Science.gov

Sample records for adenosine monophosphate activated

  1. Development of Novel Adenosine Monophosphate-Activated Protein Kinase Activators

    PubMed Central

    Guh, Jih-Hwa; Chang, Wei-Ling; Yang, Jian; Lee, Su-Lin; Wei, Shuo; Wang, Dasheng; Kulp, Samuel K.; Chen, Ching-Shih

    2010-01-01

    In light of the unique ability of thiazolidinediones to mediate peroxisome proliferator-activated receptor (PPAR)γ-independent activation of adenosine monophosphate-activated protein kinase (AMPK) and suppression of interleukin (IL)-6 production, we conducted a screening of an in-house, thiazolidinedione-based focused compound library to identify novel agents with these dual pharmacological activities. Cell-based assays pertinent to the activation status of AMPK and mammalian homolog of target of rapamycin (i.e., phosphorylation of AMPK and p70 ribosomal protein S6 kinase, respectively), and IL-6/IL-6 receptor signaling (i.e., IL-6 production and signal transducer and activator of transcription 3 phosphorylation, respectively) in lipopolysaccharide (LPS)-stimulated THP-1 human macrophages were used to screen this compound library, which led to the identification of compound 53 (N-{4-[3-(1-Methylcyclohexylmethyl)-2,4-dioxo-thiazolidin-5-ylidene-methyl]-phenyl}-4-nitro-3-trifluoromethyl-benzenesulfonamide) as the lead agent. Evidence indicates that this drug-induced suppression of LPS-stimulated IL-6 production was attributable to AMPK activation. Furthermore, compound 53-mediated AMPK activation was demonstrated in C-26 colon adenocarcinoma cells, indicating that it is not a cell line-specific event. PMID:20170185

  2. Development of Potent Adenosine Monophosphate Activated Protein Kinase (AMPK) Activators.

    PubMed

    Dokla, Eman M E; Fang, Chun-Sheng; Lai, Po-Ting; Kulp, Samuel K; Serya, Rabah A T; Ismail, Nasser S M; Abouzid, Khaled A M; Chen, Ching-Shih

    2015-11-01

    Previously, we reported the identification of a thiazolidinedione-based adenosine monophosphate activated protein kinase (AMPK) activator, compound 1 (N-[4-({3-[(1-methylcyclohexyl)methyl]-2,4-dioxothiazolidin-5-ylidene}methyl)phenyl]-4-nitro-3-(trifluoromethyl)benzenesulfonamide), which provided a proof of concept to delineate the intricate role of AMPK in regulating oncogenic signaling pathways associated with cell proliferation and epithelial-mesenchymal transition (EMT) in cancer cells. In this study, we used 1 as a scaffold to conduct lead optimization, which generated a series of derivatives. Analysis of the antiproliferative and AMPK-activating activities of individual derivatives revealed a distinct structure-activity relationship and identified 59 (N-(3-nitrophenyl)-N'-{4-[(3-{[3,5-bis(trifluoromethyl)phenyl]methyl}-2,4-dioxothiazolidin-5-ylidene)methyl]phenyl}urea) as the optimal agent. Relative to 1, compound 59 exhibits multifold higher potency in upregulating AMPK phosphorylation in various cell lines irrespective of their liver kinase B1 (LKB1) functional status, accompanied by parallel changes in the phosphorylation/expression levels of p70S6K, Akt, Foxo3a, and EMT-associated markers. Consistent with its predicted activity against tumors with activated Akt status, orally administered 59 was efficacious in suppressing the growth of phosphatase and tensin homologue (PTEN)-null PC-3 xenograft tumors in nude mice. Together, these findings suggest that 59 has clinical value in therapeutic strategies for PTEN-negative cancer and warrants continued investigation in this regard.

  3. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    MedlinePlus

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions adenosine monophosphate deaminase deficiency adenosine ...

  4. Protective mechanisms of adenosine 5'-monophosphate in platelet activation and thrombus formation.

    PubMed

    Fuentes, E; Badimon, L; Caballero, J; Padró, T; Vilahur, G; Alarcón, M; Pérez, P; Palomo, I

    2014-03-01

    Platelet activation is relevant to a variety of acute thrombotic events. We sought to examine adenosine 5'-monophosphate (AMP) mechanisms of action in preventing platelet activation, thrombus formation and platelet-related inflammatory response. We assessed the effect of AMP on 1) P-selectin expression and GPIIb/IIIa activation by flow cytometry; 2) Platelet aggregation and ATP secretion induced by ADP, collagen, TRAP-6, convulxin and thrombin; 3) Platelet rolling and firm adhesion, and platelet-leukocyte interactions under flow-controlled conditions; and, 4) Platelet cAMP levels, sP-selectin, sCD40L, IL-1β, TGF-β1 and CCL5 release, PDE3A activity and PKA phosphorylation. The effect of AMP on in vivo thrombus formation was also evaluated in a murine model. The AMP docking with respect to A2 adenosine receptor was determined by homology. AMP concentration-dependently (0.1 to 3 mmol/l) inhibited P-selectin expression and GPIIb/IIIa activation, platelet secretion and aggregation induced by ADP, collagen, TRAP-6 and convulxin, and diminished platelet rolling and firm adhesion. Furthermore, AMP induced a marked increase in the rolling speed of leukocytes retained on the platelet surface. At these concentrations AMP significantly decreased inflammatory mediator from platelet, increased intraplatelet cAMP levels and inhibited PDE3A activity. Interestingly, SQ22536, ZM241385 and SCH58261 attenuated the antiplatelet effect of AMP. Docking experiments revealed that AMP had the same orientation that adenosine inside the A2 adenosine receptor binding pocket. These in vitro antithrombotic properties were further supported in an in vivo model of thrombosis. Considering the successful use of combined antiplatelet therapy, AMP may be further developed as a novel antiplatelet agent. PMID:24306059

  5. Xylazine Activates Adenosine Monophosphate-Activated Protein Kinase Pathway in the Central Nervous System of Rats.

    PubMed

    Shi, Xing-Xing; Yin, Bai-Shuang; Yang, Peng; Chen, Hao; Li, Xin; Su, Li-Xue; Fan, Hong-Gang; Wang, Hong-Bin

    2016-01-01

    Xylazine is a potent analgesic extensively used in veterinary and animal experimentation. Evidence exists that the analgesic effect can be inhibited using adenosine 5'-monophosphate activated protein kinase (AMPK) inhibitors. Considering this idea, the aim of this study was to investigate whether the AMPK signaling pathway is involved in the central analgesic mechanism of xylazine in the rat. Xylazine was administrated via the intraperitoneal route. Sprague-Dawley rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus and brainstem were collected for determination of liver kinase B1 (LKB1) and AMPKα mRNA expression using quantitative real-time polymerase chain reaction (qPCR), and phosphorylated LKB1 and AMPKα levels using western blot. The results of our study showed that compared with the control group, xylazine induced significant increases in AMPK activity in the cerebral cortex, hippocampus, thalamus and cerebellum after rats received xylazine (P < 0.01). Increased AMPK activities were accompanied with increased phosphorylation levels of LKB1 in corresponding regions of rats. The protein levels of phosphorylated LKB1 and AMPKα in these regions returned or tended to return to control group levels. However, in the brainstem, phosphorylated LKB1 and AMPKα protein levels were decreased by xylazine compared with the control (P < 0.05). In conclusion, our data indicates that xylazine alters the activities of LKB1 and AMPK in the central nervous system of rats, which suggests that xylazine affects the regulatory signaling pathway of the analgesic mechanism in the rat brain. PMID:27049320

  6. Xylazine Activates Adenosine Monophosphate-Activated Protein Kinase Pathway in the Central Nervous System of Rats

    PubMed Central

    Shi, Xing-Xing; Yin, Bai-Shuang; Yang, Peng; Chen, Hao; Li, Xin; Su, Li-Xue; Fan, Hong-Gang; Wang, Hong-Bin

    2016-01-01

    Xylazine is a potent analgesic extensively used in veterinary and animal experimentation. Evidence exists that the analgesic effect can be inhibited using adenosine 5’-monophosphate activated protein kinase (AMPK) inhibitors. Considering this idea, the aim of this study was to investigate whether the AMPK signaling pathway is involved in the central analgesic mechanism of xylazine in the rat. Xylazine was administrated via the intraperitoneal route. Sprague-Dawley rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus and brainstem were collected for determination of liver kinase B1 (LKB1) and AMPKα mRNA expression using quantitative real-time polymerase chain reaction (qPCR), and phosphorylated LKB1 and AMPKα levels using western blot. The results of our study showed that compared with the control group, xylazine induced significant increases in AMPK activity in the cerebral cortex, hippocampus, thalamus and cerebellum after rats received xylazine (P < 0.01). Increased AMPK activities were accompanied with increased phosphorylation levels of LKB1 in corresponding regions of rats. The protein levels of phosphorylated LKB1 and AMPKα in these regions returned or tended to return to control group levels. However, in the brainstem, phosphorylated LKB1 and AMPKα protein levels were decreased by xylazine compared with the control (P < 0.05). In conclusion, our data indicates that xylazine alters the activities of LKB1 and AMPK in the central nervous system of rats, which suggests that xylazine affects the regulatory signaling pathway of the analgesic mechanism in the rat brain. PMID:27049320

  7. Adenosine monophosphate deaminase 3 activation shortens erythrocyte half-life and provides malaria resistance in mice.

    PubMed

    Hortle, Elinor; Nijagal, Brunda; Bauer, Denis C; Jensen, Lora M; Ahn, Seong Beom; Cockburn, Ian A; Lampkin, Shelley; Tull, Dedreia; McConville, Malcolm J; McMorran, Brendan J; Foote, Simon J; Burgio, Gaetan

    2016-09-01

    The factors that determine red blood cell (RBC) lifespan and the rate of RBC aging have not been fully elucidated. In several genetic conditions, including sickle cell disease, thalassemia, and G6PD deficiency, erythrocyte lifespan is significantly shortened. Many of these diseases are also associated with protection from severe malaria, suggesting a role for accelerated RBC senescence and clearance in malaria resistance. Here, we report a novel, N-ethyl-N-nitrosourea-induced mutation that causes a gain of function in adenosine 5'-monophosphate deaminase (AMPD3). Mice carrying the mutation exhibit rapid RBC turnover, with increased erythropoiesis, dramatically shortened RBC lifespan, and signs of increased RBC senescence/eryptosis, suggesting a key role for AMPD3 in determining RBC half-life. Mice were also found to be resistant to infection with the rodent malaria Plasmodium chabaudi. We propose that resistance to P. chabaudi is mediated by increased RBC turnover and higher rates of erythropoiesis during infection. PMID:27465915

  8. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury.

    PubMed

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-10-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose. PMID:26434492

  9. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury.

    PubMed

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-10-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose.

  10. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury

    PubMed Central

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-01-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose. PMID:26434492

  11. In Silico Design for Adenosine Monophosphate-Activated Protein Kinase Agonist from Traditional Chinese Medicine for Treatment of Metabolic Syndromes

    PubMed Central

    Tang, Hsin-Chieh

    2014-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) acts as a master mediator of metabolic homeostasis. It is considered as a significant millstone to treat metabolic syndromes including obesity, diabetes, and fatty liver. It can sense cellular energy or nutrient status by switching on the catabolic pathways. Investigation of AMPK has new findings recently. AMPK can inhibit cell growth by the way of autophagy. Thus AMPK has become a hot target for small molecular drug design of tumor inhibition. Activation of AMPK must undergo certain extent change of the structure. Through the methods of structure-based virtual screening and molecular dynamics simulation, we attempted to find out appropriate small compounds from the world's largest TCM Database@Taiwan that had the ability to activate the function of AMPK. Finally, we found that two TCM compounds, eugenyl_beta-D-glucopyranoside and 6-O-cinnamoyl-D-glucopyranose, had the qualification to be AMPK agonist. PMID:24899913

  12. Adenosine monophosphate-activated protein kinase (AMPK) activators for the prevention, treatment and potential reversal of pathological pain

    PubMed Central

    Price, Theodore J.; Das, Vaskar; Dussor, Gregory

    2015-01-01

    Pathological pain is an enormous medical problem that places a significant burden on patients and can result from an injury that has long since healed or be due to an unidentifiable cause. Although treatments exist, they often either lack efficacy or have intolerable side effects. More importantly, they do not reverse the changes in the nervous system mediating pathological pain, and thus symptoms often return when therapies are discontinued. Consequently, novel therapies are urgently needed that have both improved efficacy and disease-modifying properties. Here we highlight an emerging target for novel pain therapies, adenosine monophosphate-activated protein kinase (AMPK). AMPK is capable of regulating a variety of cellular processes including protein translation, activity of other kinases, and mitochondrial metabolism, many of which are thought to contribute to pathological pain. Consistent with these properties, preclinical studies show positive, and in some cases disease-modifying effects of either pharmacological activation or genetic regulation of AMPK in models of nerve injury, chemotherapy-induced peripheral neuropathy (CIPN), postsurgical pain, inflammatory pain, and diabetic neuropathy. Given the AMPK-activating ability of metformin, a widely prescribed and well-tolerated drug, these preclinical studies provide a strong rationale for both retrospective and prospective human pain trials with this drug. They also argue for the development of novel AMPK activators, whether orthosteric, allosteric, or modulators of events upstream of the kinase. Together, this review will present the case for AMPK as a novel therapeutic target for pain and will discuss future challenges in the path toward development of AMPK-based pain therapeutics. PMID:26521775

  13. Estradiol regulation of hypothalamic astrocyte adenosine 5'-monophosphate-activated protein kinase activity: role of hindbrain catecholamine signaling.

    PubMed

    Tamrakar, Pratistha; Briski, Karen P

    2015-01-01

    Recent work challenges the conventional notion that metabolic monitoring in the brain is the exclusive function of neurons. This study investigated the hypothesis that hypothalamic astrocytes express the ultra-sensitive energy gauge adenosine 5'-monophosphate-activated protein kinase (AMPK), and that the ovarian hormone estradiol (E) controls activation of this sensor by insulin-induced hypoglycemia (IIH). E- or oil (O)-implanted ovariectomized (OVX) rats were pretreated by caudal fourth ventricular administration of the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA) prior to sc insulin or vehicle injection. Individual astrocytes identified in situ by glial fibrillary acidic protein immunolabeling were laser-microdissected from the ventromedial (VMH), arcuate (ARH), and paraventricular (PVH) nuclei and the lateral hypothalamic area (LHA), and pooled within each site for Western blot analysis of AMPK and phosphoAMPK (pAMPK) protein expression. In the VMH, baseline astrocyte AMPK and pAMPK levels were respectively increased or decreased in OVX+E versus OVX+O; these profiles did not differ between E and O rats in other hypothalamic loci. In E animals, astrocyte AMPK protein was reduced [VMH] or augmented [PVH; LHA] in response to either 6-OHDA or IIH. IIH increased astrocyte pAMPK expression in each structure in vehicle-, but not 6-OHDA-pretreated E rats. Results provide novel evidence for hypothalamic astrocyte AMPK expression and hindbrain catecholamine-dependent activation of this cell-specific sensor by hypoglycemia in the presence of estrogen. Further research is needed to determine the role of astrocyte AMPK in reactivity of these glia to metabolic imbalance and contribution to restoration of neuro-metabolic stability.

  14. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway.

    PubMed

    Xie, Sheng; Deng, Yan; Pan, Yue-Ying; Ren, Jie; Jin, Meng; Wang, Yu; Wang, Zhi-Hua; Zhu, Die; Guo, Xue-Ling; Yuan, Xiao; Shang, Jin; Liu, Hui-Guo

    2016-09-15

    Autophagy is tightly regulated to maintain cardiac homeostasis. Impaired autophagy is closely associated with pathological cardiac hypertrophy. However, the relationship between autophagy and cardiac hypertrophy induced by chronic intermittent hypoxia (CIH) is not known. In the present study, we measured autophagy-related genes and autophagosomes during 10 weeks of CIH in rats, and 6 days in H9C2 cardiomyocytes, and showed that autophagy was impaired. This conclusion was confirmed by the autophagy flux assay. We detected significant hypertrophic changes in myocardium with impaired autophagy. Rapamycin, an autophagy enhancer, attenuated the cardiac hypertrophy induced by CIH. Moreover, silencing autophagy-related gene 5 (ATG5) exerted the opposite effect. The role of adenosine monophosphate-activated protein kinase (AMPK) in regulating autophagy under CIH was confirmed using AICAR to upregulate this enzyme and restore autophagy flux. Restoring autophagy by AICAR or rapamycin significantly reversed the hypertrophic changes in cardiomyocytes. To investigate the mechanism of autophagy impairment, we compared phospho (p)-AMPK, p-Akt, cathepsin D, and NFAT3 levels, along with calcineurin activity, between sham and CIH groups. CIH activated calcineurin, and inhibited AMPK and AMPK-mediated autophagy in an Akt- and NFAT3-independent manner. Collectively, these data demonstrated that impaired autophagy induced by CIH through the AMPK pathway contributed to cardiac hypertrophy. PMID:27412517

  15. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway.

    PubMed

    Xie, Sheng; Deng, Yan; Pan, Yue-Ying; Ren, Jie; Jin, Meng; Wang, Yu; Wang, Zhi-Hua; Zhu, Die; Guo, Xue-Ling; Yuan, Xiao; Shang, Jin; Liu, Hui-Guo

    2016-09-15

    Autophagy is tightly regulated to maintain cardiac homeostasis. Impaired autophagy is closely associated with pathological cardiac hypertrophy. However, the relationship between autophagy and cardiac hypertrophy induced by chronic intermittent hypoxia (CIH) is not known. In the present study, we measured autophagy-related genes and autophagosomes during 10 weeks of CIH in rats, and 6 days in H9C2 cardiomyocytes, and showed that autophagy was impaired. This conclusion was confirmed by the autophagy flux assay. We detected significant hypertrophic changes in myocardium with impaired autophagy. Rapamycin, an autophagy enhancer, attenuated the cardiac hypertrophy induced by CIH. Moreover, silencing autophagy-related gene 5 (ATG5) exerted the opposite effect. The role of adenosine monophosphate-activated protein kinase (AMPK) in regulating autophagy under CIH was confirmed using AICAR to upregulate this enzyme and restore autophagy flux. Restoring autophagy by AICAR or rapamycin significantly reversed the hypertrophic changes in cardiomyocytes. To investigate the mechanism of autophagy impairment, we compared phospho (p)-AMPK, p-Akt, cathepsin D, and NFAT3 levels, along with calcineurin activity, between sham and CIH groups. CIH activated calcineurin, and inhibited AMPK and AMPK-mediated autophagy in an Akt- and NFAT3-independent manner. Collectively, these data demonstrated that impaired autophagy induced by CIH through the AMPK pathway contributed to cardiac hypertrophy.

  16. Cyclic adenosine monophosphate phosphodiesterase activity in peripheral blood mononuclear leucocytes from patients with atopic dermatitis: correlation with respiratory atopy.

    PubMed

    Sawai, T; Ikai, K; Uehara, M

    1998-05-01

    We determined the cyclic adenosine monophosphate phosphodiesterase (cAMP-PDE) activity in peripheral blood mononuclear leucocytes from 100 patients with atopic dermatitis (AD) aged 13-57 years (mean +/- SD, 29.8 +/- 17.7 years). The correlation between cAMP-PDE activity and clinical parameters such as the severity of eczema and a personal or family predisposition to atopic respiratory diseases (ARD) (asthma or allergic rhinitis) was examined. Although the enzymic activity varied from normal to very high in the AD patients, cAMP-PDE activity was significantly (P < 0.005) elevated in AD patients (42.1 +/- 22.0 units) as compared with the normal controls (12.4 +/- 5.6) and clinical control subjects (13.4 +/- 9.5). In contrast, we found no correlation between cAMP-PDE activity and the severity of eczema when AD patients were classified into four categories (remission, mild, moderate and severe) according to the extent of their skin involvement. Furthermore, we found that systemic corticosteroid therapy in severe AD patients did not alter the cAMP-PDE activity. cAMP-PDE activity was significantly (P < 0.01) higher in those AD patients who had a personal history of ARD (47.2 +/- 11.2) than in AD patients with a family history of ARD (37.2 +/- 17.4) and those without a personal or family history ('pure' AD) (34.4 +/- 19.8). Nevertheless, the cAMP-PDE activity was significantly higher even in 'pure' AD patients than in the controls. These results suggest that an elevation of cAMP-PDE activity is closely related to a predisposition to respiratory atopy, and does not follow inflammation in AD patients. PMID:9666832

  17. Uric acid induces oxidative stress and growth inhibition by activating adenosine monophosphate-activated protein kinase and extracellular signal-regulated kinase signal pathways in pancreatic β cells.

    PubMed

    Zhang, Yongneng; Yamamoto, Tetsuya; Hisatome, Ichiro; Li, Youfeng; Cheng, Weijie; Sun, Ning; Cai, Bozhi; Huang, Tianliang; Zhu, Yuzhang; Li, Zhi; Jing, Xubin; Zhou, Rui; Cheng, Jidong

    2013-08-15

    Hyperuricaemia is a disorder of purine metabolism, and is strongly associated with insulin resistance and abnormal glucose metabolism. As the producer of insulin, pancreatic β cells might be affected by elevated serum uric acid levels and contribute to the disregulated glucose metabolism. In this study, we investigated the effect of high uric acid on rat pancreatic β cell function. Under high uric acid condition, proliferation of pancreatic β cells was inhibited, production of reactive oxygen species increased, and glucose stimulated insulin secretion was also compromised. Further examination on signal transduction pathways revealed that uric acid-induced ROS is involved in the activation of adenosine monophosphate-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK). Pharmacological inhibition of ERK activation rescued β cells from growth inhibition. More importantly, activation of ERK induced by uric acid is significantly diminished by AMPK inhibitor, indicating ERK as a downstream target of AMPK in response to high uric acid condition. We also investigated the transportation channel for uric acid into pancreatic β cells. While major urate transporter URAT1 is not expressed in β cells, organic anion transporter (OAT) inhibitor successfully blocked the activation of ERK by uric acid. Our data indicate that high uric acid levels induce oxidative damage and inhibit growth of rat pancreatic β cells by activating the AMPK and ERK signal pathways. Hyperuricemia may contribute to abnormal glucose metabolism by causing oxidative damage and function inhibition of pancreatic β cells.

  18. Induction of phosphodiesterase by cyclic adenosine 3':5'-monophosphate in differentiating Dictyostelium discoideum amoebae.

    PubMed

    Klein, C

    1975-09-25

    Cyclic adenosine 3':5'-monophosphate added to the starvation media of Dictyostelium discoideum amoebae induces both intracellular and extracellular phosphodiesterase activities of these cells. The induced enzyme activity appears several hours earlier than that in starved cells which have not been induced with cyclic nucleotide. In both cases, the appearance of enzyme is inhibited by cycloheximide, and actinomycin D, and daunomycin. The KmS for the extracellular enzyme(s) of nucleotide-induced and uninduced control cells are identical. The induction of enzyme activity seems specific for cyclic adenosine 3':5'-monophosphate since cyclic guanosine 3':5'-monophosphate, as well as other nucleotides, have no effect. No differences in the activity or excretion of either N-acetylglucosaminidase or the inhibitory of the extracellular phosphodiesterase are observed between cyclic adenosine 3':5'-monophosphate-induced and control cells. A direct activation of phosphodiesterase by cyclic adenosine 3':5'-monophosphate can be excluded, since the addition of this nucleotide to cell lysates has no effect on the enzyme activity. PMID:170256

  19. Targeting Energy Metabolic and Oncogenic Signaling Pathways in Triple-negative Breast Cancer by a Novel Adenosine Monophosphate-activated Protein Kinase (AMPK) Activator*

    PubMed Central

    Lee, Kuen-Haur; Hsu, En-Chi; Guh, Jih-Hwa; Yang, Hsiao-Ching; Wang, Dasheng; Kulp, Samuel K.; Shapiro, Charles L.; Chen, Ching-Shih

    2011-01-01

    The antitumor activities of the novel adenosine monophosphate-activated protein kinase (AMPK) activator, OSU-53, were assessed in in vitro and in vivo models of triple-negative breast cancer. OSU-53 directly stimulated recombinant AMPK kinase activity (EC50, 0.3 μm) and inhibited the viability and clonogenic growth of MDA-MB-231 and MDA-MB-468 cells with equal potency (IC50, 5 and 2 μm, respectively) despite lack of LKB1 expression in MDA-MB-231 cells. Nonmalignant MCF-10A cells, however, were unaffected. Beyond AMPK-mediated effects on mammalian target of rapamycin signaling and lipogenesis, OSU-53 also targeted multiple AMPK downstream pathways. Among these, the protein phosphatase 2A-dependent dephosphorylation of Akt is noteworthy because it circumvents the feedback activation of Akt that results from mammalian target of rapamycin inhibition. OSU-53 also modulated energy homeostasis by suppressing fatty acid biosynthesis and shifting the metabolism to oxidation by up-regulating the expression of key regulators of mitochondrial biogenesis, such as a peroxisome proliferator-activated receptor γ coactivator 1α and the transcription factor nuclear respiratory factor 1. Moreover, OSU-53 suppressed LPS-induced IL-6 production, thereby blocking subsequent Stat3 activation, and inhibited hypoxia-induced epithelial-mesenchymal transition in association with the silencing of hypoxia-inducible factor 1a and the E-cadherin repressor Snail. In MDA-MB-231 tumor-bearing mice, daily oral administration of OSU-53 (50 and 100 mg/kg) suppressed tumor growth by 47–49% and modulated relevant intratumoral biomarkers of drug activity. However, OSU-53 also induced protective autophagy that attenuated its antiproliferative potency. Accordingly, cotreatment with the autophagy inhibitor chloroquine increased the in vivo tumor-suppressive activity of OSU-53. OSU-53 is a potent, orally bioavailable AMPK activator that acts through a broad spectrum of antitumor activities. PMID

  20. Activation of 5' adenosine monophosphate-activated protein kinase blocks cumulus cell expansion through inhibition of protein synthesis during in vitro maturation in Swine.

    PubMed

    Santiquet, Nicolas; Sasseville, Maxime; Laforest, Martin; Guillemette, Christine; Gilchrist, Robert B; Richard, François J

    2014-08-01

    The serine/threonine kinase 5' adenosine monophosphate-activated protein kinase (AMPK), a heterotrimeric protein known as a metabolic switch, is involved in oocyte nuclear maturation in mice, cattle, and swine. The present study analyzed AMPK activation in cumulus cell expansion during in vitro maturation (IVM) of porcine cumulus-oocyte complexes (COC). 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) is a well-known activator of AMPK. It inhibited oocyte meiotic resumption in COC. Moreover, cumulus cell expansion did not occur in the presence of AICAR, demonstrating its marked impact on cumulus cells. Activation of AMPK was supported by AICAR-mediated phosphorylation of alpha AMPK subunits. Furthermore, the presence of AICAR increased glucose uptake, a classical response to activation of this metabolic switch in response to depleted cellular energy levels. Neither nuclear maturation nor cumulus expansion was reversed by glucosamine, an alternative substrate in hyaluronic acid synthesis, through the hexosamine biosynthetic pathway, which ruled out possible depletion of substrates. Both increased gap junction communication and phosphodiesterase activity in COC are dependent on protein synthesis during the initial hours of IVM; however, both were inhibited in the presence of AICAR, which supports the finding that activation of AMPK by AICAR mediated inhibition of protein synthesis. Moreover, this protein synthesis inhibition was equivalent to that of the well-known protein synthesis inhibitor cycloheximide, as observed on cumulus expansion and protein concentration. Finally, the phosphorylation level of selected kinases was investigated. The pattern of raptor phosphorylation is supportive of activation of AMPK-mediated inhibition of protein synthesis. In conclusion, AICAR-mediated AMPK activation in porcine COC inhibited cumulus cell expansion and protein synthesis. These results bring new considerations to the importance of this kinase in ovarian

  1. 5'-Adenosine monophosphate and adenosine metabolism, and adenosine responses in mouse, rat and guinea pig heart.

    PubMed

    Headrick, J P; Peart, J; Hack, B; Garnham, B; Matherne, G P

    2001-11-01

    We examined myocardial 5'-adenosine monophosphate (5'-AMP) catabolism, adenosine salvage and adenosine responses in perfused guinea pig, rat and mouse heart. MVO(2) increased from 71+/-8 microl O(2)/min per g in guinea pig to 138+/-17 and 221+/-15 microl O(2)/min per g in rat and mouse. VO(2)/beat was 0.42+/-0.03, 0.50+/-0.03 and 0.55+/-0.04 microl O(2)/g in guinea pig, rat and mouse, respectively. Resting and peak coronary flows were highest in mouse vs. rat and guinea pig, and peak ventricular pressures and Ca(2+) sensitivity declined as heart mass increased. Net myocardial 5'-AMP dephosphorylation increased significantly as mass declined (3.8+/-0.5, 9.0+/-1.4 and 11.0+/-1.6 nmol/min per g in guinea pig, rat and mouse, respectively). Despite increased 5'-AMP catabolism, coronary venous [adenosine] was similar in guinea pig, rat and mouse (45+/-8, 69+/-10 and 57+/-14 nM, respectively). Comparable venous [adenosine] was achieved by increased salvage vs. deamination: 64%, 41% and 39% of adenosine formed was rephosphorylated while 23%, 46%, and 50% was deaminated in mouse, rat and guinea pig, respectively. Moreover, only 35-45% of inosine and its catabolites derive from 5'-AMP (vs. IMP) dephosphorylation in all species. Although post-ischemic purine loss was low in mouse (due to these adaptations), functional tolerance to ischemia decreased with heart mass. Cardiovascular sensitivity to adenosine also differed between species, with A(1) receptor sensitivity being greatest in mouse while A(2) sensitivity was greatest in guinea pig. In summary: (i) cardiac 5'-AMP dephosphorylation, VO(2), contractility and Ca(2+) sensitivity all increase as heart mass falls; (ii) adaptations in adenosine salvage vs. deamination limit purine loss and yield similar adenosine levels across species; (iii) ischemic tolerance declines with heart mass; and (iv) cardiovascular sensitivity to adenosine varies, with increasing A(2) sensitivity relative to A(1) sensitivity in larger hearts.

  2. A high isoflavone diet decreases 5' adenosine monophosphate-activated protein kinase activation and does not correct selenium-induced elevations in fasting blood glucose in mice.

    PubMed

    Stallings, Michael T; Cardon, Brandon R; Hardman, Jeremy M; Bliss, Tyler A; Brunson, Scott E; Hart, Chris M; Swiss, Maria D; Hepworth, Squire D; Christensen, Merrill J; Hancock, Chad R

    2014-04-01

    Selenium (Se) has been implicated as a micronutrient that decreases adenosine monophosphate-activated protein kinase (AMPK) signaling and may increase diabetes risk by reducing insulin sensitivity. Soy isoflavones (IF) are estrogen-like compounds that have been shown to attenuate insulin resistance, hyperglycemia, adiposity, and increased AMPK activation. We hypothesized that a high IF (HIF) diet would prevent the poor metabolic profile associated with high Se intake. The purpose of this study was to examine changes in basal glucose metabolism and AMPK signaling in response to an HIF diet and/or supplemental Se in a mouse model. Male FVB mice were divided into groups receiving either a control diet with minimal IF (low IF) or an HIF diet. Each dietary group was further subdivided into groups receiving either water or Se at a dose of 3 mg Se/kg body weight daily, as Se-methylselenocysteine (SMSC). After 5 months, mice receiving SMSC had elevated fasting glucose (P < .05) and a tendency for glucose intolerance (P = .08). The increase in dietary IF did not result in improved fasting blood glucose. Interestingly, after 6 months, HIF-fed mice had decreased basal AMPK activation in liver and skeletal muscle tissue (P < .05). Basal glucose metabolism was changed by SMSC supplementation as evidenced by increased fasting blood glucose and glucose intolerance. High dietary IF levels did not protect against aberrant blood glucose. In FVB mice, decreased basal AMPK activation is not the mechanism through which Se exerts its effect. These results suggest that more research must be done to elucidate the role of Se and IF in glucose metabolism.

  3. Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase

    PubMed Central

    GUO, QIANQIAN; LIU, ZHIYAN; JIANG, LILI; LIU, MENGJIE; MA, JIEQUN; YANG, CHENGCHENG; HAN, LILI; NAN, KEJUN; LIANG, XUAN

    2016-01-01

    Metformin, the most widely administered oral anti-diabetic therapeutic agent, exerts its glucose-lowering effect predominantly via liver kinase B1 (LKB1)-dependent activation of adenosine monophosphate-activated protein kinase (AMPK). Accumulating evidence has demonstrated that metformin possesses potential antitumor effects. However, whether the antitumor effect of metformin is via the LKB1/AMPK signaling pathway remains to be determined. In the current study, the effects of metformin on proliferation, cell cycle progression, and apoptosis of human non-small cell lung cancer (NSCLC) H460 (LKB1-null) and H1299 (LKB1-positive) cells were assessed, and the role of LKB1/AMPK signaling in the anti-growth effects of metformin were investigated. Cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle distribution and apoptosis were assessed by flow cytometry, and protein expression levels were measured by western blotting. Metformin inhibited proliferation, induced significant cell cycle arrest at the G0–G1 phase and increased apoptosis in NSCLC cells in a time- and concentration-dependent manner, regardless of the level of LKB1 protein expression. Furthermore, knockdown of LKB1 with short hairpin RNA (shRNA) did not affect the antiproliferative effect of metformin in the H1299 cells. Metformin stimulated AMPK phosphorylation and subsequently suppressed the phosphorylation of mammalian target of rapamycin and its downstream effector, 70-kDa ribosomal protein S6 kinase in the two cell lines. These effects were abrogated by silencing AMPK with small interfering RNA (siRNA). In addition, knockdown of AMPK with siRNA inhibited the effect of metformin on cell proliferation in the two cell lines. These results provide evidence that the growth inhibition of metformin in NSCLC cells is mediated by LKB1-independent activation of AMPK, indicating that metformin may be a potential therapeutic agent for the treatment of

  4. Mulberry leaf polyphenol extract induced apoptosis involving regulation of adenosine monophosphate-activated protein kinase/fatty acid synthase in a p53-negative hepatocellular carcinoma cell.

    PubMed

    Yang, Tzi-Peng; Lee, Huei-Jane; Ou, Ting-Tsz; Chang, Ya-Ju; Wang, Chau-Jong

    2012-07-11

    The polyphenols in mulberry leaf possess the ability to inhibit cell proliferation, invasion, and metastasis of tumors. It was reported that the p53 status plays an important role in switching apoptosis and the cell cycle following adenosine monophosphate-activated protein kinase (AMPK) activation. In this study, we aimed to detect the effect of the mulberry leaf polyphenol extract (MLPE) on inducing cell death in p53-negative (Hep3B) and p53-positive (Hep3B with transfected p53) hepatocellular carcinoma cells and also to clarify the role of p53 in MLPE-treated cells. After treatment of the Hep3B cells with MLPE, apoptosis was induced via the AMPK/PI3K/Akt and Bcl-2 family pathways. Transient transfection of p53 into Hep3B cells led to switching autophagy instead of apoptosis by MLPE treatment. We demonstrated that acridine orange staining and protein expressions of LC-3 and beclin-1 were increased in p53-transfected cells. These results implied induction of apoptosis or autophagy in MLPE-treated hepatocellular carcinoma cells can be due to the p53 status. We also found MLPE can not only activate AMPK but also diminish fatty acid synthase, a molecular target for cancer inhibition. At present, our results indicate MLPE can play an active role in mediating the cell death of hepatocellular carcinoma cells and the p53 might play an important role in regulating the death mechanisms.

  5. Estrogen regulates energy metabolic pathway and upstream adenosine 5'-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia.

    PubMed

    Tamrakar, Pratistha; Ibrahim, Baher A; Gujar, Amit D; Briski, Karen P

    2015-02-01

    The ability of estrogen to shield the brain from the bioenergetic insult hypoglycemia is unclear. Estradiol (E) prevents hypoglycemic activation of the energy deficit sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) in hindbrain metabolosensory A2 noradrenergic neurons. This study investigates the hypothesis that estrogen regulates A2 AMPK through control of fuel metabolism and/or upstream protein kinase/phosphatase enzyme expression. A2 cells were harvested by laser microdissection after insulin or vehicle (V) injection of E- or oil (O)-implanted ovariectomized female rats. Cell lysates were evaluated by immunoblot for glycolytic, tricarboxylic acid cycle, respiratory chain, and acetyl-CoA-malonyl-CoA pathway enzymes. A2 phosphofructokinase (PFKL), isocitrate dehydrogenase, pyruvate dehydrogenase, and ATP synthase subunit profiles were elevated in E/V vs. O/V; hypoglycemia augmented PFKL and α-ketoglutarate dehydrogenase expression in E only. Hypoglycemia increased A2 Ca(2+) /calmodulin-dependent protein kinase-β in O and reduced protein phosphatase in both groups. A2 phospho-AMPK levels were equivalent in O/V vs. E/V but elevated during hypoglycemia in O only. These results implicate E in compensatory upregulation of substrate catabolism and corresponding maintenance of energy stability of A2 metabolosensory neurons during hypoglycemia, outcomes that support the potential viability of molecular substrates for hormone action as targets for therapies alleviating hypoglycemic brain injury.

  6. Adenosine monophosphate-activated protein kinase activation, substrate transporter translocation, and metabolism in the contracting hyperthyroid rat heart.

    PubMed

    Heather, Lisa C; Cole, Mark A; Atherton, Helen J; Coumans, Will A; Evans, Rhys D; Tyler, Damian J; Glatz, Jan F C; Luiken, Joost J F P; Clarke, Kieran

    2010-01-01

    Thyroid hormones can modify cardiac metabolism via multiple molecular mechanisms, yet their integrated effect on overall substrate metabolism is poorly understood. Here we determined the effect of hyperthyroidism on substrate metabolism in the isolated, perfused, contracting rat heart. Male Wistar rats were injected for 7 d with T(3) (0.2 mg/kg x d ip). Plasma free fatty acids increased by 97%, heart weights increased by 33%, and cardiac rate pressure product, an indicator of contractile function, increased by 33% in hyperthyroid rats. Insulin-stimulated glycolytic rates and lactate efflux rates were increased by 33% in hyperthyroid rat hearts, mediated by an increased insulin-stimulated translocation of the glucose transporter GLUT4 to the sarcolemma. This was accompanied by a 70% increase in phosphorylated AMP-activated protein kinase (AMPK) and a 100% increase in phosphorylated acetyl CoA carboxylase, confirming downstream signaling from AMPK. Fatty acid oxidation rates increased in direct proportion to the increased heart weight and rate pressure product in the hyperthyroid heart, mediated by synchronized changes in mitochondrial enzymes and respiration. Protein levels of the fatty acid transporter, fatty acid translocase (FAT/CD36), were reduced by 24% but were accompanied by a 19% increase in the sarcolemmal content of fatty acid transport protein 1 (FATP1). Thus, the relationship between fatty acid metabolism, cardiac mass, and contractile function was maintained in the hyperthyroid heart, associated with a sarcolemmal reorganization of fatty acid transporters. The combined effects of T(3)-induced AMPK activation and insulin stimulation were associated with increased sarcolemmal GLUT4 localization and glycolytic flux in the hyperthyroid heart. PMID:19940039

  7. [Cyclic adenosine monophosphate and atherogenic factors].

    PubMed

    Gerasimova, E N

    1977-01-01

    Hypercholesterolemia caused a decrease in the activity of adenylcyclase in rabbit liver tissue and in thrombocytes; hypertriglyceridemia, which developed after administration of hydrocortisone, led to an increase in the activity of adenylcyclase and in the content of 3,5-AMP in adipose tissue. Activities of adenylcyclase, phosphodiesterase and content of prostaglandines E1 and F2alpha were measured in thrombocytes of 39 healthy men without any symptoms of of ischemic heart impairment, in 52 patients with coronary atherosclerosis of the III degree (by Myasnikov's classification) as well as in 12 patients during the period of rehabilitation after myocardial infarction. The activity of adenylate cyclase system was impaired in atherosclerosis. This phenomenon might be caused by alteration in concentration of glucocorticoids in the organism.

  8. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    PubMed

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver.

  9. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production.

    PubMed

    First, Eric A

    2015-08-15

    A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses. PMID:25957126

  10. Effects of adenosine on polymorphonuclear leucocyte function, cyclic 3': 5'-adenosine monophosphate, and intracellular calcium.

    PubMed Central

    Nielson, C. P.; Vestal, R. E.

    1989-01-01

    1. Inhibition of human polymorphonuclear leucocyte (PMN) function by adenosine was studied with respect to effects of adenosine on intracellular cyclic AMP and calcium during the PMN respiratory burst. 2. The adenosine analogue 5'-N-ethylcarboxamide-adenosine (NECA) and L-N6-phenyl-isopropyl-adenosine (L-PIA) inhibited PMN oxygen metabolite generation with relative potencies (NECA greater than adenosine greater than L-PIA) characteristic of an A2 receptor. 3. The respiratory burst was inhibited by adenosine when PMN were activated by calcium ionophore or chemotactic peptide but not when cells where activated by oleoyl-acetyl-glycerol (OAG). 4. Adenosine increased intracellular cyclic AMP during the PMN respiratory burst regardless of whether cells were stimulated by ionophore, chemotactic peptide or OAG. 5. To determine whether the differences in cell inhibition by adenosine were related to differences in intracellular calcium mobilization by each activating agent, calcium was evaluated with the fluorescent probe, indo-1. Adenosine suppressed the increase in intracellular calcium following PMN activation by calcium ionophore or chemotactic peptide. In contrast, calcium did not increase in PMN activated by OAG and adenosine did not affect intracellular calcium changes following this stimulus. 6. These results demonstrate that physiological concentrations of adenosine inhibit the PMN respiratory burst in association with an increase in intracellular cyclic AMP and reduction of intracellular calcium. PMID:2547490

  11. Adenosine Monophosphate-Based Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  12. Role of adenosine 5'-monophosphate-activated protein kinase in α-linolenic acid-induced intestinal lipid metabolism.

    PubMed

    Zhou, Xihong; Chen, Jingqing; Wu, Weiche; Wang, Xinxia; Wang, Yizhen

    2015-09-28

    n-3 Long-chain PUFA up-regulate intestinal lipid metabolism. However, whether these metabolic effects of PUFA on intestine are mediated by AMP-activated protein kinase (AMPK) remains to be elucidated. To determine the effects of α-linolenic acid (ALA) on intestinal fatty acid (FA) metabolism and whether these effects were affected by AMPK deletion, mice deficient in the catalytic subunit of AMPKα1 or AMPKα2 and wild-type (WT) mice were fed either a high-fat diet (HF) or HF supplemented with ALA (HF-A). The results showed that ALA supplementation decreased serum TAG content in WT mice. ALA also increased mRNA expression of genes (carnitine palmitoyltransferase 1a, acyl-CoA oxidase 1, medium-chain acyl-CoA dehydrogenase, cytochrome P450 4A10 and pyruvate dehydrogenase kinase isoenzyme 4a) involved in intestinal lipid oxidation and mRNA expression of TAG synthesis-related genes (monoacylglycerol O-acyltransferase 2, diacylglycerol O-acyltransferases 1 and 2) in WT mice. Consistent with these, expression levels of phosphorylated AMPKα1 and AMPKα2 were also increased in WT mice after ALA addition. However, in the absence of either AMPKα1 or AMPKα2, ALA supplementation failed to increase intestinal lipid oxidation. In addition, no significant effects of either diet (HF and HF-A) or genotype (WT, AMPKα1(-/-) and AMPKα2(-/-)) on FA uptake in the intestine and faecal TAG output were observed. Our results suggest that AMPK is indispensable for the effects of ALA on intestinal lipid oxidation. PMID:26268732

  13. Photo protection of RNA building blocks: Adenosine 5‧-monophosphate, cytidine 5‧-monophosphate and cytosine

    NASA Astrophysics Data System (ADS)

    Nielsen, Jakob Brun; Thøgersen, Jan; Jensen, Svend Knak; Keiding, Søren Rud

    2013-04-01

    Photoprotection of the RNA nucleotides adenosine 5'-monophosphate and cytidine 5'-monophosphate, and the nucleobase cytosine was studied using UV pump, IR probe femtosecond transient absorption spectroscopy. The excitation energy is contained in the aromatic ring system, protecting the RNA backbone. All three molecules dissipate the excitation energy by internal conversion and subsequent vibrational relaxation to the electronic ground state in less than 10 ps. In addition, a second deactivation channel is found in cytidine 5'-monophosphate, illustrated by a signal at 1563 cm-1 with a lifetime of 33 ps assigned to an nπ∗ state in agreement with observations in the UV region.

  14. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    PubMed

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  15. Glycolytic potential and activity of adenosine monophosphate kinase (AMPK), glycogen phosphorylase (GP) and glycogen debranching enzyme (GDE) in steer carcasses with normal (<5.8) or high (>5.9) 24h pH determined in M. longissimus dorsi.

    PubMed

    Apaoblaza, A; Galaz, A; Strobel, P; Ramírez-Reveco, A; Jeréz-Timaure, N; Gallo, C

    2015-03-01

    Muscle glycogen concentration (MGC) and lactate (LA), activity of glycogen debranching enzyme (GDE), glycogen phosphorylase (GP) and adenosine monophosphate kinase (AMPK) were determined at 0.5h (T0) and 24h (T24) post-mortem in Longissimus dorsi samples from 38 steers that produced high pH (>5.9) and normal pH (<5.8) carcasses at 24h postmortem. MGC, LA and glycolytic potential were higher (P<0.05) in normal pH carcasses. GDE activity was similar (P>0.05) in both pH categories. GP activity increased between T0 and T24 only in normal pH carcasses. AMPK activity was four times higher in normal pH v/s high pH carcasses, without changing its activity over time. Results reinforce the idea that differences in postmortem glycogenolytic/glycolytic flow in L. dorsi of steers showing normal v/s high muscle pH at 24h, could be explained not only by the higher initial MGC in normal pH carcasses, but also by a high and sustained activity of AMPK and an increased GP activity at 24h postmortem.

  16. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells.

    PubMed

    Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li

    2015-12-15

    Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy. PMID:26522928

  17. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells.

    PubMed

    Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li

    2015-12-15

    Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy.

  18. Attempts to detect cyclic adenosine 3':5'-monophosphate in higher plants by three assay methods.

    PubMed

    Bressan, R A; Ross, C W

    1976-01-01

    Endogenous levels of cyclic adenosine-3':5'-monophosphate in coleoptile first leaf segments of oat (Avena sativa L.), potato (Solanum tuberosum L.) tubers, tobacco (Nicotiana tabacum L.) callus, and germinating seeds of lettuce (Lactuca sativa L.) were measured with a modified Gilman binding assay and a protein kinase activation assay. The incorporation of adenosine-8-(14)C into compounds with properties similar to those of cyclic AMP was also measured in studies with germinating lettuce seeds. The binding assay proved reliable for mouse and rat liver analyses, but was nonspecific for plant tissues. It responded to various components from lettuce and potato tissues chromatographically similar to but not identical with cyclic AMP. The protein kinase activation assay was much more specific, but it also exhibited positive responses in the presence of compounds not chromatographically identical to cyclic AMP. The concentrations of cyclic AMP in the plant tissues tested were at the lower limits of detection and characterization obtainable with these assays. The estimates of maximal levels were much lower than reported in many previous studies. PMID:16659419

  19. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    PubMed

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3. PMID:27181414

  20. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    PubMed

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3.

  1. Killer Cell Lectin-like Receptor G1 Inhibits NK Cell Function through Activation of Adenosine 5'-Monophosphate-Activated Protein Kinase.

    PubMed

    Müller-Durovic, Bojana; Lanna, Alessio; Polaco Covre, Luciana; Mills, Rachel S; Henson, Sian M; Akbar, Arne N

    2016-10-01

    NK cells are the first line of defense against infected and transformed cells. Defective NK cell activity was shown to increase susceptibility for viral infections and reduce tumor immune-surveillance. With age, the incidence of infectious diseases and malignancy rises dramatically, suggesting that impaired NK cell function might contribute to disease in these individuals. We found an increased frequency of NK cells with high expression of the inhibitory killer cell lectin-like receptor G1 (KLRG1) in individuals >70 y. The role of KLRG1 in ageing is not known, and the mechanism of KLRG1-induced inhibition of NK cell function is not fully understood. We report that NK cells with high KLRG1 expression spontaneously activate the metabolic sensor AMP-activated protein kinase (AMPK) and that activation of AMPK negatively regulates NK cell function. Pre-existing AMPK activity is further amplified by ligation of KLRG1 in these cells, which leads to internalization of the receptor and allows interaction with AMPK. We show that KLRG1 activates AMPK by preventing its inhibitory dephosphorylation by protein phosphatase-2C rather than inducing de novo kinase activation. Finally, inhibition of KLRG1 or AMPK prevented KLRG1-induced activation of AMPK and reductions in NK cell cytotoxicity, cytokine secretion, proliferation, and telomerase expression. This novel signaling pathway links metabolic sensing, effector function, and cell differentiation with inhibitory receptor signaling that may be exploited to enhance NK cell activity during ageing.

  2. Cyclic adenosine 3',5'-monophosphate and germination of sporangiospores from the fungus Mucor.

    PubMed

    Orlowski, M

    1980-06-01

    Cyclic adenosine 3',5'-monophosphate (cAMP) metabolism was examined in germinating sporangiospores of Mucor genevensis and Mucor mucedo. Exogenous cAMP prevented normal hyphal development from sporangiospores. Internal pools of cAMP fluctuated profoundly during development. Spherical growth of the spores was characterized by large pools of cAMP whereas germ tube emergence and hyphal elongation were characterized by small pools of cAMP. These observations suggest a possible role for cAMP in sporangiospore germination. Adenylate cyclase activities fluctuated significantly during germination with maximum values attained during spherical growth. In contrast, cAMP phosphodiesterase activities remained constant throughout germination. Internal cAMP levels may therefore be regulated by adjustment of adenylate cyclase activities. The binding of cAMP by soluble cell proteins was measured. cAMP-binding activity changed greatly during germination. Dormant and spherically growing spores possessed the highest activities. Developing hyphae contained the lowest activities. Use of the photoaffinity label, 8-azido-[32P]cAMP, in conjunction with sodium dodecyl sulfate-polyacrylamide-gel electrophoresis allowed the identification of a small population of morphogenetic-stage-specific proteins which bind cAMP and may be of regulatory significance to development.

  3. Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy.

    PubMed

    Cameron, Kimberly O; Kung, Daniel W; Kalgutkar, Amit S; Kurumbail, Ravi G; Miller, Russell; Salatto, Christopher T; Ward, Jessica; Withka, Jane M; Bhattacharya, Samit K; Boehm, Markus; Borzilleri, Kris A; Brown, Janice A; Calabrese, Matthew; Caspers, Nicole L; Cokorinos, Emily; Conn, Edward L; Dowling, Matthew S; Edmonds, David J; Eng, Heather; Fernando, Dilinie P; Frisbie, Richard; Hepworth, David; Landro, James; Mao, Yuxia; Rajamohan, Francis; Reyes, Allan R; Rose, Colin R; Ryder, Tim; Shavnya, Andre; Smith, Aaron C; Tu, Meihua; Wolford, Angela C; Xiao, Jun

    2016-09-01

    Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.

  4. A long-acting β2-adrenergic agonist increases the expression of muscarine cholinergic subtype‑3 receptors by activating the β2-adrenoceptor cyclic adenosine monophosphate signaling pathway in airway smooth muscle cells.

    PubMed

    Liu, Yuan-Hua; Wu, Song-Ze; Wang, Gang; Huang, Ni-Wen; Liu, Chun-Tao

    2015-06-01

    The persistent administration of β2‑adrenergic (β2AR) agonists has been demonstrated to increase the risk of severe asthma, partly due to the induction of tolerance to bronchoprotection via undefined mechanisms. The present study investigated the potential effect of the long‑acting β2‑adrenergic agonist, formoterol, on the expression of muscarinic M3 receptor (M3R) in rat airway smooth muscle cells (ASMCs). Primary rat ASMCs were isolated and characterized following immunostaining with anti‑α‑smooth muscle actin antibodies. The protein expression levels of M3R and phospholipase C‑β1 (PLCβ1) were characterized by western blot analysis and the production of inositol 1,4,5‑trisphosphate (IP3) was determined using an enzyme‑linked immunosorbent assay. Formoterol increased the protein expression of M3R in rat ASMCs in a time‑ and dose‑dependent manner, which was significantly inhibited by the β2AR antagonist, ICI118,551 and the cyclic adenosine monophosphate (cAMP) inhibitor, SQ22,536. The increased protein expression of M3R was positively correlated with increased production of PLCβ1 and IP3. Furthermore, treatment with the glucocorticoid, budesonide, and the PLC inhibitor, U73,122, significantly suppressed the formoterol‑induced upregulated protein expression levels of M3R and PLCβ1 and production of IP3. The present study demonstrated that formoterol mediated the upregulation of M3R in the rat ASMCs by activating the β2AR‑cAMP signaling pathway, resulting in increased expression levels of PLCβ1 and IP3, which are key to inducing bronchoprotection tolerance. Administration of glucocorticoids or a PLC antagonist prevented formoterol‑induced bronchoprotection tolerance by suppressing the protein expression of M3R. PMID:25672589

  5. A long-acting β2-adrenergic agonist increases the expression of muscarine cholinergic subtype-3 receptors by activating the β2-adrenoceptor cyclic adenosine monophosphate signaling pathway in airway smooth muscle cells

    PubMed Central

    LIU, YUAN-HUA; WU, SONG-ZE; WANG, GANG; HUANG, NI-WEN; LIU, CHUN-TAO

    2015-01-01

    The persistent administration of β2-adrenergic (β2AR) agonists has been demonstrated to increase the risk of severe asthma, partly due to the induction of tolerance to bronchoprotection via undefined mechanisms. The present study investigated the potential effect of the long-acting β2-adrenergic agonist, formoterol, on the expression of muscarinic M3 receptor (M3R) in rat airway smooth muscle cells (ASMCs). Primary rat ASMCs were isolated and characterized following immunostaining with anti-α-smooth muscle actin antibodies. The protein expression levels of M3R and phospholipase C-β1 (PLCβ1) were characterized by western blot analysis and the production of inositol 1,4,5-trisphosphate (IP3) was determined using an enzyme-linked immunosorbent assay. Formoterol increased the protein expression of M3R in rat ASMCs in a time- and dose-dependent manner, which was significantly inhibited by the β2AR antagonist, ICI118,551 and the cyclic adenosine monophosphate (cAMP) inhibitor, SQ22,536. The increased protein expression of M3R was positively correlated with increased production of PLCβ1 and IP3. Furthermore, treatment with the glucocorticoid, budesonide, and the PLC inhibitor, U73,122, significantly suppressed the formoterol-induced upregulated protein expression levels of M3R and PLCβ1 and production of IP3. The present study demonstrated that formoterol mediated the upregulation of M3R in the rat ASMCs by activating the β2AR-cAMP signaling pathway, resulting in increased expression levels of PLCβ1 and IP3, which are key to inducing bronchoprotection tolerance. Administration of glucocorticoids or a PLC antagonist prevented formoterol-induced bronchoprotection tolerance by suppressing the protein expression of M3R. PMID:25672589

  6. Lymphocyte beta 2-adrenoceptors and adenosine 3':5'-cyclic monophosphate during and after normal pregnancy.

    PubMed Central

    von Mandach, U.; Gubler, H. P.; Engel, G.; Huch, R.; Huch, A.

    1993-01-01

    1. The beta 2-sympathomimetics, used to inhibit preterm labour, bind predominantly to beta 2-adrenoceptors, activating adenylate cyclase to form adenosine 3':5'-cyclic monophosphate (cyclic AMP), a messenger substance which inhibits the enzyme cascade triggering smooth muscle contraction. beta 2-Adrenoceptor density and cyclic AMP formation can be used as markers of beta 2-adrenergic effect. 2. The present study addresses the influence of pregnancy on the beta-adrenoceptor system. beta 2-Adrenoceptor density and cyclic AMP concentrations (basal and evoked by isoprenaline) in circulating lymphocytes were determined at three points in gestation (16, 29 and 37 weeks) and 9 weeks post partum in 22 normal pregnancies. (-)-[125Iodo]-cyanopindolol was used as the ligand to identify a homogeneous population of beta 2-adrenoceptors on lymphocytes. B- and T-cell fractions were estimated from the same samples. 3. beta 2-Adrenoceptor density decreased significantly during gestation until week 37 (P < 0.01), then increased post partum (P < 0.005). Cyclic AMP concentrations (basal and evoked by isoprenaline) were significantly lower after 16 weeks of gestation than post partum (P < 0.05). 4. The results, which cannot be explained in terms of a shift in the lymphocyte (B- and T-cell) ratio, indicate that beta-adrenoceptor density and function are reduced in normal pregnancy and only return to normal post partum. These findings may be of significance in devising future tocolytic therapy with beta 2-adrenoceptor agonists. PMID:8383562

  7. Adenosine 3′:5′-Cyclic Monophosphate in Chlamydomonas reinhardtii: Isolation and Characterization

    PubMed Central

    Amrhein, Nikolaus; Filner, Philip

    1973-01-01

    Chlamydomonas reinhardtii contains a factor that can replace adenosine 3′:5′-cyclic monophosphate (cAMP) in the stimulation of rabbit-muscle protein kinase. The factor cochromatographs and coelectrophoreses with authentic cAMP, and is inactivated by beef heart cyclic nucleotide phosphodiesterase. When C. reinhardtii is exposed to aminophylline (theophylline2 ethylenediamine), the concentration of the factor in the cells increases within 1 hr, from about 25 pmol of cAMP equivalents per g dry weight to more than 250 pmol. Cyclic nucleotide phosphodiesterase activity is present in crude extract of C. reinhardtii and is inhibited by theophylline. We conclude that cAMP occurs in C. reinhardtii and that the endogenous concentration is governed at least in part by a theophylline-sensitive cyclic nucleotide phosphodiesterase. These findings provide a sound basis for attributing the effects of methylxanthines on flagellar function and regeneration in C. reinhardtii to the resultant elevation of endogenous cAMP. PMID:16592076

  8. Control of cyclic adenosine 3',5'-monophosphate levels by depolarizing agents in fungi.

    PubMed

    Trevillyan, J M; Pall, M L

    1979-05-01

    It has been reported that diverse treatments which depolarize the plasma membrane of Neurospora crassa produce rapid increases in cyclic adenosine 3',5'-monophosphate (cyclic AMP) levels. In the current study, membrane active antibiotics, which are known or putative depolarizing agents, were found to produce similar cyclic AMP increases, not only in N. crassa, but also in the distantly related fungi Saccharomyces cerevisiae and Mucor racemosus. Uncouplers of oxidative phosphorylation, which have been found to depolarize Neurospora, also produced cyclic AMP increases in all three fungi. The time course of the cyclic AMP response to these various treatments was similar in all three fungi. The fungal studies and studies on depolarized central nervous tissue suggest that cyclic AMP increases may be produced in response to plasma membrane depolarization in diverse eucaryotic cells. A model is proposed for eucaryotic microorganisms in which membrane depolarization serves as a signal of breakdown of the plasma membrane integrity. The subsequent cyclic AMP increase, in turn, may mediate cellular response to help protect the plasma membrane from chemical and mechanical threats to its integrity.

  9. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway.

    PubMed

    Mehta, Suresh L; Mendelev, Natalia; Kumari, Santosh; Andy Li, P

    2013-03-01

    Mitochondrial biogenesis is activated by nuclear encoded transcription co-activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is regulated by several upstream factors including protein kinase A and Akt/protein kinase B. We have previously shown that selenoprotein H enhances the levels of nuclear regulators for mitochondrial biogenesis, increases mitochondrial mass and improves mitochondrial respiratory rate, under physiological condition. Furthermore, overexpression of selenoprotein H protects neuronal HT22 cells from ultraviolet B irradiation-induced cell damage by lowering reactive oxygen species production, and inhibiting activation of caspase-3 and -9, as well as p53. The objective of this study is to identify the cell signaling pathways by which selenoprotein H initiates mitochondrial biogenesis. We first confirmed our previous observation that selenoprotein H transfected HT22 cells increased the protein levels of nuclear-encoded mitochondrial biogenesis factors, peroxisome proliferator-activated receptor γ coactivator-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. We then observed that total and phosphorylation of protein kinase A, Akt/protein kinase B and cyclic adenosine monophosphate response element-binding protein (CREB) were significantly increased in selenoprotein H transfected cells compared to vector transfected HT22 cells. To verify whether the observed stimulating effects on mitochondrial biogenesis pathways are caused by selenoprotein H and mediated through CREB, we knocked down selenoprotein H mRNA level using siRNA and inhibited CREB with napthol AS-E phosphate in selenoprotein H transfected cells and repeated the measurements of the aforementioned biomarkers. Our results revealed that silencing of selenoprotein H not only decreased the protein levels of PGC-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A, but also decreased the total and

  10. 3,3'-Diindolylmethane attenuates cardiac H9c2 cell hypertrophy through 5'-adenosine monophosphate-activated protein kinase-α.

    PubMed

    Zong, Jing; Wu, Qing-Qing; Zhou, Heng; Zhang, Jie-Yu; Yuan, Yuan; Bian, Zhou-Yan; Deng, Wei; Dai, Jia; Li, Fang-Fang; Xu, Man; Fang, Yi; Tang, Qi-Zhu

    2015-07-01

    3,3'-Diindolylmethane (DIM) is the major product of the acid-catalyzed condensation of indole-3-carbinol (I3C), a component of extracts of Brassica food plants. Numerous studies have suggested that DIM has several beneficial biological activities, including elimination of free radicals, antioxidant and anti-angiogenic effects and activation of apoptosis of various tumor cells. In the present study, an in vitro model was established, using 1 µM angiotensin II (Ang II) in cultured rat cardiac H9c2 cells, to observe the effects of DIM on cardiac hypertrophy. Following 24 h stimulation with DIM (1, 5, and 10 µM) with or without Ang II, cells were characterized by immunofluorescence to analyze cardiac α-actinin expression. Cardiomyocyte hypertrophy and molecular markers of cardiac hypertrophy were assessed by quantitative polymerase chain reaction. Atrial natriuretic peptide, brain natriuretic peptide and myosin heavy chain β mRNA expression were induced by Ang II in H9c2 cells treated with the optimal concentration of DIM for 6, 12, and 24 h. The levels of phosphorylated and total proteins of the 5' AMP-activated protein kinase α (AMPKα)/mitogen-activated protein kinase (MAPK)/mechanistic target of rapamycin (mTOR) signaling pathways in H9c2 cells treated with DIM for 0, 15, 30, and 60 min induced by Ang II were determined by western blot analysis. The results showed that DIM attenuated cellular hypertrophy in vitro, enhanced the phosphorylation of AMPKα and inhibited the MAPK‑mTOR signaling pathway in response to hypertrophic stimuli. PMID:25816057

  11. Corticotropin-releasing factor binding to peripheral tissue and activation of the adenylate cyclase-adenosine 3',5'-monophosphate system

    SciTech Connect

    Dave, J.R.; Eiden, L.E.; Eskay, R.L.

    1985-06-01

    Specific binding sites for rat corticotropin-releasing factor (rCRF) are present in rat adrenal medulla, ventral prostate, spleen, liver, kidney, and testis and bovine chromaffin cells in culture. Maximal binding of (/sup 125/I)rCRF occurred within 25 min at 4 C and was saturable. Scatchard analysis of rCRF binding to rat adrenal membranes and bovine chromaffin cells revealed the existence of two classes of binding sites. One class had a relatively higher apparent affinity and lower number of binding sites, whereas the other class had a relatively lower affinity and higher number of binding sites. CRF induced a dose-related increase in rat adrenal membrane adenylate cyclase activity and cAMP levels in bovine chromaffin cells. Nanomolar concentrations of rCRF maximally stimulated adenylate cyclase activity in rat adrenal membranes and maximally increased cAMP levels in bovine chromaffin cells to 86% and 130% above control values, respectively. The demonstration of specific CRF-binding sites in a variety of peripheral tissues and the finding that activation of specific CRF-binding sites in adrenal tissue stimulates the adenylate cyclase-cAMP system suggest that CRF may have an important regulatory role in various peripheral tissues.

  12. Cyclic 3'-5'-adenosine monophosphate binds to annexin I and regulates calcium-dependent membrane aggregation and ion channel activity.

    PubMed

    Cohen, B E; Lee, G; Arispe, N; Pollard, H B

    1995-12-27

    The annexin (Anx) gene family comprises a set of calcium-dependent membrane binding proteins, which have been implicated in a wide variety of cellular processes including membrane fusion and calcium channel activity. We report here that cAMP activates Ca(2+)-dependent aggregation of both phosphatidylserine (PS) liposomes and bovine chromaffin granules driven by [des 1-12]annexin I (lipocortin I, Anx1). The mechanism of cAMP action involves an increase in AnxI-dependent cooperativity on the rate of such a reaction without affecting the corresponding k1/2 values. Cyclic AMP causes the values of the Hill coefficient (nH) for AnxI to change from 3 to 6 in both PS liposomes and chromaffin granules. By contrast, ATP inhibits the rate of aggregation activity without affecting the cooperativity or the extent of aggregation process. We were also able to photolabel Anx1 specifically with an 8-azido analogue of cAMP by a calcium-independent process. Such a process is saturable, yielding a Kd = 0.8 microM by Scatchard analysis. Specific displacement occurs in the presence of cAMP and ATP. Finally, we found that cAMP alters the conductance of calcium channels formed by AnxI in planar lipid bilayers. We interpret these data to indicate that AnxI binds both calcium and cAMP independently, and that both actions have functional consequences. This is the first report of a nucleotide binding function for a member of the annexin gene family.

  13. Pretreatment of rats with increased bioavailable berberine attenuates cerebral ischemia-reperfusion injury via down regulation of adenosine-5'monophosphate kinase activity.

    PubMed

    Chen, Weijia; Wei, Shengnan; Yu, Yang; Xue, Huan; Yao, Fan; Zhang, Ming; Xiao, Jun; Hatch, Grant M; Chen, Li

    2016-05-15

    Berberine (BBR) exhibits multiple beneficial biological effects. However, poor bioavailability of BBR has limited its clinical application. We previously demonstrated that solid dispersion of BBR with sodium caprate (HGSD) remarkably improves its bioavailability. We examined whether this increased bioavailability of BBR could protect the brain from ischemia-reperfusion (IR) induced injury. Rats treated with HGSD, SC and saline for 7 days then subjected to cerebral ischemia reperfusion by middle cerebral artery occlusion for 2h followed 12h reperfusion. Neurological deficit scores, infarct size, SOD, MDA and NO levels were examined. P-AMPK, Bax, cleaved-Caspase-3 in brain was determined. To further probe for the mechanism of beneficial effect of HGSD, PC12 cells were incubated with serum from control or HGSD pretreated animals, incubated with 300μM H2O2 to induce apoptosis. Caspase-3 activity and cell apoptosis was evaluated. HGSD pretreatment significantly attenuated neurological deficit scores, reduced infarct size, increased SOD and decreased MDA and NO after cerebral IR injury compared to controls. Meanwhile, HGSD pretreatment significantly reduced expression of p-AMPK, Bax, cleaved-Caspase-3 after cerebral IR injury. Sodium caprate (100mg/kg/d) pretreatment alone did not exhibit any of these beneficial effects. PC12 cell apoptosis was attenuated when cells were cultured with HGSD serum compared to control. The presence of AMPK activator (AICAR) attenuated whereas AMPK inhibitor (Compound C) augmented the protective effect of HGSD serum on PC12 cell apoptosis.The results indicate that HGSD-pretreatment of rats protects the brain from ischemia-reperfusion injury and the mechanism is due to its anti-apoptotic effect mediated by decreased activation of AMPK. PMID:26957053

  14. Histone deacetylases 6 increases the cyclic adenosine monophosphate level and promotes renal cyst growth.

    PubMed

    Wu, Ming; Mei, Changlin

    2016-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by abnormal enhanced cell proliferation and fluid secretion, which are triggered by increased levels of cyclic adenosine monophosphate (cAMP). Cebotaru et al. showed that a HDAC6 inhibitor reduced the cAMP level and inhibited cyst formation in Pkd1 knockout mice, which may become a new potential therapeutic agent for ADPKD. This study also raised several intriguing questions that might advance our understanding of the molecular pathogenesis of ADPKD. PMID:27312442

  15. Post-meal responses of elongation factor 2 (eEF2) and adenosine monophosphate-activated protein kinase (AMPK) to leucine and carbohydrate supplements for regulating protein synthesis duration and energy homeostasis in rat skeletal muscle.

    PubMed

    Wilson, Gabriel J; Moulton, Christopher J; Garlick, Peter J; Anthony, Tracy G; Layman, Donald K

    2012-11-13

    Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS) to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu) and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2). This study evaluates the potential to extend the anabolic meal response with post-meal supplements of Leu or carbohydrates. Adult (~256 g) male Sprague-Dawley rats were food deprived for 12 h, then either euthanized before a standard meal (time 0) or at 90 or 180 min post-meal. At 135 min post-meal, rats received one of five oral supplements: 270 mg leucine (Leu270), 80:40:40 mg leucine, isoleucine, and valine (Leu80), 2.63 g carbohydrates (CHO2.6), 1 g carbohydrates (CHO1.0), or water (Sham control). Following the standard meal, MPS increased at 90 min then declined to pre-meal baseline at 180 min. Rats administered Leu270, Leu80, CHO2.6, or CHO1.0 maintained elevated rates of MPS at 180 min, while Sham controls declined from peak values. Leu80 and CHO1.0 treatments maintained MPS, but with values intermediate between Sham controls and Leu270 and CHO2.6 supplements. Consistent with MPS findings, the supplements maintained elongation activity and cellular energy status by preventing increases in AMP/ATP and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase ACC and eEF2. The impact of the supplements on MPS and cellular energy status was in proportion to the energy content within the individual treatments (i.e., Leu270 > Leu80; CHO2.6 > CHO1.0), but the Leu supplements produced a disproportionate anabolic stimulation of MPS, eEF2 and energy status with significantly lower energy content. In summary, the incongruity between MPS and translation initiation at 180 min reflects a block in translation elongation due to reduced

  16. Novel adenosine 3 prime ,5 prime -cyclic monophosphate dependent protein kinases in a marine diatom

    SciTech Connect

    Lin, P.P.C.; Volcani, B.E. )

    1989-08-08

    Two novel adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) dependent protein kinases have been isolated from the diatom Cylindrotheca fusiformis. The kinases, designated I and II, are eluted from DEAE-Sephacel at 0.10 and 0.15 M NaCl. They have a high affinity for cAMP and are activated by micromolar cAMP. They exhibit maximal activity at 5 mM Mg{sup 2+} and pH 8 with the preferred phosphate donor ATP and phosphate acceptor histone H1. They phosphorylate sea urchin sperm histone H1 on a single serine site in the sequence Arg-Lys-Gly-Ser({sup 32}P)-Ser-Asn-Ala-Arg and have an apparent M{sub r} of 75,000 as determined by gel filtration and sucrose density sedimentation. In the kinase I preparation a single protein band with an apparent M{sub r} of about 78,000 is photolabeled with 8-azido({sup 32}P)cAMP and is also phosphorylated with ({gamma}-{sup 32}P)ATP in a cAMP-dependent manner, after autoradiography following sodium dodecyl sulfate gel electrophoresis. The rate of phosphorylation of the 78,000-dalton band is independent of the enzyme concentration. The results indicate that (i) these diatom cAMP-dependent protein kinases are monomeric proteins, possessing both the cAMP-binding regulatory and catalytic domains on the same polypeptide chain, (ii) the enzymes do not dissociate into smaller species upon activation by binding cAMP, and (iii) self-phosphorylation of the enzymes by an intrapeptide reaction is cAMP dependent. The two diatom cAMP kinases are refractory to the heat-stable protein kinase modulator from rabbit muscle, but they respond differently to proteolytic degradation and to inhibition by arachidonic acid and several microbial alkaloids.

  17. Adenosine 3', 5'-cyclic monophosphate levels in Thermomonospora curvata during cellulase biosynthesis

    SciTech Connect

    Fennington, G.; Neubauer, D.; Stutzenberger, F.

    1983-01-01

    The enzymatic degradation of cellulose requires the synergistic activity of at least three enzymes: exo-beta-1,4-glucanase (EC3.2.1.91), endo-beta-1,4-glucanase (EC3.2.1.4), and beta-glucosidase (EC3.2.1.21). Despite extensive studies on a variety of cellulolytic bacteria and fungi, the mechanism(s) regulating the biosynthesis of this inducible catabolic enzyme complex remains unknown. The intracellular concentrations of cyclic nucleotides such as adenosine 3',5'-cyclic monophosphate (cAMP) have been shown to play a major role in mediating catabolite repression of enzyme biosynthesis. The cAMP acts through a cAMP receptor protein (termed CRP or CAP) which is a dimer having two identical subunits each capable of binding one molecule of cAMP. The N-terminal domain of the CRP binds the cAMP while the C-terminal domain binds to DNA at the promotor region of a cAMP-dependent operon and stimulates transcription by promoting the formation of a preinitiation complex between RNA polymerase and the DNA. Intracellular cAMP levels in E. coli (the prototype organism for such studies) are influenced by the type and availability of carbon source used for growth. High intracellular cAMP levels should lead to higher concentrations of cAMP-CRP complexes which should increase the transcription rates for cAMP-dependent operons (such as the lac operon of beta-galactosidase) and indeed the differential rate of beta-galactosidase biosynthesis correlates to intracellular cAMP levels. In the case of cellulase, catabolite repression by glucose or other readily metabolizable compounds closely controls production in an apparently similar manner and therefore a correlation may exist between enzyme biosynthesis and intracellular cAMP levels. This communication describes the fluctuation in cAMP levels during cellulase induction and repression in the thermophilic actinomycete, Thermomonospora curvata.

  18. Repetitive mechanical strain suppresses macrophage uptake of immunoglobulin G complexes and enhances cyclic adenosine monophosphate synthesis.

    PubMed Central

    Mattana, J.; Sankaran, R. T.; Singhal, P. C.

    1995-01-01

    Uptake of immunoglobulin G (IgG) complexes by macrophages (M phi) may play an important role in disease states characterized by increased levels of circulating immune complexes. In sites such as the glomerular mesangium M phi may be subjected to repetitive mechanical strain, although in vitro studies of M phi endocytosis are typically carried out with cells grown on rigid surfaces. We undertook the present study to determine whether repetitive mechanical strain could modulate M phi endocytosis of IgG complexes. IgG complex uptake was significantly diminished in M phi that were subjected to repetitive mechanical strain using parameters corresponding to peak and minimal intraglomerular pressures compared with control, and uptake varied according to the amount of mechanical strain applied. There was no significant difference in surface binding of IgG between M phi subjected to strain and those not. Mechanical strain did not significantly influence the rate of IgG complex degradation. Inhibition of nitric oxide synthase and guanylate cyclase activity did not alter the effect of mechanical strain, although this effect was potentiated by 3-isobutyl-1-methylxanthine (IBMX). Angiotensin II, which has been shown to reduce adenosine 3',5'-cyclic monophosphate (cAMP) production in M phi, significantly attenuated the suppressive effect of mechanical strain on IgG complex uptake as well as another inhibitor of cAMP generation, indomethacin. Enzyme immunoassay demonstrated significantly enhanced levels of cAMP in M phi that were subjected to mechanical strain compared with control, an effect that was potentiated by IBMX and attenuated by angiotensin II and indomethacin. These results demonstrate that repetitive mechanical strain significantly reduces IgG complex uptake by M phi, most likely by enhancing cAMP synthesis. Such an effect might play a significant role in macromolecule handling by M phi in sites in which they are subjected to repetitive mechanical deformation such as

  19. Gas-Phase Conformations and Energetics of Protonated 2^'-DEOXYADENOSINE-5^'-MONOPHOSPHATE and ADENOSINE-5^'-MONOPHOSPHATE: Irmpd Action Spectroscopy and Theoretical Studies

    NASA Astrophysics Data System (ADS)

    Wu, Ranran; Nei, Y.-W.; He, Chenchen; Hamlow, Lucas; Berden, Giel; Oomens, J.; Rodgers, M. T.

    2015-06-01

    Nature uses protonation to alter the structures and reactivities of molecules to facilitate various biological functions and chemical transformations. For example, in nucleobase repair and salvage processes, protonation facilitates nucleobase removal by lowering the activation barrier for glycosidic bond cleavage. Systematic studies of the structures of protonated 2'-deoxyribonucleotides and ribonucleotides may provide insight into the roles protonation plays in altering the nucleobase orientation relative to the glycosidic bond and sugar puckering. In this study, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments in conjunction with electronic structure calculations are performed to probe the effects of protonation on the structures and stabilities of 2^'-deoxyadenosine-5^'-monophosphate (pdAdo) and adenosine-5^'-monophosphate (pAdo). Photodissociation as a function of IR wavelength is measured to generate the IRMPD action spectra. Geometry optimizations and frequency analyses performed at the B3LYP/6-311+G(d,p) level of theory are used to characterize the stable low-energy structures and to generate their linear IR spectra. Single point energy calculations performed at the B3LYP/6-311+G(2d,2p) and MP2(full)/6-311+G(2d,2p) levels of theory provide relative stabilities of the optimized conformations. The structures accessed in the experiments are determined by comparing the calculated linear IR spectra for the stable low-energy conformers computed to the measured IRMPD action spectra. The effects of the 2^'-hydroxyl moiety are elucidated by comparing the structures and IRMPD spectra of [pAdo+H]+ to those of its DNA analogue. Comparisons are also made to the deprotonated forms of these nucleotides and the protonated forms of the analogous nucleosides to elucidate the effects of protonation and the phosphate group on the structures.

  20. Adenosine 3',5'-monophosphate waves in dictyostelium discoideum: a demonstration by isotope dilution-fluorography

    SciTech Connect

    Tomchik, K.J.; Devreotes, P.N.

    1981-04-24

    The distribution of adenosine 3',5'-monophosphate (cyclic AMP) in fields of aggregating amoebae of Dictyostelium discoidenum was examined by a novel isotope dilution-fluorographic technique. Cellular cyclic AMP was visualized by its competition with exogenous /sup 3/H-labeled cyclic AMP for high-affinity binding sites on protein kinase immobilized on a Millipore filter used to blot the monolayer. The cyclic AMP was distributed in spiral or concentric circular wave patterns which centered on the foci of the aggregations. These patterns were correlated with those of cell shape change that propagate through the monolayers. These observations support the hypothesis that the aggregation process in Dictyostelium is mediated by the periodic relay of cyclic AMP signals and suggest a simple scheme for the dynamics of the aggregation process.

  1. Intracellular adenosine 5'-triphosphate, adenosine 5'-diphosphate, and adenosine 5'-monophosphate detection by short-end injection capillary electrophoresis using methylcellulose as the effective electroosmostic flow suppressor.

    PubMed

    Zinellu, Angelo; Sotgia, Salvatore; Pasciu, Valeria; Madeddu, Manuela; Leoni, Giovanni Giuseppe; Naitana, Salvatore; Deiana, Luca; Carru, Ciriaco

    2008-07-01

    We present a new rapid CE method to measure adenine nucleotides adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in cells. The short-end injection mode allows a decrease in the analysis time by injecting samples at the outlet end of a silica capillary closest to the detection window, reducing the migration distance. Moreover, the use of methylcellulose (MC) as run buffer additive to suppress EOF permits to further reduce the migration times of analytes. Thus, when a capillary with an effective length of 10.2 cm was used with a 60 mmol/L sodium acetate buffer pH 3.80 in the presence of 0.01% of MC, the migration time of analytes were 1.35 min for ATP, 1.85 min for ADP, and 4.64 min for AMP. These conditions gave a good reproducibility for intra- and interassay (CV <4 and 8%, respectively) and all the procedure demonstrated an excellent analytical recovery (from 98.3 to 99 %). The method suitability was proved both on red blood cells and in spermatozoa. We compared our proposed method to a spectrophotometric assay, by measuring ATP levels in 40 spermatozoa samples. The obtained data were analyzed by the Passing and Bablok regression and Bland-Altman test. PMID:18551716

  2. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    NASA Astrophysics Data System (ADS)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  3. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice

    PubMed Central

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-01

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238

  4. [Concentration of prostaglandins and cyclic adenosine-3',5'-monophosphate in the tissues of rats].

    PubMed

    Komissarenko, V P; Slavnov, V N; Epsheĭn, E V; Malinkovich, V D

    1977-04-01

    The content of prostaglandines (PG) and cyclic 3',5'-adenosine monphosphate (cAMP) was investigated in rat tissues by the radioisotopic method of competitive binding. Maximum quantities of both PG and cAMP were revealed in the same most actively functioning organs: the brain, incretory glands, small intestine. Fatty tissue showed minimum quantities of these substances. Results indicate a close functional relationship between the PG synthesis and adenylatecyclase activity in the body tissues.

  5. Directed breeding of an Arthrobacter mutant for high-yield production of cyclic adenosine monophosphate by N + ion implantation

    NASA Astrophysics Data System (ADS)

    Song, He; Chen, Xiaochun; Cao, Jiaming; Fang, Ting; Bai, Jianxin; Xiong, Jian; Ying, Hanjie

    2010-08-01

    To obtain a cyclic adenosine monophosphate (cAMP) high-yield production strain, Arthrobacter NG-1 was mutated by N + ion implantation with an energy level of 10 keV and dose of 7×10 15 ions/cm 2. Combined with directed screening methods, a xanthine-defective and 8-azaguanine (8-AG)-resistant mutant Arthrobacter A302 was selected. The concentration of cAMP produced by this mutant was 41.7% higher than that of the original strain and reached 9.78 g/L. Through ten-generation investigation, the capability of cAMP production of A302 was found to be stable. Compared with the original strain, the special activities of key enzymes in A302, which influenced the cAMP biosynthesis, was analyzed. IMP dehydrogenase activity was defective, whereas PRPP amidotransferase, sAMP synthetase and adenylate cyclase activities were increased by 61.5%, 147% and 21.7%, respecitively, which might explain the mutagenesis mechanism by N + ions implantation under the enzymatic level.

  6. Investigation on the occurrence and significance of cyclic adenosine 3':5'-monophosphate in phytoplankton and natural aquatic communities

    SciTech Connect

    Francko, D.A.

    1980-01-01

    This study is an investigation into the occurrence and potential functions of cyclic adenosine 3':5'-monophosphate (cAMP), a potent and ubiquitous metabolic regulatory molecule in heterotrophic organisms, in phytoplankton and in natural aquatic communities. Laboratory-cultured phytoplankton were grown under both optimal and suboptimal nutrient regimes under constant temperature and illumination regimes. Cellular and extracellular cAMP production, characterized by a number of biochemical techniques, was correlated with growth rate dynamics, chlorophyll a synthesis, /sup 14/C-bicarbonate uptake, alkaline phosphatase activity, and heterocyst formation. The blue-green alga Anabaena flos-aquae was used as a model system in the examination of these metabolic variables. Additionally, this alga was used to test the effects of perturbation of cAMP levels on the aforementioned metabolic variables. Investigations on the occurrence and seasonal dynamics of cAMP in aquatic systems were conducted on Lawrence Lake, a hardwater oligotrophic lake, and on Wintergreen Lake, a hardwater hypereutrophic lake, both in southwestern Michigan. Putative cAMP from both systems was characterized by several biochemical techniques. Weekly sampling of particulate and dissolved cAMP in the epilimnia of both lakes was correlated with data on the rates of primary productivity, alkaline phosphatase activity, chlorophyll a synthesis and changes in phytoplankton community structure.

  7. Cyclic Adenosine Monophosphate Accumulation and beta-Adrenergic Binding in Unweighted and Denervated Rat Soleus Muscle

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.

    1992-01-01

    Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.

  8. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  9. Adenosine 3′:5′-cyclic monophosphate- and guanosine 3′:5′-cyclic monophosphate-dependent protein kinases: Possible homologous proteins

    PubMed Central

    Lincoln, Thomas M.; Corbin, Jackie D.

    1977-01-01

    The properties of purified mammalian adenosine 3′:5′-cyclic monophosphate (cAMP)- and guanosine 3′:5′-cyclic monophosphate (cGMP)-dependent protein kinases were compared. Several physical characteristics of the two enzymes were similar, including size, shape, affinity for cyclic nucleotide binding, and Km for ATP. In addition, the amino acid composition of the two proteins indicated a close composition homology (70-90%). Both cyclic nucleotide-dependent protein kinases catalyzed phosphorylation of rat liver pyruvate kinase (EC 2.7.1.40) and fructose 1,6-diphosphatase (EC 3.1.3.11), rabbit skeletal muscle glycogen synthase (EC 2.4.1.11) and phosphorylase b kinase (EC 2.7.1.38), and calf thymus histone H2b. The phosphorylation of several synthetic peptides and of trypsin-sensitive and trypsin-insensitive sites in glycogen synthase suggested similar recognition sites on the protein substrates for the two kinases. The cAMP-dependent protein kinase was the better catalyst with each protein or peptides substrate. The results suggest that the two enzymes evolved from a common ancestral protein. Images PMID:198777

  10. The effect of p,p'-dichlorodiphenyltrichloroethane on levels of guanosine 3',5'-cyclic monophosphate and adenosine 3',5'-cyclic monophosphate in two species of insects.

    PubMed

    Bodnaryk, R P

    1976-11-01

    Within 1 h after topical application of a convulsive dose (4 mug per fly, 47 mg/kg) of p,p'-dichlorodiphenyltrichloroethane (DDT) to the adult male of Sarcophaga bullata Parker, guanosine 3',5'-cyclic monophosphate (cyclic GMP) levels rose by 71.5% (P less than 0.05) in the head, 159.5% (P less than 0.01) in the thorax, and 23.4% (P greater than 0.05) in the abdomen compared to controls. Adenosine 3',5'-cyclic monophosphate (cyclic AMP) levels were not significantly affected by the DDT treatment. A convulsive dose (100 mug per larva, 250 mg/kg) of DDT applied to larvae of Mamestra configurata Wlk. caused the whole body level of cyclic GMP to rise by 81.6% (P less than 0.01) after 1 h, and by 95.9% (P less than 0.01) after 3 h. Levels of cyclic AMP were not affected. A hypothesis is advanced suggesting that an abnormally high rate of discharge of acetylcholine (and in the later stages of poisoning, its actual accumulation) at central cholinergic synapses causes cyclic GMP levels to rise, perhaps in post-synaptic cells. The elevated cyclic GMP-cyclic AMP ratio found in DDT-poisoned insects may be of fundamental importance in the complex sequence of events leading to tremor, hyperexcitability, paralysis, and death.

  11. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    PubMed

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.

  12. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(-) secretion in human airway epithelia.

    PubMed

    Mall, M; Wissner, A; Schreiber, R; Kuehr, J; Seydewitz, H H; Brandis, M; Greger, R; Kunzelmann, K

    2000-09-01

    Ion transport defects underlying cystic fibrosis (CF) lung disease are characterized by impaired cyclic adenosine monophosphate (cAMP)-dependent Cl(-) conductance. Activation of Cl(-) secretion in airways depends on simultaneous activation of luminal Cl(-) channels and basolateral K(+) channels. We determined the role of basolateral K(+) conductance in cAMP- dependent Cl(-) secretion in native human airway epithelium obtained from non-CF and CF patients. CF tissues showed typical alterations of short-circuit currents with enhanced amiloride-sensitive Na(+) conductance and defective cAMP-mediated Cl(-) conductance. In non-CF tissues, Cl(-) secretion was significantly inhibited by the chromanol 293B (10 micromol/liter), a specific inhibitor of K(V)LQT1 K(+) channels. Inhibition was increased after cAMP-dependent stimulation. Similar effects were obtained with Ba(2+) (5 mmol/liter). In patch-clamp experiments with a human bronchial epithelial cell line, stimulation with forskolin (10 micromol/liter) simultaneously activated Cl(-) and K(+) conductance. The K(+) conductance was reversibly inhibited by Ba(2+) and 293B. Analysis of reverse-transcribed messenger RNA from non-CF and CF airways showed expression of human K(V)LQT1. We conclude that the K(+) channel K(V)LQT1 is important in maintaining cAMP-dependent Cl(-) secretion in human airways. Activation of K(V)LQT1 in CF airways in parallel with stimulation of residual CF transmembrane conductance regulator Cl(-) channel activity or alternative Cl(-) channels could help to circumvent the secretory defect.

  13. Isolation of cyclic adenosine 3':5'-monophosphate (cAMP) from lakes of differing trophic status: Correlation with planktonic metabolic variables

    SciTech Connect

    Francko, D.A.; Wetzel, R.G.

    1982-01-01

    The seasonal dynamics of particulate and dissolved cyclic adenosine 3':5'-monophosphate (cAMP) were examined in the epilimnia and littoral zones of two trophically dissimilar lakes. Each cAMP fraction was found in quantities comparable to those reported for cultured phytoplankton species. Both cAMP fractions varied greatly in concentration during the season and between the oligotrophic and hypereutrophic lakes. Increases in phytoplankton community densities were paralleled by weight-specific changes in particulate cAMP levels, depending on the phytoplankton species present. A linear relationship between cellular cAMP levels and in situ primary productivity rates was found in the oligotrophic lake. In both lakes, certain phytoplanktonic associations had particulate cAMP levels linearly related to chlorophyll a content and specific activity of alkaline phosphatase.

  14. Investigation on the occurrence and significance of cyclic adenosine 3':5'-monophosphate in phytoplankton and natural aquatic communities

    SciTech Connect

    Francko, D.A.

    1980-01-01

    This study demonstrates, on the basis of several analyanalytical criteria, that the production and extracellular release of cyclic adenosine 3':5'-monophosphate (cAMP) is widespread among phytoplankton species. The production and release of CAMP varied markedly among different species grown under similar environmental conditions, and intraspecifically during the life cycle of a given algal species. This investigation marks the first time cAMP has been investigated in natural aquatic systems. An examination of epilimnetic lakewater samples from Lawrence Lake, a hardwater oligotrophic lake, and Wintergreen Lake, a hardwater hypereutrophic lake, both in southwestern Michigan, demonstrated that cAMP existed in both particulate-associated and dissolved forms in these systems.

  15. Adenosine 3':5'-cyclic monophosphate in higher plants: Isolation and characterization of adenosine 3':5'-cyclic monophosphate from Kalanchoe and Agave.

    PubMed

    Ashton, A R; Polya, G M

    1977-07-01

    1.3':5'-Cyclic AMP was extensively purified from Kalanchoe daigremontiana and Agave americana by neutral alumina and anion- and cation-exchange column chromatography. Inclusion of 3':5'-cyclic [8-3H]AMP from the point of tissue extraction permitted calculation of yields. The purification procedure removed contaminating material that was shown to interfere with the 3':5'-cyclic AMP estimation and characterization procedures. 2. The partially purified 3':5'-cyclic AMP was quantified by means of a radiochemical saturation assay using an ox heart 3':5'-cyclic AMP-binding protein and by an assay involving activation of a mammalian protein kinase. 3. The plant 3':5'-cyclic AMP co-migrated with 3':5'-cyclic [8-3H]AMP on cellulose chromatography, poly(ethyleneimine)-cellulose chromatography and silica-gel t.l.c. developed with several solvent systems. 4. The plant 3':5'-cyclic AMP was degraded by ox heart 3':5'-cyclic nucleotide phosphodiesterase at the same rates as authentic 3':5'-cyclic AMP. 1-Methyl-3-isobutylxanthine (1 mM), a specific inhibitor of the 3':5'-cyclic nucleotide phosphodieterase, completely inhibited such degradation. 5. The concentrations of 3':5'-cyclic AMP satisfying the above criteria in Kalanchoe and Agave were 2-6 and 1 pmol/g fresh wt. respectively. Possible bacterial contribution to these analyses was estimated to be less than 0.002pmol/g fresh wt. Evidence for the occurrence of 3':5'-cyclic AMP in plants is discussed.

  16. Measuring the dynamics of cyclic adenosine monophosphate level in living cells induced by low-level laser irradiation using bioluminescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen; Zeng, Haishan

    2015-05-01

    Several studies demonstrated that the cyclic adenosine monophosphate (cAMP), an important second messenger, is involved in the mechanism of low-level laser irradiation (LLLI) treatment. However, most of these studies obtained the cAMP level in cell culture extracts or supernatant. In this study, the cAMP level in living cells was measured with bioluminescence resonance energy transfer (BRET). The effect of LLLI on cAMP level in living cells with adenosine receptors blocked was explored to identify the role of adenosine receptors in LLLI. The results showed that LLLI increased the cAMP level. Moreover, the rise of cAMP level was light dose dependent but wavelength independent for 658-, 785-, and 830-nm laser light. The results also exhibited that the adenosine receptors, a class of G protein-coupled receptor (GPCR), modulated the increase of cAMP level induced by LLLI. The cAMP level increased more significantly when the A3 adenosine receptors (A3R) were blocked by A3R antagonist compared with A1 adenosine receptor or A2a adenosine receptor blocked in HEK293T cells after LLLI, which was in good agreement with the adenosine receptors' expressions. All these results suggested that measuring the cAMP level with BRET could be a useful technique to study the role of GPCRs in living cells under LLLI.

  17. Selective Phosphonylation of 5'-Adenosine Monophosphate (5'-AMP) via Pyrophosphite [PPi(III)

    NASA Astrophysics Data System (ADS)

    Kaye, Karl; Bryant, David E.; Marriott, Katie E. R.; Ohara, Shohei; Fishwick, Colin W. G.; Kee, Terence P.

    2016-11-01

    We describe here experiments which demonstrate the selective phospho-transfer from a plausibly prebiotic condensed phosphorus (P) salt, pyrophosphite [H2P2O5 2-; PPi(III)], to the phosphate group of 5'-adenosine mono phosphate (5'-AMP). We show further that this P-transfer process is accelerated both by divalent metal ions (M2+) and by organic co-factors such as acetate (AcO-). In this specific case of P-transfer from PPi(III) to 5'-AMP, we show a synergistic enhancement of transfer in the combined presence of M2+ & AcO-. Isotopic labelling studies demonstrate that hydrolysis of the phosphonylated 5'-AMP, [P(III)P(V)-5'-AMP], proceeds via nuceophilic attack of water at the Pi(III) terminus.

  18. Selective Phosphonylation of 5'-Adenosine Monophosphate (5'-AMP) via Pyrophosphite [PPi(III)

    NASA Astrophysics Data System (ADS)

    Kaye, Karl; Bryant, David E.; Marriott, Katie E. R.; Ohara, Shohei; Fishwick, Colin W. G.; Kee, Terence P.

    2016-05-01

    We describe here experiments which demonstrate the selective phospho-transfer from a plausibly prebiotic condensed phosphorus (P) salt, pyrophosphite [H2P2O5 2-; PPi(III)], to the phosphate group of 5'-adenosine mono phosphate (5'-AMP). We show further that this P-transfer process is accelerated both by divalent metal ions (M2+) and by organic co-factors such as acetate (AcO-). In this specific case of P-transfer from PPi(III) to 5'-AMP, we show a synergistic enhancement of transfer in the combined presence of M2+ & AcO-. Isotopic labelling studies demonstrate that hydrolysis of the phosphonylated 5'-AMP, [P(III)P(V)-5'-AMP], proceeds via nuceophilic attack of water at the Pi(III) terminus.

  19. An evaluation of short-term corticosteroid response in perennial allergic rhinitis using histamine and adenosine monophosphate nasal challenge

    PubMed Central

    Wilson, Andrew M; Sims, Erika J; Orr, Linda C; Robb, Fiona; Lipworth, Brian J

    2003-01-01

    Aims To evaluate the role of AMP nasal challenge as a measure of short-term treatment response in patients receiving intranasal corticosteroids. Adenosine monophosphate (AMP) challenge has been shown to be a good inflammatory surrogate in the lower airways, but it has not been properly evaluated as a nasal challenge test. Methods Fourteen patients with perennial allergic rhinitis (PAR) were randomized to receive 2 weeks treatment with placebo (PL) or 200 µg intranasal mometasone furoate (MF) once daily in a randomized single-blind crossover study. AMP (25–800 mg ml−1) and histamine (0.25–8 mg ml−1) nasal challenge testing were performed after each treatment period with 30% decrease in minimal cross-sectional area (MCA). Domiciliary symptom data were collected. Results There was a significant (P < 0.05) improvement in PC30 MCA and nasal volume with AMP but not with histamine comparing MF vs PL. This amounted to a 2.8 (95% CI 1.5, 4.0) and 0.7 (95% CI −0.5, 1.9) doubling-dose change for AMP and histamine challenges, respectively. There were significant (P < 0.05) improvements in nasal symptoms and quality of life. Conclusions AMP nasal challenge using acoustic rhinometry may be a useful test to assess short-term treatment response in patient with PAR. PMID:12680883

  20. DNA sequence polymorphism within the bovine adenosine monophosphate deaminase 1 (AMPD1) is associated with production traits in Chinese cattle.

    PubMed

    Wei, C-B; Wang, J-Q; Chen, F-Y; Niu, H; Li, K

    2015-02-06

    The objectives of the present study were to detect an 18-bp deletion mutation in the bovine adenosine monophosphate deaminase 1 (AMPD1) gene and analyze its effect on growth traits in 2 Chinese cattle breeds using DNA sequencing and agarose electrophoresis. The five 19-bp polymerase chain reaction products of the AMPD1 gene exhibited 3 genotypes and 2 alleles: WW: homozygote genotype (wild-type); DD: homozygote genotype (mutant-type); WD: heterozygote genotype. Frequencies of the W allele varied from 66.15-70.35%. The associations between the 18-bp deletion mutation in the AMPD1 gene with production traits in 226 Jia-Xian red cattle was analyzed. The animals with genotype WW showed significantly higher heart girth and body weight than those with genotypes WD and DD at 24 months (P < 0.01). Our results indicate that the deletion mutation in the AMPD1 gene is associated with production traits, and may be used for marker-assisted selection in beef cattle breeding programs.

  1. Estradiol and chlordecone (Kepone) decrease adenosine 3'5'-cyclic monophosphate concentrations in the ovariectomized immature rat uterus.

    PubMed

    Johnson, D C; Banerjee, S; Chatterjee, S

    1995-10-01

    Adenosine 3'5'-cyclic monophosphate (cAMP) has been repeatedly shown to mimic some actions of estrogen in the rat uterus. However, the relationship between estrogens and uterine cAMP remains controversial. The effect of chronic exposure (3 days) to a biologically potent, long-acting estrogen, estradiol benzoate (EB), or the xenoestrogen chlordecone (Kepone), which has a long half-life in the circulation, was examined in ovariectomized immature rats. Both compounds, when administered in doses that provided equal increases in uterine weight, produced equivalent decreases in uterine cAMP content. Although the decrease in cAMP was apparent within 48 hr, it was more pronounced at 72 hr. There was no reduction in cAMP produced in response to direct stimulation of uterine adenylyl cyclase by forskolin, indicating that loss of the enzyme was not a factor in the lowering of cAMP content. The pure anti-estrogen ICI-182,780, in a dose-dependent fashion, prevented the action the estradiol benzoate and chlordecone, suggesting that the lowering of cAMP was dependent on an estrogen receptor. The physiological significance of reduced uterine cAMP with chronic estrogen treatment remains to be determined. PMID:7545817

  2. The expression of cyclic adenosine monophosphate responsive element modulator in rat sertoli cells following seminal extract administration

    PubMed Central

    Akmal, Muslim; Siregar, Tongku Nizwan; Wahyuni, Sri; Hamny; Nasution, Mustafa Kamal; Indriati, Wiwik; Panjaitan, Budianto; Aliza, Dwinna

    2016-01-01

    Aim: This study aims to determine the effect of seminal vesicle extract on cyclic adenosine monophosphate responsive element modulator (CREM) expression in rat Sertoli cells. Materials and Methods: This study examined the expression of CREM on 20 male rats (Rattus norvegicus) at 4 months of age, weighing 250-300 g. The rats were divided into four groups: K0, KP1, KP2, and KP3. K0 group was injected with 0.2 ml normal saline; KP1 was injected with 25 mg cloprostenol (Prostavet C, Virbac S. A); KP2 and KP3 were injected with 0.2 and 0.4 ml seminal vesicle extract, respectively. The treatments were conducted 5 times within 12-day interval. At the end of the study, the rats were euthanized by cervical dislocation; then, the testicles were necropsied and processed for histology observation using immunohistochemistry staining. Results: CREM expression in rat Sertoli cells was not altered by the administration of either 0.2 or 0.4 ml seminal vesicle extract. Conclusion: The administration of seminal vesicle extract is unable to increase CREM expression in rat Sertoli cells. PMID:27733803

  3. The effect of polystyrene beads on cyclic 3′,5′-adenosine monophosphate concentration in leukocytes

    PubMed Central

    Manganiello, Vincent; Evans, Warren H.; Stossel, Thomas P.; Mason, Robert J.; Vaughan, Martha

    1971-01-01

    After incubation with polystyrene latex beads for 5 min. the cyclic 3′,5′-adenosine monophosphate (cyclic AMP) content of human peripheral blood leukocyte suspensions was increased severalfold. Preparations enriched in mononuclear cells and containing only 0-20% polymorphonuclear leukocytes (PMN) and no visible platelets exhibited a quantitatively similar response. Purified fractions of cells containing 85-90% PMN responded to polystyrene beads with a much smaller increase in cyclic AMP content. Phagocytosis of paraffin oil emulsion in the unfractionated mixed human leukocyte preparation was associated with little or no change in cyclic AMP levels. There was no change in cyclic AMP content of rabbit alveolar macrophages or guinea pig PMN during phagocytosis of polystyrene beads. All of these observations are consistent with the view that particle uptake per se does not increase cyclic AMP levels in phagocytic cells. It seems probable that the increase in cyclic AMP concentration that results when unfractionated human blood leukocytes are incubated with polystyrene beads occurs in cells other than PMN. PMID:4331596

  4. RECIPIENT PRETRANSPLANT INOSINE MONOPHOSPHATE DEHYDROGENASE ACTIVITY IN NONMYELOABLATIVE HCT

    PubMed Central

    Bemer, Meagan J.; Risler, Linda J.; Phillips, Brian R.; Wang, Joanne; Storer, Barry E.; Sandmaier, Brenda M.; Duan, Haichuan; Raccor, Brianne S.; Boeckh, Michael J.; McCune, Jeannine S.

    2014-01-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5’- monophosphate (IMP) to xanthosine 5’-monophosphate (XMP). We developed a highly sensitive liquid chromatography–mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNC) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T-cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation, but not with chronic GVHD, relapse, non-relapse mortality, or overall mortality. We conclude that quantitation of the recipient’s pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient’s sensitivity to MMF, but confirmatory studies are needed. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  5. Developmental Competence of Vitrified-Warmed Bovine Oocytes at the Germinal-Vesicle Stage is Improved by Cyclic Adenosine Monophosphate Modulators during In Vitro Maturation

    PubMed Central

    Ezoe, Kenji; Yabuuchi, Akiko; Tani, Tetsuya; Mori, Chiemi; Miki, Tetsuya; Takayama, Yuko; Beyhan, Zeki; Kato, Yoko; Okuno, Takashi; Kobayashi, Tamotsu; Kato, Keiichi

    2015-01-01

    Cryopreservation of mature oocytes and embryos has provided numerous benefits in reproductive medicine. Although successful cryopreservation of germinal-vesicle stage (GV) oocytes holds promise for further advances in reproductive biology and clinical embryology fields, reports regarding cryopreservation of immature oocytes are limited. Oocyte survival and maturation rates have improved since vitrification is being performed at the GV stage, but the subsequent developmental competence of GV oocytes is still low. The purpose of this study was to evaluate the effects of supplementation of the maturation medium with cyclic adenosine monophosphate (cAMP) modulators on the developmental competence of vitrified-warmed GV bovine oocytes. GV oocytes were vitrified-warmed and cultured to allow for oocyte maturation, and then parthenogenetically activated or fertilized in vitro. Our results indicate that addition of a cAMP modulator forskolin (FSK) or 3-isobutyl-1-methylxanthine (IBMX) to the maturation medium significantly improved the developmental competence of vitrified-warmed GV oocytes. We also demonstrated that vitrification of GV oocytes led to a decline in cAMP levels and maturation-promoting factor (MPF) activity in the oocytes during the initial and final phases of maturation, respectively. Nevertheless, the addition of FSK or IBMX to the maturation medium significantly elevated cAMP levels and MPF activity during IVM. Taken together, our results suggest that the cryopreservation-associated meiotic and developmental abnormalities observed in GV oocytes may be ameliorated by an artificial increase in cAMP levels during maturation culture after warming. PMID:25965267

  6. Study of the Renal Tubular Interactions of Thyrocalcitonin, Cyclic Adenosine 3′, 5′ -Monophosphate, 25-Hydroxycholecalciferol, and Calcium Ion

    PubMed Central

    Puschett, Jules B.; Beck, William S.; Jelonek, Adam; Fernandez, Pedro C.

    1974-01-01

    Acute clearance studies were performed in thyroparathyroidectomized animals to determine the actions and interactions of thyrocalcitonin (TCT), cyclic adenosine 3′5′-monophosphate (cAMP), 25-hydroxycholecalciferol (25HCC), and calcium ion on the reabsorption of phosphate, calcium, sodium, and potassium by the kidney. The infusion of 25HCC in a dosage of 60 U/h to moderately saline-expanded animals (2.5% body weight) induced a fall in the excretion of all of the ions under study after 90-120 min similar to that observed in previous experiments from this laboratory. Mean decrements in fractional excretion were: phosphate, 42.0% (P < 0.005); calcium, 25.0% (P < 0.005); sodium, 23.4% (P < 0.001); and potassium, 14.7% (P < 0.005). The superimposition of either porcine or salmon TCT (1-100 MRC U/h for 2 h) resulted in no further alterations in electrolyte excretion. However, the infusion of TCT during steady-state saline expansion, before the administration of 25HCC, obviated the renal transport effects of the vitamin D metabolite. Both in the latter studies, as well as those in which similar doses of TCT were given to hydropenic animals, the hormone itself failed to induce any consistent alteration in electrolyte excretion. Cyclic AMP (50 mg/h) caused an increase in the excretion of phosphate, sodium, and potassium and no change in calcium excretion. Like TCT, the nucleotide blocked the action of 25HCC on the kidney. Raising the mean level of serum ultrafilterable calcium to 3.02±0.25 mEq/liter from 1.62±0.17 mEq/liter likewise prevented enhanced ionic reabsorption due to 25HCC. PMID:4359939

  7. 3',5'-cyclic adenosine monophosphate and adenylate cyclase in phototransduction by limulus ventral photoreceptors.

    PubMed Central

    Brown, J E; Kaupp, U B; Malbon, C C

    1984-01-01

    Biochemical and electrophysiological measurements were made on photoreceptor cells from Limulus ventral eyes to investigate the possible role of cyclic AMP and adenylate cyclase in the visual transduction mechanism. Cyclic AMP content in a photoreceptor-enriched fraction (the end organs) of Limulus ventral eyes was approximately 15 pmol/mg protein. The cyclic AMP content was increased by bathing eyes in 1-methyl-3-isobutyl xanthine or forskolin and was increased almost 100-fold when bathed in both. Illumination did not change cyclic AMP content significantly in any of these conditions. Discrete events that can be recorded electrophysiologically occur spontaneously in darkness. An increase in the frequency of discrete events is evoked by dim illumination. The discrete events are a sign of excitation of Limulus photoreceptor cells. Drug-induced changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness were not correlated with changes in cyclic AMP content. Adenylate cyclase activity measured from a small number of pooled photoreceptor clusters was stimulated by fluoride and vanadate ions, hydrolysis-resistant analogues of GTP, cholera toxin and forskolin. The Limulus enzyme is similar pharmacologically to mammalian and avian adenylate cyclases. Activation of adenylate cyclase by drugs was not correlated with changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness. A heat-treated Lubrol extract of membranes from Limulus ventral eyes reconstituted the adenylate cyclase activity of membranes from S49 mouse lymphoma cyc- mutant cells which lack a functional regulatory protein. These findings suggest that Limulus ventral eye photoreceptors contain a regulatory protein that mediates the activation of adenylate cyclase by guanine nucleotides, fluoride or cholera toxin. This regulatory protein is homologous with that found in mammalian and avian adenylate cyclases. Our findings suggest that

  8. Vasoactive intestinal peptide attenuates liver ischemia/reperfusion injury in mice via the cyclic adenosine monophosphate-protein kinase a pathway.

    PubMed

    Ji, Haofeng; Zhang, Yu; Liu, Yuanxing; Shen, Xiu-Da; Gao, Feng; Nguyen, Terry T; Busuttil, Ronald W; Waschek, James A; Kupiec-Weglinski, Jerzy W

    2013-09-01

    Hepatic ischemia/reperfusion injury (IRI), an exogenous, antigen-independent, local inflammation response, occurs in multiple clinical settings, including liver transplantation, hepatic resection, trauma, and shock. The nervous system maintains extensive crosstalk with the immune system through neuropeptide and peptide hormone networks. This study examined the function and therapeutic potential of the vasoactive intestinal peptide (VIP) neuropeptide in a murine model of liver warm ischemia (90 minutes) followed by reperfusion. Liver ischemia/reperfusion (IR) triggered an induction of gene expression of intrinsic VIP; this peaked at 24 hours of reperfusion and coincided with a hepatic self-healing phase. Treatment with the VIP neuropeptide protected livers from IRI; this was evidenced by diminished serum alanine aminotransferase levels and well-preserved tissue architecture and was associated with elevated intracellular cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling. The hepatocellular protection rendered by VIP was accompanied by diminished neutrophil/macrophage infiltration and activation, reduced hepatocyte necrosis/apoptosis, and increased hepatic interleukin-10 (IL-10) expression. Strikingly, PKA inhibition restored liver damage in otherwise IR-resistant VIP-treated mice. In vitro, VIP not only diminished macrophage tumor necrosis factor α/IL-6/IL-12 expression in a PKA-dependent manner but also prevented necrosis/apoptosis in primary mouse hepatocyte cultures. In conclusion, our findings document the importance of VIP neuropeptide-mediated cAMP-PKA signaling in hepatic homeostasis and cytoprotection in vivo. Because the enhancement of neural modulation differentially regulates local inflammation and prevents hepatocyte death, these results provide the rationale for novel approaches to managing liver IRI in transplant patients. PMID:23744729

  9. Dietary effects of adenosine monophosphate to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major.

    PubMed

    Hossain, Md Sakhawat; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro; Sony, Nadia Mahjabin

    2016-09-01

    Our study explored the dietary effects of adenosine monophosphate (AMP) to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream. A semi-purified basal diet supplemented with 0% (Control), 0.1% (AMP-0.1), 0.2% (AMP-0.2), 0.4% (AMP-0.4) and 0.8% (AMP-0.8) purified AMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (mean initial weight 3.4 g) for 56 days. The results indicated that dietary AMP supplements tended to improve growth performances. One of the best ones was found in diet group AMP-0.2, followed by diet groups AMP-0.1, AMP-0.4 and AMP-0.8. The Apparent digestibility coefficients (dry matter, protein and lipid) also improved by AMP supplementation and the significantly highest dry matter digestibility was observed in diet group AMP-0.2. Fish fed diet groups AMP-0.2 and AMP-0.4 had significantly higher peroxidase and bactericidal activities than fish fed the control diet. Nitro-blue-tetrazolium (NBT) activity was found to be significantly (P < 0.05) greater in fish fed diet groups AMP-0.4 and AMP-0.8. Total serum protein, lysozyme activity and agglutination antibody titer were also increased (P > 0.05) by dietary supplementation. In contrast, catalase activity decreased with AMP supplementation. Moreover, the fish fed AMP supplemented diets had better improvement (P < 0.05) in body lipid contents, condition factor, hematocrit content and glutamyl oxaloacetic transaminase (GOT) level than the control group. Supplementation also improved both freshwater and oxidative stress resistances. Interestingly, the fish fed diet groups AMP-0.2 and AMP-0.4 showed the least oxidative stress condition. Finally it is concluded that, dietary AMP supplementation enhanced the growth, digestibility, immune response and stress resistance of red sea bream. The regression analysis revealed that a dietary AMP supplementation between 0.2 and 0.4% supported weight gain and

  10. Role of adenosine deaminase, ecto-(5'-nucleotidase) and ecto-(non-specific phosphatase) in cyanide-induced adenosine monophosphate catabolism in rat polymorphonuclear leucocytes.

    PubMed Central

    Newby, A C

    1980-01-01

    1. The role of adenosine deaminase (EC 3.5.4.4), ecto-(5'-nucleotidase) (EC 3.1.3.5) and ecto-(non-specific phosphatase) in the CN-induced catabolism of adenine nucleotides in intact rat polymorphonuclear leucocytes was investigated by inhibiting the enzymes in situ. 2. KCN (10mM for 90 min) induced a 20-30% fall in ATP concentration accompanied by an approximately equimolar increase in hypoxanthine, ADP, AMP and adenosine concentrations were unchanged, and IMP and inosine remained undetectable ( less than 0.05 nmol/10(7) cells). 3. Cells remained 98% intact, as judged by loss of the cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27). 4. Pentostatin (30 microM), a specific inhibitor of adenosine deaminase, completely inhibited hypoxanthine production from exogenous adenosine (55 microM), but did not black CN-induced hypoxanthine production or cause adenosine accumulation in intact cells. This implied that IMP rather than adenosine was an intermediate in AMP breakdown in response to cyanide. 5. Antibodies raised against purified plasma-membrane 5'-nucleotidase inhibited the ecto-(5'-nucleotidase) by 95-98%. Non-specific phosphatases were blocked by 10 mM-sodium beta-glycerophosphate. 6. These two agents together blocked hypoxanthine production from exogenous AMP and IMP (200 microM) by more than 90%, but had no effect on production from endogenous substrates. 7. These data suggest that ectophosphatases do not participate in CN-induced catabolism of intracellular AMP in rat polymorphonuclear leucocytes. 8. A minor IMPase, not inhibited by antiserum, was detected in the soluble fraction of disrupted cells. PMID:6249264

  11. Muscle A-Kinase Anchoring Protein-α is an Injury-Specific Signaling Scaffold Required for Neurotrophic- and Cyclic Adenosine Monophosphate-Mediated Survival.

    PubMed

    Wang, Yan; Cameron, Evan G; Li, Jinliang; Stiles, Travis L; Kritzer, Michael D; Lodhavia, Rahul; Hertz, Jonathan; Nguyen, Tu; Kapiloff, Michael S; Goldberg, Jeffrey L

    2015-12-01

    Neurotrophic factor and cAMP-dependent signaling promote the survival and neurite outgrowth of retinal ganglion cells (RGCs) after injury. However, the mechanisms conferring neuroprotection and neuroregeneration downstream to these signals are unclear. We now reveal that the scaffold protein muscle A-kinase anchoring protein-α (mAKAPα) is required for the survival and axon growth of cultured primary RGCs. Although genetic deletion of mAKAPα early in prenatal RGC development did not affect RGC survival into adulthood, nor promoted the death of RGCs in the uninjured adult retina, loss of mAKAPα in the adult increased RGC death after optic nerve crush. Importantly, mAKAPα was required for the neuroprotective effects of brain-derived neurotrophic factor and cyclic adenosine-monophosphate (cAMP) after injury. These results identify mAKAPα as a scaffold for signaling in the stressed neuron that is required for RGC neuroprotection after optic nerve injury. PMID:26844267

  12. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    PubMed

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  13. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    PubMed

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  14. Effects of dibutyryl cyclic adenosine monophosphate on hypercapnic depression of diaphragmatic contractility in pentobarbital-anesthetized dogs

    PubMed Central

    Fujii, Yoshitaka; Uemura, Aki

    2010-01-01

    Background: Hypercapnia is associated with diaphragm muscle dysfunction that causes a reduction of diaphragmatic force generated for a constant elective myographic activity. No published data are available concerning hypercapnic depression of diaphragmatic contractility during dibutyryl cyclic adenosine monophospate (DBcAMP) administration. Objective: The aim of this study was to assess the effects of DBcAMP on hypercapnic depression of diaphragmatic contractility in pentobarbital-anesthetized dogs. Methods: This experimental study was conducted from July to December 2008 at the Department of Anesthesiology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan. Adult (aged >5 years) mongrel dogs weighing 10 to 15 kg were randomly divided into 3 equal groups. Hypercapnia (80–90 mm Hg) was induced with 10% carbon dioxide added to the inspired gas. When hypercapnia was established, group 1 was infused with low-dose DBcAMP (0.05 mg/kg/min); group 2 was infused with high-dose DBcAMP (0.2 mg/kg/min); and group 3 received placebo (saline). Study drug was administered intravenously for 60 minutes. Diaphragmatic contractility was assessed by transdiaphragmatic pressure (Pdi) at baseline, induction of hypercapnia, and study drug administration. Results: Twenty-one dogs were divided into 3 groups of 7. There were no significant differences observed at baseline. In the presence of hypercapnia, Pdi (mean [SD], cm H2O) at low- (20-Hz) and high-frequency (100-Hz) stimulation was significantly decreased from baseline in each group (all, P = 0.001). In groups 1 and 2, Pdi at both stimuli was significantly increased during DBcAMP administration compared with hypercapnia-induced values (group 1: 20-Hz, 13.5 [2.2] vs 15.0 [2.4], respectively, P = 0.001, 100-Hz, 21.2 [1.6] vs 22.5 [1.6], P = 0.001; group 2: 20-Hz, 13.7 [1.4] vs 19.2 [1.7], P = 0.001, 100-Hz, 21.0 [2.4] vs 27.2 [2.5], P = 0.001). The Pdi at both stimuli during DBcAMP administration was significantly

  15. Serum adenosine deaminase activity in cutaneous anthrax

    PubMed Central

    Sunnetcioglu, Mahmut; Karadas, Sevdegul; Aslan, Mehmet; Ceylan, Mehmet Resat; Demir, Halit; Oncu, Mehmet Resit; Karahocagil, Mustafa Kasım; Sunnetcioglu, Aysel; Aypak, Cenk

    2014-01-01

    Background Adenosine deaminase (ADA) activity has been discovered in several inflammatory conditions; however, there are no data associated with cutaneous anthrax. The aim of this study was to investigate serum ADA activity in patients with cutaneous anthrax. Material/Methods Sixteen patients with cutaneous anthrax and 17 healthy controls were enrolled. We measured ADA activity; peripheral blood leukocyte, lymphocyte, neutrophil, and monocyte counts; erythrocyte sedimentation rate; and C reactive protein levels. Results Serum ADA activity was significantly higher in patients with cutaneous anthrax than in the controls (p<0.001). A positive correlation was observed between ADA activity and lymphocyte counts (r=0.589, p=0.021) in the patient group. Conclusions This study suggests that serum ADA could be used as a biochemical marker in cutaneous anthrax. PMID:24997584

  16. Medium optimization for the production of cyclic adenosine 3',5'-monophosphate by Microbacterium sp. no. 205 using response surface methodology.

    PubMed

    Chen, Xiao-Chun; Bai, Jian-Xin; Cao, Jia-Ming; Li, Zhen-Jiang; Xiong, Jian; Zhang, Lei; Hong, Yuan; Ying, Han-Jie

    2009-01-01

    Response surface methodology was employed to optimize medium composition for the production of cyclic adenosine 3',5'-monophosphate (cAMP) with Microbacterium sp. no. 205. A fractional factorial design (2(11-7)) was applied to evaluate the effects of different components in the medium. K(2)HPO(4), MgSO(4) and NaF were found to significantly influence on the cAMP production. The steepest ascent method was used to access the optimal region of the medium composition. The concentrations of the three factors were optimized subsequently using central composite design and response surface methodology. The optimal medium composition to achieve the optimal cAMP production was determined (g/L): K(2)HPO(4), 12.78; MgSO(4), 3.53 and NaF, 0.18. The corresponding cAMP concentration was 8.50 g/L, which was about 1.8-fold increase compared with that using the original medium. Validation experiments were also carried out to prove the adequacy and the accuracy of the model obtained. The cAMP fermentation in 5L fermenter reached 9.87 g/L. PMID:18778935

  17. Vasoactive intestinal peptide: A potent stimulator of adenosine 3′:5′-cyclic monophosphate accumulation in gut carcinoma cell lines in culture*

    PubMed Central

    Laburthe, M.; Rousset, M.; Boissard, C.; Chevalier, G.; Zweibaum, A.; Rosselin, G.

    1978-01-01

    Vasoactive intestinal peptide (VIP) is a potent and efficient stimulator of adenosine 3′:5′-cyclic monophosphate (cAMP) accumulation in a human colon carcinoma cell line, HT 29. cAMP accumulation is sensitive to a concentration of VIP as low as 3×10-12 M. Maximum VIP-induced cAMP levels were observed with 10-9 M VIP and are about 200 times above the basal levels. Half-maximum cAMP production was obtained at 3×10-10 M VIP. 125I-Labeled VIP was found to bind to HT 29 cells; this binding was competitively inhibited by concentrations of unlabeled VIP between 10-10 and 10-7 M. Half-maximum inhibition of binding was observed with 2×10-9 M VIP. Secretin also stimulated cAMP accumulation in HT 29 cells, but its effectiveness was 1/1000 that of VIP. The other peptides tested at 10-7 M, such as insulin, glucagon, bovine pancreatic polypeptide, somatostatin, octapeptide of cholecystokinin, neurotensin, and substance P, did not stimulate cAMP accumulation. Prostaglandin E1 and catecholamines stimulated cAMP production but were 1/2.3 and 1/5.5 as efficient as VIP, respectively. Another malignant cell line from the gut, the human rectal tumor cell line HRT 18, is also sensitive to VIP. In HRT 18 cells, VIP stimulated cAMP accumulation with a maximal effect at 10-8 M; half-maximum stimulation was observed at about 10-9 M. These results demonstrate the presence of VIP receptors in two malignant human intestinal cell lines (HT 29 and HRT 18) in culture and provide a model for studying the action of VIP on cell proliferation. PMID:208077

  18. Airway hyperresponsiveness to methacholine, adenosine 5-monophosphate, mannitol, eucapnic voluntary hyperpnoea and field exercise challenge in elite cross-country skiers

    PubMed Central

    Sue-Chu, Malcolm; Brannan, John D; Anderson, Sandra D; Chew, Nora; Bjermer, Leif

    2010-01-01

    Background Methacholine hyperresponsiveness is prevalent in elite athletes. Comparative studies have hitherto been limited to methacholine, eucapnic voluntary hyperpnoea and exercise. This study investigated airway responsiveness to these stimuli as well as to adenosine 5′-monophosphate (AMP) and mannitol, in 58 cross-country ski athletes. Methods Exhaled nitric oxide concentration (FENO), spirometry and bronchial challenge in random order with methacholine, AMP and mannitol were consecutively performed on three study days in the autumn. Specific IgE to eight aeroallergens and a self-completed questionnaire about respiratory symptoms, allergy and asthmatic medication were also performed on day 1. Eucapnic voluntary hyperventilation (EVH) and field exercise tests were randomly performed in 33 of the skiers on two study days in the following winter. Results Of 25 (43%) skiers with airway hyperresponsiveness (AHR), 23, five and three skiers were hyperresponsive to methacholine, AMP and mannitol, respectively. Methacholine hyperresponsiveness was more prevalent in subjects without asthma-like symptoms. The FENO was not significantly different in skiers with and without methacholine hyperresponsiveness. Four of 14 skiers with and four of 19 skiers without methacholine hyperresponsiveness were hyperresponsive to EVH or exercise challenge. AHR to any stimulus was present in 16 asymptomatic and nine symptomatic skiers. Asthma-like symptoms were not correlated with AHR to any stimulus. Conclusions Methacholine hyperresponsiveness is more common in asymptomatic skiers and is a poor predictor of hyperresponsiveness to mannitol and hyperpnoea. The low prevalence of hyperresponsiveness to indirect stimuli may suggest differences in the pathogenesis of methacholine hyperresponsiveness in elite skiers and non-athletes. PMID:20460257

  19. Adenosine 3',5'-cyclic monophosphate (cAMP)-dependent phosphoregulation of mitochondrial complex I is inhibited by nucleoside reverse transcriptase inhibitors

    SciTech Connect

    Lund, Kaleb C. Wallace, Kendall B.

    2008-01-01

    Nucleoside analog reverse transcriptase inhibitors (NRTIs) are known to directly inhibit mitochondrial complex I activity as well as various mitochondrial kinases. Recent observations that complex I activity and superoxide production are modulated through cAMP-dependent phosphorylation suggests a mechanism through which NRTIs may affect mitochondrial respiration via kinase-dependent protein phosphorylation. In the current study, we examine the potential for NRTIs to inhibit the cAMP-dependent phosphorylation of complex I and the associated NADH:CoQ oxidoreductase activities and rates of superoxide production using HepG2 cells. Phosphoprotein staining of immunocaptured complex I revealed that 3'-azido-3'-deoxythymidine (AZT; 10 and 50 {mu}M), AZT monophosphate (150 {mu}M), and 2',3'-dideoxycytidine (ddC; 1 {mu}M) prevented the phosphorylation of the NDUFB11 subunit of complex I. This was associated with a decrease in complex I activity with AZT and AZT monophosphate only. In the presence of succinate, superoxide production was increased with 2',3'-dideoxyinosine (ddI; 10 {mu}M) and ddC (1 {mu}M). In the presence of succinate + cAMP, AZT showed an inverse dose-dependent effect on superoxide production. None of the NRTIs examined inhibit PKA activity suggesting that the observed effects are due to a direct interaction with complex I. These data demonstrate a direct effect of NRTIs on cAMP-dependent regulation of mitochondrial bioenergetics independent of DNA polymerase-{gamma} activity; in the case of AZT, these observations may provide a mechanism for the observed long-term toxicity with this drug.

  20. 3'5'-cyclic adenosine monophosphate-dependent up-regulation of phosphodiesterase type 3A in porcine cumulus cells.

    PubMed

    Sasseville, Maxime; Côté, Nancy; Vigneault, Christian; Guillemette, Christine; Richard, François J

    2007-04-01

    The means by which cumulus cells react to gonadotropin stimulation and regulate the subsequent production and degradation of cAMP are largely unknown. In this article, we report that cyclic nucleotide phosphodiesterase (PDE) type 3A (Pde3a) is transcriptionally regulated in porcine cumulus cells by a cAMP-dependent pathway during in vitro maturation (IVM). cAMP-PDE activity was increased in the cumulus-oocyte complex (COC) after 10 h of IVM, and 78% of this increase was sensitive to a Pde3-specific inhibitor, cilostamide. Although no variation was observed in the oocyte, cilostamide-sensitive cAMP-PDE activity increased in the cumulus cells after IVM. This was supported by Western blotting, which showed that the intensity of a 135-kDa anti-Pde3a immunoreactive band was increased in COC after IVM. The Pde3a mRNA level was up-regulated 28-fold in the COC after 4 h of IVM and remained high up to 12 h. The mRNA up-regulation and increased activity were inhibited by an RNA synthesis inhibitor, alpha-amanitin. The cilostamide-sensitive increase in PDE activity was inhibited by a protein synthesis inhibitor, cycloheximide. Pregnant mare serum gonadotropin (PMSG) caused dose-dependent activation of Pde3. The PMSG-dependent increase in Pde3 activity and Pde3a mRNA were mimicked by the adenylyl cyclase activator forskolin or prostaglandin E2. PMSG-dependent Pde3 activation was inhibited by the protein kinase A-specific inhibitor H89. Collectively, our results show for the first time that degradation of the intracellular cyclic nucleotide by Pde3a is transcriptionally up-regulated via a cAMP-dependent pathway in cumulus cells, suggesting that it has a functional role during the ovulatory gonadotropin surge.

  1. Role of 3'-5'-cyclic adenosine monophosphate on the epidermal growth factor dependent survival in mammary epithelial cells.

    PubMed

    Grinman, Diego Y; Romorini, Leonardo; Presman, Diego M; Rocha-Viegas, Luciana; Coso, Omar A; Davio, Carlos; Pecci, Adali

    2016-01-01

    Epidermal growth factor (EGF) has been suggested to play a key role in the maintenance of epithelial cell survival during lactation. Previously, we demonstrated that EGF dependent activation of PI3K pathway prevents apoptosis in confluent murine HC11 cells cultured under low nutrient conditions. The EGF protective effect is associated with increased levels of the antiapoptotic protein Bcl-XL. Here, we identify the EGF-dependent mechanism involved in cell survival that converges in the regulation of bcl-X expression by activated CREB. EGF induces Bcl-XL expression through activation of a unique bcl-X promoter, the P1; being not only the PI3K/AKT signaling pathway but also the increase in cAMP levels and the concomitant PKA/CREB activation necessary for both bcl-XL upregulation and apoptosis avoidance. Results presented in this work suggest the existence of a novel connection between the EGF receptor and the adenylate cyclase that would have an impact in preventing apoptosis under low nutrient conditions.

  2. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    PubMed Central

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  3. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  4. Direct biochemical measurements of microtubule assembly and disassembly in Chinese hamster ovary cells. The effect of intercellular contact, cold, D2O, and N6,O2'-dibutyryl cyclic adenosine monophosphate

    PubMed Central

    1975-01-01

    A study was undertaken to develop a means of quantitating the amount of tubulin present as a soluble pool and as intact microtubules in cultured Chinese hamster ovary cells. A procedure was developed in which these cells grown on monolayer culture in Petri dishes were placed in a "microtubule stabilizing medium" (MTM) consisting of 50% glycerol, 10% dimethylsulfoxide and sodium phosphate magnesium buffer, as described previously by Filner and Behnke. These cells then were homogenized and the homogenate was spun in the ultracentrifuge. Colchicine binding activity was then determined in the supernates and the pellets. The values, when compared with total colchicine binding activity present in replicate homogenates, were used to determine the percentage of tubulin present as intact microtubules. A statistical analysis of thin sections of cells treated with MTM revealed no statistically significant difference between MTM-treated cells and untreated controls. It was further discovered that the relative amount of colchicine binding activity recovered in the high speed pellet varied dramatically, depending upon the cell number of the culture being studied. Preconfluent cultures showed very low colchicine binding activity averaging less than 5%, while confluent and postconfluent cultures often possessed as high as 25% of their total colchicine binding activity in pelletable material. Although cold and D2O treatment had little or no effect on these values, N6,O2'-dibutyryl cyclic adenosine monophosphate increased them. It is hoped that this study will serve as the basis for a reliable quantitative procedure for measuring microtubule polymerization and depolymerization in vivo. PMID:162792

  5. Nature of the effect of adenosine 5'-monophosphate on the cyanide-insensitive respiration in mitochondria of Moniliella tomentosa.

    PubMed Central

    Vanderleyden, J; Van Den Eynde, E; Verachtert, H

    1980-01-01

    The alternative oxidase of Moniliella tomentosa mitochondria is stimulated by 5'-AMP. This effect may be masked, depending on the isolation procedure of the mitochondria. The preparation of submitochondrial particles results in the expression of the 5'-AMP effect. Two more methods are now described to reveal the 5'-AMP effect whenever it would be masked: (1) switching on the myokinase activity of the mitochondria to deplete them of endogenous 5'-AMP; (2) using detergents (sodium dodecyl sulphate, sodium deoxycholate) in a controlled detergent:protein ratio, or chloroform. The alternative oxidase of detergent-solubilized mitochondria was somewhat less selective towards nucleotides than were intact mitochondria. The effect of nucleotides on quinol oxidation by mitochondrial preparations and on quinol autoxidation was also studied. Mitochondrial oxidation of succinate by the alternative oxidase and autoxidation of quinols behaved similarly in the presence of certain nucleotides. Both reactions were stimulated. Both reactions were also inhibited by salicylhydroxamic acid. These effects on quinol oxidation disappeared when bovine serum albumin or mitochondrial proteins were present. From the results obtained it is not possible to exclude quinol autoxidation as a final step of the alternative oxidase. PMID:7189398

  6. [The secretion of adenosin 3',5'-monophosphate after hydrokinetic and ecbolic stimulation in the canine pancreas (author's transl)].

    PubMed

    Teufel, H; Boeckmann, U

    1981-05-01

    The secretion of cAMP is studied in vivo and in the isolated perfused canine pancreas after administration of secretin and CCK or caerulein in comparison with hydrokinetic or ecbolic secretory events as well as with the magnitude and time course of changes in tissue cAMP. 1) The total output of cAMP and pancreatic juice shows a significant and positive correlation after stimulation with secretin. The linear correspondence between cAMP concentration and secretory rates of pancreatic juice beyond 3 ml/5 min and their non-linear, reciprocal correlation at lower rates of fluid secretion point to an active as well as to a passive secretory mechanism for cAMP. 2) CCK and caerulein increase secretion of cAMP too. The output of cAMP however neither corresponds to the time course of protein secretion nor correlates quantitatively with the latter. 3) The behaviour of cAMP secretion and concentration in the pancreatic juice after administration of secretin and CCK or caerulein as well as differs from the changes in tissue cAMP levels. The respective maximum of cAMP output after addition of secretin or ecbolic secretagogues during the greatest decrease in cellular cAMP levels yields on the average about 1% of the estimated reduction in total tissue cAMP content. The results indicate a functional coherence in secretion of pancreatic juice and cAMP but oppose the assumption, that essential amounts of cAMP are released during exocytosis of zymogen granules. The secretion of cAMP may be possibly influenced by cytoplasmatic cAMP levels, but neither reflects the present changes in cellular cAMP nor seems to be of a regulatory importance for the latter.

  7. [The secretion of adenosin 3',5'-monophosphate after hydrokinetic and ecbolic stimulation in the canine pancreas (author's transl)].

    PubMed

    Teufel, H; Boeckmann, U

    1981-05-01

    The secretion of cAMP is studied in vivo and in the isolated perfused canine pancreas after administration of secretin and CCK or caerulein in comparison with hydrokinetic or ecbolic secretory events as well as with the magnitude and time course of changes in tissue cAMP. 1) The total output of cAMP and pancreatic juice shows a significant and positive correlation after stimulation with secretin. The linear correspondence between cAMP concentration and secretory rates of pancreatic juice beyond 3 ml/5 min and their non-linear, reciprocal correlation at lower rates of fluid secretion point to an active as well as to a passive secretory mechanism for cAMP. 2) CCK and caerulein increase secretion of cAMP too. The output of cAMP however neither corresponds to the time course of protein secretion nor correlates quantitatively with the latter. 3) The behaviour of cAMP secretion and concentration in the pancreatic juice after administration of secretin and CCK or caerulein as well as differs from the changes in tissue cAMP levels. The respective maximum of cAMP output after addition of secretin or ecbolic secretagogues during the greatest decrease in cellular cAMP levels yields on the average about 1% of the estimated reduction in total tissue cAMP content. The results indicate a functional coherence in secretion of pancreatic juice and cAMP but oppose the assumption, that essential amounts of cAMP are released during exocytosis of zymogen granules. The secretion of cAMP may be possibly influenced by cytoplasmatic cAMP levels, but neither reflects the present changes in cellular cAMP nor seems to be of a regulatory importance for the latter. PMID:6265337

  8. Rapid activation by 3,5,3'-L-triiodothyronine of adenosine 5'-monophosphate-activated protein kinase/acetyl-coenzyme a carboxylase and akt/protein kinase B signaling pathways: relation to changes in fuel metabolism and myosin heavy-chain protein content in rat gastrocnemius muscle in vivo.

    PubMed

    de Lange, Pieter; Senese, Rosalba; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; Silvestri, Elena; Goglia, Fernando; Lanni, Antonia

    2008-12-01

    T3 stimulates metabolic rate in many tissues and induces changes in fuel use. The pathways by which T3 induces metabolic/structural changes related to altered fuel use in skeletal muscle have not been fully clarified. Gastrocnemius muscle (isolated at different time points after a single injection of T3 into hypothyroid rats), displayed rapid inductions of AMP-activated protein kinase (AMPK) phosphorylation (threonine 172; within 6 h) and acetyl-coenzyme A carboxylase phosphorylation (serine 79; within 12 h). As a consequence, increases occurred in mitochondrial fatty acid oxidation and carnitine palmitoyl transferase activity. Concomitantly, T3 stimulated signaling toward increased glycolysis through a rapid increase in Akt/protein kinase B (serine 473) phosphorylation (within 6 h) and a directly related increase in the activity of phosphofructokinase. The kinase specificity of the above effects was verified by treatment with inhibitors of AMPK and Akt activity (compound C and wortmannin, respectively). In contrast, glucose transporter 4 translocation to the membrane (activated by T3 within 6 h) was maintained when either AMPK or Akt activity was inhibited. The metabolic changes were accompanied by a decline in myosin heavy-chain Ib protein [causing a shift toward the fast-twitch (glycolytic) phenotype]. The increases in AMPK and acetyl-coenzyme A carboxylase phosphorylation were transient events, both levels declining from 12 h after the T3 injection, but Akt phosphorylation remained elevated until at least 48h after the injection. These data show that in skeletal muscle, T3 stimulates both fatty acid and glucose metabolism through rapid activations of the associated signaling pathways involving AMPK and Akt/protein kinase B.

  9. Early glycogen synthase kinase-3β and protein phosphatase 2A independent tau dephosphorylation during global brain ischaemia and reperfusion following cardiac arrest and the role of the adenosine monophosphate kinase pathway.

    PubMed

    Majd, Shohreh; Power, John H T; Koblar, Simon A; Grantham, Hugh J M

    2016-08-01

    Abnormal tau phosphorylation (p-tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p-tau is controlled by Glycogen Synthase Kinase (GSK)-3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p-tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser(396) and Ser(262) after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK-3β sensitive but AMPK insensitive residues, Ser(202) /Thr(205) (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK-3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p-AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p-tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK-3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation.

  10. Effects of single or combined histamine H1-receptor and leukotriene CysLT1-receptor antagonism on nasal adenosine monophosphate challenge in persistent allergic rhinitis

    PubMed Central

    Lee, Daniel K C; Jackson, Catherine M; Soutar, Patricia C; Fardon, Thomas C; Lipworth, Brian J

    2004-01-01

    Background The effects of single or combined histamine H1-receptor and leukotriene CysLT1-receptor antagonism on nasal adenosine monophosphate (AMP) challenge in allergic rhinitis are unknown. Objective We elected to study the effects of usual clinically recommended doses of fexofenadine (FEX), montelukast (ML) and FEX + ML combination, compared with placebo (PL), on nasal AMP challenge in patients with persistent allergic rhinitis. Methods Twelve patients with persistent allergic rhinitis (all skin prick positive to house dust mite) were randomized in a double-blind cross-over fashion to receive for 1 week either FEX 180 mg, ML 10 mg, FEX 180 mg +ML 10 mg combination, or PL, with nasal AMP challenge performed 12 h after dosing. There was a 1-week washout period between each randomized treatment. The primary outcome measure was the maximum percentage peak nasal inspiratory flow (PNIF) fall from baseline over a 60-min period after nasal challenge with a single 400 mg ml−1 dose of AMP. The area under the 60-min time–response curve (AUC) and nasal symptoms were measured as secondary outcomes. Results There was significant attenuation (P < 0.05) of the mean maximum percentage PNIF fall from baseline after nasal AMP challenge vs. PL, 48; with FEX, 37; 95% confidence interval for difference 2, 20; ML, 35 (4, 22); and FEX + ML, 32 (7, 24). The AUC (%.min) was also significantly attenuated (P < 0.05) vs. PL, 1893; with FEX, 1306 (30, 1143); ML, 1246 (214, 1078); and FEX + ML, 1153 (251, 1227). There were no significant differences for FEX vs. ML vs. FEX + ML comparing either the maximum or AUC response. The total nasal symptom score (out of 12) was also significantly improved (P < 0.05) vs. PL, 3.3; with FEX, 2.1 (0.3, 2.0); ML, 2.0 (0.5, 1.9); and FEX + ML, 2.5 (0.1, 1.4). Conclusion FEX and ML as monotherapy significantly attenuated the response to nasal AMP challenge and improved nasal symptoms compared with PL, while combination therapy conferred no additional

  11. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5′-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa)

    PubMed Central

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E.; Gallo-Reynoso, Juan P.

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5′-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5′-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5′-monophosphate (IMP), adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), ATP, guanosine 5′-diphosphate (GDP), guanosine 5′-triphosphate (GTP), and xanthosine 5′-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  12. Recipient pretransplant inosine monophosphate dehydrogenase activity in nonmyeloablative hematopoietic cell transplantation.

    PubMed

    Bemer, Meagan J; Risler, Linda J; Phillips, Brian R; Wang, Joanne; Storer, Barry E; Sandmaier, Brenda M; Duan, Haichuan; Raccor, Brianne S; Boeckh, Michael J; McCune, Jeannine S

    2014-10-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5'-monophosphate to xanthosine 5'-monophosphate (XMP). We developed a highly sensitive liquid chromatography-mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNCs) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation but not with chronic GVHD, relapse, nonrelapse mortality, or overall mortality. We conclude that quantitation of the recipient's pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient's sensitivity to MMF. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients.

  13. Recipient pretransplant inosine monophosphate dehydrogenase activity in nonmyeloablative hematopoietic cell transplantation.

    PubMed

    Bemer, Meagan J; Risler, Linda J; Phillips, Brian R; Wang, Joanne; Storer, Barry E; Sandmaier, Brenda M; Duan, Haichuan; Raccor, Brianne S; Boeckh, Michael J; McCune, Jeannine S

    2014-10-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5'-monophosphate to xanthosine 5'-monophosphate (XMP). We developed a highly sensitive liquid chromatography-mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNCs) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation but not with chronic GVHD, relapse, nonrelapse mortality, or overall mortality. We conclude that quantitation of the recipient's pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient's sensitivity to MMF. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  14. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis.

    PubMed

    Flögel, Ulrich; Burghoff, Sandra; van Lent, Peter L E M; Temme, Sebastian; Galbarz, Lisa; Ding, Zhaoping; El-Tayeb, Ali; Huels, Sandra; Bönner, Florian; Borg, Nadine; Jacoby, Christoph; Müller, Christa E; van den Berg, Wim B; Schrader, Jürgen

    2012-08-01

    Adenosine A(2A) receptor (A(2A)R) agonists are both highly effective anti-inflammatory agents and potent vasodilators. To separate these two activities, we have synthesized phosphorylated A(2A)R agonists (prodrugs) that require the presence of ecto-5'-nucleotidase (CD73) to become activated. In the model of collagen-induced arthritis, 2-(cyclohexylethylthio)adenosine 5'-monophosphate (chet-AMP), but not 2-(cyclohexylethylthio)adenosine (chet-adenosine), potently reduced inflammation as assessed by fluorine-19 ((19)F) magnetic resonance imaging and by histology. The prodrug effect was blunted by inhibition of CD73 and A(2A)R. The selectivity of drug action is due to profound up-regulation of CD73 and adenosine A(2A)R expression in neutrophils and inflammatory monocytes as found in recovered cells from the synovial fluid of arthritic mice. Plasma chet-adenosine was in the subnanomolar range when chet-AMP was applied, whereas concentrations required for vasodilation were about 100 times higher. Thus, chet-AMP is a potent immunosuppressant with negligible vasodilatory activity. These data suggest that phosphorylated A(2A)R agonists may serve as a promising new group of drugs for targeted immunotherapy of inflammation. PMID:22875828

  15. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis.

    PubMed

    Flögel, Ulrich; Burghoff, Sandra; van Lent, Peter L E M; Temme, Sebastian; Galbarz, Lisa; Ding, Zhaoping; El-Tayeb, Ali; Huels, Sandra; Bönner, Florian; Borg, Nadine; Jacoby, Christoph; Müller, Christa E; van den Berg, Wim B; Schrader, Jürgen

    2012-08-01

    Adenosine A(2A) receptor (A(2A)R) agonists are both highly effective anti-inflammatory agents and potent vasodilators. To separate these two activities, we have synthesized phosphorylated A(2A)R agonists (prodrugs) that require the presence of ecto-5'-nucleotidase (CD73) to become activated. In the model of collagen-induced arthritis, 2-(cyclohexylethylthio)adenosine 5'-monophosphate (chet-AMP), but not 2-(cyclohexylethylthio)adenosine (chet-adenosine), potently reduced inflammation as assessed by fluorine-19 ((19)F) magnetic resonance imaging and by histology. The prodrug effect was blunted by inhibition of CD73 and A(2A)R. The selectivity of drug action is due to profound up-regulation of CD73 and adenosine A(2A)R expression in neutrophils and inflammatory monocytes as found in recovered cells from the synovial fluid of arthritic mice. Plasma chet-adenosine was in the subnanomolar range when chet-AMP was applied, whereas concentrations required for vasodilation were about 100 times higher. Thus, chet-AMP is a potent immunosuppressant with negligible vasodilatory activity. These data suggest that phosphorylated A(2A)R agonists may serve as a promising new group of drugs for targeted immunotherapy of inflammation.

  16. Hydrogen peroxide induces murine macrophage chemokine gene transcription via extracellular signal-regulated kinase- and cyclic adenosine 5'-monophosphate (cAMP)-dependent pathways: involvement of NF-kappa B, activator protein 1, and cAMP response element binding protein.

    PubMed

    Jaramillo, Maritza; Olivier, Martin

    2002-12-15

    Hydrogen peroxide (H(2)O(2)) has been shown to act as a second messenger that activates chemokine expression. In the present study, we investigated the mechanisms underlying this cellular regulation in the murine macrophage cell line B10R. We report that H(2)O(2) increases mRNA expression of various chemokines, macrophage-inflammatory protein (MIP)-1alpha/CC chemokine ligand (CCL)3, MIP-1beta/CCL4, MIP-2/CXC chemokine ligand 2, and monocyte chemoattractant protein-1/CCL2, by activating the extracellular signal-regulated kinase (ERK) pathway and the nuclear translocation of the transcription factors NF-kappaB, AP-1, and CREB. Blockage of the ERK pathway with specific inhibitors against mitogen-activated protein kinase kinase 1/2 and ERK1/ERK2 completely abolished both the H(2)O(2)-mediated chemokine up-regulation and the activation of all NF studied. Similarly, selective inhibition of cAMP and NF-kappaB strongly down-regulated the induction of all chemokine transcripts as well as CREB and NF-kappaB activation, respectively. Of interest, we detected a significant decrease of NF-kappaB, AP-1, and CREB DNA binding activities by reciprocal competition for these binding sites when either specific cold oligonucleotides (NF-kappaB, AP-1, and CREB) or Abs against various transcription factor subunits (p50, p65, c-Fos, Jun B, c-Jun, and CREB-1) were added. These findings indicate that cooperation between ERK- and cAMP-dependent pathways seems to be required to achieve the formation of an essential transcriptional factor complex for maximal H(2)O(2)-dependent chemokine modulation. Finally, experiments performed with actinomycin D suggest that H(2)O(2)-mediated MIP-1beta mRNA up-regulation results from transcriptional control, whereas that of MIP-1alpha, MIP-2, and monocyte chemoattractant protein-1 is due to both gene transcription activation and mRNA posttranscriptional stabilization.

  17. Role of 3', 5' cyclic adenosine monophosphate and protein kinase C in the regulation of insulin-like growth factor-binding protein secretion by thyroid-stimulating hormone in isolated ovine thyroid cells.

    PubMed

    Wang, J F; Hill, D J; Becks, G P

    1994-05-01

    Isolated sheep thyroid follicles release insulin-like growth factors (IGF)-I and -II together with IGF-binding proteins (IGFBPs). We previously showed that TSH suppresses the biosynthesis and release of IGFBPs in vitro which may increase the tissue availability of IGFs, allowing a synergy with TSH which potentiates both thyroid growth and function. Many of the actions of TSH on thyroid cell function are dependent upon activation of adenylate cyclase, although increased synthesis of inositol trisphosphate and activation of protein kinase C (PKC) have also been implicated. We have now examined whether probable changes in intracellular cyclic adenosine monophosphate (cAMP) or PKC are involved in TSH-mediated suppression of IGFBP release. Confluent primary cultures of ovine thyroid cells were maintained in serum-free Ham's modified F-12M medium containing transferrin, somatostatin and glycyl-histidyl-lysine (designated 3H), and further supplemented with sodium iodide (10(-8)-10(-3) mol/l), dibutyryl cAMP (0.25-1 mmol/l), forskolin (5-20 mumol/l) or 12-O-tetradecanoylphorbol-13-acetate (TPA; 10(-11)-10(-6) mol/l), with or without exposure to TSH (200 microU/ml). The uptake and organification of Na [125I] by cells was examined after test incubations of up to 48 h, and IGFBPs in conditioned media were analysed by ligand blot using 125I-labelled IGF-II. The PKC activity in the cytosol and plasma membrane fractions of cells was measured by phosphorylation of histone using [gamma-32P]ATP, and PKC immunoreactivity was visualized by Western immunoblot analysis. While dibutyryl cAMP or forskolin largely reproduced the stimulatory effect of TSH on iodine organification, they did not mimic the inhibitory effect of TSH on the secretion of IGFBPs of 43, 34, 28 and 19 kDa. Incubation with physiological or pharmacological concentrations of iodide (10(-6)-10(-3) mol/l) for up to 48 h significantly decreased TSH action on iodide uptake and organification but did not alter the

  18. A new crystal form of human histidine triad nucleotide-binding protein 1 (hHINT1) in complex with adenosine 5′-monophosphate at 1.38 Å resolution

    PubMed Central

    Dolot, Rafał; Ozga, Magdalena; Włodarczyk, Artur; Krakowiak, Agnieszka; Nawrot, Barbara

    2012-01-01

    Histidine triad nucleotide-binding protein 1 (HINT1) represents the most ancient and widespread branch of the histidine triad protein superfamily. HINT1 plays an important role in various biological processes and has been found in many species. Here, the structure of the human HINT1–adenosine 5′-monophosphate (AMP) complex at 1.38 Å resolution obtained from a new monoclinic crystal form is reported. The final structure has R cryst = 0.1207 (R free = 0.1615) and the model exhibits good stereochemical quality. Detailed analysis of the high-resolution data allowed the details of the protein structure to be updated in comparison to the previously published data. PMID:22869114

  19. Simulation analysis of formycin 5'-monophosphate analog substrates in the ricin A-chain active site.

    PubMed

    Olson, M A; Scovill, J P; Hack, D C

    1995-06-01

    Ricin is an RNA N-glycosidase that hydrolyzes a single adenine base from a conserved loop of 28S ribosomal RNA, thus inactivating protein synthesis. Molecular-dynamics simulation methods are used to analyze the structural interactions and thermodynamics that govern the binding of formycin 5'-monophosphate (FMP) and several of its analogs to the active site of ricin A-chain. Simulations are carried out initiated from the X-ray crystal structure of the ricin-FMP complex with the ligand modeled as a dianion, monoanion and zwitterion. Relative changes in binding free energies are estimated for FMP analogs constructed from amino substitutions at the 2- and 2'-positions, and from hydroxyl substitution at the 2'-position.

  20. PHARMACOKINETIC AND PHARMACODYNAMIC ANALYSIS OF INOSINE MONOPHOSPHATE DEHYDROGENASE (IMPDH) ACTIVITY IN MMF-TREATED HCT RECIPIENTS

    PubMed Central

    Li, Hong; Mager, Donald E.; Sandmaier, Brenda M.; Storer, Barry E.; Boeckh, Michael J.; Bemer, Meagan J.; Phillips, Brian R.; Risler, Linda J.; McCune, Jeannine S.

    2014-01-01

    A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplant (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNC) at five time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in the pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic/dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory Emax model with an IC50 = 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, non-relapse mortality, and overall mortality. In conclusion, a pharmacokinetic/dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker. PMID:24727337

  1. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    PubMed Central

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A1 receptors with 2-chloro-N6-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A1 receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis. PMID:22552934

  2. The Rickettsia prowazekii invasion gene homolog (invA) encodes a Nudix hydrolase active on adenosine (5')-pentaphospho-(5')-adenosine.

    PubMed

    Gaywee, Jariyanart; Xu, WenLian; Radulovic, Suzana; Bessman, Maurice J; Azad, Abdu F

    2002-03-01

    The genomic sequence of Rickettsia prowazekii, the obligate intracellular bacterium responsible for epidemic typhus, reveals an uncharacterized invasion gene homolog (invA). The deduced protein of 18,752 Da contains a Nudix signature, the specific motif found in the Nudix hydrolase family. To characterize the function of InvA, the gene was cloned and overexpressed in Escherichia coli. The expressed protein was purified to near homogeneity and subsequently tested for its enzymatic activity against a series of nucleoside diphosphate derivatives. The purified InvA exhibits hydrolytic activity toward dinucleoside oligophosphates (Np(n)N; n > or = 5), a group of cellular signaling molecules. At optimal pH 8.5, the enzyme actively degrades adenosine (5')-pentaphospho-(5')-adenosine into ATP and ADP with a K(m) of 0.1 mM and k(cat) of 1.9 s(-1). Guanosine (5')-pentaphospho-(5')-guanosine and adenosine-(5')-hexaphospho (5')-adenosine are also substrates. Similar to other Nudix hydrolases, InvA requires a divalent metal cation, Mg(2+) or Zn(2+), for optimal activity. These data suggest that the rickettsial invasion protein likely plays a role in controlling the concentration of stress-induced dinucleoside oligophosphates following bacterial invasion.

  3. A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators.

    PubMed

    Schumacher, Charlotte Helene; Körschen, Heinz G; Nicol, Christopher; Gasser, Carlos; Seifert, Reinhard; Schwärzel, Martin; Möglich, Andreas

    2016-01-01

    As a transformative approach in neuroscience and cell biology, optogenetics grants control over manifold cellular events with unprecedented spatiotemporal definition, reversibility, and noninvasiveness. Sensory photoreceptors serve as genetically encoded, light-regulated actuators and hence embody the cornerstone of optogenetics. To expand the scope of optogenetics, ever more naturally occurring photoreceptors are being characterized, and synthetic photoreceptors with customized, light-regulated function are being engineered. Perturbational control over intracellular cyclic-nucleotide-monophosphate (cNMP) levels is achieved via sensory photoreceptors that catalyze the making and breaking of these second messengers in response to light. To facilitate discovery, engineering and quantitative characterization of such light-regulated cNMP actuators, we have developed an efficient fluorometric assay. Both the formation and the hydrolysis of cNMPs are accompanied by proton release which can be quantified with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). This assay equally applies to nucleotide cyclases, e.g., blue-light-activated bPAC, and to cNMP phosphodiesterases, e.g., red-light-activated LAPD. Key benefits include potential for parallelization and automation, as well as suitability for both purified enzymes and crude cell lysates. The BCECF assay hence stands to accelerate discovery and characterization of light-regulated actuators of cNMP metabolism. PMID:26965118

  4. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    SciTech Connect

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-04-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine ((R)-AHPIA) into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling.

  5. Enzyme architecture: deconstruction of the enzyme-activating phosphodianion interactions of orotidine 5'-monophosphate decarboxylase.

    PubMed

    Goldman, Lawrence M; Amyes, Tina L; Goryanova, Bogdana; Gerlt, John A; Richard, John P

    2014-07-16

    The mechanism for activation of orotidine 5'-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k(cat) and K(m) for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-D-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in (k(cat))(obs) for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in (K(m))(obs).

  6. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    PubMed Central

    Chee, Hyun Keun

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  7. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  8. [Isolation of inosine-5'-monophosphate from fish muscles].

    PubMed

    Tugaĭ, V A; Akulin, V N; Epshteĭn, L M

    1987-01-01

    Conditions for transformation of tissue adenosine-5'-monophosphate (AMP) into inosine-5'-monophosphate (IMP) with the aid of endogenic AMP-aminohydrolase are developed resting on the studied properties of AMP-aminohydrolase (EC 3.5.4.6) from saltwater fish muscles (one of the enzymes participating in the nucleotide metabolism). Sorption of the nucleotide is performed on the activated charcoals A gamma-3 A gamma-5 which eluate IMP from acid solutions. It reduces the process of isolation, permits application of the acid wash solutions to remove salts; the alkaline ethyl alcohol-aid elution at the subsequent stages accelerates the process of nucleotide concentration by means of vacuum evaporation. The suggested approaches allow developing a simple method of IMP production from fish tissues which diminishes the cost of preparation.

  9. Structure–Activity Relationships of 9-Alkyladenine and Ribose-Modified Adenosine Derivatives at Rat A3 Adenosine Receptors†

    PubMed Central

    Jacobson, Kenneth A.; Siddiqi, Suhaib M.; Olah, Mark E.; Ji, Xiao-duo; Melman, Neli; Bellamkonda, Kamala; Meshulam, Yakov; Stiles, Gary L.; Kim, Hea O.

    2012-01-01

    9-Alkyladenine derivatives and ribose-modified N6-benzyladenosine derivatives were synthesized in an effort to identify selective ligands for the rat A3 adenosine receptor and leads for the development of antagonists. The derivatives contained structural features previously determined to be important for A3 selectivity in adenosine derivatives, such as an N6-(3-iodobenzyl) moiety, and were further substituted at the 2-position with halo, amino, or thio groups. Affinity was determined in radioligand binding assays at rat brain A3 receptors stably expressed in Chinese hamster ovary (CHO) cells, using [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)adenosine-5′-(N-methyluronamide)), and at rat brain A1 and A2a receptors using [3H]-N6-PIA ((R)-N6-phenylisopropyladenosine) and [3H]CGS 21680 (2-[[[4-(2-carboxyethyl)-phenyl]ethyl]amino]-5′-(N-ethylcarbamoyl)adenosine), respectively. A series of N6-(3-iodobenzyl) 2-amino derivatives indicated that a small 2-alkylamino group, e.g., methylamino, was favored at A3 receptors. N6-(3-Iodobenzyl)-9-methyl-2-(methylthio)adenine was 61-fold more potent than the corresponding 2-methoxy ether at A3 receptors and of comparable affinity at A1 and A2a receptors, resulting in a 3–6-fold selectivity for A3 receptors. A pair of chiral N6-(3-iodobenzyl) 9-(2,3-dihydroxypropyl) derivatives showed stereoselectivity, with the R-enantiomer favored at A3 receptors by 5.7-fold. 2-Chloro-9-(β-d-erythrofuranosyl)-N6-(3-iodobenzyl)adenine had a Ki value at A3 receptors of 0.28 µM. 2-Chloro-9-[2-amino-2,3-dideoxy-β-d-5-(methylcarbamoyl)-arabinofuranosyl]-N6-(3-iodobenzyl)adenine was moderately selective for A1 and A3 vs A2a receptors. A 3′-deoxy analogue of a highly A3-selective adenosine derivative retained selectivity in binding and was a full agonist in the inhibition of adenylyl cyclase mediated via cloned rat A3 receptors expressed in CHO cells. The 3′-OH and 4′-CH2OH groups of adenosine are not required for activation at A3 receptors. A

  10. Source of /sup 3/H-labeled inositol bis- and monophosphates in agonist-activated rat parotid acinar cells

    SciTech Connect

    Hughes, A.R.; Putney, J.W. Jr.

    1989-06-05

    The kinetics of (3H)inositol phosphate metabolism in agonist-activated rat parotid acinar cells were characterized in order to determine the sources of (3H)inositol monophosphates and (3H)inositol bisphosphates. The turnover rates of D-myo-inositol 1,4,5-trisphosphate and its metabolites, D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate, were examined following the addition of the muscarinic receptor antagonist, atropine, to cholinergically stimulated parotid cells. D-myo-Inositol 1,4,5-trisphosphate declined with a t1/2 of 7.6 +/- 0.7 s, D-myo-inositol 1,3,4-trisphosphate declined with a t1/2 of 8.6 +/- 1.2 min, and D-myo-inositol 1,4-bisphosphate was metabolized with a t1/2 of 6.0 +/- 0.7 min. The sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate (2.54% phosphatidylinositol/min) did not exceed the calculated rate of breakdown of D-myo-inositol 1,4,5-trisphosphate (2.76% phosphatidylinositol/min). Thus, there is no evidence for the direct hydrolysis of phosphatidylinositol 4-phosphate in intact cells since D-myo-inositol 1,4-bisphosphate formation can be attributed to the dephosphorylation of D-myo-inositol 1,4,5-trisphosphate. The source of the (3H)inositol monophosphates also was examined in cholinergically stimulated parotid cells. When parotid cells were stimulated with methacholine, D-myo-inositol 1,4,5-trisphosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 4-monophosphate levels increased within 2 s, whereas D-myo-inositol 1-monophosphate accumulation was delayed by several seconds. Rates of (3H)inositol monophosphate accumulation also were examined by the addition of LiCl to cells stimulated to steady state levels of (3H)inositol phosphates.

  11. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine

    PubMed Central

    Baron, L; Gombault, A; Fanny, M; Villeret, B; Savigny, F; Guillou, N; Panek, C; Le Bert, M; Lagente, V; Rassendren, F; Riteau, N; Couillin, I

    2015-01-01

    The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation. PMID:25654762

  12. Adenosine Deaminase Activity in Chronic Lymphocytic Leukemia and Healthy Subjects

    PubMed Central

    Ghaderi, Bayazid; Amini, Sabrieh; Maroofi, Farzad; Jalali, Chiya; Javanmardi, Mitra; Roshani, Daem; Abdi, Mohammad

    2016-01-01

    Background B cell chronic lymphocytic leukemia is one of the most frequent hematologic malignancies in the world. Cellular surface CD markers and serum Beta-2-microglobulin may be used as a prognostic tool in CLL patients. Objectives In the present study we introduce serum adenosine deaminase as a diagnostic marker in CLL. Materials and Methods Blood samples were collected from B-CLL and healthy subjects. White blood cell, red blood cell and platelet count and blood Erythrocyte sedimentation rate was recorded and serum Beta-2-microglobulin, Lactate dehydrogenase and total ADA enzyme activity were determined. Results Serum ADA activity was significantly higher in patients group than that of controls. ADA had a significant and direct correlation with B2M, WBC, LDH and ESR. However, there was not any relation between ADA and the stages of disease. Diagnostic cut-off, sensitivity and specificity of the serum ADA test were 27.97 U/L, 91% and 94%, respectively. Conclusions A higher ADA activity in patients group and its correlation with CLL markers were seen in our study. High diagnostic value of serum ADA in our study suggests that it might be considered as a useful screening tool among the other markers in CLL. PMID:27703646

  13. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  14. Inhibition of Cyclic Adenosine Monophosphate (cAMP)-response Element-binding Protein (CREB)-binding Protein (CBP)/β-Catenin Reduces Liver Fibrosis in Mice.

    PubMed

    Osawa, Yosuke; Oboki, Keisuke; Imamura, Jun; Kojika, Ekumi; Hayashi, Yukiko; Hishima, Tsunekazu; Saibara, Toshiji; Shibasaki, Futoshi; Kohara, Michinori; Kimura, Kiminori

    2015-11-01

    Wnt/β-catenin is involved in every aspect of embryonic development and in the pathogenesis of many human diseases, and is also implicated in organ fibrosis. However, the role of β-catenin-mediated signaling on liver fibrosis remains unclear. To explore this issue, the effects of PRI-724, a selective inhibitor of the cAMP-response element-binding protein-binding protein (CBP)/β-catenin interaction, on liver fibrosis were examined using carbon tetrachloride (CCl4)- or bile duct ligation (BDL)-induced mouse liver fibrosis models. Following repetitive CCl4 administrations, the nuclear translocation of β-catenin was observed only in the non-parenchymal cells in the liver. PRI-724 treatment reduced the fibrosis induced by CCl4 or BDL. C-82, an active form of PRI-724, inhibited the activation of isolated primary mouse quiescent hepatic stellate cells (HSCs) and promoted cell death in culture-activated HSCs. During the fibrosis resolution period, an increase in F4/80(+) CD11b(+) and Ly6C(low) CD11b(+) macrophages was induced by CCl4 and was sustained for two weeks thereafter, even after having stopped CCl4 treatment. PRI-724 accelerated the resolution of CCl4-induced liver fibrosis, and this was accompanied by increased matrix metalloproteinase (MMP)-9, MMP-2, and MMP-8 expression in intrahepatic leukocytes. In conclusion, targeting the CBP/β-catenin interaction may become a new therapeutic strategy in treating liver fibrosis. PMID:26870800

  15. Exploring human adenosine A3 receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety

    PubMed Central

    Van Rompaey, Philippe; Jacobson, Kenneth A.; Gross, Ariel S.; Gao, Zhan-Guo; Van Calenbergh, Serge

    2012-01-01

    In this paper we investigated the influence on affinity, selectivity and intrinsic activity upon modification of the adenosine agonist scaffold at the 3′- and 5′-positions of the ribofuranosyl moiety and the 2- and N6-positions of the purine base. This resulted in the synthesis of various analogues, that is, 3–12 and 24–33, with good hA3AR selectivity and moderate-to-high affinities (as in 32, Ki = 27 nM). Interesting was the ability to tune the intrinsic activity depending on the substituent introduced at the 3′-position. PMID:15670905

  16. Intermedin1-53 attenuates vascular smooth muscle cell calcification by inhibiting endoplasmic reticulum stress via cyclic adenosine monophosphate/protein kinase A pathway.

    PubMed

    Chang, Jin-Rui; Duan, Xiao-Hui; Zhang, Bao-Hong; Teng, Xu; Zhou, Ye-Bo; Liu, Yue; Yu, Yan-Rong; Zhu, Yi; Tang, Chao-Shu; Qi, Yong-Fen

    2013-10-01

    We previously reported that endoplasmic reticulum (ER) stress-mediated apoptosis participated in vascular calcification. Importantly, a novel paracrine/autocrine peptide intermedin1-53 (IMD1-53) in the vasculature inhibited vascular calcification in rats. But the mechanisms needed to be fully elucidated. Vascular smooth muscle cells (VSMCs) calcification was induced by CaCl2 and β-glycerophosphate. Tunicamycin (Tm) or dithiothreitol (DTT) was used to induce ER stress. We found that IMD1-53 (10(-7)mol/L) treatment significantly alleviated the protein expression of ER stress hallmarks activating transcription factor 4 (ATF4), ATF6, glucose-regulated protein 78 (GRP78) and GRP94 induced by Tm or DTT. ER stress occurred in early and late calcification of VSMCs but was inhibited by IMD1-53. These inhibitory effects of IMD1-53 were abolished by treatment with the protein kinase A (PKA) inhibitor H89. Pretreatment with IMD1-53 decreased the number of apoptotic VSMCs and downregulated protein expression of cleaved caspase 12 and C/EBP homologous protein (CHOP) in calcified VSMCs. Concurrently, IMD1-53 restored the loss of VSMC lineage markers and ameliorated calcium deposition and alkaline phosphatase activity in calcified VSMCs as well. The observation was further verified by Alizarin Red S staining, which showed that IMD1-53 reduced positive red nodules among calcified VSMCs. In conclusion, IMD1-53 attenuated VSMC calcification by inhibiting ER stress through cAMP/PKA signalling.

  17. Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle.

    PubMed

    Gonçalves, Dawit A P; Lira, Eduardo C; Baviera, Amanda M; Cao, Peirang; Zanon, Neusa M; Arany, Zoltan; Bedard, Nathalie; Tanksale, Preeti; Wing, Simon S; Lecker, Stewart H; Kettelhut, Isis C; Navegantes, Luiz C C

    2009-12-01

    Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutylmethylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator 1alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3.

  18. A tyrosine-phosphorylated 55-kilodalton motility-associated bovine sperm protein is regulated by cyclic adenosine 3',5'-monophosphates and calcium.

    PubMed

    Vijayaraghavan, S; Trautman, K D; Goueli, S A; Carr, D W

    1997-06-01

    Sperm motility is regulated by protein phosphorylation. We have recently shown that a serine/threonine phosphatase system is involved in motility regulation. Two of the components of the phosphatase system, GSK-3 and PP1gamma2, are regulated by tyrosine phosphorylation. During our investigation of sperm tyrosine-phosphorylated proteins we discovered a 55-kDa protein whose tyrosine phosphorylation correlates closely to the motility state of sperm. This protein is tyrosine phosphorylated to a much higher degree in motile caudal than in immotile caput epididymal sperm. Motility inhibition of caudal epididymal sperm by protein kinase A (PKA) anchoring inhibition or by ionomycin-induced calcium overload led to the virtual disappearance of tyrosine phosphorylation of the 55-kDa protein. Conversely, treatment of sperm with motility activators, isobutylmethylxanthine or 8-bromo-cAMP, resulted in increased tyrosine phosphorylation of the protein. The protein was present in the soluble 100 000 x g supernatants of sperm extracts and was heat labile. Chromatography through diethylaminoethyl-cellulose and Western blot analysis showed that this 55-kDa protein is not a regulatory subunit of PKA or alpha-tubulin. Our results represent the identification of a soluble protein whose tyrosine phosphorylation varies directly with motility and suggest that motility regulation may involve cross talk between PKA, calcium, and tyrosine kinase pathways. PMID:9166697

  19. Parathyroid hormone induces transcription of collagenase in rat osteoblastic cells by a mechanism using cyclic adenosine 3',5'-monophosphate and requiring protein synthesis

    NASA Technical Reports Server (NTRS)

    Scott, D. K.; Brakenhoff, K. D.; Clohisy, J. C.; Quinn, C. O.; Partridge, N. C.

    1992-01-01

    Collagenase is synthesized and secreted by rat osteoblastic cells in response to PTH. We have previously demonstrated that this effect involves a substantial increase in collagenase mRNA via transcription. Northern blots and nuclear run-on assays were performed to further investigate the induction of collagenase by PTH in the rat osteoblastic cell line UMR 106-01. Detectable amounts of collagenase mRNA were not apparent until 2 h of PTH treatment, showed the greatest abundance at 4 h, and declined to approximately 30% of maximum by 8 h. The changes in the rate of transcription of the collagenase gene in response to PTH paralleled and preceded the changes in the steady state mRNA levels. After an initial lag period of about 1 h, collagenase transcription rates increased from very low levels to a maximal response at 2 h, returning to about 50% of maximum by 10 h. The increased transcriptional rate of the collagenase gene was found to be dependent on the concentration of PTH, with a half-maximal response at approximately 7 x 10(-10) M rat PTH-(1-34) and a maximal effect with a dose of 10(-8) M. The PTH-mediated induction of collagenase transcriptional activity was completely abolished by cycloheximide, while transcription of the beta-actin gene was unaffected by the translation inhibitor. These data suggest that a protein factor(s) is required for PTH-mediated transcriptional induction of collagenase. Since PTH increases intracellular levels of several potential second messengers, agents that mimic these substances were employed to determine which signal transduction pathway is predominant in the PTH-mediated stimulation of collagenase transcription.(ABSTRACT TRUNCATED AT 250 WORDS).

  20. Arginine vasopressin increases cellular free calcium concentration and adenosine 3',5'-monophosphate production in rat renal papillary collecting tubule cells in culture

    SciTech Connect

    Ishikawa, S.; Okada, K.; Saito, T.

    1988-09-01

    The role of calcium (Ca) in the cellular action of arginine vasopressin (AVP) was examined in rat renal papillary collecting tubule cells in culture. AVP increased both the cellular free Ca concentration ((Ca2+)i) using fura-2, and cAMP production in a dose-dependent manner. AVP-induced cellular Ca mobilization was totally blocked by the antagonist to the antidiuretic action of AVP, and somewhat weakened by the antagonist to the vascular action of AVP. 1-Deamino-8-D-AVP (dDAVP). an antidiuretic analog of AVP, also increased (Ca2+) significantly. Cellular Ca mobilization was not obtained with cAMP, forskolin (a diterpene activator of adenylate cyclase), or phorbol-12-myristate-13-acetate. The early phase of (Ca2+)i depended on the intracellular Ca pool, since an AVP-induced rise in (Ca2+)i was obtained in cells pretreated with Ca-free medium containing 1 mM EGTA, verapamil, or cobalt, which blocked cellular Ca uptake. Also, AVP increased /sup 45/Ca2+ influx during the initial 10 min, which initiated the sustained phase of cellular Ca mobilization. However, cellular cAMP production induced by AVP during the 10-min observation period was diminished in the cells pretreated with Ca-free medium, verapamil, or cobalt, but was still significantly higher than the basal level. This was also diminished by a high Ca concentration in medium. These results indicate that 1) AVP concomitantly regulates cellular free Ca as well as its second messenger cAMP production; 2) AVP-induced elevation of cellular free Ca is dependent on both the cellular Ca pool and extracellular Ca; and 3) there is an optimal level of extracellular Ca to modulate the AVP action in renal papillary collecting tubule cells.

  1. 5'-C-Malonyl RNA: Small Interfering RNAs Modified with 5'-Monophosphate Bioisostere Demonstrate Gene Silencing Activity.

    PubMed

    Zlatev, Ivan; Foster, Donald J; Liu, Jingxuan; Charisse, Klaus; Brigham, Benjamin; Parmar, Rubina G; Jadhav, Vasant; Maier, Martin A; Rajeev, Kallanthottathil G; Egli, Martin; Manoharan, Muthiah

    2016-04-15

    5'-Phosphorylation is a critical step in the cascade of events that leads to loading of small interfering RNAs (siRNAs) into the RNA-induced silencing complex (RISC) to elicit gene silencing. 5'-Phosphorylation of exogenous siRNAs is generally accomplished by a cytosolic Clp1 kinase, and in most cases, the presence of a 5'-monophosphate on synthetic siRNAs is not a prerequisite for activity. Chemically introduced, metabolically stable 5'-phosphate mimics can lead to higher metabolic stability, increased RISC loading, and higher gene silencing activities of chemically modified siRNAs. In this study, we report the synthesis of 5'-C-malonyl RNA, a 5'-monophosphate bioisostere. A 5'-C-malonyl-modified nucleotide was incorporated at the 5'-terminus of chemically modified RNA oligonucleotides using solid-phase synthesis. In vitro silencing activity, in vitro metabolic stability, and in vitro RISC loading of 5'-C-malonyl siRNA was compared to corresponding 5'-phosphorylated and 5'-nonphosphorylated siRNAs. The 5'-C-malonyl siRNAs showed sustained or improved in vitro gene silencing and high levels of Ago2 loading and conferred dramatically improved metabolic stability to the antisense strand of the siRNA duplexes. In silico modeling studies indicate a favorable fit of the 5'-C-malonyl group within the 5'-phosphate binding pocket of human Ago2MID domain.

  2. Role of adenosine in the sympathetic activation produced by isometric exercise in humans.

    PubMed Central

    Costa, F; Biaggioni, I

    1994-01-01

    Isometric exercise increases sympathetic nerve activity and blood pressure. This exercise pressor reflex is partly mediated by metabolic products activating muscle afferents (metaboreceptors). Whereas adenosine is a known inhibitory neuromodulator, there is increasing evidence that it activates afferent nerves. We, therefore, examined the hypothesis that adenosine stimulates muscle afferents and participates in the exercise pressor reflex in healthy volunteers. Intraarterial administration of adenosine into the forearm, during venous occlusion to prevent systemic effects, mimicked the response to exercise, increasing muscle sympathetic nerve activity (MSNA, lower limb microneurography) and mean arterial blood pressure (MABP) at all doses studied (2, 3, and 4 mg). Heart rate increased only with the highest dose. Intrabrachial adenosine (4 mg) increased MSNA by 96 +/- 25% (n = 6, P < 0.01) and MABP by 12 +/- 3 mmHg (P < 0.01). Adenosine produced forearm discomfort, but equivalent painful stimuli (forearm ischemia and cold exposure) increased MSNA significantly less than adenosine. Furthermore, adenosine receptor antagonism with intrabrachial theophylline (1 microgram/ml forearm per min) blocked the increase in MSNA (92 +/- 15% vs. 28 +/- 6%, n = 7, P < 0.01) and MABP (38 +/- 6 vs. 27 +/- 4 mmHg, P = 0.01) produced by isometric handgrip (30% of maximal voluntary contraction) in the infused arm, but not the contralateral arm. Theophylline did not prevent the increase in heart rate produced by handgrip, a response mediated more by central command than muscle afferent activation. We propose that endogenous adenosine contributes to the activation of muscle afferents involved in the exercise pressor reflex in humans. PMID:8163667

  3. Adenosine, Ketogenic Diet and Epilepsy: The Emerging Therapeutic Relationship Between Metabolism and Brain Activity

    PubMed Central

    Masino, S.A; Kawamura, M; Wasser, C.D.; Pomeroy, L.T; Ruskin, D.N

    2009-01-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a “retaliatory metabolite.” As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor–based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  4. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity.

    PubMed

    Masino, S A; Kawamura, M; Wasser, C D; Wasser, C A; Pomeroy, L T; Ruskin, D N

    2009-09-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a "retaliatory metabolite." As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor-based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  5. Purine metabolism in adenosine deaminase deficiency.

    PubMed Central

    Mills, G C; Schmalstieg, F C; Trimmer, K B; Goldman, A S; Goldblum, R M

    1976-01-01

    Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides. PMID:1066699

  6. Pharmacokinetic and pharmacodynamic analysis of inosine monophosphate dehydrogenase activity in hematopoietic cell transplantation recipients treated with mycophenolate mofetil.

    PubMed

    Li, Hong; Mager, Donald E; Sandmaier, Brenda M; Storer, Barry E; Boeckh, Michael J; Bemer, Meagan J; Phillips, Brian R; Risler, Linda J; McCune, Jeannine S

    2014-08-01

    A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplantation (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNCs) at 5 time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic-dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory maximum effect model with an IC50 of 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, nonrelapse mortality, and overall mortality. In conclusion, a pharmacokinetic-dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker.

  7. Pharmacokinetic and pharmacodynamic analysis of inosine monophosphate dehydrogenase activity in hematopoietic cell transplantation recipients treated with mycophenolate mofetil.

    PubMed

    Li, Hong; Mager, Donald E; Sandmaier, Brenda M; Storer, Barry E; Boeckh, Michael J; Bemer, Meagan J; Phillips, Brian R; Risler, Linda J; McCune, Jeannine S

    2014-08-01

    A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplantation (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNCs) at 5 time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic-dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory maximum effect model with an IC50 of 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, nonrelapse mortality, and overall mortality. In conclusion, a pharmacokinetic-dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker. PMID:24727337

  8. Enthalpy and enzyme activity of modified histidine residues of adenosine deaminase and diethyl pyrocarbonate complexes.

    PubMed

    Ataie, G; Moosavi-Movahedi, A A; Saboury, A A; Hakimelahi, G H; Hwu, J R; Tsay, S C

    2000-03-16

    Kinetic and thermodynamic studies have been made on the effect of diethyl pyrocarbonate as a histidine modifier on the active site of adenosine deaminase in 50 mM sodium phosphate buffer pH 6.8, at 27 degrees C using UV spectrophotometry and isothermal titration calorimetry (ITC). Inactivation of adenosine deaminase by diethyl pyrocarbonate is correlated with modification of histidyl residues. The number of modified histidine residues complexed to active site of adenosine deaminase are equivalent to 4. The number and energy of histidine binding sets are determined by enthalpy curve, which represents triple stages. These stages are composed of 3,1 and 1 sites of histidyl modified residues at diethyl pyrocarbonate concentrations, 0.63, 1.8, 3.3 mM. The heat contents corresponding to the first, second and third sets are found to be 18000, 22000 and 21900 kJ mol(-1) respectively.

  9. Activation of NTS A(1) adenosine receptors inhibits regional sympathetic responses evoked by activation of cardiopulmonary chemoreflex.

    PubMed

    Ichinose, Tomoko K; Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2012-09-01

    Previously we have shown that adenosine operating via the A(1) receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it is likely that adenosine operating via A(1) receptors in the NTS may differentially inhibit regional sympathetic responses evoked by activation of cardiopulmonary chemoreceptors. Therefore, in urethane-chloralose-anesthetized rats (n = 37) we compared regional sympathoinhibition evoked by the cardiopulmonary chemoreflex (activated with right atrial injections of serotonin 5HT(3) receptor agonist phenylbiguanide, PBG, 1-8 μg/kg) before and after selective stimulation of NTS A(1) adenosine receptors [microinjections of N(6)-cyclopentyl adenosine (CPA), 0.033-330 pmol/50 nl]. Activation of cardiopulmonary chemoreceptors evoked differential, dose-dependent sympathoinhibition (RSNA>ASNA>LSNA), and decreases in arterial pressure and heart rate. These differential sympathetic responses were uniformly attenuated in dose-dependent manner by microinjections of CPA into the NTS. Volume control (n = 11) and blockade of adenosine receptor subtypes in the NTS via 8-(p-sulfophenyl)theophylline (8-SPT, 1 nmol in 100 nl) (n = 9) did not affect the reflex responses. We conclude that activation of NTS A(1) adenosine receptors uniformly inhibits neural and cardiovascular cardiopulmonary chemoreflex responses. A(1) adenosine receptors have no tonic modulatory effect on this reflex under normal conditions. However, when adenosine is released into the NTS (i.e., during stress or severe hypotension/ischemia), it may serve as negative feedback regulator for depressor and sympathoinhibitory reflexes

  10. Characterization of a dual-active enzyme, DcpA, involved in cyclic diguanosine monophosphate turnover in Mycobacterium smegmatis.

    PubMed

    Sharma, Indra Mani; Prakash, Sunita; Dhanaraman, Thillaivillalan; Chatterji, Dipankar

    2014-10-01

    We have reported previously that the long-term survival of Mycobacterium smegmatis is facilitated by a dual-active enzyme MSDGC-1 (renamed DcpA), which controls the cellular turnover of cyclic diguanosine monophosphate (c-di-GMP). Most mycobacterial species possess at least a single copy of a DcpA orthologue that is highly conserved in terms of sequence similarity and domain architecture. Here, we show that DcpA exists in monomeric and dimeric forms. The dimerization of DcpA is due to non-covalent interactions between two protomers that are arranged in a parallel orientation. The dimer shows both synthesis and hydrolysis activities, whereas the monomer shows only hydrolysis activity. In addition, we have shown that DcpA is associated with the cytoplasmic membrane and exhibits heterogeneous cellular localization with a predominance at the cell poles. Finally, we have also shown that DcpA is involved in the change in cell length and colony morphology of M. smegmatis. Taken together, our study provides additional evidence about the role of the bifunctional protein involved in c-di-GMP signalling in M. smegmatis.

  11. Adenosine Receptor Blockade by Caffeine Inhibits Carotid Sinus Nerve Chemosensory Activity in Chronic Intermittent Hypoxic Animals.

    PubMed

    Sacramento, J F; Gonzalez, C; Gonzalez-Martin, M C; Conde, S V

    2015-01-01

    Adenosine is a key excitatory neurotransmitter at the synapse between O(2)-sensing chemoreceptor cells-carotid sinus nerve (CSN) endings in the carotid body (CB). Herein, we have investigated the significance of adenosine, through the blockade of its receptors with caffeine, on the CB hypoxic sensitization induced by chronic intermittent hypoxia (CIH) in the rat. CIH animals were obtained by submitting rats during 15 days from 8:00 to 16:00 to 10 %O(2) for 40 s and 20 % O(2) for 80 s (i.e., 30 episodes/h). Caffeine (1 mM) was tested in spontaneous and 5 %O(2) evoked-CSN chemosensory activity in normoxic and CIH animals. CIH decreased basal spontaneous activity but increased significantly CSN activity evoked by acute hypoxia. Caffeine did not modify basal spontaneous activity in normoxic rats, but decreased significantly by 47.83 % basal activity in CIH animals. In addition, acute application of caffeine decreased 49.31 % and 56.01 % the acute hypoxic response in normoxic and CIH animals, respectively. We demonstrate that adenosine contributes to fix CSN basal activity during CIH, being also involved in hypoxic CB chemotransduction. It is concluded that adenosine participates in CB sensitization during CIH. PMID:26303475

  12. Structure-activity studies of 5-substituted pyridopyrimidines as adenosine kinase inhibitors.

    PubMed

    Cowart, M; Lee, C H; Gfesser, G A; Bayburt, E K; Bhagwat, S S; Stewart, A O; Yu, H; Kohlhaas, K L; McGaraughty, S; Wismer, C T; Mikusa, J; Zhu, C; Alexander, K M; Jarvis, M F; Kowaluk, E A

    2001-01-01

    The synthesis and SAR of a novel series of non-nucleoside pyridopyrimidine inhibitors of the enzyme adenosine kinase (AK) are described. It was found that pyridopyrimidines with a broad range of medium and large non-polar substituents at the 5-position potently inhibited AK activity. A narrower range of analogues was capable of potently inhibiting adenosine phosphorylation in intact cells indicating an enhanced ability of these analogues to penetrate cell membranes. Potent AK inhibitors were found to effectively reduce nociception in animal models of thermal hyperalgesia and persistent pain.

  13. Favism: effect of divicine on rat erythrocyte sulfhydryl status, hexose monophosphate shunt activity, morphology, and membrane skeletal proteins.

    PubMed

    McMillan, D C; Bolchoz, L J; Jollow, D J

    2001-08-01

    Favism is an acute anemic crisis that can occur in susceptible individuals who ingest fava beans. The fava bean pyrimidine aglycone divicine has been identified as a hemotoxic constituent; however, its mechanism of toxicity remains unknown. We have shown recently that divicine can induce a favic-like response in rats and that divicine is directly toxic to rat red cells. In the present study, we have examined the effect of hemotoxic concentrations of divicine on rat erythrocyte sulfhydryl status, hexose monophosphate (HMP) shunt activity, morphology, and membrane skeletal proteins. In vitro exposure of rat red cells to divicine markedly stimulated HMP shunt activity and resulted in depletion of reduced glutathione with concomitant formation of glutathione-protein mixed-disulfides. Examination of divicine-treated red cells by scanning electron microscopy revealed transformation of the cells to an extreme echinocytic morphology. SDS-PAGE and immunoblotting analysis of the membrane skeletal proteins indicated that hemotoxicity was associated with the apparent loss of skeletal protein bands 2.1, 3, and 4.2, and the appearance of membrane-bound hemoglobin. Treatment of divicine-damaged red cells with dithiothreitol reversed the protein changes, which indicated that the observed alterations were due primarily to the formation of disulfide-linked hemoglobin-skeletal protein adducts. The data suggest that oxidative modification of hemoglobin and membrane skeletal proteins by divicine may be key events in the mechanism underlying favism. PMID:11452148

  14. Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states.

    PubMed

    Little, Joshua W; Ford, Amanda; Symons-Liguori, Ashley M; Chen, Zhoumou; Janes, Kali; Doyle, Timothy; Xie, Jennifer; Luongo, Livio; Tosh, Dillip K; Maione, Sabatino; Bannister, Kirsty; Dickenson, Anthony H; Vanderah, Todd W; Porreca, Frank; Jacobson, Kenneth A; Salvemini, Daniela

    2015-01-01

    Chronic pain is a global burden that promotes disability and unnecessary suffering. To date, efficacious treatment of chronic pain has not been achieved. Thus, new therapeutic targets are needed. Here, we demonstrate that increasing endogenous adenosine levels through selective adenosine kinase inhibition produces powerful analgesic effects in rodent models of experimental neuropathic pain through the A3 adenosine receptor (A3AR, now known as ADORA3) signalling pathway. Similar results were obtained by the administration of a novel and highly selective A3AR agonist. These effects were prevented by blockade of spinal and supraspinal A3AR, lost in A3AR knock-out mice, and independent of opioid and endocannabinoid mechanisms. A3AR activation also relieved non-evoked spontaneous pain behaviours without promoting analgesic tolerance or inherent reward. Further examination revealed that A3AR activation reduced spinal cord pain processing by decreasing the excitability of spinal wide dynamic range neurons and producing supraspinal inhibition of spinal nociception through activation of serotonergic and noradrenergic bulbospinal circuits. Critically, engaging the A3AR mechanism did not alter nociceptive thresholds in non-neuropathy animals and therefore produced selective alleviation of persistent neuropathic pain states. These studies reveal A3AR activation by adenosine as an endogenous anti-nociceptive pathway and support the development of A3AR agonists as novel therapeutics to treat chronic pain. PMID:25414036

  15. John Montgomery's legacy: carbocyclic adenosine analogues as SAH hydrolase inhibitors with broad-spectrum antiviral activity.

    PubMed

    De Clercq, Erik

    2005-01-01

    Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626-629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3 Ado), neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3 Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in thefirst place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola. PMID:16438025

  16. Activation of two sites by adenosine receptor agonists to cause relaxation in rat isolated mesenteric artery

    PubMed Central

    Prentice, D J; Payne, S L; Hourani, S M O

    1997-01-01

    /[A] curves for adenosine, CPA or R-PIA. However, in the presence of NBTI (1 μM), 8-SPT (100 μM) gave significant rightward shifts of E/[A] curves to adenosine.ZM 241385 (0.1–1 μM) produced significant rightward shifts of the high potency phase of NECA E/[A] curves (pA2=7.65±0.25 in the presence and 7.20±0.12 in the absence of endothelium), while curves to R-PIA were not significantly shifted by 1 μM ZM 241385. In the presence of NBTI E/[A] curves to adenosine were significantly rightward shifted by ZM 241385 (0.1 μM, pA2=7.50±0.16).In conclusion, the results suggest activation of A2B receptors located primarily on the smooth muscle by low concentrations of NECA and by adenosine under conditions of uptake blockade, and of another, as yet undefined site which may be intracellular, by higher concentrations of NECA, by CPA, R-PIA and adenosine under conditions where uptake is operational. PMID:9421303

  17. Pyrazolo Derivatives as Potent Adenosine Receptor Antagonists: An Overview on the Structure-Activity Relationships

    PubMed Central

    Cheong, Siew Lee; Venkatesan, Gopalakrishnan; Paira, Priyankar; Jothibasu, Ramasamy; Mandel, Alexander Laurence; Federico, Stephanie; Spalluto, Giampiero; Pastorin, Giorgia

    2011-01-01

    In the past few decades, medicinal chemistry research towards potent and selective antagonists of human adenosine receptors (namely, A1, A2A, A2B, and A3) has been evolving rapidly. These antagonists are deemed therapeutically beneficial in several pathological conditions including neurological and renal disorders, cancer, inflammation, and glaucoma. Up to this point, many classes of compounds have been successfully synthesized and identified as potent human adenosine receptor antagonists. In this paper, an overview of the structure-activity relationship (SAR) profiles of promising nonxanthine pyrazolo derivatives is reported and discussed. We have emphasized the SAR for some representative structures such as pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines; pyrazolo-[3,4-c] or -[4,3-c]quinolines; pyrazolo-[4,3-d]pyrimidinones; pyrazolo-[3,4-d]pyrimidines and pyrazolo-[1,5-a]pyridines. This overview not only clarifies the structural requirements deemed essential for affinity towards individual adenosine receptor subtypes, but it also sheds light on the rational design and optimization of existing structural templates to allow us to conceive new, more potent adenosine receptor antagonists. PMID:25954519

  18. Activation of R235A mutant orotidine 5'-monophosphate decarboxylase by the guanidinium cation: effective molarity of the cationic side chain of Arg-235.

    PubMed

    Barnett, Shonoi A; Amyes, Tina L; Wood, B McKay; Gerlt, John A; Richard, John P

    2010-02-01

    The R235A mutation at yeast orotidine 5'-monophosphate decarboxylase (OMPDC) results in a 1300-fold increase in K(m) and a 14-fold decrease in k(cat) for decarboxylation of orotidine 5'-monophosphate, corresponding to a 5.8 kcal/mol destabilization of the transition state. There is strong activation of this mutant enzyme by added guanidinium cation (Gua(+)): 1 M Gua(+) stabilizes the transition state by ca. 3 kcal/mol. This stabilization is due to the binding of Gua(+) to the binary E(mut) x OMP complex, with a K(d) of 50 mM, to form the 9-fold more reactive ternary E(mut) x OMP x Gua(+) complex. The "effective molarity" of the cationic side chain of Arg-235 at the wild-type enzyme is calculated to be 160 M.

  19. GIRK channel activation via adenosine or muscarinic receptors has similar effects on rat atrial electrophysiology.

    PubMed

    Wang, Xiaodong; Liang, Bo; Skibsbye, Lasse; Olesen, Søren-Peter; Grunnet, Morten; Jespersen, Thomas

    2013-08-01

    G protein-coupled inwardly rectifying K⁺ channels (GIRK) are important in the regulation of heart rate and atrial electrophysiology. GIRK channels are activated by G protein-coupled receptors, including muscarinic M₂ receptors and adenosine A₁ receptors. The aim of this study was to characterize and compare the electrophysiological effects of acetylcholine (ACh) and adenosine on GIRK channels in rat atria. Action potential duration at 90% repolarization (APD₉₀), effective refractory period (ERP), and resting membrane potential (RMP) were investigated in isolated rat atria by intracellular recordings. Both the adenosine analog N6-cyclopentyladenosine (CPA) and ACh profoundly shortened APD₉₀ and ERP and hyperpolarized the RMP. No additive or synergistic effect of CPA and ACh coapplication was observed. To antagonize GIRK channel activation, the specific inhibitor rTertiapin Q (TTQ) was applied. The coapplication of TTQ reversed the CPA and ACh-induced effects. When TTQ was applied without exogenous receptor activator, both APD₉₀ and ERP were prolonged and RMP was depolarized, confirming a basal activity of the GIRK current. The results reveal that activation of A₁ and M₂ receptors has a profound and equal effect on the electrophysiology in rat atrium. This effect is to a major extent mediated through GIRK channels. Furthermore, these results support the notion that atrial GIRK currents from healthy hearts have a basal component and additional activation can be mediated via at least 2 different receptor mechanisms. PMID:23609329

  20. Adenosine: front and center in linking nutrition and metabolism to neuronal activity

    PubMed Central

    Greene, Robert W.

    2011-01-01

    Many individuals with epilepsy benefit from consuming a ketogenic diet, which is similar to the more commonly known Atkins diet. The underlying molecular reason for this has not been determined. However, in this issue of the JCI, Masino et al. have elucidated the mechanism responsible for the antiepileptic effects of the ketogenic diet in mice. The diet is shown to decrease expression of the enzyme adenosine kinase (Adk), which is responsible for clearing the endogenous antiepileptic agent adenosine (Ado) from the extracellular CNS space. Decreased expression of Adk results in increased extracellular Ado, activation of inhibitory Ado A1 receptors, and decreased seizure generation, the desired therapeutic effect. The authors’ work serves to emphasize the importance of controlling Adk expression, not only as the mechanism of action of the ketogenic diet, but also as a potential target of future therapies. PMID:21701073

  1. Activation of nicotinic ACh receptors with α4 subunits induces adenosine release at the rat carotid body

    PubMed Central

    Conde, Sílvia V; Monteiro, Emília C

    2006-01-01

    The effect of ACh on the release of adenosine was studied in rat whole carotid bodies, and the nicotinic ACh receptors involved in the stimulation of this release were characterized. ACh and nicotinic ACh receptor agonists, cytisine, DMPP and nicotine, caused a concentration-dependent increase in adenosine production during normoxia, with nicotine being more potent and efficient in stimulating adenosine release from rat CB than cytisine and DMPP. D-Tubocurarine, mecamylamine, DHβE and α-bungarotoxin, nicotinic ACh receptor antagonists, caused a concentration-dependent reduction in the release of adenosine evoked by hypoxia. The rank order of potency for nicotinic ACh receptor antagonists that inhibit adenosine release was DHβE>mecamylamine>D-tubocurarine>α-bungarotoxin. The effect of the endogenous agonist, ACh, which was mimicked by nicotine, was antagonized by DHβE, a selective nicotinic receptor antagonist. The ecto-5′-nucleotidase inhibitor AOPCP produces a 72% inhibition in the release of adenosine from CB evoked by nicotine. Taken together, these data indicate that ACh induced the production of adenosine, mainly from extracellular ATP catabolism at the CB through a mechanism that involves the activation of nicotinic receptors with α4 and β2 receptor subunits. PMID:16444287

  2. Activation of NTS A2a adenosine receptors differentially resets baroreflex control of renal vs. adrenal sympathetic nerve activity.

    PubMed

    Ichinose, Tomoko K; O'Leary, Donal S; Scislo, Tadeusz J

    2009-04-01

    The role of nucleus of solitary tract (NTS) A(2a) adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A(2a) adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A(2a) adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A(2a) receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A(2a) receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A(1) + A(2a) receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/alpha-chloralose anesthetized rats. Activation of A(2a) receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A(2a) adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.

  3. Binding induced colocalization activated hybridization chain reaction on the surface of magnetic nanobead for sensitive detection of adenosine.

    PubMed

    Feng, Chunjing; Hou, Zhun; Jiang, Wei; Sang, Lihong; Wang, Lei

    2016-12-15

    Herein, a sensitive and enzyme-free assay for adenosine detection has been developed on the basis of binding induced colocalization activated hybridization chain reaction (HCR) strategy on the surface of magnetic nanobead. First, the recognition probe was fabricated and divided into two parts: the Apt-1 that composed a part of adenosine aptamer and toehold domain, and the Apt-2 that consisted of another part of adenosine aptamer and branch migration domain. The Apt-1 was immobilized on a streptavidin-magnetic nanobead (streptavidin-MNBs) that played the roles of enrichment and separation. Then the recognition event of adenosine could bring the two parts of aptamer together and induce the colocalization of toehold domain and branch migration domain, which could serve as an integrated initiator to trigger the HCR, producing a long nicked double-stranded polymer. Finally, the intercalating dye SYBR Green I was inserted into the polymer, generating an enhanced fluorescence signal. In this strategy, the initiator was divided into two parts and could be suppressed effectively in the absence of adenosine. Utilizing the separated function, the spontaneous hybridization of H1 and H2 could be avoided, and a low background could be acquired. Moreover, through the double amplification of HCR and multimolecules binding of SYBR Green I, highly sensitive and enzyme-free detection were achieved. The detection limit for adenosine detection was 2.0×10(-7)mol/L, which was comparable or superior to the previous aptasensors. Importantly, adenosine analysis in human urines has been performed, and this strategy could significantly distinguish the adenosine content in normal human urines and cancer patient urines, suggesting that this proposed assay will become a reliable and sensitive adenosine detection method in early clinical diagnosis and medical research.

  4. Rat cardiac myocyte adenosine transport and metabolism

    SciTech Connect

    Ford, D.A.; Rovetto, M.J.

    1987-01-01

    Based on the importance of myocardial adenosine and adenine nucleotide metabolism, the adenosine salvage pathway in ventricular myocytes was studied. Accurate estimates of transport rates, separate from metabolic fllux, were determined. Adenosine influx was constant between 3 and 60 s. Adenosine metabolism maintained intracellular adenosine concentrations < 10% of the extracellular adenosine concentrations and thus unidirectional influx could be measured. Myocytes transported adenosine via saturable and nonsaturable processes. A minimum estimate of the V/sub max/ of myocytic adenosine kinase indicated the saturable component of adenosine influx was independent of adenosine kinase activity. Saturable transport was inhibited by nitrobenzylthioinosine and verapamil. Extracellular adenosine taken up myocytes was rapidly phosphorylated to adenine taken up by myocytes was rapidly phosphorylated to adenine nucleotides. Not all extracellular adenosine, though, was phosphorylated on entering myocytes, since free, as opposed to protein-bound, intracellular adenosine was detected after digitonin extraction of cells in the presence of 1 mM ethylene-diaminetetraacetic acid.

  5. Luciferase-based assay for adenosine: application to S-adenosyl-L-homocysteine hydrolase.

    PubMed

    Burgos, Emmanuel S; Gulab, Shivali A; Cassera, María B; Schramm, Vern L

    2012-04-17

    S-Adenosyl-L-homocysteine hydrolase (SAHH) catalyzes the reversible conversion of S-adenosyl-L-homocysteine (SAH) to adenosine (ADO) and L-homocysteine, promoting methyltransferase activity by relief of SAH inhibition. SAH catabolism is linked to S-adenosylmethionine metabolism, and the development of SAHH inhibitors is of interest for new therapeutics with anticancer or cholesterol-lowering effects. We have developed a continuous enzymatic assay for adenosine that facilitates high-throughput analysis of SAHH. This luciferase-based assay is 4000-fold more sensitive than former detection methods and is well suited for continuous monitoring of ADO formation in a 96-well-plate format. The high-affinity adenosine kinase from Anopheles gambiae efficiently converts adenosine to adenosine monophosphate (AMP) in the presence of guanosine triphosphate. AMP is converted to adenosine triphosphate and coupled to firefly luciferase. With this procedure, kinetic parameters (K(m), k(cat)) for SAHH were obtained, in good agreement with literature values. Assay characteristics include sustained light output combined with ultrasensitive detection (10(-7) unit of SAHH). The assay is documented with the characterization of slow-onset inhibition for inhibitors of the hydrolase. Application of this assay may facilitate the development of SAHH inhibitors and provide an ultrasensitive detection for the formation of adenosine from other biological reactions.

  6. Synthesis and general biological activity of a small adenosine-5'-(carboxamide and sulfanilamide) library.

    PubMed

    Moukha-Chafiq, Omar; Reynolds, Robert C

    2014-01-01

    A small library of fifty-five adenosine peptide analogs was synthesized, under the Pilot Scale Library (PSL) Program of the NIH Roadmap initiative, from 2',3'-O-isopropylideneadenosine-5'-carboxylic acid 2. The coupling of amine or sulfanilamide reactants to the free 5'-carboxylic acid moiety of 2, in automated solution-phase fashion, led after acid-mediated hydrolysis to target compounds 3-57 in good yields and high purity. No marked anticancer or antimalarial activity was noted on preliminary cellular testing. Initial screening through the MLPCN program, however, indicates that these analogs may show diverse and interesting biological activities. PMID:25295748

  7. Cyclic adenosine 5'-diphosphoribose (cADPR) cyclic guanosine 3',5'-monophosphate positively function in Ca(2+) elevation in methyl jasmonate-induced stomatal closure, cADPR is required for methyl jasmonate-induced ROS accumulation NO production in guard cells.

    PubMed

    Hossain, M A; Ye, W; Munemasa, S; Nakamura, Y; Mori, I C; Murata, Y

    2014-11-01

    Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5'-diphosphoribose (cADPR) and cyclic guanosine 3',5'-monophosphate (cGMP) are second messengers in ABA-induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA-induced stomatal closure in Arabidopsis thaliana (Col-0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6-anilino-5,8-quinolinedione), on MeJA-induced stomatal closure. Treatment with NA and LY inhibited MeJA-induced stomatal closure. NA inhibited MeJA-induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca(2+)]cyt elevation in MeJA-induced stomatal closure, are signalling components shared with ABA-induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA-induced ROS accumulation and NO production in Arabidopsis guard cells.

  8. Platelet aggregation and serum adenosine deaminase (ADA) activity in pregnancy associated with diabetes, hypertension and HIV.

    PubMed

    Leal, Claudio A M; Leal, Daniela B R; Adefegha, Stephen A; Morsch, Vera M; da Silva, José E P; Rezer, João F P; Schrekker, Clarissa M L; Abdalla, Faida H; Schetinger, Maria R C

    2016-07-01

    Platelet aggregation and adenosine deaminase (ADA) activity were evaluated in pregnant women living with some disease conditions including hypertension, diabetes mellitus and human immunodeficiency virus infection. The subject population is consisted of 15 non-pregnant healthy women [control group (CG)], 15 women with normal pregnancy (NP), 7 women with hypertensive pregnancy (HP), 10 women with gestational diabetes mellitus (GDM) and 12 women with human immunodeficiency virus-infected pregnancy (HIP) groups. The aggregation of platelets was checked using an optical aggregometer, and serum ADA activity was determined using the colorimetric method. After the addition of 5 µM of agonist adenosine diphosphate, the percentage of platelet aggregation was significantly (p < 0·05) increased in NP, HP, GDM and HIP groups when compared with the CG, while the addition of 10 µM of the same agonist caused significant (p < 0·05) elevations in HP, GDM and HIP groups when compared with CG. Furthermore, ADA activity was significantly (p < 0·05) enhanced in NP, HP, GDM and HIP groups when compared with CG. In this study, the increased platelet aggregation and ADA activity in pregnancy and pregnancy-associated diseases suggest that platelet aggregation and ADA activity could serve as peripheral markers for the development of effective therapy in the maintenance of homeostasis and some inflammatory process in these pathophysiological conditions. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27273565

  9. Localization of calcium stimulated adenosine triphosphatase activity in blood vessels of the skeleton

    NASA Technical Reports Server (NTRS)

    Doty, S. B.

    1985-01-01

    Alkaline phosphatase is an enzyme found in bone forming cells which decreases in certain bones as a result of hypogravity or non-weight bearing. This enzyme can also hydrolyze adenosine triphosphate. Therefore, an effort was made to localize calcium-stimulated ATPase by cytochemistry to determine whether altered bone cell activity might be related to changing calcium levels which occur during hypogravity. The results indicate that Ca(++)-ATPase is largely found along the endothelium and basal lamina of blood vessels, and not found in bone forming cells. This suggests that calcium regulation in the vicinity of bone formation may be modulated by the vasculature of the area.

  10. Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway

    NASA Astrophysics Data System (ADS)

    Ouyang, Xinshou; Ghani, Ayaz; Malik, Ahsan; Wilder, Tuere; Colegio, Oscar Rene; Flavell, Richard Anthony; Cronstein, Bruce Neil; Mehal, Wajahat Zafar

    2013-12-01

    Inflammasome pathways are important in chronic diseases; however, it is not known how the signalling is sustained after initiation. Inflammasome activation is dependent on stimuli such as lipopolysaccharide (LPS) and ATP that provide two distinct signals resulting in rapid production of interleukin (IL)-1β, with the lack of response to repeat stimulation. Here we report that adenosine is a key regulator of inflammasome activity, increasing the duration of the inflammatory response via the A2A receptor. Adenosine does not replace signals provided by stimuli such as LPS or ATP but sustains inflammasome activity via a cAMP/PKA/CREB/HIF-1α pathway. In the setting of the lack of IL-1β responses after previous exposure to LPS, adenosine can supersede this tolerogenic state and drive IL-1β production. These data reveal that inflammasome activity is sustained, after initial activation, by A2A receptor-mediated signalling.

  11. The Second Extracellular Loop of the Adenosine A1 Receptor Mediates Activity of Allosteric Enhancers

    PubMed Central

    Kennedy, Dylan P.; McRobb, Fiona M.; Leonhardt, Susan A.; Purdy, Michael; Figler, Heidi; Marshall, Melissa A.; Chordia, Mahendra; Figler, Robert; Linden, Joel

    2014-01-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists. PMID:24217444

  12. Activation of multiple sites by adenosine analogues in the rat isolated aorta.

    PubMed Central

    Prentice, D. J.; Hourani, S. M.

    1996-01-01

    microM) E/[A] curves to NECA and CPA were right-shifted. However, no further shift of the CPA E/[A] curve was obtained when 8-SPT (50 microM) was administered concomitantly. The locations of curves to R-PIA and adenosine were unaffected by L-NAME (100 microM). 6. In the presence of PD 115,199 (0.1 microM) a parallel rightward shift of NECA E/[A] curves was observed (pA2 = 7.50 +/- 0.19). PD 115,199 (0.1 and 1 microM) gave smaller rightward shifts of E/[A] curves to R-PIA and CPA, but E/[A] curves to adenosine were not significantly shifted in the presence of PD 115,199 (0.1 or 1 microM). 7. The presence of ZM 241385 (3 nM-0.3 microM) caused parallel rightwad shifts of NECA E/[A] curves (pKB = 8.73 +/- 0.11). No significant shifts of E/[A] curves to adenosine, CPA or R-PIA were observed in the presence of 0.1 microM ZM 241385. 8. CGS 21680 (1 microM) elicited a relaxant response equivalent to approximately 40% of the NECA maximum response. In the presence of this concentration of CGS 21680, E/[A] curves to NECA were right-shifted in excess of 2-log units, whereas E/[A] curves to R-PIA were not significantly shifted. 9. BWA1433 (100 microM) caused a small but significant right-shift of the E/[A] curve to R-PIA yielding a pA2 estimate of 4.1 IB-MECA (N6-(3-iodo-benzyl)adenosine-5(1)-N-methyl uronamide) elicited relaxant responses which were resistant to blockade by 8-SPT (p[A]50 = 5.26 +/- 0.13). 10. The results suggest that whereas relaxations to NECA (10 nM-1 microM) are mediated via adenosine A2a receptors, which are located at least in part on the endothelium, R-PIA and CPA may activate A2b receptors on the endothelium and an additional, as yet undefined site, which is likely to be located on the smooth muscle and which is not susceptible to blockade by 8-SPT, PD 115,199 or ZM 241385. This site is unlikely to be an A3 receptor since the very small shift obtained in the presence of BWA1433 (100 microM), and the low potency of IB-MECA is not consistent with the affin

  13. Modulatory effect of iron chelators on adenosine deaminase activity and gene expression in Trichomonas vaginalis.

    PubMed

    Primon-Barros, Muriel; Rigo, Graziela Vargas; Frasson, Amanda Piccoli; Santos, Odelta dos; Smiderle, Lisiane; Almeida, Silvana; Macedo, Alexandre José; Tasca, Tiana

    2015-11-01

    Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.

  14. Modulatory effect of iron chelators on adenosine deaminase activity and gene expression in Trichomonas vaginalis

    PubMed Central

    Primon-Barros, Muriel; Rigo, Graziela Vargas; Frasson, Amanda Piccoli; dos Santos, Odelta; Smiderle, Lisiane; Almeida, Silvana; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival. PMID:26517498

  15. Smoke extract impairs adenosine wound healing: implications of smoke-generated reactive oxygen species.

    PubMed

    Allen-Gipson, Diane S; Zimmerman, Matthew C; Zhang, Hui; Castellanos, Glenda; O'Malley, Jennifer K; Alvarez-Ramirez, Horacio; Kharbanda, Kusum; Sisson, Joseph H; Wyatt, Todd A

    2013-05-01

    Adenosine concentrations are elevated in the lungs of patients with asthma and chronic obstructive pulmonary disease, where it balances between tissue repair and excessive airway remodeling. We previously demonstrated that the activation of the adenosine A2A receptor promotes epithelial wound closure. However, the mechanism by which adenosine-mediated wound healing occurs after cigarette smoke exposure has not been investigated. The present study investigates whether cigarette smoke exposure alters adenosine-mediated reparative properties via its ability to induce a shift in the oxidant/antioxidant balance. Using an in vitro wounding model, bronchial epithelial cells were exposed to 5% cigarette smoke extract, were wounded, and were then stimulated with either 10 μM adenosine or the specific A2A receptor agonist, 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA; 10 μM), and assessed for wound closure. In a subset of experiments, bronchial epithelial cells were infected with adenovirus vectors encoding human superoxide dismutase and/or catalase or control vector. In the presence of 5% smoke extract, significant delay was evident in both adenosine-mediated and CPCA-mediated wound closure. However, cells pretreated with N-acetylcysteine (NAC), a nonspecific antioxidant, reversed smoke extract-mediated inhibition. We found that cells overexpressing mitochondrial catalase repealed the smoke extract inhibition of CPCA-stimulated wound closure, whereas superoxide dismutase overexpression exerted no effect. Kinase experiments revealed that smoke extract significantly reduced the A2A-mediated activation of cyclic adenosine monophosphate-dependent protein kinase. However, pretreatment with NAC reversed this effect. In conclusion, our data suggest that cigarette smoke exposure impairs A2A-stimulated wound repair via a reactive oxygen species-dependent mechanism, thereby providing a better understanding of adenosine signaling that may direct the development of pharmacological

  16. Identification of Potent, Selective P2Y-Purinoceptor Agonists: Structure–Activity Relationships for 2-Thioether Derivatives of Adenosine 5′-Triphosphate†

    PubMed Central

    Fischer, Bilha; Boyer, José L.; Hoyle, Charles H. V.; Ziganshin, Airat U.; Brizzolara, Antonia L.; Knight, Gillian E.; Zimmet, Jeffrey; Burnstock, Geoffrey; Harden, T. Kendall; Jacobson, Kenneth A.

    2012-01-01

    Study of P2-purinoceptor subtypes has been difficult due to the lack of potent and selective ligands. With the goal of developing high affinity P2-purinoceptor-selective agonists, we have synthesized a series of analogues of adenine nucleotides modified on the purine ring as chain-extended 2-thioethers or as N6-methyl-substituted compounds. Chemical functionality incorporated in the thioether moiety included cyanoalkyl, nitroaromatic, amino, thiol, cycloalkyl, n-alkyl, and olefinic groups. Apparent affinity of the compounds for P2Y-purinoceptors was established by measurement of P2Y-purinoceptor-promoted phospholipase C activity in turkey erythrocyte membranes and relaxation of carbachol-contracted smooth muscle in three different preparations (guinea pig taenia coil, rabbit aorta, and rabbit mesenteric artery). Activity at P2X-purinoceptors was established by measurement of contraction of rabbit saphenous artery and of the guinea pig vas deferens and urinary bladder. All 11 of the 2-thioethers of ATP stimulated the production of inositol phosphates with K0.5 values of 1.5–770 nM, with an (aminophenyl)ethyl derivative being most potent. Two adenosine diphosphate analogues were equipotent to the corresponding ATP analogues. Adenosine monophosphate analogues were full agonists, although generally 4 orders of magnitude less potent. ATP 2-thioethers displayed pD2 values in the range of 6–8 in smooth muscle assay systems for activity at P2Y-receptors. There was a significant correlation for the 2-thioether compounds between the pK0.5 values for inositol phosphate production and the pD2 values for relaxation mediated via the P2Y-purinoceptors in the guinea pig taenia coli, but not for the vascular P2Y-receptors or for the P2X-receptors. At P2X-receptors, no activity was observed in the rabbit saphenous artery, but variable degrees of activity were observed in the guinea pig vas deferens and bladder depending on distal substituents of the thioether moiety. N6-Methyl

  17. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    SciTech Connect

    Sadat Hayatshahi, Sayyed Hamed; Khajeh, Khosro

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, the previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.

  18. Effects of adenosine receptor agonists on efferent renal nerve activity in anesthetized rats.

    PubMed

    Genovesi, S; Pieruzzi, F; Camisasca, P; Ragonesi, G; Protasoni, G; Golin, R; Zanchetti, A; Stella, A

    2000-02-01

    The aim of this study was to investigate the effects of A1 and A2 adenosine-receptor activation on the sympathetic nervous system. The effects on efferent renal nerve activity of selective A1 (CCPA; 2-chloro-N-6-cyclopentyladenosine) and A2 (2HE-NECA; 2-hexynyl-5'-N-ethylcarboxamidoadenosine) adenosine-receptor agonists were studied in anesthetized rats either with intact baroreflexes (intact rats) or with bilateral sinoaortic denervation and vagotomy (denervated rats). After a control period of 5 min, A1 or A2 agonist or vehicle were intravenously infused for 8 min in separate groups of intact or denervated rats, in which arterial pressure and heart rate were continuously recorded. CCPA (5.0 microg/kg/min) and 2HE-NECA (0.7 microg/kg/min) were selected to obtain comparable blood pressure changes over the period of observation. Arterial pressure significantly and equally decreased during the A1 (-41 +/- 8%), and A2 (-35 +/- 5%) agonist administration. Heart rate significantly decreased during A1 agonist infusion, but it did not change during A2 agonist administration. Bilateral sinoaortic denervation and vagotomy did not modify the hemodynamic responses to both drugs. The A1 and A2 administration caused a large and significant increase in efferent renal nerve activity (+66 +/- 22% and +76 +/- 15%, respectively), and this effect was entirely abolished in denervated rats. A linear relation with a significant negative slope between changes in arterial pressure and changes in neural discharge was observed for each treatment. The comparison of the regression slopes showed that the reflex increase of efferent sympathetic activity caused by the administration of both agonists was significantly smaller than the increment induced by equipotent hypotensive dose of sodium nitroprusside (10 microg/kg). These data show that the selective activation of A1 and A2 receptors elicits a reflex increase in efferent renal nerve activity. This neural activation is smaller as compared

  19. Adenosine deaminase activity in serum and lymphocytes of rats infected with Sporothrix schenckii.

    PubMed

    Castro, Verônica S P; Pimentel, Victor C; Da Silva, Aleksandro S; Thomé, Gustavo R; Wolkmer, Patrícia; Castro, Jorge L C; Costa, Márcio M; da Silva, Cássia B; Oliveira, Daniele C; Alves, Sydney H; Schetinger, Maria R C; Lopes, Sonia T A; Mazzanti, Cinthia M

    2012-07-01

    Sporotrichosis is a fungal infection of subcutaneous or chronic evolution, inflammatory lesions characterized by their pyogranulomatous aspect, caused by the dimorphic fungus Sporothrix schenckii. Adenosine deaminase (ADA) is a "key" enzyme in the purine metabolism, promoting the deamination of adenosine, an important anti-inflammatory molecule. The increase in ADA activity has been demonstrated in several inflammatory conditions; however, there are no data in the literature associated with this fungal infection. The objective of this study was to evaluate the activity of serum ADA (S-ADA) and lymphocytes (L-ADA) of rats infected with S. schenckii. We used seventy-eight rats divided into two groups. In the first experiment, rats were infected subcutaneously and in the second experiment, infected intraperitoneally. Blood samples for hematologic evaluation and activities of S-ADA and L-ADA were performed at days 15, 30, and 40 post-infection (PI) to assess disease progression. In the second experiment, it was observed an acute decrease in activity of S-ADA and L-ADA (P < 0.05), suggesting a compensatory mechanism in an attempt to protect the host from excessive tissue damage. With chronicity of disease the rats in the first and second experiment at 30 days PI showed an increased activity of L-ADA (P < 0.05), promoting an inflammatory response in an attempt to combat the spread of the agent. Thus, it is suggested that infection with S. schenckii alters the activities of S-ADA in experimentally infected rats, demonstrating the involvement of this enzyme in the pathogenesis of sporotrichosis.

  20. Effects of 4-week treatment with lithium and olanzapine on levels of brain-derived neurotrophic factor, B-cell CLL/lymphoma 2 and phosphorylated cyclic adenosine monophosphate response element-binding protein in the sub-regions of the hippocampus.

    PubMed

    Hammonds, Michael D; Shim, Seong S

    2009-08-01

    A large body of evidence indicates that lithium, the prototype mood stabilizer in the treatment of bipolar disorder, has diverse neuroprotective and neurotrophic actions, and the actions are associated with its efficacy in treating bipolar disorder. It has been suggested that up-regulation of neurotrophic and neuroprotective factors including brain-derived neurotrophic factor (BDNF) and B-cell CLL/lymphoma 2 (Bcl-2) may underlie these neuroplastic actions of the drug. Olanzapine, an atypical anti-psychotic drug, has been shown to be an effective mood stabilizer. Olanzapine also has neurotrophic and neuroprotective actions, and these actions may underlie the efficacy of the drug for bipolar disorder and schizophrenia. However, the molecular mechanism by which the drug produces the neuroplastic actions is poorly understood. To understand a common molecular mechanism underlying the neuroplastic actions of lithium and olanzapine, we assessed the effect of 4-week lithium and olanzapine treatment on the levels of BDNF, Bcl-2 and cyclic adenosine monophosphate response element-binding protein (CREB), a transcription factor involved in expression of BDNF and Bcl-2, in the dentate gyrus and hippocampal area CA1. Our results show that 4-week treatment with both olanzapine and lithium increases the levels of Bcl-2 and CREB in the dentate gyrus and hippocampal area CA1. Four-week lithium treatment up-regulates BDNF in the dentate gyrus, and 4-week olanzapine treatment marginally did so. Neither drug altered BDNF levels in area CA1. These results suggest that the up-regulation of Bcl-2 and CREB may underlie the neuroplastic actions of olanzapine and lithium.

  1. Stabilizing effects of G protein on the active conformation of adenosine A1 receptor differ depending on G protein type.

    PubMed

    Tateyama, Michihiro; Kubo, Yoshihiro

    2016-10-01

    G protein coupled receptors (GPCRs) trigger various cellular and physiological responses upon the ligand binding. The ligand binding induces conformational change in GPCRs which allows G protein to interact with the receptor. The interaction of G protein also affects the active conformation of GPCRs. In this study, we have investigated the effects of Gαi1, Gαo and chimeric Gαqi5 on the active conformation of the adenosine A1 receptor, as each Gα showed difference in the interaction with adenosine A1 receptor. The conformational changes in the adenosine A1 receptor were detected as the agonist-induced decreases in efficiency of Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) fused at the two intracellular domains of the adenosine A1 receptor. Amplitudes of the agonist-induced FRET decreases were subtle when the FP-tagged adenosine A1 receptor was expressed alone, whereas they were significantly enhanced when co-expressed with Gαi1Gβ1Gγ22 (Gi1) or Gαqi5Gβ1Gγ22 (Gqi5) but not with GαοGβ1Gγ22 (Go). The enhancement of the agonist-induced FRET decrease in the presence of Gqi5 was significantly larger than that of Gi1. Furthermore, the FRET recovery upon the agonist removal in the presence of Gqi5 was significantly slower than that of Gi1. From these results it was revealed that the agonist-bound active conformation of adenosine A1 receptor is unstable without the binding of G protein and that the stabilizing effects of G protein differ depending on the types of G protein.

  2. Targeted Lipidomics Studies Reveal that Linolenic Acid Promotes Cotton Fiber Elongation by Activating Phosphatidylinositol and Phosphatidylinositol Monophosphate Biosynthesis.

    PubMed

    Liu, Gao-Jun; Xiao, Guang-Hui; Liu, Ning-Jing; Liu, Dan; Chen, Pei-Shuang; Qin, Yong-Mei; Zhu, Yu-Xian

    2015-06-01

    The membrane lipids from fast-elongating wild-type cotton (Gossypium hirsutum) fibers at 10 days post-anthesis, wild-type ovules with fiber cells removed, and ovules from the fuzzless-lintless mutant harvested at the same age, were extracted, separated, and quantified. Fiber cells contained significantly higher amounts of phosphatidylinositol (PI) than both ovule samples with PI 34:3 being the most predominant species. The genes encoding fatty acid desaturases (Δ(15)GhFAD), PI synthase (PIS) and PI kinase (PIK) were expressed in a fiber-preferential manner. Further analysis of phosphatidylinositol monophosphate (PIP) indicated that elongating fibers contained four- to five-fold higher amounts of PIP 34:3 than the ovules. Exogenously applied linolenic acid (C18:3), soybean L-α-PI, and PIPs containing PIP 34:3 promoted significant fiber growth, whereas a liver PI lacking the C18:3 moiety, linoleic acid, and PIP 36:2 were completely ineffective. The growth inhibitory effects of carbenoxolone, 5-hydroxytryptamine, and wortmannin were reverted by C18:3, PI, or PIP, respectively, suggesting that PIP signaling is essential for fiber cell growth. Furthermore, cotton plants expressing virus-induced gene-silencing constructs that specifically suppressed GhΔ(15)FAD, GhPIS, or GhPIK expression, resulted in significantly short-fibered phenotypes. Our data provide the basis for in-depth studies on the roles of PI and PIP in mediating cotton fiber growth.

  3. ADAR-related activation of adenosine-to-inosine RNA editing during regeneration.

    PubMed

    Witman, Nevin M; Behm, Mikaela; Ohman, Marie; Morrison, Jamie I

    2013-08-15

    Urodele amphibians possess an amazing regenerative capacity that requires the activation of cellular plasticity in differentiated cells and progenitor/stem cells. Many aspects of regeneration in Urodele amphibians recapitulate development, making it unlikely that gene regulatory pathways which are essential for development are mutually exclusive from those necessary for regeneration. One such post-transcriptional gene regulatory pathway, which has been previously shown to be essential for functional metazoan development, is RNA editing. RNA editing catalyses discrete nucleotide changes in RNA transcripts, creating a molecular diversity that could create an enticing connection to the activated cellular plasticity found in newts during regeneration. To assess whether RNA editing occurs during regeneration, we demonstrated that GABRA3 and ADAR2 mRNA transcripts are edited in uninjured and regenerating tissues. Full open-reading frame sequences for ADAR1 and ADAR2, two enzymes responsible for adenosine-to-inosine RNA editing, were cloned from newt brain cDNA and exhibited a strong resemblance to ADAR (adenosine deaminase, RNA-specific) enzymes discovered in mammals. We demonstrated that ADAR1 and ADAR2 mRNA expression levels are differentially expressed during different phases of regeneration in multiple tissues, whereas protein expression levels remain unaltered. In addition, we have characterized a fascinating nucleocytoplasmic shuttling of ADAR1 in a variety of different cell types during regeneration, which could provide a mechanism for controlling RNA editing, without altering translational output of the editing enzyme. The link between RNA editing and regeneration provides further insights into how lower organisms, such as the newt, can activate essential molecular pathways via the discrete alteration of RNA sequences. PMID:23534823

  4. Mucosal adenosine stimulates chloride secretion in canine tracheal epithelium

    SciTech Connect

    Pratt, A.D.; Clancy, G.; Welsh, M.J.

    1986-08-01

    Adenosine is a local regulator of a variety of physiological functions in many tissues and has been observed to stimulate secretion in several Cl-secreting epithelia. In canine tracheal epithelium the authors found that adenosine stimulates Cl secretion from both the mucosal and submucosal surfaces. Addition of adenosine, or its analogue 2-chloroadenosine, to the mucosal surface potently stimulated Cl secretion with no effect on the rate of Na absorption. Stimulation resulted from an interaction of adenosine with adenosine receptors, because it was blocked by the adenosine receptor blocker, 8-phenyltheophylline. The adenosine receptor was a stimulatory receptor as judged by the rank-order potency of adenosine and its analogues and by the increase in cellular adenosine 3',5'-cyclic monophosphate levels produced by 2-chloroadenosine. Adenosine also stimulated Cl secretion when it was added to the submucosal surface, although the maximal increase in secretion was less and it was much less potent. The observation that mucosal 8-phenyletheophylline blocked the effect of submucosal 2-chloroadenosine, whereas submucosal 8-phenyltheophylline did not prevent a response to mucosal or submucosal 2-chloroadenosine, suggests that adenosine receptors are located on the mucosal surface. Thus submucosal adenosine may stimulate secretion by crossing the epithelium and interacting with receptors located on the mucosal surface. Because adenosine can be released from mast cells located in the airway lumen in response to inhaled material, and because adenosine stimulated secretion from the mucosal surface, it may be in a unique position to control the epithelium on a regional level.

  5. 2-Alkynyl derivatives of adenosine-5'-N-ethyluronamide: selective A2 adenosine receptor agonists with potent inhibitory activity on platelet aggregation.

    PubMed

    Cristalli, G; Volpini, R; Vittori, S; Camaioni, E; Monopoli, A; Conti, A; Dionisotti, S; Zocchi, C; Ongini, E

    1994-05-27

    A series of new 2-alkynyl and 2-cycloalkynyl derivatives of adenosine-5'-N-ethyluronamide (NECA) and of N-ethyl-1'-deoxy-1'-(6-amino-2-hexynyl-9H-purin-9-yl)-beta-D- ribofuranuronamide (1, HE-NECA), bearing hydroxy, amino, chloro, and cyano groups in the side chain, were synthesized. The compounds were studied in binding and functional assays to assess their potency for the A2 compared to A1 adenosine receptor. The presence of an alpha-hydroxyl group in the alkynyl chain of NECA derivatives accounts for the A2 agonist potency, leading to compounds endowed with sub-nanomolar affinity in binding studies. However, these analogues also possess good A1 receptor affinity resulting in low A2 selectivity. From functional experiments the 4-hydroxy-1-butynyl (6) and the 4-(2-tetrahydro-2H-pyranyloxy)-1-butynyl (16) derivatives appear to be very potent in inducing vasorelaxation without appreciable effect on heart rate. The new compounds were also tested as inhibitors of platelet aggregation induced by ADP. Introduction of an alpha-hydroxyl group in the alkynyl side chain caused a greater increase in antiaggregatory activity than either NECA or HE-NECA, resulting in the most potent inhibitors of platelet aggregation so far known in the nucleoside series. The presence of an alpha-quaternary carbon such as the 3-hydroxy-3,5-dimethyl-1-hexynyl (12) and the 3-hydroxy-3-phenyl-1-butynyl (15) derivatives markedly reduced the antiaggregatory potency without affecting the A2 affinity. The hydrophobicity index (k') of the new nucleosides barely correlated with the binding data, whereas high k' values were associated with increased A2 vs A1 selectivity but with reduced activity in all functional assays. Some of the compounds synthesized possess interesting pharmacological properties. Compounds having an appropriate balance between vasorelaxation and antiplatelet activity, if confirmed in vivo, deserve further development for the treatments of cardiovascular disorders.

  6. A1 and A2a receptors mediate inhibitory effects of adenosine on the motor activity of human colon.

    PubMed

    Fornai, M; Antonioli, L; Colucci, R; Ghisu, N; Buccianti, P; Marioni, A; Chiarugi, M; Tuccori, M; Blandizzi, C; Del Tacca, M

    2009-04-01

    Experimental evidence in animal models suggests that adenosine is involved in the regulation of digestive functions. This study examines the influence of adenosine on the contractile activity of human colon. Reverse transcription-polymerase chain reaction revealed A(1) and A(2a) receptor expression in colonic neuromuscular layers. Circular muscle preparations were connected to isotonic transducers to determine the effects of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; A(1) receptor antagonist), ZM 241385 (A(2a) receptor antagonist), CCPA (A(1) receptor agonist) and 2-[(p-2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamide-adenosine (CGS 21680; A(2a) receptor agonist) on motor responses evoked by electrical stimulation or carbachol. Electrically evoked contractions were enhanced by DPCPX and ZM 241385, and reduced by CCPA and CGS 21680. Similar effects were observed when colonic preparations were incubated with guanethidine (noradrenergic blocker), L-732,138, GR-159897 and SB-218795 (NK receptor antagonists). However, in the presence of guanethidine, NK receptor antagonists and N(omega)-propyl-L-arginine (NPA; neuronal nitric oxide synthase inhibitor), the effects of DPCPX and CCPA were still evident, while those of ZM 241385 and CGS 21680 no longer occurred. Carbachol-induced contractions were unaffected by A(2a) receptor ligands, but they were enhanced or reduced by DPCPX and CCPA, respectively. When colonic preparations were incubated with guanethidine, NK antagonists and atropine, electrically induced relaxations were partly reduced by ZM 241385 or NPA, but unaffected by DPCPX. Dipyridamole or application of exogenous adenosine reduced electrically and carbachol-evoked contractions, whereas adenosine deaminase enhanced such motor responses. In conclusion, adenosine exerts an inhibitory control on human colonic motility. A(1) receptors mediate direct modulating actions on smooth muscle, whereas A(2a) receptors operate through inhibitory nitrergic nerve pathways.

  7. [Influence of ADP-ribose, AMP and adenosine on bioelectric activity of hibernating ground squirrel atrium and papillary muscle].

    PubMed

    Kuz'min, V S; Abramochkin, D V; Sukhova, G S; Rozenshtraukh, L V

    2008-01-01

    The aim of work was to investigate effects of adenosine, AMP and ADP-ribose (1x10(-5)) on bioelectric activity of atrium and papillary muscle of nonhibernating (rat) and hibernating (Yakutian ground squirrel) animals. Action potential (AP) was registered with use of standard microelectrode technique. AP duration (APD) at level of 90% repolarisation in rat atrium in control experiments was 30+/-5 ms, APD at level of 50% repolarisation was 12+/-2 ms. APD at level of 90% repolarisation in rat papillary muscle was 56+/-7 ms, at level of 50% repolarisation was 18+/-2 ms. APD at level of 90% repolarisation in ground squirrel atrium was 77+/-6, APD at level of 50% repolarisation was 38+/-6 ms. APD at level of 90% repolarisation in ground squirrel papillary muscle was 105+/-9 ms, APD at level of 50% repolarisation was 42+/-8 ms. Purine nucleotides and nucleoside, that were tested in work, except ADP-ribose, act as inhibitory factors and decrease APD both in rat and hibernating ground squirrel heart. ADP-ribose decreases APD in papillary muscle of hibernator but did not in its atrium. In ground squirrel atrium AMP and adenosine decrease APD at level of 50% repolarisation by 10+/-3% and 18+/-3% respectively. AMP and adenosine decrease APD at level of 90% repolarisation by 9+/-2% and 11+/-2% respectively. In ground squirrel papillary muscle ADP-ribose, AMP and adenosine decrease APD at level of 50% repolarisation by 26+/-8%, 23+/-8% and 26+/-7%. ADP-ribose, AMP and adenosine decrease APD at level of 90% repolarisation by 12+/-3%, 10+/-3%, 13+/-3%. Thus, decrease of APD in ground squirrel papillary muscle at level of 90% repolarisation during nucleotides and adenosine action was 2-2.5 fold less, than the rat.

  8. IFN-γ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response.

    PubMed

    Cohen, Heather B; Ward, Amanda; Hamidzadeh, Kajal; Ravid, Katya; Mosser, David M

    2015-10-15

    The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. In this study, we demonstrate that, following TLR stimulation, macrophages upregulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This upregulation of A2bR leads to the induction of macrophages with an immunoregulatory phenotype and the downregulation of inflammation. IFN-γ priming of macrophages selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and to prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNF-α and IL-12 in response to TLR ligation. The pharmacologic inhibition or the genetic deletion of the A2bR results in a hyperinflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the antimicrobial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated. PMID:26355158

  9. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep.

    PubMed

    Datta, S; Siwek, D F; Stack, E C

    2009-09-29

    Recent studies have shown that in the pedunculopontine tegmental nucleus (PPT), increased neuronal activity and kainate receptor-mediated activation of intracellular protein kinase A (PKA) are important physiological and molecular steps for the generation of rapid eye movement (REM) sleep. In the present study performed on rats, phosphorylated cyclic AMP response element-binding protein (pCREB) immunostaining was used as a marker for increased intracellular PKA activation and as a reflection of increased neuronal activity. To identify whether activated cells were either cholinergic or noncholinergic, the PPT and laterodorsal tegmental nucleus (LDT) cells were immunostained for choline acetyltransferase (ChAT) in combination with pCREB or c-Fos. The results demonstrated that during high rapid eye movement sleep (HR, approximately 27%), significantly higher numbers of cells expressed pCREB and c-Fos in the PPT, of which 95% of pCREB-expressing cells were ChAT-positive. With HR, the numbers of pCREB-positive cells were also significantly higher in the medial pontine reticular formation (mPRF), pontine reticular nucleus oral (PnO), and dorsal subcoeruleus nucleus (SubCD) but very few in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). Conversely, with low rapid eye movement sleep (LR, approximately 2%), the numbers of pCREB expressing cells were very few in the PPT, mPRF, PnO, and SubCD but significantly higher in the LC and DRN. The results of regression analyses revealed significant positive relationships between the total percentages of REM sleep and numbers of ChAT+/pCREB+ (Rsqr=0.98) cells in the PPT and pCREB+ cells in the mPRF (Rsqr=0.88), PnO (Rsqr=0.87), and SubCD (Rsqr=0.84); whereas significantly negative relationships were associated with the pCREB+ cells in the LC (Rsqr=0.70) and DRN (Rsqr=0.60). These results provide evidence supporting the hypothesis that during REM sleep, the PPT cholinergic neurons are active, whereas the LC and DRN neurons are

  10. Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor.

    PubMed

    Lee, Yoonji; Kim, Songmi; Choi, Sun; Hyeon, Changbong

    2016-09-20

    Water molecules inside a G-protein coupled receptor (GPCR) have recently been spotlighted in a series of crystal structures. To decipher the dynamics and functional roles of internal water molecules in GPCR activity, we studied the A2A adenosine receptor using microsecond molecular-dynamics simulations. Our study finds that the amount of water flux across the transmembrane (TM) domain varies depending on the receptor state, and that the water molecules of the TM channel in the active state flow three times more slowly than those in the inactive state. Depending on the location in solvent-protein interface as well as the receptor state, the average residence time of water in each residue varies from ∼O(10(2)) ps to ∼O(10(2)) ns. Especially, water molecules, exhibiting ultraslow relaxation (∼O(10(2)) ns) in the active state, are found around the microswitch residues that are considered activity hotspots for GPCR function. A continuous allosteric network spanning the TM domain, arising from water-mediated contacts, is unique in the active state, underscoring the importance of slow water molecules in the activation of GPCRs. PMID:27653477

  11. Time- and dose-related interactions between glucocorticoid and cyclic adenosine 3',5'-monophosphate on CCAAT/enhancer-binding protein-dependent insulin-like growth factor I expression by osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Ji, C.; Chen, Y.; Kim, K.; Centrella, M.

    2000-01-01

    Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.

  12. Prostaglandin E2-induced up-regulation of c-fos messenger ribonucleic acid is primarily mediated by 3',5'-cyclic adenosine monophosphate in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Dietz, T. J.; Hughes-Fulford, M.

    2000-01-01

    The mechanism by which the proto-oncogene, c-fos, is up-regulated in response to PGE2 in the mouse osteoblastic (MC3T3-E1) cell line was investigated using RT-PCR. c-fos messenger RNA up-regulation by dmPGE2 is rapid, starting 10 min post stimulation, and transient. The specific protein kinase A (PKA) inhibitor, H89, inhibited c-fos induction. Moreover, down-regulation of protein kinase C (PKC) activity by chronic TPA treatment had no effect on the induction of c-fos by dmPGE2. We conclude that up-regulation of c-fos by dmPGE2 is primarily dependent on PKA in MC3T3-E1 osteoblasts. In S49 lymphoma wild-type but not S49 cyc- cells, which are deficient in cAMP signaling, dmPGE2 up-regulates c-fos and increases cell growth compared with unstimulated cells. Thus in S49 lymphoma cells, c-fos induction by PGE2 is also dependent on cAMP signaling. The minimal c-fos promoter region required for dmPGE2-induced expression was identified by transfecting c-fos promoter deletion constructs coupled to the chloramphenicol acetyltransferase (CAT) reporter gene into Vero cells. Transfection of a plasmid containing 99 bp c-fos proximal promoter was sufficient to direct c-fos/CAT expression following stimulation with dmPGE2. Because induction of c-fos is mediated by cAMP, these data are consistent with activation of c-fos via the CRE/ATF cis element.

  13. Somatostatin-14 and somatostatin-28 pretreatment down-regulate somatostatin-14 receptors and have biphasic effects on forskolin-stimulated cyclic adenosine, 3',5'-monophosphate synthesis and adrenocorticotropin secretion in mouse anterior pituitary tumor cells.

    PubMed

    Heisler, S; Srikant, C B

    1985-07-01

    Activation of somatostatin-14 (S-14) receptors on mouse AtT-20 pituitary tumor cells by S-14 or somatostatin-28 (S-28) inhibits forskolin-stimulated cAMP synthesis and ACTH secretion. In this study, the effects of prolonged exposure of cells to S-14 or S-28 was found to reduce, in a time- and concentration-dependent fashion, the density of S-14 receptors without affecting the affinity of these sites for [125I]Tyr11-S-14. This response was rapidly reversible after removal of peptide from incubation media. Additionally, S-14 and S-28 pretreatment also resulted in a time-dependent sensitizing effect on forskolin-stimulated cAMP formation and ACTH secretion which preceded S-14 receptor down-regulation. Enhancement of the forskolin response was concentration dependent, with maximal effects observed at 10(-8) M with either peptide. Higher pretreatment concentrations of S-14 resulted in an abolition of the enhanced biological response to forskolin; pretreatment with S-28 (10(-6) M) depressed forskolin- and (-)isoproterenol-induced cAMP formation below levels observed in nonpretreated cells. The enhancing effect of S-14 and S-28 required new protein synthesis, since it was partially blocked by cycloheximide; the depressor effect was independent of new protein synthesis. Both the enhanced and depressed forskolin responses after peptide pretreatment were reversible after withdrawal of S-14 or S-28; normalization of the forskolin response (cAMP formation and ACTH secretion) followed the return to control levels of S-14 receptor density. Pretreatment of cells with 10(-8) M or 10(-6) M S-28 increased and decreased, respectively, the ACTH secretory response to agonists which act in the absence of prior cAMP synthesis such as 8-bromo-cAMP, A-23187, and phorbol ester. The data suggest that S-14 receptor down-regulation is not causally associated with the sensitizing effects of S-14 and S-28 on adenylate cyclase and that the S-14 receptor may be also coupled to other effector

  14. Adenosine and the Auditory System

    PubMed Central

    Vlajkovic, Srdjan M; Housley, Gary D; Thorne, Peter R

    2009-01-01

    Adenosine is a signalling molecule that modulates cellular activity in the central nervous system and peripheral organs via four G protein-coupled receptors designated A1, A2A, A2B, and A3. This review surveys the literature on the role of adenosine in auditory function, particularly cochlear function and its protection from oxidative stress. The specific tissue distribution of adenosine receptors in the mammalian cochlea implicates adenosine signalling in sensory transduction and auditory neurotransmission although functional studies have demonstrated that adenosine stimulates cochlear blood flow, but does not alter the resting and sound-evoked auditory potentials. An interest in a potential otoprotective role for adenosine has recently evolved, fuelled by the capacity of A1 adenosine receptors to prevent cochlear injury caused by acoustic trauma and ototoxic drugs. The balance between A1 and A2A receptors is conceived as critical for cochlear response to oxidative stress, which is an underlying mechanism of the most common inner ear pathologies (e.g. noise-induced and age-related hearing loss, drug ototoxicity). Enzymes involved in adenosine metabolism, adenosine kinase and adenosine deaminase, are also emerging as attractive targets for controlling oxidative stress in the cochlea. Other possible targets include ectonucleotidases that generate adenosine from extracellular ATP, and nucleoside transporters, which regulate adenosine concentrations on both sides of the plasma membrane. Developments of selective adenosine receptor agonists and antagonists that can cross the blood-cochlea barrier are bolstering efforts to develop therapeutic interventions aimed at ameliorating cochlear injury. Manipulations of the adenosine signalling system thus hold significant promise in the therapeutic management of oxidative stress in the cochlea. PMID:20190966

  15. Evidence for an atypical receptor mediating the augmented bronchoconstrictor response to adenosine induced by allergen challenge in actively sensitized Brown Norway rats.

    PubMed

    Hannon, J P; Tigani, B; Wolber, C; Williams, I; Mazzoni, L; Howes, C; Fozard, J R

    2002-02-01

    The bronchoconstrictor response to adenosine is markedly and selectively increased following ovalbumin (OA) challenge in actively sensitized, Brown Norway rats. We present a pharmacological analysis of the receptor mediating this response. Like adenosine, the broad-spectrum adenosine receptor agonist, NECA, induced dose-related bronchoconstriction in actively sensitized, OA-challenged animals. In contrast, CPA, CGS 21680 and 2-Cl-IB-MECA, agonists selective for A(1) A(2A) and A(3) receptors, respectively, induced no, or minimal, bronchoconstriction. Neither the selective A(1) receptor antagonist, DPCPX, nor the selective A(2A) receptor antagonist, ZM 241385, blocked the bronchoconstrictor response to adenosine. MRS 1754, which has similar affinity for rat A(2B) and A(1) receptors, failed to block the bronchoconstrictor response to adenosine despite blockade of the A(1) receptor-mediated bradycardia induced by NECA. 8-SPT and CGS 15943, antagonists at A(1), A(2A), and A(2B) but not A(3) receptors, inhibited the bronchoconstrictor response to adenosine. However, the degree of blockade (approximately 3 fold) did not reflect the plasma concentrations, which were 139 and 21 times greater than the K(B) value at the rat A(2B) receptor, respectively. Adenosine and NECA, but not CPA, CGS 21680 or 2-Cl-IB-MECA, induced contraction of parenchymal strip preparations from actively sensitized OA-challenged animals. Responses to adenosine could not be antagonized by 8-SPT or MRS 1754 at concentrations >50 times their affinities at the rat A(2B) receptor. The receptor mediating the bronchoconstrictor response to adenosine augmented following allergen challenge in actively sensitized BN rats cannot be categorized as one of the four recognized adenosine receptor subtypes.

  16. Adenosine triphosphate attenuates renal sympathetic nerve activity through left ventricular chemosensitive receptors.

    PubMed

    Taneyama, C; Benson, K T; Hild, P G; Goto, H

    1997-02-01

    We previously reported that ATP, but not adenosine, administered i.v. attenuates the baroreflex-mediated increase in sympathetic nerve activity in response to arterial hypotension by a vagal afferent mechanism. It was not elucidated in that study which vagal afferent endings are involved. Mongrel dogs were anesthetized with alpha-chloralose, thoracotomy was performed and a 27-gauge hypodermic needle was inserted into the left circumflex coronary artery. The left renal sympathetic nerves were isolated and placed on a bipolar silver electrode for measurement of renal sympathetic nerve activity (RSNA). Dose-response effects of intracoronary or i.v. infusion of ATP (100, 200 or 400 microg/kg/min) on RSNA and mean arterial pressure were studied in neuraxis-intact and cervically vagotomized dogs. RSNA was increased dose-dependently with decreasing mean arterial pressure during the i.v. ATP infusion. Elevation of RSNA was attenuated by higher intracoronary ATP infusion rates, despite the fact that mean arterial pressure was decreased dose-dependently. Left ventricular end-diastolic pressure, however, remained unchanged. This suppression of RSNA by the intracoronary ATP infusion was completely abolished by bilateral cervical vagotomy. Our data suggest that ATP attenuates reflex increases in sympathetic nerve activity by possibly stimulating ventricular chemoreceptors with cardiac vagal afferents. PMID:9023265

  17. Enhanced poly(adenosine diphosphate ribose) polymerase activity and gene expression in Ewing's sarcoma cells

    SciTech Connect

    Prasad, S.C.; Thraves, P.J.; Bhatia, K.G.; Smulson, M.E.; Dritschilo, A. )

    1990-01-01

    Ewing's sarcoma (ES) is a highly malignant childhood bone tumor and is considered curable by moderate doses of radiotherapy. The addition of chemical inhibitors of the activity of the nuclear enzyme poly(adenosine diphosphate ribose) (poly(ADPR)) polymerase to ES cells in culture results in increased cell killing, a phenomenon called inhibitor sensitization. Since poly(ADPR) polymerase is thought to be associated with DNA repair, it has been suggested that ES cells and other inhibitor-sensitized cells may have a reduced capacity for polymer synthesis resulting in deficient postirradiation recovery. We present here the unexpected observation that in comparison to other cell lines tested, ES cells exhibit a high enzyme activity, higher constitutive levels of the protein, and elevated levels of its mRNA transcript for poly(ADPR) polymerase. No gross amplifications or rearrangements of the gene were observed; however, regulation of poly(ADPR) polymerase in these tumor cells takes place at the level of the gene transcript.

  18. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    PubMed

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  19. Increased Orbitofrontal Brain Activation after Administration of a Selective Adenosine A2A Antagonist in Cocaine Dependent Subjects

    PubMed Central

    Moeller, F. Gerard; Steinberg, Joel L.; Lane, Scott D.; Kjome, Kimberly L.; Ma, Liangsuo; Ferre, Sergi; Schmitz, Joy M.; Green, Charles E.; Bandak, Stephen I.; Renshaw, Perry F.; Kramer, Larry A.; Narayana, Ponnada A.

    2012-01-01

    Background: Positron Emission Tomography imaging studies provide evidence of reduced dopamine function in cocaine dependent subjects in the striatum, which is correlated with prefrontal cortical glucose metabolism, particularly in the orbitofrontal cortex. However, whether enhancement of dopamine in the striatum in cocaine dependent subjects would be associated with changes in prefrontal cortical brain activation is unknown. One novel class of medications that enhance dopamine function via heteromer formation with dopamine receptors in the striatum is the selective adenosine A2A receptor antagonists. This study sought to determine the effects administration of the selective adenosine A2A receptor antagonist SYN115 on brain function in cocaine dependent subjects. Methodology/Principle Findings: Twelve cocaine dependent subjects underwent two fMRI scans (one after a dose of placebo and one after a dose of 100 mg of SYN115) while performing a working memory task with three levels of difficulty (3, 5, and 7 digits). fMRI results showed that for 7-digit working memory activation there was significantly greater activation from SYN115 compared to placebo in portions of left (L) lateral orbitofrontal cortex, L insula, and L superior and middle temporal pole. Conclusion/Significance: These findings are consistent with enhanced dopamine function in the striatum in cocaine dependent subjects via blockade of adenosine A2A receptors producing increased brain activation in the orbitofrontal cortex and other cortical regions. This suggests that at least some of the changes in brain activation in prefrontal cortical regions in cocaine dependent subjects may be related to altered striatal dopamine function, and that enhancement of dopamine function via adenosine A2A receptor blockade could be explored further for amelioration of neurobehavioral deficits associated with chronic cocaine use. PMID:22654774

  20. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE PAGES

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; et al

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  1. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    SciTech Connect

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; Li, Huilin; Darwin, K. Heran

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.

  2. ADENOSINE DEAMINASE ACTIVITY AND SERUM C-REACTIVE PROTEIN AS PROGNOSTIC MARKERS OF CHAGAS DISEASE SEVERITY.

    PubMed

    Bravo-Tobar, Iván Darío; Nello-Pérez, Carlota; Fernández, Alí; Mogollón, Nora; Pérez, Mary Carmen; Verde, Juan; Concepción, Juan Luis; Rodriguez-Bonfante, Claudina; Bonfante-Cabarcas, Rafael

    2015-01-01

    Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA) and C-reactive protein serum levels (CRP) in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35), II (n = 29), and III (n = 18). A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ≥ 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease.

  3. ADENOSINE DEAMINASE ACTIVITY AND SERUM C-REACTIVE PROTEIN AS PROGNOSTIC MARKERS OF CHAGAS DISEASE SEVERITY

    PubMed Central

    BRAVO-TOBAR, Iván Darío; NELLO-PÉREZ, Carlota; FERNÁNDEZ, Alí; MOGOLLÓN, Nora; PÉREZ, Mary Carmen; VERDE, Juan; CONCEPCIÓN, Juan Luis; RODRIGUEZ-BONFANTE, Claudina; BONFANTE-CABARCAS, Rafael

    2015-01-01

    SUMMARY Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA) and C-reactive protein serum levels (CRP) in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35), II (n = 29), and III (n = 18). A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ≥ 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease. PMID:26603224

  4. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    PubMed Central

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; Li, Huilin; Darwin, K. Heran

    2015-01-01

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world's most devastating pathogens. PMID:25831519

  5. Conformational Changes in Orotidine 5’-Monophosphate Decarboxylase: A Structure-Based Explanation for How the 5’-Phosphate Group Activates the Enzyme†

    PubMed Central

    Desai, Bijoy J.; Wood, McKay; Fedorov, Alexander A.; Fedorov, Elena V.; Goryanova, Bogdana; Amyes, Tina L.; Richard, John P.; Almo, Steven C.; Gerlt, John A.

    2012-01-01

    The binding of a ligand to orotidine 5’-monophosphate decarboxylase (OMPDC) is accompanied by a conformational change from an open, inactive conformation (Eo) to a closed, active conformation (Ec). As the substrate traverses the reaction coordinate to form the stabilized vinyl carbanion/carbene intermediate, interactions are enforced that destabilize the carboxylate group of the substrate as well as stabilize the intermediate (in the Ec•S‡ complex). Focusing on the OMPDC from Methanothermobacter thermautotrophicus, the “remote” 5’-phosphate group of the substrate activates the enzyme 2.4 × 108-fold; the activation is equivalently described by an intrinsic binding energy (IBE) of 11.4 kcal/mol. We studied residues in the activation that 1) directly contact the 5’-phosphate group; 2) participate in a hydrophobic cluster near the base of the active site loop that sequesters the bound substrate from solvent; and 3) form hydrogen-bonding interactions across the interface between the “mobile” and “fixed” half-barrel domains of the (β/α8-barrel structure. Our data support a model in which the IBE provided by the 5’-phosphate group is used to enable interactions both near the N-terminus of the active site loop and across the domain interface that stabilize both the Ec•S and Ec•S‡ complexes relative to the Eo•S complex. The conclusion that the IBE of the 5’-phosphate group provides stabilization of both the Ec•S and Ec•S‡ complexes, not just the Ec•S‡ complex, is central to understanding the structural origins of enzymatic catalysis as well as the requirements for the de novo design of enzymes that catalyze novel reactions. PMID:23030629

  6. Communication over the Network of Binary Switches Regulates the Activation of A2A Adenosine Receptor

    PubMed Central

    Lee, Yoonji; Choi, Sun; Hyeon, Changbong

    2015-01-01

    Dynamics and functions of G-protein coupled receptors (GPCRs) are accurately regulated by the type of ligands that bind to the orthosteric or allosteric binding sites. To glean the structural and dynamical origin of ligand-dependent modulation of GPCR activity, we performed total ~ 5 μsec molecular dynamics simulations of A2A adenosine receptor (A2AAR) in its apo, antagonist-bound, and agonist-bound forms in an explicit water and membrane environment, and examined the corresponding dynamics and correlation between the 10 key structural motifs that serve as the allosteric hotspots in intramolecular signaling network. We dubbed these 10 structural motifs “binary switches” as they display molecular interactions that switch between two distinct states. By projecting the receptor dynamics on these binary switches that yield 210 microstates, we show that (i) the receptors in apo, antagonist-bound, and agonist-bound states explore vastly different conformational space; (ii) among the three receptor states the apo state explores the broadest range of microstates; (iii) in the presence of the agonist, the active conformation is maintained through coherent couplings among the binary switches; and (iv) to be most specific, our analysis shows that W246, located deep inside the binding cleft, can serve as both an agonist sensor and actuator of ensuing intramolecular signaling for the receptor activation. Finally, our analysis of multiple trajectories generated by inserting an agonist to the apo state underscores that the transition of the receptor from inactive to active form requires the disruption of ionic-lock in the DRY motif. PMID:25664580

  7. Ascitic fluid gamma interferon concentrations and adenosine deaminase activity in tuberculous peritonitis.

    PubMed Central

    Sathar, M A; Simjee, A E; Coovadia, Y M; Soni, P N; Moola, S A; Insam, B; Makumbi, F

    1995-01-01

    The gamma interferon (gamma-IFN) concentration and the adenosine deaminase (ADA) activity were evaluated in 30 patients with tuberculous peritonitis, 21 patients with ascites due to a malignant disorder, and 41 patients with cirrhosis. The gamma-IFN concentrations were significantly higher (p < 0.0001) in tuberculous peritonitis patients (mean: 6.70 U/ml) than in the malignant (mean: 3.10 U/ml) and cirrhotic (mean: 3.08 U/ml) groups. Use of a cut off value of > or = 3.2 U/ml gave the assay a sensitivity of 93% (25 of 27), a specificity of 98% (54 of 55), positive (P+) and negative (P-) predictive values of 96% and a test accuracy of 96%. The ADA activity was significantly (p < 0.0001) higher in the tuberculous peritonitis group (mean: 101.84 U/l) than in the control groups (cirrhosis (mean: 13.49 U/l) and malignancy (mean: 19.35 U/l)). A cut off value of > 30 U/l gave the ADA test a sensitivity of 93% (26 of 28) a specificity of 96% (51 of 53), a (P+) value of 93%, a (P-) value of 96%, and a test accuracy of 95%. There was a significant (p < 0.0001) correlation (r = 0.72) between ADA activity and gamma-IFN values in patients with tuberculous peritonitis. These results show that a high concentration of gamma-IFN in ascitic fluid is as valuable as the ADA activity in the diagnosis of tuberculous peritonitis. Both are rapid non-invasive diagnostic tests for tuberculous peritonitis. PMID:7698702

  8. Ultrastructural localization of the membrane-bound Mg-adenosine triphosphatase activity in rat meninges.

    PubMed

    Angelov, D N; Vasilev, V A

    1989-01-01

    The distribution of the membrane-bound magnesium ions-dependent adenosine triphosphatase (Mg-ATPase) activity has been studied ultracytochemically in rat meninges by the method of Wachstein and Meisel (1957). A device specially constructed to avoid preparation artefacts has been used to obtain sections from the parietal region of the head. The meninges display an intense though irregularly distributed ATPase activity marked by depositions of electron-dense reaction product (RP) which is almost absent in the outer and middle dural layers. In the borderline zone between dura mater and the arachnoid the RP deposits are found at the outer surface of the inner dural cells and at the contact sites between these cells and the dural neurothelium. The intercellular cleft(s) between the neurothelium and the outer arachnoidal layer, occupied by an "electron-dense band", remains free of RP. The strongest accumulations of reactions granules are observed on the surface of the leptomeningeal cells of the arachnoidal space. In the contact region between the inner arachnoidal and the outer pial layers the distribution of the RP is similar to the one observed in the interface zone dura mater/arachnoid, while the pial cells themselves are definitely reaction-positive. In all meningeal vessels RP is found at the lumenal and abluminal aspects of the endothelium as well as at the cell membranes of the perivascular cells. These results emphasize the importance of the dural neurothelium for the functions of the blood-cerebrospinal fluid (CSF)-barrier between the dural blood vessels and the CSF.

  9. Mitochondrial nicotinamide nucleotide transhydrogenase: active site modification by 5'-(p-(fluorosulfonyl)benzoyl)adenosine

    SciTech Connect

    Phelps, D.C.; Hatefi, Y.

    1985-07-02

    Membrane-bound and purified mitochondrial energy-linked nicotinamide nucleotide transhydrogenase (TH) was inhibited by incubation with 5'-(p-(fluorosulfonyl)benzoyl)adenosine (FSBA), which is an analogue of TH substrates and their competitive inhibitors, namely, 5'-, 2'-, or 3'-AMP. NAD(H) and analogues, NADP, 5'-AMP, 5'-ADP, and 2'-AMP/3'-AMP mixed isomers protected TH against inhibition by FSBA, but NADPH accelerated the inhibition rate. In the absence of protective ligands or in the presence of NADP, FSBA appeared to modify the NAD(H) binding site of TH, because, unlike unmodified TH, the enzyme modified by FSBA under these conditions did not bind to an NAD-affinity column (NAD-agarose). However, when the NAD(H) binding site of TH was protected in the presence of 5'-AMP or NAD, then FSBA modification resulted in an inhibited enzyme that did bind to NAD-agarose, suggesting FSBA modification of the NADP(H) binding site or an essential residue outside the active site. (/sup 3/H)FSBA was covalently bound to TH, and complete inhibition corresponded to the binding of about 0.5 mol of (3H)FSBA/mol of TH. Since purified TH is known to be dimeric in the isolated state, this binding stoichiometry suggests half-of-the-sites reactivity. A similar binding stoichiometry was found earlier for complete inhibition of TH by (/sup 14/C)DCCD. The active site directed labeling of TH by radioactive FSBA should allow isolation of appropriate peptides for sequence analysis of the NAD(H) and possibly the NADP(H) binding domains.

  10. The PurR mutation of Drosophila melanogaster confers resistance to purine and 2,6-diaminopurine by elevating adenosine deaminase activity.

    PubMed

    Dutton, F L; Chovnick, A

    1990-01-01

    Media supplemented with purine (7H-imidazo[4,5-d]pyrimidine) or the purine analogue 2,6-diaminopurine (DAP) can be employed to select several classes of purine-resistant variants from mutagenized cultures of Drosophila. One class results in elevated resistance to purine and diaminopurine which is correlated with elevated activity of the enzyme adenosine deaminase (adenosine aminohydrolase = EC 3.5.4.4). The first member of this class, Pur R, maps to position 82 +/- in the right arm of the second chromosome. The Pur R mutation causes an elevation of adenosine deaminase (ADA) enzyme activity, apparently by altering a thermolabile, ADA-specific repressor. Pur R may thus encode a negative regulator of adenosine deaminase activity similar to the ADA-binding protein found in mammalian systems.

  11. Thymine-based molecular beacon for sensing adenosine based on the inhibition of S-adenosylhomocysteine hydrolase activity.

    PubMed

    Nieh, Chih-Chun; Tseng, Wei-Lung

    2014-11-15

    This study presents a thymine (T)-based molecular beacon (MB) used for probing S-adenosylhomocysteine hydrolase (SAHH)-catalyzed hydrolysis of S-adenosylhomocysteine (SAH) and for sensing adenosine based on the inhibition of SAHH activity. The designed MB (T8-MB-T8) contained a 15-mer loop and a stem that consisted of a pair of 8-mer T bases, a fluorophore unit at the 5'-end, and a quencher unit at the 3'-end. In the presence of Hg(2+), a change in the conformation of T8-MB-T8 placed the fluorophore unit and the quencher in proximity to each other and caused collisional quenching of fluorescence between them. The Hg(2+)-induced fluorescence quenching of T8-MB-T8 occurred because the Hg(2+) induced T-T mismatches to form stable T-Hg(2+)-T coordination in the MB stem. SAHH catalyzed the hydrolysis of SAH to produce homocysteine. The generated homocysteine enabled the Hg(2+) to be removed from a hairpin-shaped T8-MB-T8 through the formation of a strong Hg(2+)-S bond, leading to the restoration of its fluorescence. The T8-MB-T8 · Hg(2+) probe showed a limit of detection for SAHH of 4 units L(-1) (approximately 0.24 nM) and was reusable for detecting the SAHH/SAH system. Because adenosine was an effective SAHH activity inhibitor, the T8-MB-T8 · Hg(2+) probe combining the SAHH and SAH systems was used for sensitive and selective detection of adenosine in urine without the interference of other adenosine analogs.

  12. Glycolytic pathway (GP), kreb's cycle (KC), and hexose monophosphate shunt (HMS) activity in myocardial subcellular fractions exposed to cannabinoids

    SciTech Connect

    Watson, A.T.; Manno, B.R.; King, J.W.; Fowler, M.R.; Dempsey, C.A.; Manno, J.E.

    1986-03-05

    Delta-9-tetrahydrocannabinol (..delta../sup 9/-THC), the primary psychoactive component of marihuana, and its active metabolite 11-hydroxy-..delta../sup 9/-tetrahydrocannabinol (11-OH-..delta../sup 9/-THC) have been reported to produce a direct cardiac depressant effect. Studies in isolated perfused rat hearts have indicated a decreased force of contraction (inotropic response) when ..delta../sup 9/-THC or 11-OH-..delta../sup 9/-THC was administered in microgram amounts. The mechanism and site of action have not been explained or correlated with associated metabolic pathways. The purpose of this study was to investigate the effects of cannabinoids on major myocardial energy producing pathways, GP and KC, and a non-energy producing pathway, HMS. Cardiac ventricular tissue from male Sprague-Dawley rats (250-300 g) was excised and homogenized for subcellular fractionation. KC, GP and HMS activity was assayed in the appropriate fractions by measuring /sup 14/CO/sub 2/ generation from /sup 14/C-2-pyruvate, /sup 14/C-6-glucose and /sup 14/C-1-glucose respectively. Duplicate assays (n=8) were performed on tissue exposed to saline (control), empty liposomes (vehicle) and four doses each of ..delta../sup 9/-THC and 11-OH-..delta../sup 9/-THC. Changes in metabolic activity and decreases in cardiac contractile performance may be associated.

  13. Basal adenosine modulates the functional properties of AMPA receptors in mouse hippocampal neurons through the activation of A1R A2AR and A3R

    PubMed Central

    Di Angelantonio, Silvia; Bertollini, Cristina; Piccinin, Sonia; Rosito, Maria; Trettel, Flavia; Pagani, Francesca; Limatola, Cristina; Ragozzino, Davide

    2015-01-01

    Adenosine is a widespread neuromodulator within the CNS and its extracellular level is increased during hypoxia or intense synaptic activity, modulating pre- and postsynaptic sites. We studied the neuromodulatory action of adenosine on glutamatergic currents in the hippocampus, showing that activation of multiple adenosine receptors (ARs) by basal adenosine impacts postsynaptic site. Specifically, the stimulation of both A1R and A3R reduces AMPA currents, while A2AR has an opposite potentiating effect. The effect of ARs stimulation on glutamatergic currents in hippocampal cultures was investigated using pharmacological and genetic approaches. A3R inhibition by MRS1523 increased GluR1-Ser845 phosphorylation and potentiated AMPA current amplitude, increasing the apparent affinity for the agonist. A similar effect was observed blocking A1R with DPCPX or by genetic deletion of either A3R or A1R. Conversely, impairment of A2AR reduced AMPA currents, and decreased agonist sensitivity. Consistently, in hippocampal slices, ARs activation by AR agonist NECA modulated glutamatergic current amplitude evoked by AMPA application or afferent fiber stimulation. Opposite effects of AR subtypes stimulation are likely associated to changes in GluR1 phosphorylation and represent a novel mechanism of physiological modulation of glutamatergic transmission by adenosine, likely acting in normal conditions in the brain, depending on the level of extracellular adenosine and the distribution of AR subtypes. PMID:26528137

  14. A New Activity of Anti-HIV and Anti-tumor Protein GAP31: DNA Adenosine Glycosidase – Structural and Modeling Insight into its Functions

    SciTech Connect

    Li, H.; Huang, P; Zhang, D; Sun, Y; Chen, H; Zhang, J; Huang, P; Kong, X; Lee-Huang, S

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  15. A new activity of anti-HIV and anti-tumor protein GAP31: DNA adenosine glycosidase - Structural and modeling insight into its functions

    SciTech Connect

    Li, Hui-Guang; Huang, Philip L.; Zhang, Dawei; Sun, Yongtao; Chen, Hao-Chia; Zhang, John; Huang, Paul L.; Kong, Xiang-Peng; Lee-Huang, Sylvia

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  16. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3',5'-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Ferris, J. P.

    1997-01-01

    Methyladenine and adenine N-phosphoryl derivatives of adenosine 5'-monophosphate (5'-AMP) and uridine 5'-monophosphate (5'-UMP) are synthesized, and their structures are elucidated. The oligomerization reactions of the adenine derivatives of 5'-phosphoramidates of adenosine on montmorillonite are investigated. 1-Methyladenine and 3-methyladenine derivatives on montmorillonite yielded oligoadenylates as long as undecamer, and the 2-methyladenine and adenine derivatives on montmorillonite yielded oligomers up to hexamers and pentamers, respectively. The 1-methyladenine derivative yielded linear, cyclic, and A5'ppA-derived oligonucleotides with a regioselectivity for the 3',5'-phosphodiester linkages averaging 84%. The effect of pKa and amine structure of phosphate-activating groups on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidate of adenosine are discussed. The binding and reaction of methyladenine and adenine N-phosphoryl derivatives of adenosine are described.

  17. Presynaptic facilitatory adenosine A2A receptors mediate fade induced by neuromuscular relaxants that exhibit anticholinesterase activity.

    PubMed

    Bornia, Elaine Cs; Correia-de-Sá, Paulo; Alves-Do-Prado, Wilson

    2011-03-01

    1. Pancuronium, cisatracurium and vecuronium are antinicotinic agents that, in contrast with d-tubocurarine and hexamethonium, exhibit anticholinesterase activity. Pancuronium-, cisatracurium- and vecuronium-induced fade results from blockade of facilitatory nicotinic receptors on motor nerves, but fade produced by such agents also depends on the presynaptic activation of inhibitory muscarinic M2 receptors by acetylcholine released from motor nerve terminals and activation of inhibitory adenosine A1 receptors by adenosine released from motor nerves and muscles. The participation of presynaptic facilitatory A2A receptors in fade caused by pancuronium, cisatracurium and vecuronium has not yet been investigated. In the present study, we determined the effects of ZM241385, an antagonist of presynaptic facilitatory A2A receptors, on fade produced by these neuromuscular relaxants in the rat phrenic nerve-diaphragm (PND) preparation. 2. The muscles were stimulated indirectly at 75±3Hz to induce a sustained tetanizing muscular contraction. The lowest concentration at which each antinicotinic agent produced fade without modifying initial tetanic tension (presynaptic action) was determined. 3. d-Tubocurarine-induced fade occurred only at 55 nmol/L, a concentration that also reduced maximal tetanic tension (post-synaptic action). At 10 nmol/L, ZM 241385 alone did not produce fade, but it did attenuate pancuronium (0.32 μmol/L)-, cisatracurium (0.32 μmol/L)- and vecuronium (0.36 μmol/L)-induced fade. 4. The fade induced by the 'pure' antinicotinic agents d-tubocurarine (55 nmol/L) and hexamethonium (413 μmol/L) was not altered by 10 nmol/L ZM 241385, indicating that presynaptic adenosine A2A receptors play a significant role in the fade produced by antinicotinic agents when such agents have anticholinesterase activity.

  18. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation

    PubMed Central

    Wen, Jiaming; Grenz, Almut; Zhang, Yujin; Dai, Yingbo; Kellems, Rodney E.; Blackburn, Michael R.; Eltzschig, Holger K.; Xia, Yang

    2011-01-01

    Normal penile erection is under the control of multiple factors and signaling pathways. Although adenosine signaling is implicated in normal and abnormal penile erection, the exact role and the underlying mechanism for adenosine signaling in penile physiology remain elusive. Here we report that shear stress leads to increased adenosine release from endothelial cells. Subsequently, we determined that ecto-5′-nucleotidase (CD73) is a key enzyme required for the production of elevated adenosine from ATP released by shear-stressed endothelial cells. Mechanistically, we demonstrate that shear stress-mediated elevated adenosine functions through the adenosine A2B receptor (A2BR) to activate the PI3K/AKT signaling cascade and subsequent increased endothelial nitric oxide synthase (eNOS) phosphorylation. These in vitro studies led us to discover further that adenosine was induced during sustained penile erection and contributes to PI3K/AKT activation and subsequent eNOS phosphorylation via A2BR signaling in intact animal. Finally, we demonstrate that lowering adenosine in wild-type mice or genetic deletion of A2BR in mutant mice significantly attenuated PI3K/AKT activation, eNOS phosphorylation, and subsequent impaired penile erection featured with the reduction of ratio of maximal intracavernosal pressure to systemic arterial pressure from 0.49 ± 0.03 to 0.41 ± 0.05 and 0.38 ± 0.04, respectively (both P<0.05). Overall, using biochemical, cellular, genetic, and physiological approaches, our findings reveal that adenosine is a novel molecule signaling via A2BR activation, contributing to penile erection via PI3K/AKT-dependent eNOS activation. These studies suggest that this signaling pathway may be a novel therapeutic target for erectile disorders.—Wen, J., Grenz, A., Zhang, Y., Dai, Y., Kellems, R. E., Blackburn, M. R., Eltzschig, H. K., Xia, Y. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation. PMID

  19. Cross-talk between glucagon- and adenosine-mediated signalling systems in rat hepatocytes: effects on cyclic AMP-phosphodiesterase activity.

    PubMed Central

    Robles-Flores, M; Allende, G; Piña, E; García-Sáinz, J A

    1995-01-01

    The effect of adenosine analogues on glucagon-stimulated cyclic AMP accumulation in rat hepatocytes was explored. N6-Cyclopentyladenosine (CPA), 5'-N-ethylcarboxamidoadenosine and N6-(R-phenylisopropyl)adenosine inhibited in a dose-dependent manner the cyclic AMP accumulation induced by glucagon. This effect seems to be mediated through A1 adenosine receptors. Pertussis toxin completely abolished the effect of CPA on glucagon-stimulated cyclic AMP accumulation in whole cells which suggested that a pertussis-toxin-sensitive G-protein was involved. On the other hand, this action of adenosine analogues on glucagon-induced cyclic AMP accumulation was reverted by the selective low-Km cyclic AMP-phosphodiesterase inhibitor Ro 20-1724. Analysis of cyclic AMP-phosphodiesterase activity in purified hepatocyte plasma membranes showed that glucagon in the presence of GTP inhibited basal PDE activity by 45% and that CPA reverted this inhibition in dose-dependent manner. In membranes derived from pertussis-toxin-treated rats, we observed no inhibition of cyclic AMP-phosphodiesterase activity by glucagon in the absence or presence of CPA. Our results indicate that in hepatocyte plasma membranes, stimulation of adenylate cyclase activity and inhibition of a low-Km cyclic AMP phosphodiesterase activity are co-ordinately regulated by glucagon, and that A1 adenosine receptors can inhibit glucagon-stimulated cyclic AMP accumulation by blocking glucagon's effect on phosphodiesterase activity. Images Figure 2 PMID:8554517

  20. Effects of Alkaline Phosphatase Activity on Nucleotide Measurements in Aquatic Microbial Communities †

    PubMed Central

    Karl, D. M.; Craven, D. B.

    1980-01-01

    Alkaline phosphatase (APase) activity was detected in aquatic microbial assemblages from the subtropics to Antarctica. The occurrence of APase in environmental nucleotide extracts was shown to significantly affect the measured concentrations of cellular nucleotides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, guanosine triphosphate, uridine triphosphate, and cytidine triphosphate), adenylate energy charge, and guanosine triphosphate/adenosine triphosphate ratios, when conventional methods of nucleotide extraction were employed. Under the reaction conditions specified in this report, the initial rate of hydrolysis of adenosine triphosphate was directly proportional to the activity of APase in the sample extracts and consequently can be used as a sensitive measure of APase activity. A method was devised for obtaining reliable nucleotide measurements in naturally occurring microbial populations containing elevated levels of APase activity. The metabolic significance of APase activity in microbial cells is discussed, and it is concluded that the occurrence and regulation of APase in nature is dependent upon microscale inorganic phosphate limitation of the autochthonous microbial communities. PMID:16345634

  1. Hyperglycemia alters E-NTPDases, ecto-5'-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Siebel, Anna Maria; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2016-06-01

    Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5'-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment.

  2. Hyperglycemia alters E-NTPDases, ecto-5'-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Siebel, Anna Maria; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2016-06-01

    Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5'-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment. PMID:26769247

  3. RNA initiation with dinucleoside monophosphates during transcription of bacteriophage T4 DNA with RNA polymerase of Escherichia coli.

    PubMed

    Hoffman, D J; Niyogi, S K

    1973-02-01

    The effects of dinucleoside monophosphates on the transcription of phage T4 DNA by E. coli RNA polymerase have been examined at various concentrations of the sigma subunit and extremely low concentration of ribonucleoside triphosphate. The following conclusions were reached: (i) Labeled specific dinucleoside monophosphates are incorporated as chain initiators. (ii) When the ratio of sigma factor to core enzyme is small, there is a general stimulation by most 5'-guanosyl dinucleoside monophosphates. (iii) When the ratio is increased or holoenzyme is present, ApU, CpA, UpA, and GpU are the most effective stimulators. (iv) At high concentrations of sigma factor, only certain adenosine-containing dinucleoside monophosphates (ApU, CpA, UpA, and ApA) stimulate the reaction. (v) Competition hybridization studies indicate that the RNAs stimulated by dinucleoside monophosphates (ApU, CpA, UpA, and GpU) are of the T4 "early" type. (vi) Studies involving both combinations of stimulatory dinucleoside monophosphates and competitive effects of these compounds on chain initiation by ATP and GTP suggest that the stimulatory dinucleoside monophosphates act as chain initiators and may recognize part of a continuous sequence in a promoter region. Studies based on the incorporation of (3)H-labeled stimulatory dinucleoside monophosphates support the above conclusions.

  4. Trypanocidal activity of 8-methyl-5'-{[(Z)-4-aminobut-2-enyl]-(methylamino)}adenosine (Genz-644131), an adenosylmethionine decarboxylase inhibitor.

    PubMed

    Bacchi, Cyrus J; Barker, Robert H; Rodriguez, Aixa; Hirth, Bradford; Rattendi, Donna; Yarlett, Nigel; Hendrick, Clifford L; Sybertz, Edmund

    2009-08-01

    Genzyme 644131, 8-methyl-5'-{[(Z)-4-aminobut-2-enyl](methylamino)}adenosine, is an analog of the enzyme activated S-adenosylmethionine decarboxylase (AdoMetDC) inhibitor and the trypanocidal agent MDL-7381, 5-{[(Z)-4-aminobut-2-enyl](methylamino)}adenosine. The analog differs from the parent in having an 8-methyl group on the purine ring that bestows favorable pharmacokinetic, biochemical, and trypanocidal activities. The compound was curative in acute Trypanosoma brucei brucei and drug-resistant Trypanosoma brucei rhodesiense model infections, with single-dose activity in the 1- to 5-mg/kg/day daily dose range for 4 days against T. brucei brucei and 25- to 50-mg/kg twice-daily dosing against T. brucei rhodesiense infections. The compound was not curative in the TREU 667 central nervous system model infection but cleared blood parasitemia and extended time to recrudescence in several groups. This study shows that AdoMetDC remains an attractive chemotherapeutic target in African trypanosomes and that chemical changes in AdoMetDC inhibitors can produce more favorable drug characteristics than the lead compound.

  5. Syzygium cumini extract decrease adenosine deaminase, 5'nucleotidase activities and oxidative damage in platelets of diabetic patients.

    PubMed

    De Bona, Karine S; Bellé, Luziane P; Sari, Marcel H; Thomé, Gustavo; Schetinger, Maria R C; Morsch, Vera M; Boligon, Aline; Athayde, Margareth L; Pigatto, Aline S; Moretto, Maria B

    2010-01-01

    Diabetes mellitus, a chronic metabolic disorder, has assumed epidemic proportions and its long-term complications can have devastating consequences. The oxidative stress in diabetes was greatly increased due to prolonged exposure to hyperglycemia and impairment of oxidant/antioxidant equilibrium. Syzygium cumini is being widely used to treat diabetes by the traditional practitioners over many centuries. Adenosine deaminase (ADA) and 5'-Nucleotidase (5'NT) are enzymes of purine nucleoside metabolism that play an important role in the regulation of adenosine (Ado) levels. In this study, we investigated the effect of Syzygium cumini aqueous leaves extract (ASc) on ADA and 5'NT activities and on parameters of oxidative stress under in vitro conditions, using platelets of patients with Type 2 diabetes mellitus. Platelet-Rich Plasma (PRP) was assayed by ADA, 5'NT, Catalase (CAT), Superoxide Dismutase (SOD) activities and Thiobarbituric acid reactive substances (TBARS) levels. We observed that ADA, 5'NT activities and TBARS levels were significantly higher when compared to the control group, and ASc (100 and 200 μg/mL) prevented these effects. Our study demonstrates that ASc was able to remove oxidant species generated in diabetic conditions and modulates in the Ado levels. Then, ASc may promote a compensatory response in platelet function, improving the susceptibility-induced by the diabetes mellitus. PMID:21063110

  6. Peripheral Adenosine A3 Receptor Activation Causes Regulated Hypothermia in Mice That Is Dependent on Central Histamine H1 Receptors

    PubMed Central

    Carlin, Jesse Lea; Tosh, Dilip K.; Xiao, Cuiying; Piñol, Ramón A.; Chen, Zhoumou; Salvemini, Daniela; Gavrilova, Oksana; Jacobson, Kenneth A.

    2016-01-01

    Adenosine can induce hypothermia, as previously demonstrated for adenosine A1 receptor (A1AR) agonists. Here we use the potent, specific A3AR agonists MRS5698, MRS5841, and MRS5980 to show that adenosine also induces hypothermia via the A3AR. The hypothermic effect of A3AR agonists is independent of A1AR activation, as the effect was fully intact in mice lacking A1AR but abolished in mice lacking A3AR. A3AR agonist–induced hypothermia was attenuated by mast cell granule depletion, demonstrating that the A3AR hypothermia is mediated, at least in part, via mast cells. Central agonist dosing had no clear hypothermic effect, whereas peripheral dosing of a non–brain-penetrant agonist caused hypothermia, suggesting that peripheral A3AR-expressing cells drive the hypothermia. Mast cells release histamine, and blocking central histamine H1 (but not H2 or H4) receptors prevented the hypothermia. The hypothermia was preceded by hypometabolism and mice with hypothermia preferred a cooler environmental temperature, demonstrating that the hypothermic state is a coordinated physiologic response with a reduced body temperature set point. Importantly, hypothermia is not required for the analgesic effects of A3AR agonists, which occur with lower agonist doses. These results support a mechanistic model for hypothermia in which A3AR agonists act on peripheral mast cells, causing histamine release, which stimulates central histamine H1 receptors to induce hypothermia. This mechanism suggests that A3AR agonists will probably not be useful for clinical induction of hypothermia. PMID:26606937

  7. Adenosine diphosphate restricts the protein remodeling activity of the Hsp104 chaperone to Hsp70 assisted disaggregation

    PubMed Central

    Kłosowska, Agnieszka; Chamera, Tomasz; Liberek, Krzysztof

    2016-01-01

    Hsp104 disaggregase provides thermotolerance in yeast by recovering proteins from aggregates in cooperation with the Hsp70 chaperone. Protein disaggregation involves polypeptide extraction from aggregates and its translocation through the central channel of the Hsp104 hexamer. This process relies on adenosine triphosphate (ATP) hydrolysis. Considering that Hsp104 is characterized by low affinity towards ATP and is strongly inhibited by adenosine diphosphate (ADP), we asked how Hsp104 functions at the physiological levels of adenine nucleotides. We demonstrate that physiological levels of ADP highly limit Hsp104 activity. This inhibition, however, is moderated by the Hsp70 chaperone, which allows efficient disaggregation by supporting Hsp104 binding to aggregates but not to non-aggregated, disordered protein substrates. Our results point to an additional level of Hsp104 regulation by Hsp70, which restricts the potentially toxic protein unfolding activity of Hsp104 to the disaggregation process, providing the yeast protein-recovery system with substrate specificity and efficiency in ATP consumption. DOI: http://dx.doi.org/10.7554/eLife.15159.001 PMID:27223323

  8. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes.

    PubMed

    Molina, Cristina E; Llach, Anna; Herraiz-Martínez, Adela; Tarifa, Carmen; Barriga, Montserrat; Wiegerinck, Rob F; Fernandes, Jacqueline; Cabello, Nuria; Vallmitjana, Alex; Benitéz, Raúl; Montiel, José; Cinca, Juan; Hove-Madsen, Leif

    2016-01-01

    Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.

  9. Application of ADA1 as a new marker enzyme in sandwich ELISA to study the effect of adenosine on activated monocytes

    PubMed Central

    Liu, Chengqian; Skaldin, Maksym; Wu, Chengxiang; Lu, Yuanan; Zavialov, Andrey V.

    2016-01-01

    Enzyme-linked immunosorbent assay (ELISA) is a valuable technique to detect antigens in biological fluids. Horse radish peroxidase (HRP) is one of the most common enzymes used for signal amplification in ELISA. Despite new advances in technology, such as a large-scale production of recombinant enzymes and availability of new detection systems, limited research is devoted to finding alternative enzymes and their substrates to amplify the ELISA signals. Here, HRP-avidin was substituted with the human adenosine deaminase (hADA1)-streptavidin complex and adenosine as a detection system in commercial ELISA kits. The hADA1 ELISA was successfully used to demonstrate that adenosine, bound to A1 and A3 adenosine receptors, increases cytokine secretion by LPS activated monocytes. We show that hADA1-based ELISA has the same sensitivity, and also provides identical results, as HRP ELISA. In addition, the sensitivity of hADA1-based ELISA could be easily adjusted by changing the adenosine concentration and the incubation time. Therefore, hADA1 could be used as a detection enzyme with any commercial ELISA kit with a wide range of concentration of antigens. PMID:27510152

  10. Application of ADA1 as a new marker enzyme in sandwich ELISA to study the effect of adenosine on activated monocytes.

    PubMed

    Liu, Chengqian; Skaldin, Maksym; Wu, Chengxiang; Lu, Yuanan; Zavialov, Andrey V

    2016-01-01

    Enzyme-linked immunosorbent assay (ELISA) is a valuable technique to detect antigens in biological fluids. Horse radish peroxidase (HRP) is one of the most common enzymes used for signal amplification in ELISA. Despite new advances in technology, such as a large-scale production of recombinant enzymes and availability of new detection systems, limited research is devoted to finding alternative enzymes and their substrates to amplify the ELISA signals. Here, HRP-avidin was substituted with the human adenosine deaminase (hADA1)-streptavidin complex and adenosine as a detection system in commercial ELISA kits. The hADA1 ELISA was successfully used to demonstrate that adenosine, bound to A1 and A3 adenosine receptors, increases cytokine secretion by LPS activated monocytes. We show that hADA1-based ELISA has the same sensitivity, and also provides identical results, as HRP ELISA. In addition, the sensitivity of hADA1-based ELISA could be easily adjusted by changing the adenosine concentration and the incubation time. Therefore, hADA1 could be used as a detection enzyme with any commercial ELISA kit with a wide range of concentration of antigens. PMID:27510152

  11. Activation of adenosine receptor potentiates the anticonvulsant effect of phenytoin against amygdala kindled seizures.

    PubMed

    Sun, Zhen; Zhong, Xiao-Ling; Zong, Yu; Wu, Zhong-Chen; Zhang, Qun; Yu, Jin-Tai; Tan, Lan

    2015-01-01

    Drug resistance in epilepsy is considered as a complicated and multifactorial problem. Poor penetration of antiepileptic drugs (AEDs) across blood-brain barrier (BBB) into the brain, which results in insufficient level of the drugs at the targeted brain region, has been discussed as one mechanism contributing to pharmacoresistance of epilepsies. Therefore, modulating permeability of BBB is the effective treatment strategy since it facilitates the entry of AEDs into the central nervous system (CNS). Recently, signaling through receptors for the adenosine has been identified as a potent modulator of BBB permeability. This paper aimed to investigate the effects of auxiliary application of adenosine receptor (AR) agonist on amygdala-kindled seizures in adult male Wistar rats. When fully kindled seizures were achieved by daily electrical stimulation of the amygdala, rats were randomly divided into three groups: control, phenytoin, and phenytoin (PHT)+5'-N-ethylcarboxamidoadenosine (NECA) groups. NECA (0.08 mg/kg, i.v.) was applied to the PHT+NECA group after the administration of PHT (75 mg/kg, i.p. on the first day; 50mg/kg, i.p. on the following 9 days). Intravenous infusion of NECA resulted in a significant increase in brain PHT levels as compared with the PHT treatment alone. On the other hand, the auxiliary application of NECA dramatically decreased the frequency of generalized seizures and seizure stage, shortened duration of afterdischarge and generalized seizures, as well as the elevated the afterdischarge threshold and generalized seizures threshold. Our study demonstrated that auxiliary application of AR agonist enhanced brain antiepileptic drug levels and strengthened the anticonvulsant properties of PHT against amygdala kindled seizures.

  12. Inhibition of Platelet Activation and Thrombus Formation by Adenosine and Inosine: Studies on Their Relative Contribution and Molecular Modeling

    PubMed Central

    Fuentes, Eduardo; Pereira, Jaime; Mezzano, Diego; Alarcón, Marcelo; Caballero, Julio; Palomo, Iván

    2014-01-01

    Background The inhibitory effect of adenosine on platelet aggregation is abrogated after the addition of adenosine-deaminase. Inosine is a naturally occurring nucleoside degraded from adenosine. Objectives The mechanisms of antiplatelet action of adenosine and inosine in vitro and in vivo, and their differential biological effects by molecular modeling were investigated. Results Adenosine (0.5, 1 and 2 mmol/L) inhibited phosphatidylserine exposure from 52±4% in the control group to 44±4 (p<0.05), 29±2 (p<0.01) and 20±3% (p<0.001). P-selectin expression in the presence of adenosine 0.5, 1 and 2 mmol/L was inhibited from 32±4 to 27±2 (p<0.05), 14±3 (p<0.01) and 9±3% (p<0.001), respectively. At the concentrations tested, only inosine to 4 mmol/L had effect on platelet P-selectin expression (p<0.05). Adenosine and inosine inhibited platelet aggregation and ATP release stimulated by ADP and collagen. Adenosine and inosine reduced collagen-induced platelet adhesion and aggregate formation under flow. At the same concentrations adenosine inhibited platelet aggregation, decreased the levels of sCD40L and increased intraplatelet cAMP. In addition, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent adenosine receptor A2A antagonist) attenuated the effect of adenosine on platelet aggregation induced by ADP and intraplatelet level of cAMP. Adenosine and inosine significantly inhibited thrombosis formation in vivo (62±2% occlusion at 60 min [n = 6, p<0.01] and 72±1.9% occlusion at 60 min, [n = 6, p<0.05], respectively) compared with the control (98±2% occlusion at 60 min, n = 6). A2A is the adenosine receptor present in platelets; it is known that inosine is not an A2A ligand. Docking of adenosine and inosine inside A2A showed that the main difference is the formation by adenosine of an additional hydrogen bond between the NH2 of the adenine group and the residues Asn253 in H6 and Glu169 in EL2 of the A2A receptor. Conclusion Therefore

  13. Adenosine receptors as drug targets — what are the challenges?

    PubMed Central

    Chen, Jiang-Fan; Eltzschig, Holger K.; Fredholm, Bertil B.

    2014-01-01

    Adenosine signalling has long been a target for drug development, with adenosine itself or its derivatives being used clinically since the 1940s. In addition, methylxanthines such as caffeine have profound biological effects as antagonists at adenosine receptors. Moreover, drugs such as dipyridamole and methotrexate act by enhancing the activation of adenosine receptors. There is strong evidence that adenosine has a functional role in many diseases, and several pharmacological compounds specifically targeting individual adenosine receptors — either directly or indirectly — have now entered the clinic. However, only one adenosine receptor-specific agent — the adenosine A2A receptor agonist regadenoson (Lexiscan; Astellas Pharma) — has so far gained approval from the US Food and Drug Administration (FDA). Here, we focus on the biology of adenosine signalling to identify hurdles in the development of additional pharmacological compounds targeting adenosine receptors and discuss strategies to overcome these challenges. PMID:23535933

  14. Alterations in the cholinesterase and adenosine deaminase activities and inflammation biomarker levels in patients with multiple sclerosis.

    PubMed

    Polachini, C R N; Spanevello, R M; Casali, E A; Zanini, D; Pereira, L B; Martins, C C; Baldissareli, J; Cardoso, A M; Duarte, M F; da Costa, P; Prado, A L C; Schetinger, M R C; Morsch, V M

    2014-04-25

    Multiple sclerosis (MS) is one of the main chronic inflammatory diseases of the CNS that cause functional disability in young adults. It has unknown etiology characterized by the infiltration of lymphocytes and macrophages into the brain. The aim of this study was to evaluate the acetylcholinesterase (AChE) activity in lymphocytes and whole blood, as well as butyrylcholinesterase (BChE) and adenosine deaminase (ADA) activities in serum. We also checked the levels of nucleotides, nucleosides, biomarkers of inflammation such as cytokines (interleukin (IL)-1, IL-6, interferon (IFN)-γ, tumor necrosis factor-alpha (TNF-α) and IL-10) and C-reactive protein (CRP) in serum from 29 patients with the relapsing-remitting form of MS (RRMS) and 29 healthy subjects as the control group. Results showed that AChE in lymphocytes and whole blood as well as BChE, and ADA activities in serum were significantly increased in RRMS patients when compared to the control group (P<0.05). In addition, we observed a decrease in ATP levels and a significant increase in the levels of ADP, AMP, adenosine and inosine in serum from RRMS patients in relation to the healthy subjects (P<0.05). Results also demonstrated an increase in the IFN-γ, TNF-α, IL-1, IL-6 and CRP (P<0.05) and a significant decrease in the IL-10 (P<0.0001) in RRMS patients when compared to control. Our results suggest that alterations in the biomarkers of inflammation and hydrolysis of nucleotides and nucleosides may contribute to the understanding of the neurological dysfunction of RRMS patients.

  15. Transfected adenosine A1 receptor-mediated modulation of thrombin-stimulated phospholipase C and phospholipase A2 activity in CHO cells.

    PubMed

    Dickenson, J M; Hill, S J

    1997-02-19

    Thrombin receptor activation in Chinese hamster ovary (CHO) cells stimulates the hydrolysis of inositol phospholipids and the release of arachidonic acid. Our previous studies have shown that activation of the human transfected adenosine A1 receptor in CHO cells (CHO-A1) potentiates the accumulation of inositol phosphates elicited by endogenous P2U purinoceptors and CCKA receptors. In this study we have investigated whether adenosine A1 receptor activation can modulate thrombin-stimulated arachidonic acid release and/or inositol phospholipid hydrolysis in CHO-A1 cells. Thrombin stimulated [3H]arachidonic acid release and total [3H]inositol phosphate accumulation in CHO-A1 cells. Both these responses to thrombin were were insensitive to pertussis toxin. The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), potentiated thrombin-stimulated [3H]arachidonic acid. In marked contrast, PMA inhibited thrombin-stimulated [3H]inositol phosphate accumulation. The selective protein kinase C inhibitor Ro 31-8220 (3-¿1-[3-(2-isothioureido)propyl] indol-3-yl¿-4-(1-methylindol-3-yl)-3-pyrrolin-2,5-dione) had no effect on thrombin-stimulated [3H]arachidonic acid release but reversed the potentiation of thrombin-stimulated [3H]arachidonic acid release elicited by PMA. The selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) augmented the release of [3H]arachidonic acid produced by thrombin. Co-activation of the adenosine A1 receptor also potentiated thrombin-stimulated [3H]inositol phosphate accumulation. The synergistic interactions between the adenosine A1 receptor and thrombin were abolished in pertussis-toxin-treated cells. The potentiation of [3H]arachidonic acid release by CPA was blocked by the protein kinase C inhibitors Ro 31-8220 and GF 109203X (3-[1-[3-(dimethylamino)propyl]-1 H-indol-3-yl]-4-(1 H-indol-3-yl)- 1H-pyrrole-2,5-dione). In conclusion, thrombin receptor activation in CHO-A1 cells stimulates the accumulation of [3H

  16. Adenosine and Sleep

    PubMed Central

    Bjorness, Theresa E; Greene, Robert W

    2009-01-01

    Over the last several decades the idea that adenosine (Ado) plays a role in sleep control was postulated due in large part to pharmacological studies that showed the ability of Ado agonists to induce sleep and Ado antagonists to decrease sleep. A second wave of research involving in vitro cellular analytic approaches and subsequently, the use of neurochemical tools such as microdialysis, identified a population of cells within the brainstem and basal forebrain arousal centers, with activity that is both tightly coupled to thalamocortical activation and under tonic inhibitory control by Ado. Most recently, genetic tools have been used to show that Ado receptors regulate a key aspect of sleep, the slow wave activity expressed during slow wave sleep. This review will briefly introduce some of the phenomenology of sleep and then summarize the effect of Ado levels on sleep, the effect of sleep on Ado levels, and recent experiments using mutant mouse models to characterize the role for Ado in sleep control and end with a discussion of which Ado receptors are involved in such control. When taken together, these various experiments suggest that while Ado does play a role in sleep control, it is a specific role with specific functional implications and it is one of many neurotransmitters and neuromodulators affecting the complex behavior of sleep. Finally, since the majority of adenosine-related experiments in the sleep field have focused on SWS, this review will focus largely on SWS; however, the role of adenosine in REM sleep behavior will be addressed. PMID:20190965

  17. Adenosine-Associated Delivery Systems

    PubMed Central

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  18. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons

    PubMed Central

    Hawryluk, J. M.; Ferrari, L. L.; Keating, S. A.

    2012-01-01

    Adenosine has been proposed as an endogenous homeostatic sleep factor that accumulates during waking and inhibits wake-active neurons to promote sleep. It has been specifically hypothesized that adenosine decreases wakefulness and promotes sleep recovery by directly inhibiting wake-active neurons of the basal forebrain (BF), particularly BF cholinergic neurons. We previously showed that adenosine directly inhibits BF cholinergic neurons. Here, we investigated 1) how adenosine modulates glutamatergic input to BF cholinergic neurons and 2) how adenosine uptake and adenosine metabolism are involved in regulating extracellular levels of adenosine. Our experiments were conducted using whole cell patch-clamp recordings in mouse brain slices. We found that in BF cholinergic neurons, adenosine reduced the amplitude of AMPA-mediated evoked glutamatergic excitatory postsynaptic currents (EPSCs) and decreased the frequency of spontaneous and miniature EPSCs through presynaptic A1 receptors. Thus we have demonstrated that in addition to directly inhibiting BF cholinergic neurons, adenosine depresses excitatory inputs to these neurons. It is therefore possible that both direct and indirect inhibition may synergistically contribute to the sleep-promoting effects of adenosine in the BF. We also found that blocking the influx of adenosine through the equilibrative nucleoside transporters or inhibiting adenosine kinase and adenosine deaminase increased endogenous adenosine inhibitory tone, suggesting a possible mechanism through which adenosine extracellular levels in the basal forebrain are regulated. PMID:22357797

  19. Axonal elongation and dendritic branching is enhanced by adenosine A2A receptors activation in cerebral cortical neurons.

    PubMed

    Ribeiro, Filipa F; Neves-Tomé, Raquel; Assaife-Lopes, Natália; Santos, Telma E; Silva, Rui F M; Brites, Dora; Ribeiro, Joaquim A; Sousa, Mónica M; Sebastião, Ana M

    2016-06-01

    Axon growth and dendrite development are key processes for the establishment of a functional neuronal network. Adenosine, which is released by neurons and glia, is a known modulator of synaptic transmission but its influence over neuronal growth has been much less investigated. We now explored the action of adenosine A2A receptors (A2AR) upon neurite outgrowth, discriminating actions over the axon or dendrites, and the mechanisms involved. Morphometric analysis of primary cultures of cortical neurons from E18 Sprague-Dawley rats demonstrated that an A2AR agonist, CGS 21680, enhances axonal elongation and dendritic branching, being the former prevented by inhibitors of phosphoinositide 3-kinase, mitogen-activated protein kinase and phospholipase C, but not of protein kinase A. By testing the influence of a scavenger of BDNF (brain-derived neurotrophic factor) over the action of the A2AR agonist and the action of a selective A2AR antagonist over the action of BDNF, we could conclude that while the action of A2ARs upon dendritic branching is dependent on the presence of endogenous BDNF, the influence of A2ARs upon axonal elongation is independent of endogenous BDNF. In consonance with the action over axonal elongation, A2AR activation promoted a decrease in microtubule stability and an increase in microtubule growth speed in axonal growth cones. In conclusion, we disclose a facilitatory action of A2ARs upon axonal elongation and microtubule dynamics, providing new insights for A2ARs regulation of neuronal differentiation and axonal regeneration.

  20. Evidence for the Calvin cycle and hexose monophosphate pathway in Thiobacillus ferrooxidans.

    PubMed

    Gale, N L; Beck, J V

    1967-10-01

    The enzymes of the Calvin reductive pentose phosphate cycle and the hexose monophosphate pathway have been demonstrated in cell-free extracts of Thiobacillus ferrooxidans. This, together with analyses of the products of CO(2) fixation in cell-free systems, suggests that these pathways are operative in whole cells of this microorganism. Nevertheless, the amount of CO(2) fixed in these cell-free systems was limited by the type and amount of compound added as substrate. The inability of cell extracts to regenerate pentose phosphates and to perpetuate the cyclic fixation of CO(2) is partially attributable to low activity of triose phosphate dehydrogenase under the experimental conditions found to be optimal for the enzymes involved in the utilization of ribose-5-phosphate or ribulose-1,5-diphosphate as substrate for CO(2) incorporation. With the exception of ribulose-1,5-diphosphate, all substrates required the addition of adenosine triphosphate (ATP) or adenosine diphosphate (ADP) for CO(2) fixation. Under optimal conditions, with ribose-5-phosphate serving as substrate, each micromole of ATP added resulted in the fixation of 1.5 mumoles of CO(2), whereas each micromole of ADP resulted in 0.5 mumole of CO(2) fixed. These values reflect the activity of adenylate kinase in the extract preparations. The K(m) for ATP in the phosphoribulokinase reaction was 0.91 x 10(-3)m. Kinetic studies conducted with carboxydismutase showed K(m) values of 1.15 x 10(-4)m and 5 x 10(-2)m for ribulose-1,5-diphosphate and bicarbonate, respectively.

  1. Activation of adenosine A1 receptors reduces anxiety-like behavior during acute ethanol withdrawal (hangover) in mice.

    PubMed

    Prediger, Rui D S; da Silva, George E; Batista, Luciano C; Bittencourt, Alvorita L; Takahashi, Reinaldo N

    2006-10-01

    Elevated signs of anxiety are observed in both humans and rodents during withdrawal from chronic as well as acute ethanol exposure, and it represents an important motivational factor for ethanol relapse. Several reports have suggested the involvement of brain adenosine receptors in different actions produced by ethanol such as motor incoordination and hypnotic effects. In addition, we have recently demonstrated that adenosine A1 receptors modulate the anxiolytic-like effect induced by ethanol in mice. In the present study, we evaluated the potential of adenosine A1 and A2A receptor agonists in reducing the anxiety-like behavior during acute ethanol withdrawal (hangover) in mice. Animals received a single intraperitoneal administration of saline or ethanol (4 g/kg) and were tested in the elevated plus maze after an interval of 0.5-24 h. The results indicated that hangover-induced anxiety was most pronounced between 12 and 18 h after ethanol administration, as indicated by a significant reduction in the exploration of the open arms of the maze. At this time interval, ethanol was completely cleared. The acute administration of 'nonanxiolytic' doses of adenosine and the selective adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA), but not the adenosine A2A receptor agonist N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine (DPMA), at the onset of peak withdrawal (18 h), reduced this anxiogenic-like response. In addition, the effect of CCPA on the anxiety-like behavior of ethanol hangover was reversed by pretreatment with the selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). These results reinforce the notion of the involvement of adenosine receptors in the anxiety-like responses and indicate the potential of adenosine A1 receptor agonists to reduce the anxiogenic effects during ethanol withdrawal.

  2. Structure-Activity Analysis of Biased Agonism at the Human Adenosine A3 Receptor

    PubMed Central

    Baltos, Jo-Anne; Paoletta, Silvia; Nguyen, Anh T. N.; Gregory, Karen J.; Tosh, Dilip K.; Christopoulos, Arthur; Jacobson, Kenneth A.

    2016-01-01

    Biased agonism at G protein–coupled receptors (GPCRs) has significant implications for current drug discovery, but molecular determinants that govern ligand bias remain largely unknown. The adenosine A3 GPCR (A3AR) is a potential therapeutic target for various conditions, including cancer, inflammation, and ischemia, but for which biased agonism remains largely unexplored. We now report the generation of bias “fingerprints” for prototypical ribose containing A3AR agonists and rigidified (N)-methanocarba 5′-N-methyluronamide nucleoside derivatives with regard to their ability to mediate different signaling pathways. Relative to the reference prototypical agonist IB-MECA, (N)-methanocarba 5′-N-methyluronamide nucleoside derivatives with significant N6 or C2 modifications, including elongated aryl-ethynyl groups, exhibited biased agonism. Significant positive correlation was observed between the C2 substituent length (in Å) and bias toward cell survival. Molecular modeling suggests that extended C2 substituents on (N)-methanocarba 5′-N-methyluronamide nucleosides promote a progressive outward shift of the A3AR transmembrane domain 2, which may contribute to the subset of A3AR conformations stabilized on biased agonist binding. PMID:27136943

  3. Inosine induces presynaptic inhibition of acetylcholine release by activation of A3 adenosine receptors at the mouse neuromuscular junction

    PubMed Central

    Cinalli, A R; Guarracino, J F; Fernandez, V; Roquel, L I; Losavio, A S

    2013-01-01

    Background and Purpose The role of inosine at the mammalian neuromuscular junction (NMJ) has not been clearly defined. Moreover, inosine was classically considered to be the inactive metabolite of adenosine. Hence, we investigated the effect of inosine on spontaneous and evoked ACh release, the mechanism underlying its modulatory action and the receptor type and signal transduction pathway involved. Experimental Approach End-plate potentials (EPPs) and miniature end-plate potentials (MEPPs) were recorded from the mouse phrenic-nerve diaphragm preparations using conventional intracellular electrophysiological techniques. Key Results Inosine (100 μM) reduced MEPP frequency and the amplitude and quantal content of EPPs; effects inhibited by the selective A3 receptor antagonist MRS-1191. Immunohistochemical assays confirmed the presence of A3 receptors at mammalian NMJ. The voltage-gated calcium channel (VGCC) blocker Cd2+, the removal of extracellular Ca2+ and the L-type and P/Q-type VGCC antagonists, nitrendipine and ω-agatoxin IVA, respectively, all prevented inosine-induced inhibition. In the absence of endogenous adenosine, inosine decreased the hypertonic response. The effects of inosine on ACh release were prevented by the Gi/o protein inhibitor N-ethylmaleimide, PKC antagonist chelerytrine and calmodulin antagonist W-7, but not by PKA antagonists, H-89 and KT-5720, or the inhibitor of CaMKII KN-62. Conclusion and Implications Our results suggest that, at motor nerve terminals, inosine induces presynaptic inhibition of spontaneous and evoked ACh release by activating A3 receptors through a mechanism that involves L-type and P/Q-type VGCCs and the secretory machinery downstream of calcium influx. A3 receptors appear to be coupled to Gi/o protein. PKC and calmodulin may be involved in these effects of inosine. PMID:23731236

  4. Human Mitochondrial Hsp70 (Mortalin): Shedding Light on ATPase Activity, Interaction with Adenosine Nucleotides, Solution Structure and Domain Organization

    PubMed Central

    Dores-Silva, Paulo R.; Barbosa, Leandro R. S.; Ramos, Carlos H. I.; Borges, Júlio C.

    2015-01-01

    The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mitochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The in vivo deregulation of mortalin expression and/or function has been correlated with age-related diseases and certain cancers due to its interaction with the p53 protein. In spite of its critical biological roles, structural and functional studies on mortalin are limited by its insoluble recombinant production. This study provides the first report of the production of folded and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein 1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented a slightly elongated shape and basal ATPase activity that is higher than that of its cytoplasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state. Through small angle X-ray scattering, we assessed the low-resolution structural model of monomeric mortalin that is characterized by an elongated shape. This model adequately accommodated high resolution structures of Hsp70 domains indicating its quality. We also observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally induced unfolding experiments indicated that mortalin is formed by at least two domains and that the transition is sensitive to the presence of adenosine nucleotides and that this process is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfolding assays of mortalin suggested the presence of an aggregation/association event, which was not observed for human Hsp70-1A, and this finding may explain its natural tendency for in vivo aggregation. Our study may contribute to the structural understanding of mortalin as well as to contribute for its recombinant production for antitumor compound screenings

  5. The effects of methylmercury on motor activity are sex- and age-dependent, and modulated by genetic deletion of adenosine receptors and caffeine administration.

    PubMed

    Björklund, Olga; Kahlström, Johan; Salmi, Peter; Ogren, Sven Ove; Vahter, Marie; Chen, Jiang-Fan; Fredholm, Bertil B; Daré, Elisabetta

    2007-11-30

    Adenosine and its receptors are, as part of the brain stress response, potential targets for neuroprotective drugs. We have investigated if the adenosine receptor system affects the developmental neurotoxicity caused by the fish pollutant methylmercury (MeHg). Behavioral outcomes of low dose perinatal MeHg exposure were studied in mice where the A(1) and A(2A) adenosine receptors were either partially blocked by caffeine treatment or eliminated by genetic modification (A(1)R and A(2A)R knock-out mice). From gestational day 7 to day 7 of lactation dams were administered doses that mimic human intake via normal diet, i.e. 1microM MeHg and/or 0.3g/l caffeine in the drinking water. This exposure to MeHg resulted in a doubling of brain Hg levels in wild type females and males at postnatal day 21 (PND21). Open field analysis was performed at PND21 and 2 months of age. MeHg caused time-dependent behavioral alterations preferentially in male mice. A decreased response to amphetamine in 2-month-old males pointed to disturbances in dopaminergic functions. Maternal caffeine intake induced long-lasting changes in the offspring evidenced by an increased motor activity and a modified response to psychostimulants in adult age, irrespectively of sex. Similar alterations were observed in A(1)R knock-out mice, suggesting that adenosine A(1) receptors are involved in the alterations triggered by caffeine exposure during development. Perinatal caffeine treatment and, to some extent, genetic elimination of adenosine A(1) receptors, attenuated the behavioral consequences of MeHg in males. Importantly, also deletion of the A(2A) adenosine receptor reduced the vulnerability to MeHg, consistent with the neuroprotective effects of adenosine A(2A) receptor inactivation observed in hypoxia and Parkinson's disease. Thus, the consequences of MeHg toxicity during gestation and lactation can be reduced by adenosine A(1) and A(2A) receptor inactivation, either via their genetic deletion or by

  6. An orally active adenosine A1 receptor antagonist, FK838, increases renal excretion and maintains glomerular filtration rate in furosemide-resistant rats

    PubMed Central

    Schnackenberg, Christine G; Merz, Emily; Brooks, David P

    2003-01-01

    Loop and thiazide diuretics are common therapeutic agents for the treatment of sodium retention and oedema. However, resistance to diuretics and decreases in renal function can develop during diuretic therapy. Adenosine causes renal vasoconstriction, sodium reabsorption, and participates in the tubuloglomerular feedback mechanism for the regulation of glomerular filtration rate.We tested the hypothesis that the selective adenosine A1 receptor antagonist FK838 is orally active and causes diuresis and natriuresis, but maintains glomerular filtration rate in normal rats or in rats with furosemide resistance.In normal male Sprague – Dawley rats, FK838 dose-dependently increased urine flow and sodium and chloride excretion while sparing potassium. In combination with furosemide, FK838 enhanced the diuretic and natriuretic actions of furosemide to the same extent as hydrochlorothiazide and did not increase the potassium loss in normal rats. In furosemide-resistant rats, FK838 increased urine flow and electrolyte excretion to a greater extent than hydrochlorothiazide. In addition, hydrochlorothiazide significantly decreased glomerular filtration rate, whereas FK838 maintained glomerular filtration rate in furosemide-resistant rats.This study shows that the adenosine A1 receptor antagonist FK838 is orally active and causes potent diuresis and natriuresis and maintains glomerular filtration rate in normal or furosemide-resistant rats. Adenosine A1 receptor antagonists may be novel therapeutics for the treatment of oedema in normal or otherwise diuretic-resistant patients. PMID:12922924

  7. Dietary Supplementation of Ginger and Turmeric Rhizomes Modulates Platelets Ectonucleotidase and Adenosine Deaminase Activities in Normotensive and Hypertensive Rats.

    PubMed

    Akinyemi, Ayodele Jacob; Thomé, Gustavo Roberto; Morsch, Vera Maria; Bottari, Nathieli B; Baldissarelli, Jucimara; de Oliveira, Lizielle Souza; Goularte, Jeferson Ferraz; Belló-Klein, Adriane; Oboh, Ganiyu; Schetinger, Maria Rosa Chitolina

    2016-07-01

    Hypertension is associated with platelet alterations that could contribute to the development of cardiovascular complications. Several studies have reported antiplatelet aggregation properties of ginger (Zingiber officinale) and turmeric (Curcuma longa) with limited scientific basis. Hence, this study assessed the effect of dietary supplementation of these rhizomes on platelet ectonucleotidase and adenosine deaminase (ADA) activities in Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Animals were divided into seven groups (n = 10): normotensive control rats; induced (l-NAME hypertensive) rats; hypertensive rats treated with atenolol (10 mg/kg/day); normotensive and hypertensive rats treated with 4% supplementation of turmeric or ginger, respectively. After 14 days of pre-treatment, the animals were induced with hypertension by oral administration of l-NAME (40 mg/kg/day). The results revealed a significant (p < 0.05) increase in platelet ADA activity and ATP hydrolysis with a concomitant decrease in ADP and AMP hydrolysis of l-NAME hypertensive rats when compared with the control. However, dietary supplementation with turmeric or ginger efficiently prevented these alterations by modulating the hydrolysis of ATP, ADP and AMP with a concomitant decrease in ADA activity. Thus, these activities could suggest some possible mechanism of the rhizomes against hypertension-derived complications associated to platelet hyperactivity. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27151061

  8. Serum activities of adenosine deaminase, dipeptidyl peptidase IV and prolyl endopeptidase in patients with fibromyalgia: diagnostic implications.

    PubMed

    Čulić, Ognjen; Cordero, Mario D; Žanić-Grubišić, Tihana; Somborac-Bačura, Anita; Pučar, Lara Batičić; Detel, Dijana; Varljen, Jadranka; Barišić, Karmela

    2016-10-01

    Fibromyalgia (FM) is a chronic pain syndrome with number of symptoms that present challenge in terms of diagnosis and treatment. Patients with FM show abnormal profile of purines in plasma. In this work, we measured serum activities of enzymes involved in purine metabolism, namely total adenosine deaminase (ADE) and its isoforms (ADE1 and ADE2), ecto-ATPase, and 5'-nucleotidase (5'-NT). We also measured activity of dipeptidyl peptidase IV (DPPIV) and prolyl endopeptidase (PEP). Spectrophotometric and fluorometric methods were used for enzyme activity determinations. Enzyme activities were measured in sera of 24 patients with FM that were not undergoing pharmacological treatment during the study. Control group comprised 32 healthy control subjects. Significantly higher activities of total ADE (P = 0.025) and ADE2 (P = 0.011) were observed in FM patients, while no significant differences in ADE1, ecto-ATPase, and 5'-NT activities (P > 0.05) were found when compared to healthy controls. Moreover, increase in the activity of DPPIV (P = 0.015) and lower activity of PEP (P = 0.011) were also found in the FM group. ROC analysis pointed to different diagnostic sensitivities/specificities for individual enzyme activities measured as follows: ADE (50.0/87.5), ADE2 (41.7/90.6), DPPIV (62.5/71.9), and PEP (83.3/62.5). ADE2 and PEP were shown to be independent predictors of FM, while combination of the two gives AUC of 0.786 (95 % confidence interval of 0.656-0.885, P < 0.05). Our results are showing that serum activities of ADE2 and PEP could be useful as biomarkers for FM diagnosis. However, relatively low diagnostic sensitivity of ADE2 and specificity of PEP must be taken into account.

  9. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2

    PubMed Central

    Peng, Shuang; Gerasimenko, Julia V.; Tsugorka, Tatiana; Gryshchenko, Oleksiy; Samarasinghe, Sujith; Gerasimenko, Oleg V.

    2016-01-01

    Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca2+ signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca2+ elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca2+ signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5–10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca2+ release followed by Ca2+ entry and also substantially reduced Ca2+ extrusion because of decreased intracellular ATP levels. The toxic Ca2+ signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca2+ signals and necrosis. We tested the effects of inhibiting the Ca2+ release-activated Ca2+ entry by the Ca2+ channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca2+ entry and also protected effectively against the development of necrosis. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377732

  10. Effects of different concentrations of metal ions on degradation of adenosine triphosphate in common carp (Cyprinus carpio) fillets stored at 4°C: An in vivo study.

    PubMed

    Li, Dapeng; Qin, Na; Zhang, Longteng; Lv, Jian; Li, Qingzheng; Luo, Yongkang

    2016-11-15

    The impact of different concentrations of Na(+), K(+), Ca(2+), Mg(2+), Fe(2+), and Zn(2+) on the degradation of adenosine triphosphate (ATP) and the influence of these ions on the activity of adenosine monophosphate deaminase (AMP-deaminase) and acid phosphatase (ACP) in common carp fillets (in vivo) during 4°C storage was examined. The content of ATP, inosine monophosphate (IMP), and hypoxanthine (Hx), and the activity of AMP-deaminase and ACP were determined. Results indicated that the effects of different concentrations of six kinds of metal ions on AMP-deaminase and ACP were not the same. Na(+), K(+), Fe(2+), and Zn(2+) enhanced AMP-deaminase activity, which led to the rapid degradation of ATP and to the generation of a large quantity of IMP within a short time. Ca(2+) and Mg(2+) delayed the change in AMP-deaminase and ACP activity in carp and caused a further delay in the degradation of ATP. Fe(2+) and Zn(2+) inhibited ACP activity, which reduced the decomposition of IMP and the formation of Hx. PMID:27283700

  11. Distribution of activity of alkaline phosphatase and Mg-dependent adenosine triphosphatase in the cranial dura mater-arachnoid interface zone of the rat.

    PubMed

    Angelov, D N

    1990-05-01

    The distribution of the activity of alkaline phosphatase and Mg-dependent adenosine triphosphatase was studied in the encephalic dura mater-arachnoid borderline (interface) zone of albino Wistar rats. Intense clustering of electron-dense granules that indicated alkaline phosphatase activity was observed in the inner dural cells, the neurothelial cells, the outermost row of the outer arachnoidal cells and in the intercellular cleft between the latter two (the so-called electron-dense band). The remainder of the outer arachnoidal cells contained almost no reaction product. Mg-adenosine triphosphatase activity was distributed differently; a lack of reaction product was observed not only in the outer arachnoidal cells, but also in the zone occupied by the electron-dense band. The data confirm histochemically the barrier properties of the dura mater-arachnoid interface zone.

  12. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs.

    PubMed Central

    Wagner, R W; Smith, J E; Cooperman, B S; Nishikura, K

    1989-01-01

    Amphibian eggs and embryos as well as mammalian cells have been reported to contain an activity that unwinds double-stranded RNA. We have now found that adenosine residues have been modified in the RNA products of this unwinding activity. Although the modified RNA remains double-stranded, the modification causes the RNA to be susceptible to single-strand-specific RNase and to migrate as a retarded smear on a native polyacrylamide electrophoresis gel. The modification is specific for double-stranded RNA. At least 40% of the adenosine residues can be modified in vitro in a given random sequence RNA molecule. By using standard two-dimensional TLC and HPLC analyses, the modified base has been identified as inosine. Mismatched base-pairing between inosine and uridine appears to be responsible for the observed characteristics of the unwound RNA. The biological significance of this modifying activity and also of the modified double-stranded RNA is discussed. Images PMID:2704740

  13. Specific Activation of A3, A2A and A1 Adenosine Receptors in CD73-Knockout Mice Affects B16F10 Melanoma Growth, Neovascularization, Angiogenesis and Macrophage Infiltration

    PubMed Central

    Koszałka, Patrycja; Gołuńska, Monika; Urban, Aleksandra; Stasiłojć, Grzegorz; Stanisławowski, Marcin; Majewski, Marceli; Składanowski, Andrzej C.; Bigda, Jacek

    2016-01-01

    CD73 (ecto-5'-nucleotidase), a cell surface enzyme hydrolyzing AMP to adenosine, was lately demonstrated to play a direct role in tumor progression including regulation of tumor vascularization. It was also shown to stimulate tumor macrophage infiltration. Interstitial adenosine, accumulating in solid tumors due to CD73 enzymatic activity, is recognized as a main mediator regulating the production of pro- and anti-angiogenic factors, but the engagement of specific adenosine receptors in tumor progression in vivo is still poorly researched. We have analyzed the role of high affinity adenosine receptors A1, A2A, and A3 in B16F10 melanoma progression using specific agonists (CCPA, CGS-21680 and IB-MECA, respectively). We limited endogenous extracellular adenosine background using CD73 knockout mice treated with CD73 chemical inhibitor, AOPCP (adenosine α,β-methylene 5’-diphosphate). Activation of any adenosine receptor significantly inhibited B16F10 melanoma growth but only at its early stage. At 14th day of growth, the decrease in tumor neovascularization and MAPK pathway activation induced by CD73 depletion was reversed by all agonists. Activation of A1AR primarily increased angiogenic activation measured by expression of VEGF-R2 on tumor blood vessels. However, mainly A3AR activation increased both the microvessel density and expression of pro-angiogenic factors. All agonists induced significant increase in macrophage tumor infiltration, with IB-MECA being most effective. This effect was accompanied by substantial changes in cytokines regulating macrophage polarization between pro-inflammatory and pro-angiogenic phenotype. Our results demonstrate an evidence that each of the analyzed receptors has a specific role in the stimulation of tumor angiogenesis and confirm significantly more multifaceted role of adenosine in its regulation than was already observed. They also reveal previously unexplored consequences to extracellular adenosine signaling depletion in

  14. Guanosine may increase absence epileptic activity by means of A2A adenosine receptors in Wistar Albino Glaxo Rijswijk rats.

    PubMed

    Lakatos, Renáta Krisztina; Dobolyi, Árpád; Todorov, Mihail Ivilinov; Kékesi, Katalin A; Juhász, Gábor; Aleksza, Magdolna; Kovács, Zsolt

    2016-06-01

    The non-adenosine nucleoside guanosine (Guo) was demonstrated to decrease quinolinic acid(QA)-induced seizures, spontaneously emerged absence epileptic seizures and lipopolysaccharide(LPS)-evoked induction of absence epileptic seizures suggesting its antiepileptic potential. It was also described previously that intraperitoneal (i.p.) injection of 20 and 50mg/kg Guo decreased the number of spike-wave discharges (SWDs) in a well investigated model of human absence epilepsy, the Wistar Albino Glaxo Rijswijk (WAG/Rij) rats during 4th (20mg/kg Guo) and 3rd as well as 4th (50mg/kg Guo) measuring hours. Guanosine can potentially decrease SWD number by means of its putative receptors but absence epileptic activity changing effects of Guo by means of increased extracellular adenosine (Ado) cannot be excluded. An increase in the dose of i.p. injected Guo is limited by its low solubility in saline, therefore, we addressed in the present study whether higher doses of Guo, diluted in sodium hydroxide (NaOH) solution, have more potent antiepileptic effect in WAG/Rij rats. We confirmed that i.p. 50mg/kg Guo decreased but, surprisingly, i.p. 100mg/kg Guo enhanced the number of SWDs in WAG/Rij rats. Combined i.p. injection of a non-selective Ado receptor antagonist theophylline (5mg/kg) or a selective Ado A2A receptor (A2AR) antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) (1mg/kg) and a cyclooxygenase 1 and 2/COX-1 and COX-2 inhibitor indomethacin (10mg/kg) with 100mg/kg Guo decreased the SWD number compared to i.p. 100mg/kg Guo alone. The results suggest that i.p. 100mg/kg Guo can increase SWD number by means of the adenosinergic system. PMID:27154620

  15. A Study on the Serum Adenosine Deaminase Activity in Patients with Typhoid Fever and Other Febrile Illnesses

    PubMed Central

    Ketavarapu, Sameera; Ramani G., Uma; Modi, Prabhavathi

    2013-01-01

    Background: Adenosine Deaminase (ADA) has been suggested to be an important enzyme which is associated with the cell mediated immunity, but its clinical significance in typhoid fever has not yet been characterized. The present study was taken up to evaluate the serum ADA activity in patients of typhoid fever. The levels of ADA were also measured in the patients who were suffering from other febrile illnesses. Material and Method: This was a case control study. The subjects who were included in this study were divided into 3 groups. Group A consisted of 50 normal healthy individuals who served as the controls. Group B consisted of 50 patients, both males and females of all age groups, who were suffering from culture positive typhoid fever. Group C consisted of 50 patients who were suffering from febrile illnesses other than typhoid fever like viral fever, gastro enteritis, malaria, tonsillitis, upper respiratory tract infections, etc. The serum levels of ADA were estimated in all the subjects who were under study. Results: The serum ADA level was found to be increased in the patients of typhoid fever as compared to that in those with other febrile illnesses and in the controls. Conclusion: From the present study, it can be concluded that there was a statistically significant increase in the serum ADA levels in the patients with typhoid. PMID:23730630

  16. Adenosine A(1), A(2a), A(2b), and A(3) receptors in hematopoiesis. 2. Expression of receptor mRNA in resting and lipopolysaccharide-activated mouse RAW 264.7 macrophages.

    PubMed

    Streitová, D; Hofer, M; Holá, J; Vacek, A; Pospísil, M

    2010-01-01

    Expression of mRNA for adenosine receptor subtypes A(1), A(2a), A(2b), and A(3) in normal and lipopolysaccharide (LPS)-activated murine RAW 264.7 macrophages has been investigated using the method of quantitative real-time polymerase chain reaction. The results have shown a very low, unquantifiable expression of adenosine A(1) receptor mRNA in both normal and LPS-activated macrophages. The other three adenosine receptor mRNAs have been found to be expressed at various but always quantifiable levels. Activation of the macrophages by LPS induced upregulation of the expression of adenosine receptor A(2a) and A(2b) mRNA, whereas the expression of adenosine receptor A(3) mRNA was downregulated. Unstimulated macrophages exhibited a high expression of the A(2b) adenosine receptor mRNA. The findings are discussed from the point of view of the antiinflammatory and hematopoiesis-stimulating roles of the adenosine receptor signaling.

  17. Impact of aspirin dose on adenosine diphosphate-mediated platelet activities. Results of an in vitro pilot investigation.

    PubMed

    Tello-Montoliu, Antonio; Thano, Estela; Rollini, Fabiana; Patel, Ronakkumar; Wilson, Ryan E; Muñiz-Lozano, Ana; Franchi, Francesco; Darlington, Andrew; Desai, Bhaloo; Guzman, Luis A; Bass, Theodore A; Angiolillo, Dominick J

    2013-10-01

    Different aspirin dosing regimens have been suggested to impact outcomes when used in combination with adenosine diphosphate (ADP) P2Y12 receptor antagonists. Prior investigations have shown that not only aspirin, but also potent ADP P2Y12 receptor blockade can inhibit thromboxane A2-mediated platelet activation. The impact of aspirin dosing on ADP mediated platelet activities is unknown and represents the aim of this in vitro pilot pharmacodynamic (PD) investigation. Twenty-six patients with stable coronary artery disease on aspirin 81 mg/day and P2Y12 naïve were enrolled. PD assessments were performed at baseline, while patients were on 81 mg/day aspirin and after switching to 325 mg/day for 7 ± 2 days with and without escalating concentrations (vehicle, 1, 3, and 10 μM) of prasugrel's active metabolite (P-AM). PD assays included flow cytometric assessment of VASP to define the platelet reactivity index (PRI) and the Multiplate Analyzer (MEA) using multiple agonists [ADP, ADP + prostaglandin (PGE1), arachidonic acid (AA), and collagen]. Escalating P-AM concentrations showed incremental platelet P2Y12 inhibition measured by VASP-PRI (p<0.001). However, there were no differences according to aspirin dosing regimen at any P-AM concentration (vehicle: p=0.899; 1 μM: p=0.888; 3 μM: p=0.524; 10 μM: p=0.548). Similar findings were observed in purinergic markers assessed by MEA (ADP and ADP+PGE1). P-AM addition significantly reduced AA and collagen induced platelet aggregation (p<0.001 for all measures), irrespective of aspirin dose. In conclusion, aspirin dosing does not appear to affect PD measures of ADP-mediated platelet reactivity irrespective of the degree of P2Y12 receptor blockade. P2Y12 receptor blockade modulates platelet reactivity mediated by alternative activators. PMID:23884248

  18. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids

    DOE PAGES

    Naranjo, Andrea N.; McNeely, Patrick M.; Katsaras, John; Skaja Robinson, Anne

    2016-05-27

    The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, ormore » DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. Furthermore, the studies presented in this paper also underline the importance of the protein’s purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner.« less

  19. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    SciTech Connect

    Liang, B.T.

    1989-06-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand (3H)-8-cyclopentyl-1,3-diproylxanthine ((3H)CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or the maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that (3H) CPX is an antagonist radioligand. Competition curves for (3H) CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific (3H)CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid).

  20. Adenosine A1 receptor activation modulates N-methyl-d-aspartate (NMDA) preconditioning phenotype in the brain.

    PubMed

    Constantino, Leandra C; Pamplona, Fabrício A; Matheus, Filipe C; Ludka, Fabiana K; Gomez-Soler, Maricel; Ciruela, Francisco; Boeck, Carina R; Prediger, Rui D; Tasca, Carla I

    2015-04-01

    N-methyl-d-aspartate (NMDA) preconditioning is induced by subtoxic doses of NMDA and it promotes a transient state of resistance against subsequent lethal insults. Interestingly, this mechanism of neuroprotection depends on adenosine A1 receptors (A1R), since blockade of A1R precludes this phenomenon. In this study we evaluated the consequences of NMDA preconditioning on the hippocampal A1R biology (i.e. expression, binding properties and functionality). Accordingly, we measured A1R expression in NMDA preconditioned mice (75mg/kg, i.p.; 24h) and showed that neither the total amount of receptor, nor the A1R levels in the synaptic fraction was altered. In addition, the A1R binding affinity to the antagonist [(3)H] DPCPX was slightly increased in total membrane extracts of hippocampus from preconditioned mice. Next, we evaluated the impact of NMDA preconditioning on A1R functioning by measuring the A1R-mediated regulation of glutamate uptake into hippocampal slices and on behavioral responses in the open field and hot plate tests. NMDA preconditioning increased glutamate uptake into hippocampal slices without altering the expression of glutamate transporter GLT-1. Interestingly, NMDA preconditioning also induced antinociception in the hot plate test and both effects were reversed by post-activation of A1R with the agonist CCPA (0.2mg/kg, i.p.). NMDA preconditioning or A1R modulation did not alter locomotor activity in the open field. Overall, the results described herein provide new evidence that post-activation of A1R modulates NMDA preconditioning-mediated responses, pointing to the importance of the cross-talk between glutamatergic and adenosinergic systems to neuroprotection.

  1. Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes.

    PubMed

    Ciccarelli, R; Di Iorio, P; Bruno, V; Battaglia, G; D'Alimonte, I; D'Onofrio, M; Nicoletti, F; Caciagli, F

    1999-09-01

    Pharmacological activation of A(1) adenosine receptor with 2-chloro-N6-cyclopentyladenosine (CCPA) or mGlu3 metabotropic glutamate receptors with (2S,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG-IV) or aminopyrrolidine-2R, 4R-dicarboxylate (2R,4R-APDC) enhanced the release of nerve growth factor (NGF) or S-100beta protein from rat cultured astrocytes. Stimulation of release by CCPA and DCG-IV or 2R,4R-APDC was inhibited by the A(1) adenosine receptor antagonist 8-cyclopentyl-1, 3-dipropylxanthine and by the mGlu2/3 receptor antagonist (2S,1'S, 2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine (PCCG-4), respectively. Time-course studies revealed a profound difference between the release of S-100beta protein and the release of NGF in response to extracellular signals. Stimulation of S-100beta protein exhibited rapid kinetics, peaking after 1 h of drug treatment, whereas the enhancement of NGF release was much slower, requiring at least 6 h of A(1) adenosine or mGlu3 receptor activation. In addition, stimulation of NGF but not S-100beta release was substantially reduced in cultures treated with the protein synthesis inhibitor cycloheximide. In addition, a 6-8 h treatment of cultured astrocytes with A(1) or mGlu3 receptor agonists increased the levels of both NGF mRNA and NGF-like immunoreactive proteins, including NGF prohormone. We conclude that activation of A(1) adenosine or mGlu3 receptors produces pleiotropic effects in astrocytes, stimulating the synthesis and/or the release of protein factors. Astrocytes may therefore become targets for drugs that stimulate the local production of neurotrophic factors in the CNS, and this may provide the basis for a novel therapeutic strategy in chronic neurodegenerative disorders. PMID:10457374

  2. Chemical Composition and Immunomodulatory Activity of Mycelia of the Hairy Bracket Mushroom, Trametes hirsuta (Higher Basidiomycetes).

    PubMed

    Ma, Rongxia; Yang, Rongling; Liu, Xueming; Chen, Zhiyi; Yang, Chunying; Wang, Siyuan

    2015-01-01

    Trametes hirsuta is a medicinal mushroom that produces laccase. Its mycelium is a by-product when this species is used for laccase production. Aiming to develop its potential medicinal value, we investigated the chemical composition and immunomodulatory activity of T. hirsuta mycelia (THM). Dried THM contained 26.06% protein, 1.15% fat, 57.87% carbohydrates, and 5.47% ash. Sixteen free amino acids (2.63% total content) and 6 5'-nucleotides (adenosine 5'-monophosphate, cytidine 5'-monophosphate, guanosine 5'-monophosphate, uridine 5'-monophosphate, xanthosine 5'-monophosphate, and inosine 5'-monophosphate) constituting 0.275% were detected. Dominant sugars and polyols were fructose (2.47%), mannitol (2.03%), and glucose (1.8%); trehalose and arabinose contents were less than 0.10%. Evaluation of immunomodulatory activity in mice showed that THM could improve macrophage phagocytic function and serum hemolysin concentrations, but only the low-dose group significantly enhanced the natural killer cell activity and increased the spleen index, and only the middle-dose group remarkably increased the thymus index. Therefore, T. hirsuta mycelia could enhance immune function in mice and have immunomodulatory activity.

  3. Chemical Composition and Immunomodulatory Activity of Mycelia of the Hairy Bracket Mushroom, Trametes hirsuta (Higher Basidiomycetes).

    PubMed

    Ma, Rongxia; Yang, Rongling; Liu, Xueming; Chen, Zhiyi; Yang, Chunying; Wang, Siyuan

    2015-01-01

    Trametes hirsuta is a medicinal mushroom that produces laccase. Its mycelium is a by-product when this species is used for laccase production. Aiming to develop its potential medicinal value, we investigated the chemical composition and immunomodulatory activity of T. hirsuta mycelia (THM). Dried THM contained 26.06% protein, 1.15% fat, 57.87% carbohydrates, and 5.47% ash. Sixteen free amino acids (2.63% total content) and 6 5'-nucleotides (adenosine 5'-monophosphate, cytidine 5'-monophosphate, guanosine 5'-monophosphate, uridine 5'-monophosphate, xanthosine 5'-monophosphate, and inosine 5'-monophosphate) constituting 0.275% were detected. Dominant sugars and polyols were fructose (2.47%), mannitol (2.03%), and glucose (1.8%); trehalose and arabinose contents were less than 0.10%. Evaluation of immunomodulatory activity in mice showed that THM could improve macrophage phagocytic function and serum hemolysin concentrations, but only the low-dose group significantly enhanced the natural killer cell activity and increased the spleen index, and only the middle-dose group remarkably increased the thymus index. Therefore, T. hirsuta mycelia could enhance immune function in mice and have immunomodulatory activity. PMID:25954910

  4. The effect of calcium removal on the suppression by adenosine of epileptiform activity in the hippocampus: demonstration of desensitization.

    PubMed Central

    Hosseinzadeh, H.; Stone, T. W.

    1994-01-01

    1. Previous work has suggested that presynaptic effects of adenosine may be dependent on divalent cations. The present study was undertaken to determine whether a similar requirement existed at postsynaptic sites. 2. Extracellular recordings were made in the CA1 pyramidal cell layer of rat hippocampal slices following orthodromic stimulation of Schaffer collateral fibres in stratum radiatum or antidromic stimulation of the alveus. In antidromic stimulation experiments, CaCl2 was omitted (calcium-free medium) or reduced to 0.24 mM (low calcium medium) and in some experiments MgSO4 was increased to 2 mM. Kynurenic acid at concentrations of 1 and 5 mM in calcium-free medium and 1 mM in low calcium medium had no effect on secondary spike size. 3. Adenosine and baclofen induced a concentration-dependent reduction in the amplitude of orthodromic potentials with maximum effects at 20 and 5 microM respectively. 4. In nominally calcium-free medium, bursts of multiple population spikes were obtained in response to antidromic stimulation. Adenosine had little effect in reducing the secondary spike amplitude. At high concentration (2 mM) an initial depression was seen which declined within 3-5 min. 5. Sensitivity to adenosine was restored in low calcium medium or by raising magnesium. Although raising the divalent cation concentration increased the inhibitory effect of adenosine, desensitization was still seen. 6. 2-Chloroadenosine (100-500 microM) and R-PIA (50 microM), which are not substrates for either the nucleoside transporters or adenosine deaminase, were inactive in the absence of calcium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8032657

  5. Pain-relieving prospects for adenosine receptors and ectonucleotidases

    PubMed Central

    Zylka, Mark J.

    2010-01-01

    Adenosine receptor agonists have potent antinociceptive effects in diverse preclinical models of chronic pain. In contrast, the efficacy of adenosine or adenosine receptor agonists at treating pain in humans is unclear. Two ectonucleotidases that generate adenosine in nociceptive neurons were recently identified. When injected spinally, these enzymes have long-lasting adenosine A1 receptor (A1R)-dependent antinociceptive effects in inflammatory and neuropathic pain models. Furthermore, recent findings indicate that spinal adenosine A2A receptor activation can enduringly inhibit neuropathic pain symptoms. Collectively, these studies suggest the possibility of treating chronic pain in humans by targeting specific adenosine receptor subtypes in anatomically defined regions with agonists or with ectonucleotidases that generate adenosine. PMID:21236731

  6. Adenosine A2A receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus

    PubMed Central

    Kumar, Sunil; Rai, Seema; Hsieh, Kung-Chiao; McGinty, Dennis; Alam, Md. Noor

    2013-01-01

    The median preoptic nucleus (MnPN) and the ventrolateral preoptic area (VLPO) are two hypothalamic regions that have been implicated in sleep regulation, and both nuclei contain sleep-active GABAergic neurons. Adenosine is an endogenous sleep regulatory substance, which promotes sleep via A1 and A2A receptors (A2AR). Infusion of A2AR agonist into the lateral ventricle or into the subarachnoid space underlying the rostral basal forebrain (SS-rBF), has been previously shown to increase sleep. We examined the effects of an A2AR agonist, CGS-21680, administered into the lateral ventricle and the SS-rBF on sleep and c-Fos protein immunoreactivity (Fos-IR) in GABAergic neurons in the MnPN and VLPO. Intracerebroventricular administration of CGS-21680 during the second half of lights-on phase increased sleep and increased the number of MnPN and VLPO GABAergic neurons expressing Fos-IR. Similar effects were found with CGS-21680 microinjection into the SS-rBF. The induction of Fos-IR in preoptic GABAergic neurons was not secondary to drug-induced sleep, since CGS-21680 delivered to the SS-rBF significantly increased Fos-IR in MnPN and VLPO neurons in animals that were not permitted to sleep. Intracerebroventricular infusion of ZM-241385, an A2AR antagonist, during the last 2 h of a 3-h period of sleep deprivation caused suppression of subsequent recovery sleep and reduced Fos-IR in MnPN and VLPO GABAergic neurons. Our findings support a hypothesis that A2AR-mediated activation of MnPN and VLPO GABAergic neurons contributes to adenosinergic regulation of sleep. PMID:23637137

  7. [Ultrastructural localization of adenosine triphosphatase activity in the proximal kidney tubules of white rats].

    PubMed

    Panasiuk, E N; Birov, V V; Nazar, P S; Saĭ, V G; Kavalishin, V I

    1977-10-01

    In white rats, the ferment topography of Mg+2 and (Na+ + K+)-activated ATPh-ses in proximal canaliculi was studied with the aid of the ultrastructural cytochemistry. The final product of the fermentative reaction (PhHPO4) in the form of small dense granuli is positioned on the duplicate folds of epithelial cells, the cells limiting the brush border micropiles, and on invaginations of the apical plasmalemme at the micropiles base. For (Na+ %K+)-activated ATPh-ses a localisation of the reaction product was determined in the canaliculi vessels.

  8. Role of adenosine kinase in the control of Streptomyces differentiations: Loss of adenosine kinase suppresses sporulation and actinorhodin biosynthesis while inducing hyperproduction of undecylprodigiosin in Streptomyces lividans.

    PubMed

    Rajkarnikar, Arishma; Kwon, Hyung-Jin; Suh, Joo-Won

    2007-11-16

    Adenosine kinase (ADK) catalyses phosphorylation of adenosine (Ado) and generates adenosine monophosphate (AMP). ADK gene (adk(Sli), an ortholog of SCO2158) was disrupted in Streptomyces lividans by single crossover-mediated vector integration. The adk(Sli) disruption mutant (Deltaadk(Sli)) was devoid of sporulation and a plasmid copy of adk(Sli) restored sporulation ability in Deltaadk(Sli), thus indicating that loss of adk(Sli) abolishes sporulation in S. lividans. Ado supplementation strongly suppressed sporulation ability in S. lividans wild-type (wt), supporting that disruption of adk(Sli) resulted in Ado accumulation, which in turn suppressed sporulation. Cell-free experiments demonstrated that Deltaadk(Sli) lacked ADK activity and in vitro characterization confirms that adk(Sli) encodes ADK. The intracellular level of Ado was highly elevated while the AMP level was significantly reduced after loss of adk(Sli) while Deltaadk(Sli) displayed no significant derivation from wt in the levels of S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM). Notably, Ado supplementation to wt lowered AMP content, albeit not to the level of Deltaadk(Sli), implying that the reduction of AMP level is partially forced by Ado accumulation in Deltaadk(Sli). In Deltaadk(Sli), actinorhodin (ACT) production was suppressed and undecylprodigiosin (RED) production was dramatically enhanced; however, Ado supplementation failed to exert this differential control. A promoter-probe assay verified repression of actII-orf4 and induction of redD in Deltaadk(Sli), substantiating that unknown metabolic shift(s) of ADK-deficiency evokes differential genetic control on secondary metabolism in S. lividans. The present study is the first report revealing the suppressive role of Ado in Streptomyces development and the differential regulatory function of ADK activity in Streptomyces secondary metabolism, although the underlying mechanism has yet to be elucidated.

  9. Activation of adenosine A(3) receptors potentiates stimulatory effects of IL-3, SCF, and GM-CSF on mouse granulocyte-macrophage hematopoietic progenitor cells.

    PubMed

    Hofer, M; Vacek, A; Pospísil, M; Holá, J; Streitová, D; Znojil, V

    2009-01-01

    Adenosine A(3) receptor agonist N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been tested from the point of view of potentiating the effects of hematopoietic growth factors interleukin-3 (IL-3), stem cell factor (SCF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF) on the growth of hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) in suspension of normal mouse bone marrow cells in vitro. IB-MECA alone induced no GM-CFC growth. Significant elevation of numbers of GM-CFC evoked by the combinations of IB-MECA with IL-3, SCF, or GM-CSF as compared with these growth factors alone has been noted. Combination of IB-MECA with G-CSF did not induce significantly higher numbers of GM-CFC in comparison with G-CSF alone. Joint action of three drugs, namely of IB-MECA + IL-3 + GM-CSF, produced significantly higher numbers of GM-CFC in comparison with the combinations of IB-MECA + IL-3, IB-MECA + GM-CSF, or IL-3 + GM-CSF. These results give evidence of a significant role of selective activation of adenosine A(3) receptors in stimulation of the growth of granulocyte/ macrophage hematopoietic progenitor cells.

  10. Astrocyte-derived Adenosine and A1 Receptor Activity Contribute to Sleep Loss-Induced Deficits in Hippocampal Synaptic Plasticity and Memory in Mice

    PubMed Central

    Florian, Cédrick; Vecsey, Christopher G.; Halassa, Michael M.; Haydon, Philip G.; Abel, Ted

    2011-01-01

    Sleep deprivation (SD) can have a negative impact on cognitive function, but the mechanism(s) by which SD modulates memory remain unclear. We have previously shown that astrocyte-derived adenosine is a candidate molecule involved in the cognitive deficits following a brief period of SD (Halassa et al., 2009). In this study, we examined whether genetic disruption of SNARE-dependent exocytosis in astrocytes (dnSNARE mice) or pharmacological blockade of A1 receptor signaling using an adenosine A1 receptor (A1R) antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT) could prevent the negative effects of 6 hours of SD on hippocampal late-phase long-term potentiation (L-LTP) and hippocampus-dependent spatial object recognition memory. We found that SD impaired L-LTP in wild-type mice but not in dnSNARE mice. Similarly, this deficit in L-LTP resulting from SD was prevented by a chronic infusion of CPT. Consistent with these results, we found that hippocampus-dependent memory deficits produced by SD were rescued in dnSNARE mice and CPT-treated mice. These data provide the first evidence that astrocytic ATP and adenosine A1R activity contribute to the effects of SD on hippocampal synaptic plasticity and hippocampus-dependent memory, and suggest a new therapeutic target to reverse the hippocampus-related cognitive deficits induced by sleep loss. PMID:21562257

  11. Detection and characterisation of NAD(P)H-diaphorase activity in Dictyostelium discoideum cells (Protozoa)

    PubMed Central

    Amaroli, A.; Chessa, M.G.

    2012-01-01

    In Dictyostelium discoideum (D. discoideum), compounds generating nitric oxide (NO) inhibit its aggregation and differentiation without altering cyclic guanosine monophosphate (cGMP) production. They do it by preventing initiation of cyclic adenosine monophosphate (cAMP) pulses. Furthermore, these compounds stimulate adenosine diphosphate (ADP)-ribosylation of a 41 kDa cytosolic protein and regulate the glyceraldehyde-3-phospate dehydrogenase activity. Yet, although D. discoideum cells produce NO at a relatively constant rate at the onset of their developmental cycle, there is still no evidence of the presence of nitric oxide synthase (NOS) enzymes. In this work, we detect the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity in D. discoideum and we characterise it by specific inhibitors and physical-chemical conditions that allegedly distinguish between NOS-related and -unrelated NADPH-d activity. PMID:23361243

  12. Control and localization of rat adrenal cyclic guanosine 3', 5'-monophosphate. Comparison with adrenal cyclic adenosine 3', 5'-monophosphate.

    PubMed Central

    Whitley, T H; Stowe, N W; Ong, S H; ey, R L; Steiner, A L

    1975-01-01

    Cyclic AMP and cyclic GMP were measured in rat adrenal glands after either hypophysectomy alone or after hypophysectomy and treatment with ACTH. Adrenal cyclic GMP levels rise in acutely hypophysectomized rats to a maximum at 1 h of approximately 200% of control levels; there is a return to base line at 4-12 h after hypophysectomy. In contrast, adrenal cyclic AMP falls immediately to about 50% of control levels after hypophysectomy and remains at approximately 1 pmol per mg tissue. Doses of ACTH beyond the physiological range markedly suppress adrenal cyclic GMP while producing a 50-fold or greater rise in cyclic AMP in hypophysectomized rats. This pattern of adrenal cyclic GMP rise was unchanged in acutely hypophysectomized animals treated with desamethasone. N-6-2'-0 dibutyryl cyclic AMP acted similarly to the effect of ACTH in bringing about a suppression of adrenal cyclic GMP levels. Physiological i.v. pulse doses of ACTH produced a rapid dose related increase in adrenal cyclic GMP. In vitro incubation of quartered adrenal pairs with 500 mU ACTH produced elevated cyclic AMP levels and suppression of cyclic GMP. Whereas adrenal cyclic AMP fell rapidly to 50% of control levels after hypophysectomy and remained at about 1 pmol per mg tissue for 7 days, adrenal cyclic GMP showed a biphasic rhythm in long-term hypophysectomized animals. After an initial peak at 1 h after hypophysectomy, adrenal cyclic GMP declined to baseline at 4-12 h but thereafter progressively rose with time, eventually reaching levels over 1 pmol per mg tissue. Fluorescent immunocytochemical staining of rat adrenal zona fasciculata showed cyclic AMP largely confined to cytoplasmic elements with little fluorescence contained in nuclei. In constant, cyclic GMP was found discretely positioned in nuclei with prominent fluorescence in nucleoli in addition to cytoplasmic localization. It is concluded that in hypophysectomized rats ACTH, either directly or in conjunction with altertion of adrenal cyclic AMP, appears to be one factor which regulates adrenal cyclic GMP. The direction of cyclic GMP change and the different subcellular localization of the nucleotides suggest divergent roles for cyclic AMP and cyclic GMP in adrenocortical function. Furthermore, our observations suggest a role for adrenal cyclic GMP in nuclear directed events. Images PMID:167054

  13. WITHDRAWN: Anti-adipogenic effects of centipede grass extract in 3T3-L1 adipocytes and high fat diet induced obesity mice through activating adenosine monophosphate activated protein kinase.

    PubMed

    Kim, Sokho; Oh, Myung-Hoon; Kwon, Jungkee

    2013-11-01

    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

  14. WITHDRAWN: Anti-adipogenic effects of centipede grass extract in 3T3-L1 adipocytes and high fat diet induced obesity mice through activating adenosine monophosphate activated protein kinase.

    PubMed

    Kim, Sokho; Oh, Myung-Hoon; Kwon, Jungkee

    2013-11-01

    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy. PMID:24192213

  15. Optimization of benzoxazole-based inhibitors of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.

    PubMed

    Gorla, Suresh Kumar; Kavitha, Mandapati; Zhang, Minjia; Chin, James En Wai; Liu, Xiaoping; Striepen, Boris; Makowska-Grzyska, Magdalena; Kim, Youngchang; Joachimiak, Andrzej; Hedstrom, Lizbeth; Cuny, Gregory D

    2013-05-23

    Cryptosporidium parvum is an enteric protozoan parasite that has emerged as a major cause of diarrhea, malnutrition, and gastroenteritis and poses a potential bioterrorism threat. C. parvum synthesizes guanine nucleotides from host adenosine in a streamlined pathway that relies on inosine 5'-monophosphate dehydrogenase (IMPDH). We have previously identified several parasite-selective C. parvum IMPDH (CpIMPDH) inhibitors by high-throughput screening. In this paper, we report the structure-activity relationship (SAR) for a series of benzoxazole derivatives with many compounds demonstrating CpIMPDH IC50 values in the nanomolar range and >500-fold selectivity over human IMPDH (hIMPDH). Unlike previously reported CpIMPDH inhibitors, these compounds are competitive inhibitors versus NAD(+). The SAR study reveals that pyridine and other small heteroaromatic substituents are required at the 2-position of the benzoxazole for potent inhibitory activity. In addition, several other SAR conclusions are highlighted with regard to the benzoxazole and the amide portion of the inhibitor, including preferred stereochemistry. An X-ray crystal structure of a representative E·IMP·inhibitor complex is also presented. Overall, the secondary amine derivative 15a demonstrated excellent CpIMPDH inhibitory activity (IC50 = 0.5 ± 0.1 nM) and moderate stability (t1/2 = 44 min) in mouse liver microsomes. Compound 73, the racemic version of 15a, also displayed superb antiparasitic activity in a Toxoplasma gondii strain that relies on CpIMPDH (EC50 = 20 ± 20 nM), and selectivity versus a wild-type T. gondii strain (200-fold). No toxicity was observed (LD50 > 50 μM) against a panel of four mammalian cells lines.

  16. Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion--adenosine triphosphate complex.

    PubMed

    Bachelard, H S

    1971-11-01

    1. Substrate-saturation curves of brain hexokinase for MgATP(2-) were sigmoidal at sub-saturating concentrations of glucose when the Mg(2+)/ATP ratio was maintained at 1:1. Under identical conditions, except that Mg(2+) was present in excess, hyperbolic curves were observed. 2. The number of binding sites (calculated from Hill plots) is 1.8 at a Mg(2+)/ATP ratio 1:1, and 1.0 with excess of Mg(2+). The apparent K(m) for MgATP(2-) is 6.5x10(-4)m at a Mg(2+)/ATP ratio 1:1, and 3.5x10(-4)m with excess of Mg(2+). 3. Interdependence between substrate-binding sites was indicated by the effects of varying the concentration of glucose. The sigmoidality and deviation from Michaelis-Menten kinetics at a Mg(2+)/ATP ratio 1:1 became less pronounced with increasing glucose concentration. Also, although substrate-saturation curves for glucose were hyperbolic when the Mg(2+)/ATP ratio was 1:1, reciprocal plots were non-linear. These were linear with excess of Mg(2+). 4. High concentrations of Mg(2+) (Mg(2+)/ATP ratios above 5:1) were inhibitory. 5. The results are taken to indicate homotropic co-operative binding of MgATP(2-) and that Mg(2+) is an allosteric activator. Possible implications in regulation are discussed.

  17. Mast Cell Adenosine Receptors Function: A Focus on the A3 Adenosine Receptor and Inflammation

    PubMed Central

    Rudich, Noam; Ravid, Katya; Sagi-Eisenberg, Ronit

    2012-01-01

    Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells (MCs), as an attractive drug candidate. Four subtypes (A1, A2a, A2b, and A3) of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R) in mediating hyper responsiveness to adenosine in MCs, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human MCs. The relevance of mouse studies to the human is discussed. PMID:22675325

  18. Adenosine deaminase in disorders of purine metabolism and in immune deficiency

    SciTech Connect

    Tritsch, G.L.

    1985-01-01

    This book consists of five parts and a section of poster papers. Some of the selection titles are: Adenosine Deaminase Impairment and Ribonucleotide Reductase in Human Cells; Adenosine Deaminase and Malignant Cells; Inhibition of Adenosine Deaminase to Increase the Antitumor Activity of Adenine Nucleoside Analogues; and Molecular Biology of the Adenosine Deaminase Gene and Messenger RNA.

  19. Structure–Activity Relationships of N6-Benzyladenosine-5′-uronamides as A3-Selective Adenosine Agonists†

    PubMed Central

    Gallo-Rodriguez, Carola; Ji, Xiao-duo; Melman, Neli; Siegman, Barry D.; Sanders, Lawrence H.; Orlina, Jeraldine; Fischer, Bilha; Pu, Quanlong; Olah, Mark E.; van Galen, Philip J. M.; Stiles, Gary L.; Jacobson, Kenneth A.

    2015-01-01

    Adenosine analogues modified at the 5′-position as uronamides and/or as N6-benzyl derivatives were synthesized. These derivatives were examined for affinity in radioligand binding assays at the newly discovered rat brain A3 adenosine receptor and at rat brain A1 and A2a receptors. 5′-Uronamide substituents favored A3 selectivity in the order N-methyl > N-ethyl ∞ unsubstituted carboxamide > N-cyclopropyl. 5′-(N-Methylcarboxamido)-N6-benzyladenosine was 37–56-fold more selective for A3 receptors. Potency at A3 receptors was enhanced upon substitution of the benzyl substituent with nitro and other groups. 5′-N-Methyluronamides and N6-(3-substituted-benzyl)adenosines are optimal for potency and selectivity at A3 receptors. A series of 3-(halobenzyl)-5′-N-ethyluronamide derivatives showed the order of potency at A1 and A2a receptors of I ~ Br > Cl > F. At A3 receptors the 3-F derivative was weaker than the other halo derivatives. 5′-N-Methyl-N6-(3-iodobenzyl)adenosine displayed a Ki value of 1.1 nM at A3 receptors and selectivity versus A1 and A2a receptors of 50-fold. A series of methoxybenzyl derivatives showed that a 4-methoxy group best favored A3 selectivity. A 4-sulfobenzyl derivative was a specific ligand at A3 receptors of moderate potency. An aryl amino derivative was prepared as a probe for radioiodination and receptor cross-linking. PMID:8126704

  20. Hyperthermia-induced seizures alter adenosine A1 and A2A receptors and 5'-nucleotidase activity in rat cerebral cortex.

    PubMed

    León-Navarro, David Agustín; Albasanz, José L; Martín, Mairena

    2015-08-01

    Febrile seizure is one of the most common convulsive disorders in children. The neuromodulator adenosine exerts anticonvulsant actions through binding adenosine receptors. Here, the impact of hyperthermia-induced seizures on adenosine A1 and A2A receptors and 5'-nucleotidase activity has been studied at different periods in the cerebral cortical area by using radioligand binding, real-time PCR, and 5'-nucleotidase activity assays. Hyperthermic seizures were induced in 13-day-old rats using a warmed air stream from a hair dryer. Neonates exhibited rearing and falling over associated with hindlimb clonus seizures (stage 5 on Racine scale criteria) after hyperthermic induction. A significant increase in A1 receptor density was observed using [(3) H]DPCPX as radioligand, and mRNA coding A1 was observed 48 h after hyperthermia-induced seizures. In contrast, a significant decrease in A2A receptor density was detected, using [(3) H]ZM241385 as radioligand, 48 h after hyperthermia-evoked convulsions. These short-term changes in A1 and A2A receptors were also accompanied by a loss of 5'-nucleotidase activity. No significant variations either in A1 or A2A receptor density or 5'-nucleotidase were observed 5 and 20 days after hyperthermic seizures. Taken together, both regulation of A1 and A2A receptors and loss of 5'-nucleotidase in the cerebral cortex suggest the existence of a neuroprotective mechanism against seizures. Febrile seizure is one of the most common convulsive disorders in children. The consequences of hyperthermia-induced seizures (animal model of febrile seizures) on adenosine A1 and A2A receptors and 5'-nucleotidase activity have been studied at different periods in cerebral cortical area. A significant increase in A1 receptor density and mRNA coding A1 was observed 48 h after hyperthermia-induced seizures. In contrast, a significant decrease in A2A receptor density and 5'-nucleotidase activity was detected 48 h after convulsions evoked by hyperthermia

  1. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved.

    PubMed

    Vacas, Javier; Fernández, Mercedes; Ros, Manuel; Blanco, Pablo

    2003-12-01

    Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.

  2. Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex.

    PubMed

    Rosenberg, P A; Li, Y

    1995-09-18

    We have previously shown that stimulation of cortical cultures containing both neurons and astrocytes with the beta-adrenergic agonist isoproterenol (ISO) results in transport of cAMP from astrocytes followed by extracellular hydrolysis to adenosine [Rosenberg et al. J. Neurosci. 14 (1994) 2953-2965]. In this study we found that the endogenous catecholamines epinephrine (EPI) and norepinephrine (NE), but not dopamine, serotonin, or histamine, all at 10 microM, significantly stimulated intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation in cortical cultures. Detailed dose-response experiments were performed for NE and EPI, as well as ISO. For each catecholamine, the potencies in evoking intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation were similar. These data provide additional evidence that a single common mechanism, namely beta-adrenergic mediated activation of adenylyl cyclase, underlies intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation. It appears that regulation of extracellular adenosine levels via cAMP transport and extracellular hydrolysis to adenosine may be a final common pathway of neuromodulation in cerebral cortex for catecholamines, and, indeed, any substance whose receptors are coupled to adenylyl cyclase.

  3. Mechanisms involved in increased sensitivity to adenosine A(2A) receptor activation and hypoxia-induced vasodilatation in porcine coronary arteries.

    PubMed

    Hedegaard, Elise R; Nielsen, Berit D; Mogensen, Susie; Rembold, Christopher M; Frøbert, Ole; Simonsen, Ulf

    2014-01-15

    Hypoxia-induced coronary vasorelaxation is a compensatory mechanism increasing blood flow. We hypothesized that hypoxia shares pathways with adenosine and causes vasorelaxation through the adenosine A(2A) receptor and force suppression by increasing cAMP and phosphorylated heat shock protein (HSP)20. Adenosine receptors in porcine left anterior descending coronary arteries (LAD) were examined by RT-PCR and isometric tension recording in myographs. Vasorelaxation was induced by adenosine, 1% oxygen, or both in the absence or presence of ZM241385, an adenosine A(2A) receptor antagonist. cAMP was determined by ELISA and p-HSP20/HSP20 and p-MLC/MLC were determined by immunoblotting and densitometric analyses. In coronary arteries exposed to 1% oxygen, there was increased sensitivity to adenosine, the adenosine A2 selective agonist NECA, and the adenosine A(2A) selective receptor agonist CGS21680. ZM241385 shifted concentration-response curves for CGS21680 to the right, whereas the adenosine A1 antagonist DPCPX, the adenosine A2B receptor antagonist MRS1754 and the adenosine A3 receptor antagonist MRS1523 failed to reduce vasodilatation induced by CGS21680. 1% oxygen or adenosine increased cAMP accumulation and HSP20 phosphorylation without changing T850-MYPT1 and MLC phosphorylation. ZM241385 failed to change 1% oxygen-induced vasodilation, cAMP accumulation, HSP20 phosphorylation and MLC phosphorylation. The PKA inhibitor Rp-8-CPT-cAMPS significantly reduced vasorelaxation induced by 1% oxygen or CGS21680. Our findings suggest that the increased sensitivity to adenosine, NECA, and CGS21680 at 1% oxygen involves adenosine A(2A) receptors. Adenosine and 1% oxygen induce vasorelaxation in PGF2α-contracted porcine coronary arteries partly by force suppression caused by increased cAMP and phosphorylation of HSP20.

  4. Role of adenosine receptors in caffeine tolerance

    SciTech Connect

    Holtzman, S.G.; Mante, S.; Minneman, K.P. )

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  5. [Adenosine deaminase in experimental trypanosomiasis: future implications].

    PubMed

    Pérez-Aguilar, Mary Carmen; Rondón-Mercado, Rocío

    2015-09-01

    The adenosine deaminase represents a control point in the regulation of extracellular adenosine levels, thus playing a critical role in the modulation of purinergic responses to certain pathophysiological events. Several studies have shown that serum and plasma enzyme levels are elevated in some diseases caused by microorganisms, which may represent a compensatory mechanism due to the elevated levels of adenosine and the release of inflammatory mediators. Recent research indicates that adenosine deaminase activity decreases and affects hematological parameters of infected animals with Trypanosoma evansi, so that such alterations could have implications in the pathogenesis of the disease. In addition, the enzyme has been detected in this parasite; allowing the inference that it could be associated with the vital functions of the same, similar to what occurs in mammals. This knowledge may be useful in the association of chemotherapy with specific inhibitors of the enzyme in future studies.

  6. A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase.

    PubMed

    Zhang, Min; Guo, Su-Miao; Li, Ying-Ru; Zuo, Peng; Ye, Bang-Ce

    2012-06-01

    A simple and reliable fluorescent molecular beacon is developed utilizing DNA-templated silver nanoclusters as a signal indicator and adenosine triphosphate (ATP) and adenosine deaminase as mechanical activators.

  7. Polymerization of actin in RBL-2H3 cells can be triggered through either the IgE receptor or the adenosine receptor but different signaling pathways are used.

    PubMed Central

    Apgar, J R

    1994-01-01

    Crosslinking of the IgE receptor on rat basophilic leukemia (RBL) cells using the multivalent antigen DNP-BSA leads to a rapid and sustained increase in the filamentous actin content of the cells. Stimulation of RBL cells through the adenosine receptor also induces a very rapid polymerization of actin, which peaks in 45-60 s and is equivalent in magnitude to the F-actin response elicited through stimulation of the IgE receptor. However, in contrast to the IgE mediated response, which remains elevated for over 30 min, the F-actin increase induced by the adenosine analogue 5'-(N-ethylcarboxamido)-adenosine (NECA) is relatively transient and returns to baseline values within 5-10 min. While previous work has shown that the polymerization of actin in RBL cells stimulated through the IgE receptor is mediated by protein kinase C (PKC), protein kinase inhibitors have no effect on the F-actin response activated through the adenosine receptor. In contrast, pretreatment of the cells with pertussis toxin completely inhibits the F-actin response to NECA but has relatively little effect on the response induced through the IgE receptor. Stimulation of RBL cells through either receptor causes increased production of phosphatidylinositol mono-phosphate (PIP) and phosphatidylinositol bis-phosphate (PIP2), which correlates with the F-actin response. Production of PIP and PIP2 may be important downstream signals since these polyphosphoinositides are able to regulate the interaction of gelsolin and profilin with actin. Thus the polymerization of actin can be triggered through either the adenosine receptor or the IgE receptor, but different upstream signaling pathways are being used. The IgE mediated response requires the activation of PKC while stimulation through the adenosine receptor is PKC independent but involves a G protein. PMID:8049523

  8. A heterodimer of human 3'-phospho-adenosine-5'-phosphosulphate (PAPS) synthases is a new sulphate activating complex.

    PubMed

    Grum, Daniel; van den Boom, Johannes; Neumann, Daniel; Matena, Anja; Link, Nina M; Mueller, Jonathan W

    2010-05-01

    3'-Phospho-adenosine-5'-phosphosulphate (PAPS) synthases are fundamental to mammalian sulphate metabolism. These enzymes have recently been linked to a rising number of human diseases. Despite many studies, it is not yet understood how the mammalian PAPS synthases 1 and 2 interact with each other. We provide first evidence for heterodimerisation of these two enzymes by pull-down assays and Förster resonance energy transfer (FRET) measurements. Kinetics of dimer dissociation/association indicates that these heterodimers form as soon as PAPSS1 and -S2 encounter each other in solution. Affinity of the homo- and heterodimers were found to be in the low nanomolar range using anisotropy measurements employing proteins labelled with the fluorescent dye IAEDANS that--in spite of its low quantum yield--is well suited for anisotropy due to its large Stokes shift. Within its kinase domain, the PAPS synthase heterodimer displays similar substrate inhibition by adenosine-5'-phosphosulphate (APS) as the homodimers. Due to divergent catalytic efficacies of PAPSS1 and -S2, the heterodimer might be a way of regulating PAPS synthase function within mammalian cells.

  9. A heterodimer of human 3'-phospho-adenosine-5'-phosphosulphate (PAPS) synthases is a new sulphate activating complex

    SciTech Connect

    Grum, Daniel; Boom, Johannes van den; Neumann, Daniel; Matena, Anja; Link, Nina M.; Mueller, Jonathan W.

    2010-05-07

    3'-Phospho-adenosine-5'-phosphosulphate (PAPS) synthases are fundamental to mammalian sulphate metabolism. These enzymes have recently been linked to a rising number of human diseases. Despite many studies, it is not yet understood how the mammalian PAPS synthases 1 and 2 interact with each other. We provide first evidence for heterodimerisation of these two enzymes by pull-down assays and Foerster resonance energy transfer (FRET) measurements. Kinetics of dimer dissociation/association indicates that these heterodimers form as soon as PAPSS1 and -S2 encounter each other in solution. Affinity of the homo- and heterodimers were found to be in the low nanomolar range using anisotropy measurements employing proteins labelled with the fluorescent dye IAEDANS that - in spite of its low quantum yield - is well suited for anisotropy due to its large Stokes shift. Within its kinase domain, the PAPS synthase heterodimer displays similar substrate inhibition by adenosine-5'-phosphosulphate (APS) as the homodimers. Due to divergent catalytic efficacies of PAPSS1 and -S2, the heterodimer might be a way of regulating PAPS synthase function within mammalian cells.

  10. Determination of adenosine effects and adenosine receptors in murine corpus cavernosum.

    PubMed

    Tostes, Rita C; Giachini, Fernanda R C; Carneiro, Fernando S; Leite, Romulo; Inscho, Edward W; Webb, R Clinton

    2007-08-01

    This study tested the hypothesis that adenosine, in murine corpora cavernosa, produces direct relaxation of smooth muscle cells and inhibition of contractile responses mediated by sympathetic nerve stimulation. Penes were excised from anesthetized male C57BL/6 mice, dissected, and cavernosal strips were mounted to record isometric force. Adenosine, 2-chloroadenosine (stable analog of adenosine), and 2-phenylaminoadenosine (CV1808) (A2(A)/A2(B) agonist) produced concentration-dependent relaxations of phenylephrine-contracted tissues. Relaxation to 2-chloroadenosine was inhibited, in a concentration-dependent manner, by 2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH58261; A2(A) antagonist; 10(-9)-10(-6) M) and N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamida (MRS1706; A2(B) antagonist; 10(-8)-10(-6) M). The combination of both antagonists abrogated 2-chloroadenosine-induced relaxation. Electrical field stimulation (EFS; 1-32 Hz) of adrenergic nerves produced frequency-dependent contractions that were inhibited by compounds that increase adenosine levels, such as 5'-iodotubercidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)adenine (adenosine deaminase inhibitor), and dipyridamole (inhibitor of adenosine transport). The adenosine A1 receptor agonist N(6)-cyclopentyladenosine (C8031) right-shifted contractile responses to EFS, with a significant inhibitory effect at 10(-6) M. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine (C101) (10(-7) M) enhanced contractile responses to EFS and eliminated the inhibitory effects of 5'-iodotubercidin. Dipyridamole and 5'-iodotubercidin had no effect on adenosine-mediated relaxation. In summary, adenosine directly relaxes cavernosal smooth muscle cells, by the activation of A2(A)/A2(B) receptor subtypes. In addition, adenosine negatively modulates sympathetic neurotransmission, by A1 receptor

  11. Adenosine analogs inhibit fighting in isolated male mice

    SciTech Connect

    Palmour, R.M.; Lipowski, C.J.; Simon, C.K.; Ervin, F.R.

    1989-01-01

    The potent adenosine analogs N-ethylcarboxamide adenosine (NECA) and phenylisopropyladenosine (PIA) inhibit fighting and associated agonistic behaviors in isolated male mice. These effects are reversed by methylxanthines; moderate doses of NECA which inhibit fighting have minimal effects on spontaneous locomotor activity. At very low doses, both NECA and PIA increase fighting in parallel with previously reported increases of motor activity. Brain levels of (/sup 3/H)-NECA and (/sup 3/H)-PIA achieved at behaviorally effective doses suggest an involvement of adenosine receptors. The biochemical mechanism of adenosine receptor action with respect to fighting is unknown, but may include neuromodulatory effects on the release of other, more classical neurotransmitters.

  12. Selective ligands for rat A3 adenosine receptors: structure-activity relationships of 1,3-dialkylxanthine 7-riboside derivatives.

    PubMed

    Kim, H O; Ji, X D; Melman, N; Olah, M E; Stiles, G L; Jacobson, K A

    1994-11-11

    1,3-Dibutylxanthine 7-riboside has been found to be a partial agonist at A3 adenosine receptors (van Galen et al. Mol. Pharmacol. 1994, 45, 1101-1111). 1,3-Dialkylxanthine 7-riboside analogues modified at the 1-, 3-, and 8-purine positions and at the ribose 5'-position were synthesized. The nucleoside analogues were examined for affinity in radioligand binding assays at rat brain A3 adenosine receptors stably expressed in CHO cells, using the radioligand [[125I]-4-amino-3-iodobenzyl]adenosine-5'-N-methyluronamide (AB-MECA). Affinity was assayed at rat brain A1 and A2a receptors using [3H]PIA and [3H]CGS 21680, respectively. The affinity of xanthine 7-ribosides at A3 receptors depended on the 1,3-dialkyl substituents in the order: Pent > or = Bu > Hx > Pr approximately Me. 1,3-Dipentylxanthine 7-riboside was slightly selective for A3 receptors (2-fold vs A1 and 10-fold vs A2a). 8-Methoxy substitution was tolerated at A3 receptors. 2-Thio vs 2-oxo substitution increased potency at all three subtypes and slightly increased A3 vs A1 selectivity. The 5'-uronamide modification, which was previously found to enhance A3 selectivity in N6-benzyladenosine derivatives, was also incorporated into the xanthine 7-ribosides, with similar results. The affinity of 1,3-dialkylxanthine 7-riboside 5'-uronamides at A3 receptors depended on the N-alkyluronamide substituent in the order: MeNH > EtNH > NH2 > Me2N. Affinity of the 5'-uronamides at A3 receptors was dependent on the 1,3-dialkyl substitution in the order: Bu > Pent > Hex. 1,3-Dibutylxanthine 7-riboside 5'-N-methylcarboxamide, with a Ki value of 229 nM at A3 receptors, was 160-fold selective for rat A3 vs A1 receptors and > 400-fold selective vs A2a receptors. This derivative acted as a full agonist in the A3 receptor-mediated inhibition of adenylate cyclase.

  13. Nonnucleoside inhibitors of adenosine kinase.

    PubMed

    Gomtsyan, Arthur; Lee, Chih-Hung

    2004-01-01

    Adenosine (ADO) is an endogenous inhibitory neuromodulator that increases nociceptive thresholds in response to tissue trauma and inflammation. Adenosine kinase (AK) is a key intracellular enzyme regulating intra- and extracellular concentrations of ADO. AK inhibition selectively amplifies extracellular ADO levels at cell and tissue sites where accelerated release of ADO occurs. AK inhibitors have been shown to provide effective antinociceptive, antiinflammatory and anticonvulsant activity in animal models, thus suggesting their potential therapeutic utility for pain, inflammation, epilepsy and possibly other central and peripheral nervous system diseases associated with cellular trauma and inflammation. This beneficial outcome may potentially lack nonspecific effects associated with the systemic administration of ADO receptor agonists. Until recently all of the reported AK inhibitors contained adenosine-like structural motif. The present review will discuss design, synthesis and analgesic and antiinflammatory properties of the novel nonnucleoside AK inhibitors that do not have close structural resemblance with the natural substrate ADO. Two classes of the nonnucleoside AK inhibitors are built on pyridopyrimidine and alkynylpyrimidine cores.

  14. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels

    PubMed Central

    Proks, Peter; Puljung, Michael C.; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M.

    2016-01-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues—mainly intracellular adenine nucleotide concentrations—to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377720

  15. Working memory and the homeostatic control of brain adenosine by adenosine kinase.

    PubMed

    Singer, P; McGarrity, S; Shen, H-Y; Boison, D; Yee, B K

    2012-06-28

    The neuromodulator adenosine maintains brain homeostasis and regulates complex behaviour via activation of inhibitory and excitatory adenosine receptors (ARs) in a brain region-specific manner. AR antagonists such as caffeine have been shown to ameliorate cognitive impairments in animal disease models but their effects on learning and memory in normal animals are equivocal. An alternative approach to reduce AR activation is to lower the extracellular tone of adenosine, which can be achieved by up-regulating adenosine kinase (ADK), the key enzyme of metabolic adenosine clearance. However, mice that globally over-express an Adk transgene ('Adk-tg' mice) were devoid of a caffeine-like pro-cognitive profile; they instead exhibited severe spatial memory deficits. This may be mechanistically linked to cortical/hippocampal N-methyl-d-aspartate receptor (NMDAR) hypofunction because the motor response to acute MK-801 was also potentiated in Adk-tg mice. Here, we evaluated the extent to which the behavioural phenotypes of Adk-tg mice might be modifiable by up-regulating adenosine levels in the cortex/hippocampus. To this end, we investigated mutant 'fb-Adk-def' mice in which ADK expression was specifically reduced in the telencephalon leading to a selective increase in cortical/hippocampal adenosine, while the rest of the brain remained as adenosine-deficient as in Adk-tg mice. The fb-Adk-def mice showed an even greater impairment in spatial working memory and a more pronounced motor response to NMDAR blockade than Adk-tg mice. These outcomes suggest that maintenance of cortical/hippocampal adenosine homeostasis is essential for effective spatial memory and deviation in either direction is detrimental with increased expression seemingly more disruptive than decreased expression.

  16. Effect of adenosine and adenosine analogs on ( sup 14 C)aminopyrine accumulation by rabbit parietal cells

    SciTech Connect

    Ota, S.; Hiraishi, H.; Terano, A.; Mutoh, H.; Kurachi, Y.; Shimada, T.; Ivey, K.J.; Sugimoto, T. )

    1989-12-01

    Adenosine receptors that modulate adenylate cyclase activity have been identified recently in a number of tissues. Adenosine A2 receptor is stimulatory to adenylate cyclase, whereas adenosine A1 receptor is inhibitory to adenylate cyclase. We investigated the effect of adenosine and its analogs on (14C)aminopyrine accumulation by rabbit parietal cells. Rabbit gastric mucosal cells were isolated by enzyme digestion. Parietal cells were enriched by nonlinear percoll gradients. (14C)Aminopyrine accumulation was used as an indicator of acid secretion. The effect of 2-chloroadenosine on histamine-stimulated (14C)aminopyrine accumulation was studied. The effects of N-ethylcarboxamideadenosine, 2-chloroadenosine, stable analogs of adenosine, and adenosine on (14C)aminopyrine accumulation were assessed. Cyclic AMP content of parietal cells was determined by radioimmunoassay. Histamine and carbachol, known secretagogues, stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine did not suppress histamine-stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine dose dependently increased (14C)aminopyrine accumulation. The order of potency was N-ethylcarboxamideadenosine greater than 2-chloroadenosine greater than adenosine. 8-Phenyltheophylline and theophylline, adenosine-receptor antagonists, or cimetidine did not have significant effects on the increase of AP uptake induced by 2-chloroadenosine. Coadministration of dipyridamole, and adenosine uptake inhibitor, augmented the effect of adenosine on (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine each induced a significant increase in cellular cyclic AMP. We conclude that there may be adenosine A2 receptors on rabbit parietal cells which modulate gastric acid secretion.

  17. A2A adenosine-receptor-mediated facilitation of noradrenaline release in rat tail artery involves protein kinase C activation and betagamma subunits formed after alpha2-adrenoceptor activation.

    PubMed

    Fresco, Paula; Oliveira, Jorge M A; Kunc, Filip; Soares, Ana Sofia; Rocha-Pereira, Carolina; Gonçalves, Jorge; Diniz, Carmen

    2007-07-01

    This work aimed to investigate the molecular mechanisms involved in the interaction of alpha2-adrenoceptors and adenosine A2A-receptor-mediated facilitation of noradrenaline release in rat tail artery, namely the type of G-protein involved in this effect and the step or steps where the signalling cascades triggered by alpha2-adrenoceptors and A2A-receptors interact. The selective adenosine A2A-receptor agonist 2-p-(2-carboxy ethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 100 nM) enhanced tritium overflow evoked by trains of 100 pulses at 5 Hz. This effect was abolished by the selective adenosine A2A-receptor antagonist 5-amino-7-(2-phenyl ethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo [1,5-c]pyrimidine (SCH 58261; 20 nM) and by yohimbine (1 microM). CGS 21680-mediated effects were also abolished by drugs that disrupted G(i/o)-protein coupling with receptors, PTX (2 microg/ml) or NEM (40 microM), by the anti-G(salpha) peptide (2 microg/ml) anti-G(betagamma) peptide (10 microg/ml) indicating coupling of A2A-receptors to G(salpha) and suggesting a crucial role for G(betagamma) subunits in the A(2A)-receptor-mediated enhancement of tritium overflow. Furthermore, phorbol 12-myristate 13-acetate (PMA; 1 microM) or forskolin (1 microM), direct activators of protein kinase C and of adenylyl cyclase, respectively, also enhanced tritium overflow. In addition, PMA-mediated effects were not observed in the presence of either yohimbine or PTX. Results indicate that facilitatory adenosine A2A-receptors couple to G(salpha) subunits which is essential, but not sufficient, for the release facilitation to occur, requiring the involvement of G(i/o)-protein coupling (it disappears after disruption of G(i/o)-protein coupling, PTX or NEM) and/or G(betagamma) subunits (anti-G(betagamma)). We propose a mechanism for the interaction in study suggesting group 2 AC isoforms as a plausible candidate for the interaction site, as these isoforms can integrate inputs from G

  18. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment.

    PubMed

    Ohta, Akio

    2016-01-01

    Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia-adenosine pathway for cancer immunotherapy. PMID:27066002

  19. Relaxation of isolated taenia coli of guinea-pig by enantiomers of 2-azido analogues of adenosine and adenine nucleotides.

    PubMed Central

    Cusack, N. J.; Planker, M.

    1979-01-01

    1 2-Azido photoaffinity analogues of adenosine 5'triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine have been synthesized and tested on guinea-pig taenia coli. 2 2-Azido-ATP and 2-azido-ADP were approximately 20 times more potent than ATP as relaxants of taenia coli, and required prolonged washout times before recovery of the muscle. 3 2-Azido-AMP and 2-azidoadenosine were 2 to 12 times more potent than ATP, but took much longer (up to 100 s) to reach maximal relaxation. This behaviour is different from that of AMP and adenosine which were much less potent than ATP. 4 L-Enantiomers of adenosine and adenine nucleotides were also tested. L-ATP and L-ADP were 3 to 6 times less potent than ATP and ADP, and L-AMP and L-adenosine were inactive. 2-Azido-L-ATP and 2-azido-L-ADP were approximately 120 times less potent than 2-Azido-ATP and 6 times less potent than ATP as relaxants of taenia coli. 2-Azido-L-AMP and 2-azidio-L-adenosine were almost inactive. 5 2-Azido derivatives are photolysed by u.v. irradiation to reactive intermediates. 2-Azido-ATP and 2-azidoadenosine might be suitable photoaffinity ligands for labelling putative P2 and P1 purine receptors respectively. 2-Azido-L-ATP and 2-azido-L-adenosine could be useful controls for nonspecific labelling. PMID:497519

  20. Fluorometric Determination of Adenosine Nucleotide Derivatives as Measures of the Microfouling, Detrital, and Sedimentary Microbial Biomass and Physiological Status

    PubMed Central

    Davis, William M.; White, David C.

    1980-01-01

    Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N6-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge. PMID:16345633

  1. Adenosine dry powder inhalation for bronchial challenge testing, part 2: proof of concept in asthmatic subjects.

    PubMed

    Lexmond, Anne J; van der Wiel, Erica; Hagedoorn, Paul; Bult, Wouter; Frijlink, Henderik W; ten Hacken, Nick H T; de Boer, Anne H

    2014-09-01

    Adenosine is an indirect stimulus to assess bronchial hyperresponsiveness (BHR(2)) in asthma. Bronchial challenge tests are usually performed with nebulised solutions of adenosine 5'-monophosphate (AMP(3)). The nebulised AMP test has several disadvantages, like long administration times and a restrictive maximum concentration that does not result in BHR in all patients. In this study, we investigated the applicability of dry powder adenosine for assessment of BHR in comparison to nebulised AMP. Dry powder adenosine was prepared in doubling doses (0.01-80 mg) derived from the nebulised AMP test with addition of two higher doses. Five asthmatic subjects performed two bronchial challenge tests, one with nebulised AMP following the 2-min tidal breathing method; the second with dry powder adenosine administered with an investigational inhaler and single slow inhalations (inspiratory flow rate 30-40 L/min). All subjects reached a 20% fall in FEV₁(4) with the new adenosine test (PD20(5)) compared to four subjects with the AMP test (PC₂₀(6)). Dry powder adenosine was well tolerated by all subjects and better appreciated than nebulised AMP. In conclusion, this new bronchial challenge test appears to be a safe and convenient alternative to the nebulised AMP test to assess BHR in asthmatic subjects.

  2. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory.

    PubMed

    Li, P; Rial, D; Canas, P M; Yoo, J-H; Li, W; Zhou, X; Wang, Y; van Westen, G J P; Payen, M-P; Augusto, E; Gonçalves, N; Tomé, A R; Li, Z; Wu, Z; Hou, X; Zhou, Y; IJzerman, A P; PIJzerman, Ad; Boyden, E S; Cunha, R A; Qu, J; Chen, J-F

    2015-11-01

    Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin (conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells, which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric behaviors. PMID:25687775

  3. Adenosine signaling in normal and sickle erythrocytes and beyond

    PubMed Central

    Zhang, Yujin; Xia, Yang

    2012-01-01

    Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A2B receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O2 release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A2A receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and progression

  4. Role of caffeic acid phenethyl ester on mitomycin C induced clastogenesis: analysis of chromosome aberrations, micronucleus, mitotic index and adenosine deaminase activity in vivo.

    PubMed

    Sulaiman, Ghassan Mohammad

    2012-05-01

    The aim of the present investigation is to determine whether the caffeic acid phenethyl ester (CAPE) in combination with mitomycine-C (MMC) can ameliorate MMC-induced clastogenesis in the bone marrow cells of mice. The scoring of chromosomal aberrations, mitotic activity and micronuclei were undertaken in the current study as markers of clastogenicity. The action of CAPE in adenosine deaminase enzyme (ADA) activities of serum, thymus and spleen were also investigated. The animals were orally administered CAPE alone at the doses 5 or 10 mg kg b.wt.(-1) for 5 days then sacrificed 24 hours after the CAPE administration. MMC was administered to mice either alone at a single dose (2 mg kg b.wt.(-1)) by intraperitoneal injection, before or after CAPE treatment. Pre or post - treatment with two doses of CAPE significantly decreased the number of chromosomal aberrations, micronuclei and adapted the mitotic activity reduction in the bone marrow cells of mice induced by MMC when compared with only MMC given group. In addition, combination treatment with MMC caused a significant decrease in the activities of ADA in serum, thymus and spleen. The results of this study showed that ADA activity probably related to high levels of reactive oxygen species. This study concluded that the protective effect of CAPE against MMC clastogenesis resides at least in part, in its antioxidant effects.

  5. Hydrogen potassium adenosine triphosphatase activity inhibition and downregulation of its expression by bioactive fraction DLBS2411 from Cinnamomum burmannii in gastric parietal cells

    PubMed Central

    Tjandrawinata, Raymond R; Nailufar, Florensia; Arifin, Poppy F

    2013-01-01

    This study assessed the gastric acid antisecretory effect of DLBS2411 fractionated from Cinnamomum burmannii. Hydrogen potassium adenosine triphosphatase (H+/K+ ATPase) activity and its gene expression were observed, and the antioxidant activity of DLBS2411 was also investigated. Treatment of DLBS2411 decreased the level of H+/K+ ATPase messenger RNA expression on human embryonic kidney 293 cells and rat gastric parietal cells in a dose-dependent manner, in vitro and ex vivo. DLBS2411 also acted as a competitive inhibitor by showing inhibition in gastric H+/K+ ATPase activity at various pHs. In gastric ulcer animal models induced with indomethacin and ethanol, DLBS2411showed a reduction in the number of petechiae, suggesting that the fraction also confers gastroprotective activity. Moreover, DLBS2411 was also found to have potent antioxidant activity. Taken together, DLBS2411 is a promising novel agent for the management of dyspepsia, a condition of hyperacidity and diseases in the stomach requiring gastroprotection. PMID:24101879

  6. Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: Influences of these enzymes on inflammatory response and pathological findings.

    PubMed

    Baldissera, Matheus D; Bottari, Nathieli B; Mendes, Ricardo E; Schwertz, Claiton I; Lucca, Neuber J; Dalenogare, Diessica; Bochi, Guilherme V; Moresco, Rafael N; Morsch, Vera M; Schetinger, Maria R C; Rech, Virginia C; Jaques, Jeandre A; Da Silva, Aleksandro S

    2015-11-01

    The aim of this study was to investigate acetylcholinesterase (AChE) in total blood and liver tissue; butyrylcholinesterase (BChE) in serum and liver tissue; adenosine deaminase (ADA) in serum and liver tissue; and pyruvate kinase (PK) in liver tissue of rats experimentally infected by Fasciola hepatica. Animals were divided into two groups with 12 animals each, as follows: group A (uninfected) and group B (infected). Samples were collected at 20 (A1 and B1;n=6 each) and 150 (A2 and B2; n=6 each) days post-infection (PI). Infected animals showed an increase in AChE activity in whole blood and a decrease in AChE activity in liver homogenates (P<0.05) at 20 and 150 days PI. BChE and PK activities were decreased (P<0.05) in serum and liver homogenates of infected animals at 150 days PI. ADA activity was decreased in serum at 20 and 150 days PI, while in liver homogenates it was only decreased at 150 days PI (P<0.05). Aspartate aminotransferase and alanine aminotransferase activities in serum were increased (P<0.05), while concentrations of total protein and albumin were decreased (P<0.05) when compared to control. The histological analysis revealed fibrous perihepatitis and necrosis. Therefore, we conclude that the liver fluke is associated with cholinergic and purinergic dysfunctions, which in turn may influence the pathogenesis of the disease.

  7. Aqueous seed extract of Syzygium cumini inhibits the dipeptidyl peptidase IV and adenosine deaminase activities, but it does not change the CD26 expression in lymphocytes in vitro.

    PubMed

    Bellé, Luziane Potrich; Bitencourt, Paula Eliete Rodrigues; Abdalla, Faida Husein; Bona, Karine Santos de; Peres, Alessandra; Maders, Liési Diones Konzen; Moretto, Maria Beatriz

    2013-03-01

    Syzygium cumini (Sc) have been intensively studied in the last years due its beneficial effects including anti-diabetic and anti-inflammatory potential. Thus, the aim of this study was to evaluate the effect of aqueous seed extract of Sc (ASc) in the activity of enzymes involved in lymphocyte functions. To perform this study, we isolated lymphocytes from healthy donors. Lymphocytes were exposed to 10, 30, and 100 mg/mL of ASc during 4 and 6 h and adenosine deaminase (ADA), dipeptidyl peptidase IV (DPP-IV), and acetylcholinesterase (AChE) activities as well as CD26 expression and cellular viability were evaluated. ASc inhibited the ADA and DPP-IV activities without alteration in the CD26 expression (DPP-IV protein). No alterations were observed in the AChE activity or in the cell viability. These results indicate that the inhibition of the DPP-IV and ADA activities was dependent on the time of exposition to ASc. We suggest that ASc exhibits immunomodulatory properties probably via the pathway of DPP-IV-ADA complex, contributing to the understanding of these proceedings in the purinergic signaling. PMID:22798209

  8. Role of CNPase in the oligodendrocytic extracellular 2',3'-cAMP-adenosine pathway.

    PubMed

    Verrier, Jonathan D; Jackson, Travis C; Gillespie, Delbert G; Janesko-Feldman, Keri; Bansal, Rashmi; Goebbels, Sandra; Nave, Klaus-Armin; Kochanek, Patrick M; Jackson, Edwin K

    2013-10-01

    Extracellular adenosine 3',5'-cyclic monophosphate (3',5'-cAMP) is an endogenous source of localized adenosine production in many organs. Recent studies suggest that extracellular 2',3'-cAMP (positional isomer of 3',5'-cAMP) is also a source of adenosine, particularly in the brain in vivo post-injury. Moreover, in vitro studies show that both microglia and astrocytes can convert extracellular 2',3'-cAMP to adenosine. Here, we examined the ability of primary mouse oligodendrocytes and neurons to metabolize extracellular 2',3'-cAMP and their respective adenosine monophosphates (2'-AMP and 3'-AMP). Cells were also isolated from mice deficient in 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase). Oligodendrocytes metabolized 2',3'-cAMP to 2'-AMP with 10-fold greater efficiency than did neurons (and also more than previously examined microglia and astrocytes); whereas, the production of 3'-AMP was minimal in both oligodendrocytes and neurons. The production of 2'-AMP from 2',3'-cAMP was reduced by 65% in CNPase -/- versus CNPase +/+ oligodendrocytes. Oligodendrocytes also converted 2'-AMP to adenosine, and this was also attenuated in CNPase -/- oligodendrocytes. Inhibition of classic 3',5'-cAMP-3'-phosphodiesterases with 3-isobutyl-1-methylxanthine did not block metabolism of 2',3'-cAMP to 2'-AMP and inhibition of classic ecto-5'-nucleotidase (CD73) with α,β-methylene-adenosine-5'-diphosphate did not attenuate the conversion of 2'-AMP to adenosine. These studies demonstrate that oligodendrocytes express the extracellular 2',3'-cAMP-adenosine pathway (2',3'-cAMP → 2'-AMP → adenosine). This pathway is more robustly expressed in oligodendrocytes than in all other CNS cell types because CNPase is the predominant enzyme that metabolizes 2',3'-cAMP to 2-AMP in CNS cells. By reducing levels of 2',3'-cAMP (a mitochondrial toxin) and increasing levels of adenosine (a neuroprotectant), oligodendrocytes may protect axons from injury. PMID:23922219

  9. Adenosine and sleep

    SciTech Connect

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  10. Role of adenosine monophosphate in regulation of metabolic pathways of perfused rat liver

    PubMed Central

    Hunter, A. R.; Jefferson, L. S.

    1969-01-01

    1. By perfusion of rat livers with 3mm-AMP in the perfusion medium we obtain increased intracellular concentrations of AMP. 2. These high intracellular concentrations of AMP lead to an increased output of glucose and urea into the perfusion medium. 3. The increased output of glucose in livers from fed rats is brought about primarily by an AMP-stimulated breakdown of liver glycogen. In livers from starved rats the increase in glucose output is not as great, reflecting the low contents of glycogen in livers from starved rats. 4. AMP inhibits gluconeogenesis from lactate in perfused livers. In the presence of high concentrations of lactate, however, the counteracting effects of AMP to increase glycogenolysis and to inhibit gluconeogenesis result in little change in the net glucose output. 5. The increased urea output is brought about by increased breakdown of amino acids that are present in the perfusion medium. In livers from starved rats the overall urea production is much higher, indicating increased catabolism of amino acids and other nitrogenous substrates in the absence of carbohydrate substrates. 6. AMP causes an inhibition of incorporation of labelled precursors into protein and nucleic acid. This may result from increased catabolism of precursors of proteins and nucleic acids as reflected by the more rapid breakdown of nitrogenous compounds. In support of this hypothesis, cell-free systems for amino acid incorporation isolated from livers perfused with and without AMP are equally capable of supporting protein synthesis. 7. The labelling pattern of RNA in perfused livers corresponds very closely to those found by pulse-labelling in vivo. AMP in no way alters the qualitative nature of the labelling patterns. 8. We consider these results as supporting evidence for the role of the concentration ratio of AMP to ATP in controlling the metabolic pathways that lead to the formation of ATP. PMID:5774478

  11. Rapid quantification of adenosine cyclic 3',5'-monophosphate by competitive enzyme-linked immunosorbent assay.

    PubMed

    Hsieh, M S; Jap, T S; Chiang, H

    1993-01-01

    A reliable and rapid enzyme-linked immunosorbent assay (ELISA) for cyclic AMP determination is described. Succinyl cyclic AMP, coupled to human albumin, was injected into rabbit to elicit antibodies to cyclic nucleotide hapten. Succinyl cyclic nucleotide to human albumin as immunogen or the cyclic AMP to porcine thyroglobulin as coating antigen was conjugated by a carbodiimide coupling procedure. The latter conjugate, captured to microplate with coating buffer and blocked with 0.8% gelatin for 30 minutes, was bound to antibody in inverse proportion to free cyclic AMP in a sample or standard. Bound antibody was then quantified with horseradish peroxidase-labelled goat antirabbit immunoglobulin and ABTS (2, 2'-Azinobis (3-ethylbenzthiazolinesulfonic Acid). Our results showed that concentration of both standard and sample cyclic AMP could be measured as low as 2.5 fmol/well (0.05 pmol/ml). The intra- and inter-assay coefficients of variation for samples were 6.0-8.0% and 8.9-9.5%, respectively. In addition, there was no cross-reaction of the antisera with ADP, ATP, 5'-AMP or cyclic GMP. Short period of incubation at room temperature seems as good as long period of incubation at 4 degrees C. The biological study demonstrated a consistency between increase in platelet-cyclic AMP generation after prostaglandin E1 stimulation and its biological effects. Our approach to ELISA is validated by showing agreement in levels, obtained in parallel by ELISA and RIA, of cyclic AMP content in extracts of prostaglandin E1-stimulated platelet cells.

  12. Effect of theophylline on adenosine production in the canine myocardium

    SciTech Connect

    McKenzie, J.E.; Steffen, R.P.; Haddy, F.J.

    1987-01-01

    Adenosine is thought to participate in local regulation of coronary blood flow. However, competitive antagonists of adenosine fail to block myocardial active hyperemia. The authors examined the effect of locally administered theophylline on active hyperemia and myocardial adenosine production during intracoronary isoproterenol infusion in the dog heart. Isoproterenol decreased coronary resistance and increased myocardial adenosine production. Infusion of theophylline at a rate that attenuated the vasodilator response to exogenously administered adenosine failed to attenuate the increase in coronary blood flow produced by isoproterenol. However, theophylline plus isoproterenol production greater increases in myocardial adensine production than isoproterenol alone. The curves relating resistance and adenosine in the presence of theophylline fell to the right of those in the absence of theophylline. These findings suggest that the failure of theophylline to attenuate isoproterenol hyperemia in the dog heart results at least in part from an increase in adenosine concentration at the arteriole to a level beyond that blocked by this competitive antagonist and that adenosine may in fact play a role in isoproterenol-induced active hyperemia.

  13. Effects of magnesium chloride on smooth muscle actomyosin adenosine-5'-triphosphatase activity, myosin conformation, and tension development in glycerinated smooth muscle fibers.

    PubMed

    Ikebe, M; Barsotti, R J; Hinkins, S; Hartshorne, D J

    1984-10-01

    The contractile system of smooth muscle exhibits distinctive responses to varying Mg2+ concentrations in that maximum adenosine-5'-triphosphatase (ATPase) activity of actomyosin requires relatively high concentrations of Mg2+ and also that tension in skinned smooth muscle fibers can be induced in the absence of Ca2+ by high Mg2+ concentrations. We have examined the effects of MgCl2 on actomyosin ATPase activity and on tension development in skinned gizzard fibers and suggest that the MgCl2-induced changes may be correlated to shifts in myosin conformation. At low concentrations of free Mg2+ (less than or equal to 1 mM) the actin-activated ATPase activity of phosphorylated turkey gizzard myosin is reduced and is increased as the Mg2+ concentration is raised. The increase in Mg2+ (over a range of 1-10 mM added MgCl2) induces the conversion of 10S phosphorylated myosin to the 6S form, and it was found that the proportion of myosin as 10S is inversely related to the level of actin-activated ATPase activity. Activation of the actin-activated ATPase activity also occurs with dephosphorylated myosin but at higher MgCl2 concentrations, between 10 and 40 mM added MgCl2. Viscosity and fluorescence measurements indicate that increasing Mg2+ levels over this concentration range favor the formation of the 6S conformation of dephosphorylated myosin, and it is proposed that the 10S to 6S transition is a prerequisite for the observed activation of ATPase activity. With glycerinated chicken gizzard fibers high MgCl2 concentrations (6-20 mM) promote tension in the absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Fragment screening of GPCRs using biophysical methods: identification of ligands of the adenosine A(2A) receptor with novel biological activity.

    PubMed

    Chen, Dan; Errey, James C; Heitman, Laura H; Marshall, Fiona H; Ijzerman, Adriaan P; Siegal, Gregg

    2012-12-21

    Fragment-based drug discovery (FBDD) has proven a powerful method to develop novel drugs with excellent oral bioavailability against challenging pharmaceutical targets such as protein-protein interaction targets. Very recently the underlying biophysical techniques have begun to be successfully applied to membrane proteins. Here we show that novel, ligand efficient small molecules with a variety of biological activities can be found by screening a small fragment library using thermostabilized (StaR) G protein-coupled receptors (GPCRs) and target immobilized NMR screening (TINS). Detergent-solubilized StaR adenosine A(2A) receptor was immobilized with retention of functionality, and a screen of 531 fragments was performed. Hits from the screen were thoroughly characterized for biochemical activity using the wild-type receptor. Both orthosteric and allosteric modulatory activity has been demonstrated in biochemical validation assays. Allosteric activity was confirmed in cell-based functional assays. The validated fragment hits make excellent starting points for a subsequent hit-to-lead elaboration program. PMID:23013674

  15. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus.

    PubMed

    Zhang, Dali; Xiong, Wei; Jackson, Michael F; Parkinson, Fiona E

    2016-07-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5'-nucleotidase activity. Wild-type (CD73(+/+)) and ecto-5'-nucleotidase-deficient (CD73(-/-)) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73(+/+) mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73(+/+) mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg(2+) conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5'-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73(-/-) mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5'-nucleotidase activity. PMID:27189965

  16. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus

    PubMed Central

    Zhang, Dali; Xiong, Wei; Jackson, Michael F.

    2016-01-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965

  17. Comorbidities in Neurology: Is Adenosine the Common Link?

    PubMed Central

    Boison, Detlev; Aronica, Eleonora

    2015-01-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the ‘adenosine hypothesis of comorbidities’ implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic ‘comorbidity model’, in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain comorbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions. PMID:25979489

  18. Structure of the DNA Ligase-Adenylate Intermediate: Lysine (ε-amino)-Linked Adenosine Monophosphoramidate*

    PubMed Central

    Gumport, Richard I.; Lehman, I. R.

    1971-01-01

    Proteolytic degradation of the Escherichia coli DNA ligase-adenylate intermediate releases adenosine 5′-monophosphate linked to the ε-amino group of lysine by a phosphoamide bond. Measurements of the rate of hydroxylaminolysis of the ligase-adenylate provide further support for a phosphoamide linkage in the native enzyme. Lysine (ε-amino)-linked adenosine monophosphoramidate has also been isolated from the T4 phage-induced ligase-adenylate intermediate. These results indicate that an initial step of the DNA ligase reaction consists of the nucleophilic attack of the ε-amino group of a lysine residue of the enzyme on the adenylyl phosphorus of DPN or ATP that leads to the formation of enzyme-bound lysine (εamino)-linked adenosine monophosphoramidate. PMID:4944632

  19. Muscarinic M(3) facilitation of acetylcholine release from rat myenteric neurons depends on adenosine outflow leading to activation of excitatory A(2A) receptors.

    PubMed

    Vieira, C; Duarte-Araújo, M; Adães, S; Magalhães-Cardoso, T; Correia-de-Sá, P

    2009-10-01

    Acetylcholine (ACh) is a major excitatory neurotransmitter in the myenteric plexus, and it regulates its own release acting via muscarinic autoreceptors. Adenosine released from stimulated myenteric neurons modulates ACh release preferentially via facilitatory A(2A) receptors. In this study, we investigated how muscarinic and adenosine receptors interplay to regulate ACh from the longitudinal muscle-myenteric plexus of the rat ileum. Blockade of the muscarinic M(2) receptor with 11-[[2-1[(diethylamino) methyl-1-piperidinyl]- acetyl

  20. Chicken embryo fibroblasts exposed to weak, time-varying magnetic fields share cell proliferation, adenosine deaminase activity, and membrane characteristics of transformed cells

    SciTech Connect

    Parola, A.H.; Porat, N.; Kiesow, L.A. )

    1993-01-01

    Chicken embryo fibroblasts (CEF) exposed to a sinusoidally varying magnetic field (SVMF) (100 Hz, 700 microT, for 24 h) showed a remarkable rise of segmental rotational relaxation rate of adenosine deaminase (ADA, EC 3.5.4.4) as determined by multifrequency phase fluorometry. Pyrene-labeled, small subunit ADA was applied to cultured (normal) CEF, which have available and abundant ADA complexing protein (ADCP) on their plasma membranes. Sine-wave-modulated fluorometry of the pyrene yielded a profile of phase angle vs. modulation frequency. In SVMF-treated cells and in Rous-sarcoma-virus (RSV) transformed cells the differential phase values at low modulation frequencies of the excitation are remarkably reduced. This effect is magnetic rather than thermal, because the temperature was carefully controlled and monitored; nevertheless to further check this matter we studied CEF, infected by the RSV-Ts68 temperature-sensitive mutant (36 degrees C transformed, 41 degrees C revertant). When grown at 36 degrees C in the SVMF, cells did not show the slightest trend towards reversion, as would be expected had there been local heating. Concomitant with the increased segmental rotational relaxation rate of ADA, there was a decrease in fluorescence lifetime and a slight, yet significant, increase in membrane lipid microfluidity. These biophysical observations prompted us to examine the effect of SVMF on cell proliferation and ADA activity (a malignancy marker): higher rates of cell proliferation and reduced specific activity of ADA were observed.

  1. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  2. Halobacterial adenosine triphosphatases and the adenosine triphosphatase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, Hordur; Sadler, Martha H.; Hochstein, Lawrence I.

    1986-01-01

    Membranes prepared from various members of the genus Halobacterium contained a Triton X-l00 activated adenosine triphosphatase. The enzyme from Halobacterium saccharovorum was unstable in solutions of low ionic strength and maximally active in the presence of 3.5 M NaCl. A variety of nucleotide triphosphates was hydrolyzed. MgADP, the product of ATP hydrolysis, was not hydrolyzed and was a competitive inhibitor with respect to MgATP. The enzyme from H. saccharovorum was composed of at least 2 and possibly 4 subunits. The 83-kDa and 60-kDa subunits represented about 90 percent of total protein. The 60-kDa subunit reacted with dicyclohexyl-carbodiimide when inhibition was carried out in an acidic medium. The enzyme from H. saccharovorum, possesses properties of an F(1)F(0) as well as an E(1)E(2) ATPase.

  3. Activation of Transient Receptor Potential Canonical 3 (TRPC3)-mediated Ca2+ Entry by A1 Adenosine Receptor in Cardiomyocytes Disturbs Atrioventricular Conduction*

    PubMed Central

    Sabourin, Jessica; Antigny, Fabrice; Robin, Elodie; Frieden, Maud; Raddatz, Eric

    2012-01-01

    Although the activation of the A1-subtype of the adenosine receptors (A1AR) is arrhythmogenic in the developing heart, little is known about the underlying downstream mechanisms. The aim of this study was to determine to what extent the transient receptor potential canonical (TRPC) channel 3, functioning as receptor-operated channel (ROC), contributes to the A1AR-induced conduction disturbances. Using embryonic atrial and ventricular myocytes obtained from 4-day-old chick embryos, we found that the specific activation of A1AR by CCPA induced sarcolemmal Ca2+ entry. However, A1AR stimulation did not induce Ca2+ release from the sarcoplasmic reticulum. Specific blockade of TRPC3 activity by Pyr3, by a dominant negative of TRPC3 construct, or inhibition of phospholipase Cs and PKCs strongly inhibited the A1AR-enhanced Ca2+ entry. Ca2+ entry through TRPC3 was activated by the 1,2-diacylglycerol (DAG) analog OAG via PKC-independent and -dependent mechanisms in atrial and ventricular myocytes, respectively. In parallel, inhibition of the atypical PKCζ by myristoylated PKCζ pseudosubstrate inhibitor significantly decreased the A1AR-enhanced Ca2+ entry in both types of myocytes. Additionally, electrocardiography showed that inhibition of TRPC3 channel suppressed transient A1AR-induced conduction disturbances in the embryonic heart. Our data showing that A1AR activation subtly mediates a proarrhythmic Ca2+ entry through TRPC3-encoded ROC by stimulating the phospholipase C/DAG/PKC cascade provide evidence for a novel pathway whereby Ca2+ entry and cardiac function are altered. Thus, the A1AR-TRPC3 axis may represent a potential therapeutic target. PMID:22692208

  4. Activation of Adenosine 2A receptor inhibits neutrophil apoptosis in an autophagy-dependent manner in mice with systemic inflammatory response syndrome

    PubMed Central

    Liu, Yang-Wuyue; Yang, Ting; Zhao, Li; Ni, Zhenhong; Yang, Nan; He, Fengtian; Dai, Shuang-Shuang

    2016-01-01

    Systemic inflammatory response syndrome (SIRS) is an overwhelming whole body inflammation caused by infectious diseases or sterile insults. Neutrophils are the dominant participants during inflammation, and their survival and death determine the initiation as well as resolution of SIRS. Apoptosis and autophagy are two fundamental cellular processes that modulating cell fate, but their correlation and regulators in neutrophils under SIRS condition have not been elucidated. In this study, we demonstrated that high dose of LPS induced both apoptosis and autophagy of neutrophils in a mouse SIRS model and LPS-stimulated neutrophils in vitro. Moreover, we found that the adenosine 2A receptor (A2AR), a known anti-inflammatory G protein-coupled receptor (GPCR), could inhibit LPS-induced neutrophil apoptosis by suppressing the LPS-induced autophagy. Activation of A2AR suppressed LPS-induced autophagy by inhibiting the ROS-JNK pathway as well as promoting GPCR βϒ subunit–AKT signaling. The A2AR-inhibited autophagy suppressed apoptosis of neutrophils by blocking caspase8, caspase3 and PARP signaling. These findings not only increase our understandings of neutrophils’ fate and function in response to systemic inflammation, but also identify a novel anti-inflammatory role of A2AR in modulating neutrophils’ survival during inflammation. PMID:27647162

  5. Derivatives of benzimidazol-2-ylquinoline and benzimidazol-2-ylisoquinoline as selective A1 adenosine receptor antagonists with stimulant activity on human colon motility.

    PubMed

    Cosimelli, Barbara; Taliani, Sabrina; Greco, Giovanni; Novellino, Ettore; Sala, Annalisa; Severi, Elda; Da Settimo, Federico; La Motta, Concettina; Pugliesi, Isabella; Antonioli, Luca; Fornai, Matteo; Colucci, Rocchina; Blandizzi, Corrado; Daniele, Simona; Trincavelli, Maria Letizia; Martini, Claudia

    2011-10-01

    A number of quinolines and isoquinolines connected in various ways to a substituted benzimidazol-2-yl system were synthesized and evaluated as novel antagonists of adenosine receptors (ARs) by competition experiments using human A(1), A(2A), and A(3) ARs. The new compounds were designed based on derivatives of 2-(benzimidazol-2-yl)quinoxaline, previously reported as potent and selective antagonists of A(1) and A(3) ARs. Among these, 3-[4-(ethylthio)-1H-benzimidazol-2-yl]isoquinoline 4b exhibited the best combination of potency toward the A(1) AR (K(i) =1.4 nM) and selectivity against the A(2A) (K(i) >10 μM), A(2B) (K(i)>10 μM), and A(3) ARs (K(i)>1 μM). Functional experiments in circular smooth muscle preparations of isolated human colon showed that 4b behaves as a potent and selective antagonist of the A(1) AR in the neuromuscular compartment of this intestinal region. Biological and pharmacological data suggest that 4b is a suitable starting point for the development of novel agents endowed with stimulant properties on colonic activity.

  6. Activation of Adenosine 2A receptor inhibits neutrophil apoptosis in an autophagy-dependent manner in mice with systemic inflammatory response syndrome.

    PubMed

    Liu, Yang-Wuyue; Yang, Ting; Zhao, Li; Ni, Zhenhong; Yang, Nan; He, Fengtian; Dai, Shuang-Shuang

    2016-01-01

    Systemic inflammatory response syndrome (SIRS) is an overwhelming whole body inflammation caused by infectious diseases or sterile insults. Neutrophils are the dominant participants during inflammation, and their survival and death determine the initiation as well as resolution of SIRS. Apoptosis and autophagy are two fundamental cellular processes that modulating cell fate, but their correlation and regulators in neutrophils under SIRS condition have not been elucidated. In this study, we demonstrated that high dose of LPS induced both apoptosis and autophagy of neutrophils in a mouse SIRS model and LPS-stimulated neutrophils in vitro. Moreover, we found that the adenosine 2A receptor (A2AR), a known anti-inflammatory G protein-coupled receptor (GPCR), could inhibit LPS-induced neutrophil apoptosis by suppressing the LPS-induced autophagy. Activation of A2AR suppressed LPS-induced autophagy by inhibiting the ROS-JNK pathway as well as promoting GPCR βϒ subunit-AKT signaling. The A2AR-inhibited autophagy suppressed apoptosis of neutrophils by blocking caspase8, caspase3 and PARP signaling. These findings not only increase our understandings of neutrophils' fate and function in response to systemic inflammation, but also identify a novel anti-inflammatory role of A2AR in modulating neutrophils' survival during inflammation. PMID:27647162

  7. Adenosine A1 receptor protein levels and activity is increased in the cerebral cortex in Creutzfeldt-Jakob disease and in bovine spongiform encephalopathy-infected bovine-PrP mice.

    PubMed

    Rodríguez, Agustín; Martín, Mairena; Albasanz, José Luís; Barrachina, Marta; Espinosa, Juan Carlos; Torres, Juan María; Ferrer, Isidro

    2006-10-01

    Prion diseases are characterized by neuronal loss, astrocytic gliosis, spongiform change, and abnormal protease-resistant prion protein (PrP) deposition. Creutzfeldt-Jakob disease (CJD) is the most prevalent human prion disease, whereas scrapie and bovine spongiform encephalopathy (BSE) are the most common animal prion diseases. Several candidates have been proposed as mediators of degeneration in prion diseases, one of them glutamate. Recent studies have shown reduced metabotropic glutamate receptor/phospholipase C signaling in the cerebral cortex in CJD, suggesting that this important neuromodulator and neuroprotector pathway is attenuated in CJD. Adenosine is involved in the regulation of different metabolic processes under physiological and pathologic conditions. Adenosine function is mediated by adenosine receptors, which are categorized into 4 types: A1, A2A, A2B, and A3. A1Rs are G-protein-coupled receptors that induce the inhibition of adenylyl cyclase activity. The most dramatic inhibitory actions of adenosine receptors are on the glutamatergic system. For these reasons, we examined the levels of A1Rs in the frontal cortex of 12 patients with CJD and 6 age-matched controls and in BSE-infected bovine-PrP transgenic mice (BoPrP-Tg110 mice) at different postincubation times to address modifications in A1Rs with disease progression. A significant increase in the protein levels of A1Rs was found in the cerebral cortex in CJD and in the murine BSE model at advanced stages of the disease and coincidental with the appearance of PrP expression. In addition, the activity of A1Rs was analyzed by in vitro assays with isolated membranes of the frontal cortex in CJD. Increased activity of the receptor, as revealed by the decreased forskolin-stimulated cAMP production in response to the A1R agonists cyclohexyl adenosine and cyclopentyl adenosine, was observed in CJD cases when compared with controls. Finally, mRNA A1R levels were similar in CJD and control cases, thus

  8. NF-κB Is Activated in CD4+ iNKT Cells by Sickle Cell Disease and Mediates Rapid Induction of Adenosine A2A Receptors

    PubMed Central

    Yu, Jennifer C.; Ken, Ruey; Neuberg, Donna; Nathan, David G.; Linden, Joel

    2013-01-01

    Reperfusion injury following tissue ischemia occurs as a consequence of vaso-occlusion that is initiated by activation of invariant natural killer T (iNKT) cells. Sickle cell disease (SDC) results in widely disseminated microvascular ischemia and reperfusion injury as a result of vaso-occlusion by rigid and adhesive sickle red blood cells. In mice, iNKT cell activation requires NF-κB signaling and can be inhibited by the activation of anti-inflammatory adenosine A2A receptors (A2ARs). Human iNKT cells are divided into subsets of CD4+ and CD4- cells. In this study we found that human CD4+ iNKT cells, but not CD4- cells undergo rapid NF-κB activation (phosphorylation of NF-κB on p65) and induction of A2ARs (detected with a monoclonal antibody 7F6-G5-A2) during SCD painful vaso-occlusive crises. These findings indicate that SCD primarily activates the CD4+ subset of iNKT cells. Activation of NF-κB and induction of A2ARs is concordant, i.e. only CD4+ iNKT cells with activated NF-κB expressed high levels of A2ARs. iNKT cells that are not activated during pVOC express low levels of A2AR immunoreactivity. These finding suggest that A2AR transcription may be induced in CD4+ iNKT cells as a result of NF-κB activation in SCD. In order to test this hypothesis further we examined cultured human iNKT cells. In cultured cells, blockade of NF-κB with Bay 11–7082 or IKK inhibitor VII prevented rapid induction of A2AR mRNA and protein upon iNKT activation. In conclusion, NF-κB-mediated induction of A2ARs in iNKT cells may serve as a counter-regulatory mechanism to limit the extent and duration of inflammatory immune responses. As activated iNKT cells express high levels of A2ARs following their activation, they may become highly sensitive to inhibition by A2AR agonists. PMID:24124453

  9. Mitochondrial adenosine triphosphatase of the fission yeast, Schizosaccharomyces pombe 972h-. Changes in activity and inhibitor-sensitivity in response to catabolite repression.

    PubMed Central

    Lloyd, D; Edwards, S W

    1976-01-01

    1. The specific activity of mitochondrial ATPase (adenosine triphosphatase) in extracts of Schizosaccharomyces pombe decreased 2.5-fold as the glucose concentration in the growth medium decreased from 50mM to 15mM. 2. During the late exponential phase of growth, ATPase activity doubled. 3. Sensitivity to oligomycin and Dio-9 as measured by values for I50(mug of inhibitor/mg of protein giving 50% inhibition) at pH 6.8 increased sixfold and ninefold respectively during the initial decrease in ATPase activity, and this degree of sensitivity was maintained for the remainder of the growth cycle. 4. Increased sensitivity to NN'-dicyclohexylcarbodi-imide, triethyltin and venturicidin was also observed during the early stage of glucose de-repression. 5. Smaller increases in sensitivity to efrapeptin, aurovertin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diaz-le, quercetin and spegazzinine also occurred. 6. The ATPase of glycerol-grown cells was less sensitive to inhibitors than that of glucose-repressed cells; change in values for I50 were not so marked during the growth cycle of cells growing with glycerol. 7. When submitochondrial particles from glycerol-grown cells were tested by passage through Sephadex G-50, a fourfold increase in activity was accompanied by increased inhibitor resistance. 8. Gel filtration of submitochondrial particles from glucose-de-repressed cells gave similar results, whereas loss of ATPase occurred in submitochondrial particles from glucose-repressed cells. 9. It is proposed that alterations in sensitivity to inhibitors at different stages of glucose derepression may be partly controlled by a naturally occuring inhibitor of ATPase. 10. The inhibitors tested may be classififed into two groups on the basis of alterations of sensitivity of the ATPase during physiological modification: (a) oligomycin, Dio-9, NN'-dicyclohexylcarbodi-imide, venturicidin and triethyltin, and (b) efrapeptin, aurovertin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, quercetin and

  10. [Adenosine triphosphatase activity in the organs of the crab Hemigrapsus sanguineus, acclimated to sea water of different salinity].

    PubMed

    Busev, V M

    1977-01-01

    In crabs acclimated to low salinity, the activity of Na, K-ATPase from the gills increases; the activity also increases in the antennal glands after acclimation of the animals to high salinity. The activity of Na, K-ATPase in the abdominal ganglion and in the heart does not depend on the salinity to which crabs had been acclimated. Changes in the activity of Mg-ATPase in the gills and antennal glands associated with acclimation of crabs to sea water with different salinity correspond to those in the activity of Na, K-ATPase.

  11. Histamine H3 receptor activation counteracts adenosine A2A receptor-mediated enhancement of depolarization-evoked [3H]-GABA release from rat globus pallidus synaptosomes.

    PubMed

    Morales-Figueroa, Guadalupe-Elide; Márquez-Gómez, Ricardo; González-Pantoja, Raúl; Escamilla-Sánchez, Juan; Arias-Montaño, José-Antonio

    2014-08-20

    High levels of histamine H3 receptors (H3Rs) are found in the globus pallidus (GP), a neuronal nucleus in the basal ganglia involved in the control of motor behavior. By using rat GP isolated nerve terminals (synaptosomes), we studied whether H3R activation modified the previously reported enhancing action of adenosine A2A receptor (A2AR) stimulation on depolarization-evoked [(3)H]-GABA release. At 3 and 10 nM, the A2AR agonist CGS-21680 enhanced [(3)H]-GABA release induced by high K(+) (20 mM) and the effect of 3 nM CGS-21680 was prevented by the A2AR antagonist ZM-241385 (100 nM). The presence of presynaptic H3Rs was confirmed by the specific binding of N-α-[methyl-(3)H]-histamine to membranes from GP synaptosomes (maximum binding, Bmax, 1327 ± 79 fmol/mg protein; dissociation constant, Kd, 0.74 nM), which was inhibited by the H3R ligands immepip, clobenpropit, and A-331440 (inhibition constants, Ki, 0.28, 8.53, and 316 nM, respectively). Perfusion of synaptosomes with the H3R agonist immepip (100 nM) had no effect on K(+)-evoked [(3)H]-GABA release, but inhibited the stimulatory action of A2AR activation. In turn, the effect of immepip was blocked by the H3R antagonist clobenpropit, which had no significant effect of its own on K(+)-induced [(3)H]-GABA release. These data indicate that H3R activation selectively counteracts the facilitatory action of A2AR stimulation on GABA release from striato-pallidal projections.

  12. Histamine H3 Receptor Activation Counteracts Adenosine A2A Receptor-Mediated Enhancement of Depolarization-Evoked [3H]-GABA Release from Rat Globus Pallidus Synaptosomes

    PubMed Central

    2014-01-01

    High levels of histamine H3 receptors (H3Rs) are found in the globus pallidus (GP), a neuronal nucleus in the basal ganglia involved in the control of motor behavior. By using rat GP isolated nerve terminals (synaptosomes), we studied whether H3R activation modified the previously reported enhancing action of adenosine A2A receptor (A2AR) stimulation on depolarization-evoked [3H]-GABA release. At 3 and 10 nM, the A2AR agonist CGS-21680 enhanced [3H]-GABA release induced by high K+ (20 mM) and the effect of 3 nM CGS-21680 was prevented by the A2AR antagonist ZM-241385 (100 nM). The presence of presynaptic H3Rs was confirmed by the specific binding of N-α-[methyl-3H]-histamine to membranes from GP synaptosomes (maximum binding, Bmax, 1327 ± 79 fmol/mg protein; dissociation constant, Kd, 0.74 nM), which was inhibited by the H3R ligands immepip, clobenpropit, and A-331440 (inhibition constants, Ki, 0.28, 8.53, and 316 nM, respectively). Perfusion of synaptosomes with the H3R agonist immepip (100 nM) had no effect on K+-evoked [3H]-GABA release, but inhibited the stimulatory action of A2AR activation. In turn, the effect of immepip was blocked by the H3R antagonist clobenpropit, which had no significant effect of its own on K+-induced [3H]-GABA release. These data indicate that H3R activation selectively counteracts the facilitatory action of A2AR stimulation on GABA release from striato-pallidal projections. PMID:24884070

  13. The adenosine A2A receptor antagonist, istradefylline enhances the anti-parkinsonian activity of low doses of dopamine agonists in MPTP-treated common marmosets.

    PubMed

    Uchida, Shin-ichi; Soshiroda, Kazuhiro; Okita, Eri; Kawai-Uchida, Mika; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2015-01-15

    The adenosine A2A receptor antagonist, istradefylline, enhances anti-parkinsonian activity in patients with advanced Parkinson׳s disease (PD) already treated with combinations of L-DOPA and dopamine agonist drugs but who are still exhibiting prolonged 'OFF' periods. In contrast, the effects of istradefylline on motor function when administered in combination with low dose dopamine agonist therapy in early PD are unknown. We now investigate whether istradefylline administered with a threshold dose of either the non-ergot dopamine agonist, ropinirole or the ergot dopamine agonist, pergolide enhances anti-parkinsonian activity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmoset. Both ropinirole (0.01-0.1mg/kg p.o.) and pergolide (0.003-0.1mg/kg p.o.) administered alone produced dose dependent increases in locomotor activity, a reduction in motor disability. Threshold doses of ropinirole (0.025-0.075mg/kg p.o.) and pergolide (0.01-0.075mg/kg p.o.) were then selected that in individual animals caused a small but non-significant anti-parkinsonian effect. Administration of istradefylline (10mg/kg p.o.) alone resulted in a decrease in motor disability and increase in 'ON' time but dyskinesia was not observed. Combined administration of pergolide or ropinirole with istradefylline resulted in an increase in the reversal of motor disability and increase in 'ON' time compared to that produced by either treatment alone but dyskinesia was still not observed. These results show that istradefylline is effective in improving motor function when combined with low dose dopamine agonist treatment. In early PD, this may avoid dose escalation or allow a reduction in dopamine agonist dosage without a loss of efficacy and prevent dopaminergic side-effects from becoming treatment limiting. PMID:25499739

  14. Genetics Home Reference: adenosine deaminase 2 deficiency

    MedlinePlus

    ... Health Conditions adenosine deaminase 2 deficiency adenosine deaminase 2 deficiency Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Adenosine deaminase 2 (ADA2) deficiency is a disorder characterized by abnormal ...

  15. Comparison of Activities and Properties of Pyrophosphate and Adenosine Triphosphate-Dependent Phosphofructokinases of Black Gram (Phaseolus mungo) Seeds.

    PubMed

    Ashihara, H; Stupavska, S

    1984-09-01

    Both pyrophosphate-dependent phosphofructokinase (PPi-PFKase, EC 2.7.1.90) and ATPdependent phosphofructokinase (ATP-PFKase, EC 2.7. 1.11) were present in dry and germinated black gram seeds. In the absence of fructose-2,6-biphosphate (F2,6BP), the activity of PPi-PFKase expressed as nmol · min(-1) · (pair of cotyledons)(-1) was much lower than that of ATP-PFKase in both dry and germinated seeds. However, PPi-PFKase was activated by F2,6BP and its activity reached the same level as ATP-PFKase activity. ATP-PFKase showed sigmoidal kinetics respective to fructose-6-phosphate (F6P), while PPi-PFKase exhibited hyperbolic kinetics in the presence of F2,6BP. The F6P concentration for half maximal activity of ATP-PFKase (1.5 mM) was nearly 5 times lower than that of PPi-PFKase (7.1 mM). The apparent Km values of PPi-PFKase for PPi and that of ATP-PFKase for ATP were 0.29 mM and 0.23 mM, respectively. Phosphoenolpyruvate (PEP) and citrate inhibited ATP-PFKase activity, but they did not affect PPi-PFKase activity. The activity of PPi-PFKase was inhibited by Pi, while only a little Pi inhibition was observed in the case of ATP-PFKase. These results suggest that the control mechanism of PPi-PFKase and that of ATP-PFKase are quite different. In contrast to pineapple leaves (Carnal, N. W. and C. C. Black, Biochem. Biophys. Res. Commun. 86, 20-26, 1979) and caster bean seedlings (Krugar et al., FEBS Lett. 153, 409-412, 1983), PPi-PFKase is not the predominant PFKase activity in black gram seeds.

  16. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases

    PubMed Central

    Zhao, Xiaoqi; Gu, Tianxiang

    2016-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP) or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the body. Evidence exhibits that HCN channels play critical roles in the generation and conduction of the electrical impulse and the physiopathological process of some cardiac diseases. They may constitute promising drug targets in the treatment of these cardiac diseases. Pharmacological treatment targeting HCN channels is of benefit to these cardiac conditions. PMID:27556324

  17. Oxidative Stress Parameters and Erythrocyte Membrane Adenosine Triphosphatase Activities in Streptozotocin-induced Diabetic Rats Administered Aqueous Preparation of Kalanchoe Pinnata Leaves

    PubMed Central

    Menon, Nikhil; Sparks, Jean; Omoruyi, Felix O.

    2016-01-01

    Background: Diabetes mellitus is a chronic metabolic disease that according to the World Health Organization affects more than 382 million people. The rise in diabetes mellitus coupled with the lack of an effective treatment has led many to investigate medicinal plants to identify a viable alternative. Objective: To evaluate red blood cell (RBC) membrane adenosine triphosphatase (ATPase) activities and antioxidant levels in streptozotocin-induced diabetic rats administered aqueous preparation of Kalanchoe pinnata leaves. Materials and Methods: Diabetes mellitus was induced in rats by a single administration of streptozotocin (60 mg/kg). Diabetic rats were then treated with aqueous K. pinnata preparation (three mature leaves ~ 9.96 g/70 kg body weight or about 0.14 g/kg body weight/day) for 30 days. Serum glucose, RBC membrane ATPase activities, and antioxidant levels were determined. Results: We noted weight loss and reduced food consumption in the treated diabetic group. Serum glucose levels were reduced in the treated diabetic group compared to the other groups. Superoxide dismutase activity and glutathione levels were not significantly elevated in the treated group compared to the diabetic group. However, serum catalase activity was significantly (P < 0.05) increased in the treated diabetic group compared to the other groups. Serum thiobarbituric acid reactive substances were not significantly altered among the groups. There was a significant (P < 0.05) increase in Mg2+ ATPase activity and a nonsignificant increase in Na+/K+ ATPase activity in the RBC membrane of the treated diabetic group compared to the diabetic group. Conclusion: The consumption of aqueous preparation of K. pinnata may accrue benefits in the management of diabetes by lowering oxidative stress often associated with the disease and improving the availability of cellular magnesium through an increase in the magnesium ATPase pump in the RBC membrane for increased cellular metabolism of glucose

  18. Absorption of water and sodium and activity of adenosine triphosphatases in the rectal mucosa in tropical sprue.

    PubMed Central

    Ramakrishna, B S; Mathan, V I

    1988-01-01

    In 10 southern Indian patients with tropical sprue, in vivo dialysis showed a defect of absorption of water and sodium from the rectum, when compared with 11 healthy volunteers. Sodium-potassium-ATPase activity, measured in homogenates of rectal biopsies, was significantly diminished in patients with sprue. Magnesium-ATPase and alkaline phosphatase were normal in biopsy homogenates. Decreased activity of colonic sodium-potassium-ATPase may contribute to diarrhoea in some patients with tropical sprue. PMID:2840363

  19. Cytidylyl- and Uridylyl Cyclase Activity of Bacillus anthracis Edema Factor and Bordetella pertussis CyaA

    PubMed Central

    Göttle, Martin; Dove, Stefan; Kees, Frieder; Schlossmann, Jens; Geduhn, Jens; König, Burkhard; Shen, Yuequan; Tang, Wei-Jen; Kaever, Volkhard; Seifert, Roland

    2010-01-01

    Cyclic adenosine 3′:5′-monophosphate (cAMP) and cyclic guanosine 3′:5′-monophosphate (cGMP) are second messengers for a numerous mammalian cell functions. The natural occurrence and synthesis of a third cyclic nucleotide (cNMP), cyclic cytidine 3′:5′-monophosphate (cCMP) is discussed controversially, and almost nothing is known about cyclic uridine 3′:5′-monophosphate (cUMP). Bacillus anthracis and Bordetella pertussis secrete the adenylyl cyclase (AC) toxins edema factor (EF) and CyaA, respectively, weakening immune responses and facilitating bacterial proliferation. A cell-permeable cCMP analog inhibits human neutrophil superoxide production. Here, we report that EF and CyaA also possess cytidylyl cyclase (CC) and uridylyl cyclase (UC) activity. CC- and UC activity was determined by a radiometric assay, using [α-32P]CTP and [α-32P]UTP as substrates, respectively, and by an HPLC method. The identity of cNMPs was confirmed by mass spectrometry. Based on available crystal structures, we developed a model illustrating conversion of CTP to cCMP by bacterial toxins. In conclusion, we have shown both EF and CyaA have a rather broad substrate-specificity and exhibit cytidylyl- and uridylyl cyclase activity. Both cCMP and cUMP may contribute to toxin actions. PMID:20521845

  20. Potassium inhibits nitric oxide and adenosine arteriolar vasodilatation via K(IR) and Na(+)/K(+) ATPase: implications for redundancy in active hyperaemia.

    PubMed

    Lamb, Iain R; Murrant, Coral L

    2015-12-01

    Redundancy, in active hyperaemia, where one vasodilator can compensate for another if the first is missing, would require that one vasodilator inhibits the effects of another; therefore, if the first vasodilator is inhibited, its inhibitory influence on the second vasodilator is removed and the second vasodilator exerts a greater vasodilatory effect. We aimed to determine whether vasodilators relevant to skeletal muscle contraction [potassium chloride (KCl), adenosine (ADO) and nitric oxide] inhibit one another and, in addition, to investigate the mechanisms for this interaction. We used the hamster cremaster muscle and intravital microscopy to directly visualize 2A arterioles when exposed to a range of concentrations of one vasodilator [10(-8) to 10(-5) M S-nitroso-N-acetyl penicillamine (SNAP), 10(-8) to 10(-5) M ADO, 10 and 20 mM KCl] in the absence and then in the presence of a second vasodilator (10(-7) M ADO, 10(-7) M SNAP, 10 mM KCl). We found that KCl significantly attenuated SNAP-induced vasodilatations by ∼65.8% and vasodilatations induced by 10(-8) to 10(-6) M ADO by ∼72.8%. Furthermore, we observed that inhibition of KCl vasodilatation, by antagonizing either Na(+)/K(+) ATPase using ouabain or inward rectifying potassium channels using barium chloride, could restore the SNAP-induced vasodilatation by up to ∼53.9% and 30.6%, respectively, and also restore the ADO-induced vasodilatations by up to ∼107% and 76.7%, respectively. Our data show that vasodilators relevant to muscle contraction can interact in a way that alters the effectiveness of other vasodilators. These data suggest that active hyperaemia may be the result of complex interactions between multiple vasodilators via a redundant control paradigm.

  1. Stereochemical control over Mn(II)-Thio versus Mn(II)-Oxy coordination in adenosine 5 prime -O-(1-thiodiphosphate) complexes at the active site of creatine kinase

    SciTech Connect

    Smithers, G.W.; Sammons, R.D.; Goodhart, P.J.; LoBrutto, R.; Reed, G.H. )

    1989-02-21

    The stereochemical configurations of the Mn(II) complexes with the resolved epimers of adenosine 5{prime}-O-(1-thiodiphosphate) (ADP{alpha}S), bound at the active site of creatine kinase, have been determined in order to assess the relative strengths of enzymic stereoselectivity versus Lewis acid/base preferences in metal-ligand binding. Electron paramagnetic resonance (EPR) data have been obtained for Mn(II) in anion-stabilized, dead-end (transition-state analogue) complexes, in ternary enzyme-Mn{sup II}ADP{alpha}S complexes, and in the central complexes of the equilibrium mixture. The modes of coordination of Mn(II) at P{sub alpha} in the nitrate-stabilized, dead-end complexes with each epimer of ADP{alpha}S were ascertained by EPR measurements with (R{sub p})-({alpha}-{sup 17}O)ADP{alpha}S and (S{sub p})-({alpha}-{sup 17}O)ADP{alpha}S. A reduction in the magnitude of the {sup 55}Mn hyperfine coupling constant in the spectrum for the complex containing (S{sub p})-ADP{alpha}S is indicative of Mn(II)-thio coordination at P{sub alpha}. The results indicate that a strict discrimination for a unique configuration of the metal-nucleotide substrate is expressed upon binding of all of the substrates to form the active complex (or an analogue thereof). This enzymic stereoselectivity provides sufficient binding energy to overcome an intrinsic preference for the hard Lewis acid Mn(II) to coordinate to the hard Lewis base oxygen.

  2. Thyroid thermogenesis. Relationships between Na+-dependent respiration and Na+ + K+-adenosine triphosphatase activity in rat skeletal muscle.

    PubMed Central

    Asano, Y; Liberman, U A; Edelman, I S

    1976-01-01

    The effect of thyroid status on QO2, QO2 (t) and NaK-ATPase activity was examined in rat skeletal muscle. QO2(t) (i.e. Na+-transport-dependent respiration) was estimated with ouabain or Na+-free media supplemented with K+. In contrast to the effects of ouabain on ion composition, intracellular K+ was maintained at about 125 meq/liter, and intracellular Na+ was almost nil in the Na+-free media. The estimates of QO2(t) were independent of the considerable differences in tissue ion concentrations. The increase in QO2(t) account for 47% of the increase in QO2 in the transition from the hypothyroid to the euthyroid state and 84% of the increase in the transition from the euthyroid to the hyperthyroid state. Surgical thyroidectomy lowered NaK-ATPase activity of the microsomal fraction (expressed per milligram protein) 32%; injections of triodothyronine (T3) increased this activity 75% in initially hypothyroid rats and 26% in initially euthyroid rats. Thyroidectomy was attended by significant falls in serum Ca and Pi concentrations. Administration of T3 resulted in further declines in serum Ca and marked increases in serum Ps concentrations. Similar effects were seen in 131I-treated rats, but the magnitude of the declines in serum Ca were less. The effects of T3 on QO2, QO2(t), and NaK-ATPase activity of skeletal muscle were indistinguishable in the 131I-ablated and surgically thyroidectomized rats. In thyroidectomized or euthyroid rats given repeated doses of T3, QO2(t) and NaA-ATPase activity increased proportionately. In thyroidectomized rats injected with single doses of T3, either 10, 50, or 250 mug/100 g body wt, QO2(t) increased linearly with NaK-ATPase activity. The kinetics of the NaK-ATPase activity was assessed with an ATP-generating system. T3 elicited a significant increase in Vmax with no change in Km for ATP. PMID:130385

  3. Apoptotic effects of extract from Cnidium monnieri (L.) Cusson by adenosine monosphosphate-activated protein kinase-independent pathway in HCT116 colon cancer cells.

    PubMed

    Lim, Eun Gyeong; Kim, Guen Tae; Lee, Se Hee; Kim, Sang-Yong; Kim, Young Min

    2016-06-01

    Colon cancer, a common malignancy, can occur due to poor eating habits and increasing age. Consequently, careful regulation of eating habits may serve as a possible method for preventing the occurrence or progression of colon cancer. Extracts of the fruit of Cnidium monnieri (L.) Cusson are well‑known as an effective herbal medicine for the treatment of pain in female genitalia and carbuncle. However, there have been no studies on the apoptotic effects of Cnidium monnieri (L.) Cusson (CME). Adenosine monophosphate‑activated protein kinase (AMPK), the major regulator of energy metabolism, is activated by metabolic stress, including hypoxia and glucose deprivation. Activation of AMPK inhibits cell proliferation and induces apoptosis through the inhibition of phosphorylated (p)‑Akt and control of B‑cell lymphoma 2 (Bcl‑2) family members. The pro‑apoptotic proteins Bcl‑2‑associated X protein (Bax) and Bcl‑2‑homologous antagonist killer (Bak), are activated by their translocation to mitochondria from the cytosol. Translocation of Bax/Bak induces outer membrane permeabilization and is likely to lead to apoptosis through cytochrome C release and caspase activity. In the present study, the apoptotic effects and influence on mitochondria‑mediated apoptotic proteins of CME in HCT116 cells were assessed. We hypothesized that CME may have an effect on the inhibition of p‑Akt in an AMPK‑independent pathway. The present study demonstrated that CME induced the release of LDH and apoptosis through its inhibition of p‑Akt to control Bcl‑2 and activate Bax and Bak. Co‑treatment with CME and AMPK inhibitors showed that CME‑induced apoptosis does not occurr through a AMPK‑dependent pathway. Therefore, the present study determined, for the first time, that CME induced apoptosis as a result of causing metabolic stresses due to directly regulation of the de‑phosphorylation of Akt, whereas it did not control the AMPK-dependent pathway in HCT116

  4. Identification of possible adenosine receptors in vascular smooth muscle

    SciTech Connect

    Doctrow, S.R.

    1985-01-01

    Adenosine is a vasodilator and has been implicated in increased blood flow in tissues that undergo energy deficiency. During conditions such as hypoxia and ischemia, adenosine is produced and is said to increase blood flow by relaxing the vascular smooth muscle (VSM) lining the resistance vessels. The goal of this research was to identify receptors that might be responsible for adenosine-mediated VSM relaxation. When an insoluble fraction from calf aortic VSM was incubated with /sup 32/P-ATP, two components were phosphorylated. One was identified as myosin light chain by MW, pl, and immunoprecipitation. The other product was identified as phosphatidylinositol-4-phosphate (DPI) by tic. Both phosphorylations were inhibited by adenosine and by 5'-chloro-5'-deoxyadenosine (Cl-Ado). DPI production was much more sensitive to the nucleosides than was myosin phosphorylation. Neither inhibition involved change in cAMP production. Phosphatidylinositol (Pl) kinase in the VSM membranes required magnesium, was activated and solubilized by Triton X-100, and phosphorylated both endogenous and exogenous Pl. Cl-Ado inhibited Pl kinase in a manner competitive with respect to ATP and noncompetitive with respect to Pl. Adenosine and adenosine analogs modified in the ribose ring were inhibitors with potencies comparable to that of Cl-Ado. Adenine nucleotides and purine-modified adenosine analogs were weaker inhibitors than Cl-Ado.

  5. Nitric oxide and cyclic guanosine monophosphate signaling in the eye.

    PubMed

    Murad, Ferid

    2008-06-01

    This brief review describes the components and pathways utilized in nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signaling. Since the discovery of the effects of NO and cGMP on smooth muscle relaxation about 30 years ago, the field has expanded in many directions such that many, but not all, biochemical and biological effects seem to be regulated by these unique signaling molecules. While many of the effects of NO are due to activation of soluble guanylyl cyclase (sGC) that can be considered the receptor for NO, cGMP, in turn, can activate a cGMP-dependent protein kinase (PKG) to phosphorylate an array of proteins. Some of the effects of cGMP can be independent of PKG and are due to effects on ion channels or cyclic nucleotide phosphodiesterases. Also, some of the effects of NO can be independent of sGC activation. The isoenzymes and macromolecules that participate in these signaling pathways can serve as molecular targets to identify compounds that increase or decrease their activation and thus serve as chemical leads for discovering novel drugs for a variety of diseases. Some examples are given. However, with about 90,000 publications in the field since our first reports in 1977, this brief review can only give the readers a sample of the excitement and opportunities we have found in this cell signaling system.

  6. [Identification of thiamine monophosphate hydrolyzing enzymes in chicken liver].

    PubMed

    Kolos, I K; Makarchikov, A F

    2014-01-01

    In animals, thiamine monophosphate (TMP) is an intermediate on the path of thiamine diphosphate, the coenzyme form of vitamin B1, degradation. The enzymes involved in TMP metabolism in animal tissues are not identified hitherto. The aim of this work was to study TMP hydrolysis in chicken liver. Two phosphatases have been found to contribute to TMP hydrolysis in liver homogenate. The first one, possessing a maximal activity at pH 6.0, is soluble, whereas the second one represents a membrane-bound enzyme with a pH optimum of 9.0. Membrane-bound TMPase activity was enhanced 1.7-fold by 5 mM Mg2+ ions and strongly inhibited by levamisole in uncompetitive manner with K1 of 53 μM, indicating the involvement of alkaline phosphatase. An apparent Km of alkaline phosphatase for TMP was calculated from the Hanes plot to be 0.6 mM. The soluble TMPase has an apparent Km of 0.7 mM; this enzyme is Mg2+ independent and insensitive to levamisole. As estimated by gel filtration on a Toyopearl HW-55 column, the soluble enzyme has a molecular mass of 17.8 kDa, TMPase activity being eluted simultaneously with peaks of flavinmononucleotide and p-nitrophenyl phosphatase activity. Thus, TMP appears to be a physiological substrate for a low-molecular weight acid phosphatase, also known as low-molecular-weight protein phosphotyrosine phosphatase.

  7. Determination of Plaque Inhibitory Activity of Adenine Arabinoside (9-β-d-Arabinofuranosyladenine) for Herpesviruses Using an Adenosine Deaminase Inhibitor

    PubMed Central

    Bryson, Yvonne; Connor, James D.; Sweetman, Lawrence; Carey, Sharen; Stuckey, Margaret A.; Buchanan, Robert

    1974-01-01

    The in vitro susceptibility of type 1 and type 2 strains of Herpesvirus hominis to 9-β-d-arabinofuranosyladenine (adenine arabinoside, ara-A) was measured in a system where deamination was inhibited. Under these conditions, it was possible to measure the activity of low concentrations of ara-A. It was determined that plaque inhibitory concentration for type 1 viruses was less than 3 μg/ml for all strains tested. The plaque inhibitory concentration for 7 of 10 type 2 strains was also less than 3 μg/ml. The method used identified and controlled the interaction between antiviral agent (ara-A) and the indicator system, human skin fibroblastic cells. Otherwise, metabolism of ara-A resulted in rapid enzymatic degradation and loss of antiviral activity. PMID:15828177

  8. Effect of sodium selenite on the ciliary activity, adenosine triphosphate, and protein synthesis in mouse trachea organ cultures

    SciTech Connect

    Lag, M.; Paulsen, G.; Jonsen, J.

    1984-01-01

    Trachea from albino mice were cut transversely into nearly identical rings and incubated in medium 199 with Hanks salts and HEPES buffer at 37/sup 0/C. Sodium selenite at 0.5-5 mM depressed the ciliary activity. With 1 and 5 mM sodium selenite, a 50% reduction in the activity index was observed after approximately 5 and 1.5 h, respectively. The ATP content in trachea rings was reduced with 0.05-5 mM sodium selenite, and increasing concentrations gave decreasing amount of ATP after incubation for 4 and 21 h. The rate of protein synthesis as determined by incorporation of radioactive leucine was reduced with 0.5 and 2 mM sodium selenite. The synthesis was reduced quickly by 2 mM sodium selenite, which gave a 30% reduction after incubation for 1 h. 16 references, 2 figures, 3 tables.

  9. Evaluation of adenosine deaminase activity and antibody to Mycobacterium tuberculosis antigen 5 in cerebrospinal fluid and the radioactive bromide partition test for the early diagnosis of tuberculosis meningitis.

    PubMed Central

    Coovadia, Y M; Dawood, A; Ellis, M E; Coovadia, H M; Daniel, T M

    1986-01-01

    A number of different biochemical and serological tests have been described recently for the early and accurate diagnosis of tuberculous meningitis. None of these tests has yet gained widespread acceptance in clinical medicine or in microbiology laboratories. To investigate this problem we evaluated adenosine deaminase activity (ADA), an enzyme linked immunosorbent assay (ELISA) that detects antibody to antigen 5 of Mycobacterium tuberculosis, and the radioactive bromide partition test (BPT) in the cerebrospinal fluid (CSF). Cerebrospinal fluid specimens from children with tuberculous, pyogenic, and viral meningitis as well as from patients with pulmonary tuberculosis without meningitis and from controls with normal CSFs were included inn the study. In addition, we estimated ADAs in serum samples from selected children in these groups. The sensitivity and specificity of the three tests evaluated in the CSF were: ADA assay 73% and 71%; BPT 92% and 92%; and ELISA for antibody to antigen 5, 53% and 90%, 40% and 94%, and 27% and 100%, respectively, at tires of more than or equal to 1:20, 1:40, and 1:80. The serum ADA was lower (11.0 +/- 6.15 IU/l) in children with tuberculous meningitis when compared with those with pulmonary tuberculosis alone (25.8 +/- 20.9 IU/l). The BPT was found to be the most reliable test in the early differentiation of tuberculous from other causes of meningitis and remained abnormal for a period of up to five months after the beginning of treatment. Accordingly, we believe that the BPT should be used in conjunction with bacterial and fungal antigen detection systems for the initial differentiation of clinically suspicious tuberculous meningitis from Gram or culture negative cases, or both, of bacterial and fungal meningitis. PMID:3087296

  10. Neurochemical Measurement of Adenosine in Discrete Brain Regions of Five Strains of Inbred Mice

    PubMed Central

    Pani, Amar K.; Jiao, Yun; Sample, Kenneth J.; Smeyne, Richard J.

    2014-01-01

    Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754

  11. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release

    PubMed Central

    Nguyen, Michael D.; Venton, B. Jill

    2014-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future. PMID:26900429

  12. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    PubMed Central

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  13. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  14. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  15. Effects of adenosine triphosphate and alkaline phosphatase on solubilized 3,5,3'-triiodothyronine-binding activity.

    PubMed

    Faure, R; Dussault, J H

    1988-09-01

    The T3-binding activity of salt-extractable nuclear proteins from rat liver was affected when ATP (2-10 mM; pH 8.0) was added concomitantly with T3 in the incubation medium. Scatchard analysis revealed that the equilibrium association constant was significantly reduced [5 mM ATP, 0.3 +/- 0.1 (+/- SE) 10(10) M-1; control, 1.1 +/- 0.15 X 10(10) M-1], but the maximum binding capacity remained unchanged. Similar values of inhibition were obtained when unbound receptors were preincubated with ATP. ATP achieved its maximal effect after 45 min of incubation at 30 C. Dilution experiments indicated that the effect of ATP was reversible. The inhibiting potency of nucleoside triphosphates at pH 8.0 was in the following order: ATP = CTP greater than GTP, whereas UTP had no effect. Nonhydrolyzable analogs of ATP were also inhibitory, and HPLC fractionation showed an approximately 98% recovery of ATP after incubation with nuclear extract. The adenine ring with at least two phosphates was essential, since ADP was as potent as ATP, whereas AMP had no effect. When the pH of the incubation medium was lowered to 7.3, the T3-binding activity was inhibited by ATP in the 0.1-1 mM range. Magnesium (3 mM) greatly increases the ATP effect at pH 7.3, but not at pH 8. The T3-binding activity was also drastically reduced when calf intestine alkaline phosphatase was added concomitantly in the incubation medium. Eight micrograms per ml enzyme were necessary to inhibit the T3 specific binding by 50% (30 C for 45 min). Scatchard analysis showed that the receptor affinity for T3 was decreased (control, 1.1 +/- 0.02 x 10(10) M-1; alkaline phosphatase, 0.41 +/- 0.03 x 10(10) M-1; n = 6), whereas the maximum binding capacity remained unchanged. Incubations performed with increasing concentrations of beta-mercaphoethanol (2.5, 5, 10, and 25 mM) revealed that the phosphatase inhibitory effect is thiol dependent. The inhibition was maximal at 2.5 mM and progressively decreased at 5 and 10 mM. No

  16. Imaging Adenosine Triphosphate (ATP).

    PubMed

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities. PMID:27638696

  17. Imaging Adenosine Triphosphate (ATP).

    PubMed

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities.

  18. Adenosine Kinase Deficiency Is Associated with Developmental Abnormalities and Reduced Transmethylation1

    PubMed Central

    Moffatt, Barbara A.; Stevens, Yvonne Y.; Allen, Michael S.; Snider, Jamie D.; Pereira, Luiz A.; Todorova, Margarita I.; Summers, Peter S.; Weretilnyk, Elizabeth A.; Martin-McCaffrey, Luke; Wagner, Conrad

    2002-01-01

    Adenosine (Ado) kinase (ADK; ATP:Ado 5′ phosphotransferase, EC 2.7.1.20) catalyzes the salvage synthesis of adenine monophosphate from Ado and ATP. In Arabidopsis, ADK is encoded by two cDNAs that share 89% nucleotide identity and are constitutively, yet differentially, expressed in leaves, stems, roots, and flowers. To investigate the role of ADK in plant metabolism, lines deficient in this enzyme activity have been created by sense and antisense expression of the ADK1 cDNA. The levels of ADK activity in these lines range from 7% to 70% of the activity found in wild-type Arabidopsis. Transgenic plants with 50% or more of the wild-type activity have a normal morphology. In contrast, plants with less than 10% ADK activity are small with rounded, wavy leaves and a compact, bushy appearance. Because of the lack of elongation of the primary shoot, the siliques extend in a cluster from the rosette. Fertility is decreased because the stamen filaments do not elongate normally; hypocotyl and root elongation are reduced also. The hydrolysis of S-adenosyl-l-homo-cysteine (SAH) produced from S-adenosyl-l-methionine (SAM)-dependent methylation reactions is a key source of Ado in plants. The lack of Ado salvage in the ADK-deficient lines leads to an increase in the SAH level and results in the inhibition of SAM-dependent transmethylation. There is a direct correlation between ADK activity and the level of methylesterified pectin in seed mucilage, as monitored by staining with ruthenium red, immunofluorescence labeling, or direct assay. These results indicate that Ado must be steadily removed by ADK to prevent feedback inhibition of SAH hydrolase and maintain SAM utilization and recycling. PMID:11891238

  19. Effects of adenosine metabolism in astrocytes on central nervous system oxygen toxicity.

    PubMed

    Chen, Yu-liang; Zhang, Ya-nan; Wang, Zhong-zhuang; Xu, Wei-gang; Li, Run-ping; Zhang, Jun-dong

    2016-03-15

    Hyperbaric oxygen (HBO) is widely used in military operations, especially underwater missions. However, prolonged and continuous inhalation of HBO can cause central nervous system oxygen toxicity (CNS-OT), which greatly limits HBO's application. The regulation of astrocytes to the metabolism of adenosine is involved in epilepsy. In our study, we aimed to observe the effects of HBO exposure on the metabolism of adenosine in the brain. Furthermore, we aimed to confirm the possible mechanism underlying adenosine's mediation of the CNS-OT. Firstly, anesthetized rats exposed to 5 atm absolute HBO for 80 min. The concentrations of extracellular adenosine, ATP, ADP, and AMP were detected. Secondly, free-moving rats were exposed to HBO at the same pressure for 20 min, and the activities of 5'-nucleotidase and ADK in brain tissues were measured. For the mechanism studies, we observed the effects of a series of different doses of drugs related to adenosine metabolism on the latency of CNS-OT. Results showed HBO exposure could increase adenosine content by inhibiting ADK activity and improving 5'-nucleotidase activity. And adenosine metabolism during HBO exposure may be a protective response against HBO-induced CNS-OT. Moreover, the improvement of adenosine concentration, activation of adenosine A1R, or suppression of ADK and adenosine A2AR, which are involved in the prevention of HBO-induced CNS-OT. This is the first study to demonstrate HBO exposure regulated adenosine metabolism in the brain. Adenosine metabolism and adenosine receptors are related to HBO-induced CNS-OT development. These results will provide new potential targets for the termination or the attenuation of CNS-OT. PMID:26806404

  20. Novel Characteristics of Trypanosoma brucei Guanosine 5'-monophosphate Reductase Distinct from Host Animals.

    PubMed

    Bessho, Tomoaki; Okada, Tetsuya; Kimura, Chihiro; Shinohara, Takahiro; Tomiyama, Ai; Imamura, Akira; Kuwamura, Mitsuru; Nishimura, Kazuhiko; Fujimori, Ko; Shuto, Satoshi; Ishibashi, Osamu; Kubata, Bruno Kilunga; Inui, Takashi

    2016-01-01

    The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5'-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5'-monophosphate (GMP) to inosine 5'-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine β-synthase (CBS) domain, which was absent in mammalian and bacterial GMPRs. The recombinant protein of T. brucei GMPR catalyzed the conversion of GMP to IMP in the presence of NADPH, and showed apparent affinities for both GMP and NADPH different from those of its mammalian counterparts. Interestingly, the addition of monovalent cations such as K+ and NH4+ to the enzymatic reaction increased the GMPR activity of T. brucei, whereas none of the mammalian GMPR's was affected by these cations. The monophosphate form of the purine nucleoside analog ribavirin inhibited T. brucei GMPR activity, though mammalian GMPRs showed no or only a little inhibition by it. These results suggest that the mechanism of the GMPR reaction in T. brucei is distinct from that in the host organisms. Finally, we demonstrated the inhibitory effect of ribavirin on the proliferation of trypanosomes in a dose-dependent manner, suggesting the availability of ribavirin to develop a new therapeutic agent against African trypanosomiasis. PMID:26731263

  1. Novel Characteristics of Trypanosoma brucei Guanosine 5'-monophosphate Reductase Distinct from Host Animals

    PubMed Central

    Kimura, Chihiro; Shinohara, Takahiro; Tomiyama, Ai; Imamura, Akira; Kuwamura, Mitsuru; Nishimura, Kazuhiko; Fujimori, Ko; Shuto, Satoshi; Ishibashi, Osamu; Kubata, Bruno Kilunga; Inui, Takashi

    2016-01-01

    The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5’-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5’-monophosphate (GMP) to inosine 5’-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine β-synthase (CBS) domain, which was absent in mammalian and bacterial GMPRs. The recombinant protein of T. brucei GMPR catalyzed the conversion of GMP to IMP in the presence of NADPH, and showed apparent affinities for both GMP and NADPH different from those of its mammalian counterparts. Interestingly, the addition of monovalent cations such as K+ and NH4+ to the enzymatic reaction increased the GMPR activity of T. brucei, whereas none of the mammalian GMPR’s was affected by these cations. The monophosphate form of the purine nucleoside analog ribavirin inhibited T. brucei GMPR activity, though mammalian GMPRs showed no or only a little inhibition by it. These results suggest that the mechanism of the GMPR reaction in T. brucei is distinct from that in the host organisms. Finally, we demonstrated the inhibitory effect of ribavirin on the proliferation of trypanosomes in a dose-dependent manner, suggesting the availability of ribavirin to develop a new therapeutic agent against African trypanosomiasis. PMID:26731263

  2. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis

    PubMed Central

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-01-01

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[3H]-Adenosine NAs and [14C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1 h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. PMID:26087468

  3. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis.

    PubMed

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-08-28

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[(3)H]-Adenosine NAs and [(14)C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. PMID:26087468

  4. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    PubMed Central

    Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Dias, Ana Sofia; Pelletier, Julie

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders. PMID:25210228

  5. Targeting the A2B adenosine receptor during gastrointestinal ischemia and inflammation

    PubMed Central

    Eltzschig, Holger K; Rivera-Nieves, Jesus; Colgan, Sean P

    2014-01-01

    Extracellular adenosine functions as an endogenous distress signal via activation of four distinct adenosine receptors (A1, A2A, A2B and A3). Conditions of limited oxygen availability or acute inflammation lead to elevated levels of extracellular adenosine and enhanced signaling events. This relates to a combination of four mechanisms: i) increased production of adenosine via extracellular phosphohydrolysis of precursor molecules (particularly ATP and ADP); ii) increased expression and signaling via hypoxia-induced adenosine receptors, particularly the A2B adenosine receptor; iii) attenuated uptake from the extracellular towards the intracellular compartment; and iv) attenuated intracellular metabolism. Due to their large surface area, mucosal organs are particularly prone to hypoxia and ischemia associated inflammation. Therefore, it is not surprising that adenosine production and signaling plays a central role in attenuating tissue inflammation and injury during intestinal ischemia or inflammation. In fact, recent studies combining pharmacological and genetic approaches demonstrated that adenosine signaling via the A2B adenosine receptor dampens mucosal inflammation and tissue injury during intestinal ischemia or experimental colitis. This review outlines basic principles of extracellular adenosine production, signaling, uptake and metabolism. In addition, we discuss the role of this pathway in dampening hypoxia-elicited inflammation, specifically in the setting of intestinal ischemia and inflammation. PMID:19769545

  6. Product identification and adenylyl cyclase activity in chloroplasts of Nicotiana tabacum.

    PubMed

    Witters, Erwin; Quanten, Lieve; Bloemen, Jo; Valcke, Roland; Van Onckelen, Harry

    2004-01-01

    In view of the ongoing debate on plant cyclic nucleotide metabolism, especially the functional presence of adenylyl cyclase, a novel detection method has been worked out to quantify the reaction product. Using uniformly labelled (15)N-ATP as a substrate for adenylyl cyclase, a qualitative and quantitative liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) method was developed to measure de novo formed (15)N-adenosine 3',5'-cyclic monophosphate. Adenylyl cyclase activity was observed in chloroplasts obtained from Nicotiana tabacum cv. Petit Havana and the kinetic parameters and influence of various metabolic effectors are discussed in their context.

  7. Chemoelectrical energy conversion of adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  8. AMP/GMP Analogs as Affinity ESIPT Probes for Highly Selective Sensing of Alkaline Phosphatase Activity in Living Systems.

    PubMed

    Jia, Yan; Li, Peng; Han, Keli

    2015-11-01

    Current probes for alkaline phosphatase (ALP) detection had been developed mainly by adding a phosphate group to a dye, which would lead to indistinct performance when implemented in a living system as several phosphatases exist together. In this study, the nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) were introduced into 2'-(2'-hydroxyphenyl)-benzothiazole-based probes, and highly fluorescent turn-on probes with good selectivity towards ALP over several phosphatases, as well as high affinity and low toxicity were obtained. In the presence of L-phenylalanine, an ALP inhibitor, a strong decrease in fluorescence recovery was observed. These probes allowed for real-time imaging of endogenous ALP activity in living cells as well as in a zebrafish model.

  9. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    PubMed Central

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  10. Adaptations in adenosine signaling in drug dependence: therapeutic implications.

    PubMed

    Hack, Stephen P; Christie, Macdonald J

    2003-01-01

    many of the negative consequences of opioid/cocaine withdrawal. Ethanol interacts directly with the adenosine system by blocking nucleoside transporters in the cell membrane. The effect of this inhibition is an increase in extracellular adenosine levels and adenosine receptor activation. Depending on the time course of ethanol exposure and the receptor population present, cAMP levels are either reduced or increased. Chronic ethanol treatment tends to reduce cAMP levels as a consequence of the desensitization of stimulatory GPCRs (such as A2-type receptors) seen following prolonged receptor activation. Unlike opiates and cocaine, adenosine receptor activation worsens the behavioral effects of drug ingestion, and evidence indicates that agents that negatively modulate adenosine receptor function have some utility in attenuating the effects of ethanol use. Taken together, these data suggest that pharmacological manipulation of adenosine signaling represents a potentially useful means of managing drug dependence.

  11. Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.

    2000-01-01

    It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.

  12. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  13. Characterization and regulation of adenosine transport in T84 intestinal epithelial cells.

    PubMed

    Mun, E C; Tally, K J; Matthews, J B

    1998-02-01

    Adenosine release from mucosal sources during inflammation and ischemia activates intestinal epithelial Cl- secretion. Previous data suggest that A2b receptor-mediated Cl- secretory responses may be dampened by epithelial cell nucleoside scavenging. The present study utilizes isotopic flux analysis and nucleoside analog binding assays to directly characterize the nucleoside transport system of cultured T84 human intestinal epithelial cells and to explore whether adenosine transport is regulated by secretory agonists, metabolic inhibition, or phorbol ester. Uptake of adenosine across the apical membrane displayed characteristics of simple diffusion. Kinetic analysis of basolateral uptake revealed a Na(+)-independent, nitrobenzylthioinosine (NBTI)-sensitive facilitated-diffusion system with low affinity but high capacity for adenosine. NBTI binding studies indicated a single population of high-affinity binding sites basolaterally. Neither forskolin, 5'-(N-ethylcarboxamido)-adenosine, nor metabolic inhibition significantly altered adenosine transport. However, phorbol 12-myristate 13-acetate significantly reduced both adenosine transport and the number of specific NBTI binding sites, suggesting that transporter number may be decreased through activation of protein kinase C. This basolateral facilitated adenosine transporter may serve a conventional function in nucleoside salvage and a novel function as a regulator of adenosine-dependent Cl- secretory responses and hence diarrheal disorders.

  14. Simultaneous interaction with base and phosphate moieties modulates the phosphodiester cleavage of dinucleoside 3',5'-monophosphates by dinuclear Zn2+ complexes of di(azacrown) ligands.

    PubMed

    Wang, Qi; Lönnberg, Harri

    2006-08-23

    Five dinucleating ligands (1-5) and one trinucleating ligand (6) incorporating 1,5,9-triazacyclododecan-3-yloxy groups attached to an aromatic scaffold have been synthesized. The ability of the Zn(2+) complexes of these ligands to promote the transesterification of dinucleoside 3',5'-monophosphates to a 2',3'-cyclic phosphate derived from the 3'-linked nucleoside by release of the 5'-linked nucleoside has been studied over a narrow pH range, from pH 5.8 to 7.2, at 90 degrees C. The dinuclear complexes show marked base moiety selectivity. Among the four dinucleotide 3',5'-phosphates studied, viz. adenylyl-3',5'-adenosine (ApA), adenylyl-3',5'-uridine (ApU), uridylyl-3',5'-adenosine (UpA), and uridylyl-3',5'-uridine (UpU), the dimers containing one uracil base (ApU and UpA) are cleaved up to 2 orders of magnitude more readily than those containing either two uracil bases (UpU) or two adenine bases (ApA). The trinuclear complex (6), however, cleaves UpU as readily as ApU and UpA, while the cleavage of ApA remains slow. UV spectrophotometric and (1)H NMR spectroscopic studies with one of the dinucleating ligands (3) verify binding to the bases of UpU and ApU at less than millimolar concentrations, while no interaction with the base moieties of ApA is observed. With ApU and UpA, one of the Zn(2+)-azacrown moieties in all likelihood anchors the cleaving agent to the uracil base of the substrate, while the other azacrown moiety serves as a catalyst for the phosphodiester transesterification. With UpU, two azacrown moieties are engaged in the base moiety binding. The catalytic activity is, hence, lost, but it can be restored by addition of a third azacrown group on the cleaving agent.

  15. Simultaneous interaction with base and phosphate moieties modulates the phosphodiester cleavage of dinucleoside 3',5'-monophosphates by dinuclear Zn2+ complexes of di(azacrown) ligands.

    PubMed

    Wang, Qi; Lönnberg, Harri

    2006-08-23

    Five dinucleating ligands (1-5) and one trinucleating ligand (6) incorporating 1,5,9-triazacyclododecan-3-yloxy groups attached to an aromatic scaffold have been synthesized. The ability of the Zn(2+) complexes of these ligands to promote the transesterification of dinucleoside 3',5'-monophosphates to a 2',3'-cyclic phosphate derived from the 3'-linked nucleoside by release of the 5'-linked nucleoside has been studied over a narrow pH range, from pH 5.8 to 7.2, at 90 degrees C. The dinuclear complexes show marked base moiety selectivity. Among the four dinucleotide 3',5'-phosphates studied, viz. adenylyl-3',5'-adenosine (ApA), adenylyl-3',5'-uridine (ApU), uridylyl-3',5'-adenosine (UpA), and uridylyl-3',5'-uridine (UpU), the dimers containing one uracil base (ApU and UpA) are cleaved up to 2 orders of magnitude more readily than those containing either two uracil bases (UpU) or two adenine bases (ApA). The trinuclear complex (6), however, cleaves UpU as readily as ApU and UpA, while the cleavage of ApA remains slow. UV spectrophotometric and (1)H NMR spectroscopic studies with one of the dinucleating ligands (3) verify binding to the bases of UpU and ApU at less than millimolar concentrations, while no interaction with the base moieties of ApA is observed. With ApU and UpA, one of the Zn(2+)-azacrown moieties in all likelihood anchors the cleaving agent to the uracil base of the substrate, while the other azacrown moiety serves as a catalyst for the phosphodiester transesterification. With UpU, two azacrown moieties are engaged in the base moiety binding. The catalytic activity is, hence, lost, but it can be restored by addition of a third azacrown group on the cleaving agent. PMID:16910666

  16. The mode of action and the structure of a herbicide in complex with its target: binding of activated hydantocidin to the feedback regulation site of adenylosuccinate synthetase.

    PubMed Central

    Fonné-Pfister, R; Chemla, P; Ward, E; Girardet, M; Kreuz, K E; Honzatko, R B; Fromm, H J; Schär, H P; Grütter, M G; Cowan-Jacob, S W

    1996-01-01

    (+)-Hydantocidin, a recently discovered natural spironucleoside with potent herbicidal activity, is shown to be a proherbicide that, after phosphorylation at the 5' position, inhibits adenylosuccinate synthetase, an enzyme involved in de novo purine synthesis. The mode of binding of hydantocidin 5'-monophosphate to the target enzyme was analyzed by determining the crystal structure of the enzyme-inhibitor complex at 2.6-A resolution. It was found that adenylosuccinate synthetase binds the phosphorylated compound in the same fashion as it does adenosine 5'-monophosphate, the natural feedback regulator of this enzyme. This work provides the first crystal structure of a herbicide-target complex reported to date. Images Fig. 4 Fig. 5 PMID:8790347

  17. Fluoroquinolones as potential photochemotherapeutic agents: covalent addition to guanosine monophosphate.

    PubMed

    Fasani, Elisa; Manet, Ilse; Capobianco, Massimo L; Monti, Sandra; Pretali, Luca; Albini, Angelo

    2010-08-21

    The triplet aryl cation photochemically generated from fluoroquinolones bearing a fluoro atom at position 8 attacks guanosine monophosphate (k(r) > 10(9) M(-1)s(-1)) and forms covalent adducts. The reaction is a model for the implementation of oxygen-independent photochemotherapy. PMID:20571620

  18. Studies on structures of lipid A-monophosphate clusters

    NASA Astrophysics Data System (ADS)

    Faunce, Chester A.; Reichelt, Hendrik; Paradies, Henrich H.

    2011-03-01

    Single crystalline clusters of lipid A-monophosphate were grown from organic dispersions containing 5-15% (v/v) water at various volume fractions, ϕ, and temperatures. The morphology of the single lipid A-monophosphate crystals was either rhombohedral or hexagonal. The hexagonal crystals were needlelike or cylindrical in shape, with the long dimension parallel to the c axis of the unit cell. The crystalline clusters were studied using electron microscopy and x-ray powder diffraction. Employing molecular location methods following a Rietveld refinement and whole-pattern refinement revealed two monoclinic crystal structures in the space groups P21 and C2, both converged with RF = 0.179. The two monoclinic crystal structures were packing (hydrocarbon chains) and conformational (sugar) polymorphs. Neither of these two structures had been encountered previously. Only intramolecular hydrogen bonding was observed for the polymorphs, which were located between the amide and the carboxyl groups. Another crystalline structure was found in the volume-fraction range 2.00 × 10-3 ≤ ϕ ≤ 2.50 × 10-3, which displayed hexagonal symmetry. The hexagonal symmetry of the self-assembled lipid A-monophosphate crystalline phase might be reconciled with the monoclinic symmetry found at low-volume-fractions. Therefore, lowering the symmetry from cubic, i.e., Ia overline 3d, to rhombohedral R overline 3 m, and finally to the monoclinic space group C2 was acceptable if the lipid A-monophosphate anion was completely orientationally ordered.

  19. Drugs elevating extracellular adenosine promote regeneration of haematopoietic progenitor cells in severely myelosuppressed mice: their comparison and joint effects with the granulocyte colony-stimulating factor.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Vacek, Antonín; Weiterova, Lenka; Holá, Jirina; Vácha, Jirí

    2002-01-01

    We tested capabilities of drugs elevating extracellular adenosine and of granulocyte colony-stimulating factor (G-CSF) given alone or in combination to modulate regeneration from severe myelosuppression resulting from combined exposure of mice to ionizing radiation and carboplatin. Elevation of extracellular adenosine was induced by joint administration of dipyridamole (DP), a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), serving as an adenosine prodrug. DP+AMP, G-CSF or all these drugs in combination were administered in a 4-d treatment regimen starting on day 3 after induction of myelosuppression. Comparable enhancements of haematopoietic regeneration due to elevation of extracellular adenosine or to action of G-CSF were demonstrated as shown by elevated numbers of haematopoietic progenitor cells for granulocytes/macrophages (GM-CFC) and erythrocytes (BFU-E) in the bone marrow and spleen in early time intervals after termination of the drug treatment, i.e. on days 7 and 10 after induction of myelosuppression. Coadministration of all the drugs further potentiated the restoration of progenitor cell pools in the haematopoietic organs. The effects of the drug treatments on progenitor cells were reflected in the peripheral blood in later time intervals of days 15 and 20 after induction of myelosuppression, especially as significantly elevated numbers of granulocytes and less pronounced elevation of lymphocytes and erythrocytes. The results substantiate the potential of drugs elevating extracellular adenosine for clinical utilization in myelosuppressive states, e.g. those accompanying oncological radio- and chemotherapy.

  20. Metabolic challenge to glia activates an adenosine-mediated safety mechanism that promotes neuronal survival by delaying the onset of spreading depression waves.

    PubMed

    Canals, Santiago; Larrosa, Belén; Pintor, Jesús; Mena, María A; Herreras, Oscar

    2008-11-01

    In a model of glial-specific chemical anoxia, we have examined how astrocytes influence both synaptic transmission and the viability of hippocampal pyramidal neurons. This relationship was assessed using electrophysiological, pharmacological, and biochemical techniques in rat slices and cell cultures, and oxidative metabolism was selectively impaired in glial cells by exposure to the mitochondrial gliotoxin, fluoroacetate. We found that synaptic transmission was blocked shortly after inducing glial metabolic stress and peri-infarct-like spreading depression (SD) waves developed within 1 to 2 h of treatment. Neuronal electrogenesis was not affected until SD waves developed, thereafter decaying irreversibly. The blockage of synaptic transmission was totally reversed by A(1) adenosine receptor antagonists, unlike the development of SD waves, which appeared earlier under these conditions. Such blockage led to a marked reduction in the electrical viability of pyramidal neurons 1 h after gliotoxin treatment. Cell culture experiments confirmed that astrocytes indeed release adenosine. We interpret this early glial response as a novel safety mechanism that allocates metabolic resources to vital processes when the glia itself sense an energy shortage, thereby delaying or preventing entry into massive lethal ischemic-like depolarization. The implication of these results on the functional recovery of the penumbra regions after ischemic insults is discussed.

  1. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep

    PubMed Central

    Bjorness, Theresa E.; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A.; Yanagisawa, Masashi; Bibb, James A.

    2016-01-01

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. SIGNIFICANCE STATEMENT The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets

  2. Cytoprotective effects of adenosine and inosine in an in vitro model of acute tubular necrosis

    PubMed Central

    Módis, Katalin; Gerő, Domokos; Nagy, Nóra; Szoleczky, Petra; Tóth, Zoltán Dóri; Szabó, Csaba

    2009-01-01

    Background and purpose: We have established an in vitro model of acute tubular necrosis in rat kidney tubular cells, using combined oxygen-glucose deprivation (COGD) and screened a library of 1280 pharmacologically active compounds for cytoprotective effects. Experimental approach: We used in vitro cell-based, high throughput, screening, with cells subjected to COGD using hypoxia chambers, followed by re-oxygenation. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the Alamar Blue assay measured mitochondrial respiration and the lactate dehydrogenase assay was used to indicate cell death. ATP levels were measured using a luminometric assay. Key results: Adenosine markedly reduced cellular injury, with maximal cytoprotective effect at 100 µM and an EC50 value of 14 µM. Inosine was also found to be cytoprotective. The selective A3 adenosine receptor antagonist MRS 1523 attenuated the protective effects of adenosine and inosine, while an A3 adenosine receptor agonist provided a partial protective effect. Adenosine deaminase inhibition attenuated the cytoprotective effect of adenosine but not of inosine during COGD. Inhibition of adenosine kinase reduced the protective effects of both adenosine and inosine during COGD. Pretreatment of the cells with adenosine or inosine markedly protected against the fall in cellular ATP content in the cells subjected to COGD. Conclusions and implications: The cytoprotection elicited by adenosine and inosine in a model of renal ischaemia involved both interactions with cell surface adenosine receptors on renal tubular epithelial cells and intracellular metabolism and conversion of adenosine to ATP. PMID:19906119

  3. Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes.

    PubMed

    Ciccarelli, Renata; D'Alimonte, Iolanda; Ballerini, Patrizia; D'Auro, Mariagrazia; Nargi, Eleonora; Buccella, Silvana; Di Iorio, Patrizia; Bruno, Valeria; Nicoletti, Ferdinando; Caciagli, Francesco

    2007-05-01

    Astrocyte death may occur in neurodegenerative disorders and complicates the outcome of brain ischemia, a condition associated with high extracellular levels of adenosine and glutamate. We show that pharmacological activation of A(1) adenosine and mGlu3 metabotropic glutamate receptors with N(6)-chlorocyclopentyladenosine (CCPA) and (-)2-oxa-4-aminocyclo-[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), respectively, protects cultured astrocytes against apoptosis induced by a 3-h exposure to oxygen/glucose deprivation (OGD). Protection by CCPA and LY379268 was less than additive and was abrogated by receptor blockade with selective competitive antagonists or pertussis toxin. Both in control astrocytes and in astrocytes exposed to OGD, CCPA and LY379268 induced a rapid activation of the phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases 1 and 2 (ERK1/2)/mitogen-activated protein kinase (MAPK) pathways, which are known to support cell survival. In cultures exposed to OGD, CCPA and LY379268 reduced the activation of c-Jun N-terminal kinase and p38/MAPK, reduced the levels of the proapoptotic protein Bad, increased the levels of the antiapoptotic protein Bcl-X(L), and were highly protective against apoptotic death, as shown by nuclear 4'-6-diamidino-2-phenylindole staining and measurements of caspase-3 activity. All of these effects were attenuated by treatment with 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) and 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), which inhibit the MAPK and the PI3K pathways, respectively. These data suggest that pharmacological activation of A(1) and mGlu3 receptors protects astrocytes against hypoxic/ischemic damage by stimulating the PI3K and ERK1/2 MAPK pathways. PMID:17293559

  4. Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, via A2B adenosine receptor signaling

    PubMed Central

    Wen, Jiaming; Jiang, Xianzhen; Dai, Yingbo; Zhang, Yujin; Tang, Yuxin; Sun, Hong; Mi, Tiejuan; Phatarpekar, Prasad V.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2010-01-01

    Priapism is a condition of persistent penile erection in the absence of sexual excitation. Of men with sickle cell disease (SCD), 40% display priapism. The disorder is a dangerous and urgent condition, given its association with penile fibrosis and eventual erectile dysfunction. Current strategies to prevent its progression are poor because of a lack of fundamental understanding of the molecular mechanisms for penile fibrosis in priapism. Here we demonstrate that increased adenosine is a novel causative factor contributing to penile fibrosis in two independent animal models of priapism, adenosine deaminase (ADA)-deficient mice and SCD transgenic mice. An important finding is that chronic reduction of adenosine by ADA enzyme therapy successfully attenuated penile fibrosis in both mouse models, indicating an essential role of increased adenosine in penile fibrosis and a novel therapeutic possibility for this serious complication. Subsequently, we identified that both mice models share a similar fibrotic gene expression profile in penile tissue (including procollagen I, TGF-β1, and plasminogen activator inhibitor-1 mRNA), suggesting that they share similar signaling pathways for progression to penile fibrosis. Thus, in an effort to decipher specific cell types and underlying mechanism responsible for adenosine-mediated penile fibrosis, we purified corpus cavernosal fibroblast cells (CCFCs), the major cell type involved in this process, from wild-type mice. Quantitative RT-PCR showed that the major receptor expressed in these cells is the adenosine receptor A2BR. Based on this fact, we further purified CCFCs from A2BR-deficient mice and demonstrated that A2BR is essential for excess adenosine-mediated penile fibrosis. Finally, we revealed that TGF-β functions downstream of the A2BR to increase CCFC collagen secretion and proliferation. Overall, our studies identify an essential role of increased adenosine in the pathogenesis of penile fibrosis via A2BR signaling and

  5. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis.

  6. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis. PMID:26081145

  7. Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter.

    PubMed

    de Paulis, Tomas; Schmidt, Dennis E; Bruchey, Aleksandra K; Kirby, Michael T; McDonald, Michael P; Commers, Patricia; Lovinger, David M; Martin, Peter R

    2002-05-10

    Preliminary screening of a minor, non-xanthine constituent of roasted coffee, 3,4-diferuloyl-1,5-quinolactone (DIFEQ), showed inhibition of the adenosine transporter at low micromolar concentration. DIFEQ is a neutral derivative of the chlorogenic acids, i.e. isomeric mono- and di-substituted coumaroyl-, caffeoyl-, and feruloyl-esters of quinic acid, formed in the roasting process of coffee. Displacement of the adenosine transporter antagonist [(3)H](S)-(nitrobenzyl)-6-thioinosine binding by DIFEQ in cultured U-937 cell preparations, expressing the human adenosine transporter protein (hENT1), showed a K(i) of 0.96+/-0.13 microM. Extracts of regular and decaffeinated coffee showed binding activities equivalent to 30-40 mg DIFEQ per three cups of coffee. Acute administration of a high dose of DIFEQ (100 mg/kg i.p.) reduced open field locomotion in mice for 20 min in correlation with brain levels of DIFEQ. Both 3,4-dicaffeoyl-1,5-quinide and 3,4-dicoumaroyl-1,5-quinide, two close structural analogs of DIFEQ also present in roasted coffee, showed similar affinities for the adenosine transporter, while the corresponding 3- and 4-mono caffeoyl- and feruloyl-quinides were one to two orders of magnitudes less active. This suggests that 3,4-dicinnamoyl-1,5-quinides in coffee could have the potential to raise extra-cellular adenosine levels, thereby counteracting the stimulant effect of caffeine.

  8. Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter.

    PubMed

    de Paulis, Tomas; Schmidt, Dennis E; Bruchey, Aleksandra K; Kirby, Michael T; McDonald, Michael P; Commers, Patricia; Lovinger, David M; Martin, Peter R

    2002-05-10

    Preliminary screening of a minor, non-xanthine constituent of roasted coffee, 3,4-diferuloyl-1,5-quinolactone (DIFEQ), showed inhibition of the adenosine transporter at low micromolar concentration. DIFEQ is a neutral derivative of the chlorogenic acids, i.e. isomeric mono- and di-substituted coumaroyl-, caffeoyl-, and feruloyl-esters of quinic acid, formed in the roasting process of coffee. Displacement of the adenosine transporter antagonist [(3)H](S)-(nitrobenzyl)-6-thioinosine binding by DIFEQ in cultured U-937 cell preparations, expressing the human adenosine transporter protein (hENT1), showed a K(i) of 0.96+/-0.13 microM. Extracts of regular and decaffeinated coffee showed binding activities equivalent to 30-40 mg DIFEQ per three cups of coffee. Acute administration of a high dose of DIFEQ (100 mg/kg i.p.) reduced open field locomotion in mice for 20 min in correlation with brain levels of DIFEQ. Both 3,4-dicaffeoyl-1,5-quinide and 3,4-dicoumaroyl-1,5-quinide, two close structural analogs of DIFEQ also present in roasted coffee, showed similar affinities for the adenosine transporter, while the corresponding 3- and 4-mono caffeoyl- and feruloyl-quinides were one to two orders of magnitudes less active. This suggests that 3,4-dicinnamoyl-1,5-quinides in coffee could have the potential to raise extra-cellular adenosine levels, thereby counteracting the stimulant effect of caffeine. PMID:12065074

  9. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish.

    PubMed

    Bortolotto, Josiane Woutheres; Melo, Gabriela Madalena de; Cognato, Giana de Paula; Vianna, Mônica Ryff Moreira; Bonan, Carla Denise

    2015-02-01

    Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment.

  10. Endogenous adenosine is an autacoid feedback inhibitor of chloride transport in the shark rectal gland.

    PubMed Central

    Kelley, G G; Aassar, O S; Forrest, J N

    1991-01-01

    The present studies define the physiologic role of endogenous adenosine in the perfused shark rectal gland, a model epithelia for hormone-stimulated chloride transport. Chloride ion secretion, and venous adenosine and inosine concentrations increased in parallel in response to hormone stimulation. From a basal rate of 157 +/- 26 mu eq/h per g, chloride secretion increased to 836 +/- 96 and 2170 +/- 358 with 1 and 10 microM forskolin, venous adenosine increased from 5.0 +/- 1 to 126 +/- 29 and 896 +/- 181 nM, and inosine increased from 30 +/- 9 to 349 +/- 77 and 1719 +/- 454 nM (all P less than 0.01). Nitrobenzylthioinosine (NBTI), a nucleoside transport inhibitor, completely blocked the release of adenosine and inosine. Inhibition of chloride transport with bumetanide, an inhibitor of the Na+/K+/2Cl- cotransporter, or ouabain, an inhibitor of Na+/K+ ATPase activity, reduced venous adenosine and inosine to basal values. When the interaction of endogenous adenosine with extracellular receptors was prevented by adenosine deaminase, NBTI, or 8-phenyltheophylline, the chloride transport response to secretagogues increased by 1.7-2.3-fold. These studies demonstrate that endogenous adenosine is released in response to hormone-stimulated cellular work and acts at A1 adenosine receptors as a feedback inhibitor of chloride transport. Images PMID:1752953

  11. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. PMID:21511036

  12. Role of A3 adenosine receptor in diabetic neuropathy.

    PubMed

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc.

  13. Role of endothelium in ischaemia-induced myocardial dysfunction of isolated working hearts: cardioprotection by activation of adenosine A(2A) receptors.

    PubMed

    Maddock, H L; Broadley, K J; Bril, A; Khandoudi, N

    2001-01-01

    1 This study aimed to determine the role of the vascular endothelium on recovery of contractile function following global low-flow ischaemia of guinea-pig isolated working hearts and the effects of adenosine analogues on this recovery. 2 Guinea-pig isolated spontaneously beating or paced working hearts were set up and coronary flow (CF), aortic output (AO) (as an index of cardiac function), heart rate (HR), left ventricular pressure (LVP) and dP/dt max recorded. The endothelium was either intact or removed by a blast of oxygen. 3 In spontaneously beating hearts, low-flow ischaemia for 30 min reduced CF and cardiac contractility (LVP, dP/dt max) but not AO. On reperfusion, CF, LVP and dP/dt max recovered, while AO fell precipitously followed by a gradual recovery, indicative of myocardial stunning. The effects of ischaemia did not differ between endothelium-intact and -denuded hearts, indicating no role of the endothelium in the changes observed. 4 The adenosine analogues, N6-cyclopentyladenosine (CPA, A1 selective), 5'-N-ethylcarboxamidoadenosine (NECA, two-fold A2 selective over A1) and 2-p-((carboxyethyl)-phenethylamino)-5'carboxamidoadenosine (CGS21680, A2A selective) were infused (3 x 10-7 M) from 10 min into the 30-min low-flow ischaemia of denuded hearts and during reperfusion. 5 CGS21680 increased CF and improved the postischaemic functional recovery, as measured by the AO. NECA and CPA were not cardioprotective. The A2A selective antagonist, ZM241385, attenuated the coronary vasodilatation by CGS21680 and abolished the improved recovery of AO on reperfusion. 6 Reperfusion of paced working hearts caused a dramatic fall in AO which failed to recover. Infusion of CGS21680 from 15 min into the ischaemic period produced vasodilatation but failed to restore AO, presumably because the ischaemic damage was irreversible. 7 Thus, the endothelium plays no role in myocardial dysfunction following low-flow global ischaemia and reperfusion of guinea-pig working hearts

  14. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  15. Dual activity of certain HIT-proteins: A. thaliana Hint4 and C. elegans DcpS act on adenosine 5'-phosphosulfate as hydrolases (forming AMP) and as phosphorylases (forming ADP).

    PubMed

    Guranowski, Andrzej; Wojdyła, Anna Maria; Zimny, Jarosław; Wypijewska, Anna; Kowalska, Joanna; Jemielity, Jacek; Davis, Richard E; Bieganowski, Paweł

    2010-01-01

    Histidine triad (HIT)-family proteins interact with different mono- and dinucleotides and catalyze their hydrolysis. During a study of the substrate specificity of seven HIT-family proteins, we have shown that each can act as a sulfohydrolase, catalyzing the liberation of AMP from adenosine 5'-phosphosulfate (APS or SO(4)-pA). However, in the presence of orthophosphate, Arabidopsis thaliana Hint4 and Caenorhabditis elegans DcpS also behaved as APS phosphorylases, forming ADP. Low pH promoted the phosphorolytic and high pH the hydrolytic activities. These proteins, and in particular Hint4, also catalyzed hydrolysis or phosphorolysis of some other adenylyl-derivatives but at lower rates than those for APS cleavage. A mechanism for these activities is proposed and the possible role of some HIT-proteins in APS metabolism is discussed. PMID:19896942

  16. Activation of the adenosine A2A receptor exacerbates experimental autoimmune neuritis in Lewis rats in association with enhanced humoral immunity.

    PubMed

    Zhang, Min; Li, Xiao-Li; Li, Heng; Wang, Shan; Wang, Cong-Cong; Yue, Long-Tao; Xu, Hua; Zhang, Peng; Chen, Hui; Yang, Bing; Duan, Rui-Sheng

    2016-04-15

    Accumulated evidence demonstrated that Adenosine A2A receptor (A2AR) is involved in the inflammatory diseases. In the present study, we showed that a selective A2AR agonist, CGS21680, exacerbated experimental autoimmune neuritis in Lewis rats induced with bovine peripheral myelin. The exacerbation was accompanied with reduced CD4(+)Foxp3(+) T cells, increased CD4(+)CXCR5(+) T cells, B cells, dendritic cells and antigen-specific autoantibodies, which is possibly due to the inhibition of IL-2 induced by CGS21680. Combined with previous studies, our data indicate that the effects of A2AR stimulation in vivo are variable in different diseases. Caution should be taken in the use of A2AR agonists. PMID:27049573

  17. Antagonism by theophylline of respiratory inhibition induced by adenosine.

    PubMed

    Eldridge, F L; Millhorn, D E; Kiley, J P

    1985-11-01

    The effects on respiration of an analogue of adenosine, L-2-N6-(phenylisopropyl)adenosine (PIA), and of the methylxanthine, theophylline, were determined in 19 vagotomized glomectomized cats whose end-tidal PCO2 was kept constant by means of a servo-controlled ventilator. Integrated phrenic nerve activity was used to represent respiratory output. Our results show that PIA, whether given systemically or into the third cerebral ventricle, depressed respiration. Systemically administered theophylline stimulated respiration. Theophylline given intravenously, or into the third ventricle not only reversed the depressive effects of previously administered PIA but caused further increases of respiration above the control level. Prior systemic administration of theophylline blocked both respiratory and hypotensive effects of subsequently administered PIA. Effects of either agent on medullary extracellular fluid pH did not explain the results. We conclude that the adenosine analogue PIA, acts to inhibit neurons in the brain that are involved in the control of respiration and that its effects are blocked by theophylline. We suggest that adenosine acts as a tonic modulator of respiration and that theophylline stimulates breathing by competitive antagonism of adenosine at neuronal receptor sites. PMID:4066573

  18. Adenosine signaling and the regulation of chronic lung disease

    PubMed Central

    Zhou, Yang; Schneider, Daniel J.; Blackburn, Michael R.

    2009-01-01

    Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and interstitial lung disease are characterized by inflammation and tissue remodeling processes that compromise pulmonary function. Adenosine is produced in the inflamed and damaged lung where it plays numerous roles in the regulation of inflammation and tissue remodeling. Extracellular adenosine serves as an autocrine and paracrine signaling molecule by engaging cell surface adenosine receptors. Preclinical and cellular studies suggest that adenosine plays an anti-inflammatory role in processes associated with acute lung disease, where activation of the A2AR and A2BR have promising implications for the treatment of these disorders. In contrast, there is growing evidence that adenosine signaling through the A1R, A2BR and A3R may serve pro-inflammatory and tissue remodeling functions in chronic lung diseases. This review discusses the current progress of research efforts and clinical trials aimed at understanding the complexities of this signaling pathway as they pertain to the development of treatment strategies for chronic lung diseases. PMID:19426761

  19. Features of adenosine metabolism of mouse heart.

    PubMed

    Deussen, Andreas; Weichsel, Johannes; Pexa, Annette

    2006-11-01

    Adenosine metabolism and transport were evaluated in the isolated perfused mouse heart and compared with the well-established model of isolated perfused guinea pig heart. Coronary venous release of adenosine under well-oxygenated conditions in the mouse exceeds that in the guinea pig threefold when related to tissue mass. Total myocardial adenosine production rate under this condition was approximately 2 nmol/min per gramme and similar in both species. Coronary resistance vessels of mice are highly sensitive to exogenous adenosine, and the threshold for adenosine-induced vasodilation is approximately 30 nmol/l. Adenosine membrane transport was largely insensitive to nitrobenzyl-thioinosine (NBTI) in mouse heart, which is in contrast to guinea pig and several other species. This indicates the dominance of NBTI-insensitive transporters in mouse heart. For future studies, the assessment of cytosolic and extracellular adenosine metabolism and its relationship with coronary flow will require the use of more effective membrane transport blockers.

  20. Effect of adenosine and inosine on ureagenesis in hepatocytes.

    PubMed Central

    Guinzberg, R; Laguna, I; Zentella, A; Guzman, R; Piña, E

    1987-01-01

    Adenosine and inosine produced a dose-dependent stimulation of ureagenesis in isolated rat hepatocytes. Hypoxanthine, xanthine and uric acid were without effect. Half-maximally effective concentrations were 0.08 microM for adenosine and 5 microM for inosine. Activation of ureagenesis by both nucleosides had the following characteristics: (a) it was observed with either glutamine or (NH4)2CO3, provided that glucose was present; (b) it was not detected when glucose was replaced by lactate plus oleate; (c) it was mutually antagonized by glucagon, but not by adrenaline; and (d) it was dependent on Ca2+. We suggest that the action of adenosine and inosine on ureagenesis might be of physiological significance. PMID:3663162

  1. Adenosine receptor agonists for promotion of dermal wound healing

    PubMed Central

    Valls, María D.; Cronstein, Bruce N.; Montesinos, M. Carmen

    2009-01-01

    Wound healing is a dynamic and complex process that involves a well coordinated, highly regulated series of events including inflammation, tissue formation, revascularization and tissue remodeling. However, this orderly sequence is impaired in certain pathophysiological conditions such as diabetes mellitus, venous insufficiency, chronic glucocorticoid use, aging and malnutrition. Together with proper wound care, promotion of the healing process is the primary objective in the management of chronic poorly healing wounds. Recent studies have demonstrated that A2A adenosine receptor agonists promote wound healing in normal and diabetic animals and one such agonist, Sonedenoson, is currently being evaluated as a prospective new therapy of diabetic foot ulcers. We will review the mechanisms by which adenosine receptor activation affects the function of the cells and tissues that participate in wound healing, emphasizing the potential beneficial impact of adenosine receptor agonists in diabetic impaired healing. PMID:19041853

  2. Introduction to Adenosine Receptors as Therapeutic Targets

    PubMed Central

    Jacobson, Kenneth A.

    2012-01-01

    Adenosine acts as a cytoprotective modulator in response to stress to an organ or tissue. Although short-lived in the circulation, it can activate four sub-types of G protein-coupled adenosine receptors (ARs): A1, A2A, A2B, and A3. The alkylxanthines caffeine and theophylline are the prototypical antagonists of ARs, and their stimulant actions occur primarily through this mechanism. For each of the four AR subtypes, selective agonists and antagonists have been introduced and used to develop new therapeutic drug concepts. ARs are notable among the GPCR family in the number and variety of agonist therapeutic candidates that have been proposed. The selective and potent synthetic AR agonists, which are typically much longer lasting in the body than adenosine, have potential therapeutic applications based on their anti-inflammatory (A2A and A3), cardioprotective (preconditioning by A1 and A3 and postconditioning by A2B), cerebroprotective (A1 and A3), and antinociceptive (A1) properties. Potent and selective AR antagonists display therapeutic potential as kidney protective (A1), antifibrotic (A2A), neuroprotective (A2A), and antiglaucoma (A3) agents. AR agonists for cardiac imaging and positron-emitting AR antagonists are in development for diagnostic applications. Allosteric modulators of A1 and A3 ARs have been described. In addition to the use of selective agonists/antagonists as pharmacological tools, mouse strains in which an AR has been genetically deleted have aided in developing novel drug concepts based on the modulation of ARs. PMID:19639277

  3. Korean Red Ginseng attenuates ethanol-induced steatosis and oxidative stress via AMPK/Sirt1 activation

    PubMed Central

    Han, Jae Yun; Lee, Sangkyu; Yang, Ji Hye; Kim, Sunju; Sim, Juhee; Kim, Mi Gwang; Jeong, Tae Cheon; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2014-01-01

    Background Alcoholic steatosis is the earliest and most common liver disease, and may precede the onset of more severe forms of liver injury. Methods The effect of Korean Red Ginseng extract (RGE) was tested in two murine models of ethanol (EtOH)-feeding and EtOH-treated hepatocytes. Results Blood biochemistry analysis demonstrated that RGE treatment improved liver function. Histopathology and measurement of hepatic triglyceride content verified the ability of RGE to inhibit fat accumulation. Consistent with this, RGE administration downregulated hepatic lipogenic gene induction and restored hepatic lipolytic gene repression by EtOH. The role of oxidative stress in the pathogenesis of alcoholic liver diseases is well established. Treatment with RGE attenuated EtOH-induced cytochrome P450 2E1, 4-hydroxynonenal, and nitrotyrosine levels. Alcohol consumption also decreased phosphorylation of adenosine monophosphate-activated protein kinase, which was restored by RGE. Moreover, RGE markedly inhibited fat accumulation in EtOH-treated hepatocytes, which correlated with a decrease in sterol regulatory element-binding protein-1 and a commensurate increase in sirtuin 1 and peroxisome proliferator-activated receptor-α expression. Interestingly, the ginsenosides Rb2 and Rd, but not Rb1, significantly inhibited fat accumulation in hepatocytes. Conclusion These results demonstrate that RGE and its ginsenoside components inhibit alcoholic steatosis and liver injury by adenosine monophosphate-activated protein kinase/sirtuin 1 activation both in vivo and in vitro, suggesting that RGE may have a potential to treat alcoholic liver disease. PMID:26045683

  4. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic, and Parvalbumin Neurons in Mice

    PubMed Central

    Yang, Chun; Franciosi, Serena; Brown, Ritchie E.

    2013-01-01

    Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF) region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV) neurons to determine the effect of adenosine. Whole-cell recordings were made from BF cholinergic neurons and from BF GABAergic and PV neurons with the size (>20 μm) and intrinsic membrane properties (prominent H-currents) corresponding to cortically projecting neurons. A brief (2 min) bath application of adenosine (100 μM) decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (EPSCs) in all groups of BF cholinergic, GABAergic, and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM). Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1 receptor-mediated inhibition of glutamatergic inputs to cortically projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required

  5. Adenosine regulates the proinflammatory signaling function of thrombin in endothelial cells

    PubMed Central

    Hassanian, Seyed Mahdi; Dinarvand, Peyman; Rezaie, Alireza R.

    2014-01-01

    The plasma level of the regulatory metabolite adenosine increases during the activation of coagulation and inflammation. Here we investigated the effect of adenosine on modulation of thrombin-mediated proinflammatory responses in HUVECs. We found that adenosine inhibits the barrier-disruptive effect of thrombin in HUVECs by a concentration-dependent manner. Analysis of cell surface expression of adenosine receptors revealed that A2A and A2B are expressed at the highest level among the four receptor subtypes (A2B>A2A>A1>A3) on HUVECs. The barrier-protective effect of adenosine in response to thrombin was recapitulated by the A2A specific agonist, CGS 21680, and abrogated both by the siRNA knockdown of the A2A receptor and by the A2A-specific antagonists, ZM-241385 and SCH-58261. The thrombin-induced RhoA activation and its membrane translocation were both inhibited by adenosine in a cAMP-dependent manner, providing a molecular mechanism through which adenosine exerts a barrier-protective function. Adenosine also inhibited thrombin-mediated activation of NF-κB and decreased adhesion of monocytic THP-1 cells to stimulated HUVECs via down-regulation of expression of cell surface adhesion molecules, VCAM-1, ICAM-1 and E-selectin. Moreover, adenosine inhibited thrombin-induced elevated expression of proinflammatory cytokines, IL-6 and HMGB-1; and chemokines, MCP-1, CXCL-1 and CXCL-3. Taken together, these results suggest that adenosine may inhibit thrombin-mediated proinflammatory signaling responses, thereby protecting the endothelium from injury during activation of coagulation and inflammation. PMID:24477600

  6. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    PubMed Central

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  7. Why do premature newborn infants display elevated blood adenosine levels?

    PubMed

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW

  8. Mutagenesis Reveals Structure–Activity Parallels between Human A2A Adenosine Receptors and Biogenic Amine G Protein-Coupled Receptors

    PubMed Central

    Jiang, Qiaoling; Lee, Brian X.; Glashofer, Marc; van Rhee, A. Michiel; Jacobson, Kenneth A.

    2012-01-01

    Structure–affinity relationships for ligand binding at the human A2A adenosine receptor have been probed using site-directed mutagenesis in the transmembrane helical domains (TMs). The mutant receptors were expressed in COS-7 cells and characterized by binding of the radioligands [3H]CGS21680, [3H]NECA, and [3H]XAC. Three residues, at positions essential for ligand binding in other G protein-coupled receptors, were individually mutated. The residue V(3.32) in the A2A receptor that is homologous to the essential aspartate residue of TM3 in the biogenic amine receptors, i.e., V84(3.32), may be substituted with L (present in the A3 receptor) but not with D (in biogenic amine receptors) or A. H250(6.52), homologous to the critical N507 of rat m3 muscarinic acetylcholine receptors, may be substituted with other aromatic residues or with N but not with A (Kim et al. J. Biol. Chem. 1995, 270, 13987–13997). H278(7.43), homologous to the covalent ligand anchor site in rhodopsin, may not be substituted with either A, K, or N. Both V84L(3.32) and H250N(6.52) mutant receptors were highly variable in their effect on ligand competition depending on the structural class of the ligand. Adenosine-5′-uronamide derivatives were more potent at the H250N(6.52) mutant receptor than at wild type receptors. Xanthines tended to be close in potency (H250N(6.52)) or less potent (V84L-(3.32)) than at wild type receptors. The affinity of CGS21680 increased as the pH was lowered to 5.5 in both the wild type and H250N(6.52) mutant receptors. Thus, protonation of H250-(6.52) is not involved in this pH dependence. These data are consistent with a molecular model predicting the proximity of bound agonist ligands to TM3, TM5, TM6, and TM7. PMID:9258366

  9. Fluorescent ligands for adenosine receptors.

    PubMed

    Kozma, Eszter; Jayasekara, P Suresh; Squarcialupi, Lucia; Paoletta, Silvia; Moro, Stefano; Federico, Stephanie; Spalluto, Giampiero; Jacobson, Kenneth A

    2013-01-01

    Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field.

  10. Purification and Properties of Adenosine Diphosphoglucose Pyrophosphorylase from Sweet Corn 1

    PubMed Central

    Amir, Jacob; Cherry, Joe H.

    1972-01-01

    A 40-fold purification of adenosine diphosphoglucose pyrophosphorylase from sweet corn (Zea mays var. Golden Beauty) revealed the enzyme to be specific for adenosine triphosphate. The enzyme has an absolute requirement for Mg2+ and is activated by 3-phosphoglycerate and to a lesser extent by ribose-5-phosphate and fructose-6-phosphate. The apparent Km values of the enzyme for glucose-1-phosphate, adenosine triphosphate, pyrophosphate, and adenosine diphosphoglucose are 1.9 × 10−4, 3.2 × 10−5, 3.3 × 10−5, and 6.2 × 10−4m, respectively. Pyrophosphate inhibits adenosine diphosphoglucose synthesis competitively (Ki = 3.8 × 10−7m), while orthophosphate and sulfate appear to inhibit the reacion noncompetitively. These results show that the production of this sugar nucleotide can be controlled by the concentration of pyrophosphate. PMID:16658078

  11. Electron transfer between the QmoABC membrane complex and adenosine 5'-phosphosulfate reductase.

    PubMed

    Duarte, Américo G; Santos, André A; Pereira, Inês A C

    2016-04-01

    The dissimilatory adenosine 5'-phosphosulfate reductase (AprAB) is a key enzyme in the sulfate reduction pathway that catalyzes the reversible two electron reduction of adenosine 5'-phosphosulfate (APS) to sulfite and adenosine monophosphate (AMP). The physiological electron donor for AprAB is proposed to be the QmoABC membrane complex, coupling the quinone-pool to sulfate reduction. However, direct electron transfer between these two proteins has never been observed. In this work we demonstrate for the first time direct electron transfer between the Desulfovibrio desulfuricans ATCC 27774 QmoABC complex and AprAB. Cyclic voltammetry conducted with the modified Qmo electrode and AprAB in the electrolyte solution presented the Qmo electrochemical signature with two additional well-defined one electron redox processes, attributed to the AprAB FAD redox behavior. Moreover, experiments performed under catalytic conditions using the QmoABC modified electrode, with AprAB and APS in solution, show a catalytic current peak develop in the cathodic wave, attributed to substrate reduction, and which is not observed in the absence of QmoABC. Substrate dependence conducted with different electrode preparations (with and without immobilized Qmo) demonstrated that the QmoABC complex is essential for efficient electron delivery to AprAB, in order to sustain catalysis. These results confirm the role of Qmo in electron transfer to AprAB. PMID:26768116

  12. Rate and Equilibrium Constants for an Enzyme Conformational Change during Catalysis by Orotidine 5'-Monophosphate Decarboxylase.

    PubMed

    Goryanova, Bogdana; Goldman, Lawrence M; Ming, Shonoi; Amyes, Tina L; Gerlt, John A; Richard, John P

    2015-07-28

    The caged complex between orotidine 5'-monophosphate decarboxylase (ScOMPDC) and 5-fluoroorotidine 5'-monophosphate (FOMP) undergoes decarboxylation ∼300 times faster than the caged complex between ScOMPDC and the physiological substrate, orotidine 5'-monophosphate (OMP). Consequently, the enzyme conformational changes required to lock FOMP at a protein cage and release product 5-fluorouridine 5'-monophosphate (FUMP) are kinetically significant steps. The caged form of ScOMPDC is stabilized by interactions between the side chains from Gln215, Tyr217, and Arg235 and the substrate phosphodianion. The control of these interactions over the barrier to the binding of FOMP and the release of FUMP was probed by determining the effect of all combinations of single, double, and triple Q215A, Y217F, and R235A mutations on kcat/Km and kcat for turnover of FOMP by wild-type ScOMPDC; its values are limited by the rates of substrate binding and product release, respectively. The Q215A and Y217F mutations each result in an increase in kcat and a decrease in kcat/Km, due to a weakening of the protein-phosphodianion interactions that favor fast product release and slow substrate binding. The Q215A/R235A mutation causes a large decrease in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of OMP, which are limited by the rate of the decarboxylation step, but much smaller decreases in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of FOMP, which are limited by the rate of enzyme conformational changes. By contrast, the Y217A mutation results in large decreases in kcat/Km for ScOMPDC-catalyzed decarboxylation of both OMP and FOMP, because of the comparable effects of this mutation on rate-determining decarboxylation of enzyme-bound OMP and on the rate-determining enzyme conformational change for decarboxylation of FOMP. We propose that kcat = 8.2 s(-1) for decarboxylation of FOMP by the Y217A mutant is equal to the rate constant for cage formation from the

  13. Assay of adenosine 3',5' cyclic monophosphate by stimulation of protein kinase: a method not involving radioactivity

    SciTech Connect

    Handa, A.K.; Bressan, R.A.

    1980-03-01

    In order to meet a need for a cAMP assay which is not subject to interference by compounds in plant extracts, and which is suitable for use on occasions separated by many /sup 32/P half-lives, an assay based on cAMP-dependent protein kinase has been developed which does not require the use of (..gamma..-/sup 32/P)ATP. Instead of measuring the cAMP-stimulated increase in the rate of transfer of (..gamma..-/sup 32/P) phosphate from (..gamma..-/sup 32/P)ATP to protein, the rate of loss of ATP from the reaction mixture is determined. The ATP remaining after the protein kinase reaction is assayed by ATP-dependent chemiluminescence of the firefly luciferin-luciferase system. Under conditions of the protein kinase reaction in which a readily measurable decrease in ATP concentration occurs, the logarithm of the concentration of ATP decreases in proportion to the cAMP concentration, i.e., the reaction can be described by the equation: (ATP) = (ATP)/sub 0/ e/sup -(cAMP)kt/. The assay based on this relationship can detect less than 1 pmol of cAMP. The levels of cAMP found with this assay after partial purification of the cAMP from rat tissue, algal cells, and the media in which the cells were grown agreed with measurements made by the cAMP binding-competition assay of Gilman, and the potein kinase stimulation assay based on transfer of (/sup 32/P) phosphate from (..gamma..-/sup 32/P)ATP to protein. All of the enzymes and chemicals required for the assay of cAMP by protein kinase catalyzed loss of ATP can be stored frozen for months, making the assay suitable for occasional use.

  14. The reversal of glucose repressed prodigiosin production in Serratia marcescens by the cyclic 3'5'-adenosine monophosphate inhibitor theophylline.

    PubMed

    Clements-Jewery, S

    1976-04-15

    Glucose was found to cause severe repression of prodigiosin production in Serratia marcescens and a dose related partial reversal was demonstrated by theophylline. It is suggested that this reversal is due to the inhibition of cAMP phosphodiesterase and the concomitant increase in cellular cAMP concentration.

  15. Role of adenosine as adjunctive therapy in acute myocardial infarction.

    PubMed

    Forman, Mervyn B; Stone, Gregg W; Jackson, Edwin K

    2006-01-01

    Although early reperfusion and maintained patency is the mainstay therapy for ST elevation myocardial infarction, experimental studies demonstrate that reperfusion per se induces deleterious effects on viable ischemic cells. Thus "myocardial reperfusion injury" may compromise the full potential of reperfusion therapy and may account for unfavorable outcomes in high-risk patients. Although the mechanisms of reperfusion injury are complex and multifactorial, neutrophil-mediated microvascular injury resulting in a progressive decrease in blood flow ("no-reflow" phenomenon) likely plays an important role. Adenosine is an endogenous nucleoside found in large quantities in myocardial and endothelial cells. It activates four well-characterized receptors producing various physiological effects that attenuate many of the proposed mechanisms of reperfusion injury. The cardio-protective effects of adenosine are supported by its role as a mediator of pre- and post-conditioning. In experimental models, administration of adenosine in the peri-reperfusion period results in a marked reduction in infarct size and improvement in ventricular function. The cardioprotective effects in the canine model have a narrow time window with the drug losing its effect following three hours of ischemia. Several small clinical studies have demonstrated that administration of adenosine with reperfusion therapy reduces infarct size and improves ventricular function. In the larger AMISTAD and AMISTAD II trials a 3-h infusion of adenosine as an adjunct to reperfusion resulted in a striking reduction in infarct size (55-65%). Post hoc analysis of AMISTAD II showed that this was associated with significantly improved early and late mortality in patients treated within 3.17 h of symptoms. An intravenous infusion of adenosine for 3 h should be considered as adjunctive therapy in high risk-patients undergoing reperfusion therapy. PMID:16961725

  16. Nucleic acid molecules encoding isopentenyl monophosphate kinase, and methods of use

    DOEpatents

    Croteau, Rodney B.; Lange, Bernd M.

    2001-01-01

    A cDNA encoding isopentenyl monophosphate kinase (IPK) from peppermint (Mentha x piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of isopentenyl monophosphate kinase (SEQ ID NO:2), from peppermint (Mentha x piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for isopentenyl monophosphate kinase, or for a base sequence sufficiently complementary to at least a portion of isopentenyl monophosphate kinase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding isopentenyl monophosphate kinase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant isopentenyl monophosphate kinase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant isopentenyl monophosphate kinase may be used to obtain expression or enhanced expression of isopentenyl monophosphate kinase in plants in order to enhance the production of isopentenyl monophosphate kinase, or isoprenoids derived therefrom, or may be otherwise employed for the regulation or expression of isopentenyl monophosphate kinase, or the production of its products.

  17. Caffeine and sports activity: a review.

    PubMed

    Nehlig, A; Debry, G

    1994-07-01

    Potential ergogenic effects of caffeine at the cellular level are mediated by three main mechanisms of action which are: intracellular mobilization of calcium from sarcoplasmic reticulum and increased sensitivity of myofibrilles to calcium; inhibition of phosphodiesterases leading to an increase in cyclic-3',5'-adenosine monophosphate (cAMP) in various tissues including muscle; and the antagonism at the level of adenosine receptors, mainly in the central nervous system. The main mechanism of action of caffeine at the level usually encountered in vivo after the ingestion of a few cups of coffee is undoubtedly linked to the antagonism of caffeine at adenosine receptors. Caffeine also increases production of plasma catecholamines that allow the body to adapt to the stress created by physical exercise. Catecholamine production increases probably, in turn, the availability of free fatty acids as muscle substrates during work, thus allowing glycogen sparing. Caffeine is able to increase muscle contractility, has no ergogenic effect on intense exercise of brief duration, but can improve the time before exhaustion. Caffeine is also able to improve physical performance and endurance during prolonged activity of submaximal intensity. Glycogen sparing resulting from increased rate of lipolysis could contribute to the prolonged time to exhaustion. Finally, tolerance to the methylxanthine should be taken into account when an athlete wants to draw any benefit from caffeine absorption prior to a sports event. PMID:7960313

  18. Adverse and Protective Influences of Adenosine on the Newborn and Embryo: Implications for Preterm White Matter Injury and Embryo Protection

    PubMed Central

    Rivkees, Scott A.; Wendler, Christopher C.

    2011-01-01

    Few signaling molecules have the potential to influence the developing mammal as the nucleoside adenosine. Adenosine levels increase rapidly with tissue hypoxia and inflammation. Adenosine antagonists include the methlyxanthines caffeine and theophylline. The receptors that transduce adenosine action are the A1, A2a, A2b, and A3 adenosine receptors (ARs). In the postnatal period, A1AR activation may contribute to white matter injury in the preterm infant by altering oligodendrocyte (OL) development. In models of perinatal brain injury, caffeine is neuroprotective against periventricular white matter injury (PWMI) and hypoxic-ischemic encephalopathy (HIE). Supporting the notion that blockade of adenosine action is of benefit in the premature infant, caffeine reduces the incidence of broncho-pulmonary dysplasia and cerebral palsy in clinical studies. In comparison with the adverse effects on the postnatal brain, adenosine acts via A1ARs to play an essential role in protecting the embryo from hypoxia. Embryo protective effects are blocked by caffeine, and caffeine intake during early pregnancy increases the risk of miscarriage and fetal growth retardation. Adenosine and adenosine antagonists play important modulatory roles during mammalian development. The protective and deleterious effects of adenosine depend on the time of exposure and target sites of action. PMID:21228731

  19. Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes

    PubMed Central

    Bolcato, Chiara; Cusan, Claudia; Pastorin, Giorgia; Cacciari, Barbara; Klotz, Karl Norbert; Morizzo, Erika

    2007-01-01

    In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach. PMID:18368532

  20. CD39/Adenosine Pathway Is Involved in AIDS Progression

    PubMed Central

    Limou, Sophie; Younas, Mehwish; Kök, Ayrin; Huë, Sophie; Seddiki, Nabila; Hulin, Anne; Delaneau, Olivier; Schuitemaker, Hanneke; Herbeck, Joshua T.; Mullins, James I.; Muhtarova, Maria; Bensussan, Armand; Zagury, Jean-François; Lelievre, Jean-Daniel; Lévy, Yves

    2011-01-01

    HIV-1 infection is characterized by a chronic activation of the immune system and suppressed function of T lymphocytes. Regulatory CD4+ CD25high FoxP3+CD127low T cells (Treg) play a key role in both conditions. Here, we show that HIV-1 positive patients have a significant increase of Treg-associated expression of CD39/ENTPD1, an ectoenzyme which in concert with CD73 generates adenosine. We show in vitro that the CD39/adenosine axis is involved in Treg suppression in HIV infection. Treg inhibitory effects are relieved by CD39 down modulation and are reproduced by an adenosine-agonist in accordance with a higher expression of the adenosine A2A receptor on patients' T cells. Notably, the expansion of the Treg CD39+ correlates with the level of immune activation and lower CD4+ counts in HIV-1 infected patients. Finally, in a genetic association study performed in three different cohorts, we identified a CD39 gene polymorphism that was associated with down-modulated CD39 expression and a slower progression to AIDS. PMID:21750674

  1. THE EFFECT OF CHLORINATION OF NUCLEOTIDE BASES ON THE CONFORMATIONAL PROPERTIES OF THYMIDINE MONOPHOSPHATE.

    PubMed

    Mukhina, T M; Nikolaienko, T Yu

    2015-01-01

    Recent studies on Escherichia coli bacteria cultivation, in which DNA thymine was replaced with 5-chlorouracil have refreshed the problem of understanding the changes to physical properties of DNA monomers resultant from chemical modifications. These studies have shown that the replacement did not affect the normal activities and division of the bacteria, but has significantly reduced its life span. In this paper a comparative analysis was carried out by the methods of computational experiment of a set of 687 possible conformers of natural monomeric DNA unit (2'-deoxyribonucleotide thymidine monophosphate) and 660 conformers of 5-chloro-2'-deoxyuridine monophosphate - a similar molecules in which the natural nitrogenous base thymine is substituted with 5-chlorouracil. Structures of stable conformers of the modified deoxyribonucleotide have been obtained and physical factors, which determine their variation from the conformers of the unmodified molecule have been analyzed. A comparative analysis of the elastic properties of conformers of investigated molecules and non-covalent interactions present in them was conducted. The results can be usedfor planning experiments on synthesis of artficial DNA suitable for incorporation into living organisms. PMID:26255348

  2. Structural Studies of Thiamin Monophosphate Kinase in Complex with Substrates and Products.

    SciTech Connect

    McCulloch, K.M.; Kinsland, C.; Begley, T.P.; Ealick, S E.

    2008-06-03

    Thiamin monophosphate kinase (ThiL) catalyzes the ATP-dependent phosphorylation of thiamin monophosphate (TMP) to form thiamin pyrophosphate (TPP), the active form of vitamin B1. ThiL is a member of a small ATP binding superfamily that also includes the purine biosynthetic enzymes, PurM and PurL, NiFe hydrogenase maturation protein, HypE, and selenophosphate synthase, SelD. The latter four enzymes are believed to utilize phosphorylated intermediates during catalysis. To understand the mechanism of ThiL and its relationship to the other superfamily members, we determined the structure of Aquifex aeolicus ThiL (AaThiL) with nonhydrolyzable AMP-PCP and TMP, and also with the products of the reaction, ADP and TPP. The results suggest that AaThiL utilizes a direct, inline transfer of the {gamma}-phosphate of ATP to TMP rather than a phosphorylated enzyme intermediate. The structure of ThiL is compared to those of PurM, PurL, and HypE, and the ATP binding site is compared to that of PurL, for which nucleotide complexes are available.

  3. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  4. Structure-based design, synthesis, evaluation, and crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolase.

    PubMed

    Xu, Lan; Chong, Youhoon; Hwang, Inkyu; D'Onofrio, Anthony; Amore, Kristen; Beardsley, G Peter; Li, Chenglong; Olson, Arthur J; Boger, Dale L; Wilson, Ian A

    2007-04-27

    The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.

  5. Structure-Based Design, Synthesis, Evaluation And Crystal Structures of Transition State Analogue Inhibitors of Inosine Monophosphate Cyclohydrolase

    SciTech Connect

    Xu, L.; Chong, Y.; Hwang, I.; D'Onofrio, A.; Amore, K.; Beardsley, G.P.; Li, C.; Olson, A.J.; Boger, D.L.; Wilson, I.A.; /Skaggs Inst. Chem. Biol. /Scripps Res. Inst. /Yale U.

    2007-07-13

    The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.

  6. Repurposing cryptosporidium inosine 5'-monophosphate dehydrogenase inhibitors as potential antibacterial agents.

    PubMed

    Mandapati, Kavitha; Gorla, Suresh Kumar; House, Amanda L; McKenney, Elizabeth S; Zhang, Minjia; Rao, Suraj Nagendra; Gollapalli, Deviprasad R; Mann, Barbara J; Goldberg, Joanna B; Cuny, Gregory D; Glomski, Ian J; Hedstrom, Lizbeth

    2014-08-14

    Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the pivotal step in guanine nucleotide biosynthesis. IMPDH is a target for immunosuppressive, antiviral, and anticancer drugs, but, as of yet, has not been exploited for antimicrobial therapy. We have previously reported potent inhibitors of IMPDH from the protozoan parasite Cryptosporidium parvum (CpIMPDH). Many pathogenic bacteria, including Bacillus anthracis, Staphylococcus aureus, and Listeria monocytogenes, contain IMPDHs that should also be inhibited by these compounds. Herein, we present the structure-activity relationships for the inhibition of B. anthracis IMPDH (BaIMPDH) and antibacterial activity of 140 compounds from five structurally distinct compound series. Many potent inhibitors of BaIMPDH were identified (78% with IC50 ≤ 1 μM). Four compounds had minimum inhibitory concentrations (MIC) of less than 2 μM against B. anthracis Sterne 770. These compounds also displayed antibacterial activity against S. aureus and L. monocytogenes. PMID:25147601

  7. Effect of insulin and glucose on adenosine metabolizing enzymes in human B lymphocytes.

    PubMed

    Kocbuch, Katarzyna; Sakowicz-Burkiewicz, Monika; Grden, Marzena; Szutowicz, Andrzej; Pawelczyk, Tadeusz

    2009-01-01

    In diabetes several aspects of immunity are altered, including the immunomodulatory action of adenosine. Our study was undertaken to investigate the effect of different glucose and insulin concentrations on activities of adenosine metabolizing enzymes in human B lymphocytes line SKW 6.4. The activity of adenosine deaminase in the cytosolic fraction was very low and was not affected by different glucose concentration, but in the membrane fraction of cells cultured with 25 mM glucose it was decreased by about 35% comparing to the activity in cells maintained in 5 mM glucose, irrespective of insulin concentration. The activities of 5'-nucleotidase (5'-NT) and ecto-5'-NT in SKW 6.4 cells depended on insulin concentration, but not on glucose. Cells cultured with 10(-8) M insulin displayed an about 60% lower activity of cytosolic 5'-NT comparing to cells maintained at 10(-11) M insulin. The activity of ecto-5'-NT was decreased by about 70% in cells cultured with 10(-8) M insulin comparing to cells grown in 10(-11) M insulin. Neither insulin nor glucose had an effect on adenosine kinase (AK) activity in SKW 6.4 cells or in human B cells isolated from peripheral blood. The extracellular level of adenosine and inosine during accelerated catabolism of cellular ATP depended on glucose, but not on insulin concentration. Concluding, our study demonstrates that glucose and insulin differentially affect the activities of adenosine metabolizing enzymes in human B lymphocytes, but changes in those activities do not correlate with the adenosine level in cell media during accelerated ATP catabolism, implying that nucleoside transport is the primary factor determining the extracellular level of adenosine.

  8. Synthesis and biological activity of novel tiliroside derivants.

    PubMed

    Qin, Nan; Li, Chun-Bao; Jin, Mei-Na; Shi, Li-Huan; Duan, Hong-Quan; Niu, Wen-Yan

    2011-10-01

    A series of new tiliroside derivatives were synthesized and characterized by analytical (1)H NMR, (13)C NMR and mass spectrometry. All of the compounds were evaluated for anti-diabetic properties in vitro using HepG2 cells. Compounds 3c, 3d, and 3i-l caused significant enhancements in glucose consumption by insulin-resistant HepG2 cells compared with control cells and cells that were exposed to metformin (an anti-diabetic drug). Moreover, compound 3l significantly activated adenosine 5'-monophosphate-activated protein kinase activity and reduced acetyl-CoA carboxylase activity. Thus, the tiliroside derivative 3l offers potential to be developed as a new approach for treating type II diabetes.

  9. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    PubMed

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists.

  10. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    PubMed

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists. PMID:25063794

  11. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-06-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})

  12. PRODUCTION OF EXTRACELLULAR GUANOSINE-5'-MONOPHOSPHATE BY BACILLUS SUBTILIS

    PubMed Central

    Demain, A. L.; Miller, I. M.; Hendlin, D.

    1964-01-01

    Demain, A. L. (Merck Sharp & Dohme Research Laboratories, Rahway, N.J.), I. M. Miller, and D. Hendlin. Production of extracellular guanosine-5'-monophosphate by Bacillus subtilis. J. Bacteriol. 88:991–995. 1964.—Wild-type Bacillus subtilis colonies were found to feed purineless mutants. A strain with high feeding capacity was selected for study, with a guanineless mutant of B. subtilis used as the assay organism. The factor was excreted during its growth phase in a complex medium containing starch and soybean meal extract. Nutritional studies led to the development of a defined medium to be used for biochemical studies and to aid in the isolation of the factor. Starch was replaced by maltose and the soybean meal extract by Mn++. Production of the factor was sensitive to the pH of the medium during growth. Practically its entire extracellular accumulation occurred before visible lysis. The factor was identified as guanosine-5'-monophosphate derived by extracellular enzymatic hydrolysis of excreted ribonucleic acid. PMID:14219064

  13. Regulation of Cardiovascular Development by Adenosine and Adenosine-Mediated Embryo Protection

    PubMed Central

    Rivkees, Scott A.; Wendler, Christopher C.

    2012-01-01

    Few signaling molecules have the potential to influence the developing mammal as the nucleoside adenosine. Adenosine levels increase rapidly with tissue hypoxia and inflammation. Adenosine antagonists include the methlyxanthines caffeine and theophylline. The receptors that transduce adenosine action are the A1, A2a, A2b, and A3 adenosine receptors (ARs). We examined how adenosine acts via A1ARs to influence embryo development. Transgenic mice were studied along with embryo cultures. Embryos lacking A1ARs were markedly growth retarded following intrauterine hypoxia exposure. Studies of mice selectively lacking A1AR in the heart identify the heart as a key site of adenosines embryo protective effects. Studies of isolated embryos showed that adenosine plays a key role in modulating embryo cardiac function, especially in the setting of hypoxia. When pregnant mice were treated during embryogenesis with the adenosine antagonist caffeine, adult mice had abnormal heart function. Adenosine acts via A1ARs to play an essential role in protecting the embryo against intra uterine stress, and adenosine antagonists, including caffeine, may be an unwelcome exposure for the embryo. PMID:22423036

  14. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    SciTech Connect

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P.

    2010-06-14

    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.

  15. Pyridopyrimidine analogues as novel adenosine kinase inhibitors.

    PubMed

    Zheng, G Z; Lee, C; Pratt, J K; Perner, R J; Jiang, M Q; Gomtsyan, A; Matulenko, M A; Mao, Y; Koenig, J R; Kim, K H; Muchmore, S; Yu, H; Kohlhaas, K; Alexander, K M; McGaraughty, S; Chu, K L; Wismer, C T; Mikusa, J; Jarvis, M F; Marsh, K; Kowaluk, E A; Bhagwat, S S; Stewart, A O

    2001-08-20

    A novel series of pyridopyrimidine analogues 9 was identified as potent adenosine kinase inhibitors based on the SAR and computational studies. Substitution of the C7 position of the pyridopyrimidino core with C2' substituted pyridino moiety increased the in vivo potency and enhanced oral bioavailability of these adenosine kinase inhibitors.

  16. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  17. Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center.

    PubMed

    Zhao, Cong; Lou, Zhiyong; Guo, Yu; Ma, Ming; Chen, Yutao; Liang, Shuaiyi; Zhang, Liang; Chen, Shoudeng; Li, Xuemei; Liu, Yingfang; Bartlam, Mark; Rao, Zihe

    2009-09-01

    Highly pathogenic influenza virus strains currently in circulation pose a significant risk of a global pandemic. Following the reported crystal structure of the endonuclease domain from the avian influenza virus polymerase PA subunit, here we report the results of a systematic X-ray crystallographic analysis of its complex with adenosine, uridine, and thymidine nucleoside monophosphates (NMPs). Electron density corresponding to the monophosphate moiety of each nucleotide was apparent in each NMP complex and bound to the catalytic metal. A hydrophobic site was found to contribute to nucleoside binding. The NMP complex structures should represent the conformation of the bound product after nuclease cleavage. Moreover, one solvent molecule was found to occupy an equivalent position to the second reported Mn(2+) ion, where it mediates the interaction between bound NMPs and the N-terminal PA domain in the presence of the Mg(2+) ion. The results presented here indicate a possible cleavage mechanism and identify a distinct nucleotide binding pocket. The identification of this binding pocket opens a new avenue for anti-influenza drug discovery, targeting the cap-dependent endonuclease, in response to the worldwide threat of influenza. PMID:19587036

  18. Adenosine modulates light responses of rat retinal ganglion cell photoreceptors througha cAMP-mediated pathway

    PubMed Central

    Sodhi, Puneet; Hartwick, Andrew T E

    2014-01-01

    Adenosine is an established neuromodulator in the mammalian retina, with A1 adenosine receptors being especially prevalent in the innermost ganglion cell layer. Activation of A1 receptors causes inhibition of adenylate cyclase, decreases in intracellular cyclic AMP (cAMP) levels and inhibition of protein kinase A (PKA). In this work, our aim was to characterize the effects of adenosine on the light responses of intrinsically photosensitive retinal ganglion cells (ipRGCs) and to determine whether these photoreceptors are subject to neuromodulation through intracellular cAMP-related signalling pathways. Using multielectrode array recordings from postnatal and adult rat retinas, we demonstrated that adenosine significantly shortened the duration of ipRGC photoresponses and reduced the number of light-evoked spikes fired by these neurons. The effects were A1 adenosine receptor-mediated, and the expression of this receptor on melanopsin-containing ipRGCs was confirmed by calcium imaging experiments on isolated cells in purified cultures. While inhibition of the cAMP/PKA pathway by adenosine shortened ipRGC light responses, stimulation of this pathway with compounds such as forskolin had the opposite effect and lengthened the duration of ipRGC spiking. Our findings reveal that the modification of ipRGC photoresponses through a cAMP/PKA pathway is a general feature of rat ganglion cell photoreceptors, and this pathway can be inhibited through activation of A1 receptors by adenosine. As adenosine levels in the retina rise at night, adenosinergic modulation of ipRGCs may serve as an internal regulatory mechanism to limit transmission of nocturnal photic signals by ipRGCs to the brain. Targeting retinal A1 adenosine receptors for ipRGC inhibition represents a potential therapeutic target for sleep disorders and migraine-associated photophobia. PMID:25038240

  19. Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats.

    PubMed

    Nakazawa, Taisuke; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-02-01

    Adenosine is a potent vasodilator of retinal blood vessels and is implicated to be a major regulator of retinal blood flow during metabolic stress, but little is known about the impact of diabetes on the role of adenosine in regulation of retinal hemodynamics. Therefore, we examined how diabetes affects adenosine-induced vasodilation of retinal arterioles. Male Wistar rats were treated with streptozotocin (80 mg/kg, intraperitoneally), and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 microg/kg, intravenously [i.v.]) to eliminate any nerve activity and prevent movement of the eye and infused with methoxamine continuously to maintain adequate systemic circulation. Fundus images were captured with a digital camera that was equipped with a special objective lens, and diameters of retinal arterioles were measured. Adenosine increased diameters of retinal arterioles and decreased systemic blood pressure. These responses were significantly attenuated by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) and the adenosine triphosphate-dependent K+ (K(ATP)) channel blocker glibenclamide (20 mg/kg, i.v.). The depressor responses to adenosine were reduced in diabetic rats, whereas diabetes did not alter vasodilation of retinal arterioles to adenosine. In contrast, both depressor response and vasodilation of retinal arteriole to acetylcholine were reduced in diabetic rats. The retinal vasodilator responses to adenosine and acetylcholine observed in diabetic rats were diminished by N(G)-nitro-L-arginine methyl ester. There were no differences in the responses to pinacidil, a K(ATP) channel opener, between the diabetic and nondiabetic rats. These results suggest that both the activation of nitric oxide synthase and opening of K(ATP) channels contribute to the vasodilator effects of adenosine in rats in vivo. However, diabetes has no significant impact on the vasodilation mediated by these mechanisms in

  20. In Search of Enzymes with a Role in 3', 5'-Cyclic Guanosine Monophosphate Metabolism in Plants.

    PubMed

    Gross, Inonge; Durner, Jörg

    2016-01-01

    In plants, nitric oxide (NO)-mediated 3', 5'-cyclic guanosine monophosphate (cGMP) synthesis plays an important role during pathogenic stress response, stomata closure upon osmotic stress, the development of adventitious roots and transcript regulation. The NO-cGMP dependent pathway is well characterized in mammals. The binding of NO to soluble guanylate cyclase enzymes (GCs) initiates the synthesis of cGMP from guanosine triphosphate. The produced cGMP alters various cellular responses, such as the function of protein kinase activity, cyclic nucleotide gated ion channels and cGMP-regulated phosphodiesterases. The signal generated by the second messenger is terminated by 3', 5'-cyclic nucleotide phosphodiesterase (PDEs) enzymes that hydrolyze cGMP to a non-cyclic 5'-guanosine monophosphate. To date, no homologues of mammalian cGMP-synthesizing and degrading enzymes have been found in higher plants. In the last decade, six receptor proteins from Arabidopsis thaliana have been reported to have guanylate cyclase activity in vitro. Of the six receptors, one was shown to be a NO dependent guanylate cyclase enzyme (NOGC1). However, the role of these proteins in planta remains to be elucidated. Enzymes involved in the degradation of cGMP remain elusive, albeit, PDE activity has been detected in crude protein extracts from various plants. Additionally, several research groups have partially purified and characterized PDE enzymatic activity from crude protein extracts. In this review, we focus on presenting advances toward the identification of enzymes involved in the cGMP metabolism pathway in higher plants. PMID:27200049