cholesterol side chain cleavage enzyme (P450scc), and steroidogenic factor 1 (SF-1) (increases steroidogenic proteins), and decreases the expression of adrenal hypoplasia congenita-like protein (DAX-1) (inhibits steroidogenic proteins). In contrast, IL-6 decreases bovine adrenal zona reticularis (ZR) androgen release, StAR, P450scc, and SF-1 expression, and increases DAX-1 expression. Adenosine monophosphate (AMP) activated kinase (AMPK) regulates steroidogenesis, but its role in IL-6 regulation of adrenal steroidogenesis is unknown. In the present study, an AMPK activator (AICAR) increased (P < 0.01) NCI-H295R StAR promoter activity, StAR and P450scc expression, and the phosphorylation of AMPK (PAMPK) and acetyl-CoA carboxylase (PACC) (indexes of AMPK activity). In ZR (decreased StAR, P450scc, SF-1, increased DAX-1) (P < 0.01) and ZF tissues (increased StAR, P450scc, SF-1, decreased DAX-1) (P < 0.01), AICAR modified StAR, P450scc, SF-1 and DAX-1 mRNAs/proteins similar to the effects of IL-6. The activity (increased PAMPK and PACC) (P < 0.01) of AMPK in the ZF and ZR was increased by AICAR and IL-6. In support of an AMPK role in IL-6 ZF and ZR effects, the AMPK inhibitor compound C blocked (P < 0.01) the effects of IL-6 on the expression of StAR, P450scc, SF-1, and DAX-1. Therefore, IL-6 modification of the expression of StAR and P450scc in the ZF and ZR may involve activation of AMPK and these changes may be related to changes in the expression of SF-1 and DAX-1. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology.

    PubMed

    Foulke-Abel, Jennifer; In, Julie; Yin, Jianyi; Zachos, Nicholas C; Kovbasnjuk, Olga; Estes, Mary K; de Jonge, Hugo; Donowitz, Mark

    2016-03-01

    Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na(+) absorption and stimulated fluid and anion secretion under basal and regulated conditions in undifferentiated and differentiated cultures to show their functional relevance to ion transport physiology and pathophysiology. Human intestinal tissue specimens were obtained from an endoscopic biopsy or surgical resections performed at Johns Hopkins Hospital. Crypts were isolated, enteroids were propagated in culture, induced to undergo differentiation, and transduced with lentiviral vectors. Crypt markers, surface cell enzymes, and membrane ion transporters were characterized using quantitative reverse-transcription polymerase chain reaction, immunoblot, or immunofluorescence analyses. We used multiphoton and time-lapse confocal microscopy to monitor intracellular pH and luminal dilatation in enteroids under basal and regulated conditions. Enteroids differentiated upon withdrawal of WNT3A, yielding decreased crypt markers and increased villus-like characteristics. Na(+)/H(+) exchanger 3 activity was similar in undifferentiated and differentiated enteroids, and was affected by known inhibitors, second messengers, and bacterial enterotoxins. Forskolin-induced swelling was completely dependent on cystic fibrosis transmembrane conductance regulator and partially dependent on Na(+)/H(+) exchanger 3 and Na(+)/K(+)/2Cl(-) cotransporter 1 inhibition in undifferentiated and differentiated enteroids. Increases in cyclic adenosine monophosphate with forskolin caused enteroid intracellular acidification in HCO3(-)-free buffer. Cyclic adenosine monophosphate-induced enteroid intracellular pH acidification as part of duodenal HCO3(-) secretion appears to require cystic fibrosis transmembrane conductance regulator and electrogenic Na(+)/HCO3(-) cotransporter 1. Undifferentiated or crypt-like, and differentiated or villus-like, human enteroids represent distinct points along the crypt-villus axis; they can be used to characterize electrolyte transport processes along the vertical axis of the small intestine. The duodenal enteroid model showed that electrogenic Na(+)/HCO3(-) cotransporter 1 might be a target in the intestinal mucosa for treatment of secretory diarrheas. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Interaction of a chick skin collagen fragment (alpha1-CB5) with human platelets. Biochemical studies during the aggregation and release reaction.

    PubMed

    Chiang, T M; Beachey, E H; Kang, A H

    1975-09-10

    The denatured alpha1(I) chain and the cyanogen bromide peptide, alpha1(I)-CB5, of chick skin collagen cause the release of serotonin and leakage of lactic dehydrogenase from human platelets in a manner similar to the release reaction mediated by adenosine diphosphate and native collagen. These peptides also cause a decrease in the level of adenosine 3':5'-monophosphate (cAMP) in platelets. Adenylate cyclase activity of platelets is partially inhibited by these peptides as well as by native collagen, ADP, and epinephrine, but cAMP phosphodiesterase activity is unaltered by these substances. In contrast, the level of platelet guanosine 3':5'-monophosphate (cGMP) is increased by the collagen peptides as well as the other aggregating agents. The increase is associated with increased guanylate cyclase, but normal cGMP phosphodiesterase activities of platelets. Optical rotatory and viscometric measurements of the alpha1 chains and alpha1-CB5 of chick skin in 0.01 M phosphate/0.15 M sodium chloride, pH 7.4, at various temperatures as a function of time indicate that no detectable renaturation occurs at 37 degrees for at least 30 min of observation. Molecular sieve chromatography of alpha1-CB5 in the phosphate buffer at 37 degrees shows that its elution position is identical to that performed under denaturing conditions (at 45 degrees) with no evidence of higher molecular weight aggregates, and the alpha1-CB5 glycopeptide fraction eluting from the column at the position of its monomer retains the platelet aggregating activity. Additionally, electron microscopic examination of the platelet-rich plasma that had been reacted with these peptides fail to show any ordered collagen structures. These data indicate that the denatured alpha1 chain and alpha1-CB5 glycopeptide of chick skin collagen mediate platelet aggregation through the "physiologic" release reaction in a manner similar to that induced by other aggregating agents such as ADP, epinephrine, or native collagen, and support the conclusion that the aggregating activity of the alpha1 chain and alpha1-CB5 is not likely to be due to the formation of polymerized products.

  15. A dominant variant in the PDE1C gene is associated with nonsyndromic hearing loss.

    PubMed

    Wang, Li; Feng, Yong; Yan, Denise; Qin, Litao; Grati, M'hamed; Mittal, Rahul; Li, Tao; Sundhari, Abhiraami Kannan; Liu, Yalan; Chapagain, Prem; Blanton, Susan H; Liao, Shixiu; Liu, Xuezhong

    2018-06-02

    Identification of genes with variants causing non-syndromic hearing loss (NSHL) is challenging due to genetic heterogeneity. The difficulty is compounded by technical limitations that in the past prevented comprehensive gene identification. Recent advances in technology, using targeted capture and next-generation sequencing (NGS), is changing the face of gene identification and making it possible to rapidly and cost-effectively sequence the whole human exome. Here, we characterize a five-generation Chinese family with progressive, postlingual autosomal dominant nonsyndromic hearing loss (ADNSHL). By combining population-specific mutation arrays, targeted deafness genes panel, whole exome sequencing (WES), we identified PDE1C (Phosphodiesterase 1C) c.958G>T (p.A320S) as the disease-associated variant. Structural modeling insights into p.A320S strongly suggest that the sequence alteration will likely affect the substrate-binding pocket of PDE1C. By whole-mount immunofluorescence on postnatal day 3 mouse cochlea, we show its expression in outer (OHC) and inner (IHC) hair cells cytosol co-localizing with Lamp-1 in lysosomes. Furthermore, we provide evidence that the variant alters the PDE1C hydrolytic activity for both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Collectively, our findings indicate that the c.958G>T variant in PDE1C may disrupt the cross talk between cGMP-signaling and cAMP pathways in Ca 2+ homeostasis.

  16. Substrate-Dependence of Competitive Nucleotide Pyrophosphatase/Phosphodiesterase1 (NPP1) Inhibitors

    PubMed Central

    Lee, Sang-Yong; Sarkar, Soumya; Bhattarai, Sanjay; Namasivayam, Vigneshwaran; De Jonghe, Steven; Stephan, Holger; Herdewijn, Piet; El-Tayeb, Ali; Müller, Christa E.

    2017-01-01

    Nucleotide pyrophosphatase/phosphodiesterase type 1 (NPP1) is a membrane glycoprotein involved in the hydrolysis of extracellular nucleotides. Its major substrate is ATP which is converted to AMP and diphosphate. NPP1 was proposed as a new therapeutic target in brain cancer and immuno-oncology. Several NPP1 inhibitors have been reported to date, most of which were evaluated vs. the artificial substrate p-nitrophenyl 5′-thymidine monophosphate (p-Nph-5′-TMP). Recently, we observed large discrepancies in inhibitory potencies for a class of competitive NPP1 inhibitors when tested vs. the artificial substrate p-Nph-5′-TMP as compared to the natural substrate ATP. Therefore, the goal of the present study was to investigate whether inhibitors of human NPP1 generally display substrate-dependent inhibitory potency. Systematic evaluation of nucleotidic as well as non-nucleotidic NPP1 inhibitors revealed significant differences in determined Ki values for competitive, but not for non- and un-competitive inhibitors when tested vs. the frequently used artificial substrate p-Nph-5′-TMP as compared to ATP. Allosteric modulation of NPP1 by p-Nph-5′-TMP may explain these discrepancies. Results obtained using the AMP derivative p-nitrophenyl 5′-adenosine monophosphate (p-Nph-5′-AMP) as an alternative artificial substrate correlated much better with those employing the natural substrate ATP. PMID:28261095

  17. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade

    PubMed Central

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases. PMID:27069362

  18. Ex vivo relaxation effect of Cuscuta chinensis extract on rabbit corpus cavernosum.

    PubMed

    Sun, Kai; Zhao, Chen; Chen, Xiang-Feng; Kim, Hye-Kyung; Choi, Bo-Ram; Huang, Yi-Ran; Park, Jong-Kwan

    2013-01-01

    The effect of Cuscuta chinensis extract on the rabbit penile corpus cavernosum (PCC) was evaluated in the present study. Penises obtained from healthy male New Zealand white rabbits (2.5-3.0 kg) were precontracted with phenylephrine (Phe, 10 µmol l(-1)) and then treated with various concentrations of Cuscuta chinensis extract (1, 2, 3, 4 and 5 mg ml(-1)). The change in penile tension was recorded, and cyclic nucleotides in the PCC were measured by radioimmunoassay (RIA). The interaction between Cuscuta chinensis and sildenafil was also evaluated. The result indicated that the PCC relaxation induced by Cuscuta chinensis extract was concentration-dependent. Pre-treatment with an nitric oxide synthase (NOS) inhibitor (Nω nitro-L-arginine-methyl ester, L-NAME), a guanylyl cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, ODQ), or a protein kinase A inhibitor (KT 5720) did not completely inhibit the relaxation. Incubation of penile cavernous tissue with the Cuscuta chinensis extract significantly increased cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) in the PCC. Moreover, the Cuscuta chinensis extract significantly enhanced sildenafil-induced PCC relaxation. In conclusion, the Cuscuta chinensis extract exerts a relaxing effect on penile cavernous tissue in part by activating the NO-cGMP pathway, and it may improve erectile dysfunction (ED), which does not completely respond to sildenafil citrate.

  19. Ex vivo relaxation effect of Cuscuta chinensis extract on rabbit corpus cavernosum

    PubMed Central

    Sun, Kai; Zhao, Chen; Chen, Xiang-Feng; Kim, Hye-Kyung; Choi, Bo-Ram; Huang, Yi-Ran; Park, Jong-Kwan

    2013-01-01

    The effect of Cuscuta chinensis extract on the rabbit penile corpus cavernosum (PCC) was evaluated in the present study. Penises obtained from healthy male New Zealand white rabbits (2.5–3.0 kg) were precontracted with phenylephrine (Phe, 10 µmol l−1) and then treated with various concentrations of Cuscuta chinensis extract (1, 2, 3, 4 and 5 mg ml−1). The change in penile tension was recorded, and cyclic nucleotides in the PCC were measured by radioimmunoassay (RIA). The interaction between Cuscuta chinensis and sildenafil was also evaluated. The result indicated that the PCC relaxation induced by Cuscuta chinensis extract was concentration-dependent. Pre-treatment with an nitric oxide synthase (NOS) inhibitor (Nω nitro-L-arginine-methyl ester, L-NAME), a guanylyl cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, ODQ), or a protein kinase A inhibitor (KT 5720) did not completely inhibit the relaxation. Incubation of penile cavernous tissue with the Cuscuta chinensis extract significantly increased cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) in the PCC. Moreover, the Cuscuta chinensis extract significantly enhanced sildenafil-induced PCC relaxation. In conclusion, the Cuscuta chinensis extract exerts a relaxing effect on penile cavernous tissue in part by activating the NO-cGMP pathway, and it may improve erectile dysfunction (ED), which does not completely respond to sildenafil citrate. PMID:23147465

  20. Apoptosis in mammalian oocytes: a review.

    PubMed

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

Top