Science.gov

Sample records for adenosine monophosphate camp-dependent

  1. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    MedlinePlus

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions adenosine monophosphate deaminase deficiency adenosine ...

  2. 5'-Adenosine monophosphate and adenosine metabolism, and adenosine responses in mouse, rat and guinea pig heart.

    PubMed

    Headrick, J P; Peart, J; Hack, B; Garnham, B; Matherne, G P

    2001-11-01

    We examined myocardial 5'-adenosine monophosphate (5'-AMP) catabolism, adenosine salvage and adenosine responses in perfused guinea pig, rat and mouse heart. MVO(2) increased from 71+/-8 microl O(2)/min per g in guinea pig to 138+/-17 and 221+/-15 microl O(2)/min per g in rat and mouse. VO(2)/beat was 0.42+/-0.03, 0.50+/-0.03 and 0.55+/-0.04 microl O(2)/g in guinea pig, rat and mouse, respectively. Resting and peak coronary flows were highest in mouse vs. rat and guinea pig, and peak ventricular pressures and Ca(2+) sensitivity declined as heart mass increased. Net myocardial 5'-AMP dephosphorylation increased significantly as mass declined (3.8+/-0.5, 9.0+/-1.4 and 11.0+/-1.6 nmol/min per g in guinea pig, rat and mouse, respectively). Despite increased 5'-AMP catabolism, coronary venous [adenosine] was similar in guinea pig, rat and mouse (45+/-8, 69+/-10 and 57+/-14 nM, respectively). Comparable venous [adenosine] was achieved by increased salvage vs. deamination: 64%, 41% and 39% of adenosine formed was rephosphorylated while 23%, 46%, and 50% was deaminated in mouse, rat and guinea pig, respectively. Moreover, only 35-45% of inosine and its catabolites derive from 5'-AMP (vs. IMP) dephosphorylation in all species. Although post-ischemic purine loss was low in mouse (due to these adaptations), functional tolerance to ischemia decreased with heart mass. Cardiovascular sensitivity to adenosine also differed between species, with A(1) receptor sensitivity being greatest in mouse while A(2) sensitivity was greatest in guinea pig. In summary: (i) cardiac 5'-AMP dephosphorylation, VO(2), contractility and Ca(2+) sensitivity all increase as heart mass falls; (ii) adaptations in adenosine salvage vs. deamination limit purine loss and yield similar adenosine levels across species; (iii) ischemic tolerance declines with heart mass; and (iv) cardiovascular sensitivity to adenosine varies, with increasing A(2) sensitivity relative to A(1) sensitivity in larger hearts.

  3. Novel adenosine 3 prime ,5 prime -cyclic monophosphate dependent protein kinases in a marine diatom

    SciTech Connect

    Lin, P.P.C.; Volcani, B.E. )

    1989-08-08

    Two novel adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) dependent protein kinases have been isolated from the diatom Cylindrotheca fusiformis. The kinases, designated I and II, are eluted from DEAE-Sephacel at 0.10 and 0.15 M NaCl. They have a high affinity for cAMP and are activated by micromolar cAMP. They exhibit maximal activity at 5 mM Mg{sup 2+} and pH 8 with the preferred phosphate donor ATP and phosphate acceptor histone H1. They phosphorylate sea urchin sperm histone H1 on a single serine site in the sequence Arg-Lys-Gly-Ser({sup 32}P)-Ser-Asn-Ala-Arg and have an apparent M{sub r} of 75,000 as determined by gel filtration and sucrose density sedimentation. In the kinase I preparation a single protein band with an apparent M{sub r} of about 78,000 is photolabeled with 8-azido({sup 32}P)cAMP and is also phosphorylated with ({gamma}-{sup 32}P)ATP in a cAMP-dependent manner, after autoradiography following sodium dodecyl sulfate gel electrophoresis. The rate of phosphorylation of the 78,000-dalton band is independent of the enzyme concentration. The results indicate that (i) these diatom cAMP-dependent protein kinases are monomeric proteins, possessing both the cAMP-binding regulatory and catalytic domains on the same polypeptide chain, (ii) the enzymes do not dissociate into smaller species upon activation by binding cAMP, and (iii) self-phosphorylation of the enzymes by an intrapeptide reaction is cAMP dependent. The two diatom cAMP kinases are refractory to the heat-stable protein kinase modulator from rabbit muscle, but they respond differently to proteolytic degradation and to inhibition by arachidonic acid and several microbial alkaloids.

  4. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production.

    PubMed

    First, Eric A

    2015-08-15

    A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses. PMID:25957126

  5. Adenosine Monophosphate-Based Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  6. Photo protection of RNA building blocks: Adenosine 5‧-monophosphate, cytidine 5‧-monophosphate and cytosine

    NASA Astrophysics Data System (ADS)

    Nielsen, Jakob Brun; Thøgersen, Jan; Jensen, Svend Knak; Keiding, Søren Rud

    2013-04-01

    Photoprotection of the RNA nucleotides adenosine 5'-monophosphate and cytidine 5'-monophosphate, and the nucleobase cytosine was studied using UV pump, IR probe femtosecond transient absorption spectroscopy. The excitation energy is contained in the aromatic ring system, protecting the RNA backbone. All three molecules dissipate the excitation energy by internal conversion and subsequent vibrational relaxation to the electronic ground state in less than 10 ps. In addition, a second deactivation channel is found in cytidine 5'-monophosphate, illustrated by a signal at 1563 cm-1 with a lifetime of 33 ps assigned to an nπ∗ state in agreement with observations in the UV region.

  7. Development of Potent Adenosine Monophosphate Activated Protein Kinase (AMPK) Activators.

    PubMed

    Dokla, Eman M E; Fang, Chun-Sheng; Lai, Po-Ting; Kulp, Samuel K; Serya, Rabah A T; Ismail, Nasser S M; Abouzid, Khaled A M; Chen, Ching-Shih

    2015-11-01

    Previously, we reported the identification of a thiazolidinedione-based adenosine monophosphate activated protein kinase (AMPK) activator, compound 1 (N-[4-({3-[(1-methylcyclohexyl)methyl]-2,4-dioxothiazolidin-5-ylidene}methyl)phenyl]-4-nitro-3-(trifluoromethyl)benzenesulfonamide), which provided a proof of concept to delineate the intricate role of AMPK in regulating oncogenic signaling pathways associated with cell proliferation and epithelial-mesenchymal transition (EMT) in cancer cells. In this study, we used 1 as a scaffold to conduct lead optimization, which generated a series of derivatives. Analysis of the antiproliferative and AMPK-activating activities of individual derivatives revealed a distinct structure-activity relationship and identified 59 (N-(3-nitrophenyl)-N'-{4-[(3-{[3,5-bis(trifluoromethyl)phenyl]methyl}-2,4-dioxothiazolidin-5-ylidene)methyl]phenyl}urea) as the optimal agent. Relative to 1, compound 59 exhibits multifold higher potency in upregulating AMPK phosphorylation in various cell lines irrespective of their liver kinase B1 (LKB1) functional status, accompanied by parallel changes in the phosphorylation/expression levels of p70S6K, Akt, Foxo3a, and EMT-associated markers. Consistent with its predicted activity against tumors with activated Akt status, orally administered 59 was efficacious in suppressing the growth of phosphatase and tensin homologue (PTEN)-null PC-3 xenograft tumors in nude mice. Together, these findings suggest that 59 has clinical value in therapeutic strategies for PTEN-negative cancer and warrants continued investigation in this regard.

  8. Development of Novel Adenosine Monophosphate-Activated Protein Kinase Activators

    PubMed Central

    Guh, Jih-Hwa; Chang, Wei-Ling; Yang, Jian; Lee, Su-Lin; Wei, Shuo; Wang, Dasheng; Kulp, Samuel K.; Chen, Ching-Shih

    2010-01-01

    In light of the unique ability of thiazolidinediones to mediate peroxisome proliferator-activated receptor (PPAR)γ-independent activation of adenosine monophosphate-activated protein kinase (AMPK) and suppression of interleukin (IL)-6 production, we conducted a screening of an in-house, thiazolidinedione-based focused compound library to identify novel agents with these dual pharmacological activities. Cell-based assays pertinent to the activation status of AMPK and mammalian homolog of target of rapamycin (i.e., phosphorylation of AMPK and p70 ribosomal protein S6 kinase, respectively), and IL-6/IL-6 receptor signaling (i.e., IL-6 production and signal transducer and activator of transcription 3 phosphorylation, respectively) in lipopolysaccharide (LPS)-stimulated THP-1 human macrophages were used to screen this compound library, which led to the identification of compound 53 (N-{4-[3-(1-Methylcyclohexylmethyl)-2,4-dioxo-thiazolidin-5-ylidene-methyl]-phenyl}-4-nitro-3-trifluoromethyl-benzenesulfonamide) as the lead agent. Evidence indicates that this drug-induced suppression of LPS-stimulated IL-6 production was attributable to AMPK activation. Furthermore, compound 53-mediated AMPK activation was demonstrated in C-26 colon adenocarcinoma cells, indicating that it is not a cell line-specific event. PMID:20170185

  9. Induction of phosphodiesterase by cyclic adenosine 3':5'-monophosphate in differentiating Dictyostelium discoideum amoebae.

    PubMed

    Klein, C

    1975-09-25

    Cyclic adenosine 3':5'-monophosphate added to the starvation media of Dictyostelium discoideum amoebae induces both intracellular and extracellular phosphodiesterase activities of these cells. The induced enzyme activity appears several hours earlier than that in starved cells which have not been induced with cyclic nucleotide. In both cases, the appearance of enzyme is inhibited by cycloheximide, and actinomycin D, and daunomycin. The KmS for the extracellular enzyme(s) of nucleotide-induced and uninduced control cells are identical. The induction of enzyme activity seems specific for cyclic adenosine 3':5'-monophosphate since cyclic guanosine 3':5'-monophosphate, as well as other nucleotides, have no effect. No differences in the activity or excretion of either N-acetylglucosaminidase or the inhibitory of the extracellular phosphodiesterase are observed between cyclic adenosine 3':5'-monophosphate-induced and control cells. A direct activation of phosphodiesterase by cyclic adenosine 3':5'-monophosphate can be excluded, since the addition of this nucleotide to cell lysates has no effect on the enzyme activity. PMID:170256

  10. Effects of adenosine on polymorphonuclear leucocyte function, cyclic 3': 5'-adenosine monophosphate, and intracellular calcium.

    PubMed Central

    Nielson, C. P.; Vestal, R. E.

    1989-01-01

    1. Inhibition of human polymorphonuclear leucocyte (PMN) function by adenosine was studied with respect to effects of adenosine on intracellular cyclic AMP and calcium during the PMN respiratory burst. 2. The adenosine analogue 5'-N-ethylcarboxamide-adenosine (NECA) and L-N6-phenyl-isopropyl-adenosine (L-PIA) inhibited PMN oxygen metabolite generation with relative potencies (NECA greater than adenosine greater than L-PIA) characteristic of an A2 receptor. 3. The respiratory burst was inhibited by adenosine when PMN were activated by calcium ionophore or chemotactic peptide but not when cells where activated by oleoyl-acetyl-glycerol (OAG). 4. Adenosine increased intracellular cyclic AMP during the PMN respiratory burst regardless of whether cells were stimulated by ionophore, chemotactic peptide or OAG. 5. To determine whether the differences in cell inhibition by adenosine were related to differences in intracellular calcium mobilization by each activating agent, calcium was evaluated with the fluorescent probe, indo-1. Adenosine suppressed the increase in intracellular calcium following PMN activation by calcium ionophore or chemotactic peptide. In contrast, calcium did not increase in PMN activated by OAG and adenosine did not affect intracellular calcium changes following this stimulus. 6. These results demonstrate that physiological concentrations of adenosine inhibit the PMN respiratory burst in association with an increase in intracellular cyclic AMP and reduction of intracellular calcium. PMID:2547490

  11. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(-) secretion in human airway epithelia.

    PubMed

    Mall, M; Wissner, A; Schreiber, R; Kuehr, J; Seydewitz, H H; Brandis, M; Greger, R; Kunzelmann, K

    2000-09-01

    Ion transport defects underlying cystic fibrosis (CF) lung disease are characterized by impaired cyclic adenosine monophosphate (cAMP)-dependent Cl(-) conductance. Activation of Cl(-) secretion in airways depends on simultaneous activation of luminal Cl(-) channels and basolateral K(+) channels. We determined the role of basolateral K(+) conductance in cAMP- dependent Cl(-) secretion in native human airway epithelium obtained from non-CF and CF patients. CF tissues showed typical alterations of short-circuit currents with enhanced amiloride-sensitive Na(+) conductance and defective cAMP-mediated Cl(-) conductance. In non-CF tissues, Cl(-) secretion was significantly inhibited by the chromanol 293B (10 micromol/liter), a specific inhibitor of K(V)LQT1 K(+) channels. Inhibition was increased after cAMP-dependent stimulation. Similar effects were obtained with Ba(2+) (5 mmol/liter). In patch-clamp experiments with a human bronchial epithelial cell line, stimulation with forskolin (10 micromol/liter) simultaneously activated Cl(-) and K(+) conductance. The K(+) conductance was reversibly inhibited by Ba(2+) and 293B. Analysis of reverse-transcribed messenger RNA from non-CF and CF airways showed expression of human K(V)LQT1. We conclude that the K(+) channel K(V)LQT1 is important in maintaining cAMP-dependent Cl(-) secretion in human airways. Activation of K(V)LQT1 in CF airways in parallel with stimulation of residual CF transmembrane conductance regulator Cl(-) channel activity or alternative Cl(-) channels could help to circumvent the secretory defect.

  12. Histone deacetylases 6 increases the cyclic adenosine monophosphate level and promotes renal cyst growth.

    PubMed

    Wu, Ming; Mei, Changlin

    2016-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by abnormal enhanced cell proliferation and fluid secretion, which are triggered by increased levels of cyclic adenosine monophosphate (cAMP). Cebotaru et al. showed that a HDAC6 inhibitor reduced the cAMP level and inhibited cyst formation in Pkd1 knockout mice, which may become a new potential therapeutic agent for ADPKD. This study also raised several intriguing questions that might advance our understanding of the molecular pathogenesis of ADPKD. PMID:27312442

  13. Protective mechanisms of adenosine 5'-monophosphate in platelet activation and thrombus formation.

    PubMed

    Fuentes, E; Badimon, L; Caballero, J; Padró, T; Vilahur, G; Alarcón, M; Pérez, P; Palomo, I

    2014-03-01

    Platelet activation is relevant to a variety of acute thrombotic events. We sought to examine adenosine 5'-monophosphate (AMP) mechanisms of action in preventing platelet activation, thrombus formation and platelet-related inflammatory response. We assessed the effect of AMP on 1) P-selectin expression and GPIIb/IIIa activation by flow cytometry; 2) Platelet aggregation and ATP secretion induced by ADP, collagen, TRAP-6, convulxin and thrombin; 3) Platelet rolling and firm adhesion, and platelet-leukocyte interactions under flow-controlled conditions; and, 4) Platelet cAMP levels, sP-selectin, sCD40L, IL-1β, TGF-β1 and CCL5 release, PDE3A activity and PKA phosphorylation. The effect of AMP on in vivo thrombus formation was also evaluated in a murine model. The AMP docking with respect to A2 adenosine receptor was determined by homology. AMP concentration-dependently (0.1 to 3 mmol/l) inhibited P-selectin expression and GPIIb/IIIa activation, platelet secretion and aggregation induced by ADP, collagen, TRAP-6 and convulxin, and diminished platelet rolling and firm adhesion. Furthermore, AMP induced a marked increase in the rolling speed of leukocytes retained on the platelet surface. At these concentrations AMP significantly decreased inflammatory mediator from platelet, increased intraplatelet cAMP levels and inhibited PDE3A activity. Interestingly, SQ22536, ZM241385 and SCH58261 attenuated the antiplatelet effect of AMP. Docking experiments revealed that AMP had the same orientation that adenosine inside the A2 adenosine receptor binding pocket. These in vitro antithrombotic properties were further supported in an in vivo model of thrombosis. Considering the successful use of combined antiplatelet therapy, AMP may be further developed as a novel antiplatelet agent. PMID:24306059

  14. Adenosine monophosphate deaminase 3 activation shortens erythrocyte half-life and provides malaria resistance in mice.

    PubMed

    Hortle, Elinor; Nijagal, Brunda; Bauer, Denis C; Jensen, Lora M; Ahn, Seong Beom; Cockburn, Ian A; Lampkin, Shelley; Tull, Dedreia; McConville, Malcolm J; McMorran, Brendan J; Foote, Simon J; Burgio, Gaetan

    2016-09-01

    The factors that determine red blood cell (RBC) lifespan and the rate of RBC aging have not been fully elucidated. In several genetic conditions, including sickle cell disease, thalassemia, and G6PD deficiency, erythrocyte lifespan is significantly shortened. Many of these diseases are also associated with protection from severe malaria, suggesting a role for accelerated RBC senescence and clearance in malaria resistance. Here, we report a novel, N-ethyl-N-nitrosourea-induced mutation that causes a gain of function in adenosine 5'-monophosphate deaminase (AMPD3). Mice carrying the mutation exhibit rapid RBC turnover, with increased erythropoiesis, dramatically shortened RBC lifespan, and signs of increased RBC senescence/eryptosis, suggesting a key role for AMPD3 in determining RBC half-life. Mice were also found to be resistant to infection with the rodent malaria Plasmodium chabaudi. We propose that resistance to P. chabaudi is mediated by increased RBC turnover and higher rates of erythropoiesis during infection. PMID:27465915

  15. Adenosine 3',5'-monophosphate waves in dictyostelium discoideum: a demonstration by isotope dilution-fluorography

    SciTech Connect

    Tomchik, K.J.; Devreotes, P.N.

    1981-04-24

    The distribution of adenosine 3',5'-monophosphate (cyclic AMP) in fields of aggregating amoebae of Dictyostelium discoidenum was examined by a novel isotope dilution-fluorographic technique. Cellular cyclic AMP was visualized by its competition with exogenous /sup 3/H-labeled cyclic AMP for high-affinity binding sites on protein kinase immobilized on a Millipore filter used to blot the monolayer. The cyclic AMP was distributed in spiral or concentric circular wave patterns which centered on the foci of the aggregations. These patterns were correlated with those of cell shape change that propagate through the monolayers. These observations support the hypothesis that the aggregation process in Dictyostelium is mediated by the periodic relay of cyclic AMP signals and suggest a simple scheme for the dynamics of the aggregation process.

  16. Intracellular adenosine 5'-triphosphate, adenosine 5'-diphosphate, and adenosine 5'-monophosphate detection by short-end injection capillary electrophoresis using methylcellulose as the effective electroosmostic flow suppressor.

    PubMed

    Zinellu, Angelo; Sotgia, Salvatore; Pasciu, Valeria; Madeddu, Manuela; Leoni, Giovanni Giuseppe; Naitana, Salvatore; Deiana, Luca; Carru, Ciriaco

    2008-07-01

    We present a new rapid CE method to measure adenine nucleotides adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in cells. The short-end injection mode allows a decrease in the analysis time by injecting samples at the outlet end of a silica capillary closest to the detection window, reducing the migration distance. Moreover, the use of methylcellulose (MC) as run buffer additive to suppress EOF permits to further reduce the migration times of analytes. Thus, when a capillary with an effective length of 10.2 cm was used with a 60 mmol/L sodium acetate buffer pH 3.80 in the presence of 0.01% of MC, the migration time of analytes were 1.35 min for ATP, 1.85 min for ADP, and 4.64 min for AMP. These conditions gave a good reproducibility for intra- and interassay (CV <4 and 8%, respectively) and all the procedure demonstrated an excellent analytical recovery (from 98.3 to 99 %). The method suitability was proved both on red blood cells and in spermatozoa. We compared our proposed method to a spectrophotometric assay, by measuring ATP levels in 40 spermatozoa samples. The obtained data were analyzed by the Passing and Bablok regression and Bland-Altman test. PMID:18551716

  17. Attempts to detect cyclic adenosine 3':5'-monophosphate in higher plants by three assay methods.

    PubMed

    Bressan, R A; Ross, C W

    1976-01-01

    Endogenous levels of cyclic adenosine-3':5'-monophosphate in coleoptile first leaf segments of oat (Avena sativa L.), potato (Solanum tuberosum L.) tubers, tobacco (Nicotiana tabacum L.) callus, and germinating seeds of lettuce (Lactuca sativa L.) were measured with a modified Gilman binding assay and a protein kinase activation assay. The incorporation of adenosine-8-(14)C into compounds with properties similar to those of cyclic AMP was also measured in studies with germinating lettuce seeds. The binding assay proved reliable for mouse and rat liver analyses, but was nonspecific for plant tissues. It responded to various components from lettuce and potato tissues chromatographically similar to but not identical with cyclic AMP. The protein kinase activation assay was much more specific, but it also exhibited positive responses in the presence of compounds not chromatographically identical to cyclic AMP. The concentrations of cyclic AMP in the plant tissues tested were at the lower limits of detection and characterization obtainable with these assays. The estimates of maximal levels were much lower than reported in many previous studies. PMID:16659419

  18. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    NASA Astrophysics Data System (ADS)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  19. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice

    PubMed Central

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-01

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238

  20. Cyclic adenosine 3',5'-monophosphate and germination of sporangiospores from the fungus Mucor.

    PubMed

    Orlowski, M

    1980-06-01

    Cyclic adenosine 3',5'-monophosphate (cAMP) metabolism was examined in germinating sporangiospores of Mucor genevensis and Mucor mucedo. Exogenous cAMP prevented normal hyphal development from sporangiospores. Internal pools of cAMP fluctuated profoundly during development. Spherical growth of the spores was characterized by large pools of cAMP whereas germ tube emergence and hyphal elongation were characterized by small pools of cAMP. These observations suggest a possible role for cAMP in sporangiospore germination. Adenylate cyclase activities fluctuated significantly during germination with maximum values attained during spherical growth. In contrast, cAMP phosphodiesterase activities remained constant throughout germination. Internal cAMP levels may therefore be regulated by adjustment of adenylate cyclase activities. The binding of cAMP by soluble cell proteins was measured. cAMP-binding activity changed greatly during germination. Dormant and spherically growing spores possessed the highest activities. Developing hyphae contained the lowest activities. Use of the photoaffinity label, 8-azido-[32P]cAMP, in conjunction with sodium dodecyl sulfate-polyacrylamide-gel electrophoresis allowed the identification of a small population of morphogenetic-stage-specific proteins which bind cAMP and may be of regulatory significance to development.

  1. Lymphocyte beta 2-adrenoceptors and adenosine 3':5'-cyclic monophosphate during and after normal pregnancy.

    PubMed Central

    von Mandach, U.; Gubler, H. P.; Engel, G.; Huch, R.; Huch, A.

    1993-01-01

    1. The beta 2-sympathomimetics, used to inhibit preterm labour, bind predominantly to beta 2-adrenoceptors, activating adenylate cyclase to form adenosine 3':5'-cyclic monophosphate (cyclic AMP), a messenger substance which inhibits the enzyme cascade triggering smooth muscle contraction. beta 2-Adrenoceptor density and cyclic AMP formation can be used as markers of beta 2-adrenergic effect. 2. The present study addresses the influence of pregnancy on the beta-adrenoceptor system. beta 2-Adrenoceptor density and cyclic AMP concentrations (basal and evoked by isoprenaline) in circulating lymphocytes were determined at three points in gestation (16, 29 and 37 weeks) and 9 weeks post partum in 22 normal pregnancies. (-)-[125Iodo]-cyanopindolol was used as the ligand to identify a homogeneous population of beta 2-adrenoceptors on lymphocytes. B- and T-cell fractions were estimated from the same samples. 3. beta 2-Adrenoceptor density decreased significantly during gestation until week 37 (P < 0.01), then increased post partum (P < 0.005). Cyclic AMP concentrations (basal and evoked by isoprenaline) were significantly lower after 16 weeks of gestation than post partum (P < 0.05). 4. The results, which cannot be explained in terms of a shift in the lymphocyte (B- and T-cell) ratio, indicate that beta-adrenoceptor density and function are reduced in normal pregnancy and only return to normal post partum. These findings may be of significance in devising future tocolytic therapy with beta 2-adrenoceptor agonists. PMID:8383562

  2. Xylazine Activates Adenosine Monophosphate-Activated Protein Kinase Pathway in the Central Nervous System of Rats.

    PubMed

    Shi, Xing-Xing; Yin, Bai-Shuang; Yang, Peng; Chen, Hao; Li, Xin; Su, Li-Xue; Fan, Hong-Gang; Wang, Hong-Bin

    2016-01-01

    Xylazine is a potent analgesic extensively used in veterinary and animal experimentation. Evidence exists that the analgesic effect can be inhibited using adenosine 5'-monophosphate activated protein kinase (AMPK) inhibitors. Considering this idea, the aim of this study was to investigate whether the AMPK signaling pathway is involved in the central analgesic mechanism of xylazine in the rat. Xylazine was administrated via the intraperitoneal route. Sprague-Dawley rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus and brainstem were collected for determination of liver kinase B1 (LKB1) and AMPKα mRNA expression using quantitative real-time polymerase chain reaction (qPCR), and phosphorylated LKB1 and AMPKα levels using western blot. The results of our study showed that compared with the control group, xylazine induced significant increases in AMPK activity in the cerebral cortex, hippocampus, thalamus and cerebellum after rats received xylazine (P < 0.01). Increased AMPK activities were accompanied with increased phosphorylation levels of LKB1 in corresponding regions of rats. The protein levels of phosphorylated LKB1 and AMPKα in these regions returned or tended to return to control group levels. However, in the brainstem, phosphorylated LKB1 and AMPKα protein levels were decreased by xylazine compared with the control (P < 0.05). In conclusion, our data indicates that xylazine alters the activities of LKB1 and AMPK in the central nervous system of rats, which suggests that xylazine affects the regulatory signaling pathway of the analgesic mechanism in the rat brain. PMID:27049320

  3. Adenosine 3′:5′-Cyclic Monophosphate in Chlamydomonas reinhardtii: Isolation and Characterization

    PubMed Central

    Amrhein, Nikolaus; Filner, Philip

    1973-01-01

    Chlamydomonas reinhardtii contains a factor that can replace adenosine 3′:5′-cyclic monophosphate (cAMP) in the stimulation of rabbit-muscle protein kinase. The factor cochromatographs and coelectrophoreses with authentic cAMP, and is inactivated by beef heart cyclic nucleotide phosphodiesterase. When C. reinhardtii is exposed to aminophylline (theophylline2 ethylenediamine), the concentration of the factor in the cells increases within 1 hr, from about 25 pmol of cAMP equivalents per g dry weight to more than 250 pmol. Cyclic nucleotide phosphodiesterase activity is present in crude extract of C. reinhardtii and is inhibited by theophylline. We conclude that cAMP occurs in C. reinhardtii and that the endogenous concentration is governed at least in part by a theophylline-sensitive cyclic nucleotide phosphodiesterase. These findings provide a sound basis for attributing the effects of methylxanthines on flagellar function and regeneration in C. reinhardtii to the resultant elevation of endogenous cAMP. PMID:16592076

  4. Control of cyclic adenosine 3',5'-monophosphate levels by depolarizing agents in fungi.

    PubMed

    Trevillyan, J M; Pall, M L

    1979-05-01

    It has been reported that diverse treatments which depolarize the plasma membrane of Neurospora crassa produce rapid increases in cyclic adenosine 3',5'-monophosphate (cyclic AMP) levels. In the current study, membrane active antibiotics, which are known or putative depolarizing agents, were found to produce similar cyclic AMP increases, not only in N. crassa, but also in the distantly related fungi Saccharomyces cerevisiae and Mucor racemosus. Uncouplers of oxidative phosphorylation, which have been found to depolarize Neurospora, also produced cyclic AMP increases in all three fungi. The time course of the cyclic AMP response to these various treatments was similar in all three fungi. The fungal studies and studies on depolarized central nervous tissue suggest that cyclic AMP increases may be produced in response to plasma membrane depolarization in diverse eucaryotic cells. A model is proposed for eucaryotic microorganisms in which membrane depolarization serves as a signal of breakdown of the plasma membrane integrity. The subsequent cyclic AMP increase, in turn, may mediate cellular response to help protect the plasma membrane from chemical and mechanical threats to its integrity.

  5. Adenosine 3', 5'-cyclic monophosphate levels in Thermomonospora curvata during cellulase biosynthesis

    SciTech Connect

    Fennington, G.; Neubauer, D.; Stutzenberger, F.

    1983-01-01

    The enzymatic degradation of cellulose requires the synergistic activity of at least three enzymes: exo-beta-1,4-glucanase (EC3.2.1.91), endo-beta-1,4-glucanase (EC3.2.1.4), and beta-glucosidase (EC3.2.1.21). Despite extensive studies on a variety of cellulolytic bacteria and fungi, the mechanism(s) regulating the biosynthesis of this inducible catabolic enzyme complex remains unknown. The intracellular concentrations of cyclic nucleotides such as adenosine 3',5'-cyclic monophosphate (cAMP) have been shown to play a major role in mediating catabolite repression of enzyme biosynthesis. The cAMP acts through a cAMP receptor protein (termed CRP or CAP) which is a dimer having two identical subunits each capable of binding one molecule of cAMP. The N-terminal domain of the CRP binds the cAMP while the C-terminal domain binds to DNA at the promotor region of a cAMP-dependent operon and stimulates transcription by promoting the formation of a preinitiation complex between RNA polymerase and the DNA. Intracellular cAMP levels in E. coli (the prototype organism for such studies) are influenced by the type and availability of carbon source used for growth. High intracellular cAMP levels should lead to higher concentrations of cAMP-CRP complexes which should increase the transcription rates for cAMP-dependent operons (such as the lac operon of beta-galactosidase) and indeed the differential rate of beta-galactosidase biosynthesis correlates to intracellular cAMP levels. In the case of cellulase, catabolite repression by glucose or other readily metabolizable compounds closely controls production in an apparently similar manner and therefore a correlation may exist between enzyme biosynthesis and intracellular cAMP levels. This communication describes the fluctuation in cAMP levels during cellulase induction and repression in the thermophilic actinomycete, Thermomonospora curvata.

  6. Xylazine Activates Adenosine Monophosphate-Activated Protein Kinase Pathway in the Central Nervous System of Rats

    PubMed Central

    Shi, Xing-Xing; Yin, Bai-Shuang; Yang, Peng; Chen, Hao; Li, Xin; Su, Li-Xue; Fan, Hong-Gang; Wang, Hong-Bin

    2016-01-01

    Xylazine is a potent analgesic extensively used in veterinary and animal experimentation. Evidence exists that the analgesic effect can be inhibited using adenosine 5’-monophosphate activated protein kinase (AMPK) inhibitors. Considering this idea, the aim of this study was to investigate whether the AMPK signaling pathway is involved in the central analgesic mechanism of xylazine in the rat. Xylazine was administrated via the intraperitoneal route. Sprague-Dawley rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus and brainstem were collected for determination of liver kinase B1 (LKB1) and AMPKα mRNA expression using quantitative real-time polymerase chain reaction (qPCR), and phosphorylated LKB1 and AMPKα levels using western blot. The results of our study showed that compared with the control group, xylazine induced significant increases in AMPK activity in the cerebral cortex, hippocampus, thalamus and cerebellum after rats received xylazine (P < 0.01). Increased AMPK activities were accompanied with increased phosphorylation levels of LKB1 in corresponding regions of rats. The protein levels of phosphorylated LKB1 and AMPKα in these regions returned or tended to return to control group levels. However, in the brainstem, phosphorylated LKB1 and AMPKα protein levels were decreased by xylazine compared with the control (P < 0.05). In conclusion, our data indicates that xylazine alters the activities of LKB1 and AMPK in the central nervous system of rats, which suggests that xylazine affects the regulatory signaling pathway of the analgesic mechanism in the rat brain. PMID:27049320

  7. Repetitive mechanical strain suppresses macrophage uptake of immunoglobulin G complexes and enhances cyclic adenosine monophosphate synthesis.

    PubMed Central

    Mattana, J.; Sankaran, R. T.; Singhal, P. C.

    1995-01-01

    Uptake of immunoglobulin G (IgG) complexes by macrophages (M phi) may play an important role in disease states characterized by increased levels of circulating immune complexes. In sites such as the glomerular mesangium M phi may be subjected to repetitive mechanical strain, although in vitro studies of M phi endocytosis are typically carried out with cells grown on rigid surfaces. We undertook the present study to determine whether repetitive mechanical strain could modulate M phi endocytosis of IgG complexes. IgG complex uptake was significantly diminished in M phi that were subjected to repetitive mechanical strain using parameters corresponding to peak and minimal intraglomerular pressures compared with control, and uptake varied according to the amount of mechanical strain applied. There was no significant difference in surface binding of IgG between M phi subjected to strain and those not. Mechanical strain did not significantly influence the rate of IgG complex degradation. Inhibition of nitric oxide synthase and guanylate cyclase activity did not alter the effect of mechanical strain, although this effect was potentiated by 3-isobutyl-1-methylxanthine (IBMX). Angiotensin II, which has been shown to reduce adenosine 3',5'-cyclic monophosphate (cAMP) production in M phi, significantly attenuated the suppressive effect of mechanical strain on IgG complex uptake as well as another inhibitor of cAMP generation, indomethacin. Enzyme immunoassay demonstrated significantly enhanced levels of cAMP in M phi that were subjected to mechanical strain compared with control, an effect that was potentiated by IBMX and attenuated by angiotensin II and indomethacin. These results demonstrate that repetitive mechanical strain significantly reduces IgG complex uptake by M phi, most likely by enhancing cAMP synthesis. Such an effect might play a significant role in macromolecule handling by M phi in sites in which they are subjected to repetitive mechanical deformation such as

  8. Cyclic Adenosine Monophosphate Accumulation and beta-Adrenergic Binding in Unweighted and Denervated Rat Soleus Muscle

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.

    1992-01-01

    Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.

  9. Adenosine 3′:5′-cyclic monophosphate- and guanosine 3′:5′-cyclic monophosphate-dependent protein kinases: Possible homologous proteins

    PubMed Central

    Lincoln, Thomas M.; Corbin, Jackie D.

    1977-01-01

    The properties of purified mammalian adenosine 3′:5′-cyclic monophosphate (cAMP)- and guanosine 3′:5′-cyclic monophosphate (cGMP)-dependent protein kinases were compared. Several physical characteristics of the two enzymes were similar, including size, shape, affinity for cyclic nucleotide binding, and Km for ATP. In addition, the amino acid composition of the two proteins indicated a close composition homology (70-90%). Both cyclic nucleotide-dependent protein kinases catalyzed phosphorylation of rat liver pyruvate kinase (EC 2.7.1.40) and fructose 1,6-diphosphatase (EC 3.1.3.11), rabbit skeletal muscle glycogen synthase (EC 2.4.1.11) and phosphorylase b kinase (EC 2.7.1.38), and calf thymus histone H2b. The phosphorylation of several synthetic peptides and of trypsin-sensitive and trypsin-insensitive sites in glycogen synthase suggested similar recognition sites on the protein substrates for the two kinases. The cAMP-dependent protein kinase was the better catalyst with each protein or peptides substrate. The results suggest that the two enzymes evolved from a common ancestral protein. Images PMID:198777

  10. The effect of p,p'-dichlorodiphenyltrichloroethane on levels of guanosine 3',5'-cyclic monophosphate and adenosine 3',5'-cyclic monophosphate in two species of insects.

    PubMed

    Bodnaryk, R P

    1976-11-01

    Within 1 h after topical application of a convulsive dose (4 mug per fly, 47 mg/kg) of p,p'-dichlorodiphenyltrichloroethane (DDT) to the adult male of Sarcophaga bullata Parker, guanosine 3',5'-cyclic monophosphate (cyclic GMP) levels rose by 71.5% (P less than 0.05) in the head, 159.5% (P less than 0.01) in the thorax, and 23.4% (P greater than 0.05) in the abdomen compared to controls. Adenosine 3',5'-cyclic monophosphate (cyclic AMP) levels were not significantly affected by the DDT treatment. A convulsive dose (100 mug per larva, 250 mg/kg) of DDT applied to larvae of Mamestra configurata Wlk. caused the whole body level of cyclic GMP to rise by 81.6% (P less than 0.01) after 1 h, and by 95.9% (P less than 0.01) after 3 h. Levels of cyclic AMP were not affected. A hypothesis is advanced suggesting that an abnormally high rate of discharge of acetylcholine (and in the later stages of poisoning, its actual accumulation) at central cholinergic synapses causes cyclic GMP levels to rise, perhaps in post-synaptic cells. The elevated cyclic GMP-cyclic AMP ratio found in DDT-poisoned insects may be of fundamental importance in the complex sequence of events leading to tremor, hyperexcitability, paralysis, and death.

  11. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    PubMed

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.

  12. Gas-Phase Conformations and Energetics of Protonated 2^'-DEOXYADENOSINE-5^'-MONOPHOSPHATE and ADENOSINE-5^'-MONOPHOSPHATE: Irmpd Action Spectroscopy and Theoretical Studies

    NASA Astrophysics Data System (ADS)

    Wu, Ranran; Nei, Y.-W.; He, Chenchen; Hamlow, Lucas; Berden, Giel; Oomens, J.; Rodgers, M. T.

    2015-06-01

    Nature uses protonation to alter the structures and reactivities of molecules to facilitate various biological functions and chemical transformations. For example, in nucleobase repair and salvage processes, protonation facilitates nucleobase removal by lowering the activation barrier for glycosidic bond cleavage. Systematic studies of the structures of protonated 2'-deoxyribonucleotides and ribonucleotides may provide insight into the roles protonation plays in altering the nucleobase orientation relative to the glycosidic bond and sugar puckering. In this study, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments in conjunction with electronic structure calculations are performed to probe the effects of protonation on the structures and stabilities of 2^'-deoxyadenosine-5^'-monophosphate (pdAdo) and adenosine-5^'-monophosphate (pAdo). Photodissociation as a function of IR wavelength is measured to generate the IRMPD action spectra. Geometry optimizations and frequency analyses performed at the B3LYP/6-311+G(d,p) level of theory are used to characterize the stable low-energy structures and to generate their linear IR spectra. Single point energy calculations performed at the B3LYP/6-311+G(2d,2p) and MP2(full)/6-311+G(2d,2p) levels of theory provide relative stabilities of the optimized conformations. The structures accessed in the experiments are determined by comparing the calculated linear IR spectra for the stable low-energy conformers computed to the measured IRMPD action spectra. The effects of the 2^'-hydroxyl moiety are elucidated by comparing the structures and IRMPD spectra of [pAdo+H]+ to those of its DNA analogue. Comparisons are also made to the deprotonated forms of these nucleotides and the protonated forms of the analogous nucleosides to elucidate the effects of protonation and the phosphate group on the structures.

  13. Investigation on the occurrence and significance of cyclic adenosine 3':5'-monophosphate in phytoplankton and natural aquatic communities

    SciTech Connect

    Francko, D.A.

    1980-01-01

    This study demonstrates, on the basis of several analyanalytical criteria, that the production and extracellular release of cyclic adenosine 3':5'-monophosphate (cAMP) is widespread among phytoplankton species. The production and release of CAMP varied markedly among different species grown under similar environmental conditions, and intraspecifically during the life cycle of a given algal species. This investigation marks the first time cAMP has been investigated in natural aquatic systems. An examination of epilimnetic lakewater samples from Lawrence Lake, a hardwater oligotrophic lake, and Wintergreen Lake, a hardwater hypereutrophic lake, both in southwestern Michigan, demonstrated that cAMP existed in both particulate-associated and dissolved forms in these systems.

  14. In Silico Design for Adenosine Monophosphate-Activated Protein Kinase Agonist from Traditional Chinese Medicine for Treatment of Metabolic Syndromes

    PubMed Central

    Tang, Hsin-Chieh

    2014-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) acts as a master mediator of metabolic homeostasis. It is considered as a significant millstone to treat metabolic syndromes including obesity, diabetes, and fatty liver. It can sense cellular energy or nutrient status by switching on the catabolic pathways. Investigation of AMPK has new findings recently. AMPK can inhibit cell growth by the way of autophagy. Thus AMPK has become a hot target for small molecular drug design of tumor inhibition. Activation of AMPK must undergo certain extent change of the structure. Through the methods of structure-based virtual screening and molecular dynamics simulation, we attempted to find out appropriate small compounds from the world's largest TCM Database@Taiwan that had the ability to activate the function of AMPK. Finally, we found that two TCM compounds, eugenyl_beta-D-glucopyranoside and 6-O-cinnamoyl-D-glucopyranose, had the qualification to be AMPK agonist. PMID:24899913

  15. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury.

    PubMed

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-10-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose. PMID:26434492

  16. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury.

    PubMed

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-10-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose.

  17. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury

    PubMed Central

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-01-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose. PMID:26434492

  18. [Concentration of prostaglandins and cyclic adenosine-3',5'-monophosphate in the tissues of rats].

    PubMed

    Komissarenko, V P; Slavnov, V N; Epsheĭn, E V; Malinkovich, V D

    1977-04-01

    The content of prostaglandines (PG) and cyclic 3',5'-adenosine monphosphate (cAMP) was investigated in rat tissues by the radioisotopic method of competitive binding. Maximum quantities of both PG and cAMP were revealed in the same most actively functioning organs: the brain, incretory glands, small intestine. Fatty tissue showed minimum quantities of these substances. Results indicate a close functional relationship between the PG synthesis and adenylatecyclase activity in the body tissues.

  19. Measuring the dynamics of cyclic adenosine monophosphate level in living cells induced by low-level laser irradiation using bioluminescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen; Zeng, Haishan

    2015-05-01

    Several studies demonstrated that the cyclic adenosine monophosphate (cAMP), an important second messenger, is involved in the mechanism of low-level laser irradiation (LLLI) treatment. However, most of these studies obtained the cAMP level in cell culture extracts or supernatant. In this study, the cAMP level in living cells was measured with bioluminescence resonance energy transfer (BRET). The effect of LLLI on cAMP level in living cells with adenosine receptors blocked was explored to identify the role of adenosine receptors in LLLI. The results showed that LLLI increased the cAMP level. Moreover, the rise of cAMP level was light dose dependent but wavelength independent for 658-, 785-, and 830-nm laser light. The results also exhibited that the adenosine receptors, a class of G protein-coupled receptor (GPCR), modulated the increase of cAMP level induced by LLLI. The cAMP level increased more significantly when the A3 adenosine receptors (A3R) were blocked by A3R antagonist compared with A1 adenosine receptor or A2a adenosine receptor blocked in HEK293T cells after LLLI, which was in good agreement with the adenosine receptors' expressions. All these results suggested that measuring the cAMP level with BRET could be a useful technique to study the role of GPCRs in living cells under LLLI.

  20. Selective Phosphonylation of 5'-Adenosine Monophosphate (5'-AMP) via Pyrophosphite [PPi(III)

    NASA Astrophysics Data System (ADS)

    Kaye, Karl; Bryant, David E.; Marriott, Katie E. R.; Ohara, Shohei; Fishwick, Colin W. G.; Kee, Terence P.

    2016-11-01

    We describe here experiments which demonstrate the selective phospho-transfer from a plausibly prebiotic condensed phosphorus (P) salt, pyrophosphite [H2P2O5 2-; PPi(III)], to the phosphate group of 5'-adenosine mono phosphate (5'-AMP). We show further that this P-transfer process is accelerated both by divalent metal ions (M2+) and by organic co-factors such as acetate (AcO-). In this specific case of P-transfer from PPi(III) to 5'-AMP, we show a synergistic enhancement of transfer in the combined presence of M2+ & AcO-. Isotopic labelling studies demonstrate that hydrolysis of the phosphonylated 5'-AMP, [P(III)P(V)-5'-AMP], proceeds via nuceophilic attack of water at the Pi(III) terminus.

  1. Selective Phosphonylation of 5'-Adenosine Monophosphate (5'-AMP) via Pyrophosphite [PPi(III)

    NASA Astrophysics Data System (ADS)

    Kaye, Karl; Bryant, David E.; Marriott, Katie E. R.; Ohara, Shohei; Fishwick, Colin W. G.; Kee, Terence P.

    2016-05-01

    We describe here experiments which demonstrate the selective phospho-transfer from a plausibly prebiotic condensed phosphorus (P) salt, pyrophosphite [H2P2O5 2-; PPi(III)], to the phosphate group of 5'-adenosine mono phosphate (5'-AMP). We show further that this P-transfer process is accelerated both by divalent metal ions (M2+) and by organic co-factors such as acetate (AcO-). In this specific case of P-transfer from PPi(III) to 5'-AMP, we show a synergistic enhancement of transfer in the combined presence of M2+ & AcO-. Isotopic labelling studies demonstrate that hydrolysis of the phosphonylated 5'-AMP, [P(III)P(V)-5'-AMP], proceeds via nuceophilic attack of water at the Pi(III) terminus.

  2. An evaluation of short-term corticosteroid response in perennial allergic rhinitis using histamine and adenosine monophosphate nasal challenge

    PubMed Central

    Wilson, Andrew M; Sims, Erika J; Orr, Linda C; Robb, Fiona; Lipworth, Brian J

    2003-01-01

    Aims To evaluate the role of AMP nasal challenge as a measure of short-term treatment response in patients receiving intranasal corticosteroids. Adenosine monophosphate (AMP) challenge has been shown to be a good inflammatory surrogate in the lower airways, but it has not been properly evaluated as a nasal challenge test. Methods Fourteen patients with perennial allergic rhinitis (PAR) were randomized to receive 2 weeks treatment with placebo (PL) or 200 µg intranasal mometasone furoate (MF) once daily in a randomized single-blind crossover study. AMP (25–800 mg ml−1) and histamine (0.25–8 mg ml−1) nasal challenge testing were performed after each treatment period with 30% decrease in minimal cross-sectional area (MCA). Domiciliary symptom data were collected. Results There was a significant (P < 0.05) improvement in PC30 MCA and nasal volume with AMP but not with histamine comparing MF vs PL. This amounted to a 2.8 (95% CI 1.5, 4.0) and 0.7 (95% CI −0.5, 1.9) doubling-dose change for AMP and histamine challenges, respectively. There were significant (P < 0.05) improvements in nasal symptoms and quality of life. Conclusions AMP nasal challenge using acoustic rhinometry may be a useful test to assess short-term treatment response in patient with PAR. PMID:12680883

  3. Directed breeding of an Arthrobacter mutant for high-yield production of cyclic adenosine monophosphate by N + ion implantation

    NASA Astrophysics Data System (ADS)

    Song, He; Chen, Xiaochun; Cao, Jiaming; Fang, Ting; Bai, Jianxin; Xiong, Jian; Ying, Hanjie

    2010-08-01

    To obtain a cyclic adenosine monophosphate (cAMP) high-yield production strain, Arthrobacter NG-1 was mutated by N + ion implantation with an energy level of 10 keV and dose of 7×10 15 ions/cm 2. Combined with directed screening methods, a xanthine-defective and 8-azaguanine (8-AG)-resistant mutant Arthrobacter A302 was selected. The concentration of cAMP produced by this mutant was 41.7% higher than that of the original strain and reached 9.78 g/L. Through ten-generation investigation, the capability of cAMP production of A302 was found to be stable. Compared with the original strain, the special activities of key enzymes in A302, which influenced the cAMP biosynthesis, was analyzed. IMP dehydrogenase activity was defective, whereas PRPP amidotransferase, sAMP synthetase and adenylate cyclase activities were increased by 61.5%, 147% and 21.7%, respecitively, which might explain the mutagenesis mechanism by N + ions implantation under the enzymatic level.

  4. Investigation on the occurrence and significance of cyclic adenosine 3':5'-monophosphate in phytoplankton and natural aquatic communities

    SciTech Connect

    Francko, D.A.

    1980-01-01

    This study is an investigation into the occurrence and potential functions of cyclic adenosine 3':5'-monophosphate (cAMP), a potent and ubiquitous metabolic regulatory molecule in heterotrophic organisms, in phytoplankton and in natural aquatic communities. Laboratory-cultured phytoplankton were grown under both optimal and suboptimal nutrient regimes under constant temperature and illumination regimes. Cellular and extracellular cAMP production, characterized by a number of biochemical techniques, was correlated with growth rate dynamics, chlorophyll a synthesis, /sup 14/C-bicarbonate uptake, alkaline phosphatase activity, and heterocyst formation. The blue-green alga Anabaena flos-aquae was used as a model system in the examination of these metabolic variables. Additionally, this alga was used to test the effects of perturbation of cAMP levels on the aforementioned metabolic variables. Investigations on the occurrence and seasonal dynamics of cAMP in aquatic systems were conducted on Lawrence Lake, a hardwater oligotrophic lake, and on Wintergreen Lake, a hardwater hypereutrophic lake, both in southwestern Michigan. Putative cAMP from both systems was characterized by several biochemical techniques. Weekly sampling of particulate and dissolved cAMP in the epilimnia of both lakes was correlated with data on the rates of primary productivity, alkaline phosphatase activity, chlorophyll a synthesis and changes in phytoplankton community structure.

  5. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway.

    PubMed

    Xie, Sheng; Deng, Yan; Pan, Yue-Ying; Ren, Jie; Jin, Meng; Wang, Yu; Wang, Zhi-Hua; Zhu, Die; Guo, Xue-Ling; Yuan, Xiao; Shang, Jin; Liu, Hui-Guo

    2016-09-15

    Autophagy is tightly regulated to maintain cardiac homeostasis. Impaired autophagy is closely associated with pathological cardiac hypertrophy. However, the relationship between autophagy and cardiac hypertrophy induced by chronic intermittent hypoxia (CIH) is not known. In the present study, we measured autophagy-related genes and autophagosomes during 10 weeks of CIH in rats, and 6 days in H9C2 cardiomyocytes, and showed that autophagy was impaired. This conclusion was confirmed by the autophagy flux assay. We detected significant hypertrophic changes in myocardium with impaired autophagy. Rapamycin, an autophagy enhancer, attenuated the cardiac hypertrophy induced by CIH. Moreover, silencing autophagy-related gene 5 (ATG5) exerted the opposite effect. The role of adenosine monophosphate-activated protein kinase (AMPK) in regulating autophagy under CIH was confirmed using AICAR to upregulate this enzyme and restore autophagy flux. Restoring autophagy by AICAR or rapamycin significantly reversed the hypertrophic changes in cardiomyocytes. To investigate the mechanism of autophagy impairment, we compared phospho (p)-AMPK, p-Akt, cathepsin D, and NFAT3 levels, along with calcineurin activity, between sham and CIH groups. CIH activated calcineurin, and inhibited AMPK and AMPK-mediated autophagy in an Akt- and NFAT3-independent manner. Collectively, these data demonstrated that impaired autophagy induced by CIH through the AMPK pathway contributed to cardiac hypertrophy. PMID:27412517

  6. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway.

    PubMed

    Xie, Sheng; Deng, Yan; Pan, Yue-Ying; Ren, Jie; Jin, Meng; Wang, Yu; Wang, Zhi-Hua; Zhu, Die; Guo, Xue-Ling; Yuan, Xiao; Shang, Jin; Liu, Hui-Guo

    2016-09-15

    Autophagy is tightly regulated to maintain cardiac homeostasis. Impaired autophagy is closely associated with pathological cardiac hypertrophy. However, the relationship between autophagy and cardiac hypertrophy induced by chronic intermittent hypoxia (CIH) is not known. In the present study, we measured autophagy-related genes and autophagosomes during 10 weeks of CIH in rats, and 6 days in H9C2 cardiomyocytes, and showed that autophagy was impaired. This conclusion was confirmed by the autophagy flux assay. We detected significant hypertrophic changes in myocardium with impaired autophagy. Rapamycin, an autophagy enhancer, attenuated the cardiac hypertrophy induced by CIH. Moreover, silencing autophagy-related gene 5 (ATG5) exerted the opposite effect. The role of adenosine monophosphate-activated protein kinase (AMPK) in regulating autophagy under CIH was confirmed using AICAR to upregulate this enzyme and restore autophagy flux. Restoring autophagy by AICAR or rapamycin significantly reversed the hypertrophic changes in cardiomyocytes. To investigate the mechanism of autophagy impairment, we compared phospho (p)-AMPK, p-Akt, cathepsin D, and NFAT3 levels, along with calcineurin activity, between sham and CIH groups. CIH activated calcineurin, and inhibited AMPK and AMPK-mediated autophagy in an Akt- and NFAT3-independent manner. Collectively, these data demonstrated that impaired autophagy induced by CIH through the AMPK pathway contributed to cardiac hypertrophy.

  7. DNA sequence polymorphism within the bovine adenosine monophosphate deaminase 1 (AMPD1) is associated with production traits in Chinese cattle.

    PubMed

    Wei, C-B; Wang, J-Q; Chen, F-Y; Niu, H; Li, K

    2015-02-06

    The objectives of the present study were to detect an 18-bp deletion mutation in the bovine adenosine monophosphate deaminase 1 (AMPD1) gene and analyze its effect on growth traits in 2 Chinese cattle breeds using DNA sequencing and agarose electrophoresis. The five 19-bp polymerase chain reaction products of the AMPD1 gene exhibited 3 genotypes and 2 alleles: WW: homozygote genotype (wild-type); DD: homozygote genotype (mutant-type); WD: heterozygote genotype. Frequencies of the W allele varied from 66.15-70.35%. The associations between the 18-bp deletion mutation in the AMPD1 gene with production traits in 226 Jia-Xian red cattle was analyzed. The animals with genotype WW showed significantly higher heart girth and body weight than those with genotypes WD and DD at 24 months (P < 0.01). Our results indicate that the deletion mutation in the AMPD1 gene is associated with production traits, and may be used for marker-assisted selection in beef cattle breeding programs.

  8. Estradiol and chlordecone (Kepone) decrease adenosine 3'5'-cyclic monophosphate concentrations in the ovariectomized immature rat uterus.

    PubMed

    Johnson, D C; Banerjee, S; Chatterjee, S

    1995-10-01

    Adenosine 3'5'-cyclic monophosphate (cAMP) has been repeatedly shown to mimic some actions of estrogen in the rat uterus. However, the relationship between estrogens and uterine cAMP remains controversial. The effect of chronic exposure (3 days) to a biologically potent, long-acting estrogen, estradiol benzoate (EB), or the xenoestrogen chlordecone (Kepone), which has a long half-life in the circulation, was examined in ovariectomized immature rats. Both compounds, when administered in doses that provided equal increases in uterine weight, produced equivalent decreases in uterine cAMP content. Although the decrease in cAMP was apparent within 48 hr, it was more pronounced at 72 hr. There was no reduction in cAMP produced in response to direct stimulation of uterine adenylyl cyclase by forskolin, indicating that loss of the enzyme was not a factor in the lowering of cAMP content. The pure anti-estrogen ICI-182,780, in a dose-dependent fashion, prevented the action the estradiol benzoate and chlordecone, suggesting that the lowering of cAMP was dependent on an estrogen receptor. The physiological significance of reduced uterine cAMP with chronic estrogen treatment remains to be determined. PMID:7545817

  9. The expression of cyclic adenosine monophosphate responsive element modulator in rat sertoli cells following seminal extract administration

    PubMed Central

    Akmal, Muslim; Siregar, Tongku Nizwan; Wahyuni, Sri; Hamny; Nasution, Mustafa Kamal; Indriati, Wiwik; Panjaitan, Budianto; Aliza, Dwinna

    2016-01-01

    Aim: This study aims to determine the effect of seminal vesicle extract on cyclic adenosine monophosphate responsive element modulator (CREM) expression in rat Sertoli cells. Materials and Methods: This study examined the expression of CREM on 20 male rats (Rattus norvegicus) at 4 months of age, weighing 250-300 g. The rats were divided into four groups: K0, KP1, KP2, and KP3. K0 group was injected with 0.2 ml normal saline; KP1 was injected with 25 mg cloprostenol (Prostavet C, Virbac S. A); KP2 and KP3 were injected with 0.2 and 0.4 ml seminal vesicle extract, respectively. The treatments were conducted 5 times within 12-day interval. At the end of the study, the rats were euthanized by cervical dislocation; then, the testicles were necropsied and processed for histology observation using immunohistochemistry staining. Results: CREM expression in rat Sertoli cells was not altered by the administration of either 0.2 or 0.4 ml seminal vesicle extract. Conclusion: The administration of seminal vesicle extract is unable to increase CREM expression in rat Sertoli cells. PMID:27733803

  10. The effect of polystyrene beads on cyclic 3′,5′-adenosine monophosphate concentration in leukocytes

    PubMed Central

    Manganiello, Vincent; Evans, Warren H.; Stossel, Thomas P.; Mason, Robert J.; Vaughan, Martha

    1971-01-01

    After incubation with polystyrene latex beads for 5 min. the cyclic 3′,5′-adenosine monophosphate (cyclic AMP) content of human peripheral blood leukocyte suspensions was increased severalfold. Preparations enriched in mononuclear cells and containing only 0-20% polymorphonuclear leukocytes (PMN) and no visible platelets exhibited a quantitatively similar response. Purified fractions of cells containing 85-90% PMN responded to polystyrene beads with a much smaller increase in cyclic AMP content. Phagocytosis of paraffin oil emulsion in the unfractionated mixed human leukocyte preparation was associated with little or no change in cyclic AMP levels. There was no change in cyclic AMP content of rabbit alveolar macrophages or guinea pig PMN during phagocytosis of polystyrene beads. All of these observations are consistent with the view that particle uptake per se does not increase cyclic AMP levels in phagocytic cells. It seems probable that the increase in cyclic AMP concentration that results when unfractionated human blood leukocytes are incubated with polystyrene beads occurs in cells other than PMN. PMID:4331596

  11. Cyclic adenosine monophosphate phosphodiesterase activity in peripheral blood mononuclear leucocytes from patients with atopic dermatitis: correlation with respiratory atopy.

    PubMed

    Sawai, T; Ikai, K; Uehara, M

    1998-05-01

    We determined the cyclic adenosine monophosphate phosphodiesterase (cAMP-PDE) activity in peripheral blood mononuclear leucocytes from 100 patients with atopic dermatitis (AD) aged 13-57 years (mean +/- SD, 29.8 +/- 17.7 years). The correlation between cAMP-PDE activity and clinical parameters such as the severity of eczema and a personal or family predisposition to atopic respiratory diseases (ARD) (asthma or allergic rhinitis) was examined. Although the enzymic activity varied from normal to very high in the AD patients, cAMP-PDE activity was significantly (P < 0.005) elevated in AD patients (42.1 +/- 22.0 units) as compared with the normal controls (12.4 +/- 5.6) and clinical control subjects (13.4 +/- 9.5). In contrast, we found no correlation between cAMP-PDE activity and the severity of eczema when AD patients were classified into four categories (remission, mild, moderate and severe) according to the extent of their skin involvement. Furthermore, we found that systemic corticosteroid therapy in severe AD patients did not alter the cAMP-PDE activity. cAMP-PDE activity was significantly (P < 0.01) higher in those AD patients who had a personal history of ARD (47.2 +/- 11.2) than in AD patients with a family history of ARD (37.2 +/- 17.4) and those without a personal or family history ('pure' AD) (34.4 +/- 19.8). Nevertheless, the cAMP-PDE activity was significantly higher even in 'pure' AD patients than in the controls. These results suggest that an elevation of cAMP-PDE activity is closely related to a predisposition to respiratory atopy, and does not follow inflammation in AD patients. PMID:9666832

  12. Adenosine monophosphate-activated protein kinase (AMPK) activators for the prevention, treatment and potential reversal of pathological pain

    PubMed Central

    Price, Theodore J.; Das, Vaskar; Dussor, Gregory

    2015-01-01

    Pathological pain is an enormous medical problem that places a significant burden on patients and can result from an injury that has long since healed or be due to an unidentifiable cause. Although treatments exist, they often either lack efficacy or have intolerable side effects. More importantly, they do not reverse the changes in the nervous system mediating pathological pain, and thus symptoms often return when therapies are discontinued. Consequently, novel therapies are urgently needed that have both improved efficacy and disease-modifying properties. Here we highlight an emerging target for novel pain therapies, adenosine monophosphate-activated protein kinase (AMPK). AMPK is capable of regulating a variety of cellular processes including protein translation, activity of other kinases, and mitochondrial metabolism, many of which are thought to contribute to pathological pain. Consistent with these properties, preclinical studies show positive, and in some cases disease-modifying effects of either pharmacological activation or genetic regulation of AMPK in models of nerve injury, chemotherapy-induced peripheral neuropathy (CIPN), postsurgical pain, inflammatory pain, and diabetic neuropathy. Given the AMPK-activating ability of metformin, a widely prescribed and well-tolerated drug, these preclinical studies provide a strong rationale for both retrospective and prospective human pain trials with this drug. They also argue for the development of novel AMPK activators, whether orthosteric, allosteric, or modulators of events upstream of the kinase. Together, this review will present the case for AMPK as a novel therapeutic target for pain and will discuss future challenges in the path toward development of AMPK-based pain therapeutics. PMID:26521775

  13. Study of the Renal Tubular Interactions of Thyrocalcitonin, Cyclic Adenosine 3′, 5′ -Monophosphate, 25-Hydroxycholecalciferol, and Calcium Ion

    PubMed Central

    Puschett, Jules B.; Beck, William S.; Jelonek, Adam; Fernandez, Pedro C.

    1974-01-01

    Acute clearance studies were performed in thyroparathyroidectomized animals to determine the actions and interactions of thyrocalcitonin (TCT), cyclic adenosine 3′5′-monophosphate (cAMP), 25-hydroxycholecalciferol (25HCC), and calcium ion on the reabsorption of phosphate, calcium, sodium, and potassium by the kidney. The infusion of 25HCC in a dosage of 60 U/h to moderately saline-expanded animals (2.5% body weight) induced a fall in the excretion of all of the ions under study after 90-120 min similar to that observed in previous experiments from this laboratory. Mean decrements in fractional excretion were: phosphate, 42.0% (P < 0.005); calcium, 25.0% (P < 0.005); sodium, 23.4% (P < 0.001); and potassium, 14.7% (P < 0.005). The superimposition of either porcine or salmon TCT (1-100 MRC U/h for 2 h) resulted in no further alterations in electrolyte excretion. However, the infusion of TCT during steady-state saline expansion, before the administration of 25HCC, obviated the renal transport effects of the vitamin D metabolite. Both in the latter studies, as well as those in which similar doses of TCT were given to hydropenic animals, the hormone itself failed to induce any consistent alteration in electrolyte excretion. Cyclic AMP (50 mg/h) caused an increase in the excretion of phosphate, sodium, and potassium and no change in calcium excretion. Like TCT, the nucleotide blocked the action of 25HCC on the kidney. Raising the mean level of serum ultrafilterable calcium to 3.02±0.25 mEq/liter from 1.62±0.17 mEq/liter likewise prevented enhanced ionic reabsorption due to 25HCC. PMID:4359939

  14. Estradiol regulation of hypothalamic astrocyte adenosine 5'-monophosphate-activated protein kinase activity: role of hindbrain catecholamine signaling.

    PubMed

    Tamrakar, Pratistha; Briski, Karen P

    2015-01-01

    Recent work challenges the conventional notion that metabolic monitoring in the brain is the exclusive function of neurons. This study investigated the hypothesis that hypothalamic astrocytes express the ultra-sensitive energy gauge adenosine 5'-monophosphate-activated protein kinase (AMPK), and that the ovarian hormone estradiol (E) controls activation of this sensor by insulin-induced hypoglycemia (IIH). E- or oil (O)-implanted ovariectomized (OVX) rats were pretreated by caudal fourth ventricular administration of the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA) prior to sc insulin or vehicle injection. Individual astrocytes identified in situ by glial fibrillary acidic protein immunolabeling were laser-microdissected from the ventromedial (VMH), arcuate (ARH), and paraventricular (PVH) nuclei and the lateral hypothalamic area (LHA), and pooled within each site for Western blot analysis of AMPK and phosphoAMPK (pAMPK) protein expression. In the VMH, baseline astrocyte AMPK and pAMPK levels were respectively increased or decreased in OVX+E versus OVX+O; these profiles did not differ between E and O rats in other hypothalamic loci. In E animals, astrocyte AMPK protein was reduced [VMH] or augmented [PVH; LHA] in response to either 6-OHDA or IIH. IIH increased astrocyte pAMPK expression in each structure in vehicle-, but not 6-OHDA-pretreated E rats. Results provide novel evidence for hypothalamic astrocyte AMPK expression and hindbrain catecholamine-dependent activation of this cell-specific sensor by hypoglycemia in the presence of estrogen. Further research is needed to determine the role of astrocyte AMPK in reactivity of these glia to metabolic imbalance and contribution to restoration of neuro-metabolic stability.

  15. Role of adenosine deaminase, ecto-(5'-nucleotidase) and ecto-(non-specific phosphatase) in cyanide-induced adenosine monophosphate catabolism in rat polymorphonuclear leucocytes.

    PubMed Central

    Newby, A C

    1980-01-01

    1. The role of adenosine deaminase (EC 3.5.4.4), ecto-(5'-nucleotidase) (EC 3.1.3.5) and ecto-(non-specific phosphatase) in the CN-induced catabolism of adenine nucleotides in intact rat polymorphonuclear leucocytes was investigated by inhibiting the enzymes in situ. 2. KCN (10mM for 90 min) induced a 20-30% fall in ATP concentration accompanied by an approximately equimolar increase in hypoxanthine, ADP, AMP and adenosine concentrations were unchanged, and IMP and inosine remained undetectable ( less than 0.05 nmol/10(7) cells). 3. Cells remained 98% intact, as judged by loss of the cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27). 4. Pentostatin (30 microM), a specific inhibitor of adenosine deaminase, completely inhibited hypoxanthine production from exogenous adenosine (55 microM), but did not black CN-induced hypoxanthine production or cause adenosine accumulation in intact cells. This implied that IMP rather than adenosine was an intermediate in AMP breakdown in response to cyanide. 5. Antibodies raised against purified plasma-membrane 5'-nucleotidase inhibited the ecto-(5'-nucleotidase) by 95-98%. Non-specific phosphatases were blocked by 10 mM-sodium beta-glycerophosphate. 6. These two agents together blocked hypoxanthine production from exogenous AMP and IMP (200 microM) by more than 90%, but had no effect on production from endogenous substrates. 7. These data suggest that ectophosphatases do not participate in CN-induced catabolism of intracellular AMP in rat polymorphonuclear leucocytes. 8. A minor IMPase, not inhibited by antiserum, was detected in the soluble fraction of disrupted cells. PMID:6249264

  16. Muscle A-Kinase Anchoring Protein-α is an Injury-Specific Signaling Scaffold Required for Neurotrophic- and Cyclic Adenosine Monophosphate-Mediated Survival.

    PubMed

    Wang, Yan; Cameron, Evan G; Li, Jinliang; Stiles, Travis L; Kritzer, Michael D; Lodhavia, Rahul; Hertz, Jonathan; Nguyen, Tu; Kapiloff, Michael S; Goldberg, Jeffrey L

    2015-12-01

    Neurotrophic factor and cAMP-dependent signaling promote the survival and neurite outgrowth of retinal ganglion cells (RGCs) after injury. However, the mechanisms conferring neuroprotection and neuroregeneration downstream to these signals are unclear. We now reveal that the scaffold protein muscle A-kinase anchoring protein-α (mAKAPα) is required for the survival and axon growth of cultured primary RGCs. Although genetic deletion of mAKAPα early in prenatal RGC development did not affect RGC survival into adulthood, nor promoted the death of RGCs in the uninjured adult retina, loss of mAKAPα in the adult increased RGC death after optic nerve crush. Importantly, mAKAPα was required for the neuroprotective effects of brain-derived neurotrophic factor and cyclic adenosine-monophosphate (cAMP) after injury. These results identify mAKAPα as a scaffold for signaling in the stressed neuron that is required for RGC neuroprotection after optic nerve injury. PMID:26844267

  17. Isolation of cyclic adenosine 3':5'-monophosphate (cAMP) from lakes of differing trophic status: Correlation with planktonic metabolic variables

    SciTech Connect

    Francko, D.A.; Wetzel, R.G.

    1982-01-01

    The seasonal dynamics of particulate and dissolved cyclic adenosine 3':5'-monophosphate (cAMP) were examined in the epilimnia and littoral zones of two trophically dissimilar lakes. Each cAMP fraction was found in quantities comparable to those reported for cultured phytoplankton species. Both cAMP fractions varied greatly in concentration during the season and between the oligotrophic and hypereutrophic lakes. Increases in phytoplankton community densities were paralleled by weight-specific changes in particulate cAMP levels, depending on the phytoplankton species present. A linear relationship between cellular cAMP levels and in situ primary productivity rates was found in the oligotrophic lake. In both lakes, certain phytoplanktonic associations had particulate cAMP levels linearly related to chlorophyll a content and specific activity of alkaline phosphatase.

  18. Mulberry leaf polyphenol extract induced apoptosis involving regulation of adenosine monophosphate-activated protein kinase/fatty acid synthase in a p53-negative hepatocellular carcinoma cell.

    PubMed

    Yang, Tzi-Peng; Lee, Huei-Jane; Ou, Ting-Tsz; Chang, Ya-Ju; Wang, Chau-Jong

    2012-07-11

    The polyphenols in mulberry leaf possess the ability to inhibit cell proliferation, invasion, and metastasis of tumors. It was reported that the p53 status plays an important role in switching apoptosis and the cell cycle following adenosine monophosphate-activated protein kinase (AMPK) activation. In this study, we aimed to detect the effect of the mulberry leaf polyphenol extract (MLPE) on inducing cell death in p53-negative (Hep3B) and p53-positive (Hep3B with transfected p53) hepatocellular carcinoma cells and also to clarify the role of p53 in MLPE-treated cells. After treatment of the Hep3B cells with MLPE, apoptosis was induced via the AMPK/PI3K/Akt and Bcl-2 family pathways. Transient transfection of p53 into Hep3B cells led to switching autophagy instead of apoptosis by MLPE treatment. We demonstrated that acridine orange staining and protein expressions of LC-3 and beclin-1 were increased in p53-transfected cells. These results implied induction of apoptosis or autophagy in MLPE-treated hepatocellular carcinoma cells can be due to the p53 status. We also found MLPE can not only activate AMPK but also diminish fatty acid synthase, a molecular target for cancer inhibition. At present, our results indicate MLPE can play an active role in mediating the cell death of hepatocellular carcinoma cells and the p53 might play an important role in regulating the death mechanisms.

  19. Uric acid induces oxidative stress and growth inhibition by activating adenosine monophosphate-activated protein kinase and extracellular signal-regulated kinase signal pathways in pancreatic β cells.

    PubMed

    Zhang, Yongneng; Yamamoto, Tetsuya; Hisatome, Ichiro; Li, Youfeng; Cheng, Weijie; Sun, Ning; Cai, Bozhi; Huang, Tianliang; Zhu, Yuzhang; Li, Zhi; Jing, Xubin; Zhou, Rui; Cheng, Jidong

    2013-08-15

    Hyperuricaemia is a disorder of purine metabolism, and is strongly associated with insulin resistance and abnormal glucose metabolism. As the producer of insulin, pancreatic β cells might be affected by elevated serum uric acid levels and contribute to the disregulated glucose metabolism. In this study, we investigated the effect of high uric acid on rat pancreatic β cell function. Under high uric acid condition, proliferation of pancreatic β cells was inhibited, production of reactive oxygen species increased, and glucose stimulated insulin secretion was also compromised. Further examination on signal transduction pathways revealed that uric acid-induced ROS is involved in the activation of adenosine monophosphate-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK). Pharmacological inhibition of ERK activation rescued β cells from growth inhibition. More importantly, activation of ERK induced by uric acid is significantly diminished by AMPK inhibitor, indicating ERK as a downstream target of AMPK in response to high uric acid condition. We also investigated the transportation channel for uric acid into pancreatic β cells. While major urate transporter URAT1 is not expressed in β cells, organic anion transporter (OAT) inhibitor successfully blocked the activation of ERK by uric acid. Our data indicate that high uric acid levels induce oxidative damage and inhibit growth of rat pancreatic β cells by activating the AMPK and ERK signal pathways. Hyperuricemia may contribute to abnormal glucose metabolism by causing oxidative damage and function inhibition of pancreatic β cells.

  20. Estrogen regulates energy metabolic pathway and upstream adenosine 5'-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia.

    PubMed

    Tamrakar, Pratistha; Ibrahim, Baher A; Gujar, Amit D; Briski, Karen P

    2015-02-01

    The ability of estrogen to shield the brain from the bioenergetic insult hypoglycemia is unclear. Estradiol (E) prevents hypoglycemic activation of the energy deficit sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) in hindbrain metabolosensory A2 noradrenergic neurons. This study investigates the hypothesis that estrogen regulates A2 AMPK through control of fuel metabolism and/or upstream protein kinase/phosphatase enzyme expression. A2 cells were harvested by laser microdissection after insulin or vehicle (V) injection of E- or oil (O)-implanted ovariectomized female rats. Cell lysates were evaluated by immunoblot for glycolytic, tricarboxylic acid cycle, respiratory chain, and acetyl-CoA-malonyl-CoA pathway enzymes. A2 phosphofructokinase (PFKL), isocitrate dehydrogenase, pyruvate dehydrogenase, and ATP synthase subunit profiles were elevated in E/V vs. O/V; hypoglycemia augmented PFKL and α-ketoglutarate dehydrogenase expression in E only. Hypoglycemia increased A2 Ca(2+) /calmodulin-dependent protein kinase-β in O and reduced protein phosphatase in both groups. A2 phospho-AMPK levels were equivalent in O/V vs. E/V but elevated during hypoglycemia in O only. These results implicate E in compensatory upregulation of substrate catabolism and corresponding maintenance of energy stability of A2 metabolosensory neurons during hypoglycemia, outcomes that support the potential viability of molecular substrates for hormone action as targets for therapies alleviating hypoglycemic brain injury.

  1. Developmental Competence of Vitrified-Warmed Bovine Oocytes at the Germinal-Vesicle Stage is Improved by Cyclic Adenosine Monophosphate Modulators during In Vitro Maturation

    PubMed Central

    Ezoe, Kenji; Yabuuchi, Akiko; Tani, Tetsuya; Mori, Chiemi; Miki, Tetsuya; Takayama, Yuko; Beyhan, Zeki; Kato, Yoko; Okuno, Takashi; Kobayashi, Tamotsu; Kato, Keiichi

    2015-01-01

    Cryopreservation of mature oocytes and embryos has provided numerous benefits in reproductive medicine. Although successful cryopreservation of germinal-vesicle stage (GV) oocytes holds promise for further advances in reproductive biology and clinical embryology fields, reports regarding cryopreservation of immature oocytes are limited. Oocyte survival and maturation rates have improved since vitrification is being performed at the GV stage, but the subsequent developmental competence of GV oocytes is still low. The purpose of this study was to evaluate the effects of supplementation of the maturation medium with cyclic adenosine monophosphate (cAMP) modulators on the developmental competence of vitrified-warmed GV bovine oocytes. GV oocytes were vitrified-warmed and cultured to allow for oocyte maturation, and then parthenogenetically activated or fertilized in vitro. Our results indicate that addition of a cAMP modulator forskolin (FSK) or 3-isobutyl-1-methylxanthine (IBMX) to the maturation medium significantly improved the developmental competence of vitrified-warmed GV oocytes. We also demonstrated that vitrification of GV oocytes led to a decline in cAMP levels and maturation-promoting factor (MPF) activity in the oocytes during the initial and final phases of maturation, respectively. Nevertheless, the addition of FSK or IBMX to the maturation medium significantly elevated cAMP levels and MPF activity during IVM. Taken together, our results suggest that the cryopreservation-associated meiotic and developmental abnormalities observed in GV oocytes may be ameliorated by an artificial increase in cAMP levels during maturation culture after warming. PMID:25965267

  2. Medium optimization for the production of cyclic adenosine 3',5'-monophosphate by Microbacterium sp. no. 205 using response surface methodology.

    PubMed

    Chen, Xiao-Chun; Bai, Jian-Xin; Cao, Jia-Ming; Li, Zhen-Jiang; Xiong, Jian; Zhang, Lei; Hong, Yuan; Ying, Han-Jie

    2009-01-01

    Response surface methodology was employed to optimize medium composition for the production of cyclic adenosine 3',5'-monophosphate (cAMP) with Microbacterium sp. no. 205. A fractional factorial design (2(11-7)) was applied to evaluate the effects of different components in the medium. K(2)HPO(4), MgSO(4) and NaF were found to significantly influence on the cAMP production. The steepest ascent method was used to access the optimal region of the medium composition. The concentrations of the three factors were optimized subsequently using central composite design and response surface methodology. The optimal medium composition to achieve the optimal cAMP production was determined (g/L): K(2)HPO(4), 12.78; MgSO(4), 3.53 and NaF, 0.18. The corresponding cAMP concentration was 8.50 g/L, which was about 1.8-fold increase compared with that using the original medium. Validation experiments were also carried out to prove the adequacy and the accuracy of the model obtained. The cAMP fermentation in 5L fermenter reached 9.87 g/L. PMID:18778935

  3. Vasoactive intestinal peptide: A potent stimulator of adenosine 3′:5′-cyclic monophosphate accumulation in gut carcinoma cell lines in culture*

    PubMed Central

    Laburthe, M.; Rousset, M.; Boissard, C.; Chevalier, G.; Zweibaum, A.; Rosselin, G.

    1978-01-01

    Vasoactive intestinal peptide (VIP) is a potent and efficient stimulator of adenosine 3′:5′-cyclic monophosphate (cAMP) accumulation in a human colon carcinoma cell line, HT 29. cAMP accumulation is sensitive to a concentration of VIP as low as 3×10-12 M. Maximum VIP-induced cAMP levels were observed with 10-9 M VIP and are about 200 times above the basal levels. Half-maximum cAMP production was obtained at 3×10-10 M VIP. 125I-Labeled VIP was found to bind to HT 29 cells; this binding was competitively inhibited by concentrations of unlabeled VIP between 10-10 and 10-7 M. Half-maximum inhibition of binding was observed with 2×10-9 M VIP. Secretin also stimulated cAMP accumulation in HT 29 cells, but its effectiveness was 1/1000 that of VIP. The other peptides tested at 10-7 M, such as insulin, glucagon, bovine pancreatic polypeptide, somatostatin, octapeptide of cholecystokinin, neurotensin, and substance P, did not stimulate cAMP accumulation. Prostaglandin E1 and catecholamines stimulated cAMP production but were 1/2.3 and 1/5.5 as efficient as VIP, respectively. Another malignant cell line from the gut, the human rectal tumor cell line HRT 18, is also sensitive to VIP. In HRT 18 cells, VIP stimulated cAMP accumulation with a maximal effect at 10-8 M; half-maximum stimulation was observed at about 10-9 M. These results demonstrate the presence of VIP receptors in two malignant human intestinal cell lines (HT 29 and HRT 18) in culture and provide a model for studying the action of VIP on cell proliferation. PMID:208077

  4. Activation of 5' adenosine monophosphate-activated protein kinase blocks cumulus cell expansion through inhibition of protein synthesis during in vitro maturation in Swine.

    PubMed

    Santiquet, Nicolas; Sasseville, Maxime; Laforest, Martin; Guillemette, Christine; Gilchrist, Robert B; Richard, François J

    2014-08-01

    The serine/threonine kinase 5' adenosine monophosphate-activated protein kinase (AMPK), a heterotrimeric protein known as a metabolic switch, is involved in oocyte nuclear maturation in mice, cattle, and swine. The present study analyzed AMPK activation in cumulus cell expansion during in vitro maturation (IVM) of porcine cumulus-oocyte complexes (COC). 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) is a well-known activator of AMPK. It inhibited oocyte meiotic resumption in COC. Moreover, cumulus cell expansion did not occur in the presence of AICAR, demonstrating its marked impact on cumulus cells. Activation of AMPK was supported by AICAR-mediated phosphorylation of alpha AMPK subunits. Furthermore, the presence of AICAR increased glucose uptake, a classical response to activation of this metabolic switch in response to depleted cellular energy levels. Neither nuclear maturation nor cumulus expansion was reversed by glucosamine, an alternative substrate in hyaluronic acid synthesis, through the hexosamine biosynthetic pathway, which ruled out possible depletion of substrates. Both increased gap junction communication and phosphodiesterase activity in COC are dependent on protein synthesis during the initial hours of IVM; however, both were inhibited in the presence of AICAR, which supports the finding that activation of AMPK by AICAR mediated inhibition of protein synthesis. Moreover, this protein synthesis inhibition was equivalent to that of the well-known protein synthesis inhibitor cycloheximide, as observed on cumulus expansion and protein concentration. Finally, the phosphorylation level of selected kinases was investigated. The pattern of raptor phosphorylation is supportive of activation of AMPK-mediated inhibition of protein synthesis. In conclusion, AICAR-mediated AMPK activation in porcine COC inhibited cumulus cell expansion and protein synthesis. These results bring new considerations to the importance of this kinase in ovarian

  5. Targeting Energy Metabolic and Oncogenic Signaling Pathways in Triple-negative Breast Cancer by a Novel Adenosine Monophosphate-activated Protein Kinase (AMPK) Activator*

    PubMed Central

    Lee, Kuen-Haur; Hsu, En-Chi; Guh, Jih-Hwa; Yang, Hsiao-Ching; Wang, Dasheng; Kulp, Samuel K.; Shapiro, Charles L.; Chen, Ching-Shih

    2011-01-01

    The antitumor activities of the novel adenosine monophosphate-activated protein kinase (AMPK) activator, OSU-53, were assessed in in vitro and in vivo models of triple-negative breast cancer. OSU-53 directly stimulated recombinant AMPK kinase activity (EC50, 0.3 μm) and inhibited the viability and clonogenic growth of MDA-MB-231 and MDA-MB-468 cells with equal potency (IC50, 5 and 2 μm, respectively) despite lack of LKB1 expression in MDA-MB-231 cells. Nonmalignant MCF-10A cells, however, were unaffected. Beyond AMPK-mediated effects on mammalian target of rapamycin signaling and lipogenesis, OSU-53 also targeted multiple AMPK downstream pathways. Among these, the protein phosphatase 2A-dependent dephosphorylation of Akt is noteworthy because it circumvents the feedback activation of Akt that results from mammalian target of rapamycin inhibition. OSU-53 also modulated energy homeostasis by suppressing fatty acid biosynthesis and shifting the metabolism to oxidation by up-regulating the expression of key regulators of mitochondrial biogenesis, such as a peroxisome proliferator-activated receptor γ coactivator 1α and the transcription factor nuclear respiratory factor 1. Moreover, OSU-53 suppressed LPS-induced IL-6 production, thereby blocking subsequent Stat3 activation, and inhibited hypoxia-induced epithelial-mesenchymal transition in association with the silencing of hypoxia-inducible factor 1a and the E-cadherin repressor Snail. In MDA-MB-231 tumor-bearing mice, daily oral administration of OSU-53 (50 and 100 mg/kg) suppressed tumor growth by 47–49% and modulated relevant intratumoral biomarkers of drug activity. However, OSU-53 also induced protective autophagy that attenuated its antiproliferative potency. Accordingly, cotreatment with the autophagy inhibitor chloroquine increased the in vivo tumor-suppressive activity of OSU-53. OSU-53 is a potent, orally bioavailable AMPK activator that acts through a broad spectrum of antitumor activities. PMID

  6. Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase

    PubMed Central

    GUO, QIANQIAN; LIU, ZHIYAN; JIANG, LILI; LIU, MENGJIE; MA, JIEQUN; YANG, CHENGCHENG; HAN, LILI; NAN, KEJUN; LIANG, XUAN

    2016-01-01

    Metformin, the most widely administered oral anti-diabetic therapeutic agent, exerts its glucose-lowering effect predominantly via liver kinase B1 (LKB1)-dependent activation of adenosine monophosphate-activated protein kinase (AMPK). Accumulating evidence has demonstrated that metformin possesses potential antitumor effects. However, whether the antitumor effect of metformin is via the LKB1/AMPK signaling pathway remains to be determined. In the current study, the effects of metformin on proliferation, cell cycle progression, and apoptosis of human non-small cell lung cancer (NSCLC) H460 (LKB1-null) and H1299 (LKB1-positive) cells were assessed, and the role of LKB1/AMPK signaling in the anti-growth effects of metformin were investigated. Cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle distribution and apoptosis were assessed by flow cytometry, and protein expression levels were measured by western blotting. Metformin inhibited proliferation, induced significant cell cycle arrest at the G0–G1 phase and increased apoptosis in NSCLC cells in a time- and concentration-dependent manner, regardless of the level of LKB1 protein expression. Furthermore, knockdown of LKB1 with short hairpin RNA (shRNA) did not affect the antiproliferative effect of metformin in the H1299 cells. Metformin stimulated AMPK phosphorylation and subsequently suppressed the phosphorylation of mammalian target of rapamycin and its downstream effector, 70-kDa ribosomal protein S6 kinase in the two cell lines. These effects were abrogated by silencing AMPK with small interfering RNA (siRNA). In addition, knockdown of AMPK with siRNA inhibited the effect of metformin on cell proliferation in the two cell lines. These results provide evidence that the growth inhibition of metformin in NSCLC cells is mediated by LKB1-independent activation of AMPK, indicating that metformin may be a potential therapeutic agent for the treatment of

  7. Vasoactive intestinal peptide attenuates liver ischemia/reperfusion injury in mice via the cyclic adenosine monophosphate-protein kinase a pathway.

    PubMed

    Ji, Haofeng; Zhang, Yu; Liu, Yuanxing; Shen, Xiu-Da; Gao, Feng; Nguyen, Terry T; Busuttil, Ronald W; Waschek, James A; Kupiec-Weglinski, Jerzy W

    2013-09-01

    Hepatic ischemia/reperfusion injury (IRI), an exogenous, antigen-independent, local inflammation response, occurs in multiple clinical settings, including liver transplantation, hepatic resection, trauma, and shock. The nervous system maintains extensive crosstalk with the immune system through neuropeptide and peptide hormone networks. This study examined the function and therapeutic potential of the vasoactive intestinal peptide (VIP) neuropeptide in a murine model of liver warm ischemia (90 minutes) followed by reperfusion. Liver ischemia/reperfusion (IR) triggered an induction of gene expression of intrinsic VIP; this peaked at 24 hours of reperfusion and coincided with a hepatic self-healing phase. Treatment with the VIP neuropeptide protected livers from IRI; this was evidenced by diminished serum alanine aminotransferase levels and well-preserved tissue architecture and was associated with elevated intracellular cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling. The hepatocellular protection rendered by VIP was accompanied by diminished neutrophil/macrophage infiltration and activation, reduced hepatocyte necrosis/apoptosis, and increased hepatic interleukin-10 (IL-10) expression. Strikingly, PKA inhibition restored liver damage in otherwise IR-resistant VIP-treated mice. In vitro, VIP not only diminished macrophage tumor necrosis factor α/IL-6/IL-12 expression in a PKA-dependent manner but also prevented necrosis/apoptosis in primary mouse hepatocyte cultures. In conclusion, our findings document the importance of VIP neuropeptide-mediated cAMP-PKA signaling in hepatic homeostasis and cytoprotection in vivo. Because the enhancement of neural modulation differentially regulates local inflammation and prevents hepatocyte death, these results provide the rationale for novel approaches to managing liver IRI in transplant patients. PMID:23744729

  8. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    PubMed

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver.

  9. A high isoflavone diet decreases 5' adenosine monophosphate-activated protein kinase activation and does not correct selenium-induced elevations in fasting blood glucose in mice.

    PubMed

    Stallings, Michael T; Cardon, Brandon R; Hardman, Jeremy M; Bliss, Tyler A; Brunson, Scott E; Hart, Chris M; Swiss, Maria D; Hepworth, Squire D; Christensen, Merrill J; Hancock, Chad R

    2014-04-01

    Selenium (Se) has been implicated as a micronutrient that decreases adenosine monophosphate-activated protein kinase (AMPK) signaling and may increase diabetes risk by reducing insulin sensitivity. Soy isoflavones (IF) are estrogen-like compounds that have been shown to attenuate insulin resistance, hyperglycemia, adiposity, and increased AMPK activation. We hypothesized that a high IF (HIF) diet would prevent the poor metabolic profile associated with high Se intake. The purpose of this study was to examine changes in basal glucose metabolism and AMPK signaling in response to an HIF diet and/or supplemental Se in a mouse model. Male FVB mice were divided into groups receiving either a control diet with minimal IF (low IF) or an HIF diet. Each dietary group was further subdivided into groups receiving either water or Se at a dose of 3 mg Se/kg body weight daily, as Se-methylselenocysteine (SMSC). After 5 months, mice receiving SMSC had elevated fasting glucose (P < .05) and a tendency for glucose intolerance (P = .08). The increase in dietary IF did not result in improved fasting blood glucose. Interestingly, after 6 months, HIF-fed mice had decreased basal AMPK activation in liver and skeletal muscle tissue (P < .05). Basal glucose metabolism was changed by SMSC supplementation as evidenced by increased fasting blood glucose and glucose intolerance. High dietary IF levels did not protect against aberrant blood glucose. In FVB mice, decreased basal AMPK activation is not the mechanism through which Se exerts its effect. These results suggest that more research must be done to elucidate the role of Se and IF in glucose metabolism.

  10. Airway hyperresponsiveness to methacholine, adenosine 5-monophosphate, mannitol, eucapnic voluntary hyperpnoea and field exercise challenge in elite cross-country skiers

    PubMed Central

    Sue-Chu, Malcolm; Brannan, John D; Anderson, Sandra D; Chew, Nora; Bjermer, Leif

    2010-01-01

    Background Methacholine hyperresponsiveness is prevalent in elite athletes. Comparative studies have hitherto been limited to methacholine, eucapnic voluntary hyperpnoea and exercise. This study investigated airway responsiveness to these stimuli as well as to adenosine 5′-monophosphate (AMP) and mannitol, in 58 cross-country ski athletes. Methods Exhaled nitric oxide concentration (FENO), spirometry and bronchial challenge in random order with methacholine, AMP and mannitol were consecutively performed on three study days in the autumn. Specific IgE to eight aeroallergens and a self-completed questionnaire about respiratory symptoms, allergy and asthmatic medication were also performed on day 1. Eucapnic voluntary hyperventilation (EVH) and field exercise tests were randomly performed in 33 of the skiers on two study days in the following winter. Results Of 25 (43%) skiers with airway hyperresponsiveness (AHR), 23, five and three skiers were hyperresponsive to methacholine, AMP and mannitol, respectively. Methacholine hyperresponsiveness was more prevalent in subjects without asthma-like symptoms. The FENO was not significantly different in skiers with and without methacholine hyperresponsiveness. Four of 14 skiers with and four of 19 skiers without methacholine hyperresponsiveness were hyperresponsive to EVH or exercise challenge. AHR to any stimulus was present in 16 asymptomatic and nine symptomatic skiers. Asthma-like symptoms were not correlated with AHR to any stimulus. Conclusions Methacholine hyperresponsiveness is more common in asymptomatic skiers and is a poor predictor of hyperresponsiveness to mannitol and hyperpnoea. The low prevalence of hyperresponsiveness to indirect stimuli may suggest differences in the pathogenesis of methacholine hyperresponsiveness in elite skiers and non-athletes. PMID:20460257

  11. Effects of dibutyryl cyclic adenosine monophosphate on hypercapnic depression of diaphragmatic contractility in pentobarbital-anesthetized dogs

    PubMed Central

    Fujii, Yoshitaka; Uemura, Aki

    2010-01-01

    Background: Hypercapnia is associated with diaphragm muscle dysfunction that causes a reduction of diaphragmatic force generated for a constant elective myographic activity. No published data are available concerning hypercapnic depression of diaphragmatic contractility during dibutyryl cyclic adenosine monophospate (DBcAMP) administration. Objective: The aim of this study was to assess the effects of DBcAMP on hypercapnic depression of diaphragmatic contractility in pentobarbital-anesthetized dogs. Methods: This experimental study was conducted from July to December 2008 at the Department of Anesthesiology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan. Adult (aged >5 years) mongrel dogs weighing 10 to 15 kg were randomly divided into 3 equal groups. Hypercapnia (80–90 mm Hg) was induced with 10% carbon dioxide added to the inspired gas. When hypercapnia was established, group 1 was infused with low-dose DBcAMP (0.05 mg/kg/min); group 2 was infused with high-dose DBcAMP (0.2 mg/kg/min); and group 3 received placebo (saline). Study drug was administered intravenously for 60 minutes. Diaphragmatic contractility was assessed by transdiaphragmatic pressure (Pdi) at baseline, induction of hypercapnia, and study drug administration. Results: Twenty-one dogs were divided into 3 groups of 7. There were no significant differences observed at baseline. In the presence of hypercapnia, Pdi (mean [SD], cm H2O) at low- (20-Hz) and high-frequency (100-Hz) stimulation was significantly decreased from baseline in each group (all, P = 0.001). In groups 1 and 2, Pdi at both stimuli was significantly increased during DBcAMP administration compared with hypercapnia-induced values (group 1: 20-Hz, 13.5 [2.2] vs 15.0 [2.4], respectively, P = 0.001, 100-Hz, 21.2 [1.6] vs 22.5 [1.6], P = 0.001; group 2: 20-Hz, 13.7 [1.4] vs 19.2 [1.7], P = 0.001, 100-Hz, 21.0 [2.4] vs 27.2 [2.5], P = 0.001). The Pdi at both stimuli during DBcAMP administration was significantly

  12. Effects of single or combined histamine H1-receptor and leukotriene CysLT1-receptor antagonism on nasal adenosine monophosphate challenge in persistent allergic rhinitis

    PubMed Central

    Lee, Daniel K C; Jackson, Catherine M; Soutar, Patricia C; Fardon, Thomas C; Lipworth, Brian J

    2004-01-01

    Background The effects of single or combined histamine H1-receptor and leukotriene CysLT1-receptor antagonism on nasal adenosine monophosphate (AMP) challenge in allergic rhinitis are unknown. Objective We elected to study the effects of usual clinically recommended doses of fexofenadine (FEX), montelukast (ML) and FEX + ML combination, compared with placebo (PL), on nasal AMP challenge in patients with persistent allergic rhinitis. Methods Twelve patients with persistent allergic rhinitis (all skin prick positive to house dust mite) were randomized in a double-blind cross-over fashion to receive for 1 week either FEX 180 mg, ML 10 mg, FEX 180 mg +ML 10 mg combination, or PL, with nasal AMP challenge performed 12 h after dosing. There was a 1-week washout period between each randomized treatment. The primary outcome measure was the maximum percentage peak nasal inspiratory flow (PNIF) fall from baseline over a 60-min period after nasal challenge with a single 400 mg ml−1 dose of AMP. The area under the 60-min time–response curve (AUC) and nasal symptoms were measured as secondary outcomes. Results There was significant attenuation (P < 0.05) of the mean maximum percentage PNIF fall from baseline after nasal AMP challenge vs. PL, 48; with FEX, 37; 95% confidence interval for difference 2, 20; ML, 35 (4, 22); and FEX + ML, 32 (7, 24). The AUC (%.min) was also significantly attenuated (P < 0.05) vs. PL, 1893; with FEX, 1306 (30, 1143); ML, 1246 (214, 1078); and FEX + ML, 1153 (251, 1227). There were no significant differences for FEX vs. ML vs. FEX + ML comparing either the maximum or AUC response. The total nasal symptom score (out of 12) was also significantly improved (P < 0.05) vs. PL, 3.3; with FEX, 2.1 (0.3, 2.0); ML, 2.0 (0.5, 1.9); and FEX + ML, 2.5 (0.1, 1.4). Conclusion FEX and ML as monotherapy significantly attenuated the response to nasal AMP challenge and improved nasal symptoms compared with PL, while combination therapy conferred no additional

  13. Dietary effects of adenosine monophosphate to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major.

    PubMed

    Hossain, Md Sakhawat; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro; Sony, Nadia Mahjabin

    2016-09-01

    Our study explored the dietary effects of adenosine monophosphate (AMP) to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream. A semi-purified basal diet supplemented with 0% (Control), 0.1% (AMP-0.1), 0.2% (AMP-0.2), 0.4% (AMP-0.4) and 0.8% (AMP-0.8) purified AMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (mean initial weight 3.4 g) for 56 days. The results indicated that dietary AMP supplements tended to improve growth performances. One of the best ones was found in diet group AMP-0.2, followed by diet groups AMP-0.1, AMP-0.4 and AMP-0.8. The Apparent digestibility coefficients (dry matter, protein and lipid) also improved by AMP supplementation and the significantly highest dry matter digestibility was observed in diet group AMP-0.2. Fish fed diet groups AMP-0.2 and AMP-0.4 had significantly higher peroxidase and bactericidal activities than fish fed the control diet. Nitro-blue-tetrazolium (NBT) activity was found to be significantly (P < 0.05) greater in fish fed diet groups AMP-0.4 and AMP-0.8. Total serum protein, lysozyme activity and agglutination antibody titer were also increased (P > 0.05) by dietary supplementation. In contrast, catalase activity decreased with AMP supplementation. Moreover, the fish fed AMP supplemented diets had better improvement (P < 0.05) in body lipid contents, condition factor, hematocrit content and glutamyl oxaloacetic transaminase (GOT) level than the control group. Supplementation also improved both freshwater and oxidative stress resistances. Interestingly, the fish fed diet groups AMP-0.2 and AMP-0.4 showed the least oxidative stress condition. Finally it is concluded that, dietary AMP supplementation enhanced the growth, digestibility, immune response and stress resistance of red sea bream. The regression analysis revealed that a dietary AMP supplementation between 0.2 and 0.4% supported weight gain and

  14. A new crystal form of human histidine triad nucleotide-binding protein 1 (hHINT1) in complex with adenosine 5′-monophosphate at 1.38 Å resolution

    PubMed Central

    Dolot, Rafał; Ozga, Magdalena; Włodarczyk, Artur; Krakowiak, Agnieszka; Nawrot, Barbara

    2012-01-01

    Histidine triad nucleotide-binding protein 1 (HINT1) represents the most ancient and widespread branch of the histidine triad protein superfamily. HINT1 plays an important role in various biological processes and has been found in many species. Here, the structure of the human HINT1–adenosine 5′-monophosphate (AMP) complex at 1.38 Å resolution obtained from a new monoclinic crystal form is reported. The final structure has R cryst = 0.1207 (R free = 0.1615) and the model exhibits good stereochemical quality. Detailed analysis of the high-resolution data allowed the details of the protein structure to be updated in comparison to the previously published data. PMID:22869114

  15. Adenosine 3',5'-cyclic monophosphate (cAMP)-dependent phosphoregulation of mitochondrial complex I is inhibited by nucleoside reverse transcriptase inhibitors

    SciTech Connect

    Lund, Kaleb C. Wallace, Kendall B.

    2008-01-01

    Nucleoside analog reverse transcriptase inhibitors (NRTIs) are known to directly inhibit mitochondrial complex I activity as well as various mitochondrial kinases. Recent observations that complex I activity and superoxide production are modulated through cAMP-dependent phosphorylation suggests a mechanism through which NRTIs may affect mitochondrial respiration via kinase-dependent protein phosphorylation. In the current study, we examine the potential for NRTIs to inhibit the cAMP-dependent phosphorylation of complex I and the associated NADH:CoQ oxidoreductase activities and rates of superoxide production using HepG2 cells. Phosphoprotein staining of immunocaptured complex I revealed that 3'-azido-3'-deoxythymidine (AZT; 10 and 50 {mu}M), AZT monophosphate (150 {mu}M), and 2',3'-dideoxycytidine (ddC; 1 {mu}M) prevented the phosphorylation of the NDUFB11 subunit of complex I. This was associated with a decrease in complex I activity with AZT and AZT monophosphate only. In the presence of succinate, superoxide production was increased with 2',3'-dideoxyinosine (ddI; 10 {mu}M) and ddC (1 {mu}M). In the presence of succinate + cAMP, AZT showed an inverse dose-dependent effect on superoxide production. None of the NRTIs examined inhibit PKA activity suggesting that the observed effects are due to a direct interaction with complex I. These data demonstrate a direct effect of NRTIs on cAMP-dependent regulation of mitochondrial bioenergetics independent of DNA polymerase-{gamma} activity; in the case of AZT, these observations may provide a mechanism for the observed long-term toxicity with this drug.

  16. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    PubMed

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3. PMID:27181414

  17. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    PubMed

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  18. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    PubMed

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3.

  19. Glycolytic potential and activity of adenosine monophosphate kinase (AMPK), glycogen phosphorylase (GP) and glycogen debranching enzyme (GDE) in steer carcasses with normal (<5.8) or high (>5.9) 24h pH determined in M. longissimus dorsi.

    PubMed

    Apaoblaza, A; Galaz, A; Strobel, P; Ramírez-Reveco, A; Jeréz-Timaure, N; Gallo, C

    2015-03-01

    Muscle glycogen concentration (MGC) and lactate (LA), activity of glycogen debranching enzyme (GDE), glycogen phosphorylase (GP) and adenosine monophosphate kinase (AMPK) were determined at 0.5h (T0) and 24h (T24) post-mortem in Longissimus dorsi samples from 38 steers that produced high pH (>5.9) and normal pH (<5.8) carcasses at 24h postmortem. MGC, LA and glycolytic potential were higher (P<0.05) in normal pH carcasses. GDE activity was similar (P>0.05) in both pH categories. GP activity increased between T0 and T24 only in normal pH carcasses. AMPK activity was four times higher in normal pH v/s high pH carcasses, without changing its activity over time. Results reinforce the idea that differences in postmortem glycogenolytic/glycolytic flow in L. dorsi of steers showing normal v/s high muscle pH at 24h, could be explained not only by the higher initial MGC in normal pH carcasses, but also by a high and sustained activity of AMPK and an increased GP activity at 24h postmortem.

  20. A long-acting β2-adrenergic agonist increases the expression of muscarine cholinergic subtype‑3 receptors by activating the β2-adrenoceptor cyclic adenosine monophosphate signaling pathway in airway smooth muscle cells.

    PubMed

    Liu, Yuan-Hua; Wu, Song-Ze; Wang, Gang; Huang, Ni-Wen; Liu, Chun-Tao

    2015-06-01

    The persistent administration of β2‑adrenergic (β2AR) agonists has been demonstrated to increase the risk of severe asthma, partly due to the induction of tolerance to bronchoprotection via undefined mechanisms. The present study investigated the potential effect of the long‑acting β2‑adrenergic agonist, formoterol, on the expression of muscarinic M3 receptor (M3R) in rat airway smooth muscle cells (ASMCs). Primary rat ASMCs were isolated and characterized following immunostaining with anti‑α‑smooth muscle actin antibodies. The protein expression levels of M3R and phospholipase C‑β1 (PLCβ1) were characterized by western blot analysis and the production of inositol 1,4,5‑trisphosphate (IP3) was determined using an enzyme‑linked immunosorbent assay. Formoterol increased the protein expression of M3R in rat ASMCs in a time‑ and dose‑dependent manner, which was significantly inhibited by the β2AR antagonist, ICI118,551 and the cyclic adenosine monophosphate (cAMP) inhibitor, SQ22,536. The increased protein expression of M3R was positively correlated with increased production of PLCβ1 and IP3. Furthermore, treatment with the glucocorticoid, budesonide, and the PLC inhibitor, U73,122, significantly suppressed the formoterol‑induced upregulated protein expression levels of M3R and PLCβ1 and production of IP3. The present study demonstrated that formoterol mediated the upregulation of M3R in the rat ASMCs by activating the β2AR‑cAMP signaling pathway, resulting in increased expression levels of PLCβ1 and IP3, which are key to inducing bronchoprotection tolerance. Administration of glucocorticoids or a PLC antagonist prevented formoterol‑induced bronchoprotection tolerance by suppressing the protein expression of M3R. PMID:25672589

  1. Direct biochemical measurements of microtubule assembly and disassembly in Chinese hamster ovary cells. The effect of intercellular contact, cold, D2O, and N6,O2'-dibutyryl cyclic adenosine monophosphate

    PubMed Central

    1975-01-01

    A study was undertaken to develop a means of quantitating the amount of tubulin present as a soluble pool and as intact microtubules in cultured Chinese hamster ovary cells. A procedure was developed in which these cells grown on monolayer culture in Petri dishes were placed in a "microtubule stabilizing medium" (MTM) consisting of 50% glycerol, 10% dimethylsulfoxide and sodium phosphate magnesium buffer, as described previously by Filner and Behnke. These cells then were homogenized and the homogenate was spun in the ultracentrifuge. Colchicine binding activity was then determined in the supernates and the pellets. The values, when compared with total colchicine binding activity present in replicate homogenates, were used to determine the percentage of tubulin present as intact microtubules. A statistical analysis of thin sections of cells treated with MTM revealed no statistically significant difference between MTM-treated cells and untreated controls. It was further discovered that the relative amount of colchicine binding activity recovered in the high speed pellet varied dramatically, depending upon the cell number of the culture being studied. Preconfluent cultures showed very low colchicine binding activity averaging less than 5%, while confluent and postconfluent cultures often possessed as high as 25% of their total colchicine binding activity in pelletable material. Although cold and D2O treatment had little or no effect on these values, N6,O2'-dibutyryl cyclic adenosine monophosphate increased them. It is hoped that this study will serve as the basis for a reliable quantitative procedure for measuring microtubule polymerization and depolymerization in vivo. PMID:162792

  2. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells.

    PubMed

    Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li

    2015-12-15

    Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy. PMID:26522928

  3. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells.

    PubMed

    Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li

    2015-12-15

    Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy.

  4. A long-acting β2-adrenergic agonist increases the expression of muscarine cholinergic subtype-3 receptors by activating the β2-adrenoceptor cyclic adenosine monophosphate signaling pathway in airway smooth muscle cells

    PubMed Central

    LIU, YUAN-HUA; WU, SONG-ZE; WANG, GANG; HUANG, NI-WEN; LIU, CHUN-TAO

    2015-01-01

    The persistent administration of β2-adrenergic (β2AR) agonists has been demonstrated to increase the risk of severe asthma, partly due to the induction of tolerance to bronchoprotection via undefined mechanisms. The present study investigated the potential effect of the long-acting β2-adrenergic agonist, formoterol, on the expression of muscarinic M3 receptor (M3R) in rat airway smooth muscle cells (ASMCs). Primary rat ASMCs were isolated and characterized following immunostaining with anti-α-smooth muscle actin antibodies. The protein expression levels of M3R and phospholipase C-β1 (PLCβ1) were characterized by western blot analysis and the production of inositol 1,4,5-trisphosphate (IP3) was determined using an enzyme-linked immunosorbent assay. Formoterol increased the protein expression of M3R in rat ASMCs in a time- and dose-dependent manner, which was significantly inhibited by the β2AR antagonist, ICI118,551 and the cyclic adenosine monophosphate (cAMP) inhibitor, SQ22,536. The increased protein expression of M3R was positively correlated with increased production of PLCβ1 and IP3. Furthermore, treatment with the glucocorticoid, budesonide, and the PLC inhibitor, U73,122, significantly suppressed the formoterol-induced upregulated protein expression levels of M3R and PLCβ1 and production of IP3. The present study demonstrated that formoterol mediated the upregulation of M3R in the rat ASMCs by activating the β2AR-cAMP signaling pathway, resulting in increased expression levels of PLCβ1 and IP3, which are key to inducing bronchoprotection tolerance. Administration of glucocorticoids or a PLC antagonist prevented formoterol-induced bronchoprotection tolerance by suppressing the protein expression of M3R. PMID:25672589

  5. Early glycogen synthase kinase-3β and protein phosphatase 2A independent tau dephosphorylation during global brain ischaemia and reperfusion following cardiac arrest and the role of the adenosine monophosphate kinase pathway.

    PubMed

    Majd, Shohreh; Power, John H T; Koblar, Simon A; Grantham, Hugh J M

    2016-08-01

    Abnormal tau phosphorylation (p-tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p-tau is controlled by Glycogen Synthase Kinase (GSK)-3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p-tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser(396) and Ser(262) after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK-3β sensitive but AMPK insensitive residues, Ser(202) /Thr(205) (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK-3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p-AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p-tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK-3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation.

  6. Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy.

    PubMed

    Cameron, Kimberly O; Kung, Daniel W; Kalgutkar, Amit S; Kurumbail, Ravi G; Miller, Russell; Salatto, Christopher T; Ward, Jessica; Withka, Jane M; Bhattacharya, Samit K; Boehm, Markus; Borzilleri, Kris A; Brown, Janice A; Calabrese, Matthew; Caspers, Nicole L; Cokorinos, Emily; Conn, Edward L; Dowling, Matthew S; Edmonds, David J; Eng, Heather; Fernando, Dilinie P; Frisbie, Richard; Hepworth, David; Landro, James; Mao, Yuxia; Rajamohan, Francis; Reyes, Allan R; Rose, Colin R; Ryder, Tim; Shavnya, Andre; Smith, Aaron C; Tu, Meihua; Wolford, Angela C; Xiao, Jun

    2016-09-01

    Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.

  7. Post-meal responses of elongation factor 2 (eEF2) and adenosine monophosphate-activated protein kinase (AMPK) to leucine and carbohydrate supplements for regulating protein synthesis duration and energy homeostasis in rat skeletal muscle.

    PubMed

    Wilson, Gabriel J; Moulton, Christopher J; Garlick, Peter J; Anthony, Tracy G; Layman, Donald K

    2012-11-13

    Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS) to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu) and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2). This study evaluates the potential to extend the anabolic meal response with post-meal supplements of Leu or carbohydrates. Adult (~256 g) male Sprague-Dawley rats were food deprived for 12 h, then either euthanized before a standard meal (time 0) or at 90 or 180 min post-meal. At 135 min post-meal, rats received one of five oral supplements: 270 mg leucine (Leu270), 80:40:40 mg leucine, isoleucine, and valine (Leu80), 2.63 g carbohydrates (CHO2.6), 1 g carbohydrates (CHO1.0), or water (Sham control). Following the standard meal, MPS increased at 90 min then declined to pre-meal baseline at 180 min. Rats administered Leu270, Leu80, CHO2.6, or CHO1.0 maintained elevated rates of MPS at 180 min, while Sham controls declined from peak values. Leu80 and CHO1.0 treatments maintained MPS, but with values intermediate between Sham controls and Leu270 and CHO2.6 supplements. Consistent with MPS findings, the supplements maintained elongation activity and cellular energy status by preventing increases in AMP/ATP and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase ACC and eEF2. The impact of the supplements on MPS and cellular energy status was in proportion to the energy content within the individual treatments (i.e., Leu270 > Leu80; CHO2.6 > CHO1.0), but the Leu supplements produced a disproportionate anabolic stimulation of MPS, eEF2 and energy status with significantly lower energy content. In summary, the incongruity between MPS and translation initiation at 180 min reflects a block in translation elongation due to reduced

  8. Role of 3', 5' cyclic adenosine monophosphate and protein kinase C in the regulation of insulin-like growth factor-binding protein secretion by thyroid-stimulating hormone in isolated ovine thyroid cells.

    PubMed

    Wang, J F; Hill, D J; Becks, G P

    1994-05-01

    Isolated sheep thyroid follicles release insulin-like growth factors (IGF)-I and -II together with IGF-binding proteins (IGFBPs). We previously showed that TSH suppresses the biosynthesis and release of IGFBPs in vitro which may increase the tissue availability of IGFs, allowing a synergy with TSH which potentiates both thyroid growth and function. Many of the actions of TSH on thyroid cell function are dependent upon activation of adenylate cyclase, although increased synthesis of inositol trisphosphate and activation of protein kinase C (PKC) have also been implicated. We have now examined whether probable changes in intracellular cyclic adenosine monophosphate (cAMP) or PKC are involved in TSH-mediated suppression of IGFBP release. Confluent primary cultures of ovine thyroid cells were maintained in serum-free Ham's modified F-12M medium containing transferrin, somatostatin and glycyl-histidyl-lysine (designated 3H), and further supplemented with sodium iodide (10(-8)-10(-3) mol/l), dibutyryl cAMP (0.25-1 mmol/l), forskolin (5-20 mumol/l) or 12-O-tetradecanoylphorbol-13-acetate (TPA; 10(-11)-10(-6) mol/l), with or without exposure to TSH (200 microU/ml). The uptake and organification of Na [125I] by cells was examined after test incubations of up to 48 h, and IGFBPs in conditioned media were analysed by ligand blot using 125I-labelled IGF-II. The PKC activity in the cytosol and plasma membrane fractions of cells was measured by phosphorylation of histone using [gamma-32P]ATP, and PKC immunoreactivity was visualized by Western immunoblot analysis. While dibutyryl cAMP or forskolin largely reproduced the stimulatory effect of TSH on iodine organification, they did not mimic the inhibitory effect of TSH on the secretion of IGFBPs of 43, 34, 28 and 19 kDa. Incubation with physiological or pharmacological concentrations of iodide (10(-6)-10(-3) mol/l) for up to 48 h significantly decreased TSH action on iodide uptake and organification but did not alter the

  9. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway.

    PubMed

    Mehta, Suresh L; Mendelev, Natalia; Kumari, Santosh; Andy Li, P

    2013-03-01

    Mitochondrial biogenesis is activated by nuclear encoded transcription co-activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is regulated by several upstream factors including protein kinase A and Akt/protein kinase B. We have previously shown that selenoprotein H enhances the levels of nuclear regulators for mitochondrial biogenesis, increases mitochondrial mass and improves mitochondrial respiratory rate, under physiological condition. Furthermore, overexpression of selenoprotein H protects neuronal HT22 cells from ultraviolet B irradiation-induced cell damage by lowering reactive oxygen species production, and inhibiting activation of caspase-3 and -9, as well as p53. The objective of this study is to identify the cell signaling pathways by which selenoprotein H initiates mitochondrial biogenesis. We first confirmed our previous observation that selenoprotein H transfected HT22 cells increased the protein levels of nuclear-encoded mitochondrial biogenesis factors, peroxisome proliferator-activated receptor γ coactivator-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. We then observed that total and phosphorylation of protein kinase A, Akt/protein kinase B and cyclic adenosine monophosphate response element-binding protein (CREB) were significantly increased in selenoprotein H transfected cells compared to vector transfected HT22 cells. To verify whether the observed stimulating effects on mitochondrial biogenesis pathways are caused by selenoprotein H and mediated through CREB, we knocked down selenoprotein H mRNA level using siRNA and inhibited CREB with napthol AS-E phosphate in selenoprotein H transfected cells and repeated the measurements of the aforementioned biomarkers. Our results revealed that silencing of selenoprotein H not only decreased the protein levels of PGC-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A, but also decreased the total and

  10. [Cyclic adenosine monophosphate and atherogenic factors].

    PubMed

    Gerasimova, E N

    1977-01-01

    Hypercholesterolemia caused a decrease in the activity of adenylcyclase in rabbit liver tissue and in thrombocytes; hypertriglyceridemia, which developed after administration of hydrocortisone, led to an increase in the activity of adenylcyclase and in the content of 3,5-AMP in adipose tissue. Activities of adenylcyclase, phosphodiesterase and content of prostaglandines E1 and F2alpha were measured in thrombocytes of 39 healthy men without any symptoms of of ischemic heart impairment, in 52 patients with coronary atherosclerosis of the III degree (by Myasnikov's classification) as well as in 12 patients during the period of rehabilitation after myocardial infarction. The activity of adenylate cyclase system was impaired in atherosclerosis. This phenomenon might be caused by alteration in concentration of glucocorticoids in the organism.

  11. Purine metabolism in adenosine deaminase deficiency.

    PubMed Central

    Mills, G C; Schmalstieg, F C; Trimmer, K B; Goldman, A S; Goldblum, R M

    1976-01-01

    Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides. PMID:1066699

  12. Cyclic adenosine 5'-diphosphoribose (cADPR) cyclic guanosine 3',5'-monophosphate positively function in Ca(2+) elevation in methyl jasmonate-induced stomatal closure, cADPR is required for methyl jasmonate-induced ROS accumulation NO production in guard cells.

    PubMed

    Hossain, M A; Ye, W; Munemasa, S; Nakamura, Y; Mori, I C; Murata, Y

    2014-11-01

    Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5'-diphosphoribose (cADPR) and cyclic guanosine 3',5'-monophosphate (cGMP) are second messengers in ABA-induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA-induced stomatal closure in Arabidopsis thaliana (Col-0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6-anilino-5,8-quinolinedione), on MeJA-induced stomatal closure. Treatment with NA and LY inhibited MeJA-induced stomatal closure. NA inhibited MeJA-induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca(2+)]cyt elevation in MeJA-induced stomatal closure, are signalling components shared with ABA-induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA-induced ROS accumulation and NO production in Arabidopsis guard cells.

  13. Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion

    PubMed Central

    Schwede, Frank; Chepurny, Oleg G.; Kaufholz, Melanie; Bertinetti, Daniela; Leech, Colin A.; Cabrera, Over; Zhu, Yingmin; Mei, Fang; Cheng, Xiaodong; Manning Fox, Jocelyn E.; MacDonald, Patrick E.; Genieser, Hans-G.; Herberg, Friedrich W.

    2015-01-01

    cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells. PMID:26061564

  14. Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion.

    PubMed

    Schwede, Frank; Chepurny, Oleg G; Kaufholz, Melanie; Bertinetti, Daniela; Leech, Colin A; Cabrera, Over; Zhu, Yingmin; Mei, Fang; Cheng, Xiaodong; Manning Fox, Jocelyn E; MacDonald, Patrick E; Genieser, Hans-G; Herberg, Friedrich W; Holz, George G

    2015-07-01

    cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3',5'-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells. PMID:26061564

  15. Effects of 4-week treatment with lithium and olanzapine on levels of brain-derived neurotrophic factor, B-cell CLL/lymphoma 2 and phosphorylated cyclic adenosine monophosphate response element-binding protein in the sub-regions of the hippocampus.

    PubMed

    Hammonds, Michael D; Shim, Seong S

    2009-08-01

    A large body of evidence indicates that lithium, the prototype mood stabilizer in the treatment of bipolar disorder, has diverse neuroprotective and neurotrophic actions, and the actions are associated with its efficacy in treating bipolar disorder. It has been suggested that up-regulation of neurotrophic and neuroprotective factors including brain-derived neurotrophic factor (BDNF) and B-cell CLL/lymphoma 2 (Bcl-2) may underlie these neuroplastic actions of the drug. Olanzapine, an atypical anti-psychotic drug, has been shown to be an effective mood stabilizer. Olanzapine also has neurotrophic and neuroprotective actions, and these actions may underlie the efficacy of the drug for bipolar disorder and schizophrenia. However, the molecular mechanism by which the drug produces the neuroplastic actions is poorly understood. To understand a common molecular mechanism underlying the neuroplastic actions of lithium and olanzapine, we assessed the effect of 4-week lithium and olanzapine treatment on the levels of BDNF, Bcl-2 and cyclic adenosine monophosphate response element-binding protein (CREB), a transcription factor involved in expression of BDNF and Bcl-2, in the dentate gyrus and hippocampal area CA1. Our results show that 4-week treatment with both olanzapine and lithium increases the levels of Bcl-2 and CREB in the dentate gyrus and hippocampal area CA1. Four-week lithium treatment up-regulates BDNF in the dentate gyrus, and 4-week olanzapine treatment marginally did so. Neither drug altered BDNF levels in area CA1. These results suggest that the up-regulation of Bcl-2 and CREB may underlie the neuroplastic actions of olanzapine and lithium.

  16. Mucosal adenosine stimulates chloride secretion in canine tracheal epithelium

    SciTech Connect

    Pratt, A.D.; Clancy, G.; Welsh, M.J.

    1986-08-01

    Adenosine is a local regulator of a variety of physiological functions in many tissues and has been observed to stimulate secretion in several Cl-secreting epithelia. In canine tracheal epithelium the authors found that adenosine stimulates Cl secretion from both the mucosal and submucosal surfaces. Addition of adenosine, or its analogue 2-chloroadenosine, to the mucosal surface potently stimulated Cl secretion with no effect on the rate of Na absorption. Stimulation resulted from an interaction of adenosine with adenosine receptors, because it was blocked by the adenosine receptor blocker, 8-phenyltheophylline. The adenosine receptor was a stimulatory receptor as judged by the rank-order potency of adenosine and its analogues and by the increase in cellular adenosine 3',5'-cyclic monophosphate levels produced by 2-chloroadenosine. Adenosine also stimulated Cl secretion when it was added to the submucosal surface, although the maximal increase in secretion was less and it was much less potent. The observation that mucosal 8-phenyletheophylline blocked the effect of submucosal 2-chloroadenosine, whereas submucosal 8-phenyltheophylline did not prevent a response to mucosal or submucosal 2-chloroadenosine, suggests that adenosine receptors are located on the mucosal surface. Thus submucosal adenosine may stimulate secretion by crossing the epithelium and interacting with receptors located on the mucosal surface. Because adenosine can be released from mast cells located in the airway lumen in response to inhaled material, and because adenosine stimulated secretion from the mucosal surface, it may be in a unique position to control the epithelium on a regional level.

  17. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  18. [Isolation of inosine-5'-monophosphate from fish muscles].

    PubMed

    Tugaĭ, V A; Akulin, V N; Epshteĭn, L M

    1987-01-01

    Conditions for transformation of tissue adenosine-5'-monophosphate (AMP) into inosine-5'-monophosphate (IMP) with the aid of endogenic AMP-aminohydrolase are developed resting on the studied properties of AMP-aminohydrolase (EC 3.5.4.6) from saltwater fish muscles (one of the enzymes participating in the nucleotide metabolism). Sorption of the nucleotide is performed on the activated charcoals A gamma-3 A gamma-5 which eluate IMP from acid solutions. It reduces the process of isolation, permits application of the acid wash solutions to remove salts; the alkaline ethyl alcohol-aid elution at the subsequent stages accelerates the process of nucleotide concentration by means of vacuum evaporation. The suggested approaches allow developing a simple method of IMP production from fish tissues which diminishes the cost of preparation.

  19. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  20. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  1. RNA initiation with dinucleoside monophosphates during transcription of bacteriophage T4 DNA with RNA polymerase of Escherichia coli.

    PubMed

    Hoffman, D J; Niyogi, S K

    1973-02-01

    The effects of dinucleoside monophosphates on the transcription of phage T4 DNA by E. coli RNA polymerase have been examined at various concentrations of the sigma subunit and extremely low concentration of ribonucleoside triphosphate. The following conclusions were reached: (i) Labeled specific dinucleoside monophosphates are incorporated as chain initiators. (ii) When the ratio of sigma factor to core enzyme is small, there is a general stimulation by most 5'-guanosyl dinucleoside monophosphates. (iii) When the ratio is increased or holoenzyme is present, ApU, CpA, UpA, and GpU are the most effective stimulators. (iv) At high concentrations of sigma factor, only certain adenosine-containing dinucleoside monophosphates (ApU, CpA, UpA, and ApA) stimulate the reaction. (v) Competition hybridization studies indicate that the RNAs stimulated by dinucleoside monophosphates (ApU, CpA, UpA, and GpU) are of the T4 "early" type. (vi) Studies involving both combinations of stimulatory dinucleoside monophosphates and competitive effects of these compounds on chain initiation by ATP and GTP suggest that the stimulatory dinucleoside monophosphates act as chain initiators and may recognize part of a continuous sequence in a promoter region. Studies based on the incorporation of (3)H-labeled stimulatory dinucleoside monophosphates support the above conclusions.

  2. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  3. Molecular basis of the facilitation of the heterooligomeric GIRK1/GIRK4 complex by cAMP dependent protein kinase

    PubMed Central

    Treiber, Fritz; Rosker, Christian; Keren-Raifman, Tal; Steinecker, Bibiane; Gorischek, Astrid; Dascal, Nathan; Schreibmayer, Wolfgang

    2013-01-01

    G-protein activated inwardly rectifying K+ channels (GIRKs) of the heterotetrameric GIRK1/GIRK4 composition mediate IK + ACh in atrium and are regulated by cAMP dependent protein kinase (PKA). Phosphorylation of GIRK1/GIRK4 complexes promotes the activation of the channel by the G-protein Gβγ-dimer (“heterologous facilitation”). Previously we reported that 3 serines/threonines (S/Ts) within the GIRK1 subunit are phosphorylated by the catalytic subunit of PKA (PKA-cs) in-vitro and are responsible for the acute functional effects exerted by PKA on the homooligomeric GIRK1F137S (GIRK1⁎) channel. Here we report that homooligomeric GIRK4WT and GIRK4S143T (GIRK4⁎) channels are clearly regulated by PKA phosphorylation. Heterooligomeric channels of the GIRK1S385CS401CT407C/GIRK4WT composition, where the GIRK1 subunit is devoid of PKA mediated phosphorylation, exhibited reduced but still significant acute effects (reduction during agonist application was ≈ 49% compared to GIRK1WT/GIRK4WT). Site directed mutagenesis of truncated cytosolic regions of GIRK4 revealed four serines/threonines (S/Ts) that were heavily phosphorylated by PKA-cs in vitro. Two of them were found to be responsible for the acute effects exerted by PKA in vivo, since the effect of cAMP injection was reduced by ≈ 99% in homooligomeric GIRK4⁎T199CS412C channels. Coexpression of GIRK1WT/GIRK4T199CS412C reduced the acute effect by ≈ 65%. Only channels of the GIRK1S385CS401CT407C/GIRK4T199CS412C composition were practically devoid of PKA mediated effects (reduction by ≈ 97%), indicating that both subunits contribute to the heterologous facilitation of IK + ACh. PMID:23305758

  4. Control and localization of rat adrenal cyclic guanosine 3', 5'-monophosphate. Comparison with adrenal cyclic adenosine 3', 5'-monophosphate.

    PubMed Central

    Whitley, T H; Stowe, N W; Ong, S H; ey, R L; Steiner, A L

    1975-01-01

    Cyclic AMP and cyclic GMP were measured in rat adrenal glands after either hypophysectomy alone or after hypophysectomy and treatment with ACTH. Adrenal cyclic GMP levels rise in acutely hypophysectomized rats to a maximum at 1 h of approximately 200% of control levels; there is a return to base line at 4-12 h after hypophysectomy. In contrast, adrenal cyclic AMP falls immediately to about 50% of control levels after hypophysectomy and remains at approximately 1 pmol per mg tissue. Doses of ACTH beyond the physiological range markedly suppress adrenal cyclic GMP while producing a 50-fold or greater rise in cyclic AMP in hypophysectomized rats. This pattern of adrenal cyclic GMP rise was unchanged in acutely hypophysectomized animals treated with desamethasone. N-6-2'-0 dibutyryl cyclic AMP acted similarly to the effect of ACTH in bringing about a suppression of adrenal cyclic GMP levels. Physiological i.v. pulse doses of ACTH produced a rapid dose related increase in adrenal cyclic GMP. In vitro incubation of quartered adrenal pairs with 500 mU ACTH produced elevated cyclic AMP levels and suppression of cyclic GMP. Whereas adrenal cyclic AMP fell rapidly to 50% of control levels after hypophysectomy and remained at about 1 pmol per mg tissue for 7 days, adrenal cyclic GMP showed a biphasic rhythm in long-term hypophysectomized animals. After an initial peak at 1 h after hypophysectomy, adrenal cyclic GMP declined to baseline at 4-12 h but thereafter progressively rose with time, eventually reaching levels over 1 pmol per mg tissue. Fluorescent immunocytochemical staining of rat adrenal zona fasciculata showed cyclic AMP largely confined to cytoplasmic elements with little fluorescence contained in nuclei. In constant, cyclic GMP was found discretely positioned in nuclei with prominent fluorescence in nucleoli in addition to cytoplasmic localization. It is concluded that in hypophysectomized rats ACTH, either directly or in conjunction with altertion of adrenal cyclic AMP, appears to be one factor which regulates adrenal cyclic GMP. The direction of cyclic GMP change and the different subcellular localization of the nucleotides suggest divergent roles for cyclic AMP and cyclic GMP in adrenocortical function. Furthermore, our observations suggest a role for adrenal cyclic GMP in nuclear directed events. Images PMID:167054

  5. Adenosine 3':5'-cyclic monophosphate in higher plants: Isolation and characterization of adenosine 3':5'-cyclic monophosphate from Kalanchoe and Agave.

    PubMed

    Ashton, A R; Polya, G M

    1977-07-01

    1.3':5'-Cyclic AMP was extensively purified from Kalanchoe daigremontiana and Agave americana by neutral alumina and anion- and cation-exchange column chromatography. Inclusion of 3':5'-cyclic [8-3H]AMP from the point of tissue extraction permitted calculation of yields. The purification procedure removed contaminating material that was shown to interfere with the 3':5'-cyclic AMP estimation and characterization procedures. 2. The partially purified 3':5'-cyclic AMP was quantified by means of a radiochemical saturation assay using an ox heart 3':5'-cyclic AMP-binding protein and by an assay involving activation of a mammalian protein kinase. 3. The plant 3':5'-cyclic AMP co-migrated with 3':5'-cyclic [8-3H]AMP on cellulose chromatography, poly(ethyleneimine)-cellulose chromatography and silica-gel t.l.c. developed with several solvent systems. 4. The plant 3':5'-cyclic AMP was degraded by ox heart 3':5'-cyclic nucleotide phosphodiesterase at the same rates as authentic 3':5'-cyclic AMP. 1-Methyl-3-isobutylxanthine (1 mM), a specific inhibitor of the 3':5'-cyclic nucleotide phosphodieterase, completely inhibited such degradation. 5. The concentrations of 3':5'-cyclic AMP satisfying the above criteria in Kalanchoe and Agave were 2-6 and 1 pmol/g fresh wt. respectively. Possible bacterial contribution to these analyses was estimated to be less than 0.002pmol/g fresh wt. Evidence for the occurrence of 3':5'-cyclic AMP in plants is discussed.

  6. Relaxation of isolated taenia coli of guinea-pig by enantiomers of 2-azido analogues of adenosine and adenine nucleotides.

    PubMed Central

    Cusack, N. J.; Planker, M.

    1979-01-01

    1 2-Azido photoaffinity analogues of adenosine 5'triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine have been synthesized and tested on guinea-pig taenia coli. 2 2-Azido-ATP and 2-azido-ADP were approximately 20 times more potent than ATP as relaxants of taenia coli, and required prolonged washout times before recovery of the muscle. 3 2-Azido-AMP and 2-azidoadenosine were 2 to 12 times more potent than ATP, but took much longer (up to 100 s) to reach maximal relaxation. This behaviour is different from that of AMP and adenosine which were much less potent than ATP. 4 L-Enantiomers of adenosine and adenine nucleotides were also tested. L-ATP and L-ADP were 3 to 6 times less potent than ATP and ADP, and L-AMP and L-adenosine were inactive. 2-Azido-L-ATP and 2-azido-L-ADP were approximately 120 times less potent than 2-Azido-ATP and 6 times less potent than ATP as relaxants of taenia coli. 2-Azido-L-AMP and 2-azidio-L-adenosine were almost inactive. 5 2-Azido derivatives are photolysed by u.v. irradiation to reactive intermediates. 2-Azido-ATP and 2-azidoadenosine might be suitable photoaffinity ligands for labelling putative P2 and P1 purine receptors respectively. 2-Azido-L-ATP and 2-azido-L-adenosine could be useful controls for nonspecific labelling. PMID:497519

  7. Fluorometric Determination of Adenosine Nucleotide Derivatives as Measures of the Microfouling, Detrital, and Sedimentary Microbial Biomass and Physiological Status

    PubMed Central

    Davis, William M.; White, David C.

    1980-01-01

    Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N6-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge. PMID:16345633

  8. Adenosine dry powder inhalation for bronchial challenge testing, part 2: proof of concept in asthmatic subjects.

    PubMed

    Lexmond, Anne J; van der Wiel, Erica; Hagedoorn, Paul; Bult, Wouter; Frijlink, Henderik W; ten Hacken, Nick H T; de Boer, Anne H

    2014-09-01

    Adenosine is an indirect stimulus to assess bronchial hyperresponsiveness (BHR(2)) in asthma. Bronchial challenge tests are usually performed with nebulised solutions of adenosine 5'-monophosphate (AMP(3)). The nebulised AMP test has several disadvantages, like long administration times and a restrictive maximum concentration that does not result in BHR in all patients. In this study, we investigated the applicability of dry powder adenosine for assessment of BHR in comparison to nebulised AMP. Dry powder adenosine was prepared in doubling doses (0.01-80 mg) derived from the nebulised AMP test with addition of two higher doses. Five asthmatic subjects performed two bronchial challenge tests, one with nebulised AMP following the 2-min tidal breathing method; the second with dry powder adenosine administered with an investigational inhaler and single slow inhalations (inspiratory flow rate 30-40 L/min). All subjects reached a 20% fall in FEV₁(4) with the new adenosine test (PD20(5)) compared to four subjects with the AMP test (PC₂₀(6)). Dry powder adenosine was well tolerated by all subjects and better appreciated than nebulised AMP. In conclusion, this new bronchial challenge test appears to be a safe and convenient alternative to the nebulised AMP test to assess BHR in asthmatic subjects.

  9. Luciferase-based assay for adenosine: application to S-adenosyl-L-homocysteine hydrolase.

    PubMed

    Burgos, Emmanuel S; Gulab, Shivali A; Cassera, María B; Schramm, Vern L

    2012-04-17

    S-Adenosyl-L-homocysteine hydrolase (SAHH) catalyzes the reversible conversion of S-adenosyl-L-homocysteine (SAH) to adenosine (ADO) and L-homocysteine, promoting methyltransferase activity by relief of SAH inhibition. SAH catabolism is linked to S-adenosylmethionine metabolism, and the development of SAHH inhibitors is of interest for new therapeutics with anticancer or cholesterol-lowering effects. We have developed a continuous enzymatic assay for adenosine that facilitates high-throughput analysis of SAHH. This luciferase-based assay is 4000-fold more sensitive than former detection methods and is well suited for continuous monitoring of ADO formation in a 96-well-plate format. The high-affinity adenosine kinase from Anopheles gambiae efficiently converts adenosine to adenosine monophosphate (AMP) in the presence of guanosine triphosphate. AMP is converted to adenosine triphosphate and coupled to firefly luciferase. With this procedure, kinetic parameters (K(m), k(cat)) for SAHH were obtained, in good agreement with literature values. Assay characteristics include sustained light output combined with ultrasensitive detection (10(-7) unit of SAHH). The assay is documented with the characterization of slow-onset inhibition for inhibitors of the hydrolase. Application of this assay may facilitate the development of SAHH inhibitors and provide an ultrasensitive detection for the formation of adenosine from other biological reactions.

  10. Role of CNPase in the oligodendrocytic extracellular 2',3'-cAMP-adenosine pathway.

    PubMed

    Verrier, Jonathan D; Jackson, Travis C; Gillespie, Delbert G; Janesko-Feldman, Keri; Bansal, Rashmi; Goebbels, Sandra; Nave, Klaus-Armin; Kochanek, Patrick M; Jackson, Edwin K

    2013-10-01

    Extracellular adenosine 3',5'-cyclic monophosphate (3',5'-cAMP) is an endogenous source of localized adenosine production in many organs. Recent studies suggest that extracellular 2',3'-cAMP (positional isomer of 3',5'-cAMP) is also a source of adenosine, particularly in the brain in vivo post-injury. Moreover, in vitro studies show that both microglia and astrocytes can convert extracellular 2',3'-cAMP to adenosine. Here, we examined the ability of primary mouse oligodendrocytes and neurons to metabolize extracellular 2',3'-cAMP and their respective adenosine monophosphates (2'-AMP and 3'-AMP). Cells were also isolated from mice deficient in 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase). Oligodendrocytes metabolized 2',3'-cAMP to 2'-AMP with 10-fold greater efficiency than did neurons (and also more than previously examined microglia and astrocytes); whereas, the production of 3'-AMP was minimal in both oligodendrocytes and neurons. The production of 2'-AMP from 2',3'-cAMP was reduced by 65% in CNPase -/- versus CNPase +/+ oligodendrocytes. Oligodendrocytes also converted 2'-AMP to adenosine, and this was also attenuated in CNPase -/- oligodendrocytes. Inhibition of classic 3',5'-cAMP-3'-phosphodiesterases with 3-isobutyl-1-methylxanthine did not block metabolism of 2',3'-cAMP to 2'-AMP and inhibition of classic ecto-5'-nucleotidase (CD73) with α,β-methylene-adenosine-5'-diphosphate did not attenuate the conversion of 2'-AMP to adenosine. These studies demonstrate that oligodendrocytes express the extracellular 2',3'-cAMP-adenosine pathway (2',3'-cAMP → 2'-AMP → adenosine). This pathway is more robustly expressed in oligodendrocytes than in all other CNS cell types because CNPase is the predominant enzyme that metabolizes 2',3'-cAMP to 2-AMP in CNS cells. By reducing levels of 2',3'-cAMP (a mitochondrial toxin) and increasing levels of adenosine (a neuroprotectant), oligodendrocytes may protect axons from injury. PMID:23922219

  11. Adenosine and sleep

    SciTech Connect

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  12. Role of adenosine monophosphate in regulation of metabolic pathways of perfused rat liver

    PubMed Central

    Hunter, A. R.; Jefferson, L. S.

    1969-01-01

    1. By perfusion of rat livers with 3mm-AMP in the perfusion medium we obtain increased intracellular concentrations of AMP. 2. These high intracellular concentrations of AMP lead to an increased output of glucose and urea into the perfusion medium. 3. The increased output of glucose in livers from fed rats is brought about primarily by an AMP-stimulated breakdown of liver glycogen. In livers from starved rats the increase in glucose output is not as great, reflecting the low contents of glycogen in livers from starved rats. 4. AMP inhibits gluconeogenesis from lactate in perfused livers. In the presence of high concentrations of lactate, however, the counteracting effects of AMP to increase glycogenolysis and to inhibit gluconeogenesis result in little change in the net glucose output. 5. The increased urea output is brought about by increased breakdown of amino acids that are present in the perfusion medium. In livers from starved rats the overall urea production is much higher, indicating increased catabolism of amino acids and other nitrogenous substrates in the absence of carbohydrate substrates. 6. AMP causes an inhibition of incorporation of labelled precursors into protein and nucleic acid. This may result from increased catabolism of precursors of proteins and nucleic acids as reflected by the more rapid breakdown of nitrogenous compounds. In support of this hypothesis, cell-free systems for amino acid incorporation isolated from livers perfused with and without AMP are equally capable of supporting protein synthesis. 7. The labelling pattern of RNA in perfused livers corresponds very closely to those found by pulse-labelling in vivo. AMP in no way alters the qualitative nature of the labelling patterns. 8. We consider these results as supporting evidence for the role of the concentration ratio of AMP to ATP in controlling the metabolic pathways that lead to the formation of ATP. PMID:5774478

  13. Rapid quantification of adenosine cyclic 3',5'-monophosphate by competitive enzyme-linked immunosorbent assay.

    PubMed

    Hsieh, M S; Jap, T S; Chiang, H

    1993-01-01

    A reliable and rapid enzyme-linked immunosorbent assay (ELISA) for cyclic AMP determination is described. Succinyl cyclic AMP, coupled to human albumin, was injected into rabbit to elicit antibodies to cyclic nucleotide hapten. Succinyl cyclic nucleotide to human albumin as immunogen or the cyclic AMP to porcine thyroglobulin as coating antigen was conjugated by a carbodiimide coupling procedure. The latter conjugate, captured to microplate with coating buffer and blocked with 0.8% gelatin for 30 minutes, was bound to antibody in inverse proportion to free cyclic AMP in a sample or standard. Bound antibody was then quantified with horseradish peroxidase-labelled goat antirabbit immunoglobulin and ABTS (2, 2'-Azinobis (3-ethylbenzthiazolinesulfonic Acid). Our results showed that concentration of both standard and sample cyclic AMP could be measured as low as 2.5 fmol/well (0.05 pmol/ml). The intra- and inter-assay coefficients of variation for samples were 6.0-8.0% and 8.9-9.5%, respectively. In addition, there was no cross-reaction of the antisera with ADP, ATP, 5'-AMP or cyclic GMP. Short period of incubation at room temperature seems as good as long period of incubation at 4 degrees C. The biological study demonstrated a consistency between increase in platelet-cyclic AMP generation after prostaglandin E1 stimulation and its biological effects. Our approach to ELISA is validated by showing agreement in levels, obtained in parallel by ELISA and RIA, of cyclic AMP content in extracts of prostaglandin E1-stimulated platelet cells.

  14. 3',5'-cyclic adenosine monophosphate and adenylate cyclase in phototransduction by limulus ventral photoreceptors.

    PubMed Central

    Brown, J E; Kaupp, U B; Malbon, C C

    1984-01-01

    Biochemical and electrophysiological measurements were made on photoreceptor cells from Limulus ventral eyes to investigate the possible role of cyclic AMP and adenylate cyclase in the visual transduction mechanism. Cyclic AMP content in a photoreceptor-enriched fraction (the end organs) of Limulus ventral eyes was approximately 15 pmol/mg protein. The cyclic AMP content was increased by bathing eyes in 1-methyl-3-isobutyl xanthine or forskolin and was increased almost 100-fold when bathed in both. Illumination did not change cyclic AMP content significantly in any of these conditions. Discrete events that can be recorded electrophysiologically occur spontaneously in darkness. An increase in the frequency of discrete events is evoked by dim illumination. The discrete events are a sign of excitation of Limulus photoreceptor cells. Drug-induced changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness were not correlated with changes in cyclic AMP content. Adenylate cyclase activity measured from a small number of pooled photoreceptor clusters was stimulated by fluoride and vanadate ions, hydrolysis-resistant analogues of GTP, cholera toxin and forskolin. The Limulus enzyme is similar pharmacologically to mammalian and avian adenylate cyclases. Activation of adenylate cyclase by drugs was not correlated with changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness. A heat-treated Lubrol extract of membranes from Limulus ventral eyes reconstituted the adenylate cyclase activity of membranes from S49 mouse lymphoma cyc- mutant cells which lack a functional regulatory protein. These findings suggest that Limulus ventral eye photoreceptors contain a regulatory protein that mediates the activation of adenylate cyclase by guanine nucleotides, fluoride or cholera toxin. This regulatory protein is homologous with that found in mammalian and avian adenylate cyclases. Our findings suggest that neither cyclic AMP nor adenylate cyclase activation is a necessary or obligatory component of the excitation mechanism in Limulus ventral photoreceptors. PMID:6207288

  15. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    PubMed

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  16. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    PubMed

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  17. Adenosine and the Auditory System

    PubMed Central

    Vlajkovic, Srdjan M; Housley, Gary D; Thorne, Peter R

    2009-01-01

    Adenosine is a signalling molecule that modulates cellular activity in the central nervous system and peripheral organs via four G protein-coupled receptors designated A1, A2A, A2B, and A3. This review surveys the literature on the role of adenosine in auditory function, particularly cochlear function and its protection from oxidative stress. The specific tissue distribution of adenosine receptors in the mammalian cochlea implicates adenosine signalling in sensory transduction and auditory neurotransmission although functional studies have demonstrated that adenosine stimulates cochlear blood flow, but does not alter the resting and sound-evoked auditory potentials. An interest in a potential otoprotective role for adenosine has recently evolved, fuelled by the capacity of A1 adenosine receptors to prevent cochlear injury caused by acoustic trauma and ototoxic drugs. The balance between A1 and A2A receptors is conceived as critical for cochlear response to oxidative stress, which is an underlying mechanism of the most common inner ear pathologies (e.g. noise-induced and age-related hearing loss, drug ototoxicity). Enzymes involved in adenosine metabolism, adenosine kinase and adenosine deaminase, are also emerging as attractive targets for controlling oxidative stress in the cochlea. Other possible targets include ectonucleotidases that generate adenosine from extracellular ATP, and nucleoside transporters, which regulate adenosine concentrations on both sides of the plasma membrane. Developments of selective adenosine receptor agonists and antagonists that can cross the blood-cochlea barrier are bolstering efforts to develop therapeutic interventions aimed at ameliorating cochlear injury. Manipulations of the adenosine signalling system thus hold significant promise in the therapeutic management of oxidative stress in the cochlea. PMID:20190966

  18. Structure of the DNA Ligase-Adenylate Intermediate: Lysine (ε-amino)-Linked Adenosine Monophosphoramidate*

    PubMed Central

    Gumport, Richard I.; Lehman, I. R.

    1971-01-01

    Proteolytic degradation of the Escherichia coli DNA ligase-adenylate intermediate releases adenosine 5′-monophosphate linked to the ε-amino group of lysine by a phosphoamide bond. Measurements of the rate of hydroxylaminolysis of the ligase-adenylate provide further support for a phosphoamide linkage in the native enzyme. Lysine (ε-amino)-linked adenosine monophosphoramidate has also been isolated from the T4 phage-induced ligase-adenylate intermediate. These results indicate that an initial step of the DNA ligase reaction consists of the nucleophilic attack of the ε-amino group of a lysine residue of the enzyme on the adenylyl phosphorus of DPN or ATP that leads to the formation of enzyme-bound lysine (εamino)-linked adenosine monophosphoramidate. PMID:4944632

  19. Smoke extract impairs adenosine wound healing: implications of smoke-generated reactive oxygen species.

    PubMed

    Allen-Gipson, Diane S; Zimmerman, Matthew C; Zhang, Hui; Castellanos, Glenda; O'Malley, Jennifer K; Alvarez-Ramirez, Horacio; Kharbanda, Kusum; Sisson, Joseph H; Wyatt, Todd A

    2013-05-01

    Adenosine concentrations are elevated in the lungs of patients with asthma and chronic obstructive pulmonary disease, where it balances between tissue repair and excessive airway remodeling. We previously demonstrated that the activation of the adenosine A2A receptor promotes epithelial wound closure. However, the mechanism by which adenosine-mediated wound healing occurs after cigarette smoke exposure has not been investigated. The present study investigates whether cigarette smoke exposure alters adenosine-mediated reparative properties via its ability to induce a shift in the oxidant/antioxidant balance. Using an in vitro wounding model, bronchial epithelial cells were exposed to 5% cigarette smoke extract, were wounded, and were then stimulated with either 10 μM adenosine or the specific A2A receptor agonist, 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA; 10 μM), and assessed for wound closure. In a subset of experiments, bronchial epithelial cells were infected with adenovirus vectors encoding human superoxide dismutase and/or catalase or control vector. In the presence of 5% smoke extract, significant delay was evident in both adenosine-mediated and CPCA-mediated wound closure. However, cells pretreated with N-acetylcysteine (NAC), a nonspecific antioxidant, reversed smoke extract-mediated inhibition. We found that cells overexpressing mitochondrial catalase repealed the smoke extract inhibition of CPCA-stimulated wound closure, whereas superoxide dismutase overexpression exerted no effect. Kinase experiments revealed that smoke extract significantly reduced the A2A-mediated activation of cyclic adenosine monophosphate-dependent protein kinase. However, pretreatment with NAC reversed this effect. In conclusion, our data suggest that cigarette smoke exposure impairs A2A-stimulated wound repair via a reactive oxygen species-dependent mechanism, thereby providing a better understanding of adenosine signaling that may direct the development of pharmacological

  20. Activation of μ-opioid receptors inhibits calcium-currents in the vestibular afferent neurons of the rat through a cAMP dependent mechanism

    PubMed Central

    Seseña, Emmanuel; Vega, Rosario; Soto, Enrique

    2014-01-01

    Opioid receptors are expressed in the vestibular endorgans (afferent neurons and hair cells) and are activated by the efferent system, which modulates the discharge of action potentials in vestibular afferent neurons (VANs). In mammals, VANs mainly express the μ opioid-receptor, but the function of this receptors activation and the cellular mechanisms by which they exert their actions in these neurons are poorly studied. To determine the actions of μ opioid receptor (MOR) and cell signaling mechanisms in VANs, we made perforated patch-clamp recordings of VANs that were obtained from postnatal days 7 to 10 (P7–10) rats and then maintained in primary culture. The MOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) inhibited the total voltage-gated outward current; this effect was prevented by the perfusion of a Ca2+-free extracellular solution. We then studied the voltage-gated calcium current (Ica) and found that DAMGO Met-enkephalin or endomorphin-1 inhibited the ICa in a dose-response fashion. The effects of DAMGO were prevented by the MOR antagonist (CTAP) or by pertussis toxin (PTX). The use of specific calcium channel blockers showed that MOR activation inhibited T-, L- and N-type ICa. The use of various enzyme activators and inhibitors and of cAMP analogs allowed us to demonstrate that the MOR acts through a cAMP dependent signaling mechanism. In current clamp experiments, MOR activation increased the duration and decreased the amplitude of the action potentials and modulated the discharge produced by current injection. Pre-incubation with PTX occluded MOR activation effect. We conclude that MOR activation inhibits the T-, L- and N-type ICa through activation of a Gαi/o protein that involves a decrease in AC-cAMP-PKA activity. The modulation of ICa may have an impact on the synaptic integration, excitability, and neurotransmitter release from VANs. PMID:24734002

  1. Adenosine and Sleep

    PubMed Central

    Bjorness, Theresa E; Greene, Robert W

    2009-01-01

    Over the last several decades the idea that adenosine (Ado) plays a role in sleep control was postulated due in large part to pharmacological studies that showed the ability of Ado agonists to induce sleep and Ado antagonists to decrease sleep. A second wave of research involving in vitro cellular analytic approaches and subsequently, the use of neurochemical tools such as microdialysis, identified a population of cells within the brainstem and basal forebrain arousal centers, with activity that is both tightly coupled to thalamocortical activation and under tonic inhibitory control by Ado. Most recently, genetic tools have been used to show that Ado receptors regulate a key aspect of sleep, the slow wave activity expressed during slow wave sleep. This review will briefly introduce some of the phenomenology of sleep and then summarize the effect of Ado levels on sleep, the effect of sleep on Ado levels, and recent experiments using mutant mouse models to characterize the role for Ado in sleep control and end with a discussion of which Ado receptors are involved in such control. When taken together, these various experiments suggest that while Ado does play a role in sleep control, it is a specific role with specific functional implications and it is one of many neurotransmitters and neuromodulators affecting the complex behavior of sleep. Finally, since the majority of adenosine-related experiments in the sleep field have focused on SWS, this review will focus largely on SWS; however, the role of adenosine in REM sleep behavior will be addressed. PMID:20190965

  2. Rat cardiac myocyte adenosine transport and metabolism

    SciTech Connect

    Ford, D.A.; Rovetto, M.J.

    1987-01-01

    Based on the importance of myocardial adenosine and adenine nucleotide metabolism, the adenosine salvage pathway in ventricular myocytes was studied. Accurate estimates of transport rates, separate from metabolic fllux, were determined. Adenosine influx was constant between 3 and 60 s. Adenosine metabolism maintained intracellular adenosine concentrations < 10% of the extracellular adenosine concentrations and thus unidirectional influx could be measured. Myocytes transported adenosine via saturable and nonsaturable processes. A minimum estimate of the V/sub max/ of myocytic adenosine kinase indicated the saturable component of adenosine influx was independent of adenosine kinase activity. Saturable transport was inhibited by nitrobenzylthioinosine and verapamil. Extracellular adenosine taken up myocytes was rapidly phosphorylated to adenine taken up by myocytes was rapidly phosphorylated to adenine nucleotides. Not all extracellular adenosine, though, was phosphorylated on entering myocytes, since free, as opposed to protein-bound, intracellular adenosine was detected after digitonin extraction of cells in the presence of 1 mM ethylene-diaminetetraacetic acid.

  3. Genetics Home Reference: adenosine deaminase 2 deficiency

    MedlinePlus

    ... Health Conditions adenosine deaminase 2 deficiency adenosine deaminase 2 deficiency Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Adenosine deaminase 2 (ADA2) deficiency is a disorder characterized by abnormal ...

  4. Neurochemical Measurement of Adenosine in Discrete Brain Regions of Five Strains of Inbred Mice

    PubMed Central

    Pani, Amar K.; Jiao, Yun; Sample, Kenneth J.; Smeyne, Richard J.

    2014-01-01

    Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754

  5. Imaging Adenosine Triphosphate (ATP).

    PubMed

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities. PMID:27638696

  6. Imaging Adenosine Triphosphate (ATP).

    PubMed

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities.

  7. Adenosine-Associated Delivery Systems

    PubMed Central

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  8. Evidence for the Calvin cycle and hexose monophosphate pathway in Thiobacillus ferrooxidans.

    PubMed

    Gale, N L; Beck, J V

    1967-10-01

    The enzymes of the Calvin reductive pentose phosphate cycle and the hexose monophosphate pathway have been demonstrated in cell-free extracts of Thiobacillus ferrooxidans. This, together with analyses of the products of CO(2) fixation in cell-free systems, suggests that these pathways are operative in whole cells of this microorganism. Nevertheless, the amount of CO(2) fixed in these cell-free systems was limited by the type and amount of compound added as substrate. The inability of cell extracts to regenerate pentose phosphates and to perpetuate the cyclic fixation of CO(2) is partially attributable to low activity of triose phosphate dehydrogenase under the experimental conditions found to be optimal for the enzymes involved in the utilization of ribose-5-phosphate or ribulose-1,5-diphosphate as substrate for CO(2) incorporation. With the exception of ribulose-1,5-diphosphate, all substrates required the addition of adenosine triphosphate (ATP) or adenosine diphosphate (ADP) for CO(2) fixation. Under optimal conditions, with ribose-5-phosphate serving as substrate, each micromole of ATP added resulted in the fixation of 1.5 mumoles of CO(2), whereas each micromole of ADP resulted in 0.5 mumole of CO(2) fixed. These values reflect the activity of adenylate kinase in the extract preparations. The K(m) for ATP in the phosphoribulokinase reaction was 0.91 x 10(-3)m. Kinetic studies conducted with carboxydismutase showed K(m) values of 1.15 x 10(-4)m and 5 x 10(-2)m for ribulose-1,5-diphosphate and bicarbonate, respectively.

  9. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5′-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa)

    PubMed Central

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E.; Gallo-Reynoso, Juan P.

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5′-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5′-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5′-monophosphate (IMP), adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), ATP, guanosine 5′-diphosphate (GDP), guanosine 5′-triphosphate (GTP), and xanthosine 5′-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  10. Fluoroquinolones as potential photochemotherapeutic agents: covalent addition to guanosine monophosphate.

    PubMed

    Fasani, Elisa; Manet, Ilse; Capobianco, Massimo L; Monti, Sandra; Pretali, Luca; Albini, Angelo

    2010-08-21

    The triplet aryl cation photochemically generated from fluoroquinolones bearing a fluoro atom at position 8 attacks guanosine monophosphate (k(r) > 10(9) M(-1)s(-1)) and forms covalent adducts. The reaction is a model for the implementation of oxygen-independent photochemotherapy. PMID:20571620

  11. Studies on structures of lipid A-monophosphate clusters

    NASA Astrophysics Data System (ADS)

    Faunce, Chester A.; Reichelt, Hendrik; Paradies, Henrich H.

    2011-03-01

    Single crystalline clusters of lipid A-monophosphate were grown from organic dispersions containing 5-15% (v/v) water at various volume fractions, ϕ, and temperatures. The morphology of the single lipid A-monophosphate crystals was either rhombohedral or hexagonal. The hexagonal crystals were needlelike or cylindrical in shape, with the long dimension parallel to the c axis of the unit cell. The crystalline clusters were studied using electron microscopy and x-ray powder diffraction. Employing molecular location methods following a Rietveld refinement and whole-pattern refinement revealed two monoclinic crystal structures in the space groups P21 and C2, both converged with RF = 0.179. The two monoclinic crystal structures were packing (hydrocarbon chains) and conformational (sugar) polymorphs. Neither of these two structures had been encountered previously. Only intramolecular hydrogen bonding was observed for the polymorphs, which were located between the amide and the carboxyl groups. Another crystalline structure was found in the volume-fraction range 2.00 × 10-3 ≤ ϕ ≤ 2.50 × 10-3, which displayed hexagonal symmetry. The hexagonal symmetry of the self-assembled lipid A-monophosphate crystalline phase might be reconciled with the monoclinic symmetry found at low-volume-fractions. Therefore, lowering the symmetry from cubic, i.e., Ia overline 3d, to rhombohedral R overline 3 m, and finally to the monoclinic space group C2 was acceptable if the lipid A-monophosphate anion was completely orientationally ordered.

  12. Drugs elevating extracellular adenosine promote regeneration of haematopoietic progenitor cells in severely myelosuppressed mice: their comparison and joint effects with the granulocyte colony-stimulating factor.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Vacek, Antonín; Weiterova, Lenka; Holá, Jirina; Vácha, Jirí

    2002-01-01

    We tested capabilities of drugs elevating extracellular adenosine and of granulocyte colony-stimulating factor (G-CSF) given alone or in combination to modulate regeneration from severe myelosuppression resulting from combined exposure of mice to ionizing radiation and carboplatin. Elevation of extracellular adenosine was induced by joint administration of dipyridamole (DP), a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), serving as an adenosine prodrug. DP+AMP, G-CSF or all these drugs in combination were administered in a 4-d treatment regimen starting on day 3 after induction of myelosuppression. Comparable enhancements of haematopoietic regeneration due to elevation of extracellular adenosine or to action of G-CSF were demonstrated as shown by elevated numbers of haematopoietic progenitor cells for granulocytes/macrophages (GM-CFC) and erythrocytes (BFU-E) in the bone marrow and spleen in early time intervals after termination of the drug treatment, i.e. on days 7 and 10 after induction of myelosuppression. Coadministration of all the drugs further potentiated the restoration of progenitor cell pools in the haematopoietic organs. The effects of the drug treatments on progenitor cells were reflected in the peripheral blood in later time intervals of days 15 and 20 after induction of myelosuppression, especially as significantly elevated numbers of granulocytes and less pronounced elevation of lymphocytes and erythrocytes. The results substantiate the potential of drugs elevating extracellular adenosine for clinical utilization in myelosuppressive states, e.g. those accompanying oncological radio- and chemotherapy.

  13. Features of adenosine metabolism of mouse heart.

    PubMed

    Deussen, Andreas; Weichsel, Johannes; Pexa, Annette

    2006-11-01

    Adenosine metabolism and transport were evaluated in the isolated perfused mouse heart and compared with the well-established model of isolated perfused guinea pig heart. Coronary venous release of adenosine under well-oxygenated conditions in the mouse exceeds that in the guinea pig threefold when related to tissue mass. Total myocardial adenosine production rate under this condition was approximately 2 nmol/min per gramme and similar in both species. Coronary resistance vessels of mice are highly sensitive to exogenous adenosine, and the threshold for adenosine-induced vasodilation is approximately 30 nmol/l. Adenosine membrane transport was largely insensitive to nitrobenzyl-thioinosine (NBTI) in mouse heart, which is in contrast to guinea pig and several other species. This indicates the dominance of NBTI-insensitive transporters in mouse heart. For future studies, the assessment of cytosolic and extracellular adenosine metabolism and its relationship with coronary flow will require the use of more effective membrane transport blockers.

  14. RECIPIENT PRETRANSPLANT INOSINE MONOPHOSPHATE DEHYDROGENASE ACTIVITY IN NONMYELOABLATIVE HCT

    PubMed Central

    Bemer, Meagan J.; Risler, Linda J.; Phillips, Brian R.; Wang, Joanne; Storer, Barry E.; Sandmaier, Brenda M.; Duan, Haichuan; Raccor, Brianne S.; Boeckh, Michael J.; McCune, Jeannine S.

    2014-01-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5’- monophosphate (IMP) to xanthosine 5’-monophosphate (XMP). We developed a highly sensitive liquid chromatography–mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNC) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T-cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation, but not with chronic GVHD, relapse, non-relapse mortality, or overall mortality. We conclude that quantitation of the recipient’s pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient’s sensitivity to MMF, but confirmatory studies are needed. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  15. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis.

    PubMed

    Flögel, Ulrich; Burghoff, Sandra; van Lent, Peter L E M; Temme, Sebastian; Galbarz, Lisa; Ding, Zhaoping; El-Tayeb, Ali; Huels, Sandra; Bönner, Florian; Borg, Nadine; Jacoby, Christoph; Müller, Christa E; van den Berg, Wim B; Schrader, Jürgen

    2012-08-01

    Adenosine A(2A) receptor (A(2A)R) agonists are both highly effective anti-inflammatory agents and potent vasodilators. To separate these two activities, we have synthesized phosphorylated A(2A)R agonists (prodrugs) that require the presence of ecto-5'-nucleotidase (CD73) to become activated. In the model of collagen-induced arthritis, 2-(cyclohexylethylthio)adenosine 5'-monophosphate (chet-AMP), but not 2-(cyclohexylethylthio)adenosine (chet-adenosine), potently reduced inflammation as assessed by fluorine-19 ((19)F) magnetic resonance imaging and by histology. The prodrug effect was blunted by inhibition of CD73 and A(2A)R. The selectivity of drug action is due to profound up-regulation of CD73 and adenosine A(2A)R expression in neutrophils and inflammatory monocytes as found in recovered cells from the synovial fluid of arthritic mice. Plasma chet-adenosine was in the subnanomolar range when chet-AMP was applied, whereas concentrations required for vasodilation were about 100 times higher. Thus, chet-AMP is a potent immunosuppressant with negligible vasodilatory activity. These data suggest that phosphorylated A(2A)R agonists may serve as a promising new group of drugs for targeted immunotherapy of inflammation. PMID:22875828

  16. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis.

    PubMed

    Flögel, Ulrich; Burghoff, Sandra; van Lent, Peter L E M; Temme, Sebastian; Galbarz, Lisa; Ding, Zhaoping; El-Tayeb, Ali; Huels, Sandra; Bönner, Florian; Borg, Nadine; Jacoby, Christoph; Müller, Christa E; van den Berg, Wim B; Schrader, Jürgen

    2012-08-01

    Adenosine A(2A) receptor (A(2A)R) agonists are both highly effective anti-inflammatory agents and potent vasodilators. To separate these two activities, we have synthesized phosphorylated A(2A)R agonists (prodrugs) that require the presence of ecto-5'-nucleotidase (CD73) to become activated. In the model of collagen-induced arthritis, 2-(cyclohexylethylthio)adenosine 5'-monophosphate (chet-AMP), but not 2-(cyclohexylethylthio)adenosine (chet-adenosine), potently reduced inflammation as assessed by fluorine-19 ((19)F) magnetic resonance imaging and by histology. The prodrug effect was blunted by inhibition of CD73 and A(2A)R. The selectivity of drug action is due to profound up-regulation of CD73 and adenosine A(2A)R expression in neutrophils and inflammatory monocytes as found in recovered cells from the synovial fluid of arthritic mice. Plasma chet-adenosine was in the subnanomolar range when chet-AMP was applied, whereas concentrations required for vasodilation were about 100 times higher. Thus, chet-AMP is a potent immunosuppressant with negligible vasodilatory activity. These data suggest that phosphorylated A(2A)R agonists may serve as a promising new group of drugs for targeted immunotherapy of inflammation.

  17. Fluorescent ligands for adenosine receptors.

    PubMed

    Kozma, Eszter; Jayasekara, P Suresh; Squarcialupi, Lucia; Paoletta, Silvia; Moro, Stefano; Federico, Stephanie; Spalluto, Giampiero; Jacobson, Kenneth A

    2013-01-01

    Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field.

  18. Electron transfer between the QmoABC membrane complex and adenosine 5'-phosphosulfate reductase.

    PubMed

    Duarte, Américo G; Santos, André A; Pereira, Inês A C

    2016-04-01

    The dissimilatory adenosine 5'-phosphosulfate reductase (AprAB) is a key enzyme in the sulfate reduction pathway that catalyzes the reversible two electron reduction of adenosine 5'-phosphosulfate (APS) to sulfite and adenosine monophosphate (AMP). The physiological electron donor for AprAB is proposed to be the QmoABC membrane complex, coupling the quinone-pool to sulfate reduction. However, direct electron transfer between these two proteins has never been observed. In this work we demonstrate for the first time direct electron transfer between the Desulfovibrio desulfuricans ATCC 27774 QmoABC complex and AprAB. Cyclic voltammetry conducted with the modified Qmo electrode and AprAB in the electrolyte solution presented the Qmo electrochemical signature with two additional well-defined one electron redox processes, attributed to the AprAB FAD redox behavior. Moreover, experiments performed under catalytic conditions using the QmoABC modified electrode, with AprAB and APS in solution, show a catalytic current peak develop in the cathodic wave, attributed to substrate reduction, and which is not observed in the absence of QmoABC. Substrate dependence conducted with different electrode preparations (with and without immobilized Qmo) demonstrated that the QmoABC complex is essential for efficient electron delivery to AprAB, in order to sustain catalysis. These results confirm the role of Qmo in electron transfer to AprAB. PMID:26768116

  19. [The secretion of adenosin 3',5'-monophosphate after hydrokinetic and ecbolic stimulation in the canine pancreas (author's transl)].

    PubMed

    Teufel, H; Boeckmann, U

    1981-05-01

    The secretion of cAMP is studied in vivo and in the isolated perfused canine pancreas after administration of secretin and CCK or caerulein in comparison with hydrokinetic or ecbolic secretory events as well as with the magnitude and time course of changes in tissue cAMP. 1) The total output of cAMP and pancreatic juice shows a significant and positive correlation after stimulation with secretin. The linear correspondence between cAMP concentration and secretory rates of pancreatic juice beyond 3 ml/5 min and their non-linear, reciprocal correlation at lower rates of fluid secretion point to an active as well as to a passive secretory mechanism for cAMP. 2) CCK and caerulein increase secretion of cAMP too. The output of cAMP however neither corresponds to the time course of protein secretion nor correlates quantitatively with the latter. 3) The behaviour of cAMP secretion and concentration in the pancreatic juice after administration of secretin and CCK or caerulein as well as differs from the changes in tissue cAMP levels. The respective maximum of cAMP output after addition of secretin or ecbolic secretagogues during the greatest decrease in cellular cAMP levels yields on the average about 1% of the estimated reduction in total tissue cAMP content. The results indicate a functional coherence in secretion of pancreatic juice and cAMP but oppose the assumption, that essential amounts of cAMP are released during exocytosis of zymogen granules. The secretion of cAMP may be possibly influenced by cytoplasmatic cAMP levels, but neither reflects the present changes in cellular cAMP nor seems to be of a regulatory importance for the latter.

  20. Role of adenosine 5'-monophosphate-activated protein kinase in α-linolenic acid-induced intestinal lipid metabolism.

    PubMed

    Zhou, Xihong; Chen, Jingqing; Wu, Weiche; Wang, Xinxia; Wang, Yizhen

    2015-09-28

    n-3 Long-chain PUFA up-regulate intestinal lipid metabolism. However, whether these metabolic effects of PUFA on intestine are mediated by AMP-activated protein kinase (AMPK) remains to be elucidated. To determine the effects of α-linolenic acid (ALA) on intestinal fatty acid (FA) metabolism and whether these effects were affected by AMPK deletion, mice deficient in the catalytic subunit of AMPKα1 or AMPKα2 and wild-type (WT) mice were fed either a high-fat diet (HF) or HF supplemented with ALA (HF-A). The results showed that ALA supplementation decreased serum TAG content in WT mice. ALA also increased mRNA expression of genes (carnitine palmitoyltransferase 1a, acyl-CoA oxidase 1, medium-chain acyl-CoA dehydrogenase, cytochrome P450 4A10 and pyruvate dehydrogenase kinase isoenzyme 4a) involved in intestinal lipid oxidation and mRNA expression of TAG synthesis-related genes (monoacylglycerol O-acyltransferase 2, diacylglycerol O-acyltransferases 1 and 2) in WT mice. Consistent with these, expression levels of phosphorylated AMPKα1 and AMPKα2 were also increased in WT mice after ALA addition. However, in the absence of either AMPKα1 or AMPKα2, ALA supplementation failed to increase intestinal lipid oxidation. In addition, no significant effects of either diet (HF and HF-A) or genotype (WT, AMPKα1(-/-) and AMPKα2(-/-)) on FA uptake in the intestine and faecal TAG output were observed. Our results suggest that AMPK is indispensable for the effects of ALA on intestinal lipid oxidation. PMID:26268732

  1. Nature of the effect of adenosine 5'-monophosphate on the cyanide-insensitive respiration in mitochondria of Moniliella tomentosa.

    PubMed Central

    Vanderleyden, J; Van Den Eynde, E; Verachtert, H

    1980-01-01

    The alternative oxidase of Moniliella tomentosa mitochondria is stimulated by 5'-AMP. This effect may be masked, depending on the isolation procedure of the mitochondria. The preparation of submitochondrial particles results in the expression of the 5'-AMP effect. Two more methods are now described to reveal the 5'-AMP effect whenever it would be masked: (1) switching on the myokinase activity of the mitochondria to deplete them of endogenous 5'-AMP; (2) using detergents (sodium dodecyl sulphate, sodium deoxycholate) in a controlled detergent:protein ratio, or chloroform. The alternative oxidase of detergent-solubilized mitochondria was somewhat less selective towards nucleotides than were intact mitochondria. The effect of nucleotides on quinol oxidation by mitochondrial preparations and on quinol autoxidation was also studied. Mitochondrial oxidation of succinate by the alternative oxidase and autoxidation of quinols behaved similarly in the presence of certain nucleotides. Both reactions were stimulated. Both reactions were also inhibited by salicylhydroxamic acid. These effects on quinol oxidation disappeared when bovine serum albumin or mitochondrial proteins were present. From the results obtained it is not possible to exclude quinol autoxidation as a final step of the alternative oxidase. PMID:7189398

  2. Adenosine monophosphate-activated protein kinase activation, substrate transporter translocation, and metabolism in the contracting hyperthyroid rat heart.

    PubMed

    Heather, Lisa C; Cole, Mark A; Atherton, Helen J; Coumans, Will A; Evans, Rhys D; Tyler, Damian J; Glatz, Jan F C; Luiken, Joost J F P; Clarke, Kieran

    2010-01-01

    Thyroid hormones can modify cardiac metabolism via multiple molecular mechanisms, yet their integrated effect on overall substrate metabolism is poorly understood. Here we determined the effect of hyperthyroidism on substrate metabolism in the isolated, perfused, contracting rat heart. Male Wistar rats were injected for 7 d with T(3) (0.2 mg/kg x d ip). Plasma free fatty acids increased by 97%, heart weights increased by 33%, and cardiac rate pressure product, an indicator of contractile function, increased by 33% in hyperthyroid rats. Insulin-stimulated glycolytic rates and lactate efflux rates were increased by 33% in hyperthyroid rat hearts, mediated by an increased insulin-stimulated translocation of the glucose transporter GLUT4 to the sarcolemma. This was accompanied by a 70% increase in phosphorylated AMP-activated protein kinase (AMPK) and a 100% increase in phosphorylated acetyl CoA carboxylase, confirming downstream signaling from AMPK. Fatty acid oxidation rates increased in direct proportion to the increased heart weight and rate pressure product in the hyperthyroid heart, mediated by synchronized changes in mitochondrial enzymes and respiration. Protein levels of the fatty acid transporter, fatty acid translocase (FAT/CD36), were reduced by 24% but were accompanied by a 19% increase in the sarcolemmal content of fatty acid transport protein 1 (FATP1). Thus, the relationship between fatty acid metabolism, cardiac mass, and contractile function was maintained in the hyperthyroid heart, associated with a sarcolemmal reorganization of fatty acid transporters. The combined effects of T(3)-induced AMPK activation and insulin stimulation were associated with increased sarcolemmal GLUT4 localization and glycolytic flux in the hyperthyroid heart. PMID:19940039

  3. [The secretion of adenosin 3',5'-monophosphate after hydrokinetic and ecbolic stimulation in the canine pancreas (author's transl)].

    PubMed

    Teufel, H; Boeckmann, U

    1981-05-01

    The secretion of cAMP is studied in vivo and in the isolated perfused canine pancreas after administration of secretin and CCK or caerulein in comparison with hydrokinetic or ecbolic secretory events as well as with the magnitude and time course of changes in tissue cAMP. 1) The total output of cAMP and pancreatic juice shows a significant and positive correlation after stimulation with secretin. The linear correspondence between cAMP concentration and secretory rates of pancreatic juice beyond 3 ml/5 min and their non-linear, reciprocal correlation at lower rates of fluid secretion point to an active as well as to a passive secretory mechanism for cAMP. 2) CCK and caerulein increase secretion of cAMP too. The output of cAMP however neither corresponds to the time course of protein secretion nor correlates quantitatively with the latter. 3) The behaviour of cAMP secretion and concentration in the pancreatic juice after administration of secretin and CCK or caerulein as well as differs from the changes in tissue cAMP levels. The respective maximum of cAMP output after addition of secretin or ecbolic secretagogues during the greatest decrease in cellular cAMP levels yields on the average about 1% of the estimated reduction in total tissue cAMP content. The results indicate a functional coherence in secretion of pancreatic juice and cAMP but oppose the assumption, that essential amounts of cAMP are released during exocytosis of zymogen granules. The secretion of cAMP may be possibly influenced by cytoplasmatic cAMP levels, but neither reflects the present changes in cellular cAMP nor seems to be of a regulatory importance for the latter. PMID:6265337

  4. 3'5'-cyclic adenosine monophosphate-dependent up-regulation of phosphodiesterase type 3A in porcine cumulus cells.

    PubMed

    Sasseville, Maxime; Côté, Nancy; Vigneault, Christian; Guillemette, Christine; Richard, François J

    2007-04-01

    The means by which cumulus cells react to gonadotropin stimulation and regulate the subsequent production and degradation of cAMP are largely unknown. In this article, we report that cyclic nucleotide phosphodiesterase (PDE) type 3A (Pde3a) is transcriptionally regulated in porcine cumulus cells by a cAMP-dependent pathway during in vitro maturation (IVM). cAMP-PDE activity was increased in the cumulus-oocyte complex (COC) after 10 h of IVM, and 78% of this increase was sensitive to a Pde3-specific inhibitor, cilostamide. Although no variation was observed in the oocyte, cilostamide-sensitive cAMP-PDE activity increased in the cumulus cells after IVM. This was supported by Western blotting, which showed that the intensity of a 135-kDa anti-Pde3a immunoreactive band was increased in COC after IVM. The Pde3a mRNA level was up-regulated 28-fold in the COC after 4 h of IVM and remained high up to 12 h. The mRNA up-regulation and increased activity were inhibited by an RNA synthesis inhibitor, alpha-amanitin. The cilostamide-sensitive increase in PDE activity was inhibited by a protein synthesis inhibitor, cycloheximide. Pregnant mare serum gonadotropin (PMSG) caused dose-dependent activation of Pde3. The PMSG-dependent increase in Pde3 activity and Pde3a mRNA were mimicked by the adenylyl cyclase activator forskolin or prostaglandin E2. PMSG-dependent Pde3 activation was inhibited by the protein kinase A-specific inhibitor H89. Collectively, our results show for the first time that degradation of the intracellular cyclic nucleotide by Pde3a is transcriptionally up-regulated via a cAMP-dependent pathway in cumulus cells, suggesting that it has a functional role during the ovulatory gonadotropin surge.

  5. Assay of adenosine 3',5' cyclic monophosphate by stimulation of protein kinase: a method not involving radioactivity

    SciTech Connect

    Handa, A.K.; Bressan, R.A.

    1980-03-01

    In order to meet a need for a cAMP assay which is not subject to interference by compounds in plant extracts, and which is suitable for use on occasions separated by many /sup 32/P half-lives, an assay based on cAMP-dependent protein kinase has been developed which does not require the use of (..gamma..-/sup 32/P)ATP. Instead of measuring the cAMP-stimulated increase in the rate of transfer of (..gamma..-/sup 32/P) phosphate from (..gamma..-/sup 32/P)ATP to protein, the rate of loss of ATP from the reaction mixture is determined. The ATP remaining after the protein kinase reaction is assayed by ATP-dependent chemiluminescence of the firefly luciferin-luciferase system. Under conditions of the protein kinase reaction in which a readily measurable decrease in ATP concentration occurs, the logarithm of the concentration of ATP decreases in proportion to the cAMP concentration, i.e., the reaction can be described by the equation: (ATP) = (ATP)/sub 0/ e/sup -(cAMP)kt/. The assay based on this relationship can detect less than 1 pmol of cAMP. The levels of cAMP found with this assay after partial purification of the cAMP from rat tissue, algal cells, and the media in which the cells were grown agreed with measurements made by the cAMP binding-competition assay of Gilman, and the potein kinase stimulation assay based on transfer of (/sup 32/P) phosphate from (..gamma..-/sup 32/P)ATP to protein. All of the enzymes and chemicals required for the assay of cAMP by protein kinase catalyzed loss of ATP can be stored frozen for months, making the assay suitable for occasional use.

  6. The reversal of glucose repressed prodigiosin production in Serratia marcescens by the cyclic 3'5'-adenosine monophosphate inhibitor theophylline.

    PubMed

    Clements-Jewery, S

    1976-04-15

    Glucose was found to cause severe repression of prodigiosin production in Serratia marcescens and a dose related partial reversal was demonstrated by theophylline. It is suggested that this reversal is due to the inhibition of cAMP phosphodiesterase and the concomitant increase in cellular cAMP concentration.

  7. Role of 3'-5'-cyclic adenosine monophosphate on the epidermal growth factor dependent survival in mammary epithelial cells.

    PubMed

    Grinman, Diego Y; Romorini, Leonardo; Presman, Diego M; Rocha-Viegas, Luciana; Coso, Omar A; Davio, Carlos; Pecci, Adali

    2016-01-01

    Epidermal growth factor (EGF) has been suggested to play a key role in the maintenance of epithelial cell survival during lactation. Previously, we demonstrated that EGF dependent activation of PI3K pathway prevents apoptosis in confluent murine HC11 cells cultured under low nutrient conditions. The EGF protective effect is associated with increased levels of the antiapoptotic protein Bcl-XL. Here, we identify the EGF-dependent mechanism involved in cell survival that converges in the regulation of bcl-X expression by activated CREB. EGF induces Bcl-XL expression through activation of a unique bcl-X promoter, the P1; being not only the PI3K/AKT signaling pathway but also the increase in cAMP levels and the concomitant PKA/CREB activation necessary for both bcl-XL upregulation and apoptosis avoidance. Results presented in this work suggest the existence of a novel connection between the EGF receptor and the adenylate cyclase that would have an impact in preventing apoptosis under low nutrient conditions.

  8. Nonnucleoside inhibitors of adenosine kinase.

    PubMed

    Gomtsyan, Arthur; Lee, Chih-Hung

    2004-01-01

    Adenosine (ADO) is an endogenous inhibitory neuromodulator that increases nociceptive thresholds in response to tissue trauma and inflammation. Adenosine kinase (AK) is a key intracellular enzyme regulating intra- and extracellular concentrations of ADO. AK inhibition selectively amplifies extracellular ADO levels at cell and tissue sites where accelerated release of ADO occurs. AK inhibitors have been shown to provide effective antinociceptive, antiinflammatory and anticonvulsant activity in animal models, thus suggesting their potential therapeutic utility for pain, inflammation, epilepsy and possibly other central and peripheral nervous system diseases associated with cellular trauma and inflammation. This beneficial outcome may potentially lack nonspecific effects associated with the systemic administration of ADO receptor agonists. Until recently all of the reported AK inhibitors contained adenosine-like structural motif. The present review will discuss design, synthesis and analgesic and antiinflammatory properties of the novel nonnucleoside AK inhibitors that do not have close structural resemblance with the natural substrate ADO. Two classes of the nonnucleoside AK inhibitors are built on pyridopyrimidine and alkynylpyrimidine cores.

  9. Nucleic acid molecules encoding isopentenyl monophosphate kinase, and methods of use

    DOEpatents

    Croteau, Rodney B.; Lange, Bernd M.

    2001-01-01

    A cDNA encoding isopentenyl monophosphate kinase (IPK) from peppermint (Mentha x piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of isopentenyl monophosphate kinase (SEQ ID NO:2), from peppermint (Mentha x piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for isopentenyl monophosphate kinase, or for a base sequence sufficiently complementary to at least a portion of isopentenyl monophosphate kinase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding isopentenyl monophosphate kinase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant isopentenyl monophosphate kinase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant isopentenyl monophosphate kinase may be used to obtain expression or enhanced expression of isopentenyl monophosphate kinase in plants in order to enhance the production of isopentenyl monophosphate kinase, or isoprenoids derived therefrom, or may be otherwise employed for the regulation or expression of isopentenyl monophosphate kinase, or the production of its products.

  10. Optimization of benzoxazole-based inhibitors of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.

    PubMed

    Gorla, Suresh Kumar; Kavitha, Mandapati; Zhang, Minjia; Chin, James En Wai; Liu, Xiaoping; Striepen, Boris; Makowska-Grzyska, Magdalena; Kim, Youngchang; Joachimiak, Andrzej; Hedstrom, Lizbeth; Cuny, Gregory D

    2013-05-23

    Cryptosporidium parvum is an enteric protozoan parasite that has emerged as a major cause of diarrhea, malnutrition, and gastroenteritis and poses a potential bioterrorism threat. C. parvum synthesizes guanine nucleotides from host adenosine in a streamlined pathway that relies on inosine 5'-monophosphate dehydrogenase (IMPDH). We have previously identified several parasite-selective C. parvum IMPDH (CpIMPDH) inhibitors by high-throughput screening. In this paper, we report the structure-activity relationship (SAR) for a series of benzoxazole derivatives with many compounds demonstrating CpIMPDH IC50 values in the nanomolar range and >500-fold selectivity over human IMPDH (hIMPDH). Unlike previously reported CpIMPDH inhibitors, these compounds are competitive inhibitors versus NAD(+). The SAR study reveals that pyridine and other small heteroaromatic substituents are required at the 2-position of the benzoxazole for potent inhibitory activity. In addition, several other SAR conclusions are highlighted with regard to the benzoxazole and the amide portion of the inhibitor, including preferred stereochemistry. An X-ray crystal structure of a representative E·IMP·inhibitor complex is also presented. Overall, the secondary amine derivative 15a demonstrated excellent CpIMPDH inhibitory activity (IC50 = 0.5 ± 0.1 nM) and moderate stability (t1/2 = 44 min) in mouse liver microsomes. Compound 73, the racemic version of 15a, also displayed superb antiparasitic activity in a Toxoplasma gondii strain that relies on CpIMPDH (EC50 = 20 ± 20 nM), and selectivity versus a wild-type T. gondii strain (200-fold). No toxicity was observed (LD50 > 50 μM) against a panel of four mammalian cells lines.

  11. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  12. PRODUCTION OF EXTRACELLULAR GUANOSINE-5'-MONOPHOSPHATE BY BACILLUS SUBTILIS

    PubMed Central

    Demain, A. L.; Miller, I. M.; Hendlin, D.

    1964-01-01

    Demain, A. L. (Merck Sharp & Dohme Research Laboratories, Rahway, N.J.), I. M. Miller, and D. Hendlin. Production of extracellular guanosine-5'-monophosphate by Bacillus subtilis. J. Bacteriol. 88:991–995. 1964.—Wild-type Bacillus subtilis colonies were found to feed purineless mutants. A strain with high feeding capacity was selected for study, with a guanineless mutant of B. subtilis used as the assay organism. The factor was excreted during its growth phase in a complex medium containing starch and soybean meal extract. Nutritional studies led to the development of a defined medium to be used for biochemical studies and to aid in the isolation of the factor. Starch was replaced by maltose and the soybean meal extract by Mn++. Production of the factor was sensitive to the pH of the medium during growth. Practically its entire extracellular accumulation occurred before visible lysis. The factor was identified as guanosine-5'-monophosphate derived by extracellular enzymatic hydrolysis of excreted ribonucleic acid. PMID:14219064

  13. Regulation of Cardiovascular Development by Adenosine and Adenosine-Mediated Embryo Protection

    PubMed Central

    Rivkees, Scott A.; Wendler, Christopher C.

    2012-01-01

    Few signaling molecules have the potential to influence the developing mammal as the nucleoside adenosine. Adenosine levels increase rapidly with tissue hypoxia and inflammation. Adenosine antagonists include the methlyxanthines caffeine and theophylline. The receptors that transduce adenosine action are the A1, A2a, A2b, and A3 adenosine receptors (ARs). We examined how adenosine acts via A1ARs to influence embryo development. Transgenic mice were studied along with embryo cultures. Embryos lacking A1ARs were markedly growth retarded following intrauterine hypoxia exposure. Studies of mice selectively lacking A1AR in the heart identify the heart as a key site of adenosines embryo protective effects. Studies of isolated embryos showed that adenosine plays a key role in modulating embryo cardiac function, especially in the setting of hypoxia. When pregnant mice were treated during embryogenesis with the adenosine antagonist caffeine, adult mice had abnormal heart function. Adenosine acts via A1ARs to play an essential role in protecting the embryo against intra uterine stress, and adenosine antagonists, including caffeine, may be an unwelcome exposure for the embryo. PMID:22423036

  14. Pyridopyrimidine analogues as novel adenosine kinase inhibitors.

    PubMed

    Zheng, G Z; Lee, C; Pratt, J K; Perner, R J; Jiang, M Q; Gomtsyan, A; Matulenko, M A; Mao, Y; Koenig, J R; Kim, K H; Muchmore, S; Yu, H; Kohlhaas, K; Alexander, K M; McGaraughty, S; Chu, K L; Wismer, C T; Mikusa, J; Jarvis, M F; Marsh, K; Kowaluk, E A; Bhagwat, S S; Stewart, A O

    2001-08-20

    A novel series of pyridopyrimidine analogues 9 was identified as potent adenosine kinase inhibitors based on the SAR and computational studies. Substitution of the C7 position of the pyridopyrimidino core with C2' substituted pyridino moiety increased the in vivo potency and enhanced oral bioavailability of these adenosine kinase inhibitors.

  15. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  16. Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center.

    PubMed

    Zhao, Cong; Lou, Zhiyong; Guo, Yu; Ma, Ming; Chen, Yutao; Liang, Shuaiyi; Zhang, Liang; Chen, Shoudeng; Li, Xuemei; Liu, Yingfang; Bartlam, Mark; Rao, Zihe

    2009-09-01

    Highly pathogenic influenza virus strains currently in circulation pose a significant risk of a global pandemic. Following the reported crystal structure of the endonuclease domain from the avian influenza virus polymerase PA subunit, here we report the results of a systematic X-ray crystallographic analysis of its complex with adenosine, uridine, and thymidine nucleoside monophosphates (NMPs). Electron density corresponding to the monophosphate moiety of each nucleotide was apparent in each NMP complex and bound to the catalytic metal. A hydrophobic site was found to contribute to nucleoside binding. The NMP complex structures should represent the conformation of the bound product after nuclease cleavage. Moreover, one solvent molecule was found to occupy an equivalent position to the second reported Mn(2+) ion, where it mediates the interaction between bound NMPs and the N-terminal PA domain in the presence of the Mg(2+) ion. The results presented here indicate a possible cleavage mechanism and identify a distinct nucleotide binding pocket. The identification of this binding pocket opens a new avenue for anti-influenza drug discovery, targeting the cap-dependent endonuclease, in response to the worldwide threat of influenza. PMID:19587036

  17. Halobacterial adenosine triphosphatases and the adenosine triphosphatase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, Hordur; Sadler, Martha H.; Hochstein, Lawrence I.

    1986-01-01

    Membranes prepared from various members of the genus Halobacterium contained a Triton X-l00 activated adenosine triphosphatase. The enzyme from Halobacterium saccharovorum was unstable in solutions of low ionic strength and maximally active in the presence of 3.5 M NaCl. A variety of nucleotide triphosphates was hydrolyzed. MgADP, the product of ATP hydrolysis, was not hydrolyzed and was a competitive inhibitor with respect to MgATP. The enzyme from H. saccharovorum was composed of at least 2 and possibly 4 subunits. The 83-kDa and 60-kDa subunits represented about 90 percent of total protein. The 60-kDa subunit reacted with dicyclohexyl-carbodiimide when inhibition was carried out in an acidic medium. The enzyme from H. saccharovorum, possesses properties of an F(1)F(0) as well as an E(1)E(2) ATPase.

  18. Poly(glycidyl methacrylate-co-N-methylolacrylamide-co-ethylene dimethacrylate) monolith coupled to high-performance liquid chromatography for the determination of adenosine phosphates in royal jelly.

    PubMed

    Liu, Dan; Zhang, Tianbin; Cheng, Yechun; Jia, Qiong

    2014-07-01

    A polymer monolith microextraction method coupled with high-performance liquid chromatography was developed for the determination of adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate. The monolithic column was synthesized inside fused-silica capillaries using thermal initiation free-radical polymerization with glycidyl methacrylate as the monomer, ethylene dimethacrylate as the cross-linker, cyclohexanol, and 1-dodecanol as the porogen. N-Methylolacrylamide, an important hydrophilic monomer, was incorporated into the polymerization mixture to enhance the hydrophilicity of the poly(glycidyl methacrylate-co-ethylene dimethacrylate) column. The obtained poly(glycidyl methacrylate-co-N-methylolacrylamide-co-ethylene dimethacrylate) monolith was characterized by scanning electron microscopy, Fourier-transform infrared spectra, and X-ray photoelectron spectroscopy. Optimum conditions for the preconcentration and separation of the target adenosines were also investigated. Under the optimum conditions, we obtained acceptable linearities, low limits of detection, and good relative standard deviations. The developed polymer monolith microextraction with high-performance liquid chromatography method exhibited a good performance with recovery values in the range of 76.9-104.7% when applied to the determination of the adenosines in five royal jelly samples.

  19. Role of adenosine kinase in the control of Streptomyces differentiations: Loss of adenosine kinase suppresses sporulation and actinorhodin biosynthesis while inducing hyperproduction of undecylprodigiosin in Streptomyces lividans.

    PubMed

    Rajkarnikar, Arishma; Kwon, Hyung-Jin; Suh, Joo-Won

    2007-11-16

    Adenosine kinase (ADK) catalyses phosphorylation of adenosine (Ado) and generates adenosine monophosphate (AMP). ADK gene (adk(Sli), an ortholog of SCO2158) was disrupted in Streptomyces lividans by single crossover-mediated vector integration. The adk(Sli) disruption mutant (Deltaadk(Sli)) was devoid of sporulation and a plasmid copy of adk(Sli) restored sporulation ability in Deltaadk(Sli), thus indicating that loss of adk(Sli) abolishes sporulation in S. lividans. Ado supplementation strongly suppressed sporulation ability in S. lividans wild-type (wt), supporting that disruption of adk(Sli) resulted in Ado accumulation, which in turn suppressed sporulation. Cell-free experiments demonstrated that Deltaadk(Sli) lacked ADK activity and in vitro characterization confirms that adk(Sli) encodes ADK. The intracellular level of Ado was highly elevated while the AMP level was significantly reduced after loss of adk(Sli) while Deltaadk(Sli) displayed no significant derivation from wt in the levels of S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM). Notably, Ado supplementation to wt lowered AMP content, albeit not to the level of Deltaadk(Sli), implying that the reduction of AMP level is partially forced by Ado accumulation in Deltaadk(Sli). In Deltaadk(Sli), actinorhodin (ACT) production was suppressed and undecylprodigiosin (RED) production was dramatically enhanced; however, Ado supplementation failed to exert this differential control. A promoter-probe assay verified repression of actII-orf4 and induction of redD in Deltaadk(Sli), substantiating that unknown metabolic shift(s) of ADK-deficiency evokes differential genetic control on secondary metabolism in S. lividans. The present study is the first report revealing the suppressive role of Ado in Streptomyces development and the differential regulatory function of ADK activity in Streptomyces secondary metabolism, although the underlying mechanism has yet to be elucidated.

  20. Optical Aptasensors for Adenosine Triphosphate

    PubMed Central

    Ng, Stella; Lim, Hui Si; Ma, Qian; Gao, Zhiqiang

    2016-01-01

    Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives. PMID:27446501

  1. Vascular relaxation and cyclic guanosine monophosphate in hypertension

    SciTech Connect

    Otsuka, Y.; DiPiero, A.; Lockette, W.

    1986-03-01

    Isolated aortae from hypertensive rats have a decreased relaxation response to acetylcholine (Ach), A23187, and nitroprusside (SNP). Since cyclic guanosine monophosphate (cGMP) has been shown to increase in response to these vasodilators, the authors measured cGMP in response to these agents in isolated aortae from normotensive rats and DOCA, 1K1C, and coarctation induced hypertension. cGMP was measured by radioimmunoassay in vessels after exposure to phenylephrine followed by either Ach, A23187, or SNP. The aortae from the hypertensive rats had decreased basal levels of cGMP and attenuated increases in cGMP in response to Ach and A23187. Rises in cGMP in response to SNP were also attenuated in aortae from the hypertensive rats, even at concentrations which induced similar relaxation in normotensive and hypertensive blood vessels. The data suggest that changes in cGMP do not necessarily reflect changes in endothelium independent vascular relaxation in hypertension.

  2. The adenosine neuromodulation system in schizophrenia.

    PubMed

    Rial, Daniel; Lara, Diogo R; Cunha, Rodrigo A

    2014-01-01

    The management of schizophrenia endophenotypes, namely positive, negative, and cognitive symptoms is still an open goal, justifying the search of novel therapeutic avenues. We now review the evidence supporting the interest in targeting the adenosine modulation system to counteract the core features of schizophrenia. This interest is forwarded by the combined ability of strategies aimed at bolstering adenosine levels together with the increasingly recognized impact of adenosine A2A receptors to control dopaminergic signaling, working memory, and behavioral sensitization; this is further heralded by the suggested clinical effectiveness of therapies increasing extracellular adenosine such as dipyridamole and allopurinol and the emergent recognition of a role for adenosine in neurodevelopment. Finally, the combined role of A1 and A2A receptors in assisting the implementation of adaptive changes and encoding of information salience in neuronal circuits together with the adaptive alterations of A1 and A2A receptor density upon brain dysfunction prompts the novel working hypothesis that the parallel imbalance of adenosine formation and of A1 and A2A receptors blurs the adequate encoding of information salience in neuronal circuits, which we propose to be a core pathogenic feature in the development of schizophrenia endophenotypes. This proposal should also provide a rationale to assist the design of future therapeutic intervention targeting the adenosine modulation system to manage schizophrenia endophenotypes: these should not be based only on an attempt to target adenosine kinase-A1 receptors or only A2A receptors, but should instead simultaneously target these two arms of the adenosine modulation system. PMID:25175974

  3. Adenosine receptors as drug targets — what are the challenges?

    PubMed Central

    Chen, Jiang-Fan; Eltzschig, Holger K.; Fredholm, Bertil B.

    2014-01-01

    Adenosine signalling has long been a target for drug development, with adenosine itself or its derivatives being used clinically since the 1940s. In addition, methylxanthines such as caffeine have profound biological effects as antagonists at adenosine receptors. Moreover, drugs such as dipyridamole and methotrexate act by enhancing the activation of adenosine receptors. There is strong evidence that adenosine has a functional role in many diseases, and several pharmacological compounds specifically targeting individual adenosine receptors — either directly or indirectly — have now entered the clinic. However, only one adenosine receptor-specific agent — the adenosine A2A receptor agonist regadenoson (Lexiscan; Astellas Pharma) — has so far gained approval from the US Food and Drug Administration (FDA). Here, we focus on the biology of adenosine signalling to identify hurdles in the development of additional pharmacological compounds targeting adenosine receptors and discuss strategies to overcome these challenges. PMID:23535933

  4. Mast Cell Adenosine Receptors Function: A Focus on the A3 Adenosine Receptor and Inflammation

    PubMed Central

    Rudich, Noam; Ravid, Katya; Sagi-Eisenberg, Ronit

    2012-01-01

    Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells (MCs), as an attractive drug candidate. Four subtypes (A1, A2a, A2b, and A3) of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R) in mediating hyper responsiveness to adenosine in MCs, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human MCs. The relevance of mouse studies to the human is discussed. PMID:22675325

  5. The adenosine salvage pathway as an alternative to mitochondrial production of ATP in maturing mammalian oocytes.

    PubMed

    Scantland, Sara; Tessaro, Irene; Macabelli, Carolina H; Macaulay, Angus D; Cagnone, Gaël; Fournier, Éric; Luciano, Alberto M; Robert, Claude

    2014-09-01

    Although the oocyte is the largest cell in the body and an unavoidable phase in life, its physiology is still poorly understood, and other cell types provide little insight into its unique nature. Even basic cellular functions in the oocyte such as energy metabolism are not yet fully understood. It is known that the mitochondria of the female gamete exhibit an immature form characterized by limited energy production from glucose and oxidative phosphorylation. We show that the bovine oocyte uses alternative means to maintain ATP production during maturation, namely, the adenosine salvage pathway. Meiosis resumption is triggered by destruction of cyclic AMP by phosphodiesterases producing adenosine monophosphate that is converted into ATP by adenylate kinases and creatine kinases. Inhibition of these enzymes decreased ATP production, and addition of their substrates restored ATP production in denuded oocytes. Addition of phosphocreatine to the oocyte maturation medium influenced the phenotype of the resulting blastocysts. We propose a model in which adenylate kinases and creatine kinases act as drivers of ATP production from added AMP during oocyte maturation.

  6. [Adenosine deaminase in experimental trypanosomiasis: future implications].

    PubMed

    Pérez-Aguilar, Mary Carmen; Rondón-Mercado, Rocío

    2015-09-01

    The adenosine deaminase represents a control point in the regulation of extracellular adenosine levels, thus playing a critical role in the modulation of purinergic responses to certain pathophysiological events. Several studies have shown that serum and plasma enzyme levels are elevated in some diseases caused by microorganisms, which may represent a compensatory mechanism due to the elevated levels of adenosine and the release of inflammatory mediators. Recent research indicates that adenosine deaminase activity decreases and affects hematological parameters of infected animals with Trypanosoma evansi, so that such alterations could have implications in the pathogenesis of the disease. In addition, the enzyme has been detected in this parasite; allowing the inference that it could be associated with the vital functions of the same, similar to what occurs in mammals. This knowledge may be useful in the association of chemotherapy with specific inhibitors of the enzyme in future studies.

  7. Role of adenosine receptors in caffeine tolerance

    SciTech Connect

    Holtzman, S.G.; Mante, S.; Minneman, K.P. )

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  8. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons

    PubMed Central

    Hawryluk, J. M.; Ferrari, L. L.; Keating, S. A.

    2012-01-01

    Adenosine has been proposed as an endogenous homeostatic sleep factor that accumulates during waking and inhibits wake-active neurons to promote sleep. It has been specifically hypothesized that adenosine decreases wakefulness and promotes sleep recovery by directly inhibiting wake-active neurons of the basal forebrain (BF), particularly BF cholinergic neurons. We previously showed that adenosine directly inhibits BF cholinergic neurons. Here, we investigated 1) how adenosine modulates glutamatergic input to BF cholinergic neurons and 2) how adenosine uptake and adenosine metabolism are involved in regulating extracellular levels of adenosine. Our experiments were conducted using whole cell patch-clamp recordings in mouse brain slices. We found that in BF cholinergic neurons, adenosine reduced the amplitude of AMPA-mediated evoked glutamatergic excitatory postsynaptic currents (EPSCs) and decreased the frequency of spontaneous and miniature EPSCs through presynaptic A1 receptors. Thus we have demonstrated that in addition to directly inhibiting BF cholinergic neurons, adenosine depresses excitatory inputs to these neurons. It is therefore possible that both direct and indirect inhibition may synergistically contribute to the sleep-promoting effects of adenosine in the BF. We also found that blocking the influx of adenosine through the equilibrative nucleoside transporters or inhibiting adenosine kinase and adenosine deaminase increased endogenous adenosine inhibitory tone, suggesting a possible mechanism through which adenosine extracellular levels in the basal forebrain are regulated. PMID:22357797

  9. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved.

    PubMed

    Vacas, Javier; Fernández, Mercedes; Ros, Manuel; Blanco, Pablo

    2003-12-01

    Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.

  10. Nitric oxide and cyclic guanosine monophosphate signaling in the eye.

    PubMed

    Murad, Ferid

    2008-06-01

    This brief review describes the components and pathways utilized in nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signaling. Since the discovery of the effects of NO and cGMP on smooth muscle relaxation about 30 years ago, the field has expanded in many directions such that many, but not all, biochemical and biological effects seem to be regulated by these unique signaling molecules. While many of the effects of NO are due to activation of soluble guanylyl cyclase (sGC) that can be considered the receptor for NO, cGMP, in turn, can activate a cGMP-dependent protein kinase (PKG) to phosphorylate an array of proteins. Some of the effects of cGMP can be independent of PKG and are due to effects on ion channels or cyclic nucleotide phosphodiesterases. Also, some of the effects of NO can be independent of sGC activation. The isoenzymes and macromolecules that participate in these signaling pathways can serve as molecular targets to identify compounds that increase or decrease their activation and thus serve as chemical leads for discovering novel drugs for a variety of diseases. Some examples are given. However, with about 90,000 publications in the field since our first reports in 1977, this brief review can only give the readers a sample of the excitement and opportunities we have found in this cell signaling system.

  11. [Identification of thiamine monophosphate hydrolyzing enzymes in chicken liver].

    PubMed

    Kolos, I K; Makarchikov, A F

    2014-01-01

    In animals, thiamine monophosphate (TMP) is an intermediate on the path of thiamine diphosphate, the coenzyme form of vitamin B1, degradation. The enzymes involved in TMP metabolism in animal tissues are not identified hitherto. The aim of this work was to study TMP hydrolysis in chicken liver. Two phosphatases have been found to contribute to TMP hydrolysis in liver homogenate. The first one, possessing a maximal activity at pH 6.0, is soluble, whereas the second one represents a membrane-bound enzyme with a pH optimum of 9.0. Membrane-bound TMPase activity was enhanced 1.7-fold by 5 mM Mg2+ ions and strongly inhibited by levamisole in uncompetitive manner with K1 of 53 μM, indicating the involvement of alkaline phosphatase. An apparent Km of alkaline phosphatase for TMP was calculated from the Hanes plot to be 0.6 mM. The soluble TMPase has an apparent Km of 0.7 mM; this enzyme is Mg2+ independent and insensitive to levamisole. As estimated by gel filtration on a Toyopearl HW-55 column, the soluble enzyme has a molecular mass of 17.8 kDa, TMPase activity being eluted simultaneously with peaks of flavinmononucleotide and p-nitrophenyl phosphatase activity. Thus, TMP appears to be a physiological substrate for a low-molecular weight acid phosphatase, also known as low-molecular-weight protein phosphotyrosine phosphatase.

  12. Phosphatidylinositol 3-monophosphate is involved in toxoplasma apicoplast biogenesis.

    PubMed

    Tawk, Lina; Dubremetz, Jean-François; Montcourrier, Philippe; Chicanne, Gaëtan; Merezegue, Fabrice; Richard, Véronique; Payrastre, Bernard; Meissner, Markus; Vial, Henri J; Roy, Christian; Wengelnik, Kai; Lebrun, Maryse

    2011-02-01

    Apicomplexan parasites cause devastating diseases including malaria and toxoplasmosis. They harbour a plastid-like, non-photosynthetic organelle of algal origin, the apicoplast, which fulfils critical functions for parasite survival. Because of its essential and original metabolic pathways, the apicoplast has become a target for the development of new anti-apicomplexan drugs. Here we show that the lipid phosphatidylinositol 3-monophosphate (PI3P) is involved in apicoplast biogenesis in Toxoplasma gondii. In yeast and mammalian cells, PI3P is concentrated on early endosomes and regulates trafficking of endosomal compartments. Imaging of PI3P in T. gondii showed that the lipid was associated with the apicoplast and apicoplast protein-shuttling vesicles. Interference with regular PI3P function by over-expression of a PI3P specific binding module in the parasite led to the accumulation of vesicles containing apicoplast peripheral membrane proteins around the apicoplast and, ultimately, to the loss of the organelle. Accordingly, inhibition of the PI3P-synthesising kinase interfered with apicoplast biogenesis. These findings point to an unexpected implication for this ubiquitous lipid and open new perspectives on how nuclear encoded proteins traffic to the apicoplast. This study also highlights the possibility of developing specific pharmacological inhibitors of the parasite PI3-kinase as novel anti-apicomplexan drugs. PMID:21379336

  13. Bioconjugation of zirconium uridine monophosphate: application to myoglobin direct electrochemistry.

    PubMed

    Qiao, Yuanbiao; Jian, Fangfang; Bai, Qian

    2008-03-14

    Porous nano-granule of zirconium uridine monophosphate, Zr(UMP)2.H2O is, for the first time, synthesized under mild experimental conditions and applied to the bioconjugation of myoglobin (Mb) to realize its direct electron transfer. UV-vis and resonance Raman spectroscopies prove that Mb in the Zr(UMP)2.H2O film maintains its secondary structure similar to the native state. The conjugation film of the Mb-Zr(UMP)2.H2O on the glassy carbon (GC) electrode gives a well-defined and quasi-reversible cyclic voltammogram, which reflects the direct electron transfer of the heme Fe III/Fe II couple of Mb. On the basis of the satisfying bioelectrocatalysis of the nano-conjugation of Mb and genetic substrate, a kind of mediator-free biosensor for H2O2 is developed. The linear range for H2O2 detection is estimated to be 3.92-180.14 microM. The apparent Michaelis-Menten constant (Km) and the detection limit based on the signal-to-noise ratio of 3 are found to be 196.1 microM and 1.52 microM, respectively. Both the apparent Michaelis-Menten constant and the detection limit herein are much lower than currently reported values from other Mb films. This kind of sensor possesses excellent stability, long-term life (more than 20 days) and good reproducibility. PMID:18180152

  14. Excretion of intracorporeal cadmium with S-benzoylthiamin monophosphate

    SciTech Connect

    Yamamoto, J.; Kaneda, Y.

    1995-05-01

    Examination was made of the excretion of intracorporeal methylmercury into body hair by the administration of thiamin tetrahydrofurfuryl disulfide (TTFD) which caused significant increase in mercury content in human mustache. The thiamin derivative, S-benzoylthiamin monophosphate (BTMP) failed to have such effect. The mechanism of mercury excretion is thus based on the side chain structure of TTFD, mercaptan. At the start of the 20th century in Japan, many multiparae were found to have itai-itai disease, the main symptom of which is general pain. The cause of this disease was considered cadmium deposition on the bone from sourced such as soil and river water which contaminated rice and cereals. The previous system for mercury was applied based on cadmium content variation in human mustache. Although TTFD worked well in the mercury excretion system, the usual dosage of TTFD administered orally did not cause significant increase in cadmium in the mustache. BTMP appeared to exert effect by generating thiol-type thiamin. Experiments in vitro should be conducted to demonstrate the chelating effects of thiol-type thiamin. It is quite important to find evidence for cadmium excretion from human body. 3 refs., 2 figs., 2 tabs.

  15. Bioconjugation of zirconium uridine monophosphate: application to myoglobin direct electrochemistry.

    PubMed

    Qiao, Yuanbiao; Jian, Fangfang; Bai, Qian

    2008-03-14

    Porous nano-granule of zirconium uridine monophosphate, Zr(UMP)2.H2O is, for the first time, synthesized under mild experimental conditions and applied to the bioconjugation of myoglobin (Mb) to realize its direct electron transfer. UV-vis and resonance Raman spectroscopies prove that Mb in the Zr(UMP)2.H2O film maintains its secondary structure similar to the native state. The conjugation film of the Mb-Zr(UMP)2.H2O on the glassy carbon (GC) electrode gives a well-defined and quasi-reversible cyclic voltammogram, which reflects the direct electron transfer of the heme Fe III/Fe II couple of Mb. On the basis of the satisfying bioelectrocatalysis of the nano-conjugation of Mb and genetic substrate, a kind of mediator-free biosensor for H2O2 is developed. The linear range for H2O2 detection is estimated to be 3.92-180.14 microM. The apparent Michaelis-Menten constant (Km) and the detection limit based on the signal-to-noise ratio of 3 are found to be 196.1 microM and 1.52 microM, respectively. Both the apparent Michaelis-Menten constant and the detection limit herein are much lower than currently reported values from other Mb films. This kind of sensor possesses excellent stability, long-term life (more than 20 days) and good reproducibility.

  16. Ag(+)-mediated assembly of 5'-guanosine monophosphate.

    PubMed

    Loo, Kristine; Degtyareva, Natalya; Park, Jihae; Sengupta, Bidisha; Reddish, Michaeal; Rogers, Christopher C; Bryant, Andrea; Petty, Jeffrey T

    2010-04-01

    Polymorphic forms of nucleic acids provide platforms for new nanomaterials, and transition metal cations give access to alternative arrangements of nucleobases by coordinating with electron-rich functional groups. Interaction of Ag(+) with 5'-guanosine monophosphate (5'-GMP) is considered in this work. Ag(+) promotes nucleotide stacking and aggregation, as indicated by the increased viscosity of 5'-GMP solutions with Ag(+), magnification of the circular dichroism response of guanine by Ag(+), and exothermic reactions between Ag(+) and guanine derivatives. Isothermal titration calorimetry studies show that the reaction is favored starting at 10 microM 5'-GMP. Utilizing the exothermic heat change associated with reaction of Ag(+) with 5'-GMP, local structure within the aggregate was assessed. On the basis of the salt dependence of the reaction and comparison with the corresponding nucleoside, the dianionic phosphate of 5'-GMP is one binding site for Ag(+), although this electrostatic interaction is not a dominant contribution to the overall heat change. Another binding site is the N7 on the nucleobase, as determined via studies with 7-deazaguanosine. Besides this binding site, Ag(+) also associates with the O6, as earlier studies deduced from the shift in the carbonyl stretching frequency associated with adduct formation. With these two binding sites on the nucleobase, the empirical stoichiometry of approximately 1 Ag(+):nucleobase derived from the calorimetry studies indicates that Ag(+) coordinates two nucleobases. The proposed structural model is a Ag(+)-mediated guanine dimer within a base stacked aggregate. PMID:20205377

  17. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation.

    PubMed

    Rose, Nicholas D; Regan, John M

    2015-12-01

    Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD(+), respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP(+), respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190 mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  18. MOLECULAR PROBES FOR EXTRACELLULAR ADENOSINE RECEPTORS

    PubMed Central

    Jacobson, Kenneth A.; Ukena, Dieter; Padgett, William; Kirk, Kenneth L.; Daly, John W.

    2012-01-01

    Derivatives of adenosine receptor agonists (N6-phenyladenosines) and antagonists (1,3-dialkyl-8-phenylxanthines) bearing functionalized chains suitable for attachment to other molecules have been reported [Jacobson et al., J. med. Chem. 28, 1334 and 1341 (1985)]. The “functionalized congener” approach has been extended to the synthesis of spectroscopic and other probes for adenosine receptors that retain high affinity (Ki ~ 10−9 −10−8 M) in A1-receptor binding. The probes have been synthesized from an antagonist xanthine amine congener (XAC) and an adenosine amine congener (ADAC). [3H]ADAC has been synthesized and found to bind highly specifically to A1-adenosine receptors of rat and calf cerebral cortical membranes with KD values of 1.4 and 0.34 nM respectively. The higher affinity in the bovine brain, seen also with many of the probes derived from ADAC and XAC, is associated with phenyl substituents. The spectroscopic probes contain a reporter group attached at a distal site of the functionalized chain. These bifunctional ligands may contain a spin label (e.g. the nitroxyl radical TEMPO) for electron spin resonance spectroscopy, or a fluorescent dye, including fluorescein and 4-nitrobenz-2-oxa-1,3-diazole (NBD), or labels for 19F nuclear magnetic resonance spectroscopy. Potential applications of the spectroscopic probes in characterization of adenosine receptors are discussed. PMID:3036153

  19. Determination of adenosine effects and adenosine receptors in murine corpus cavernosum.

    PubMed

    Tostes, Rita C; Giachini, Fernanda R C; Carneiro, Fernando S; Leite, Romulo; Inscho, Edward W; Webb, R Clinton

    2007-08-01

    This study tested the hypothesis that adenosine, in murine corpora cavernosa, produces direct relaxation of smooth muscle cells and inhibition of contractile responses mediated by sympathetic nerve stimulation. Penes were excised from anesthetized male C57BL/6 mice, dissected, and cavernosal strips were mounted to record isometric force. Adenosine, 2-chloroadenosine (stable analog of adenosine), and 2-phenylaminoadenosine (CV1808) (A2(A)/A2(B) agonist) produced concentration-dependent relaxations of phenylephrine-contracted tissues. Relaxation to 2-chloroadenosine was inhibited, in a concentration-dependent manner, by 2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH58261; A2(A) antagonist; 10(-9)-10(-6) M) and N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamida (MRS1706; A2(B) antagonist; 10(-8)-10(-6) M). The combination of both antagonists abrogated 2-chloroadenosine-induced relaxation. Electrical field stimulation (EFS; 1-32 Hz) of adrenergic nerves produced frequency-dependent contractions that were inhibited by compounds that increase adenosine levels, such as 5'-iodotubercidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)adenine (adenosine deaminase inhibitor), and dipyridamole (inhibitor of adenosine transport). The adenosine A1 receptor agonist N(6)-cyclopentyladenosine (C8031) right-shifted contractile responses to EFS, with a significant inhibitory effect at 10(-6) M. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine (C101) (10(-7) M) enhanced contractile responses to EFS and eliminated the inhibitory effects of 5'-iodotubercidin. Dipyridamole and 5'-iodotubercidin had no effect on adenosine-mediated relaxation. In summary, adenosine directly relaxes cavernosal smooth muscle cells, by the activation of A2(A)/A2(B) receptor subtypes. In addition, adenosine negatively modulates sympathetic neurotransmission, by A1 receptor

  20. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    NASA Astrophysics Data System (ADS)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  1. Effects of different concentrations of metal ions on degradation of adenosine triphosphate in common carp (Cyprinus carpio) fillets stored at 4°C: An in vivo study.

    PubMed

    Li, Dapeng; Qin, Na; Zhang, Longteng; Lv, Jian; Li, Qingzheng; Luo, Yongkang

    2016-11-15

    The impact of different concentrations of Na(+), K(+), Ca(2+), Mg(2+), Fe(2+), and Zn(2+) on the degradation of adenosine triphosphate (ATP) and the influence of these ions on the activity of adenosine monophosphate deaminase (AMP-deaminase) and acid phosphatase (ACP) in common carp fillets (in vivo) during 4°C storage was examined. The content of ATP, inosine monophosphate (IMP), and hypoxanthine (Hx), and the activity of AMP-deaminase and ACP were determined. Results indicated that the effects of different concentrations of six kinds of metal ions on AMP-deaminase and ACP were not the same. Na(+), K(+), Fe(2+), and Zn(2+) enhanced AMP-deaminase activity, which led to the rapid degradation of ATP and to the generation of a large quantity of IMP within a short time. Ca(2+) and Mg(2+) delayed the change in AMP-deaminase and ACP activity in carp and caused a further delay in the degradation of ATP. Fe(2+) and Zn(2+) inhibited ACP activity, which reduced the decomposition of IMP and the formation of Hx. PMID:27283700

  2. Working memory and the homeostatic control of brain adenosine by adenosine kinase.

    PubMed

    Singer, P; McGarrity, S; Shen, H-Y; Boison, D; Yee, B K

    2012-06-28

    The neuromodulator adenosine maintains brain homeostasis and regulates complex behaviour via activation of inhibitory and excitatory adenosine receptors (ARs) in a brain region-specific manner. AR antagonists such as caffeine have been shown to ameliorate cognitive impairments in animal disease models but their effects on learning and memory in normal animals are equivocal. An alternative approach to reduce AR activation is to lower the extracellular tone of adenosine, which can be achieved by up-regulating adenosine kinase (ADK), the key enzyme of metabolic adenosine clearance. However, mice that globally over-express an Adk transgene ('Adk-tg' mice) were devoid of a caffeine-like pro-cognitive profile; they instead exhibited severe spatial memory deficits. This may be mechanistically linked to cortical/hippocampal N-methyl-d-aspartate receptor (NMDAR) hypofunction because the motor response to acute MK-801 was also potentiated in Adk-tg mice. Here, we evaluated the extent to which the behavioural phenotypes of Adk-tg mice might be modifiable by up-regulating adenosine levels in the cortex/hippocampus. To this end, we investigated mutant 'fb-Adk-def' mice in which ADK expression was specifically reduced in the telencephalon leading to a selective increase in cortical/hippocampal adenosine, while the rest of the brain remained as adenosine-deficient as in Adk-tg mice. The fb-Adk-def mice showed an even greater impairment in spatial working memory and a more pronounced motor response to NMDAR blockade than Adk-tg mice. These outcomes suggest that maintenance of cortical/hippocampal adenosine homeostasis is essential for effective spatial memory and deviation in either direction is detrimental with increased expression seemingly more disruptive than decreased expression.

  3. Pain-relieving prospects for adenosine receptors and ectonucleotidases

    PubMed Central

    Zylka, Mark J.

    2010-01-01

    Adenosine receptor agonists have potent antinociceptive effects in diverse preclinical models of chronic pain. In contrast, the efficacy of adenosine or adenosine receptor agonists at treating pain in humans is unclear. Two ectonucleotidases that generate adenosine in nociceptive neurons were recently identified. When injected spinally, these enzymes have long-lasting adenosine A1 receptor (A1R)-dependent antinociceptive effects in inflammatory and neuropathic pain models. Furthermore, recent findings indicate that spinal adenosine A2A receptor activation can enduringly inhibit neuropathic pain symptoms. Collectively, these studies suggest the possibility of treating chronic pain in humans by targeting specific adenosine receptor subtypes in anatomically defined regions with agonists or with ectonucleotidases that generate adenosine. PMID:21236731

  4. Adenosine induced coronary spasm – A rare presentation

    PubMed Central

    Arora, P.; Bhatia, V.; Arora, M.; Kaul, U.

    2014-01-01

    Adenosine is commonly used as a pharmacological agent in myocardial perfusion imaging, as an antiarrhythmic agent, and in Cath Lab. during PCI for treating no reflow phenomenon. Coronary spasm has been reported following adenosine injection during stress imaging. We report a rare complication with ST segment elevation, following adenosine injection, given for treatment of supraventricular tachycardia. PMID:24581102

  5. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics.

    PubMed

    Poduch, Ewa; Bello, Angelica M; Tang, Sishi; Fujihashi, Masahiro; Pai, Emil F; Kotra, Lakshmi P

    2006-08-10

    Inhibitors of orotidine monophosphate decarboxylase (ODCase) have applications in RNA viral, parasitic, and other infectious diseases. ODCase catalyzes the decarboxylation of orotidine monophosphate (OMP), producing uridine monophosphate (UMP). Novel inhibitors 6-amino-UMP and 6-cyano-UMP were designed on the basis of the substructure volumes in the substrate OMP and in an inhibitor of ODCase, barbituric acid monophosphate, BMP. A new enzyme assay method using isothermal titration calorimetry (ITC) was developed to investigate the inhibition kinetics of ODCase. The reaction rates were measured by monitoring the heat generated during the decarboxylation reaction of orotidine monophosphate. Kinetic parameters (k(cat) = 21 s(-1) and KM = 5 microM) and the molar enthalpy (DeltaH(app) = 5 kcal/mol) were determined for the decarboxylation of the substrate by ODCase. Competitive inhibition of the enzyme was observed and the inhibition constants (Ki) were determined to be 12.4 microM and 29 microM for 6-aza-UMP and 6-cyano-UMP, respectively. 6-Amino-UMP was found to be among the potent inhibitors of ODCase, having an inhibition constant of 840 nM. We reveal here the first inhibitors of ODCase designed by the principles of bioisosterism and a novel method of using isothermal calorimetry for enzyme inhibition studies.

  6. Effects of adenosine infusion into renal interstitium on renal hemodynamics

    SciTech Connect

    Pawlowska, D.; Granger, J.P.; Knox, F.G.

    1987-04-01

    This study was designed to investigate the hemodynamic effects of exogenous adenosine in the interstitium of the rat kidney. Adenosine or its analogues were infused into the renal interstitium by means of chronically implanted capsules. In fusion of adenosine decreased glomerular filtration rate (GFR) from 0.81 +/- 0.06 to 0.37 +/- 0.06 ml/min while having no effect on renal blood flow (RBF). The metabolically stable analogue, 2-chloradenosine (2-ClAdo), decreased GFR from 0.73 +/- 0.07 to 021 +/- 0.06 ml/min. Interstitial infusion of theophylline, an adenosine receptor antagonist, completely abolished the effects of adenosine and 2-ClAdo on GFR. The distribution of adenosine, when infused into the renal interstitium, was determined using radiolabeled 5'-(N-ethyl)-carboxamidoadenosine (NECA), a metabolically stable adenosine agonist. After continuous infusion, (/sup 3/H)NECA was distributed throughout the kidney. The effects of NECA to reduce GFR were similar to those of adenosine and 2-ClAdo. They conclude that increased levels of adenosine in the renal interstitium markedly decrease GFR without affecting RBF in steady-state conditions. The marked effects of adenosine agonists during their infusion into the renal interstitium and the complete blockade of these effects by theophylline suggest an extracellular action of adenosine.

  7. The role of cyclic AMP and its protein kinase in mediating acetylcholine release and the action of adenosine at frog motor nerve endings.

    PubMed Central

    Hirsh, J. K.; Silinsky, E. M.; Solsona, C. S.

    1990-01-01

    1. The importance of adenosine 3':5'-cyclic monophosphate (cyclic AMP) and its protein kinase (protein kinase A, PKA) in promoting acetylcholine (ACh) release was studied at frog motor nerve endings. The effects of cyclic AMP-dependent protein phosphorylation on the action of adenosine receptor agonists were also investigated. 2. Cyclic AMP was delivered to a local region of the cytoplasm just beneath the plasma membrane of motor nerve endings using phospholipid vesicles (liposomes) as a vehicle. Cyclic AMP in liposomes produced a parallel reduction in the mean level of evoked ACh release (m) and spontaneous ACh release (miniature endplate potential frequency; m.e.p.p.f) in most experiments. These inhibitory effects of cyclic AMP on quantal ACh release resemble the action of adenosine. 3. The effects of global increases in cytoplasmic cyclic AMP concentrations using lipophilic cyclic AMP analogues were generally different from those observed with cyclic AMP. 8-(4-Chlorophenylthio) cyclic AMP (CPT cyclic AMP) produced approximately two fold increases in m and m.e.p.p.f. Dibutyryl cyclic AMP (db cyclic AMP) also increased m and m.e.p.p.f, with the effect on m being smaller and more variable. 4. All three cyclic AMP analogues reduced the effects of adenosine receptor agonists on spontaneous and evoked ACh release. 5. The roles of protein phosphorylation in mediating ACh release and the inhibitory effects of adenosine were studied with the protein kinase inhibitor H7. H7 (30-100 microM) produced no consistent effect on evoked or spontaneous ACh release. At these concentrations, however, H7 exerted an unfortunate inhibitory action on the nicotinic ACh receptor/ion channel.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2175231

  8. Identification of cytidine 2',3'-cyclic monophosphate and uridine 2',3'-cyclic monophosphate in Pseudomonas fluorescens pfo-1 culture.

    PubMed

    Bordeleau, Emily; Oberc, Christopher; Ameen, Eve; da Silva, Amanda Mendes; Yan, Hongbin

    2014-09-15

    Cytidine 2',3'-cyclic monophosphate (2',3'-cCMP) and uridine 2',3'-cyclic monophosphate (2',3'-cUMP) were isolated from Pseudomonas fluorescens pfo-1 cell extracts by semi-preparative reverse phase HPLC. The structures of the two compounds were confirmed by NMR and mass spectroscopy against commercially available authentic samples. Concentrations of both intracellular and extracellular 2',3'-cCMP and 2',3'-cUMP were determined. Addition of 2',3'-cCMP and 2',3'-cUMP to P. fluorescens pfo-1 culture did not significantly affect the level of biofilm formation in static liquid cultures. PMID:25139571

  9. Adenosine 3':5'-cyclic monophosphate-dependent protein kinase in brown fat from newborn rabbits. Changes in the binding of adenosine 3':5'-cyclic monophosphate after preincubation of the tissue with noradrenaline or incubation of the enzyme with adenosine triphosphate.

    PubMed Central

    Knight, B L

    1975-01-01

    The equilibrium binding of cyclic AMP to a 150-fold purified preparation of protein kinase, when expressed as the reciprocal of bound against the reciprocal of free cyclic AMP, gave a plot consisting of two straight lines. The values of apparent Kb given by these lines were lowered by preincubating the intact tissue with noradrenaline or incubating the enzyme preparation with Mg2+ plus ATP. This effect was reversed by incubating the preparation (which contained some phosphatase impurities) with Mg2+ alone. None of these procedures affected the maximal binding of cyclic AMP. During incubation of the enzyme with Mg2+ plus ATP, the terminal phosphoryl group was incorporated into protein, over 40% being present in the kinase itself. This phosphate was removed during incubation of the preparation with Mg2+ alone. The validity of expressing cyclic AMP binding as a double-reciprocal plot is discussed, and the experimental plots are compared with those derived theoretically. The results suggest that protein kinase in brown fat is present in two forms, one with an apparent Kb for cyclic AMP or approx. 250 nM (dephosphorylation) and one with an apparent Kb of approx. 14 nM (phosphorylated). Preincubation of the tissue with noradrenaline results in phosphorylation of the kinase and an increase from 15 to 45% in the proportion of the higher-affinity form. PMID:179526

  10. Differences in responsiveness of intrapulmonary artery and vein to arachidonic acid: mechanism of arterial relaxation involves cyclic guanosine 3':5'-monophosphate and cyclic adenosine 3':5'-monophosphate

    SciTech Connect

    Ignarro, L.J.; Harbison, R.G.; Wood, K.S.; Wolin, M.S.; McNamara, D.B.; Hyman, A.L.; Kadowitz, P.J.

    1985-06-01

    The objective of this study was to examine the relationship between responses of bovine intrapulmonary artery and vein to arachidonic acid and cyclic nucleotide levels in order to better understand the mechanism of relaxation elicited by arachidonic acid and acetylcholine. Arachidonic acid relaxed phenylephrine-precontracted arterial rings and elevated both cyclic GMP and cyclic AMP levels in arteries with intact endothelium. In contrast, endothelium-damaged arterial rings contracted to arachidonic acid without demonstrating significant changes in cyclic nucleotide levels. Indomethacin partially inhibited endothelium-dependent relaxation and abolished cyclic AMP accumulation whereas methylene blue, a guanylate cyclase inhibitor, partially inhibited relaxation and abolished cyclic GMP accumulation in response to arachidonic acid. All vessel responses were blocked by a combination of the two inhibitors. Prostaglandin (PG) I2 relaxed arterial rings and elevated cyclic AMP levels whereas PGE2 and PGF2 alpha caused contraction, suggesting that the indomethacin-sensitive component of arachidonic acid-elicited relaxation is due to PGI2 formation and cyclic AMP accumulation. The methylene blue-sensitive component is attributed to an endothelium-dependent but cyclooxygenase-independent generation of a substance causing cyclic GMP accumulation. Intrapulmonary veins contracted to arachidonic acid with no changes in cyclic nucleotide levels and PGI2 was without effect. Homogenates of intrapulmonary artery and vein formed 6-keto-PGF1 alpha, PGF2 alpha and PGE2 from (/sup 14/C)arachidonic acid, which was inhibited by indomethacin. Thus, bovine intrapulmonary vein may not possess receptors for PGI2.

  11. Adenosine Receptors: Expression, Function and Regulation

    PubMed Central

    Sheth, Sandeep; Brito, Rafael; Mukherjea, Debashree; Rybak, Leonard P.; Ramkumar, Vickram

    2014-01-01

    Adenosine receptors (ARs) comprise a group of G protein-coupled receptors (GPCR) which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF)-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined. PMID:24477263

  12. Adenosine-induced worsening of supraventricular tachycardia

    PubMed Central

    Kunnumpuram, Georgey Koshy; Patel, Ashfaq

    2012-01-01

    An approximately 20-year-old to 30-year-old patient presented with a haemodynamically stable supraventricular tachycardia . The patient was managed with intravenous adenosine primarily, with two bolus doses of 6 and 12 mg. This, however, caused a rare paradoxical surge of tachycardia with mild haemodynamic compromise. The patient further required a combination of Metoprolol and Verapamil administration to slow down and reverse the arrhythmia. Following this the patient remained stable with no further episodes till discharge. PMID:23230260

  13. Chemoelectrical energy conversion of adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  14. Effect of adenosine and adenosine analogs on ( sup 14 C)aminopyrine accumulation by rabbit parietal cells

    SciTech Connect

    Ota, S.; Hiraishi, H.; Terano, A.; Mutoh, H.; Kurachi, Y.; Shimada, T.; Ivey, K.J.; Sugimoto, T. )

    1989-12-01

    Adenosine receptors that modulate adenylate cyclase activity have been identified recently in a number of tissues. Adenosine A2 receptor is stimulatory to adenylate cyclase, whereas adenosine A1 receptor is inhibitory to adenylate cyclase. We investigated the effect of adenosine and its analogs on (14C)aminopyrine accumulation by rabbit parietal cells. Rabbit gastric mucosal cells were isolated by enzyme digestion. Parietal cells were enriched by nonlinear percoll gradients. (14C)Aminopyrine accumulation was used as an indicator of acid secretion. The effect of 2-chloroadenosine on histamine-stimulated (14C)aminopyrine accumulation was studied. The effects of N-ethylcarboxamideadenosine, 2-chloroadenosine, stable analogs of adenosine, and adenosine on (14C)aminopyrine accumulation were assessed. Cyclic AMP content of parietal cells was determined by radioimmunoassay. Histamine and carbachol, known secretagogues, stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine did not suppress histamine-stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine dose dependently increased (14C)aminopyrine accumulation. The order of potency was N-ethylcarboxamideadenosine greater than 2-chloroadenosine greater than adenosine. 8-Phenyltheophylline and theophylline, adenosine-receptor antagonists, or cimetidine did not have significant effects on the increase of AP uptake induced by 2-chloroadenosine. Coadministration of dipyridamole, and adenosine uptake inhibitor, augmented the effect of adenosine on (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine each induced a significant increase in cellular cyclic AMP. We conclude that there may be adenosine A2 receptors on rabbit parietal cells which modulate gastric acid secretion.

  15. Low-dose, sublingual AZT-monophosphate therapy for HIV+ patients?

    PubMed

    Johnson, S

    2001-03-01

    AZT concentrations as low as 0.001 mg/l inhibit viral replication, while concentrations above 0.3 mg/l cause considerable damage to erythroid, myeloid progenitor cells and inhibit blastogenesis in mononuclear cells. Furthermore, AZT must be converted first to monophosphate and then to diphosphate and finally to triphosphate by the same enzyme: thymidine kinase (TK). Therefore, large doses of AZT overwhelm TK, causing massive production of monophosphate and reducing the production of di and triphosphate. Yet the recommended dosage of 100 mg AZT every 4 hours results in a peak concentration of 0.5 mg/l and a trough concentration of 0.1 mg/l (harmful to human cells and resulting in reduced production of triphosphate). On the other hand, sublingual administration of 1 mg AZT monophosphate every 8 hours (since the intracellular half life of AZT triphosphate is 3 hours) would be desirable, resulting in more damage to the virus and less harm to the patient. Finally, the small dose of monophosphate ensures that most of the AZT be converted to triphosphate, greatly increasing the efficiency and reducing the likelihood of the virus developing resistance due to reverse transcriptase binding to the similar but non inhibiting mono and diphosphate. PMID:11359372

  16. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    PubMed Central

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  17. Use of adenosine echocardiography for diagnosis of coronary artery disease

    SciTech Connect

    Zoghbi, W.A. )

    1991-07-01

    Two-dimensional echocardiography combined with exercise is sensitive and specific in the detection of coronary artery disease (CAD) by demonstrating transient abnormalities in wall motion. Frequently, however, patients cannot achieve maximal exercise because of various factors. Pharmacologic stress testing with intravenous adenosine was evaluated as a means of detecting CAD in a noninvasive manner. Patients with suspected CAD underwent echocardiographic imaging and simultaneous thallium 201 single-photon emission computed tomography during the intravenous administration of 140 micrograms/kg/min of adenosine. An increase in heart rate, decrease in blood pressure, and increase in double product were observed during adenosine administration. Initial observations revealed that wall motion abnormalities were induced by adenosine in areas of perfusion defects. The adenosine infusion was well tolerated, and symptoms disappeared within 1 to 2 minutes after termination of the infusion. Therefore preliminary observations suggest that adenosine echocardiography appears to be useful in the assessment of CAD.

  18. Measurement of plasma adenosine concentration: methodological and physiological considerations

    SciTech Connect

    Gewirtz, H.; Brown, P.; Most, A.S.

    1987-05-01

    This study tested the hypothesis that measurements of plasma adenosine concentration made on samples of blood obtained in dipyridamole and EHNA (i.e., stopping solution) may be falsely elevated as a result of ongoing in vitro production and accumulation of adenosine during sample processing. Studies were performed with samples of anticoagulated blood obtained from anesthesized domestic swine. Adenosine concentration of ultra filtrated plasma was determined by HPLC. The following parameters were evaluated: (i) rate of clearance of (/sup 3/H)adenosine added to plasma, (ii) endogenous adenosine concentration of matched blood samples obtained in stopping solution alone, stopping solution plus EDTA, and perchloric acid (PCA), (iii) plasma and erythrocyte endogenous adenosine concentration in nonhemolyzed samples, and (iv) plasma adenosine concentration of samples hemolyzed in the presence of stopping solution alone or stopping solution plus EDTA. We observed that (i) greater than or equal to 95% of (/sup 3/H)adenosine added to plasma is removed from it by formed elements of the blood in less than 20 s, (ii) plasma adenosine concentration of samples obtained in stopping solution alone is generally 10-fold greater than that of matched samples obtained in stopping solution plus EDTA, (iii) deliberate mechanical hemolysis of blood samples obtained in stopping solution alone resulted in substantial augmentation of plasma adenosine levels in comparison with matched nonhemolyzed specimens--addition of EDTA to stopping solution prevented this, and (iv) adenosine content of blood samples obtained in PCA agreed closely with the sum of plasma and erythrocyte adenosine content of samples obtained in stopping solution plus EDTA.

  19. Role of adenosine receptor subtypes in methamphetamine reward and reinforcement.

    PubMed

    Kavanagh, Kevin A; Schreiner, Drew C; Levis, Sophia C; O'Neill, Casey E; Bachtell, Ryan K

    2015-02-01

    The neurobiology of methamphetamine (MA) remains largely unknown despite its high abuse liability. The present series of studies explored the role of adenosine receptors on MA reward and reinforcement and identified alterations in the expression of adenosine receptors in dopamine terminal areas following MA administration in rats. We tested whether stimulating adenosine A1 or A2A receptor subtypes would influence MA-induced place preference or MA self-administration on fixed and progressive ratio schedules in male Sprague-Dawley rats. Stimulation of either adenosine A1 or A2A receptors significantly reduced the development of MA-induced place preference. Stimulating adenosine A1, but not A2A, receptors reduced MA self-administration responding. We next tested whether repeated experimenter-delivered MA administration would alter the expression of adenosine receptors in the striatal areas using immunoblotting. We observed no change in the expression of adenosine receptors. Lastly, rats were trained to self-administer MA or saline for 14 days and we detected changes in adenosine A1 and A2A receptor expression using immunoblotting. MA self-administration significantly increased adenosine A1 in the nucleus accumbens shell, caudate-putamen and prefrontal cortex. MA self-administration significantly decreased adenosine A2A receptor expression in the nucleus accumbens shell, but increased A2A receptor expression in the amygdala. These findings demonstrate that MA self-administration produces selective alterations in adenosine receptor expression in the nucleus accumbens shell and that stimulation of adenosine receptors reduces several behavioral indices of MA addiction. Together, these studies shed light onto the neurobiological alterations incurred through chronic MA use that may aid in the development of treatments for MA addiction.

  20. Caffeine intensifies taste of certain sweeteners: role of adenosine receptor.

    PubMed

    Schiffman, S S; Diaz, C; Beeker, T G

    1986-03-01

    Caffeine, a potent antagonist of adenosine receptors, potentiates the taste of some but not all sweeteners. It significantly enhances the taste of acesulfam-K, neohesperidin dihydrochalcone, d-tryptophan, thaumatin, stevioside, and sodium saccharin. Adenosine reverses the enhancement. Caffeine has no effect on aspartame, sucrose, fructose, and calcium cyclamate. These results suggest that the inhibitory A1 adenosine receptor plays an important local role in modulating the taste intensity of certain sweeteners and that several transduction mechanisms mediate sweet taste.

  1. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment.

    PubMed

    Ohta, Akio

    2016-01-01

    Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia-adenosine pathway for cancer immunotherapy. PMID:27066002

  2. Adenosine analogs inhibit fighting in isolated male mice

    SciTech Connect

    Palmour, R.M.; Lipowski, C.J.; Simon, C.K.; Ervin, F.R.

    1989-01-01

    The potent adenosine analogs N-ethylcarboxamide adenosine (NECA) and phenylisopropyladenosine (PIA) inhibit fighting and associated agonistic behaviors in isolated male mice. These effects are reversed by methylxanthines; moderate doses of NECA which inhibit fighting have minimal effects on spontaneous locomotor activity. At very low doses, both NECA and PIA increase fighting in parallel with previously reported increases of motor activity. Brain levels of (/sup 3/H)-NECA and (/sup 3/H)-PIA achieved at behaviorally effective doses suggest an involvement of adenosine receptors. The biochemical mechanism of adenosine receptor action with respect to fighting is unknown, but may include neuromodulatory effects on the release of other, more classical neurotransmitters.

  3. Adenosine signaling: good or bad in erectile function?

    PubMed

    Wen, Jiaming; Xia, Yang

    2012-04-01

    The erectile status of penile tissue is governed largely by the tone of cavernosal smooth muscle cells, which is determined by the balance of vascular relaxants and constrictors. Vascular relaxants play a key role in regulating the tone of cavernosal smooth muscle and thus the initiation and maintenance of penile erection. Early studies drew attention to the potential role of adenosine signaling in this process. However, the serendipitous discovery of the effect of sildenafil on erectile physiology drew more attention toward nitric oxide (NO) as a vasodilator in the process of penile erection, and a recently discovered, unexpected erectile phenotype of adenosine deaminase-deficient mice reemphasizes the importance of adenosine as a key regulatory of erectile status. Adenosine, like NO, is a potent and short-lived vasorelaxant that functions via cyclic nucleotide second messenger signaling to promote smooth muscle relaxation. Recent studies reviewed here show that adenosine functions to relax the corpus cavernosum and promote penile erection. Excess adenosine in penile tissue contributes to the disorder called priapism, and impaired adenosine signaling is associated with erectile dysfunction. More recent research summarized in this review reveals that adenosine functions as a key endogenous vasodilator in the initiation and maintenance of normal penile erection. This new insight highlights adenosine signaling pathways operating in penile tissue as significant therapeutic targets for the treatment of erectile disorders.

  4. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation.... Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet...

  5. Polymerization of actin in RBL-2H3 cells can be triggered through either the IgE receptor or the adenosine receptor but different signaling pathways are used.

    PubMed Central

    Apgar, J R

    1994-01-01

    Crosslinking of the IgE receptor on rat basophilic leukemia (RBL) cells using the multivalent antigen DNP-BSA leads to a rapid and sustained increase in the filamentous actin content of the cells. Stimulation of RBL cells through the adenosine receptor also induces a very rapid polymerization of actin, which peaks in 45-60 s and is equivalent in magnitude to the F-actin response elicited through stimulation of the IgE receptor. However, in contrast to the IgE mediated response, which remains elevated for over 30 min, the F-actin increase induced by the adenosine analogue 5'-(N-ethylcarboxamido)-adenosine (NECA) is relatively transient and returns to baseline values within 5-10 min. While previous work has shown that the polymerization of actin in RBL cells stimulated through the IgE receptor is mediated by protein kinase C (PKC), protein kinase inhibitors have no effect on the F-actin response activated through the adenosine receptor. In contrast, pretreatment of the cells with pertussis toxin completely inhibits the F-actin response to NECA but has relatively little effect on the response induced through the IgE receptor. Stimulation of RBL cells through either receptor causes increased production of phosphatidylinositol mono-phosphate (PIP) and phosphatidylinositol bis-phosphate (PIP2), which correlates with the F-actin response. Production of PIP and PIP2 may be important downstream signals since these polyphosphoinositides are able to regulate the interaction of gelsolin and profilin with actin. Thus the polymerization of actin can be triggered through either the adenosine receptor or the IgE receptor, but different upstream signaling pathways are being used. The IgE mediated response requires the activation of PKC while stimulation through the adenosine receptor is PKC independent but involves a G protein. PMID:8049523

  6. Introduction to Adenosine Receptors as Therapeutic Targets

    PubMed Central

    Jacobson, Kenneth A.

    2012-01-01

    Adenosine acts as a cytoprotective modulator in response to stress to an organ or tissue. Although short-lived in the circulation, it can activate four sub-types of G protein-coupled adenosine receptors (ARs): A1, A2A, A2B, and A3. The alkylxanthines caffeine and theophylline are the prototypical antagonists of ARs, and their stimulant actions occur primarily through this mechanism. For each of the four AR subtypes, selective agonists and antagonists have been introduced and used to develop new therapeutic drug concepts. ARs are notable among the GPCR family in the number and variety of agonist therapeutic candidates that have been proposed. The selective and potent synthetic AR agonists, which are typically much longer lasting in the body than adenosine, have potential therapeutic applications based on their anti-inflammatory (A2A and A3), cardioprotective (preconditioning by A1 and A3 and postconditioning by A2B), cerebroprotective (A1 and A3), and antinociceptive (A1) properties. Potent and selective AR antagonists display therapeutic potential as kidney protective (A1), antifibrotic (A2A), neuroprotective (A2A), and antiglaucoma (A3) agents. AR agonists for cardiac imaging and positron-emitting AR antagonists are in development for diagnostic applications. Allosteric modulators of A1 and A3 ARs have been described. In addition to the use of selective agonists/antagonists as pharmacological tools, mouse strains in which an AR has been genetically deleted have aided in developing novel drug concepts based on the modulation of ARs. PMID:19639277

  7. Adenosine signaling in normal and sickle erythrocytes and beyond

    PubMed Central

    Zhang, Yujin; Xia, Yang

    2012-01-01

    Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A2B receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O2 release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A2A receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and progression

  8. Characterization of adenosine binding proteins in human placental membranes

    SciTech Connect

    Hutchison, K.A.

    1989-01-01

    We have characterized two adenosine binding proteins in human placenta. In membranes, one site is detected with ({sup 3}H) -N-ethylcarboxamidoadenosine (({sup 3}H)NECA). This site is similar to the adenosine A{sub 2} receptor. We call this site the adenosine A{sub 2}-like binding site. In detergent extracts, the second site is detected and has the characteristics of an adenosine A{sub 1} receptor. The soluble adenosine A{sub 2}-like binding site cannot be detected without a rapid assay. Binding to the adenosine A{sub 1} receptor with ({sup 3}H)-2-chloroadenosine and ({sup 3}H)NECA is time dependent, saturable, and reversible. Equilibrium displacement analysis with adenosine agonists reveals an A{sub 1} specificity: 2-chloroadenosine > R-phenylisopropyladenosine > 5{prime}-N-ethylcarboxamidoadenosine. The antagonist potency order is 1,3-diethyl-8-phenylxanthine > isobutylmethylxanthine > theophylline. Competition analysis of membranes with the A,-selective ligands ({sup 3}H)-cyclohexyladenosine ({sup 3}H) cylopentylxanthine revealed adenosine A{sub 1} agonist and antagonist potency orders. We have purified the adenosine A{sub 2}-like binding site. The adenosine A{sub 2}-like binding site is an ubiquitous major cellular protein. It is glycosylated, highly asymmetric, and acidic. The native protein is an homodimer with a subunit molecular mass of 98 kDa. The sedimentation coefficient and partial specific volume of the binding complex are 6.9 s and 0.698 ml/g, respectively. The Stokes' radius is 70 {Angstrom}. The native molecular mass of the detergent-protein complex is 230 kDa. The adenosine A{sub 2}-like binding site has an agonist potency order of 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine >> R-phenylisopropyladenosine and an antagonist potency order of isobutylmethylxanthine > theophylline >> 1,3-diethyl-8-phenylxanthine.

  9. Biphasic effects of dibutyryl cyclic adenosine 3',5'-monophosphate on synergistic stimulation of DNA synthesis by diacylglycerol, and the ionophore A23187 in guinea pig lymphocytes

    SciTech Connect

    Otani, S.; Matsui-Yuasa, I.; Morisawa, S.

    1987-06-22

    When guinea pig lymphocytes were cultured with 1-oleoyl-2-acetylglycerol (OAG) and the ionophore A23187 for 8 h, (TH-thymidine incorporation into the acid-insoluble fraction of the cells was stimulated synergistically. Further addition of dibutyryl cAMP caused a biphasic effect on the synergistic stimulation. Dibutyryl cAMP augmented the synergistic stimulation when A23187 was at the concentration of 0.075 g/ml, but inhibited it when the ionophore was at 0.25 g/ml. At the higher concentration A23187, dibutyryl cAMP stimulated the (TH)thymidine incorporation when culture was for 4 h, but inhibited it when culture was for 8 h. The results were the same when 12-0-tetradecanoylphorbol-13-acetate (TPA) was used instead of OAG. Butyrate could replace dibutyryl cAMP for stimulation of (TH)thymidine incorporation in combination with TPA and A23187, but not with OAG and A23187 at the lower ionophore concentration. Dibutyryl cAMP but not butyrate stimulated ornithine decarboxylase induction caused by TPA and A23187. These results suggest that the effect of dibutyryl cAMP on DNA synthesis induced by OAG and A23187 was biphasic and depended on the concentration of A23187 and on the time of culture, and that the stimulation mechanism of butyrate is different from that of dibutyryl cAMP.

  10. Cyclic 3'-5'-adenosine monophosphate binds to annexin I and regulates calcium-dependent membrane aggregation and ion channel activity.

    PubMed

    Cohen, B E; Lee, G; Arispe, N; Pollard, H B

    1995-12-27

    The annexin (Anx) gene family comprises a set of calcium-dependent membrane binding proteins, which have been implicated in a wide variety of cellular processes including membrane fusion and calcium channel activity. We report here that cAMP activates Ca(2+)-dependent aggregation of both phosphatidylserine (PS) liposomes and bovine chromaffin granules driven by [des 1-12]annexin I (lipocortin I, Anx1). The mechanism of cAMP action involves an increase in AnxI-dependent cooperativity on the rate of such a reaction without affecting the corresponding k1/2 values. Cyclic AMP causes the values of the Hill coefficient (nH) for AnxI to change from 3 to 6 in both PS liposomes and chromaffin granules. By contrast, ATP inhibits the rate of aggregation activity without affecting the cooperativity or the extent of aggregation process. We were also able to photolabel Anx1 specifically with an 8-azido analogue of cAMP by a calcium-independent process. Such a process is saturable, yielding a Kd = 0.8 microM by Scatchard analysis. Specific displacement occurs in the presence of cAMP and ATP. Finally, we found that cAMP alters the conductance of calcium channels formed by AnxI in planar lipid bilayers. We interpret these data to indicate that AnxI binds both calcium and cAMP independently, and that both actions have functional consequences. This is the first report of a nucleotide binding function for a member of the annexin gene family.

  11. Dual specificity and novel structural folding of yeast phosphodiesterase-1 for hydrolysis of second messengers cyclic adenosine and guanosine 3',5'-Monophosphate

    DOE PAGES

    Tian, Yuanyuan; Cui, Wenjun; Huang, Manna; Robinson, Howard; Wan, Yiqian; Wang, Yousheng; Ke, Hengming

    2014-08-05

    Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a KM of 110 μM and a kcat of 16.9 s⁻¹ for cAMP and a KM of 105 μM and a kcat of 11.8 s₅⁻¹ for cGMP. Thus, the specificity constant (kcat/KMcAMP)/(kcat/KMcGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMP at 1.31 Å resolution reveal a new structural foldingmore » that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP.« less

  12. Intermedin1-53 attenuates vascular smooth muscle cell calcification by inhibiting endoplasmic reticulum stress via cyclic adenosine monophosphate/protein kinase A pathway.

    PubMed

    Chang, Jin-Rui; Duan, Xiao-Hui; Zhang, Bao-Hong; Teng, Xu; Zhou, Ye-Bo; Liu, Yue; Yu, Yan-Rong; Zhu, Yi; Tang, Chao-Shu; Qi, Yong-Fen

    2013-10-01

    We previously reported that endoplasmic reticulum (ER) stress-mediated apoptosis participated in vascular calcification. Importantly, a novel paracrine/autocrine peptide intermedin1-53 (IMD1-53) in the vasculature inhibited vascular calcification in rats. But the mechanisms needed to be fully elucidated. Vascular smooth muscle cells (VSMCs) calcification was induced by CaCl2 and β-glycerophosphate. Tunicamycin (Tm) or dithiothreitol (DTT) was used to induce ER stress. We found that IMD1-53 (10(-7)mol/L) treatment significantly alleviated the protein expression of ER stress hallmarks activating transcription factor 4 (ATF4), ATF6, glucose-regulated protein 78 (GRP78) and GRP94 induced by Tm or DTT. ER stress occurred in early and late calcification of VSMCs but was inhibited by IMD1-53. These inhibitory effects of IMD1-53 were abolished by treatment with the protein kinase A (PKA) inhibitor H89. Pretreatment with IMD1-53 decreased the number of apoptotic VSMCs and downregulated protein expression of cleaved caspase 12 and C/EBP homologous protein (CHOP) in calcified VSMCs. Concurrently, IMD1-53 restored the loss of VSMC lineage markers and ameliorated calcium deposition and alkaline phosphatase activity in calcified VSMCs as well. The observation was further verified by Alizarin Red S staining, which showed that IMD1-53 reduced positive red nodules among calcified VSMCs. In conclusion, IMD1-53 attenuated VSMC calcification by inhibiting ER stress through cAMP/PKA signalling.

  13. Parathyroid hormone induces transcription of collagenase in rat osteoblastic cells by a mechanism using cyclic adenosine 3',5'-monophosphate and requiring protein synthesis

    NASA Technical Reports Server (NTRS)

    Scott, D. K.; Brakenhoff, K. D.; Clohisy, J. C.; Quinn, C. O.; Partridge, N. C.

    1992-01-01

    Collagenase is synthesized and secreted by rat osteoblastic cells in response to PTH. We have previously demonstrated that this effect involves a substantial increase in collagenase mRNA via transcription. Northern blots and nuclear run-on assays were performed to further investigate the induction of collagenase by PTH in the rat osteoblastic cell line UMR 106-01. Detectable amounts of collagenase mRNA were not apparent until 2 h of PTH treatment, showed the greatest abundance at 4 h, and declined to approximately 30% of maximum by 8 h. The changes in the rate of transcription of the collagenase gene in response to PTH paralleled and preceded the changes in the steady state mRNA levels. After an initial lag period of about 1 h, collagenase transcription rates increased from very low levels to a maximal response at 2 h, returning to about 50% of maximum by 10 h. The increased transcriptional rate of the collagenase gene was found to be dependent on the concentration of PTH, with a half-maximal response at approximately 7 x 10(-10) M rat PTH-(1-34) and a maximal effect with a dose of 10(-8) M. The PTH-mediated induction of collagenase transcriptional activity was completely abolished by cycloheximide, while transcription of the beta-actin gene was unaffected by the translation inhibitor. These data suggest that a protein factor(s) is required for PTH-mediated transcriptional induction of collagenase. Since PTH increases intracellular levels of several potential second messengers, agents that mimic these substances were employed to determine which signal transduction pathway is predominant in the PTH-mediated stimulation of collagenase transcription.(ABSTRACT TRUNCATED AT 250 WORDS).

  14. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cyclic AMP (cAMP)-PKA pathway is a central signaling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signaling in fungal biology has been well documented. Two key conserved components, adenylate cyclase (AC) and ca...

  15. Pretreatment of rats with increased bioavailable berberine attenuates cerebral ischemia-reperfusion injury via down regulation of adenosine-5'monophosphate kinase activity.

    PubMed

    Chen, Weijia; Wei, Shengnan; Yu, Yang; Xue, Huan; Yao, Fan; Zhang, Ming; Xiao, Jun; Hatch, Grant M; Chen, Li

    2016-05-15

    Berberine (BBR) exhibits multiple beneficial biological effects. However, poor bioavailability of BBR has limited its clinical application. We previously demonstrated that solid dispersion of BBR with sodium caprate (HGSD) remarkably improves its bioavailability. We examined whether this increased bioavailability of BBR could protect the brain from ischemia-reperfusion (IR) induced injury. Rats treated with HGSD, SC and saline for 7 days then subjected to cerebral ischemia reperfusion by middle cerebral artery occlusion for 2h followed 12h reperfusion. Neurological deficit scores, infarct size, SOD, MDA and NO levels were examined. P-AMPK, Bax, cleaved-Caspase-3 in brain was determined. To further probe for the mechanism of beneficial effect of HGSD, PC12 cells were incubated with serum from control or HGSD pretreated animals, incubated with 300μM H2O2 to induce apoptosis. Caspase-3 activity and cell apoptosis was evaluated. HGSD pretreatment significantly attenuated neurological deficit scores, reduced infarct size, increased SOD and decreased MDA and NO after cerebral IR injury compared to controls. Meanwhile, HGSD pretreatment significantly reduced expression of p-AMPK, Bax, cleaved-Caspase-3 after cerebral IR injury. Sodium caprate (100mg/kg/d) pretreatment alone did not exhibit any of these beneficial effects. PC12 cell apoptosis was attenuated when cells were cultured with HGSD serum compared to control. The presence of AMPK activator (AICAR) attenuated whereas AMPK inhibitor (Compound C) augmented the protective effect of HGSD serum on PC12 cell apoptosis.The results indicate that HGSD-pretreatment of rats protects the brain from ischemia-reperfusion injury and the mechanism is due to its anti-apoptotic effect mediated by decreased activation of AMPK. PMID:26957053

  16. Effects of limited exposure of rabbit chondrocyte cultures to parathyroid hormone and dibutyryl adenosine 3',5'-monophosphate on cartilage-characteristic proteoglycan synthesis

    SciTech Connect

    Kato, Y.; Koike, T.; Iwamoto, M.; Kinoshita, M.; Sato, K.; Hiraki, Y.; Suzuki, F.

    1988-05-01

    Treatment of rabbit chondrocyte cultures with PTH or (Bu)2cAMP for 30 h increased by 2- to 3-fold the incorporation of (35S)sulfate and 3H radioactivity with glucosamine as the precursor into large chondroitin sulfate proteoglycans characteristically found in cartilage matrix. However, PTH and (Bu)2cAMP did not increase either (35S)sulfate incorporation into small proteoglycans or the incorporation of 3H radioactivity into hyaluronic acid and other glycosaminoglycans. PTH and (Bu)2cAMP also increased the incorporation of (3H) serine into both proteoglycans and total protein. In all cultures described above, the stimulation of (3H)serine incorporation into proteoglycans exceeded that of (3H)serine incorporation into total protein. These data indicate that PTH and (Bu)2cAMP selectively stimulate cartilage proteoglycan synthesis while they increase total protein synthesis. Since cAMP seems to play a mediatory role in the action of PTH, we elected to examine the effects of a limited exposure of chondrocytes to PTH or (Bu)2cAMP on the synthesis of proteoglycans. Treatment with PTH or (Bu)2cAMP for only the initial 2-7 h did not increase the rates of incorporation of (35S)sulfate, the 3H radioactivity with glucosamine, and (3H)serine into proteoglycans, as measured at 30 h, despite the fact that this treatment brought about a rapid and transient rise in the cAMP level. Furthermore, the application of prostaglandin I2 at concentrations that increased cAMP levels in a similar fashion as did PTH did not affect (35S) sulfate incorporation into proteoglycans.

  17. Inhibition of Cyclic Adenosine Monophosphate (cAMP)-response Element-binding Protein (CREB)-binding Protein (CBP)/β-Catenin Reduces Liver Fibrosis in Mice.

    PubMed

    Osawa, Yosuke; Oboki, Keisuke; Imamura, Jun; Kojika, Ekumi; Hayashi, Yukiko; Hishima, Tsunekazu; Saibara, Toshiji; Shibasaki, Futoshi; Kohara, Michinori; Kimura, Kiminori

    2015-11-01

    Wnt/β-catenin is involved in every aspect of embryonic development and in the pathogenesis of many human diseases, and is also implicated in organ fibrosis. However, the role of β-catenin-mediated signaling on liver fibrosis remains unclear. To explore this issue, the effects of PRI-724, a selective inhibitor of the cAMP-response element-binding protein-binding protein (CBP)/β-catenin interaction, on liver fibrosis were examined using carbon tetrachloride (CCl4)- or bile duct ligation (BDL)-induced mouse liver fibrosis models. Following repetitive CCl4 administrations, the nuclear translocation of β-catenin was observed only in the non-parenchymal cells in the liver. PRI-724 treatment reduced the fibrosis induced by CCl4 or BDL. C-82, an active form of PRI-724, inhibited the activation of isolated primary mouse quiescent hepatic stellate cells (HSCs) and promoted cell death in culture-activated HSCs. During the fibrosis resolution period, an increase in F4/80(+) CD11b(+) and Ly6C(low) CD11b(+) macrophages was induced by CCl4 and was sustained for two weeks thereafter, even after having stopped CCl4 treatment. PRI-724 accelerated the resolution of CCl4-induced liver fibrosis, and this was accompanied by increased matrix metalloproteinase (MMP)-9, MMP-2, and MMP-8 expression in intrahepatic leukocytes. In conclusion, targeting the CBP/β-catenin interaction may become a new therapeutic strategy in treating liver fibrosis. PMID:26870800

  18. Glial Restricted Precursor Cell Transplant with Cyclic Adenosine Monophosphate Improved Some Autonomic Functions but Resulted in a Reduced Graft Size after Spinal Cord Contusion Injury in Rats

    PubMed Central

    Nout, Yvette S.; Culp, Esther; Schmidt, Markus H.; Tovar, C. Amy; Pröschel, Christoph; Mayer-Pröschel, Margot; Noble, Mark D.; Beattie, Michael S.; Bresnahan, Jacqueline C.

    2010-01-01

    Transplantation of glial restricted precursor (GRP) cells has been shown to reduce glial scarring after spinal cord injury (SCI) and, in combination with neuronal restricted precursor (NRP) cells or enhanced expression of neurotrophins, to improve recovery of function after SCI. We hypothesized that combining GRP transplants with rolipram and cAMP would improve functional recovery, similar to that seen after combining Schwann cell transplants with increasing cAMP. A short term study, 1)uninjured control, 2)SCI+vehicle, and 3)SCI+cAMP, showed that spinal cord [cAMP] were increased 14 days after SCI. We used 51 male rats subjected to a thoracic SCI for a 12-week survival study: 1)SCI+vehicle, 2)SCI+GRP, 3)SCI+cAMP, 4)SCI+GRP+cAMP, and 5)uninjured endpoint age-matched control (AM). Rolipram was administered for 2 weeks after SCI. At 9 days after SCI, GRP transplantation and injection of dibutyryl-cAMP into the spinal cord were performed. GRP cells survived, differentiated, and formed extensive transplants that were well integrated with host tissue. Presence of GRP cells increased the amount of tissue in the lesion; however, cAMP reduced the graft size. White matter sparing at the lesion epicenter was not affected. Serotonergic input to the lumbosacral spinal cord was not affected by treatment, but the amount of serotonin immediately caudal to the lesion was reduced in the cAMP groups. Using telemetric monitoring of corpus spongiosum penis pressure we show that the cAMP groups regained the same number of micturitions per 24 hrs when compared to the AM group, however, the frequency of peak pressures was increased in these groups compared to the AM group. In contrast, the GRP groups had similar frequency of peak pressures compared to baseline and the AM group. Animals that received GRP cells regained the same number of erectile events per 24 hrs compared to baseline and the AM group. Since cAMP reduced the GRP transplant graft, and some modest positive effects were seen that could be attributable to both GRP or cAMP, future research is required to determine how cAMP affects survival, proliferation, and / or function of progenitor cells and how this is related to function. cAMP may not always be a desirable addition to a progenitor cell transplantation strategy after SCI. PMID:21040723

  19. 3,3'-Diindolylmethane attenuates cardiac H9c2 cell hypertrophy through 5'-adenosine monophosphate-activated protein kinase-α.

    PubMed

    Zong, Jing; Wu, Qing-Qing; Zhou, Heng; Zhang, Jie-Yu; Yuan, Yuan; Bian, Zhou-Yan; Deng, Wei; Dai, Jia; Li, Fang-Fang; Xu, Man; Fang, Yi; Tang, Qi-Zhu

    2015-07-01

    3,3'-Diindolylmethane (DIM) is the major product of the acid-catalyzed condensation of indole-3-carbinol (I3C), a component of extracts of Brassica food plants. Numerous studies have suggested that DIM has several beneficial biological activities, including elimination of free radicals, antioxidant and anti-angiogenic effects and activation of apoptosis of various tumor cells. In the present study, an in vitro model was established, using 1 µM angiotensin II (Ang II) in cultured rat cardiac H9c2 cells, to observe the effects of DIM on cardiac hypertrophy. Following 24 h stimulation with DIM (1, 5, and 10 µM) with or without Ang II, cells were characterized by immunofluorescence to analyze cardiac α-actinin expression. Cardiomyocyte hypertrophy and molecular markers of cardiac hypertrophy were assessed by quantitative polymerase chain reaction. Atrial natriuretic peptide, brain natriuretic peptide and myosin heavy chain β mRNA expression were induced by Ang II in H9c2 cells treated with the optimal concentration of DIM for 6, 12, and 24 h. The levels of phosphorylated and total proteins of the 5' AMP-activated protein kinase α (AMPKα)/mitogen-activated protein kinase (MAPK)/mechanistic target of rapamycin (mTOR) signaling pathways in H9c2 cells treated with DIM for 0, 15, 30, and 60 min induced by Ang II were determined by western blot analysis. The results showed that DIM attenuated cellular hypertrophy in vitro, enhanced the phosphorylation of AMPKα and inhibited the MAPK‑mTOR signaling pathway in response to hypertrophic stimuli. PMID:25816057

  20. Cloning of the cDNA encoding adenosine 5'-monophosphate deaminase 1 and its mRNA expression in Japanese flounder Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Jiang, Keyong; Sun, Shujuan; Liu, Mei; Wang, Baojie; Meng, Xiaolin; Wang, Lei

    2013-01-01

    AMP deaminase catalyzes the conversion of AMP into IMP and ammonia. In the present study, a full-length cDNA of AMPD1 from skeletal muscle of Japanese flounder Paralichthys olivaceus was cloned and characterized. The 2 526 bp cDNA contains a 5'-UTR of 78 bp, a 3'-UTR of 237 bp and an open reading frame (ORF) of 2 211 bp, which encodes a protein of 736 amino acids. The predicted protein contains a highly conserved AMP deaminase motif (SLSTDDP) and an ATP-binding site sequence (EPLMEEYAIAAQVFK). Phylogenetic analysis showed that the AMPD1 and AMPD3 genes originate from the same branch, but are evolutionarily distant from the AMPD2 gene. RT-PCR showed that the flounder AMPD1 gene was expressed only in skeletal muscle. QRT-PCR analysis revealed a statistically significant 2.54 fold higher level of AMPD1 mRNA in adult muscle (750±40 g) compared with juvenile muscle (7.5±2 g) ( P<0.05). HPLC analysis showed that the IMP content in adult muscle (3.35±0.21 mg/g) was also statistically significantly higher than in juvenile muscle (1.08±0.04 mg/g) ( P<0.05). There is a direct relationship between the AMPD1 gene expression level and IMP content in the skeletal muscle of juvenile and adult flounders. These results may provide useful information for quality improvement and molecular breeding of aquatic animals.

  1. Stimulation of cartilage amino acid uptake by growth hormone-dependent factors in serum. Mediation by adenosine 3':5'-monophosphate.

    PubMed

    Drezner, M K; Eisenbarth, G S; Neelon, F A; Lebovitz, H E

    1975-02-13

    The effects of growth hormone-dependent serum factors on amino acid transport and on cartilage cyclic AMP levels in embryonic chicken cartilage were studied in vitro. Cartilages incubated in medium containing rat serum showed a significantly greater uptake of alpha-amino [1-14C] isobutyrate or [1-14C] cycloleucine than control cartilages incubated in medium alone. Normal rat serum (5%) added to the incubation medium also caused an increase in cartilage cyclic AMP content (from as little as 23% to as much as 109%). The factors in serum which increase cartilage cyclic AMP and amino acid uptake are growth hormone dependent, since neither growth hormone itself nor serum from hypophysectomized rats restores these serum factors. Studies comparing the ability of sera with varying amounts of growth hormone-dependent factors to stimulate amino-aminoisobutyrate transport and to increase cartilage cyclic AMP show a striking linear correlation between the two effects (r=0.977). Theophylline and prostaglandin E1, WHICH RAISE CARTILAGE CYCLIC AMP also increase amino-aminoisobutyrate transport. Exogenous cyclic AMP, N6-monobutyryl cyclic AMP and n6, 02'-dibutyryl cyclic AMP increase cartilage amino-aminoisobutyrate transport. The data are compatible with the thesis that growth hormone-dependent serum factors increase cartilage amino acid transport by elevating cartilage cyclic AMP.

  2. Arginine vasopressin increases cellular free calcium concentration and adenosine 3',5'-monophosphate production in rat renal papillary collecting tubule cells in culture

    SciTech Connect

    Ishikawa, S.; Okada, K.; Saito, T.

    1988-09-01

    The role of calcium (Ca) in the cellular action of arginine vasopressin (AVP) was examined in rat renal papillary collecting tubule cells in culture. AVP increased both the cellular free Ca concentration ((Ca2+)i) using fura-2, and cAMP production in a dose-dependent manner. AVP-induced cellular Ca mobilization was totally blocked by the antagonist to the antidiuretic action of AVP, and somewhat weakened by the antagonist to the vascular action of AVP. 1-Deamino-8-D-AVP (dDAVP). an antidiuretic analog of AVP, also increased (Ca2+) significantly. Cellular Ca mobilization was not obtained with cAMP, forskolin (a diterpene activator of adenylate cyclase), or phorbol-12-myristate-13-acetate. The early phase of (Ca2+)i depended on the intracellular Ca pool, since an AVP-induced rise in (Ca2+)i was obtained in cells pretreated with Ca-free medium containing 1 mM EGTA, verapamil, or cobalt, which blocked cellular Ca uptake. Also, AVP increased /sup 45/Ca2+ influx during the initial 10 min, which initiated the sustained phase of cellular Ca mobilization. However, cellular cAMP production induced by AVP during the 10-min observation period was diminished in the cells pretreated with Ca-free medium, verapamil, or cobalt, but was still significantly higher than the basal level. This was also diminished by a high Ca concentration in medium. These results indicate that 1) AVP concomitantly regulates cellular free Ca as well as its second messenger cAMP production; 2) AVP-induced elevation of cellular free Ca is dependent on both the cellular Ca pool and extracellular Ca; and 3) there is an optimal level of extracellular Ca to modulate the AVP action in renal papillary collecting tubule cells.

  3. A tyrosine-phosphorylated 55-kilodalton motility-associated bovine sperm protein is regulated by cyclic adenosine 3',5'-monophosphates and calcium.

    PubMed

    Vijayaraghavan, S; Trautman, K D; Goueli, S A; Carr, D W

    1997-06-01

    Sperm motility is regulated by protein phosphorylation. We have recently shown that a serine/threonine phosphatase system is involved in motility regulation. Two of the components of the phosphatase system, GSK-3 and PP1gamma2, are regulated by tyrosine phosphorylation. During our investigation of sperm tyrosine-phosphorylated proteins we discovered a 55-kDa protein whose tyrosine phosphorylation correlates closely to the motility state of sperm. This protein is tyrosine phosphorylated to a much higher degree in motile caudal than in immotile caput epididymal sperm. Motility inhibition of caudal epididymal sperm by protein kinase A (PKA) anchoring inhibition or by ionomycin-induced calcium overload led to the virtual disappearance of tyrosine phosphorylation of the 55-kDa protein. Conversely, treatment of sperm with motility activators, isobutylmethylxanthine or 8-bromo-cAMP, resulted in increased tyrosine phosphorylation of the protein. The protein was present in the soluble 100 000 x g supernatants of sperm extracts and was heat labile. Chromatography through diethylaminoethyl-cellulose and Western blot analysis showed that this 55-kDa protein is not a regulatory subunit of PKA or alpha-tubulin. Our results represent the identification of a soluble protein whose tyrosine phosphorylation varies directly with motility and suggest that motility regulation may involve cross talk between PKA, calcium, and tyrosine kinase pathways. PMID:9166697

  4. Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle.

    PubMed

    Gonçalves, Dawit A P; Lira, Eduardo C; Baviera, Amanda M; Cao, Peirang; Zanon, Neusa M; Arany, Zoltan; Bedard, Nathalie; Tanksale, Preeti; Wing, Simon S; Lecker, Stewart H; Kettelhut, Isis C; Navegantes, Luiz C C

    2009-12-01

    Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutylmethylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator 1alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3.

  5. Corticotropin-releasing factor binding to peripheral tissue and activation of the adenylate cyclase-adenosine 3',5'-monophosphate system

    SciTech Connect

    Dave, J.R.; Eiden, L.E.; Eskay, R.L.

    1985-06-01

    Specific binding sites for rat corticotropin-releasing factor (rCRF) are present in rat adrenal medulla, ventral prostate, spleen, liver, kidney, and testis and bovine chromaffin cells in culture. Maximal binding of (/sup 125/I)rCRF occurred within 25 min at 4 C and was saturable. Scatchard analysis of rCRF binding to rat adrenal membranes and bovine chromaffin cells revealed the existence of two classes of binding sites. One class had a relatively higher apparent affinity and lower number of binding sites, whereas the other class had a relatively lower affinity and higher number of binding sites. CRF induced a dose-related increase in rat adrenal membrane adenylate cyclase activity and cAMP levels in bovine chromaffin cells. Nanomolar concentrations of rCRF maximally stimulated adenylate cyclase activity in rat adrenal membranes and maximally increased cAMP levels in bovine chromaffin cells to 86% and 130% above control values, respectively. The demonstration of specific CRF-binding sites in a variety of peripheral tissues and the finding that activation of specific CRF-binding sites in adrenal tissue stimulates the adenylate cyclase-cAMP system suggest that CRF may have an important regulatory role in various peripheral tissues.

  6. Killer Cell Lectin-like Receptor G1 Inhibits NK Cell Function through Activation of Adenosine 5'-Monophosphate-Activated Protein Kinase.

    PubMed

    Müller-Durovic, Bojana; Lanna, Alessio; Polaco Covre, Luciana; Mills, Rachel S; Henson, Sian M; Akbar, Arne N

    2016-10-01

    NK cells are the first line of defense against infected and transformed cells. Defective NK cell activity was shown to increase susceptibility for viral infections and reduce tumor immune-surveillance. With age, the incidence of infectious diseases and malignancy rises dramatically, suggesting that impaired NK cell function might contribute to disease in these individuals. We found an increased frequency of NK cells with high expression of the inhibitory killer cell lectin-like receptor G1 (KLRG1) in individuals >70 y. The role of KLRG1 in ageing is not known, and the mechanism of KLRG1-induced inhibition of NK cell function is not fully understood. We report that NK cells with high KLRG1 expression spontaneously activate the metabolic sensor AMP-activated protein kinase (AMPK) and that activation of AMPK negatively regulates NK cell function. Pre-existing AMPK activity is further amplified by ligation of KLRG1 in these cells, which leads to internalization of the receptor and allows interaction with AMPK. We show that KLRG1 activates AMPK by preventing its inhibitory dephosphorylation by protein phosphatase-2C rather than inducing de novo kinase activation. Finally, inhibition of KLRG1 or AMPK prevented KLRG1-induced activation of AMPK and reductions in NK cell cytotoxicity, cytokine secretion, proliferation, and telomerase expression. This novel signaling pathway links metabolic sensing, effector function, and cell differentiation with inhibitory receptor signaling that may be exploited to enhance NK cell activity during ageing.

  7. Norepinephrines effect on adenosine transport in the proximal straight tubule

    SciTech Connect

    Barfuss, D.W.; McCann, W.P.; Katholi, R.E.

    1986-03-01

    The effect of norepinephrine on C/sup 14/-adenosine transport in the rabbit proximal tubule (S/sub 2/) was studied. The transepithelial transport of adenosine (0.02 mM0 from lumin to bathing solution was measured by its rate of appearance (J/sub A/) in the bathing solution and by its disappearances (J/sub D/) from the luminal fluid. Norepinephrine (0.24 ..mu..M) was added to the bathing solution after a control flux period. After three samples from the experiment period the tubules were quickly harvested and the cellular concentration of C/sup 14/-adenosine was determined. The high cellular adenosine concentration and th marked difference in adenosine appearance rate in the bathing solution compared to the luminal disappearance rate indicates the absorbed adenosine is trapped in the cells. This trapping may be due to adenosine metabolism or difficulty of crossing the basolateral membrane. Whichever is the case, norepinephrine appears to stimulate movement of adenosine or its metabolites into the bathing solution across the basolateral membrane.

  8. Comorbidities in Neurology: Is Adenosine the Common Link?

    PubMed Central

    Boison, Detlev; Aronica, Eleonora

    2015-01-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the ‘adenosine hypothesis of comorbidities’ implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic ‘comorbidity model’, in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain comorbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions. PMID:25979489

  9. Effect of theophylline on adenosine production in the canine myocardium

    SciTech Connect

    McKenzie, J.E.; Steffen, R.P.; Haddy, F.J.

    1987-01-01

    Adenosine is thought to participate in local regulation of coronary blood flow. However, competitive antagonists of adenosine fail to block myocardial active hyperemia. The authors examined the effect of locally administered theophylline on active hyperemia and myocardial adenosine production during intracoronary isoproterenol infusion in the dog heart. Isoproterenol decreased coronary resistance and increased myocardial adenosine production. Infusion of theophylline at a rate that attenuated the vasodilator response to exogenously administered adenosine failed to attenuate the increase in coronary blood flow produced by isoproterenol. However, theophylline plus isoproterenol production greater increases in myocardial adensine production than isoproterenol alone. The curves relating resistance and adenosine in the presence of theophylline fell to the right of those in the absence of theophylline. These findings suggest that the failure of theophylline to attenuate isoproterenol hyperemia in the dog heart results at least in part from an increase in adenosine concentration at the arteriole to a level beyond that blocked by this competitive antagonist and that adenosine may in fact play a role in isoproterenol-induced active hyperemia.

  10. Fluorescence decay studies of modified dinucleoside monophosphates containing 1-N6-ethenoadenosine.

    PubMed

    Kubota, Y; Motoda, Y; Fujisaki, Y; Steiner, R F

    1983-10-01

    Five dinucleoside monophosphates containing 1-N6-ethenoadenosine (epsilon A) have been studied using fluorescence measurements. The fluorescence spectra of these dinucleoside monophosphates are almost the same as the fluorescence spectrum of epsilon AMP. Fluorescence quantum yields of these dimers are greatly reduced compared to that of epsilon AMP. Intramolecular base-base interactions may be responsible for fluorescence quenching. It is found that the fluorescence decay kinetics does not obey a simple decay law but that the decay data can be well described as a sum of three exponentials. This implies that these dimers cannot be characterized as a two-state system, but can be described as systems consisting of three or more conformational states. Sequence effects upon the fluorescence behavior are observed. The fluorescence quenching and decay parameters of Gp epsilon A and Up epsilon A indicate a higher degree of base-base interaction than in their epsilon ApG and epsilon ApU counterparts.

  11. Novel Characteristics of Trypanosoma brucei Guanosine 5'-monophosphate Reductase Distinct from Host Animals.

    PubMed

    Bessho, Tomoaki; Okada, Tetsuya; Kimura, Chihiro; Shinohara, Takahiro; Tomiyama, Ai; Imamura, Akira; Kuwamura, Mitsuru; Nishimura, Kazuhiko; Fujimori, Ko; Shuto, Satoshi; Ishibashi, Osamu; Kubata, Bruno Kilunga; Inui, Takashi

    2016-01-01

    The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5'-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5'-monophosphate (GMP) to inosine 5'-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine β-synthase (CBS) domain, which was absent in mammalian and bacterial GMPRs. The recombinant protein of T. brucei GMPR catalyzed the conversion of GMP to IMP in the presence of NADPH, and showed apparent affinities for both GMP and NADPH different from those of its mammalian counterparts. Interestingly, the addition of monovalent cations such as K+ and NH4+ to the enzymatic reaction increased the GMPR activity of T. brucei, whereas none of the mammalian GMPR's was affected by these cations. The monophosphate form of the purine nucleoside analog ribavirin inhibited T. brucei GMPR activity, though mammalian GMPRs showed no or only a little inhibition by it. These results suggest that the mechanism of the GMPR reaction in T. brucei is distinct from that in the host organisms. Finally, we demonstrated the inhibitory effect of ribavirin on the proliferation of trypanosomes in a dose-dependent manner, suggesting the availability of ribavirin to develop a new therapeutic agent against African trypanosomiasis. PMID:26731263

  12. Novel Characteristics of Trypanosoma brucei Guanosine 5'-monophosphate Reductase Distinct from Host Animals

    PubMed Central

    Kimura, Chihiro; Shinohara, Takahiro; Tomiyama, Ai; Imamura, Akira; Kuwamura, Mitsuru; Nishimura, Kazuhiko; Fujimori, Ko; Shuto, Satoshi; Ishibashi, Osamu; Kubata, Bruno Kilunga; Inui, Takashi

    2016-01-01

    The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5’-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5’-monophosphate (GMP) to inosine 5’-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine β-synthase (CBS) domain, which was absent in mammalian and bacterial GMPRs. The recombinant protein of T. brucei GMPR catalyzed the conversion of GMP to IMP in the presence of NADPH, and showed apparent affinities for both GMP and NADPH different from those of its mammalian counterparts. Interestingly, the addition of monovalent cations such as K+ and NH4+ to the enzymatic reaction increased the GMPR activity of T. brucei, whereas none of the mammalian GMPR’s was affected by these cations. The monophosphate form of the purine nucleoside analog ribavirin inhibited T. brucei GMPR activity, though mammalian GMPRs showed no or only a little inhibition by it. These results suggest that the mechanism of the GMPR reaction in T. brucei is distinct from that in the host organisms. Finally, we demonstrated the inhibitory effect of ribavirin on the proliferation of trypanosomes in a dose-dependent manner, suggesting the availability of ribavirin to develop a new therapeutic agent against African trypanosomiasis. PMID:26731263

  13. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  14. Recipient pretransplant inosine monophosphate dehydrogenase activity in nonmyeloablative hematopoietic cell transplantation.

    PubMed

    Bemer, Meagan J; Risler, Linda J; Phillips, Brian R; Wang, Joanne; Storer, Barry E; Sandmaier, Brenda M; Duan, Haichuan; Raccor, Brianne S; Boeckh, Michael J; McCune, Jeannine S

    2014-10-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5'-monophosphate to xanthosine 5'-monophosphate (XMP). We developed a highly sensitive liquid chromatography-mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNCs) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation but not with chronic GVHD, relapse, nonrelapse mortality, or overall mortality. We conclude that quantitation of the recipient's pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient's sensitivity to MMF. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients.

  15. Substrate distortion contributes to the catalysis of orotidine 5'-monophosphate decarboxylase

    PubMed Central

    Fujihashi, Masahiro; Ishida, Toyokazu; Kuroda, Shingo; Kotra, Lakshmi P.; Pai, Emil F.; Miki, Kunio

    2014-01-01

    Orotidine 5'-monophosphate decarboxylase (ODCase) accelerates the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP) by 17 orders of magnitude. Eight new crystal structures with ligand analogues combined with computational analyses of the enzyme’s short-lived intermediates and the intrinsic electronic energies to distort the substrate and other ligands improve our understanding of the still controversially discussed reaction mechanism. In their respective complexes, 6-methyl-UMP displays significant distortion of its methyl substituent bond, 6-amino-UMP shows the competition between the K72 and C6 substituents for a position close to D70, and the methyl- and ethyl-ester of OMP both induce rotation of the carboxylate group substituent out of the plane of the pyrimidine ring. MD and QM/MM computations of the enzyme-substrate (ES) complex also show the bond between the carboxylate group and the pyrimidine ring to be distorted with the distortion contributing a 10–15% decrease of the ΔΔG‡ value. These results are consistent with ODCase using both substrate distortion as well as transition state stabilization, primarily exerted by K72, in its catalysis of the OMP decarboxylation reaction. PMID:24151964

  16. Recipient pretransplant inosine monophosphate dehydrogenase activity in nonmyeloablative hematopoietic cell transplantation.

    PubMed

    Bemer, Meagan J; Risler, Linda J; Phillips, Brian R; Wang, Joanne; Storer, Barry E; Sandmaier, Brenda M; Duan, Haichuan; Raccor, Brianne S; Boeckh, Michael J; McCune, Jeannine S

    2014-10-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5'-monophosphate to xanthosine 5'-monophosphate (XMP). We developed a highly sensitive liquid chromatography-mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNCs) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation but not with chronic GVHD, relapse, nonrelapse mortality, or overall mortality. We conclude that quantitation of the recipient's pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient's sensitivity to MMF. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  17. The effect of glucose, insulin and noradrenaline on lipolysis and on the concentrations of adenosine 3′:5′-cyclic monophosphate and adenosine 5′-triphosphate in adipose tissue

    PubMed Central

    Knight, Brian L.; Iliffe, Jill

    1973-01-01

    Glycerol release and tissue concentrations of ATP and cyclic AMP were followed during the incubation of adipose tissue with or without glucose, insulin and noradrenaline. Glucose plus insulin or, to a lesser extent, glucose alone increased the accumulation of glycerol during incubations both with and without noradrenaline by slowing the decline in the rate of glycerol release with time. Insulin alone decreased the accumulation by accelerating the fall in glycerol release. In the absence of noradrenaline, ATP and cyclic AMP concentrations were not significantly affected by insulin or glucose. With noradrenaline or noradrenaline plus insulin the ATP concentration gradually fell. With noradrenaline plus glucose the ATP concentration fell rapidly and then stabilized, or, if insulin was also present, returned to the control value. In the presence of noradrenaline, the concentration of cyclic AMP rose during the first 20min and then fell. Insulin lowered the peak concentration of cyclic AMP, but glucose had no effect either on the peak value or the fall in the concentration of the nucleotide. The increase and fall in the concentration of cyclic AMP with noradrenaline or noradrenaline plus insulin bore similarities to the increase and decline in the lipolytic rate in incubations without glucose. It is proposed that glucose stimulates ATP production by furnishing glycerol 1-phosphate and thus removing free fatty acids, but that it can influence lipolysis by a mechanism which is distinct from any which is mediated by free fatty acids, possibly by inhibiting the inactivation of the lipase. PMID:4353001

  18. Simultaneous interaction with base and phosphate moieties modulates the phosphodiester cleavage of dinucleoside 3',5'-monophosphates by dinuclear Zn2+ complexes of di(azacrown) ligands.

    PubMed

    Wang, Qi; Lönnberg, Harri

    2006-08-23

    Five dinucleating ligands (1-5) and one trinucleating ligand (6) incorporating 1,5,9-triazacyclododecan-3-yloxy groups attached to an aromatic scaffold have been synthesized. The ability of the Zn(2+) complexes of these ligands to promote the transesterification of dinucleoside 3',5'-monophosphates to a 2',3'-cyclic phosphate derived from the 3'-linked nucleoside by release of the 5'-linked nucleoside has been studied over a narrow pH range, from pH 5.8 to 7.2, at 90 degrees C. The dinuclear complexes show marked base moiety selectivity. Among the four dinucleotide 3',5'-phosphates studied, viz. adenylyl-3',5'-adenosine (ApA), adenylyl-3',5'-uridine (ApU), uridylyl-3',5'-adenosine (UpA), and uridylyl-3',5'-uridine (UpU), the dimers containing one uracil base (ApU and UpA) are cleaved up to 2 orders of magnitude more readily than those containing either two uracil bases (UpU) or two adenine bases (ApA). The trinuclear complex (6), however, cleaves UpU as readily as ApU and UpA, while the cleavage of ApA remains slow. UV spectrophotometric and (1)H NMR spectroscopic studies with one of the dinucleating ligands (3) verify binding to the bases of UpU and ApU at less than millimolar concentrations, while no interaction with the base moieties of ApA is observed. With ApU and UpA, one of the Zn(2+)-azacrown moieties in all likelihood anchors the cleaving agent to the uracil base of the substrate, while the other azacrown moiety serves as a catalyst for the phosphodiester transesterification. With UpU, two azacrown moieties are engaged in the base moiety binding. The catalytic activity is, hence, lost, but it can be restored by addition of a third azacrown group on the cleaving agent.

  19. Simultaneous interaction with base and phosphate moieties modulates the phosphodiester cleavage of dinucleoside 3',5'-monophosphates by dinuclear Zn2+ complexes of di(azacrown) ligands.

    PubMed

    Wang, Qi; Lönnberg, Harri

    2006-08-23

    Five dinucleating ligands (1-5) and one trinucleating ligand (6) incorporating 1,5,9-triazacyclododecan-3-yloxy groups attached to an aromatic scaffold have been synthesized. The ability of the Zn(2+) complexes of these ligands to promote the transesterification of dinucleoside 3',5'-monophosphates to a 2',3'-cyclic phosphate derived from the 3'-linked nucleoside by release of the 5'-linked nucleoside has been studied over a narrow pH range, from pH 5.8 to 7.2, at 90 degrees C. The dinuclear complexes show marked base moiety selectivity. Among the four dinucleotide 3',5'-phosphates studied, viz. adenylyl-3',5'-adenosine (ApA), adenylyl-3',5'-uridine (ApU), uridylyl-3',5'-adenosine (UpA), and uridylyl-3',5'-uridine (UpU), the dimers containing one uracil base (ApU and UpA) are cleaved up to 2 orders of magnitude more readily than those containing either two uracil bases (UpU) or two adenine bases (ApA). The trinuclear complex (6), however, cleaves UpU as readily as ApU and UpA, while the cleavage of ApA remains slow. UV spectrophotometric and (1)H NMR spectroscopic studies with one of the dinucleating ligands (3) verify binding to the bases of UpU and ApU at less than millimolar concentrations, while no interaction with the base moieties of ApA is observed. With ApU and UpA, one of the Zn(2+)-azacrown moieties in all likelihood anchors the cleaving agent to the uracil base of the substrate, while the other azacrown moiety serves as a catalyst for the phosphodiester transesterification. With UpU, two azacrown moieties are engaged in the base moiety binding. The catalytic activity is, hence, lost, but it can be restored by addition of a third azacrown group on the cleaving agent. PMID:16910666

  20. Serum adenosine deaminase activity in cutaneous anthrax

    PubMed Central

    Sunnetcioglu, Mahmut; Karadas, Sevdegul; Aslan, Mehmet; Ceylan, Mehmet Resat; Demir, Halit; Oncu, Mehmet Resit; Karahocagil, Mustafa Kasım; Sunnetcioglu, Aysel; Aypak, Cenk

    2014-01-01

    Background Adenosine deaminase (ADA) activity has been discovered in several inflammatory conditions; however, there are no data associated with cutaneous anthrax. The aim of this study was to investigate serum ADA activity in patients with cutaneous anthrax. Material/Methods Sixteen patients with cutaneous anthrax and 17 healthy controls were enrolled. We measured ADA activity; peripheral blood leukocyte, lymphocyte, neutrophil, and monocyte counts; erythrocyte sedimentation rate; and C reactive protein levels. Results Serum ADA activity was significantly higher in patients with cutaneous anthrax than in the controls (p<0.001). A positive correlation was observed between ADA activity and lymphocyte counts (r=0.589, p=0.021) in the patient group. Conclusions This study suggests that serum ADA could be used as a biochemical marker in cutaneous anthrax. PMID:24997584

  1. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus.

    PubMed

    Zhang, Dali; Xiong, Wei; Jackson, Michael F; Parkinson, Fiona E

    2016-07-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5'-nucleotidase activity. Wild-type (CD73(+/+)) and ecto-5'-nucleotidase-deficient (CD73(-/-)) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73(+/+) mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73(+/+) mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg(2+) conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5'-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73(-/-) mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5'-nucleotidase activity. PMID:27189965

  2. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus

    PubMed Central

    Zhang, Dali; Xiong, Wei; Jackson, Michael F.

    2016-01-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965

  3. Identification of possible adenosine receptors in vascular smooth muscle

    SciTech Connect

    Doctrow, S.R.

    1985-01-01

    Adenosine is a vasodilator and has been implicated in increased blood flow in tissues that undergo energy deficiency. During conditions such as hypoxia and ischemia, adenosine is produced and is said to increase blood flow by relaxing the vascular smooth muscle (VSM) lining the resistance vessels. The goal of this research was to identify receptors that might be responsible for adenosine-mediated VSM relaxation. When an insoluble fraction from calf aortic VSM was incubated with /sup 32/P-ATP, two components were phosphorylated. One was identified as myosin light chain by MW, pl, and immunoprecipitation. The other product was identified as phosphatidylinositol-4-phosphate (DPI) by tic. Both phosphorylations were inhibited by adenosine and by 5'-chloro-5'-deoxyadenosine (Cl-Ado). DPI production was much more sensitive to the nucleosides than was myosin phosphorylation. Neither inhibition involved change in cAMP production. Phosphatidylinositol (Pl) kinase in the VSM membranes required magnesium, was activated and solubilized by Triton X-100, and phosphorylated both endogenous and exogenous Pl. Cl-Ado inhibited Pl kinase in a manner competitive with respect to ATP and noncompetitive with respect to Pl. Adenosine and adenosine analogs modified in the ribose ring were inhibitors with potencies comparable to that of Cl-Ado. Adenine nucleotides and purine-modified adenosine analogs were weaker inhibitors than Cl-Ado.

  4. Adenosine deaminase in disorders of purine metabolism and in immune deficiency

    SciTech Connect

    Tritsch, G.L.

    1985-01-01

    This book consists of five parts and a section of poster papers. Some of the selection titles are: Adenosine Deaminase Impairment and Ribonucleotide Reductase in Human Cells; Adenosine Deaminase and Malignant Cells; Inhibition of Adenosine Deaminase to Increase the Antitumor Activity of Adenine Nucleoside Analogues; and Molecular Biology of the Adenosine Deaminase Gene and Messenger RNA.

  5. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  6. Inotropic responses of the frog ventricle to adenosine triphosphate and related changes in endogenous cyclic nucleotides.

    PubMed Central

    Flitney, F W; Singh, J

    1980-01-01

    1. A study has been made of a well documented but poorly understood response of the isolated frog ventricle to treatment with exogenous adenosine 5' triphosphate (ATP). Measurements of membrane potential, isometric twitch tension and levels of endogenous 3',5'-cyclic nucleotides have been made at various times during the ATP-induced response. 2. ATP elicits a characteristic triphasic response, which comprises an initial, abrupt increase in contractility, rising to a maximum within a few beats (first phase); followed by a period when the twitch amplitude falls, sometimes to below the control level (second phase); and superceded by a more slowly developing and longer-lasting increase in contractile force (third phase). The response is unaffected by atropine, propranolol or phentolamine. However, the prostaglandin synthetase inhibitor indomethacin depresses the first phase and entirely suppresses the third phase. 3. The inotropic effects of ATP are accompanied by changes in the shape of the action potential. These effects are dose-related. The duration of the action potential (D-30mV) and its positive overshoot (O) are increased during all phases of the response, for [ATP]o's up to 10(-5) M. However, at higher [ATP]o's, D-30mV and O ar both reduced during the second phase (but not the first or third phase), when isometric twitch tension is also depressed. The relationship between action potential duration and twitch tension (P) for different [ATP]o's is linear for all three phases of the response, but the slopes of the curves (delta P/delta D) are markedly different, indicating that the sensitivity of the contractile system to membrane depolarization is not constant, but varies continuously throughout the response. 4. ATP has a potent stimulatory effect on the metabolism of endogenous 3',5'-cyclic nucleotides. The time courses of the changes in adenosine 3','5-cyclic monophosphate (3',5'-cyclic AMP) and guanosine 3',5'-cyclic monophosphate (3',5'-cyclic GMP) are

  7. Adenosine Kinase Deficiency Is Associated with Developmental Abnormalities and Reduced Transmethylation1

    PubMed Central

    Moffatt, Barbara A.; Stevens, Yvonne Y.; Allen, Michael S.; Snider, Jamie D.; Pereira, Luiz A.; Todorova, Margarita I.; Summers, Peter S.; Weretilnyk, Elizabeth A.; Martin-McCaffrey, Luke; Wagner, Conrad

    2002-01-01

    Adenosine (Ado) kinase (ADK; ATP:Ado 5′ phosphotransferase, EC 2.7.1.20) catalyzes the salvage synthesis of adenine monophosphate from Ado and ATP. In Arabidopsis, ADK is encoded by two cDNAs that share 89% nucleotide identity and are constitutively, yet differentially, expressed in leaves, stems, roots, and flowers. To investigate the role of ADK in plant metabolism, lines deficient in this enzyme activity have been created by sense and antisense expression of the ADK1 cDNA. The levels of ADK activity in these lines range from 7% to 70% of the activity found in wild-type Arabidopsis. Transgenic plants with 50% or more of the wild-type activity have a normal morphology. In contrast, plants with less than 10% ADK activity are small with rounded, wavy leaves and a compact, bushy appearance. Because of the lack of elongation of the primary shoot, the siliques extend in a cluster from the rosette. Fertility is decreased because the stamen filaments do not elongate normally; hypocotyl and root elongation are reduced also. The hydrolysis of S-adenosyl-l-homo-cysteine (SAH) produced from S-adenosyl-l-methionine (SAM)-dependent methylation reactions is a key source of Ado in plants. The lack of Ado salvage in the ADK-deficient lines leads to an increase in the SAH level and results in the inhibition of SAM-dependent transmethylation. There is a direct correlation between ADK activity and the level of methylesterified pectin in seed mucilage, as monitored by staining with ruthenium red, immunofluorescence labeling, or direct assay. These results indicate that Ado must be steadily removed by ADK to prevent feedback inhibition of SAH hydrolase and maintain SAM utilization and recycling. PMID:11891238

  8. Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition

    PubMed Central

    Kiss, Levente; Deitch, Edwin A; Szabó, Csaba

    2014-01-01

    Aims Hydrogen sulfide (H2S) at low concentrations serves as a physiological endogenous vasodilator molecule, while at higher concentrations it can trigger cytotoxic effects. The aim of our study was to elucidate the potential mechanisms responsible for the effects of H2S on vascular tone. Main methods We measured the vascular tone in vitro in precontracted rat thoracic aortic rings and we have tested the effect of different oxygen levels and a variety of inhibitors affecting known vasodilatory pathways. We have also compared the vascular effect of high concentrations of H2S to those of pharmacological inhibitors of oxidative phosphorylation. Furthermore, we measured adenosine triphosphate (ATP)-levels in the same vascular tissues. Key findings We have found that in rat aortic rings: (1) H2S decreases ATP levels; (2) relaxations to H2S depend on the ambient oxygen concentration; (3) prostaglandins do not take part in the H2S induced relaxations; (4) the 3':5'-cyclic guanosine monophosphate (cGMP) – nitric oxide (NO) pathway does not have a role in the relaxations (5) the role of KATP channels is limited, while Cl−/HCO3− channels have a role in the relaxations. (6): We have observed that high concentrations of H2S relax the aortic rings in a fashion similar to sodium cyanide, and both agents reduce cellular ATP levels to a comparable degree. Significance H2S, a new gasotransmitter of emerging importance, leads to relaxation via Cl−/HCO3− channels and metabolic inhibition and the interactions of these two factors depend on the oxygen levels of the tissue. PMID:18790700

  9. Reduced rate of adenosine triphosphate synthesis by in vivo 31P nuclear magnetic resonance spectroscopy and downregulation of PGC-1beta in distal skeletal muscle following burn.

    PubMed

    Tzika, A Aria; Mintzopoulos, Dionyssios; Padfield, Katie; Wilhelmy, Julie; Mindrinos, Michael N; Yu, Hongue; Cao, Haihui; Zhang, Qunhao; Astrakas, Loukas G; Zhang, Jiangwen; Yu, Yong-Ming; Rahme, Laurence G; Tompkins, Ronald G

    2008-02-01

    Using a mouse model of burn trauma, we tested the hypothesis that severe burn trauma corresponding to 30% of total body surface area (TBSA) causes reduction in adenosine triphosphate (ATP) synthesis in distal skeletal muscle. We employed in vivo 31P nuclear magnetic resonance (NMR) in intact mice to assess the rate of ATP synthesis, and characterized the concomitant gene expression patterns in skeletal muscle in burned (30% TBSA) versus control mice. Our NMR results showed a significantly reduced rate of ATP synthesis and were complemented by genomic results showing downregulation of the ATP synthase mitochondrial F1 F0 complex and PGC-1beta gene expression. Our findings suggest that inflammation and muscle atrophy in burns are due to a reduced ATP synthesis rate that may be regulated upstream by PGC-1beta. These findings implicate mitochondrial dysfunction in distal skeletal muscle following burn injury. That PGC-1beta is a highly inducible factor in most tissues and responds to common calcium and cyclic adenosine monophosphate (cAMP) signaling pathways strongly suggests that it may be possible to develop drugs that can induce PGC-1beta.

  10. One-step isolation of adenosine triphosphate from crude fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel.

    PubMed

    Yun, Junxian; Shen, Shaochuan; Chen, Fang; Yao, Kejian

    2007-12-01

    Adenosine triphosphate (ATP) is an important high-energy compound widely used in biological and therapeutic fields. It can be produced by phosphorylation of adenosine monophosphate (AMP) with microbial cells in industrial scale and the effective isolation of ATP from microbial fermentation broth is a challenging work. In this work, we develop a novel one-step method to directly separate ATP from fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel. The cryogel bed with tertiary amine groups was prepared by grafting N,N-dimethylaminoethyl methacrylate (DMAEMA) monomer chains onto the matrix of a polyacrylamide-based cryogel in a glass column and its properties of liquid dispersion, water permeability, porosity as well as the ligand density were measured. Chromatographic separation of ATP from the fermentation broth by the cryogel was carried out using deionised water and 0.01 M HCl as running buffer, respectively. The breakthrough characteristics and elution performance in the cryogel bed were revealed and analyzed. The purities of the obtained ATP were analyzed quantitatively by high performance liquid chromatography (HPLC). The maximal purity of ATP by the one-step separation method was 95.5% using 0.01 M HCl as running buffer in this work. The corresponding chromatographic behaviors were investigated and analyzed.

  11. One-step isolation of adenosine triphosphate from crude fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel.

    PubMed

    Yun, Junxian; Shen, Shaochuan; Chen, Fang; Yao, Kejian

    2007-12-01

    Adenosine triphosphate (ATP) is an important high-energy compound widely used in biological and therapeutic fields. It can be produced by phosphorylation of adenosine monophosphate (AMP) with microbial cells in industrial scale and the effective isolation of ATP from microbial fermentation broth is a challenging work. In this work, we develop a novel one-step method to directly separate ATP from fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel. The cryogel bed with tertiary amine groups was prepared by grafting N,N-dimethylaminoethyl methacrylate (DMAEMA) monomer chains onto the matrix of a polyacrylamide-based cryogel in a glass column and its properties of liquid dispersion, water permeability, porosity as well as the ligand density were measured. Chromatographic separation of ATP from the fermentation broth by the cryogel was carried out using deionised water and 0.01 M HCl as running buffer, respectively. The breakthrough characteristics and elution performance in the cryogel bed were revealed and analyzed. The purities of the obtained ATP were analyzed quantitatively by high performance liquid chromatography (HPLC). The maximal purity of ATP by the one-step separation method was 95.5% using 0.01 M HCl as running buffer in this work. The corresponding chromatographic behaviors were investigated and analyzed. PMID:18024244

  12. Adenosine receptor ligands: differences with acute versus chronic treatment

    PubMed Central

    Jacobson, Kenneth A.; von Lubitz, Dag K. J. E.; Daly, John W.; Fredholm, Bertil B.

    2012-01-01

    Adenosine receptors have been the target of intense research with respect to potential use of selective ligands in a variety of therapeutic areas. Caffeine and theophylline are adenosine receptor antagonists, and over the past three decades a wide range of selective agonists and antagonists for adenosine receptor subtypes have been developed. A complication to the therapeutic use of adenosine receptor ligands is the observation that the effects of acute administration of a particular ligand can be diametrically opposite to the chronic effects of the same ligand. This ‘effect inversion’ is discussed here by Ken Jecobson and colleagues, and has been observed for effects on cognitive processes, seizures and ischaemic damage. PMID:8936347

  13. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  14. d-Propranolol prevents adenosine formation associated with myocardial hypoperfusion.

    PubMed

    Wangler, R D; Peterson, W P; Sparks, H V

    1989-03-01

    d-Propranolol eliminates the increased adenine nucleoside release from hypoperfused hearts [R. D. Wangler, D. F. DeWitt, and H. V. Sparks, Am. J. Physiol. 247 (Heart Circ. Physiol. 16): H330-H336, 1984]. To determine whether d-propranolol reduces adenosine formation or adenosine release into the vascular compartment, we measured myocardial tissue adenosine (TADO). Decreased formation would lower TADO, whereas decreased release would elevate TADO. Reduction of perfusion pressure by 50% reduced coronary flow (CF), venous oxygen tension (PVO2), and myocardial oxygen consumption (MVO2) by approximately 40, 25, and 35%, respectively. Total adenosine and inosine released during 30 min of hypoperfusion increased 10- and 5-fold, respectively. Also, TADO increased from 2.68 +/- 0.37 to 5.17 +/- 0.67 nmol/g (P less than 0.05). In the presence of d-propranolol, the same reduction in perfusion pressure caused a similar decrease in CF and MVO2. d-Propranolol eliminated the release of adenosine and inosine associated with hypoperfusion. TADO after 30 min of hypoperfusion plus d-propranolol was not significantly increased (3.27 +/- 0.40 nmol/g) and was significantly less than hypoperfused hearts. When severe hypoperfusion was created by reducing perfusion pressure 75%, adenosine release still did not increase if d-propranolol was present. When adenosine release was plotted as a function of oxygen supply-consumption, they were related in a hyperbolic fashion. Despite the severity of hypoperfusion, in the presence of d-propranolol the supply-to-consumption ratio was similar to that of the control perfusion group (no drug). We conclude that d-propranolol blocks nucleoside formation during hypoperfusion by reducing oxygen demand such that a reduction of oxygen supply no longer stimulates adenosine formation. PMID:2923237

  15. A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase.

    PubMed

    Zhang, Min; Guo, Su-Miao; Li, Ying-Ru; Zuo, Peng; Ye, Bang-Ce

    2012-06-01

    A simple and reliable fluorescent molecular beacon is developed utilizing DNA-templated silver nanoclusters as a signal indicator and adenosine triphosphate (ATP) and adenosine deaminase as mechanical activators.

  16. Fluorescent Sensing of Guanine and Guanosine Monophosphate with Conjugated Receptors Incorporating Aniline and Naphthyridine Moieties.

    PubMed

    Lu, Shao-Hung; Phang, Riping; Fang, Jim-Min

    2016-04-15

    Ethyne-linked naphthyridine-aniline conjugated molecules are selective sensors of decylguanine in dichloromethane and guanosine monophosphate in water (Kass = 16,000 M(-1)). The 2-acetamido-1,8-naphthyridine moiety binds with guanine in a DAA-ADD triply hydrogen-bonded motif. The aniline moiety enhances an electron-donating effect, and the substituent is tuned to attain extra hydrogen bonds, π-π stacking, and electrostatic interactions. The proposed binding modes are supported by a Job plot, ESI-MS, (1)H NMR, UV-vis, and fluorescence spectral analyses.

  17. Rate and Equilibrium Constants for an Enzyme Conformational Change during Catalysis by Orotidine 5'-Monophosphate Decarboxylase.

    PubMed

    Goryanova, Bogdana; Goldman, Lawrence M; Ming, Shonoi; Amyes, Tina L; Gerlt, John A; Richard, John P

    2015-07-28

    The caged complex between orotidine 5'-monophosphate decarboxylase (ScOMPDC) and 5-fluoroorotidine 5'-monophosphate (FOMP) undergoes decarboxylation ∼300 times faster than the caged complex between ScOMPDC and the physiological substrate, orotidine 5'-monophosphate (OMP). Consequently, the enzyme conformational changes required to lock FOMP at a protein cage and release product 5-fluorouridine 5'-monophosphate (FUMP) are kinetically significant steps. The caged form of ScOMPDC is stabilized by interactions between the side chains from Gln215, Tyr217, and Arg235 and the substrate phosphodianion. The control of these interactions over the barrier to the binding of FOMP and the release of FUMP was probed by determining the effect of all combinations of single, double, and triple Q215A, Y217F, and R235A mutations on kcat/Km and kcat for turnover of FOMP by wild-type ScOMPDC; its values are limited by the rates of substrate binding and product release, respectively. The Q215A and Y217F mutations each result in an increase in kcat and a decrease in kcat/Km, due to a weakening of the protein-phosphodianion interactions that favor fast product release and slow substrate binding. The Q215A/R235A mutation causes a large decrease in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of OMP, which are limited by the rate of the decarboxylation step, but much smaller decreases in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of FOMP, which are limited by the rate of enzyme conformational changes. By contrast, the Y217A mutation results in large decreases in kcat/Km for ScOMPDC-catalyzed decarboxylation of both OMP and FOMP, because of the comparable effects of this mutation on rate-determining decarboxylation of enzyme-bound OMP and on the rate-determining enzyme conformational change for decarboxylation of FOMP. We propose that kcat = 8.2 s(-1) for decarboxylation of FOMP by the Y217A mutant is equal to the rate constant for cage formation from the

  18. Investigations of structural, dielectric and optical properties on silicon ion irradiated glycine monophosphate single crystals

    NASA Astrophysics Data System (ADS)

    Kanagasekaran, T.; Mythili, P.; Bhagavannarayana, G.; Kanjilal, D.; Gopalakrishnan, R.

    2009-08-01

    The 50 MeV silicon ion irradiation induced modifications on structural, optical and dielectric properties of solution grown glycine monophosphate (GMP) crystals were studied. The high-resolution X-ray diffraction study shows the unaltered value of integrated intensity on irradiation. The dielectric constant as a function of frequency and temperature was studied. UV-visible studies reveal the decrease in bandgap values on irradiation and presence of F-centers. The fluorescence spectrum shows the existence of some energy levels, which remains unaffected after irradiation. The scanning electron micrographs reveal the defects formed on irradiation.

  19. A selective adenosine sensor derived from a triplex DNA aptamer.

    PubMed

    Patel, Mayurbhai; Dutta, Avishek; Huang, Haidong

    2011-07-01

    The aim of this study is to develop a selective adenosine aptamer sensor using a rational approach. Unlike traditional RNA aptamers developed from SELEX, duplex DNA containing an abasic site can function as a general scaffold to rationally design aptamers for small aromatic molecules. We discovered that abasic site-containing triplex DNA can also function as an aptamer and provide better affinity than duplex DNA aptamers. A novel adenosine aptamer sensor was designed using such a triplex. The aptamer is modified with furano-dU in the binding site to sense the binding. The sensor bound adenosine has a dissociation constant of 400 nM, more than tenfold stronger than the adenosine aptamer developed from SELEX. The binding quenched furano-dU fluorescence by 40%. It was also demonstrated in this study that this sensor is selective for adenosine over uridine, cytidine, guanosine, ATP, and AMP. The detection limit of this sensor is about 50 nM. The sensor can be used to quantify adenosine concentrations between 50 nM and 2 μM. PMID:21547431

  20. Intrarenal blood flow distribution during adenosine-mediated vasoconstriction.

    PubMed

    Macias, J F; Fiksen-Olsen, M; Romero, J C; Knox, F G

    1983-01-01

    Intrarenal infusion of adenosine induces an initial vasoconstriction followed by a subsequent vasodilation. The intrarenal distribution of blood flow in the vasoconstriction phase is unknown. The present study was undertaken to assess the effect of intrarenal infusion of adenosine on intracortical distribution of renal blood flow during both the vasoconstriction and vasodilation phases. Renal blood flow distribution was measured with radiolabeled microspheres in anesthetized sodium-depleted dogs before and during the early vasoconstriction phase and the late vasodilation phase of intrarenal infusion of adenosine. During the vasoconstriction phase, there was a uniform decrease in blood flow in each renal cortical zone. In the late phase of adenosine infusion, there was a significant increase in deep cortical flow without significant changes in superficial cortical flow compared with control. The effects of adenosine were also compared with those exerted by norepinephrine in which decreased blood flow was demonstrated in all zones. We conclude that the vasoconstrictor phase of adenosine infusion is characterized by a uniform reduction of renal blood flow to all cortical zones, whereas the vasodilator phase is characterized by a selective deep cortical vasodilation.

  1. Detrimental effects of adenosine signaling in sickle cell disease

    PubMed Central

    Zhang, Yujin; Dai, Yingbo; Wen, Jiaming; Zhang, Weiru; Grenz, Almut; Sun, Hong; Tao, Lijian; Lu, Guangxiu; Alexander, Danny C; Milburn, Michael V; Carter-Dawson, Louvenia; Lewis, Dorothy E; Zhang, Wenzheng; Eltzschig, Holger K; Kellems, Rodney E; Blackburn, Michael R; Juneja, Harinder S; Xia, Yang

    2016-01-01

    Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A2B receptor (A2BR)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A2BR has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease. PMID:21170046

  2. Adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate are synthesized by yeast acetyl coenzyme A synthetase.

    PubMed Central

    Guranowski, A; Günther Sillero, M A; Sillero, A

    1994-01-01

    Yeast (Saccharomyces cerevisiae) acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5'-tetraphosphate (P4A) and adenosine 5'-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4), with relative velocities of 7:1, respectively. Of 12 nucleotides tested as potential donors of nucleotidyl moiety, only ATP, adenosine-5'-O-[3-thiotriphosphate], and acetyl-AMP were substrates, with relative velocities of 100, 62, and 80, respectively. The Km values for ATP, P3, and acetyl-AMP were 0.16, 4.7, and 1.8 mM, respectively. The synthesis of p4A could proceed in the absence of exogenous acetate but was stimulated twofold by acetate, with an apparent Km value of 0.065 mM. CoA did not participate in the synthesis of p4A (p5A) and inhibited the reaction (50% inhibitory concentration of 0.015 mM). At pH 6.3, which was optimum for formation of p4A (p5A), the rate of acetyl-CoA synthesis (1.84 mumol mg-1 min-1) was 245 times faster than the rate of synthesis of p4A measured in the presence of acetate. The known formation of p4A (p5A) in yeast sporulation and the role of acetate may therefore be related to acetyl-CoA synthetase. Images PMID:7910605

  3. Adaptations in adenosine signaling in drug dependence: therapeutic implications.

    PubMed

    Hack, Stephen P; Christie, Macdonald J

    2003-01-01

    Adenosine is an important endogenous purine neuromodulator in the central nervous system that modulates many important cellular processes in neurons. The physiological effects of adenosine are transduced through four pharmacologically classified receptor types i.e., A1, A2A, A2B and A3. All adenosine receptors are G-protein coupled receptors (GPCR) of the type 1 variety. Adaptations in adenosine signaling have been implicated in a wide range of pathophysiological processes, such as epilepsies, sleep disorders, pain, and drug addictions. Knowledge relating to the etiology of addictive processes is far from complete, and as a result the therapeutic options to deal with drug dependence issues are limited. Drugs of abuse mediate their effects through many distinct cellular effectors, such as neurotransmitter transporters, ion channels, and receptor proteins. However, a unifying feature of the major drugs of abuse-i.e., opiates, cocaine, and alcohol-is that they all directly or indirectly modulate adenosine signaling in neurons. Agents targeting adenosine receptors may therefore offer novel avenues for the development of therapies to manage or treat addictions. A consistent cellular adaptation to long-term drug use is the up- or down-regulation of signaling pathways driven by adenylyl cyclase/cyclic AMP (cAMP) in several brain regions linked to addiction. Withdrawal from mu-opioids or cocaine following their chronic administration leads to an upregulation of adenylyl cyclase-mediated signaling, resulting in high levels of cAMP. Cyclic AMP produced in this way acts as a substrate for the endogenous production of adenosine. Increased levels of endogenous adenosine interact with presynaptic A1 receptors to inhibit the excessive neuronal excitation often seen during morphine/cocaine withdrawal. These pre-clinical findings fit well with other data indicating that drugs which boost endogenous adenosine levels or directly interact with inhibitory A1 receptors can alleviate

  4. Interstitial adenosine concentration is increased by dipyridamole

    SciTech Connect

    Gorman, M.W.; Wangler, R.D.; DeWitt, D.F.; Wang, C.Y.; Bassingthwaighte, J.B.; Sparks, H.V.

    1986-03-01

    The authors used the multiple indicator dilution technique to observe the capillary transport of adenosine (ADO) in isolated guinea pig hearts. Radiolabelled albumin, sucrose and ADO were injected on the arterial side and measured in venous samples collected during the following 20 seconds. Transport parameters calculated from these data include permeability-surface area products (PS) for transendothelial diffusion, endothelial cell (EC) uptake at the lumenal and ablumenal membranes, and EC metabolism. With simultaneous measurements of arterial and venous ADO concentrations and flow, the authors calculated the steady-state interstitial fluid (ISF) ADO concentration. Under control conditions the venous ADO concentration was 7.1 +/- 2.8 nM. The calculated ISF concentration depends on whether they assume the venous ADO comes from the ISF, or directly from ECs. These ISF concentrations are 25 +/- 12 nM and 9.8 +/- 4.0 nM, respectively. During dipyridamole infusion (10 uM) the EC transport parameters became nearly zero. Venous and ISF ADO concentrations increased to 33 +/- 8.9 nM and 169 +/- 42 nM, respectively. The authors conclude that the ISF ADO concentration is 1.5-4 fold higher than the venous concentration at rest, and the ISF concentration increases greatly with dipyridamole.

  5. Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5'-phosphorimidazolide of adenosine on Na(+)-montmorillonite

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1994-01-01

    The rate constants for the condensation reaction of the 5'-phosphorimidazolide of adenosine (ImpA) to form dinucleotides and oligonucleotides have been measured in the presence of Na(+)-volclay (a Na(+)-montmorillonite) in pH 8 aqueous solution at 25 degrees C. The rates of the reaction of ImpA with an excess of adenosine 5'-monophosphoramidate (NH2pA), P1,P2-diadenosine 5',5'-pyrophosphate (A5'ppA), or adenosine 5'-monophosphate (5'-AMP or pA) in the presence of the montmorillonite to form NH2pA3'pA, A5'ppA3'pA, and pA3'pA, respectively, were measured. Only 3',5'-linked products were observed. The magnitude of the rate constants decrease in the order NH2pA3'pA > A5'-ppA3'pA > pA3'pA. The binding of ImpA to montmorillonite was measured, and the adsorption isotherm was determined. The binding of ImpA to montmorillonite and the formation of higher oligonucleotides is not observed in the absence of salts. Mg2+ enhances binding and oligonucleotide formation more than Ca2+ and Na+. The rate constants for the oligonucleotide formation were determined from the reaction products formed from 10 to 40 mM ImpA in the presence of Na(+)-montmorillonite using the computer program SIMFIT. The magnitudes of the rate constants for the formation of oligonucleotides increased in the order 2-mer < 3-mer < 4-mer ... 7-mer. The rate constants for dinucleotide and trinucleotide formation are more than 1000 times larger than those measured in the absence of montmorillonite. The rate constants for the formation of dinucleotide, trinucleotide, and tetranucleotide are 41,2.6, and 3.7 times larger than those for the formation of oligo(G)s with a poly(C) template. The hydrolysis of ImpA was accelerated 35 times in the presence of the montmorillonite. The catalytic ability of montmorillonite to form dinucleotides and oligonucleotides is quantitatively evaluated and possible pathways for oligo(A) formation are proposed.

  6. Viral keratitis-inhibitory effect of 9-beta-D-arabinofuranosylhypoxanthine 5'-monophosphate.

    PubMed

    Sidwell, R W; Allen, L B; Huffman, J H; Revankar, G R; Robins, R K; Tolman, R L

    1975-10-01

    Topical application of 9-beta-d-arabinofuranosylhypoxanthine 5'-monophosphate (ara-HxMP) significantly inhibited the development of keratitis induced by types 1 and 2 herpes simplex virus and vaccinia virus in the eyes of rabbits. Parameters for evaluation of efficacy were infectivity (corneal opacity, lesion size, and type), Draize (erythema, conjunctival swelling, and discharge), and reduction in titer of recoverable virus from the eye. When the relative efficacy of the related compounds 9-beta-d-arabinofuranosyladenine (ara-A), ara-A 5'-monophosphate (ara-AMP), and ara-Hx was determined against type 1 herpes simplex virus in a parallel experiment, the more water-soluble compounds (ara-HxMP, ara-AMP) were the most effective. The relative efficacy of ara-A was also determined against type 2 herpes and vaccinia virus-induced keratitis. Mortality in rabbits due to central nervous system involvement caused by types 1 and 2 herpes simplex virus was inhibited. Ara-HxMP was not discernibly toxic to the eye at concentrations of at least 20%; efficacy was still discernible with a 0.1% solution.

  7. THE EFFECT OF CHLORINATION OF NUCLEOTIDE BASES ON THE CONFORMATIONAL PROPERTIES OF THYMIDINE MONOPHOSPHATE.

    PubMed

    Mukhina, T M; Nikolaienko, T Yu

    2015-01-01

    Recent studies on Escherichia coli bacteria cultivation, in which DNA thymine was replaced with 5-chlorouracil have refreshed the problem of understanding the changes to physical properties of DNA monomers resultant from chemical modifications. These studies have shown that the replacement did not affect the normal activities and division of the bacteria, but has significantly reduced its life span. In this paper a comparative analysis was carried out by the methods of computational experiment of a set of 687 possible conformers of natural monomeric DNA unit (2'-deoxyribonucleotide thymidine monophosphate) and 660 conformers of 5-chloro-2'-deoxyuridine monophosphate - a similar molecules in which the natural nitrogenous base thymine is substituted with 5-chlorouracil. Structures of stable conformers of the modified deoxyribonucleotide have been obtained and physical factors, which determine their variation from the conformers of the unmodified molecule have been analyzed. A comparative analysis of the elastic properties of conformers of investigated molecules and non-covalent interactions present in them was conducted. The results can be usedfor planning experiments on synthesis of artficial DNA suitable for incorporation into living organisms. PMID:26255348

  8. Structural Basis for the Specificity of Human NUDT16 and Its Regulation by Inosine Monophosphate

    PubMed Central

    Trésaugues, Lionel; Lundbäck, Thomas; Welin, Martin; Flodin, Susanne; Nyman, Tomas; Silvander, Camilla; Gräslund, Susanne; Nordlund, Pär

    2015-01-01

    Human NUDT16 is a member of the NUDIX hydrolase superfamily. After having been initially described as an mRNA decapping enzyme, recent studies conferred it a role as an “housecleaning” enzyme specialized in the removal of hazardous (deoxy)inosine diphosphate from the nucleotide pool. Here we present the crystal structure of human NUDT16 both in its apo-form and in complex with its product inosine monophosphate (IMP). NUDT16 appears as a dimer whose formation generates a positively charged trench to accommodate substrate-binding. Complementation of the structural data with detailed enzymatic and biophysical studies revealed the determinants of substrate recognition and particularly the importance of the substituents in position 2 and 6 on the purine ring. The affinity for the IMP product, harboring a carbonyl in position 6 on the base, compared to purine monophosphates lacking a H-bond acceptor in this position, implies a catalytic cycle whose rate is primarily regulated by the product-release step. Finally, we have also characterized a phenomenon of inhibition by the product of the reaction, IMP, which might exclude non-deleterious nucleotides from NUDT16-mediated hydrolysis regardless of their cellular concentration. Taken together, this study details structural and regulatory mechanisms explaining how substrates are selected for hydrolysis by human NUDT16. PMID:26121039

  9. Structural Studies of Thiamin Monophosphate Kinase in Complex with Substrates and Products.

    SciTech Connect

    McCulloch, K.M.; Kinsland, C.; Begley, T.P.; Ealick, S E.

    2008-06-03

    Thiamin monophosphate kinase (ThiL) catalyzes the ATP-dependent phosphorylation of thiamin monophosphate (TMP) to form thiamin pyrophosphate (TPP), the active form of vitamin B1. ThiL is a member of a small ATP binding superfamily that also includes the purine biosynthetic enzymes, PurM and PurL, NiFe hydrogenase maturation protein, HypE, and selenophosphate synthase, SelD. The latter four enzymes are believed to utilize phosphorylated intermediates during catalysis. To understand the mechanism of ThiL and its relationship to the other superfamily members, we determined the structure of Aquifex aeolicus ThiL (AaThiL) with nonhydrolyzable AMP-PCP and TMP, and also with the products of the reaction, ADP and TPP. The results suggest that AaThiL utilizes a direct, inline transfer of the {gamma}-phosphate of ATP to TMP rather than a phosphorylated enzyme intermediate. The structure of ThiL is compared to those of PurM, PurL, and HypE, and the ATP binding site is compared to that of PurL, for which nucleotide complexes are available.

  10. The interaction of propidium diiodide with self-complementary dinucleoside monophosphates.

    PubMed

    Davidson, M W; Griggs, B G; Lopp, I G; Wilson, W D

    1977-12-14

    The interactions of a quinacrine derivative, methylated at both the aromatic and aliphatic nitrogens, and propidium diiodide with the dinucleoside monophosphates CpG, GpC, UpA and ApU have been investigated using 13C-NMR (for the quinacrine derivative prepared with [13C]methyl substituents and 1H-NMR and ultraviolet-visible spectroscopy. The quinacrine derivative displayed negligible interaction with the dinucleosides at concentrations up to 5 - 10(-4) M. Propidium did form complexes with dinucleosides even at concentrations as low as 10(-4) M. Propidium displayed a pyrimidine-purine binding preference and gave especially large changes in ultraviolet-visible and 1H-NMR spectra in the presence of CpG. This suggests that propidium forms an intercalated complex with a Watson-Crick hydrogen-bonded CpG dimer. At higher concentrations UpA and GpC gave similar spectral changes indicating that they could also form significant amounts of an intercalated complex with propidium under appropriate conditions. The changes caused by ApU were small under all conditions and were more similar to the effects caused by mononucleotides. These results indicate that, at least for phenanthridines, cationic side chains do not greatly inhibit complex formation with dinucleoside monophosphates, and suggest that the weak interaction of the quinacrine derivative with dinucleosides is due to weaker interactions of the acridine ring system with nucleoside bases relative to the phenanthridine ring system.

  11. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. PMID:21511036

  12. Role of A3 adenosine receptor in diabetic neuropathy.

    PubMed

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc.

  13. Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, via A2B adenosine receptor signaling

    PubMed Central

    Wen, Jiaming; Jiang, Xianzhen; Dai, Yingbo; Zhang, Yujin; Tang, Yuxin; Sun, Hong; Mi, Tiejuan; Phatarpekar, Prasad V.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2010-01-01

    Priapism is a condition of persistent penile erection in the absence of sexual excitation. Of men with sickle cell disease (SCD), 40% display priapism. The disorder is a dangerous and urgent condition, given its association with penile fibrosis and eventual erectile dysfunction. Current strategies to prevent its progression are poor because of a lack of fundamental understanding of the molecular mechanisms for penile fibrosis in priapism. Here we demonstrate that increased adenosine is a novel causative factor contributing to penile fibrosis in two independent animal models of priapism, adenosine deaminase (ADA)-deficient mice and SCD transgenic mice. An important finding is that chronic reduction of adenosine by ADA enzyme therapy successfully attenuated penile fibrosis in both mouse models, indicating an essential role of increased adenosine in penile fibrosis and a novel therapeutic possibility for this serious complication. Subsequently, we identified that both mice models share a similar fibrotic gene expression profile in penile tissue (including procollagen I, TGF-β1, and plasminogen activator inhibitor-1 mRNA), suggesting that they share similar signaling pathways for progression to penile fibrosis. Thus, in an effort to decipher specific cell types and underlying mechanism responsible for adenosine-mediated penile fibrosis, we purified corpus cavernosal fibroblast cells (CCFCs), the major cell type involved in this process, from wild-type mice. Quantitative RT-PCR showed that the major receptor expressed in these cells is the adenosine receptor A2BR. Based on this fact, we further purified CCFCs from A2BR-deficient mice and demonstrated that A2BR is essential for excess adenosine-mediated penile fibrosis. Finally, we revealed that TGF-β functions downstream of the A2BR to increase CCFC collagen secretion and proliferation. Overall, our studies identify an essential role of increased adenosine in the pathogenesis of penile fibrosis via A2BR signaling and

  14. [Vascular effects of adenosine-triphosphate].

    PubMed

    Colson, P; Saussine, M; Gaba, S; Sequin, J; Chaptal, P A; Roquefeuil, B

    1991-01-01

    This study assessed the effects of adenosine triphosphate (ATP) on systemic vascular resistances during the hypothermic cardiopulmonary bypass phase of cardiac surgery. Twenty patients scheduled for cardiac surgery were randomly divided into an ATP group (n = 10), and a placebo group (n = 10). Anaesthesia was similar for all the patients (diazepam, fentanyl and pancuronium). During the heart arrest phase, and as soon as the arterial pressure, the level in the venous return reservoir, and the pump flow rate had all been in steady state for 5 min, ATP or placebo was injected into the venous line of the oxygenator. Injection speed was doubled every three minutes, twice. The following ATP doses were administered: 0.012, 0.025 and 0.05 mg.kg-1.min-1. The level in the venous return reservoir was kept constant. Mean arterial pressure (MAP) and pump flow rate (DP) were assessed every half minute. Systemic vascular resistances were calculated with the relationship MAP/DP. Changes in vascular capacitance were directly proportional to changes in DP as the heart had been excluded, and all the blood returned to the pump, the blood volume being kept constant. MAP and DP remained unchanged in the placebo group. In the opposite ATP induced a dose-related systemic vasodilation: MAP decreased from 82.8 +/- 12.5 mmHg (control) to 66.0 +/- 14.8 mmHg, 59.8 +/- 10.6 mmHg, and 49.0 +/- 4.7 mmHg with 0.012, 0.025 and 0.05 mg.kg-1.min-1 ATP respectively. The MAP returned to preinfusion control levels when the ATP infusion was discontinued (90.0 +/- 17.8 mmHg). The DP, and therefore venous return, did not change, neither during ATP infusion, nor after its discontinuation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1854051

  15. Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.

    PubMed

    Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír

    2007-09-01

    Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine.

  16. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis.

  17. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis. PMID:26081145

  18. Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter.

    PubMed

    de Paulis, Tomas; Schmidt, Dennis E; Bruchey, Aleksandra K; Kirby, Michael T; McDonald, Michael P; Commers, Patricia; Lovinger, David M; Martin, Peter R

    2002-05-10

    Preliminary screening of a minor, non-xanthine constituent of roasted coffee, 3,4-diferuloyl-1,5-quinolactone (DIFEQ), showed inhibition of the adenosine transporter at low micromolar concentration. DIFEQ is a neutral derivative of the chlorogenic acids, i.e. isomeric mono- and di-substituted coumaroyl-, caffeoyl-, and feruloyl-esters of quinic acid, formed in the roasting process of coffee. Displacement of the adenosine transporter antagonist [(3)H](S)-(nitrobenzyl)-6-thioinosine binding by DIFEQ in cultured U-937 cell preparations, expressing the human adenosine transporter protein (hENT1), showed a K(i) of 0.96+/-0.13 microM. Extracts of regular and decaffeinated coffee showed binding activities equivalent to 30-40 mg DIFEQ per three cups of coffee. Acute administration of a high dose of DIFEQ (100 mg/kg i.p.) reduced open field locomotion in mice for 20 min in correlation with brain levels of DIFEQ. Both 3,4-dicaffeoyl-1,5-quinide and 3,4-dicoumaroyl-1,5-quinide, two close structural analogs of DIFEQ also present in roasted coffee, showed similar affinities for the adenosine transporter, while the corresponding 3- and 4-mono caffeoyl- and feruloyl-quinides were one to two orders of magnitudes less active. This suggests that 3,4-dicinnamoyl-1,5-quinides in coffee could have the potential to raise extra-cellular adenosine levels, thereby counteracting the stimulant effect of caffeine.

  19. Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter.

    PubMed

    de Paulis, Tomas; Schmidt, Dennis E; Bruchey, Aleksandra K; Kirby, Michael T; McDonald, Michael P; Commers, Patricia; Lovinger, David M; Martin, Peter R

    2002-05-10

    Preliminary screening of a minor, non-xanthine constituent of roasted coffee, 3,4-diferuloyl-1,5-quinolactone (DIFEQ), showed inhibition of the adenosine transporter at low micromolar concentration. DIFEQ is a neutral derivative of the chlorogenic acids, i.e. isomeric mono- and di-substituted coumaroyl-, caffeoyl-, and feruloyl-esters of quinic acid, formed in the roasting process of coffee. Displacement of the adenosine transporter antagonist [(3)H](S)-(nitrobenzyl)-6-thioinosine binding by DIFEQ in cultured U-937 cell preparations, expressing the human adenosine transporter protein (hENT1), showed a K(i) of 0.96+/-0.13 microM. Extracts of regular and decaffeinated coffee showed binding activities equivalent to 30-40 mg DIFEQ per three cups of coffee. Acute administration of a high dose of DIFEQ (100 mg/kg i.p.) reduced open field locomotion in mice for 20 min in correlation with brain levels of DIFEQ. Both 3,4-dicaffeoyl-1,5-quinide and 3,4-dicoumaroyl-1,5-quinide, two close structural analogs of DIFEQ also present in roasted coffee, showed similar affinities for the adenosine transporter, while the corresponding 3- and 4-mono caffeoyl- and feruloyl-quinides were one to two orders of magnitudes less active. This suggests that 3,4-dicinnamoyl-1,5-quinides in coffee could have the potential to raise extra-cellular adenosine levels, thereby counteracting the stimulant effect of caffeine. PMID:12065074

  20. Antagonism by theophylline of respiratory inhibition induced by adenosine.

    PubMed

    Eldridge, F L; Millhorn, D E; Kiley, J P

    1985-11-01

    The effects on respiration of an analogue of adenosine, L-2-N6-(phenylisopropyl)adenosine (PIA), and of the methylxanthine, theophylline, were determined in 19 vagotomized glomectomized cats whose end-tidal PCO2 was kept constant by means of a servo-controlled ventilator. Integrated phrenic nerve activity was used to represent respiratory output. Our results show that PIA, whether given systemically or into the third cerebral ventricle, depressed respiration. Systemically administered theophylline stimulated respiration. Theophylline given intravenously, or into the third ventricle not only reversed the depressive effects of previously administered PIA but caused further increases of respiration above the control level. Prior systemic administration of theophylline blocked both respiratory and hypotensive effects of subsequently administered PIA. Effects of either agent on medullary extracellular fluid pH did not explain the results. We conclude that the adenosine analogue PIA, acts to inhibit neurons in the brain that are involved in the control of respiration and that its effects are blocked by theophylline. We suggest that adenosine acts as a tonic modulator of respiration and that theophylline stimulates breathing by competitive antagonism of adenosine at neuronal receptor sites. PMID:4066573

  1. Adenosine signaling and the regulation of chronic lung disease

    PubMed Central

    Zhou, Yang; Schneider, Daniel J.; Blackburn, Michael R.

    2009-01-01

    Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and interstitial lung disease are characterized by inflammation and tissue remodeling processes that compromise pulmonary function. Adenosine is produced in the inflamed and damaged lung where it plays numerous roles in the regulation of inflammation and tissue remodeling. Extracellular adenosine serves as an autocrine and paracrine signaling molecule by engaging cell surface adenosine receptors. Preclinical and cellular studies suggest that adenosine plays an anti-inflammatory role in processes associated with acute lung disease, where activation of the A2AR and A2BR have promising implications for the treatment of these disorders. In contrast, there is growing evidence that adenosine signaling through the A1R, A2BR and A3R may serve pro-inflammatory and tissue remodeling functions in chronic lung diseases. This review discusses the current progress of research efforts and clinical trials aimed at understanding the complexities of this signaling pathway as they pertain to the development of treatment strategies for chronic lung diseases. PMID:19426761

  2. Effect of adenosine and inosine on ureagenesis in hepatocytes.

    PubMed Central

    Guinzberg, R; Laguna, I; Zentella, A; Guzman, R; Piña, E

    1987-01-01

    Adenosine and inosine produced a dose-dependent stimulation of ureagenesis in isolated rat hepatocytes. Hypoxanthine, xanthine and uric acid were without effect. Half-maximally effective concentrations were 0.08 microM for adenosine and 5 microM for inosine. Activation of ureagenesis by both nucleosides had the following characteristics: (a) it was observed with either glutamine or (NH4)2CO3, provided that glucose was present; (b) it was not detected when glucose was replaced by lactate plus oleate; (c) it was mutually antagonized by glucagon, but not by adrenaline; and (d) it was dependent on Ca2+. We suggest that the action of adenosine and inosine on ureagenesis might be of physiological significance. PMID:3663162

  3. Adenosine receptor agonists for promotion of dermal wound healing

    PubMed Central

    Valls, María D.; Cronstein, Bruce N.; Montesinos, M. Carmen

    2009-01-01

    Wound healing is a dynamic and complex process that involves a well coordinated, highly regulated series of events including inflammation, tissue formation, revascularization and tissue remodeling. However, this orderly sequence is impaired in certain pathophysiological conditions such as diabetes mellitus, venous insufficiency, chronic glucocorticoid use, aging and malnutrition. Together with proper wound care, promotion of the healing process is the primary objective in the management of chronic poorly healing wounds. Recent studies have demonstrated that A2A adenosine receptor agonists promote wound healing in normal and diabetic animals and one such agonist, Sonedenoson, is currently being evaluated as a prospective new therapy of diabetic foot ulcers. We will review the mechanisms by which adenosine receptor activation affects the function of the cells and tissues that participate in wound healing, emphasizing the potential beneficial impact of adenosine receptor agonists in diabetic impaired healing. PMID:19041853

  4. TAOK3 Phosphorylates the Methylenecyclopropane Nucleoside MBX 2168 to its Monophosphate

    PubMed Central

    Komazin-Meredith, Gloria; Cardinale, Steven C.; Comeau, Katelyn; Magalhaes, Kevin J.; Hartline, Caroll B.; Williams, John D.; Opperman, Timothy J.; Prichard, Mark N.; Bowlin, Terry L.

    2015-01-01

    Monohydroxymethyl methylenecyclopropane nucleosides (MCPNs) with ether or thioether substituents at the 6-position show promise as broad-spectrum herpes virus inhibitors. Their proposed mechanism of action involves sequential phosphorylation to a triphosphate, which can then inhibit viral DNA polymerase. The inhibition of herpes simplex virus (HSV) by these compounds is not dependent on the viral thymidine kinase (TK), which is known to phosphorylate acyclovir (ACV), a standard treatment for HSV infections. Previous studies on the mechanism of action of these compounds against human cytomegalovirus (HCMV) implicated a host kinase in addition to HCMV UL97 kinase in performing the initial phosphorylation. After first eliminating other candidate HSV-1 encoded kinases (UL13 and US3) as well as potential host nucleoside kinases, using activity-based fractionation, we have now identified the host serine-threonine protein kinase TAOK3 as the kinase responsible for transforming the representative monohydroxymethyl MCPN analog MBX 2168 to its monophosphate. PMID:25857706

  5. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    SciTech Connect

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P.

    2010-06-14

    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.

  6. Simulation analysis of formycin 5'-monophosphate analog substrates in the ricin A-chain active site.

    PubMed

    Olson, M A; Scovill, J P; Hack, D C

    1995-06-01

    Ricin is an RNA N-glycosidase that hydrolyzes a single adenine base from a conserved loop of 28S ribosomal RNA, thus inactivating protein synthesis. Molecular-dynamics simulation methods are used to analyze the structural interactions and thermodynamics that govern the binding of formycin 5'-monophosphate (FMP) and several of its analogs to the active site of ricin A-chain. Simulations are carried out initiated from the X-ray crystal structure of the ricin-FMP complex with the ligand modeled as a dianion, monoanion and zwitterion. Relative changes in binding free energies are estimated for FMP analogs constructed from amino substitutions at the 2- and 2'-positions, and from hydroxyl substitution at the 2'-position.

  7. Osmium (VI) complexes of the 3', 5'-dinucleoside monophosphates, ApU and UpA.

    PubMed

    Daniel, F B; Behrman, E J

    1976-02-10

    The dinucleoside monophosphates, ApU and UpA, react with potassium osmate (VI) and 2,2'-bipyridyl to form the corresponding oxo-osmium (VI) bipyridyl sugar ester in which the osmate group is bonded to the terminal 2',3'-glycol. Osmium (VIII) tetroxide and 2,2'-bipyridyl react with the dinucleosides to form the corresponding oxo-osmium (VI) bipyridyl heterocyclic esters which result from addition of the tetroxide to the 5,6-double bond of the uracil residue. Although capable of transesterification reactions, these heterocyclic esters are exceptionally stable toward exchange reactions in solution. No apparent exchange was observed after 1 month. This reaction thus seems promising for single-site osmium labeling in polynucleotides.

  8. Increased riboflavin production by manipulation of inosine 5'-monophosphate dehydrogenase in Ashbya gossypii.

    PubMed

    Buey, Rubén M; Ledesma-Amaro, Rodrigo; Balsera, Mónica; de Pereda, José María; Revuelta, José Luis

    2015-11-01

    Guanine nucleotides are the precursors of essential biomolecules including nucleic acids and vitamins such as riboflavin. The enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) catalyzes the ratelimiting step in the guanine nucleotide de novo biosynthetic pathway and plays a key role in controlling the cellular nucleotide pools. Thus, IMPDH is an important metabolic bottleneck in the guanine nucleotide synthesis, susceptible of manipulation by means of metabolic engineering approaches. Herein, we report the functional and structural characterization of the IMPDH enzyme from the industrial fungus Ashbya gossypii. Our data show that the overexpression of the IMPDH gene increases the metabolic flux through the guanine pathway and ultimately enhances 40 % riboflavin production with respect to the wild type. Also, IMPDH disruption results in a 100-fold increase of inosine excretion to the culture media. Our results contribute to the developing metabolic engineering toolbox aiming at improving the production of metabolites with biotechnological interest in A. gossypii. PMID:26150243

  9. TAOK3 phosphorylates the methylenecyclopropane nucleoside MBX 2168 to its monophosphate.

    PubMed

    Komazin-Meredith, Gloria; Cardinale, Steven C; Comeau, Katelyn; Magalhaes, Kevin J; Hartline, Caroll B; Williams, John D; Opperman, Timothy J; Prichard, Mark N; Bowlin, Terry L

    2015-07-01

    Monohydroxymethyl methylenecyclopropane nucleosides (MCPNs) with ether or thioether substituents at the 6-position show promise as broad-spectrum herpes virus inhibitors. Their proposed mechanism of action involves sequential phosphorylation to a triphosphate, which can then inhibit viral DNA polymerase. The inhibition of herpes simplex virus (HSV) by these compounds is not dependent on the viral thymidine kinase (TK), which is known to phosphorylate acyclovir (ACV), a standard treatment for HSV infections. Previous studies on the mechanism of action of these compounds against human cytomegalovirus (HCMV) implicated a host kinase in addition to HCMV UL97 kinase in performing the initial phosphorylation. After first eliminating other candidate HSV-1 encoded kinases (UL13 and US3) as well as potential host nucleoside kinases, using activity-based fractionation, we have now identified the host serine-threonine protein kinase TAOK3 as the kinase responsible for transforming the representative monohydroxymethyl MCPN analog MBX 2168 to its monophosphate. PMID:25857706

  10. Repurposing cryptosporidium inosine 5'-monophosphate dehydrogenase inhibitors as potential antibacterial agents.

    PubMed

    Mandapati, Kavitha; Gorla, Suresh Kumar; House, Amanda L; McKenney, Elizabeth S; Zhang, Minjia; Rao, Suraj Nagendra; Gollapalli, Deviprasad R; Mann, Barbara J; Goldberg, Joanna B; Cuny, Gregory D; Glomski, Ian J; Hedstrom, Lizbeth

    2014-08-14

    Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the pivotal step in guanine nucleotide biosynthesis. IMPDH is a target for immunosuppressive, antiviral, and anticancer drugs, but, as of yet, has not been exploited for antimicrobial therapy. We have previously reported potent inhibitors of IMPDH from the protozoan parasite Cryptosporidium parvum (CpIMPDH). Many pathogenic bacteria, including Bacillus anthracis, Staphylococcus aureus, and Listeria monocytogenes, contain IMPDHs that should also be inhibited by these compounds. Herein, we present the structure-activity relationships for the inhibition of B. anthracis IMPDH (BaIMPDH) and antibacterial activity of 140 compounds from five structurally distinct compound series. Many potent inhibitors of BaIMPDH were identified (78% with IC50 ≤ 1 μM). Four compounds had minimum inhibitory concentrations (MIC) of less than 2 μM against B. anthracis Sterne 770. These compounds also displayed antibacterial activity against S. aureus and L. monocytogenes. PMID:25147601

  11. Role of adenosine as adjunctive therapy in acute myocardial infarction.

    PubMed

    Forman, Mervyn B; Stone, Gregg W; Jackson, Edwin K

    2006-01-01

    Although early reperfusion and maintained patency is the mainstay therapy for ST elevation myocardial infarction, experimental studies demonstrate that reperfusion per se induces deleterious effects on viable ischemic cells. Thus "myocardial reperfusion injury" may compromise the full potential of reperfusion therapy and may account for unfavorable outcomes in high-risk patients. Although the mechanisms of reperfusion injury are complex and multifactorial, neutrophil-mediated microvascular injury resulting in a progressive decrease in blood flow ("no-reflow" phenomenon) likely plays an important role. Adenosine is an endogenous nucleoside found in large quantities in myocardial and endothelial cells. It activates four well-characterized receptors producing various physiological effects that attenuate many of the proposed mechanisms of reperfusion injury. The cardio-protective effects of adenosine are supported by its role as a mediator of pre- and post-conditioning. In experimental models, administration of adenosine in the peri-reperfusion period results in a marked reduction in infarct size and improvement in ventricular function. The cardioprotective effects in the canine model have a narrow time window with the drug losing its effect following three hours of ischemia. Several small clinical studies have demonstrated that administration of adenosine with reperfusion therapy reduces infarct size and improves ventricular function. In the larger AMISTAD and AMISTAD II trials a 3-h infusion of adenosine as an adjunct to reperfusion resulted in a striking reduction in infarct size (55-65%). Post hoc analysis of AMISTAD II showed that this was associated with significantly improved early and late mortality in patients treated within 3.17 h of symptoms. An intravenous infusion of adenosine for 3 h should be considered as adjunctive therapy in high risk-patients undergoing reperfusion therapy. PMID:16961725

  12. Mutation of archaeal isopentenyl phosphate kinase highlights mechanism and guides phosphorylation of additional isoprenoid monophosphates.

    PubMed

    Dellas, Nikki; Noel, Joseph P

    2010-06-18

    The biosynthesis of isopentenyl diphosphate (IPP) from either the mevalonate (MVA) or the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway provides the key metabolite for primary and secondary isoprenoid biosynthesis. Isoprenoid metabolism plays crucial roles in membrane stability, steroid biosynthesis, vitamin production, protein localization, defense and communication, photoprotection, sugar transport, and glycoprotein biosynthesis. Recently, an alternative branch of the MVA pathway was discovered in the archaeon Methanocaldococcus jannaschii involving a small molecule kinase, isopentenyl phosphate kinase (IPK). IPK belongs to the amino acid kinase (AAK) superfamily. In vitro, IPK phosphorylates isopentenyl monophosphate (IP) in an ATP and Mg(2+)-dependent reaction producing IPP. Here, we describe crystal structures of IPK from M. jannaschii refined to nominal resolutions of 2.0-2.8 A. Notably, an active site histidine residue (His60) forms a hydrogen bond with the terminal phosphate of both substrate and product. This His residue serves as a marker for a subset of the AAK family that catalyzes phosphorylation of phosphate or phosphonate functional groups; the larger family includes carboxyl-directed kinases, which lack this active site residue. Using steady-state kinetic analysis of H60A, H60N, and H60Q mutants, the protonated form of the Nepsilon(2) nitrogen of His60 was shown to be essential for catalysis, most likely through hydrogen bond stabilization of the transition state accompanying transphosphorylation. Moreover, the structures served as the starting point for the engineering of IPK mutants capable of the chemoenzymatic synthesis of longer chain isoprenoid diphosphates from monophosphate precursors. PMID:20392112

  13. In Search of Enzymes with a Role in 3', 5'-Cyclic Guanosine Monophosphate Metabolism in Plants.

    PubMed

    Gross, Inonge; Durner, Jörg

    2016-01-01

    In plants, nitric oxide (NO)-mediated 3', 5'-cyclic guanosine monophosphate (cGMP) synthesis plays an important role during pathogenic stress response, stomata closure upon osmotic stress, the development of adventitious roots and transcript regulation. The NO-cGMP dependent pathway is well characterized in mammals. The binding of NO to soluble guanylate cyclase enzymes (GCs) initiates the synthesis of cGMP from guanosine triphosphate. The produced cGMP alters various cellular responses, such as the function of protein kinase activity, cyclic nucleotide gated ion channels and cGMP-regulated phosphodiesterases. The signal generated by the second messenger is terminated by 3', 5'-cyclic nucleotide phosphodiesterase (PDEs) enzymes that hydrolyze cGMP to a non-cyclic 5'-guanosine monophosphate. To date, no homologues of mammalian cGMP-synthesizing and degrading enzymes have been found in higher plants. In the last decade, six receptor proteins from Arabidopsis thaliana have been reported to have guanylate cyclase activity in vitro. Of the six receptors, one was shown to be a NO dependent guanylate cyclase enzyme (NOGC1). However, the role of these proteins in planta remains to be elucidated. Enzymes involved in the degradation of cGMP remain elusive, albeit, PDE activity has been detected in crude protein extracts from various plants. Additionally, several research groups have partially purified and characterized PDE enzymatic activity from crude protein extracts. In this review, we focus on presenting advances toward the identification of enzymes involved in the cGMP metabolism pathway in higher plants. PMID:27200049

  14. Why do premature newborn infants display elevated blood adenosine levels?

    PubMed

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW

  15. Phosphorylation of adenosine with trimetaphosphate under simulated prebiotic conditions.

    PubMed

    Cheng, Changmei; Fan, Chang; Wan, Rong; Tong, Chunyuan; Miao, Zhiwei; Chen, Jing; Zhao, Yufen

    2002-06-01

    The phosphorylation of adenosine with trimetaphosphate in solution, in solid phase and using wet-dry cycles was carried out and it was found that wet-dry cycles were the most efficient. The catalytic effects of some metal ions on the phosphorylation were also studied and it was discovered that Ni(II) is the most effective. The combination of wet-dry cycles (4 cycles) and catalysis by Ni(II) led to an unprecedented high conversion of adenosine to phosphorylated products (30%) near neutral pH. The main phosphorylated products were 2',3'-cyclic AMP (10.4%) and 5'-ATP (13.0%). PMID:12227426

  16. S-Adenosylhomocysteine toxicity in normal and adenosine kinase-deficient lymphoblasts of human origin

    PubMed Central

    Kredich, Nicholas M.; Hershfield, Michael S.

    1979-01-01

    The human lymphoblast line WI-L2 is subject to growth inhibition by a combination of the adenosine deaminase (ADA; adenosine aminohydrolase, EC 3.5.4.4.) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and adenosine. Although adenosine-induced pyrimidine starvation appears to contribute to this effect, uridine only partially reverses adenosine toxicity in WI-L2 and not at all in strain 107, an adenosine kinase-(ATP:adenosine 5′-phosphotransferase, EC 2.7.1.20) deficient derivative of WI-L2. Treatment of both cell lines with EHNA and adenosine leads to striking elevations in intracellular S-adenosyl-L-homocysteine (AdoHcy), a potent inhibitor of S-adenosyl-L-methionine (AdoMet)-dependent methylation reactions. The methylation in vivo of both DNA and RNA is inhibited by concentrations of EHNA and adenosine that elevate intracellular AdoHcy. Addition of 100 μM L-homocysteine thiolactone to cells treated with EHNA and adenosine enhances adenosine toxicity and further elevates AdoHcy to levels approximately 60-fold higher than those obtained in the absence of this amino acid, presumably by combining with adenosine to form AdoHcy in a reaction catalyzed by S-adenosylhomocysteine hydrolase (EC 3.3.1.1). In the adenosine kinase-deficient strain 107, a combination of ADA inhibition and L-homocysteine thiolactone markedly increases intracellular AdoHcy and inhibits growth even in the absence of exogenous adenosine. These results demonstrate a form of toxicity from endogenously produced adenosine and support the view that AdoHcy, by inhibiting methylation, is a mediator of uridine-resistant adenosine toxicity in these human lymphoblast lines. Furthermore, they suggest that AdoHcy may play a role in the pathogenesis of the severe combined immunodeficiency disease found in most children with heritable ADA deficiency. PMID:221926

  17. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  18. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  19. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  20. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  1. CD39/Adenosine Pathway Is Involved in AIDS Progression

    PubMed Central

    Limou, Sophie; Younas, Mehwish; Kök, Ayrin; Huë, Sophie; Seddiki, Nabila; Hulin, Anne; Delaneau, Olivier; Schuitemaker, Hanneke; Herbeck, Joshua T.; Mullins, James I.; Muhtarova, Maria; Bensussan, Armand; Zagury, Jean-François; Lelievre, Jean-Daniel; Lévy, Yves

    2011-01-01

    HIV-1 infection is characterized by a chronic activation of the immune system and suppressed function of T lymphocytes. Regulatory CD4+ CD25high FoxP3+CD127low T cells (Treg) play a key role in both conditions. Here, we show that HIV-1 positive patients have a significant increase of Treg-associated expression of CD39/ENTPD1, an ectoenzyme which in concert with CD73 generates adenosine. We show in vitro that the CD39/adenosine axis is involved in Treg suppression in HIV infection. Treg inhibitory effects are relieved by CD39 down modulation and are reproduced by an adenosine-agonist in accordance with a higher expression of the adenosine A2A receptor on patients' T cells. Notably, the expansion of the Treg CD39+ correlates with the level of immune activation and lower CD4+ counts in HIV-1 infected patients. Finally, in a genetic association study performed in three different cohorts, we identified a CD39 gene polymorphism that was associated with down-modulated CD39 expression and a slower progression to AIDS. PMID:21750674

  2. Adenosine receptor modulation of seizure susceptibility in rats

    SciTech Connect

    Szot, P.

    1987-01-01

    Adenosine is considered to be a neuromodulator or cotransmitter in the periphery and CNS. This neuromodulatory action of adenosine may be observed as an anticonvulsant effect. Dose-response curves for R-phenylisopropyladenosine (PIA), cycohexyladenosine (CHA), 2-chloroadenosine (2-ClAdo), N-ethylcarboxamidoadenosine (NECA) and S-PIA were generated against PTZ seizure thresholds in the rat. The rank order of potency for adenosine agonists to elevate PTZ seizure threshold was R-PIA > 2-ClAdo > NECA > CHA > S-PIA. R-PIA was approximately 80-fold more potent than S-PIA. This 80-fold difference in potency between the diasteriomers of PIA was consistent with an A{sub 1} adenoise receptor-mediated response. The anticonvulsant action of 2-ClAdo was reversed by pretreatment with theoplylline. Chronic administration of theophylline significantly increased the specific binding of {sup 3}H-cyclohexyladenosine in membranes of the cerebral cortex and cerebellum of the rat. Chronic exposure to theophylline produced a significant increase in the densities of both the high- and low-affinity forms of A{sub 1} adenosine receptors in the cerebral cortex.

  3. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    PubMed Central

    Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Dias, Ana Sofia; Pelletier, Julie

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders. PMID:25210228

  4. The Rickettsia prowazekii invasion gene homolog (invA) encodes a Nudix hydrolase active on adenosine (5')-pentaphospho-(5')-adenosine.

    PubMed

    Gaywee, Jariyanart; Xu, WenLian; Radulovic, Suzana; Bessman, Maurice J; Azad, Abdu F

    2002-03-01

    The genomic sequence of Rickettsia prowazekii, the obligate intracellular bacterium responsible for epidemic typhus, reveals an uncharacterized invasion gene homolog (invA). The deduced protein of 18,752 Da contains a Nudix signature, the specific motif found in the Nudix hydrolase family. To characterize the function of InvA, the gene was cloned and overexpressed in Escherichia coli. The expressed protein was purified to near homogeneity and subsequently tested for its enzymatic activity against a series of nucleoside diphosphate derivatives. The purified InvA exhibits hydrolytic activity toward dinucleoside oligophosphates (Np(n)N; n > or = 5), a group of cellular signaling molecules. At optimal pH 8.5, the enzyme actively degrades adenosine (5')-pentaphospho-(5')-adenosine into ATP and ADP with a K(m) of 0.1 mM and k(cat) of 1.9 s(-1). Guanosine (5')-pentaphospho-(5')-guanosine and adenosine-(5')-hexaphospho (5')-adenosine are also substrates. Similar to other Nudix hydrolases, InvA requires a divalent metal cation, Mg(2+) or Zn(2+), for optimal activity. These data suggest that the rickettsial invasion protein likely plays a role in controlling the concentration of stress-induced dinucleoside oligophosphates following bacterial invasion.

  5. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    SciTech Connect

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-04-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine ((R)-AHPIA) into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling.

  6. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  7. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    PubMed Central

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A1 receptors with 2-chloro-N6-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A1 receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis. PMID:22552934

  8. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release

    PubMed Central

    Nguyen, Michael D.; Venton, B. Jill

    2014-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future. PMID:26900429

  9. Harnessing nature's own cardiac defense mechanism with acadesine, an adenosine regulating agent: importance of the endothelium.

    PubMed

    Engler, R L

    1994-05-01

    Although the effects of adenosine on the heart, including the clinical suppression of cardiac arrhythmias, have been recognized for more than half a century, it is only in the last decade that the therapeutic potential of adenosine has been recognized. Research related to the clinical application of adenosine has concentrated on two areas. The first came directly from early observations about the use of adenosine in treating cardiac arrhythmias, in particular supraventricular tachycardias. The second relates to the use of adenosine to protect the heart from the deleterious consequences of myocardial ischemia and reperfusion. This review will focus on the latter cardioprotective properties of adenosine, particularly those shown by a novel group of drugs termed adenosine regulating agents, the prototype of which is acadesine (Protara).

  10. Inhibition of initiation of protein synthesis by 7-methylguanosine-5'-monophosphate.

    PubMed Central

    Hickey, E D; Weber, L A; Baglioni, C

    1976-01-01

    Translation of rabbit globin mRNA in a wheat germ protein-synthesizing system is inhibited by the nucleotide 7-methylguanosine-5'-monophosphate (m7G5'p) but not by other guanosine nucleotides without the 7-methyl group or with the phosphate in a different position. Translation of RNA of tobacco mosaic virus and poly(A) + HeLa RNA is also inhibited by m7G5'p. We show that m7G5'p prevents the association of mRNA with ribosomal subunits to form an initiation complex. We propose that m7G5'p interacts with a site on initiation factor(s) or ribosomes which is involved in mRNA recognition, presumably by binding to the 5'-terminal sequence m7G5'ppp. m7G5'p does not inhibit translation of poly(U) and RNA of satellite tobacco necrosis virus, which do not have the 5'-terminal sequence m7G5'ppp. In the case of RNA of satellite tobacco necrosis virus, some stimulation of its translation is consistently observed in the presence of m7G5'p; possible interpretations of this finding are discussed. PMID:1061116

  11. The binding of inosine monophosphate to Escherichia coli carbamoyl phosphate synthetase.

    PubMed

    Thoden, J B; Raushel, F M; Wesenberg, G; Holden, H M

    1999-08-01

    Carbamoyl phosphate synthetase (CPS) from Escherichia coli catalyzes the formation of carbamoyl phosphate, which is subsequently employed in both the pyrimidine and arginine biosynthetic pathways. The reaction mechanism is known to proceed through at least three highly reactive intermediates: ammonia, carboxyphosphate, and carbamate. In keeping with the fact that the product of CPS is utilized in two competing metabolic pathways, the enzyme is highly regulated by a variety of effector molecules including potassium and ornithine, which function as activators, and UMP, which acts as an inhibitor. IMP is also known to bind to CPS but the actual effect of this ligand on the activity of the enzyme is dependent upon both temperature and assay conditions. Here we describe the three-dimensional architecture of CPS with bound IMP determined and refined to 2.1 A resolution. The nucleotide is situated at the C-terminal portion of a five-stranded parallel beta-sheet in the allosteric domain formed by Ser(937) to Lys(1073). Those amino acid side chains responsible for anchoring the nucleotide to the polypeptide chain include Lys(954), Thr(974), Thr(977), Lys(993), Asn(1015), and Thr(1017). A series of hydrogen bonds connect the IMP-binding pocket to the active site of the large subunit known to function in the phosphorylation of the unstable intermediate, carbamate. This structural analysis reveals, for the first time, the detailed manner in which CPS accommodates nucleotide monophosphate effector molecules within the allosteric domain. PMID:10428826

  12. Stacking-unstacking of the dinucleoside monophosphate guanylyl-3',5'-uridine studied with molecular dynamics.

    PubMed Central

    Norberg, J; Nilsson, L

    1994-01-01

    Molecular dynamics simulations were carried out on two conformations of the dinucleoside monophosphate guanylyl-3',5'-uridine (GpU) in aqueous solution with one sodium counterion. One stacked conformation and one with the C3'-O3'-P-O5' backbone torsion angle twisted 180 degrees to create an unstacked conformation. We observed a relatively stable behavior of the stacked conformation, which remained stacked throughout the simulation, whereas the unstacked conformation showed major changes in the backbone torsion and glycosidic angles. During the simulation the unstacked conformation transformed into a more stacked form and then back again to an unstacked one. The calculated correlation times for rotational diffusion from the molecular dynamics simulations are in agreement with fluorescence anisotropy and nuclear magnetic resonance data. As expected, the correlation times for rotational diffusion of the unstacked conformation were observed to be longer than for the stacked conformation. The 2'OH group may contribute in stabilizing the stacked conformation, where the O2'-H...O4' hydrogen bond occurred in 82.7% of the simulation. Images FIGURE 8 FIGURE 10 PMID:7948694

  13. Resonant Infrared Multiple Photon Dissociation Spectroscopy of Anionic Nucleotide Monophosphate Clusters.

    PubMed

    Ligare, Marshall R; Rijs, Anouk M; Berden, Giel; Kabeláč, Martin; Nachtigallova, Dana; Oomens, Jos; de Vries, Mattanjah S

    2015-06-25

    We report mid-infrared spectra and potential energy surfaces of four anionic, 2'-deoxynucleotide-5'-monophosphates (dNMPs) and the ionic DNA pairs [dGMP-dCMP-H](1-), [dAMP-dTMP-H](1-) with a total charge of the complex equal to -1. We recorded IR action spectra by resonant IR multiple-photon dissociation (IRMPD) using the FELIX free electron laser. The potential energy surface study employed an on-the-fly molecular dynamics quenching method (MD/Q), using a semiempirical AM1 method, followed by an optimization of the most stable structures using density functional theory. By employing infrared multiple-photon dissociation (IRMPD) spectroscopy in combination with high-level computational methods, we aim at a better understanding of the hydrogen bonding competition between the phosphate moieties and the nucleobases. We find that, unlike in multimer double stranded DNA structures, the hydrogen bonds in these isolated nucleotide pairs are predominantly formed between the phosphate groups. This intermolecular interaction appears to exceed the stabilization energy resulting from base pairing and directs the overall cluster structure and alignment.

  14. PHARMACOKINETIC AND PHARMACODYNAMIC ANALYSIS OF INOSINE MONOPHOSPHATE DEHYDROGENASE (IMPDH) ACTIVITY IN MMF-TREATED HCT RECIPIENTS

    PubMed Central

    Li, Hong; Mager, Donald E.; Sandmaier, Brenda M.; Storer, Barry E.; Boeckh, Michael J.; Bemer, Meagan J.; Phillips, Brian R.; Risler, Linda J.; McCune, Jeannine S.

    2014-01-01

    A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplant (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNC) at five time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in the pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic/dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory Emax model with an IC50 = 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, non-relapse mortality, and overall mortality. In conclusion, a pharmacokinetic/dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker. PMID:24727337

  15. Modification of human placental alkaline phosphatase by periodate-oxidized 1,N6-ethenoadenosine monophosphate.

    PubMed Central

    Chang, G G; Shiao, M S; Lee, K R; Wu, J J

    1990-01-01

    Oxidation of 1,N6-ethenoadenosine monophosphate (epsilon AMP) with periodate cleaved the cis-diol of the ribose ring and resulted in the formation of a dialdehyde derivative (epsilon AMP-dial). At room temperature epsilon AMP-dial was unstable and underwent beta-elimination to give 4',5'-anhydro-1,N6-ethenoadenosine dialdehyde acetal (A epsilon Ado-dial). These nucleotide analogues were found to inactivate human placental alkaline phosphatase in a time- and concentration-dependent manner. epsilon AMP-dial was shown to be an affinity label for the enzyme on the basis of the following criteria. (a) Kinetics of the enzyme activity loss over a wide range of epsilon AMP-dial concentration showed a saturating phenomenon. Removal of the phosphate group made the reagent (A epsilon Ado-dial) become a general chemical modifying reagent. (b) The artificial substrate p-nitrophenyl phosphate gave substantial protection of the enzyme against inactivation. (c) epsilon AMP-dial was a substrate and a partial mixed-type inhibitor for the enzyme. Results of the inhibition and protection studies indicated that the reagent and substrate could combine with the enzyme simultaneously. Besides the phosphate-binding domain, an induced hydrophobic region is proposed for the substrate-binding site for human placental alkaline phosphatase. PMID:2176472

  16. Partial 13C isotopic enrichment of nucleoside monophosphates: useful reporters for NMR structural studies

    PubMed Central

    Kishore, Anita I.; Mayer, Michael R.; Prestegard, James H.

    2005-01-01

    Analysis of the 13C isotopic labeling patterns of nucleoside monophosphates (NMPs) extracted from Escherichia coli grown in a mixture of C-1 and C-2 glucose is presented. By comparing our results to previous observations on amino acids grown in similar media, we have been able to rationalize the labeling pattern based on the well-known biochemistry of nucleotide biosynthesis. Except for a few notable absences of label (C4 in purines and C3′ in ribose) and one highly enriched site (C1′ in ribose), most carbons are randomly enriched at a low level (an average of 13%). These sparsely labeled NMPs give less complex NMR spectra than their fully isotopically labeled analogs due to the elimination of most 13C–13C scalar couplings. The spectral simplicity is particularly advantageous when working in ordered systems, as illustrated with guanosine diphosphate (GDP) bound to ADP ribosylation factor 1 (ARF1) aligned in a liquid crystalline medium. In this system, the absence of scalar couplings and additional long-range dipolar couplings significantly enhances signal to noise and resolution. PMID:16254075

  17. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    SciTech Connect

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2010-12-08

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  18. Recognition of nucleoside monophosphate substrates by Haemophilus influenzae class C acid phosphatase.

    PubMed

    Singh, Harkewal; Schuermann, Jonathan P; Reilly, Thomas J; Calcutt, Michael J; Tanner, John J

    2010-12-10

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD(+) utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5',3'-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5'-AMP, 3'-AMP, and 2'-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5'-nucleotides and 3'-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5' substrates in an anti conformation and 3' substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition. PMID:20934434

  19. Study of phase transformation of guanosine 5'-monophosphate in drowning-out crystallization.

    PubMed

    Kang, Jeongki; Tuan, Nguyen Anh; Kim, Jong-Min; Chang, Sang-Mok; Kim, Woo-Sik

    2010-01-01

    The present study used a mechanistic approach to control the phase transformation of guanosine 5'-monophosphate (GMP) via the operating conditions of agitation and feed concentration during drowning-out crystallization. First, Fourier transform infrared and UV/vis spectrophotometry were successfully applied to monitor the mass fraction of GMP polymorphs (amorphous and hydrate crystalline GMPs) and GMP supersaturation, respectively, during the crystallization. The phase transformation of amorphous GMP into hydrate crystals was significantly influenced by the agitation, which promoted the mass transfer of GMP dissolution and growth. Therefore, the phase transformation was quickly finished when increasing the agitation speed. However, a high agitation caused breakage of the hydrate crystals, resulting in a reduced crystal size with a bimodal distribution. The phase transformation was also influenced by the GMP feed concentration, as the crystal growth was promoted and the crystal size increased when increasing the feed concentration up to 61 g/l. However, a further increase in the feed concentration caused secondary nucleation due to the induction of a high supersaturation level during the phase transformation, leading to a small crystal size with a bimodal distribution. In addition, the rectangular-shaped hydrate GMP crystals exhibited a higher growth rate in the b direction rather than the a direction. Therefore, the crystal morphology shifted from a long rectangle to a square when increasing the feed concentration. PMID:19031052

  20. A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators.

    PubMed

    Schumacher, Charlotte Helene; Körschen, Heinz G; Nicol, Christopher; Gasser, Carlos; Seifert, Reinhard; Schwärzel, Martin; Möglich, Andreas

    2016-01-01

    As a transformative approach in neuroscience and cell biology, optogenetics grants control over manifold cellular events with unprecedented spatiotemporal definition, reversibility, and noninvasiveness. Sensory photoreceptors serve as genetically encoded, light-regulated actuators and hence embody the cornerstone of optogenetics. To expand the scope of optogenetics, ever more naturally occurring photoreceptors are being characterized, and synthetic photoreceptors with customized, light-regulated function are being engineered. Perturbational control over intracellular cyclic-nucleotide-monophosphate (cNMP) levels is achieved via sensory photoreceptors that catalyze the making and breaking of these second messengers in response to light. To facilitate discovery, engineering and quantitative characterization of such light-regulated cNMP actuators, we have developed an efficient fluorometric assay. Both the formation and the hydrolysis of cNMPs are accompanied by proton release which can be quantified with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). This assay equally applies to nucleotide cyclases, e.g., blue-light-activated bPAC, and to cNMP phosphodiesterases, e.g., red-light-activated LAPD. Key benefits include potential for parallelization and automation, as well as suitability for both purified enzymes and crude cell lysates. The BCECF assay hence stands to accelerate discovery and characterization of light-regulated actuators of cNMP metabolism. PMID:26965118

  1. Novel interactions of fluorinated nucleotide derivatives targeting orotidine-5′-monophosphate decarboxylase

    PubMed Central

    Lewis, Melissa; Avina, Maria Elena Meza; Wei, Lianhu; Crandall, Ian E.; Bello, Angelica Mara; Poduch, Ewa; Liu, Yan; Paige, Christopher J.; Kain, Kevin C.; Pai, Emil F.; Kotra, Lakshmi P.

    2011-01-01

    Fluorinated nucleosides and nucleotides are of considerable interest to medicinal chemists due to their antiviral, anticancer, and other biological activities. However, their direct interactions at target binding sites are not well understood. A new class of 2′-deoxy-2′-fluoro-C6-substituted uridine and UMP derivatives were synthesized and evaluated as inhibitors of orotidine-5′-monophosphate decarboxylase (ODCase). These compounds were synthesized from the key intermediate, fully-protected 2′-deoxy-2′-fluorouridine. Among the synthesized compounds, 2′-deoxy-2′-fluoro-6-iodo-UMP covalently inhibited human ODCase with a second-order rate constant of 0.62 ± 0.02 M−1sec−1. Interestingly, the 6-cyano-2′-fluoro derivative covalently interacted with ODCase defying the conventional thinking, where its ribosyl derivative undergoes transformation into BMP by ODCase. This confirms that the 2′-fluoro moiety influences the chemistry at the C6 position of the nucleotides, thus interactions in the active site of ODCase. Molecular interactions of the 2′-fluorinated nucleotides are compared to those with the 3′-fluorinated nucleotides bound to the corresponding target enzyme, and the carbohydrate moieties were shown to bind in different conformations. PMID:21417464

  2. Ion-exclusion chromatography determination of organic acid in uridine 5'-monophosphate fermentation broth.

    PubMed

    Niu, Huanqing; Chen, Yong; Xie, Jingjing; Chen, Xiaochun; Bai, Jianxin; Wu, Jinglan; Liu, Dong; Ying, Hanjie

    2012-09-01

    Simultaneous determination of organic acids using ion-exclusion liquid chromatography and ultraviolet detection is described. The chromatographic conditions are optimized when an Aminex HPX-87H column (300 × 7.8 mm) is employed, with a solution of 3 mmol/L sulfuric acid as eluent, a flow rate of 0.4 mL/min and a column temperature of 60°C. Eight organic acids (including orotic acid, α-ketoglutaric acid, citric acid, pyruvic acid, malic acid, succinic acid, lactic acid and acetic acid) and one nucleotide are successfully quantified. The calibration curves for these analytes are linear, with correlation coefficients exceeding 0.999. The average recovery of organic acids is in the range of 97.6% ∼ 103.1%, and the relative standard deviation is in the range of 0.037% ∼ 0.38%. The method is subsequently applied to obtain organic acid profiles of uridine 5'-monophosphate culture broth fermented from orotic acid by Saccharomyces cerevisiae. These data demonstrate the quantitative accuracy for nucleotide fermentation mixtures, and suggest that the method may also be applicable to other biological samples. PMID:22634191

  3. Target validation of the inosine monophosphate dehydrogenase (IMPDH) gene in Cryptosporidium using Phylomer(®) peptides.

    PubMed

    Jefferies, R; Yang, R; Woh, C K; Weldt, T; Milech, N; Estcourt, A; Armstrong, T; Hopkins, R; Watt, P; Reid, S; Armson, A; Ryan, U M

    2015-01-01

    Cryptosporidiosis, a gastroenteric disease characterised mainly by diarrheal illnesses in humans and mammals is caused by infection with the protozoan parasite Cryptosporidium. Treatment options for cryptosporidiosis are limited, with the current therapeutic nitazoxanide, only partly efficacious in immunocompetent individuals. The parasite lacks de novo purine synthesis, and is exclusively dependant on purine salvage from its host. Inhibition of the inosine 5' monophosphate dehydrogenase (IMPDH), a purine salvage enzyme that is essential for DNA synthesis, thereby offers a potential drug target against this parasite. In the present study, a yeast-two-hybrid system was used to identify Phylomer peptides within a library constructed from the genomes of 25 phylogenetically diverse bacteria that targeted the IMPDH of Cryptosporidium parvum (IMPcp) and Cryptosporidium hominis (IMPch). We identified 38 unique interacting Phylomers, of which, 12 were synthesised and screened against C. parvum in vitro. Two Phylomers exhibited significant growth inhibition (81.2-83.8% inhibition; P < 0.05), one of which consistently exhibited positive interactions with IMPcp and IMPch during primary and recapitulation yeast two-hybrid screening and did not interact with either of the human IMPDH proteins. The present study highlightsthe potential of Phylomer peptides as target validation tools for Cryptosporidium and other organisms and diseases because of their ability to bind with high affinity to target proteins and disrupt function. PMID:25447124

  4. Structure-based design, synthesis, evaluation, and crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolase.

    PubMed

    Xu, Lan; Chong, Youhoon; Hwang, Inkyu; D'Onofrio, Anthony; Amore, Kristen; Beardsley, G Peter; Li, Chenglong; Olson, Arthur J; Boger, Dale L; Wilson, Ian A

    2007-04-27

    The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.

  5. Structure-Based Design, Synthesis, Evaluation And Crystal Structures of Transition State Analogue Inhibitors of Inosine Monophosphate Cyclohydrolase

    SciTech Connect

    Xu, L.; Chong, Y.; Hwang, I.; D'Onofrio, A.; Amore, K.; Beardsley, G.P.; Li, C.; Olson, A.J.; Boger, D.L.; Wilson, I.A.; /Skaggs Inst. Chem. Biol. /Scripps Res. Inst. /Yale U.

    2007-07-13

    The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.

  6. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-06-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})

  7. Adenosine Inhibition of Mesopontine Cholinergic Neurons: Implications for EEG Arousal

    PubMed Central

    Rainnie, Donald G.; Grunze, Heinz C. R.; McCarley, Robert W.; Greene, Robert W.

    2013-01-01

    Increased discharge activity of mesopontine cholinergic neurons participates in the production of electroencephalographic (EEG) arousal; such arousal diminishes as a function of the duration of prior wakefulness or of brain hyperthermia. Whole-cell and extracellular recordings in a brainstem slice show that mesopontine cholinergic neurons are under the tonic inhibitory control of endogenous adenosine, a neuromodulator released during brain metabolism. This inhibitory tone is mediated postsynaptically by an inwardly rectifying potassium conductance and by an inhibition of the hyperpolarization-activated current. These data provide a coupling mechanism linking neuronal control of EEG-arousal with the effects of prior wakefulness, brain hyperthermia, and the use of the adenosine receptor blockers caffeine and theophylline. PMID:8303279

  8. Adenosine: an endogenous mediator in the pathogenesis of psoriasis*

    PubMed Central

    Festugato, Moira

    2015-01-01

    It is known that inflammatory and immune responses protect us from the invasion of micro-organisms and eliminate "wastes" from the injured sites, but they may also be responsible for significant tissue damage. Adenosine, as a purine nucleoside, which is produced in inflamed or injured sites, fulfills its role in limiting tissue damage. Although, it may have a pleiotropic effect, which signals it with a proinflammatory state in certain situations, it can be considered a potent anti-inflammatory mediator. The effects of adenosine, which acts through its receptors on T cell, on mast cell and macrophages, on endothelial cells, on neutrophils and dendritic cells, as they indicate TNF-alpha and cytokines, show that this mediator has a central role in the pathogenesis of psoriasis. The way it acts in psoriasis will be reviewed in this study. PMID:26734868

  9. Structure–Activity Relationships of 9-Alkyladenine and Ribose-Modified Adenosine Derivatives at Rat A3 Adenosine Receptors†

    PubMed Central

    Jacobson, Kenneth A.; Siddiqi, Suhaib M.; Olah, Mark E.; Ji, Xiao-duo; Melman, Neli; Bellamkonda, Kamala; Meshulam, Yakov; Stiles, Gary L.; Kim, Hea O.

    2012-01-01

    9-Alkyladenine derivatives and ribose-modified N6-benzyladenosine derivatives were synthesized in an effort to identify selective ligands for the rat A3 adenosine receptor and leads for the development of antagonists. The derivatives contained structural features previously determined to be important for A3 selectivity in adenosine derivatives, such as an N6-(3-iodobenzyl) moiety, and were further substituted at the 2-position with halo, amino, or thio groups. Affinity was determined in radioligand binding assays at rat brain A3 receptors stably expressed in Chinese hamster ovary (CHO) cells, using [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)adenosine-5′-(N-methyluronamide)), and at rat brain A1 and A2a receptors using [3H]-N6-PIA ((R)-N6-phenylisopropyladenosine) and [3H]CGS 21680 (2-[[[4-(2-carboxyethyl)-phenyl]ethyl]amino]-5′-(N-ethylcarbamoyl)adenosine), respectively. A series of N6-(3-iodobenzyl) 2-amino derivatives indicated that a small 2-alkylamino group, e.g., methylamino, was favored at A3 receptors. N6-(3-Iodobenzyl)-9-methyl-2-(methylthio)adenine was 61-fold more potent than the corresponding 2-methoxy ether at A3 receptors and of comparable affinity at A1 and A2a receptors, resulting in a 3–6-fold selectivity for A3 receptors. A pair of chiral N6-(3-iodobenzyl) 9-(2,3-dihydroxypropyl) derivatives showed stereoselectivity, with the R-enantiomer favored at A3 receptors by 5.7-fold. 2-Chloro-9-(β-d-erythrofuranosyl)-N6-(3-iodobenzyl)adenine had a Ki value at A3 receptors of 0.28 µM. 2-Chloro-9-[2-amino-2,3-dideoxy-β-d-5-(methylcarbamoyl)-arabinofuranosyl]-N6-(3-iodobenzyl)adenine was moderately selective for A1 and A3 vs A2a receptors. A 3′-deoxy analogue of a highly A3-selective adenosine derivative retained selectivity in binding and was a full agonist in the inhibition of adenylyl cyclase mediated via cloned rat A3 receptors expressed in CHO cells. The 3′-OH and 4′-CH2OH groups of adenosine are not required for activation at A3 receptors. A

  10. Targeting the A2B adenosine receptor during gastrointestinal ischemia and inflammation

    PubMed Central

    Eltzschig, Holger K; Rivera-Nieves, Jesus; Colgan, Sean P

    2014-01-01

    Extracellular adenosine functions as an endogenous distress signal via activation of four distinct adenosine receptors (A1, A2A, A2B and A3). Conditions of limited oxygen availability or acute inflammation lead to elevated levels of extracellular adenosine and enhanced signaling events. This relates to a combination of four mechanisms: i) increased production of adenosine via extracellular phosphohydrolysis of precursor molecules (particularly ATP and ADP); ii) increased expression and signaling via hypoxia-induced adenosine receptors, particularly the A2B adenosine receptor; iii) attenuated uptake from the extracellular towards the intracellular compartment; and iv) attenuated intracellular metabolism. Due to their large surface area, mucosal organs are particularly prone to hypoxia and ischemia associated inflammation. Therefore, it is not surprising that adenosine production and signaling plays a central role in attenuating tissue inflammation and injury during intestinal ischemia or inflammation. In fact, recent studies combining pharmacological and genetic approaches demonstrated that adenosine signaling via the A2B adenosine receptor dampens mucosal inflammation and tissue injury during intestinal ischemia or experimental colitis. This review outlines basic principles of extracellular adenosine production, signaling, uptake and metabolism. In addition, we discuss the role of this pathway in dampening hypoxia-elicited inflammation, specifically in the setting of intestinal ischemia and inflammation. PMID:19769545

  11. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis.

    PubMed

    Alsharif, Khalaf F; Thomas, Mark R; Judge, Heather M; Khan, Haroon; Prince, Lynne R; Sabroe, Ian; Ridger, Victoria C; Storey, Robert F

    2015-08-01

    In the PLATO study, ticagrelor was associated with fewer pulmonary infections and subsequent deaths than clopidogrel. Neutrophils are a first-line defence against bacterial lung infection; ticagrelor inhibits cellular uptake of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis. We assessed whether the inhibition of adenosine uptake by ticagrelor influences neutrophil chemotaxis and phagocytosis. Neutrophils and erythrocytes were isolated from healthy volunteers. Concentration-dependent effects of adenosine on IL-8-induced neutrophil chemotaxis were investigated and the involved receptors identified using adenosine receptor antagonists. The modulatory effects of ticagrelor on adenosine-mediated changes in neutrophil chemotaxis and phagocytosis of Streptococcus pneumoniae were determined in the presence of erythrocytes to replicate physiological conditions of cellular adenosine uptake. Low-concentration adenosine (10(-8)M) significantly increased IL-8-induced neutrophil chemotaxis (% neutrophil chemotaxis: adenosine 28.7%±4.4 vs. control 22.6%±2.4; p<0.01) by acting on the high-affinity A1 receptor. Erythrocytes attenuated the effect of adenosine, although this was preserved by ticagrelor and dipyridamole (another inhibitor of adenosine uptake) but not by control or by cangrelor. Similarly, in the presence of erythrocytes, a low concentration of adenosine (10(-8)M) significantly increased neutrophil phagocytic index compared to control when ticagrelor was present (37.6±6.6 vs. 28.0±6.6; p=0.028) but had no effect in the absence of ticagrelor. We therefore conclude that the inhibition of cellular adenosine reuptake by ticagrelor potentiates the effects of a nanomolar concentration of adenosine on neutrophil chemotaxis and phagocytosis. This represents a potential mechanism by which ticagrelor could influence host defence against bacterial lung infection.

  12. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis

    PubMed Central

    Alsharif, Khalaf F.; Thomas, Mark R.; Judge, Heather M.; Khan, Haroon; Prince, Lynne R.; Sabroe, Ian; Ridger, Victoria C.; Storey, Robert F.

    2015-01-01

    In the PLATO study, ticagrelor was associated with fewer pulmonary infections and subsequent deaths than clopidogrel. Neutrophils are a first-line defence against bacterial lung infection; ticagrelor inhibits cellular uptake of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis. We assessed whether the inhibition of adenosine uptake by ticagrelor influences neutrophil chemotaxis and phagocytosis. Neutrophils and erythrocytes were isolated from healthy volunteers. Concentration-dependent effects of adenosine on IL-8-induced neutrophil chemotaxis were investigated and the involved receptors identified using adenosine receptor antagonists. The modulatory effects of ticagrelor on adenosine-mediated changes in neutrophil chemotaxis and phagocytosis of Streptococcus pneumoniae were determined in the presence of erythrocytes to replicate physiological conditions of cellular adenosine uptake. Low-concentration adenosine (10− 8 M) significantly increased IL-8-induced neutrophil chemotaxis (% neutrophil chemotaxis: adenosine 28.7% ± 4.4 vs. control 22.6% ± 2.4; p < 0.01) by acting on the high-affinity A1 receptor. Erythrocytes attenuated the effect of adenosine, although this was preserved by ticagrelor and dipyridamole (another inhibitor of adenosine uptake) but not by control or by cangrelor. Similarly, in the presence of erythrocytes, a low concentration of adenosine (10− 8 M) significantly increased neutrophil phagocytic index compared to control when ticagrelor was present (37.6 ± 6.6 vs. 28.0 ± 6.6; p = 0.028) but had no effect in the absence of ticagrelor. We therefore conclude that the inhibition of cellular adenosine reuptake by ticagrelor potentiates the effects of a nanomolar concentration of adenosine on neutrophil chemotaxis and phagocytosis. This represents a potential mechanism by which ticagrelor could influence host defence against bacterial lung infection. PMID:25869515

  13. Effects of adenosine metabolism in astrocytes on central nervous system oxygen toxicity.

    PubMed

    Chen, Yu-liang; Zhang, Ya-nan; Wang, Zhong-zhuang; Xu, Wei-gang; Li, Run-ping; Zhang, Jun-dong

    2016-03-15

    Hyperbaric oxygen (HBO) is widely used in military operations, especially underwater missions. However, prolonged and continuous inhalation of HBO can cause central nervous system oxygen toxicity (CNS-OT), which greatly limits HBO's application. The regulation of astrocytes to the metabolism of adenosine is involved in epilepsy. In our study, we aimed to observe the effects of HBO exposure on the metabolism of adenosine in the brain. Furthermore, we aimed to confirm the possible mechanism underlying adenosine's mediation of the CNS-OT. Firstly, anesthetized rats exposed to 5 atm absolute HBO for 80 min. The concentrations of extracellular adenosine, ATP, ADP, and AMP were detected. Secondly, free-moving rats were exposed to HBO at the same pressure for 20 min, and the activities of 5'-nucleotidase and ADK in brain tissues were measured. For the mechanism studies, we observed the effects of a series of different doses of drugs related to adenosine metabolism on the latency of CNS-OT. Results showed HBO exposure could increase adenosine content by inhibiting ADK activity and improving 5'-nucleotidase activity. And adenosine metabolism during HBO exposure may be a protective response against HBO-induced CNS-OT. Moreover, the improvement of adenosine concentration, activation of adenosine A1R, or suppression of ADK and adenosine A2AR, which are involved in the prevention of HBO-induced CNS-OT. This is the first study to demonstrate HBO exposure regulated adenosine metabolism in the brain. Adenosine metabolism and adenosine receptors are related to HBO-induced CNS-OT development. These results will provide new potential targets for the termination or the attenuation of CNS-OT. PMID:26806404

  14. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    PubMed Central

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  15. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    SciTech Connect

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2013-01-24

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

  16. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  17. Source of /sup 3/H-labeled inositol bis- and monophosphates in agonist-activated rat parotid acinar cells

    SciTech Connect

    Hughes, A.R.; Putney, J.W. Jr.

    1989-06-05

    The kinetics of (3H)inositol phosphate metabolism in agonist-activated rat parotid acinar cells were characterized in order to determine the sources of (3H)inositol monophosphates and (3H)inositol bisphosphates. The turnover rates of D-myo-inositol 1,4,5-trisphosphate and its metabolites, D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate, were examined following the addition of the muscarinic receptor antagonist, atropine, to cholinergically stimulated parotid cells. D-myo-Inositol 1,4,5-trisphosphate declined with a t1/2 of 7.6 +/- 0.7 s, D-myo-inositol 1,3,4-trisphosphate declined with a t1/2 of 8.6 +/- 1.2 min, and D-myo-inositol 1,4-bisphosphate was metabolized with a t1/2 of 6.0 +/- 0.7 min. The sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate (2.54% phosphatidylinositol/min) did not exceed the calculated rate of breakdown of D-myo-inositol 1,4,5-trisphosphate (2.76% phosphatidylinositol/min). Thus, there is no evidence for the direct hydrolysis of phosphatidylinositol 4-phosphate in intact cells since D-myo-inositol 1,4-bisphosphate formation can be attributed to the dephosphorylation of D-myo-inositol 1,4,5-trisphosphate. The source of the (3H)inositol monophosphates also was examined in cholinergically stimulated parotid cells. When parotid cells were stimulated with methacholine, D-myo-inositol 1,4,5-trisphosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 4-monophosphate levels increased within 2 s, whereas D-myo-inositol 1-monophosphate accumulation was delayed by several seconds. Rates of (3H)inositol monophosphate accumulation also were examined by the addition of LiCl to cells stimulated to steady state levels of (3H)inositol phosphates.

  18. Conformational properties of purine-pyrimidine and pyrimidine-purine dinucleoside monophosphates.

    PubMed

    Ezra, F S; Lee, C H; Kondo, N S; Danyluk, S S; Sarma, R H

    1977-05-01

    The detailed conformational features and dynamics of heterodinucleoside monophosphates ApU, ApC, GpU, GpC, UpA, CpA, UpG, and CpG have been studied in aqueous solution by high field nuclear magnetic resonance (NMR) spectroscopy. Analysis of the resultant NMR parameters leads to a number of discernible trends throughout the series. Thus the ribose rings of the dimers exist as equilibrium mixtures of C(2')-endo(2E) in equilibrium C(3')-endo(3E) conformers with a proclivity for the 3E pucker in most cases; the C(4')-C(5') bonds of both nucleotidyl units show significant preference (74-96%) for a gg conformation and the dominant conformer (85-89%) about C(5')-O(5') is g'g'. Orientation about the C(3')-O(3') bond is coupled to the ribose conformational equilibrium and the system exists with a bias for the 3Eg- coupled conformation in which the H(3')-C(3')-O(3')-P dihedral angle occupies the narrow range of 33-35 degrees. Dimerization, on the average, causes about 10% increase in gg and g'g' populations and the g-domain becomes increasingly populated about the C(3')-O(3') bond. The ribose equilibrium 2E in equilibrium 3E shifts in favor of 3E upon dimerization, the effect being very conspicuous for the pu-py series (similar to 40 yields 60%) and less noticeable for the py-pu systems (similar to 47 yields 58%), clearly suggesting a correlation between sequence and ribose conformational equilibrium. The temperature and dimerization data for the heterodinucleoside monophosphates show that the transition 2E yields 3E is directly related to XCN changes induced by dimerization and stacking. Analysis of the ribose coupling data shows that the percentage populations of stacked species vary from dimer to dimer with GpC displaying a maximum of 45% stacked population and UpG about 10%. However, in general, the pu-py dimers show a higher preference (27-45%) for stacked conformations than py-pu dimers (10-25%). It is proposed that the pronounced deshielding of H(5') of the 5

  19. The role of Drosophila cytidine monophosphate-sialic acid synthetase in the nervous system.

    PubMed

    Islam, Rafique; Nakamura, Michiko; Scott, Hilary; Repnikova, Elena; Carnahan, Mindy; Pandey, Dheeraj; Caster, Courtney; Khan, Saba; Zimmermann, Tina; Zoran, Mark J; Panin, Vladislav M

    2013-07-24

    While sialylation plays important functions in the nervous system, the complexity of glycosylation pathways and limitations of genetic approaches preclude the efficient analysis of these functions in mammalian organisms. Drosophila has recently emerged as a promising model for studying neural sialylation. Drosophila sialyltransferase, DSiaT, was shown to be involved in the regulation of neural transmission. However, the sialylation pathway was not investigated in Drosophila beyond the DSiaT-mediated step. Here we focused on the function of Drosophila cytidine monophosphate-sialic acid synthetase (CSAS), the enzyme providing a sugar donor for DSiaT. Our results revealed that the expression of CSAS is tightly regulated and restricted to the CNS throughout development and in adult flies. We generated CSAS mutants and analyzed their phenotypes using behavioral and physiological approaches. Our experiments demonstrated that mutant phenotypes of CSAS are similar to those of DSiaT, including decreased longevity, temperature-induced paralysis, locomotor abnormalities, and defects of neural transmission at neuromuscular junctions. Genetic interactions between CSAS, DSiaT, and voltage-gated channel genes paralytic and seizure were consistent with the hypothesis that CSAS and DSiaT function within the same pathway regulating neural excitability. Intriguingly, these interactions also suggested that CSAS and DSiaT have some additional, independent functions. Moreover, unlike its mammalian counterparts that work in the nucleus, Drosophila CSAS was found to be a glycoprotein-bearing N-glycans and predominantly localized in vivo to the Golgi compartment. Our work provides the first systematic analysis of in vivo functions of a eukaryotic CSAS gene and sheds light on evolutionary relationships among metazoan CSAS proteins.

  20. Adsorption of nucleotides on biomimetic apatite: The case of cytidine 5' monophosphate (CMP).

    PubMed

    Choimet, Maëla; Tourrette, Audrey; Drouet, Christophe

    2015-10-15

    The chemical interaction between DNA macromolecules and hard tissues in vertebrate is of foremost importance in paleogenetics, as bones and teeth represent a major substrate for the genetic material after cell death. Recently, the empirical hypothesis of DNA "protection" over time thanks to its adsorption on hard tissues was revisited from a physico-chemical viewpoint. In particular, the existence of a strong interaction between phosphate groups of DNA backbone and the surface of apatite nanocrystals (mimicking bone/dentin mineral) was evidenced on an experimental basis. In the field of nanomedicine, DNA or RNA can be used for gene transport into cells, and apatite nanocarriers then appear promising. In order to shed some more light on interactions between DNA molecules and apatite, the present study focuses on the adsorption of a "model" nucleotide, cytidine 5' monophosphate (CMP), on a carbonated biomimetic apatite sample. The follow-up of CMP kinetics of adsorption pointed out the rapidity of interaction with stabilization reached within few minutes. The adsorption isotherm could be realistically fitted to the Sips model (Langmuir-Freundlich) suggesting the influence of surface heterogeneities and adsorption cooperativity in the adsorption process. The desorption study pointed out the reversible character of CMP adsorption on biomimetic apatite. This contribution is intended to prove helpful in view of better apprehending the molecular interaction of DNA fragments and apatite compounds, independently of the application domain, such as bone diagenesis or nanomedicine. This study may also appear informative for researchers interested in the origins of life on Earth and the occurrence and behavior of primitive biomolecules.

  1. Adsorption of nucleotides on biomimetic apatite: The case of cytidine 5' monophosphate (CMP).

    PubMed

    Choimet, Maëla; Tourrette, Audrey; Drouet, Christophe

    2015-10-15

    The chemical interaction between DNA macromolecules and hard tissues in vertebrate is of foremost importance in paleogenetics, as bones and teeth represent a major substrate for the genetic material after cell death. Recently, the empirical hypothesis of DNA "protection" over time thanks to its adsorption on hard tissues was revisited from a physico-chemical viewpoint. In particular, the existence of a strong interaction between phosphate groups of DNA backbone and the surface of apatite nanocrystals (mimicking bone/dentin mineral) was evidenced on an experimental basis. In the field of nanomedicine, DNA or RNA can be used for gene transport into cells, and apatite nanocarriers then appear promising. In order to shed some more light on interactions between DNA molecules and apatite, the present study focuses on the adsorption of a "model" nucleotide, cytidine 5' monophosphate (CMP), on a carbonated biomimetic apatite sample. The follow-up of CMP kinetics of adsorption pointed out the rapidity of interaction with stabilization reached within few minutes. The adsorption isotherm could be realistically fitted to the Sips model (Langmuir-Freundlich) suggesting the influence of surface heterogeneities and adsorption cooperativity in the adsorption process. The desorption study pointed out the reversible character of CMP adsorption on biomimetic apatite. This contribution is intended to prove helpful in view of better apprehending the molecular interaction of DNA fragments and apatite compounds, independently of the application domain, such as bone diagenesis or nanomedicine. This study may also appear informative for researchers interested in the origins of life on Earth and the occurrence and behavior of primitive biomolecules. PMID:26117294

  2. Turning an antiviral into an anticancer drug: Nanoparticle delivery of acyclovir monophosphate

    PubMed Central

    Yao, Jing; Zhang, Yuan; Ramishetti, Srinivas; Wang, Yuhua; Huang, Leaf

    2013-01-01

    Anti-herpes simplex virus (HSV) drug acyclovir (ACV) is phosphorylated by the viral thymidine kinase (TK), but not the cellular TK. Phosphorylated ACV inhibits cellular DNA synthesis and kills the infected cells. We hypothesize that ACV monophosphate (ACVP), which is an activated metabolite of ACV, should be efficient in killing cells independent of HSV-TK. If so, ACVP should be a cytotoxic agent if properly delivered to the cancer cells. The Lipid/Calcium/Phosphate (LCP) nanoparticles (NPs) with a membrane/core structure were used to encapsulate ACVP to facilitate the targeted delivery of ACVP to the tumor. The LCP NPs showed entrapment efficiency of ~69%, the nano-scaled particle size and positive zeta potential. Moreover, ACVP-loaded LCP NPs (A-LCP NPs) exhibited concentration-dependent cytotoxicity against H460 cells and increased S-phase arrest. More importantly, a significant reduction of the tumor volume over 4 days following administration (p<0.05~0.005) of A-LCP NPs, suggests excellent in vivo efficacy. Whereas, two free drugs (ACV and ACVP) and blank LCP NPs showed little or no therapeutic effect. It was also found that the high efficacy of A-LCP NPs was associated with the ability to induce dramatic apoptosis of the tumor cells, as well as significantly inhibit tumor cell proliferation and cell cycle progression. In conclusion, with the help of LCP NPs, monophosphorylation modification of ACV can successfully modify an HSV-TK-dependent antiviral drug into an anti-tumor drug. PMID:23791977

  3. Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate

    NASA Astrophysics Data System (ADS)

    Altavilla, Salvatore; Segarra-Martí, Javier; Nenov, Artur; Conti, Irene; Rivalta, Ivan; Garavelli, Marco

    2015-04-01

    The photophysics and photochemistry of water-solvated guanine monophosphate (GMP) are here characterized by means of a multireference quantum-chemical/molecular mechanics theoretical approach (CASPT2//CASSCF/AMBER) in order to elucidate the main photo-processes occurring upon UV-light irradiation. The effect of the solvent and of the phosphate group on the energetics and structural features of this system are evaluated for the first time employing high-level ab initio methods and thoroughly compared to those in vacuo previously reported in the literature and to the experimental evidence to assess to which extent they influence the photoinduced mechanisms. Solvated electronic excitation energies of solvated GMP at the Franck-Condon (FC) region show a red shift for the ππ* La and Lb states, whereas the energy of the oxygen lone-pair nπ* state is blue-shifted. The main photoinduced decay route is promoted through a ring-puckering motion along the bright lowest-lying La state towards a conical intersection (CI) with the ground state, involving a very shallow stationary point along the minimum energy pathway in contrast to the barrierless profile found in gas-phase, the point being placed at the end of the minimum energy path (MEP) thus endorsing its ultrafast deactivation in accordance with time-resolved transient and photoelectron spectroscopy experiments. The role of the nπ* state in the solvated system is severely diminished as the crossings with the initially populated La state and also with the Lb state are placed too high energetically to partake prominently in the deactivation photo-process. The proposed mechanism present in solvated and in vacuo DNA/RNA chromophores validates the intrinsic photostability mechanism through CI-mediated non-radiative processes accompanying the bright excited-state population towards the ground state and subsequent relaxation back to the FC region.

  4. Turning an antiviral into an anticancer drug: nanoparticle delivery of acyclovir monophosphate.

    PubMed

    Yao, Jing; Zhang, Yuan; Ramishetti, Srinivas; Wang, Yuhua; Huang, Leaf

    2013-09-28

    Anti-herpes simplex virus (HSV) drug acyclovir (ACV) is phosphorylated by the viral thymidine kinase (TK), but not the cellular TK. Phosphorylated ACV inhibits cellular DNA synthesis and kills the infected cells. We hypothesize that ACV monophosphate (ACVP), which is an activated metabolite of ACV, should be efficient in killing cells independent of HSV-TK. If so, ACVP should be a cytotoxic agent if properly delivered to the cancer cells. The Lipid/Calcium/Phosphate (LCP) nanoparticles (NPs) with a membrane/core structure were used to encapsulate ACVP to facilitate the targeted delivery of ACVP to the tumor. The LCP NPs showed entrapment efficiency of ~70%, the nano-scaled particle size and positive zeta potential. Moreover, ACVP-loaded LCP NPs (A-LCP NPs) exhibited concentration-dependent cytotoxicity against H460 cells and increased S-phase arrest. More importantly, a significant reduction of the tumor volume over 4 days following administration (p<0.05-0.005) of A-LCP NPs, suggests excellent in vivo efficacy. Whereas, two free drugs (ACV and ACVP) and blank LCP NPs showed little or no therapeutic effect. It was also found that the high efficacy of A-LCP NPs was associated with the ability to induce dramatic apoptosis of the tumor cells, as well as significantly inhibit tumor cell proliferation and cell cycle progression. In conclusion, with the help of LCP NPs, monophosphorylation modification of ACV can successfully modify an HSV-TK-dependent antiviral drug into an anti-tumor drug.

  5. Enzyme architecture: deconstruction of the enzyme-activating phosphodianion interactions of orotidine 5'-monophosphate decarboxylase.

    PubMed

    Goldman, Lawrence M; Amyes, Tina L; Goryanova, Bogdana; Gerlt, John A; Richard, John P

    2014-07-16

    The mechanism for activation of orotidine 5'-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k(cat) and K(m) for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-D-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in (k(cat))(obs) for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in (K(m))(obs).

  6. Involvement of Cyclic Guanosine Monophosphate-Dependent Protein Kinase I in Renal Antifibrotic Effects of Serelaxin

    PubMed Central

    Wetzl, Veronika; Schinner, Elisabeth; Kees, Frieder; Hofmann, Franz; Faerber, Lothar; Schlossmann, Jens

    2016-01-01

    Introduction: Kidney fibrosis has shown to be ameliorated through the involvement of cyclic guanosine monophosphate (cGMP) and its dependent protein kinase I (cGKI). Serelaxin, the recombinant form of human relaxin-II, increases cGMP levels and has shown beneficial effects on kidney function in acute heart failure patients. Antifibrotic properties of serelaxin are supposed to be mediated via relaxin family peptide receptor 1 and subsequently enhanced nitric oxide/cGMP to inhibit transforming growth factor-β (TGF-β) signaling. This study examines the involvement of cGKI in the antifibrotic signaling of serelaxin. Methods and Results: Kidney fibrosis was induced by unilateral ureteral obstruction in wildtype (WT) and cGKI knock-out (KO) mice. After 7 days, renal antifibrotic effects of serelaxin were assessed. Serelaxin treatment for 7 days significantly increased cGMP in the kidney of WT and cGKI-KO. In WT, renal fibrosis was reduced through decreased accumulation of collagen1A1, total collagen, and fibronectin. The profibrotic connective tissue growth factor as well as myofibroblast differentiation were reduced and matrix metalloproteinases-2 and -9 were positively modulated after treatment. Moreover, Smad2 as well as extracellular signal-regulated kinase 1 (ERK1) phosphorylation were decreased, whereas phosphodiesterase (PDE) 5a phosphorylation was increased. However, these effects were not observed in cGKI-KO. Conclusion: Antifibrotic renal effects of serelaxin are mediated via cGMP/cGKI to inhibit Smad2- and ERK1-dependent TGF-β signaling and increased PDE5a phosphorylation. PMID:27462268

  7. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  8. Adenosine A1 receptors determine effects of caffeine on total fluid intake but not caffeine appetite.

    PubMed

    Rieg, Timo; Schnermann, Jürgen; Vallon, Volker

    2007-01-26

    Adenosine A1 receptor wild-type (+/+) and knockout (-/-) mice were used to elucidate the role of adenosine A1 receptors in caffeine self-administration in a two-bottle choice test and in the effect of caffeine on total fluid intake and plasma renin concentration. With access to water only, adenosine A1 receptor -/- mice showed greater basal fluid intake and greater plasma renin concentration than +/+ mice. Free access to both water and a caffeinated solution (30 mg/100 ml) for 14 days increased total fluid intake only in adenosine A1 receptor +/+ mice (by 23+/-3%), and both total fluid intake and plasma renin concentration were no longer different between genotypes. Mean intake of water and caffeinated solution was not different between adenosine A1 receptor +/+ and -/- mice. These data reveal that adenosine A1 receptors do not contribute to caffeine consumption, but determine the effects of caffeine on fluid intake and plasma renin concentration. PMID:17126319

  9. Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.

    2000-01-01

    It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.

  10. Cytoprotective effects of adenosine and inosine in an in vitro model of acute tubular necrosis

    PubMed Central

    Módis, Katalin; Gerő, Domokos; Nagy, Nóra; Szoleczky, Petra; Tóth, Zoltán Dóri; Szabó, Csaba

    2009-01-01

    Background and purpose: We have established an in vitro model of acute tubular necrosis in rat kidney tubular cells, using combined oxygen-glucose deprivation (COGD) and screened a library of 1280 pharmacologically active compounds for cytoprotective effects. Experimental approach: We used in vitro cell-based, high throughput, screening, with cells subjected to COGD using hypoxia chambers, followed by re-oxygenation. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the Alamar Blue assay measured mitochondrial respiration and the lactate dehydrogenase assay was used to indicate cell death. ATP levels were measured using a luminometric assay. Key results: Adenosine markedly reduced cellular injury, with maximal cytoprotective effect at 100 µM and an EC50 value of 14 µM. Inosine was also found to be cytoprotective. The selective A3 adenosine receptor antagonist MRS 1523 attenuated the protective effects of adenosine and inosine, while an A3 adenosine receptor agonist provided a partial protective effect. Adenosine deaminase inhibition attenuated the cytoprotective effect of adenosine but not of inosine during COGD. Inhibition of adenosine kinase reduced the protective effects of both adenosine and inosine during COGD. Pretreatment of the cells with adenosine or inosine markedly protected against the fall in cellular ATP content in the cells subjected to COGD. Conclusions and implications: The cytoprotection elicited by adenosine and inosine in a model of renal ischaemia involved both interactions with cell surface adenosine receptors on renal tubular epithelial cells and intracellular metabolism and conversion of adenosine to ATP. PMID:19906119

  11. Adenosine stimulates Ca2+ fluxes and increases cytosolic free Ca2+ in cultured rat mesangial cells.

    PubMed Central

    Olivera, A; López-Rivas, A; López-Novoa, J M

    1992-01-01

    Adenosine has been associated with cellular Ca2+ metabolism in some cell types. Since adenosine is able to contract glomerular mesangial cells in culture, and since Ca2+ is the main messenger mediating contractile responses, we studied the effect of adenosine on 45Ca2+ movements into and out of mesangial cells and on the cytosolic free Ca2+ concentration ([Ca2+]i). Adenosine at 0.1 mM increased 45Ca2+ uptake (basal, 9993 +/- 216; + adenosine, 14823 +/- 410 d.p.m./mg; P less than 0.01) through verapamil-sensitive Ca2+ channels. These channels seem to be of the A1-adenosine receptor subtype. Adenosine also stimulated 45Ca2+ efflux from 45Ca(2+)-loaded mesangial cells. This effect was accompanied by a net depletion of intracellular 45Ca2+ content under isotopic equilibrium conditions (basal, 24213 +/- 978; + adenosine, 18622 +/- 885 d.p.m./mg; P less than 0.05). The increase in 45Ca2+ efflux was inhibited by a Ca(2+)-free medium or in the presence of 10 microM-verapamil. However, the intracellular Ca(2+)-release blocker TMB-8 (10 microM) only partially inhibited the adenosine-stimulated 45Ca2+ efflux. In addition, adenosine induced an elevation in [Ca2+]i in mesangial cells with an initial transient peak within 15 s (basal, 113 +/- 7; adenosine, 345 +/- 46 nM), and a secondary increase which was slower (3-4 min) and of lower magnitude than the initial peak (250 +/- 21 nM). In summary, adenosine elevates [Ca2+]i and stimulates both Ca2+ uptake from the extracellular pool and Ca2+ efflux from intracellular pools in mesangial cells. The Ca2+ release from internal stores is produced by a combination of a TMB-8-inhibitable and a non-TMB-8-inhibitable mechanism, and seems to be dependent on Ca2+ influx. PMID:1554371

  12. Search for New Purine- and Ribose-Modified Adenosine Analogues as Selective Agonists and Antagonists at Adenosine Receptors†

    PubMed Central

    Siddiqi, Suhaib M.; Jacobson, Kenneth A.; Esker, John L.; Olah, Mark E.; Ji, Xiao-duo; Melman, Neli; Tiwari, Kamal N.; Secrist, John A.; Schneller, Stewart W.; Cristalli, Gloria; Stiles, Gary L.; Johnson, Carl R.; IJzerman, Ad P.

    2012-01-01

    The binding affinities at rat A1, A2a, and A3 adenosine receptors of a wide range of derivatives of adenosine have been determined. Sites of modification include the purine moiety (1-, 3-, and 7-deaza; halo, alkyne, and amino substitutions at the 2- and 8-positions; and N6-CH2-ring, -hydrazino, and -hydroxylamino) and the ribose moiety (2′-, 3′-, and 5′-deoxy; 2′- and 3′-O-methyl; 2′-deoxy 2′-fluoro; 6′-thio; 5′-uronamide; carbocyclic; 4′- or 3′-methyl; and inversion of configuration). (−)- and (+)-5′-Noraristeromycin were 48- and 21-fold selective, respectively, for A2a vs A1 receptors. 2-Chloro-6′-thioadenosine displayed a Ki value of 20 nM at A2a receptors (15-fold selective vs A1). 2-Chloroadenin-9-yl(β-L-2′-deoxy-6′-thiolyxofuranoside) displayed a Ki value of 8 μM at A1 receptors and appeared to be an antagonist, on the basis of the absence of a GTP-induced shift in binding vs a radiolabeled antagonist (8-cyclopentyl-1,3-dipropylxanthine). 2-Chloro-2′-deoxyadenosine and 2-chloroadenin-9-yl(β-D-6′-thioarabinoside) were putative partial agonists at A1 receptors, with Ki values of 7.4 and 5.4 μM, respectively. The A2a selective agonist 2-(1-hexynyl)-5′-(N-ethylcarbamoyl)adenosine displayed a Ki value of 26 nM at A3 receptors. The 4′-methyl substitution of adenosine was poorly tolerated, yet when combined with other favorable modifications, potency was restored. Thus, N6-benzyl-4′-methyladenosine-5′-(N-methyluronamide) displayed a Ki value of 604 nM at A3 receptors and was 103- and 88-fold selective vs A1 and A2a receptors, respectively. This compound was a full agonist in the A3-mediated inhibition of adenylate cyclase in transfected CHO cells. The carbocyclic analogue of N6-(3-iodobenzyl)adenosine-5′-(N-methyluronamide) was 2-fold selective for A3 vs A1 receptors and was nearly inactive at A2a receptors. PMID:7707320

  13. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    PubMed Central

    Chee, Hyun Keun

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  14. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish.

    PubMed

    Bortolotto, Josiane Woutheres; Melo, Gabriela Madalena de; Cognato, Giana de Paula; Vianna, Mônica Ryff Moreira; Bonan, Carla Denise

    2015-02-01

    Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment.

  15. Impaired inhibitory function of presynaptic A1-adenosine receptors in SHR mesenteric arteries.

    PubMed

    Rocha-Pereira, Carolina; Arribas, Silvia Magdalena; Fresco, Paula; González, Maria Carmen; Gonçalves, Jorge; Diniz, Carmen

    2013-01-01

    In hypertension, vascular reactivity alterations have been attributed to numerous factors, including higher sympathetic innervation/adenosine. This study examined the modulation of adenosine receptors on vascular sympathetic nerves and their putative contribution to higher noradrenaline spillover in hypertension. We assessed adenosine receptors distribution in the adventitia through confocal microscopy, histomorphometry, and their regulatory function on electrically-evoked [(3)H]-noradrenaline overflow, using selective agonists/antagonists. We found that: i) A1-adenosine receptor agonist (CPA: 100 nM) inhibited tritium overflow to a lower extent in SHR (25% ± 3%, n = 14) compared to WKY (38% ± 3%, n = 14) mesenteric arteries; ii) A2A-adenosine receptor agonist (CGS 21680: 100 nM) induced a slight increase of tritium overflow that was similar in SHR (22% ± 8%, n = 8) and WKY (24% ± 5%, n = 8) mesenteric arteries; iii) A2B- and A3-adenosine receptors did not alter tritium overflow in either strain; iv) all adenosine receptors were present on mesenteric artery sympathetic nerves and/or some adventitial cells of both strains; and v) A1-adenosine receptor staining fractional area was lower in SHR than in WKY mesenteric arteries. We conclude that there is an impaired inhibitory function of vascular presynaptic A1-adenosine receptors in SHR, likely related to a reduced presence of these receptors on sympathetic innervation, which might lead to higher levels of noradrenaline in the synaptic cleft and contribute to hypertension in this strain.

  16. Endogenous adenosine is an autacoid feedback inhibitor of chloride transport in the shark rectal gland.

    PubMed Central

    Kelley, G G; Aassar, O S; Forrest, J N

    1991-01-01

    The present studies define the physiologic role of endogenous adenosine in the perfused shark rectal gland, a model epithelia for hormone-stimulated chloride transport. Chloride ion secretion, and venous adenosine and inosine concentrations increased in parallel in response to hormone stimulation. From a basal rate of 157 +/- 26 mu eq/h per g, chloride secretion increased to 836 +/- 96 and 2170 +/- 358 with 1 and 10 microM forskolin, venous adenosine increased from 5.0 +/- 1 to 126 +/- 29 and 896 +/- 181 nM, and inosine increased from 30 +/- 9 to 349 +/- 77 and 1719 +/- 454 nM (all P less than 0.01). Nitrobenzylthioinosine (NBTI), a nucleoside transport inhibitor, completely blocked the release of adenosine and inosine. Inhibition of chloride transport with bumetanide, an inhibitor of the Na+/K+/2Cl- cotransporter, or ouabain, an inhibitor of Na+/K+ ATPase activity, reduced venous adenosine and inosine to basal values. When the interaction of endogenous adenosine with extracellular receptors was prevented by adenosine deaminase, NBTI, or 8-phenyltheophylline, the chloride transport response to secretagogues increased by 1.7-2.3-fold. These studies demonstrate that endogenous adenosine is released in response to hormone-stimulated cellular work and acts at A1 adenosine receptors as a feedback inhibitor of chloride transport. Images PMID:1752953

  17. Characterization and regulation of adenosine transport in T84 intestinal epithelial cells.

    PubMed

    Mun, E C; Tally, K J; Matthews, J B

    1998-02-01

    Adenosine release from mucosal sources during inflammation and ischemia activates intestinal epithelial Cl- secretion. Previous data suggest that A2b receptor-mediated Cl- secretory responses may be dampened by epithelial cell nucleoside scavenging. The present study utilizes isotopic flux analysis and nucleoside analog binding assays to directly characterize the nucleoside transport system of cultured T84 human intestinal epithelial cells and to explore whether adenosine transport is regulated by secretory agonists, metabolic inhibition, or phorbol ester. Uptake of adenosine across the apical membrane displayed characteristics of simple diffusion. Kinetic analysis of basolateral uptake revealed a Na(+)-independent, nitrobenzylthioinosine (NBTI)-sensitive facilitated-diffusion system with low affinity but high capacity for adenosine. NBTI binding studies indicated a single population of high-affinity binding sites basolaterally. Neither forskolin, 5'-(N-ethylcarboxamido)-adenosine, nor metabolic inhibition significantly altered adenosine transport. However, phorbol 12-myristate 13-acetate significantly reduced both adenosine transport and the number of specific NBTI binding sites, suggesting that transporter number may be decreased through activation of protein kinase C. This basolateral facilitated adenosine transporter may serve a conventional function in nucleoside salvage and a novel function as a regulator of adenosine-dependent Cl- secretory responses and hence diarrheal disorders.

  18. Mechanism of the Orotidine 5′-Monophosphate Decarboxylase-Catalyzed Reaction: Evidence for Substrate Destabilization

    SciTech Connect

    Chan, K.; Wood, M; Fedorov, A; Fedorov, E; Imker, H; Amyes, T; Richard, J; Almo, S; Gerlt, J

    2009-01-01

    The reaction catalyzed by orotidine 5'-monophosphate decarboxylase (OMPDC) involves a stabilized anionic intermediate, although the structural basis for the rate acceleration (kcat/knon, 7.1 x 1016) and proficiency (kcat/KM)/knon, 4.8 x 1022 M-1 is uncertain. That the OMPDCs from Methanothermobacter thermautotrophicus (MtOMPDC) and Saccharomyces cerevisiae (ScOMPDC) catalyze the exchange of H6 of the UMP product with solvent deuterium allows an estimate of a lower limit on the rate acceleration associated with stabilization of the intermediate and its flanking transition states (=1010). The origin of the 'missing' contribution, =107 (1017 total - =1010), is of interest. Based on structures of liganded complexes, unfavorable electrostatic interactions between the substrate carboxylate group and a proximal Asp (Asp 70 in MtOMPDC and Asp 91 in ScOMPDC) have been proposed to contribute to the catalytic efficiency. We investigated that hypothesis by structural and functional characterization of the D70N and D70G mutants of MtOMPDC and the D91N mutant of ScOMPDC. The substitutions for Asp 70 in MtOMPDC significantly decrease the value of kcat for decarboxylation of FOMP (a more reactive substrate analogue) but have little effect on the value of kex for exchange of H6 of FUMP with solvent deuterium; the structures of wild-type MtOMPDC and its mutants are superimposable when complexed with 6-azaUMP. In contrast, the D91N mutant of ScOMPDC does not catalyze exchange of H6 of FUMP; the structures of wild-type ScOMPDC and its D91N mutant are not superimposable when complexed with 6-azaUMP, with differences in both the conformation of the active site loop and the orientation of the ligand vis vis the active site residues. We propose that the differential effects of substitutions for Asp 70 of MtOMPDC on decarboxylation and exchange provide additional evidence for a carbanionic intermediate as well as the involvement of Asp 70 in substrate destabilization.

  19. Regulation of guanosine 3′:5′-cyclic monophosphate in ovine tracheal epithelial cells

    PubMed Central

    Range, Simon P; Holland, Elaine D; Basten, Graham P; Knox, Alan J

    1997-01-01

    Guanosine 3′:5′-cyclic monophosphate (cyclic GMP) is an important second messenger mediating the effects of nitric oxide (NO) and natriuretic peptides. Cyclic GMP pathways regulate several aspects of lung pathophysiology in a number of airway cells. The regulation of this system has not been extensively studied in pulmonary epithelial tissue.We have studied the production of cyclic GMP by suspensions of ovine tracheal epithelial cells in response to activators of soluble guanylyl cyclase (sodium nitroprusside (SNP) and S-nitroso-N-acetyl-penicillamine (SNAP) and particulate guanylyl cyclase (atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP) and E. coli heat stable enterotoxin (STa)).Both 10−710−3 M and 10−710−3 M SNAP generated a concentration-dependent marked elevation in cyclic GMP production when incubated with 10−3 M 3-isobutyl-1-methylxanthine (IBMX) (both greater than 25×baseline values with highest drug concentration).The increase in production of cyclic GMP in response to 10−6 M SNP and 10−5 M SNAP was markedly inhibited by both 5×10−5 M haemoglobin (102% and 92% inhibition) and 5×10−5 M methylene blue (82% and 84% inhibition).The increase in cyclic GMP in response to 10−3 M SNP was measured following co-incubation with the phosphodiesterase inhibitors 10−710−3 M IBMX, 10−710−4 M milrinone and 10−710−4 M SKF 96231. Only 10−410−3 M IBMX significantly increased cyclic GMP levels.Cyclic GMP production was also significantly elevated from baseline by 10−5 M ANP, 10−5 M BNP, 10−5 M CNP and 200 iu ml−1 of E. coli STa toxin in the presence of 10−3 M IBMX. Increases with these natriuretic peptides and STa toxin were smaller in magnitude (24 fold) than those seen with SNP and SNAP. CNP was the most potent of the natriuretic peptides studied suggesting type B membrane bound guanylate cyclase is the predominant form expressed

  20. Mechanism of the orotidine 5'-monophosphate decarboxylase-catalyzed reaction: evidence for substrate destabilization.

    PubMed

    Chan, Kui K; Wood, B McKay; Fedorov, Alexander A; Fedorov, Elena V; Imker, Heidi J; Amyes, Tina L; Richard, John P; Almo, Steven C; Gerlt, John A

    2009-06-23

    The reaction catalyzed by orotidine 5'-monophosphate decarboxylase (OMPDC) involves a stabilized anionic intermediate, although the structural basis for the rate acceleration (k(cat)/k(non), 7.1 x 10(16)) and proficiency [(k(cat)/K(M))/k(non), 4.8 x 10(22) M(-1)] is uncertain. That the OMPDCs from Methanothermobacter thermautotrophicus (MtOMPDC) and Saccharomyces cerevisiae (ScOMPDC) catalyze the exchange of H6 of the UMP product with solvent deuterium allows an estimate of a lower limit on the rate acceleration associated with stabilization of the intermediate and its flanking transition states (>or=10(10)). The origin of the "missing" contribution, or=10(10)), is of interest. Based on structures of liganded complexes, unfavorable electrostatic interactions between the substrate carboxylate group and a proximal Asp (Asp 70 in MtOMPDC and Asp 91 in ScOMPDC) have been proposed to contribute to the catalytic efficiency [Wu, N., Mo, Y., Gao, J., and Pai, E. F. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 2017-2022]. We investigated that hypothesis by structural and functional characterization of the D70N and D70G mutants of MtOMPDC and the D91N mutant of ScOMPDC. The substitutions for Asp 70 in MtOMPDC significantly decrease the value of k(cat) for decarboxylation of FOMP (a more reactive substrate analogue) but have little effect on the value of k(ex) for exchange of H6 of FUMP with solvent deuterium; the structures of wild-type MtOMPDC and its mutants are superimposable when complexed with 6-azaUMP. In contrast, the D91N mutant of ScOMPDC does not catalyze exchange of H6 of FUMP; the structures of wild-type ScOMPDC and its D91N mutant are not superimposable when complexed with 6-azaUMP, with differences in both the conformation of the active site loop and the orientation of the ligand vis a vis the active site residues. We propose that the differential effects of substitutions for Asp 70 of MtOMPDC on decarboxylation and

  1. Adenosine triphosphate stress echocardiography in the detection of myocardial ischemia.

    PubMed

    Fukai, T; Koyanagi, S; Tashiro, H; Ichiki, T; Tsutsui, H; Matsumoto, T; Takeshita, A

    1995-10-01

    The purpose of this study was to assess feasibility and safety in the diagnosis of coronary artery in the diagnosis of coronary artery disease and myocardial ischemia using adenosine triphosphate (ATP) stress echocardiography. ATP, a product of human myocardial tissue, is more potent than adenosine in increasing coronary blood flow. Like adenosine, ATP also has a short half-life (<10 s). Left ventricular echocardiograms were recorded during step-wise infusions of ATP in 86 patients who underwent coronary angiography and stress thallium 201 scintigraphy. No serious complications occurred with ATP infusion and most of the side effects were mild and transient. Significant coronary artery disease (>75% diameter stenosis) was present in 34 of 48 patients who had normal echocardiograms at rest. The sensitivity and specificity of ATP-induced wall motion abnormalities for coronary artery disease was 65% (22 of 34) and 100% (14 of 14), respectively. The sensitivity was 50% (10 of 20) in those with one-vessel disease and 86% (12 of 14) in those with multivessel disease (P < .05). In patients with normal echocardiograms at rest and without prior myocardial infarction, the sensitivity of ATP stress echocardiography for the detection of myocardial ischemia assessed by 201Tl single proton emission computed tomography was 58%, with a specificity of 76%, and a diagnostic accuracy of 66%. The sensitivity was 43% in those with one-vessel disease, and 86% in those with multivessel disease (P = .05). In patients with prior myocardial infarction, the sensitivity of ATP stress echocardiography for the detection of viable but jeopardized myocardium was 81%, with a specificity of 91%. The patients with well-developed collateral circulation had a higher incidence of developing wall motion abnormality than those without collaterals (70% v 40%, P < .01). ATP stress echocardiography is valuable for the assessment of coronary artery disease in patients with multivessel disease, coronary

  2. Rate and Equilibrium Constants for an Enzyme Conformational Change during Catalysis by Orotidine 5′-Monophosphate Decarboxylase

    PubMed Central

    2016-01-01

    The caged complex between orotidine 5′-monophosphate decarboxylase (ScOMPDC) and 5-fluoroorotidine 5′-monophosphate (FOMP) undergoes decarboxylation ∼300 times faster than the caged complex between ScOMPDC and the physiological substrate, orotidine 5′-monophosphate (OMP). Consequently, the enzyme conformational changes required to lock FOMP at a protein cage and release product 5-fluorouridine 5′-monophosphate (FUMP) are kinetically significant steps. The caged form of ScOMPDC is stabilized by interactions between the side chains from Gln215, Tyr217, and Arg235 and the substrate phosphodianion. The control of these interactions over the barrier to the binding of FOMP and the release of FUMP was probed by determining the effect of all combinations of single, double, and triple Q215A, Y217F, and R235A mutations on kcat/Km and kcat for turnover of FOMP by wild-type ScOMPDC; its values are limited by the rates of substrate binding and product release, respectively. The Q215A and Y217F mutations each result in an increase in kcat and a decrease in kcat/Km, due to a weakening of the protein–phosphodianion interactions that favor fast product release and slow substrate binding. The Q215A/R235A mutation causes a large decrease in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of OMP, which are limited by the rate of the decarboxylation step, but much smaller decreases in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of FOMP, which are limited by the rate of enzyme conformational changes. By contrast, the Y217A mutation results in large decreases in kcat/Km for ScOMPDC-catalyzed decarboxylation of both OMP and FOMP, because of the comparable effects of this mutation on rate-determining decarboxylation of enzyme-bound OMP and on the rate-determining enzyme conformational change for decarboxylation of FOMP. We propose that kcat = 8.2 s–1 for decarboxylation of FOMP by the Y217A mutant is equal to the rate constant for cage formation

  3. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  4. The Role of Uridine Adenosine Tetraphosphate in the Vascular System

    PubMed Central

    Matsumoto, Takayuki; Tostes, Rita C.; Webb, R. Clinton

    2011-01-01

    The endothelium plays a pivotal role in vascular homeostasis, and endothelial dysfunction is a major feature of cardiovascular diseases, such as arterial hypertension, atherosclerosis, and diabetes. Recently, uridine adenosine tetraphosphate (Up4A) has been identified as a novel and potent endothelium-derived contracting factor (EDCF). Up4A structurally contains both purine and pyrimidine moieties, which activate purinergic receptors. There is an accumulating body of evidence to show that Up4A modulates vascular function by actions on endothelial and smooth muscle cells. In this paper, we discuss the effects of Up4A on vascular function and a potential role for Up4A in cardiovascular diseases. PMID:22110488

  5. Vasodilatory responsiveness to adenosine triphosphate in ageing humans

    PubMed Central

    Kirby, Brett S; Crecelius, Anne R; Voyles, Wyatt F; Dinenno, Frank A

    2010-01-01

    Endothelium-dependent vasodilatation is reduced with advancing age in humans, as evidenced by blunted vasodilator responsiveness to acetylcholine (ACh). Circulating adenosine triphosphate (ATP) has been implicated in the control of skeletal muscle vascular tone during mismatches in oxygen delivery and demand (e.g. exercise) via binding to purinergic receptors (P2Y) on the endothelium evoking subsequent vasodilatation, and ageing is typically associated with reductions in muscle blood flow under such conditions. Therefore, we tested the hypothesis that ATP-mediated vasodilatation is impaired with age in healthy humans. We measured forearm blood flow (venous occlusion plethysmography) and calculated vascular conductance (FVC) responses to local intra-arterial infusions of ACh, ATP, and sodium nitroprusside (SNP) before and during ascorbic acid (AA) infusion in 13 young and 13 older adults. The peak increase in FVC to ACh was significantly impaired in older compared with young adults (262 ± 71%vs. 618 ± 97%; P < 0.05), and this difference was abolished during AA infusion (510 ± 82%vs. 556 ± 71%; not significant, NS). In contrast, peak FVC responses were not different between older and young adults to either ATP (675 ± 105%vs. 734 ± 126%) or SNP (1116 ± 111%vs. 1138 ± 148%) and AA infusion did not alter these responses in either age group (both NS). In another group of six young and six older adults, we determined whether vasodilator responses to adenosine and ATP were influenced by P1-receptor blockade via aminophylline. The peak FVC responses to adenosine were not different in young (350 ± 65%) versus older adults (360 ± 80%), and aminophylline blunted these responses by ∼50% in both groups. The peak FVC responses to ATP were again not different in young and older adults, and aminophylline did not impact the vasodilatation in either group. Thus, in contrast to the observed impairments in ACh responses, the vasodilatory response to exogenous ATP is not

  6. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting.

    PubMed

    Swami, Rajan; Singh, Indu; Jeengar, Manish Kumar; Naidu, V G M; Khan, Wahid; Sistla, Ramakrishna

    2015-01-01

    Delivering chemotherapeutics by nanoparticles into tumor is impeded majorly by two factors: nonspecific targeting and inefficient penetration. Targeted delivery of anti-cancer agents solely to tumor cells introduces a smart strategy because it enhances the therapeutic index compared with untargeted drugs. The present study was performed to investigate the efficiency of adenosine (ADN) to target solid lipid nanoparticles (SLN) to over expressing adenosine receptor cell lines such as human breast cancer and prostate cancer (MCF-7 and DU-145 cells), respectively. SLN were prepared by emulsification and solvent evaporation process using docetaxel (DTX) as drug and were characterized by various techniques like dynamic light scattering, differential scanning calorimeter and transmission electron microscopy. DTX loaded SLNs were surface modified with ADN, an adenosine receptors ligand using carbodiimide coupling. Conjugation was confirmed using infrared spectroscopy and quantified using phenol-sulfuric acid method. Conjugated SLN were shown to have sustained drug release as compared to unconjugated nanoparticles and drug suspension. Compared with free DTX and unconjugated SLN, ADN conjugated SLN showed significantly higher cytotoxicity of loaded DTX, as evidenced by in vitro cell experiments. The IC50 was 0.41 μg/ml for native DTX, 0.30 μg/ml for unconjugated SLN formulation, and 0.09 μg/ml for ADN conjugated SLN formulation in MCF-7 cell lines. Whereas, in DU-145, there was 2 fold change in IC50 of ADN-SLN as compared to DTX. IC50 was found to be 0.44 μg/ml for free DTX, 0.39 μg/ml for unconjugated SLN and 0.22 μg/ml for ADN-SLN. Annexin assay and cell cycle analysis assay further substantiated the cell cytotoxicity. Fluorescent cell uptake and competitive ligand-receptor binding assay corroborated the receptor mediated endocytosis pathway indicated role of adenosine receptors in internalization of conjugated particles. Pharmacokinetic studies of lipidic

  7. Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses

    PubMed Central

    2014-01-01

    Adenosine triphosphatases (ATPases) of double-stranded (ds) DNA archaeal viruses are structurally related to the AAA+ hexameric helicases and translocases. These ATPases have been implicated in viral life cycle functions such as DNA entry into the host, and viral genome packaging into preformed procapsids. We summarize bioinformatical analyses of a wide range of archaeal ATPases, and review the biochemical and structural properties of those archaeal ATPases that have measurable ATPase activity. We discuss their potential roles in genome delivery into the host, virus assembly and genome packaging in comparison to hexameric helicases and packaging motors from bacteriophages. PMID:25105011

  8. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic, and Parvalbumin Neurons in Mice

    PubMed Central

    Yang, Chun; Franciosi, Serena; Brown, Ritchie E.

    2013-01-01

    Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF) region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV) neurons to determine the effect of adenosine. Whole-cell recordings were made from BF cholinergic neurons and from BF GABAergic and PV neurons with the size (>20 μm) and intrinsic membrane properties (prominent H-currents) corresponding to cortically projecting neurons. A brief (2 min) bath application of adenosine (100 μM) decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (EPSCs) in all groups of BF cholinergic, GABAergic, and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM). Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1 receptor-mediated inhibition of glutamatergic inputs to cortically projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required

  9. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep

    PubMed Central

    Bjorness, Theresa E.; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A.; Yanagisawa, Masashi; Bibb, James A.

    2016-01-01

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. SIGNIFICANCE STATEMENT The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets

  10. Presynaptic action of adenosine on a 4-aminopyridine-sensitive current in the rat carotid body

    PubMed Central

    Vandier, C; Conway, A F; Landauer, R C; Kumar, P

    1999-01-01

    Plasma adenosine concentration increases during hypoxia to a level that excites carotid body chemoreceptors by an undetermined mechanism. We have examined this further by determining the electrophysiological responses to exogenous adenosine of sinus nerve chemoafferents in vitro and of whole-cell currents in isolated type I cells.Steady-state, single-fibre chemoafferent discharge was increased approximately 5-fold above basal levels by 100 μM adenosine. This adenosine-stimulated discharge was reversibly and increasingly reduced by methoxyverapamil (D600, 100 μM), by application of nickel chloride (Ni2+, 2 mM) and by removal of extracellular Ca2+. These effects strongly suggest a presynaptic, excitatory action of adenosine on type I cells of the carotid body.Adenosine decreased whole-cell outward currents at membrane potentials above -40 mV in isolated type I cells recorded during superfusion with bicarbonate-buffered saline solution at 34–36 °C. This effect was reversible and concentration dependent with a maximal effect at 10 μM.The degree of current inhibition induced by 10 μM adenosine was voltage independent (45.39 ± 2.55% (mean ± s.e.m.) between −40 and +30 mV) and largely (∼75%), but not entirely, Ca2+ independent. 4-Aminopyridine (4-AP, 5 mM) decreased the amplitude of the control outward current by 80.60 ± 3.67% and abolished the effect of adenosine.Adenosine was without effect upon currents near the resting membrane potential of approximately −55 mV and did not induce depolarization in current-clamp experiments.We conclude that adenosine acts to inhibit a 4-AP-sensitive current in isolated type I cells of the rat carotid body and suggest that this mechanism contributes to the chemoexcitatory effect of adenosine in the whole carotid body. PMID:10050009

  11. Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes

    PubMed Central

    Bolcato, Chiara; Cusan, Claudia; Pastorin, Giorgia; Cacciari, Barbara; Klotz, Karl Norbert; Morizzo, Erika

    2007-01-01

    In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach. PMID:18368532

  12. Exploring human adenosine A3 receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety

    PubMed Central

    Van Rompaey, Philippe; Jacobson, Kenneth A.; Gross, Ariel S.; Gao, Zhan-Guo; Van Calenbergh, Serge

    2012-01-01

    In this paper we investigated the influence on affinity, selectivity and intrinsic activity upon modification of the adenosine agonist scaffold at the 3′- and 5′-positions of the ribofuranosyl moiety and the 2- and N6-positions of the purine base. This resulted in the synthesis of various analogues, that is, 3–12 and 24–33, with good hA3AR selectivity and moderate-to-high affinities (as in 32, Ki = 27 nM). Interesting was the ability to tune the intrinsic activity depending on the substituent introduced at the 3′-position. PMID:15670905

  13. Opiate-induced changes in brain adenosine levels and narcotic drug responses.

    PubMed

    Wu, M; Sahbaie, P; Zheng, M; Lobato, R; Boison, D; Clark, J D; Peltz, G

    2013-01-01

    We have very little information about the metabolomic changes that mediate neurobehavioral responses, including addiction. It was possible that opioid-induced metabolomic changes in brain could mediate some of the pharmacodynamic effects of opioids. To investigate this, opiate-induced brain metabolomic responses were profiled using a semi-targeted method in C57BL/6 and 129Sv1 mice, which exhibit extreme differences in their tendency to become opiate dependent. Escalating morphine doses (10-40 mg/kg) administered over a 4-day period selectively induced a twofold decrease (p<0.00005) in adenosine abundance in the brainstem of C57BL/6 mice, which exhibited symptoms of narcotic drug dependence; but did not decrease adenosine abundance in 129Sv1 mice, which do not exhibit symptoms of dependence. Based on this finding, the effect of adenosine on dependence was investigated in genetically engineered mice with alterations in adenosine tone in the brain and in pharmacologic experiments. Morphine withdrawal behaviors were significantly diminished (p<0.0004) in genetically engineered mice with reduced adenosine tone in the brainstem, and by treatment with an adenosine receptor(1) (A(1)) agonist (2-chloro-N6-cyclopentyladenosine, 0.5mg/kg) or an A(2a) receptor (A(2a)) antagonist (SCH 58261, 1mg/kg). These results indicate that adenosine homeostasis plays a crucial role in narcotic drug responses. Opiate-induced changes in brain adenosine levels may explain many important neurobehavioral features associated with opiate addiction and withdrawal.

  14. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  15. Perfusion pressure control by adenosine triphosphate given during cardiopulmonary bypass.

    PubMed

    Hashimoto, K; Kurosawa, H; Horikoshi, S; Miyamoto, H; Suzuki, K

    1993-01-01

    Administration of exogenous adenosine triphosphate (ATP) as a vasodilator during cardiopulmonary bypass was assessed in consecutive adult patients (n = 24) who demonstrated a high arterial perfusion pressure (mean, > 90 mm Hg). The action of ATP was characterized by rapid induction and stabilization of the blood pressure level. The dose of ATP ranged from 0.68 to 2.68 mg/min. Within 1 minute after the administration, there was a significant reduction in the perfusion pressure from 102 +/- 18 mm Hg (mean +/- standard deviation) to 72 +/- 19 mm Hg. The ATP was then able to maintain the desired pressure of 69 +/- 12 mm Hg at 5 minutes, 67 +/- 12 mm Hg at 10 minutes, and consistent values thereafter. After the ATP administration was discontinued, there was a prompt recovery of pressure without bradyarrhythmia. The frequency and amount of inotropes used were consistent with the control group (n = 26). Although the administration of ATP reduced the increase in serum catecholamine concentration, there were no significant changes in other vasoactive mediators (eicosanoid, angiotensin II, endothelin) between the two groups during cardiopulmonary bypass. There was neither an accumulation of metabolic products (uric acid, phosphate) nor a decrease in the level of divalent cation (Ca2+), which is observed when the cations combine with phosphates or adenosine nucleotides. This study confirmed the efficacy and safety of ATP infusion during cardiopulmonary bypass. PMID:8417658

  16. Novel trypanocidal analogs of 5'-(methylthio)-adenosine.

    PubMed

    Sufrin, Janice R; Spiess, Arthur J; Marasco, Canio J; Rattendi, Donna; Bacchi, Cyrus J

    2008-01-01

    The purine nucleoside 5'-deoxy-5'-(hydroxyethylthio)-adenosine (HETA) is an analog of the polyamine pathway metabolite 5'-deoxy-5'-(methylthio)-adenosine (MTA). HETA is a lead structure for the ongoing development of selectively targeted trypanocidal agents. Thirteen novel HETA analogs were synthesized and examined for their in vitro trypanocidal activities against bloodstream forms of Trypanosoma brucei brucei LAB 110 EATRO and at least one drug-resistant Trypanosoma brucei rhodesiense clinical isolate. New compounds were also assessed in a cell-free assay for their activities as substrates of trypanosome MTA phosphorylase. The most potent analog in this group was 5'-deoxy-5'-(hydroxyethylthio)-tubercidin, whose in vitro cytotoxicity (50% inhibitory concentration [IC50], 10 nM) is 45 times greater than that of HETA (IC50, 450 nM) against pentamidine-resistant clinical isolate KETRI 269. Structure-activity analyses indicate that the enzymatic cleavage of HETA analogs by trypanosome MTA phosphorylase is not an absolute requirement for trypanocidal activity. This suggests that additional biochemical mechanisms are associated with the trypanocidal effects of HETA and its analogs.

  17. 5'-C-Malonyl RNA: Small Interfering RNAs Modified with 5'-Monophosphate Bioisostere Demonstrate Gene Silencing Activity.

    PubMed

    Zlatev, Ivan; Foster, Donald J; Liu, Jingxuan; Charisse, Klaus; Brigham, Benjamin; Parmar, Rubina G; Jadhav, Vasant; Maier, Martin A; Rajeev, Kallanthottathil G; Egli, Martin; Manoharan, Muthiah

    2016-04-15

    5'-Phosphorylation is a critical step in the cascade of events that leads to loading of small interfering RNAs (siRNAs) into the RNA-induced silencing complex (RISC) to elicit gene silencing. 5'-Phosphorylation of exogenous siRNAs is generally accomplished by a cytosolic Clp1 kinase, and in most cases, the presence of a 5'-monophosphate on synthetic siRNAs is not a prerequisite for activity. Chemically introduced, metabolically stable 5'-phosphate mimics can lead to higher metabolic stability, increased RISC loading, and higher gene silencing activities of chemically modified siRNAs. In this study, we report the synthesis of 5'-C-malonyl RNA, a 5'-monophosphate bioisostere. A 5'-C-malonyl-modified nucleotide was incorporated at the 5'-terminus of chemically modified RNA oligonucleotides using solid-phase synthesis. In vitro silencing activity, in vitro metabolic stability, and in vitro RISC loading of 5'-C-malonyl siRNA was compared to corresponding 5'-phosphorylated and 5'-nonphosphorylated siRNAs. The 5'-C-malonyl siRNAs showed sustained or improved in vitro gene silencing and high levels of Ago2 loading and conferred dramatically improved metabolic stability to the antisense strand of the siRNA duplexes. In silico modeling studies indicate a favorable fit of the 5'-C-malonyl group within the 5'-phosphate binding pocket of human Ago2MID domain.

  18. Distinct Requirements for 5'-Monophosphate-assisted RNA Cleavage by Escherichia coli RNase E and RNase G.

    PubMed

    Richards, Jamie; Belasco, Joel G

    2016-03-01

    RNase E and RNase G are homologous endonucleases that play important roles in RNA processing and decay in Escherichia coli and related bacterial species. Rapid mRNA degradation is facilitated by the preference of both enzymes for decay intermediates whose 5' end is monophosphorylated. In this report we identify key characteristics of RNA that influence the rate of 5'-monophosphate-assisted cleavage by these two ribonucleases. In vitro, both require at least two and prefer three or more unpaired 5'-terminal nucleotides for such cleavage; however, RNase G is impeded more than RNase E when fewer than four unpaired nucleotides are present at the 5' end. Each can tolerate any unpaired nucleotide (A, G, C, or U) at either of the first two positions, with only modest biases. The optimal spacing between the 5' end and the scissile phosphate appears to be eight nucleotides for RNase E but only six for RNase G. 5'-Monophosphate-assisted cleavage also occurs, albeit more slowly, when that spacing is greater or at most one nucleotide shorter than the optimum, but there is no simple inverse relationship between increased spacing and the rate of cleavage. These properties are also manifested during 5'-end-dependent mRNA degradation in E. coli.

  19. A study of the hydration of deoxydinucleoside monophosphates containing thymine, uracil and its 5-halogen derivatives: Monte Carlo simulation.

    PubMed

    Alderfer, J L; Danilov, V I; Poltev, V I; Slyusarchuk, O N

    1999-04-01

    An extensive Monte Carlo simulation of hydration of various conformations of the dinucleoside monophosphates (DNP), containing thymine, uracil and its 5-halogen derivatives has been performed. An anti-anti conformation is the most energetically stable one for each of the DNPs. In the majority of cases the energy preference is determined by water-water interaction. For other dimers conformational energy is the most important factor, or both the factors are of nearly equal importance. The introduction of the methyl group into the 5-position of uracil ring most noticeably influences the conformational energy and leads to the decrease of its stabilizing contribution to the total interaction energy. The introduction of halogen atoms increases the relative content of anti-syn and syn-anti conformations of DNPs as compared to the parent ones due to the formation of an energetically more favorable water structure around these conformations. A correlation is observed between the Monte Carlo results for the halogenated DNPs and their experimental photoproduct distribution. The data obtained demonstrates a sequence dependence in the photochemistry of the halogenated dinucleoside monophosphates.

  20. Purification and Properties of Adenosine Diphosphoglucose Pyrophosphorylase from Sweet Corn 1

    PubMed Central

    Amir, Jacob; Cherry, Joe H.

    1972-01-01

    A 40-fold purification of adenosine diphosphoglucose pyrophosphorylase from sweet corn (Zea mays var. Golden Beauty) revealed the enzyme to be specific for adenosine triphosphate. The enzyme has an absolute requirement for Mg2+ and is activated by 3-phosphoglycerate and to a lesser extent by ribose-5-phosphate and fructose-6-phosphate. The apparent Km values of the enzyme for glucose-1-phosphate, adenosine triphosphate, pyrophosphate, and adenosine diphosphoglucose are 1.9 × 10−4, 3.2 × 10−5, 3.3 × 10−5, and 6.2 × 10−4m, respectively. Pyrophosphate inhibits adenosine diphosphoglucose synthesis competitively (Ki = 3.8 × 10−7m), while orthophosphate and sulfate appear to inhibit the reacion noncompetitively. These results show that the production of this sugar nucleotide can be controlled by the concentration of pyrophosphate. PMID:16658078

  1. Adenosine and ATP Link PCO2 to Cortical Excitability via pH

    PubMed Central

    Dulla, Chris G.; Dobelis, Peter; Pearson, Tim; Frenguelli, Bruno G.; Staley, Kevin J.; Masino, Susan A.

    2007-01-01

    Summary In addition to affecting respiration and vascular tone, deviations from normal CO2 alter pH, consciousness, and seizure propensity. Outside the brainstem, however, the mechanisms by which CO2 levels modify neuronal function are unknown. In the hippocampal slice preparation, increasing CO2, and thus decreasing pH, increased the extracellular concentration of the endogenous neuromodulator adenosine and inhibited excitatory synaptic transmission. These effects involve adenosine A1 and ATP receptors and depend on decreased extracellular pH. In contrast, decreasing CO2 levels reduced extracellular adenosine concentration and increased neuronal excitability via adenosine A1 receptors, ATP receptors, and ecto-ATPase. Based on these studies, we propose that CO2-induced changes in neuronal function arise from a pH-dependent modulation of adenosine and ATP levels. These findings demonstrate a mechanism for the bidirectional effects of CO2 on neuronal excitability in the forebrain. PMID:16364904

  2. Respiratory stimulant effects of adenosine in man after caffeine and enprofylline.

    PubMed Central

    Smits, P; Schouten, J; Thien, T

    1987-01-01

    In a double-blind and randomized study the respiratory stimulant effect of continuous intravenous adenosine infusion was studied after previous administration of caffeine, placebo and enprofylline in 10 healthy young volunteers. After placebo, adenosine induced an increase of minute ventilation (from 6.3 to 12.5 l min-1), tidal volume (from 0.60 to 0.96 l), and breathing rate (from 11.0 to 14.8 min-1). Venous pCO2 fell and pH rose after adenosine. Caffeine significantly reduced the adenosine-induced changes of minute ventilation, tidal volume, venous pCO2 and pH, whereas no changes occurred after enprofylline. Our results suggest that adenosine stimulates respiration in man by binding with specific P1-purinoceptors, which can be blocked by caffeine, but not by enprofylline. PMID:3440102

  3. Reconstruction of the adenosine system by bone marrow-derived mesenchymal stem cell transplantation☆

    PubMed Central

    Kang, Huicong; Hu, Qi; Liu, Xiaoyan; Liu, Yinhe; Xu, Feng; Li, Xiang; Zhu, Suiqiang

    2012-01-01

    In the present study, we transplanted bone marrow-derived mesenchymal stem cells into the CA3 area of the hippocampus of chronic epilepsy rats kindled by lithium chloride-pilocarpine. Immunofluorescence and western blotting revealed an increase in adenosine A1 receptor expression and a decrease in adenosine A2a receptor expression in the brain tissues of epileptic rats 3 months after transplantation. Moreover, the imbalance in the A1 adenosine receptor/A2a adenosine receptor ratio was improved. Electroencephalograms showed that frequency and amplitude of spikes in the hippocampus and frontal lobe were reduced. These results suggested that mesenchymal stem cell transplantation can reconstruct the normal function of the adenosine system in the brain and greatly improve epileptiform discharges. PMID:25806064

  4. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    PubMed

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production.

  5. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine.

    PubMed

    Konno, Takashi; Murakami, Akira; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-04-01

    The aim of the present study is to clarify the mechanism for the decrease in intraocular pressure by 2-alkynyladenosine derivatives in rabbits. The receptor binding analysis revealed that 2-(1-octyn-1-yl)adenosine (2-O-Ado) and 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) selectively bound to the A(2a) receptor with a high affinity. Ocular hypotensive responses to 2-O-Ado and 2-CN-Ado were inhibited by the adenosine A(2a)-receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), but not by the adenosine A(1)-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or the adenosine A(2b)-receptor antagonist alloxazine. In addition, 2-O-Ado and 2-CN-Ado caused an increase in outflow facility, which was inhibited by CSC, but not by DPCPX or alloxazine. Moreover, 2-O-Ado and 2-CN-Ado increased cAMP in the aqueous humor, and the 2-O-Ado-induced an increase in cAMP was inhibited by CSC. These results suggest that 2-O-Ado and 2-CN-Ado reduced intraocular pressure via an increase in outflow facility. The ocular hypotension may be mainly mediated through the activation of adenosine A(2a) receptor, although a possible involvement of adenosine A(1) receptor cannot be completely ruled out. 2-O-Ado and 2-CN-Ado are useful lead compounds for the treatment of glaucoma.

  6. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase.

    PubMed

    Markham, G D; Bock, C L; Schalk-Hihi, C

    1999-04-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) catalyzes the K+-dependent reaction IMP + NAD + H2O --> XMP + NADH + H+ which is the rate-limiting step in guanine nucleotide biosynthesis. The catalytic mechanism of the human type-II IMPDH isozyme has been studied by measurement of the pH dependencies of the normal reaction, of the hydrolysis of 2-chloro-IMP (which yields XMP and Cl- in the absence of NAD), and of inactivation by the affinity label 6-chloro-purine-ribotide (6-Cl-PRT). The pH dependence of the IMPDH reaction shows bell-shaped profiles for kcat and the kcat/Km values for both IMP and NAD, illustrating the involvement of both acidic and basic groups in catalysis. Half-maximal kcat values occur at pH values of 7.2 and 9.8; similar pK values of 6.9 and 9.4 are seen in the kcat/Km profile for NAD. The kcat/Km profile for IMP, which binds first in the predominantly ordered kinetic mechanism, shows pK values of 8.1 and 7.3 for acidic and basic groups, respectively. None of the kinetic pK values correspond to ionizations of the free substrates and thus reflect ionization of the enzyme or enzyme-substrate complexes. The rate of inactivation by 6-Cl-PRT, which modifies the active site sulfhydryl of cysteine-331, increases with pH; the pK of 7.5 reflects the ionization of the sulfhydryl in the E.6-Cl-PRT complex. The pKs of the acids observed in the IMPDH reaction likely also reflect ionization of the cysteine-331 sulfhydryl which adds to C-2 of IMP prior to NAD reduction. The kcat and kcat/Km values for hydrolysis of 2-Cl-IMP show a pK value of 9.9 for a basic group, similar to that seen in the overall reaction, but do not exhibit the ionization of an acidic group. Surprisingly, the rates of 2-Cl-IMP hydrolysis and of inactivation by 6-Cl-PRT are not stimulated by K+, in contrast to the >100-fold K+ activation of the IMPDH reaction. Apparently the enigmatic role of K+ lies in the NAD(H)-dependent segment of the IMPDH reaction. To evaluate the importance of

  7. Real-time monitoring of extracellular adenosine using enzyme-linked microelectrode arrays.

    PubMed

    Hinzman, Jason M; Gibson, Justin L; Tackla, Ryan D; Costello, Mark S; Burmeister, Jason J; Quintero, Jorge E; Gerhardt, Greg A; Hartings, Jed A

    2015-12-15

    Throughout the central nervous system extracellular adenosine serves important neuroprotective and neuromodulatory functions. However, current understanding of the in vivo regulation and effects of adenosine is limited by the spatial and temporal resolution of available measurement techniques. Here, we describe an enzyme-linked microelectrode array (MEA) with high spatial (7500 µm(2)) and temporal (4 Hz) resolution that can selectively measure extracellular adenosine through the use of self-referenced coating scheme that accounts for interfering substances and the enzymatic breakdown products of adenosine. In vitro, the MEAs selectively measured adenosine in a linear fashion (r(2)=0.98±0.01, concentration range=0-15 µM, limit of detection =0.96±0.5 µM). In vivo the limit of detection was 0.04±0.02 µM, which permitted real-time monitoring of the basal extracellular concentration in rat cerebral cortex (4.3±1.5 µM). Local cortical injection of adenosine through a micropipette produced dose-dependent transient increases in the measured extracellular concentration (200 nL: 6.8±1.8 µM; 400 nL: 19.4±5.3 µM) [P<0.001]. Lastly, local injection of dipyridamole, which inhibits transport of adenosine through equilibrative nucleoside transporter, raised the measured extracellular concentration of adenosine by 120% (5.6→12.3 µM) [P<0.001]. These studies demonstrate that MEAs can selectively measure adenosine on temporal and spatial scales relevant to adenosine signaling and regulation in normal and pathologic states. PMID:26183072

  8. Adenosine regulates the proinflammatory signaling function of thrombin in endothelial cells

    PubMed Central

    Hassanian, Seyed Mahdi; Dinarvand, Peyman; Rezaie, Alireza R.

    2014-01-01

    The plasma level of the regulatory metabolite adenosine increases during the activation of coagulation and inflammation. Here we investigated the effect of adenosine on modulation of thrombin-mediated proinflammatory responses in HUVECs. We found that adenosine inhibits the barrier-disruptive effect of thrombin in HUVECs by a concentration-dependent manner. Analysis of cell surface expression of adenosine receptors revealed that A2A and A2B are expressed at the highest level among the four receptor subtypes (A2B>A2A>A1>A3) on HUVECs. The barrier-protective effect of adenosine in response to thrombin was recapitulated by the A2A specific agonist, CGS 21680, and abrogated both by the siRNA knockdown of the A2A receptor and by the A2A-specific antagonists, ZM-241385 and SCH-58261. The thrombin-induced RhoA activation and its membrane translocation were both inhibited by adenosine in a cAMP-dependent manner, providing a molecular mechanism through which adenosine exerts a barrier-protective function. Adenosine also inhibited thrombin-mediated activation of NF-κB and decreased adhesion of monocytic THP-1 cells to stimulated HUVECs via down-regulation of expression of cell surface adhesion molecules, VCAM-1, ICAM-1 and E-selectin. Moreover, adenosine inhibited thrombin-induced elevated expression of proinflammatory cytokines, IL-6 and HMGB-1; and chemokines, MCP-1, CXCL-1 and CXCL-3. Taken together, these results suggest that adenosine may inhibit thrombin-mediated proinflammatory signaling responses, thereby protecting the endothelium from injury during activation of coagulation and inflammation. PMID:24477600

  9. Adenosine Deaminase Enzyme Therapy Prevents and Reverses the Heightened Cavernosal Relaxation in Priapism

    PubMed Central

    Wen, Jiaming; Jiang, Xianzhen; Dai, Yingbo; Zhang, Yujin; Tang, Yuxin; Sun, Hong; Mi, Tiejuan; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2010-01-01

    Introduction Priapism featured with painful prolonged penile erection is dangerous and commonly seen in sickle cell disease (SCD). The preventive approaches or effective treatment options for the disorder are limited because of poor understanding of its pathogenesis. Recent studies have revealed a novel role of excess adenosine in priapism caused by heightened cavernosal relaxation, and therefore present an intriguing mechanism-based therapeutic possibility. Aim The aim of this study was to determine the therapeutic effects of adenosine deaminase (ADA) enzyme therapy to lower adenosine in priapism. Methods Both ADA-deficient mice and SCD transgenic (Tg) mice display priapism caused by excessive adenosine. Thus, we used these two distinct lines of mouse models of priapism as our investigative tools. Specifically, we treated both of these mice with different dosages of polyethylene glycol–modified ADA (PEG–ADA) to reduce adenosine levels in vivo. At the end points of the experiments, we evaluated the therapeutic effects of PEG–ADA treatment by measuring adenosine levels and monitoring the cavernosal relaxation. Main Outcome Measures Adenosine levels in penile tissues were measured by high-performance liquid chromatography, and cavernosal relaxation was quantified by electrical field stimulation (EFS)-induced corporal cavernosal strip (CCS) assays. Results We found that lowering adenosine levels in penile tissues by PEG–ADA treatment from birth in ADA-deficient mice prevented the increased EFS-induced CCS relaxation associated with priapism. Intriguingly, in both ADA-deficient mice and SCD Tg mice with established priapism, we found that normalization of adenosine levels in penile tissues by PEG–ADA treatment relieved the heightened EFS-induced cavernosal relaxation in priapism. Conclusions Our studies have identified that PEG–ADA is a novel, safe, and mechanism-based drug to prevent and correct excess adenosine-mediated increased cavernosal relaxation

  10. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis

    PubMed Central

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-01-01

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[3H]-Adenosine NAs and [14C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1 h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. PMID:26087468

  11. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis.

    PubMed

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-08-28

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[(3)H]-Adenosine NAs and [(14)C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. PMID:26087468

  12. Effect of adenosine and adenosine receptor antagonist on Müller cell potassium channel in Rat chronic ocular hypertension models.

    PubMed

    Yang, Zijian; Huang, Ping; Liu, Xiaohong; Huang, Shouyue; Deng, Lianfu; Jin, Zhe; Xu, Shuo; Shen, Xi; Luo, Xunda; Zhong, Yisheng

    2015-01-01

    Müller cells are principal glial cells in rat retina and have attracted much attention in glaucoma studies. However, it is not clear whether adenosine and adenosine receptor (AR) antagonists play any roles in the regulation of potassium channels in Müller cells and subsequently in the promotion of glutamine synthetase (GS) and L-Glutamate/L-Aspartate Transporter (GLAST) functions. We found that chronic ocular hypertension (COH) in rat down-regulated Müller cells Kir2.1, Kir4.1, TASK-1, GS and GLAST expressions and attenuated the peak of inward potassium current. Retinal ganglion cells (RGC) count was lower in the COH rats than that in the sham operation animals. Intravitreal injection of selective A2A AR antagonist SCH442416 up-regulated Müller cell Kir4.1, TASK-1, GS and GLAST expressions and enhanced inward potassium currents compared with those in the COH rats with vehicle control. Meanwhile, the RGC count was higher following intravitreal injection of SCH442416 in the COH rats than that after vehicle injection. The fact that PKA inhibitor H-89 blocked these SCH442416 effects suggested that the PKA signaling pathway was involved in the observed ocular responses following the intravitreal SCH442416 injection. PMID:26063641

  13. Spectroscopic and theoretical investigations of adenosine 5'-diphosphate and adenosine 5'-triphosphate dianions in the gas phase.

    PubMed

    Schinle, Florian; Crider, Paul E; Vonderach, Matthias; Weis, Patrick; Hampe, Oliver; Kappes, Manfred M

    2013-05-14

    Doubly deprotonated adenosine 5'-diphosphate ([ADP-2H](2-)) and adenosine 5'-triphosphate ([ATP-2H](2-)) dianions were investigated using infrared multiple photon dissociation (IR-MPD) and photoelectron spectroscopy. Vibrational spectra acquired in the X-H stretch region (X = C, N, O) and augmented by isotope-labelling were compared to density functional theory (DFT) calculations at the B3LYP/TZVPP level. This suggests that in [ATP-2H](2-) the two phosphate groups adjacent to the ribose ring are preferentially deprotonated. Photoelectron spectra recorded at 4.66 and 6.42 eV photon energies revealed adiabatic detachment energies of 1.35 eV for [ADP-2H](2-) and 3.35 eV for [ATP-2H](2-). Repulsive Coulomb barriers were estimated at ~2.2 eV for [ADP-2H](2-) and ~1.9 eV for [ATP-2H](2-). Time-dependent DFT calculations have been used to simulate the photoelectron spectra. Photodetachment occurs primarily from lone pair orbitals on oxygen atoms within the phosphate chain. PMID:23258289

  14. A role for adenosine in coronary vasoregulation in man. Effects of theophylline and enprofylline.

    PubMed

    Edlund, A; Conradsson, T; Sollevi, A

    1995-11-01

    Adenosine has been suggested to have a role in regulation of the tone of the cardiac resistance vessels. To elucidate the coronary vasoregulatory role of endogenous adenosine in man, we studied the effects of adenosine receptor antagonism by theophylline on coronary blood flow at rest and during light exercise. However, theophylline may also exert pharmacological effects not related to adenosine antagonism. To clarify the contribution of endogenous adenosine in coronary hyperaemia, the effect of theophylline was compared to that of enprofylline, a xanthine which exerts similar pharmacological effects as theophylline while lacking antagonistic action at adenosine receptors. Twenty healthy subjects (10 males) aged 22-39 years were examined. Coronary sinus (CS) blood flow and blood oxygen content were determined at rest and during supine bicycle exercise, at a load of 50 watts, for 10 min. Thereafter, stepwise infusion of adenosine (30 to 60 micrograms/kg/min into the subclavian vein) was performed. Theophylline or enprofylline treatment was instituted randomly and double-blind (10 in each group), and the procedures (i.e. determinations at rest, during exercise and during infusion of adenosine) were repeated. In all 20 subjects, basal CS flow was 70 +/- 6 ml/min and the cardiac oxygen extraction ((A-CS)O2D) was 123 +/- 3 ml/l. During exercise, CS flow and (A-CS)O2D increased to 135 +/- 17 ml/min and 132 +/- 3 ml/l, respectively. Adenosine increased CS flow dose dependently to 161 +/- 27 ml/min, while (A-CS)O2D decreased to 66 +/- 7 ml/l. The vasodilatory effect of adenosine was readily counteracted by theophylline, the increase in CS flow being 33% vs. 133% in the control situation. Enprofylline, on the other hand, enhanced the response to exogenous adenosine. Theophylline, at a dose lacking effect on heart rate and blood pressure, decreased CS flow at rest by 14% (P < 0.05) and during exercise by 18% (P < 0.05). ((A-CS)O2D increased by 14% at rest and during exercise

  15. N6-adenosine methylation in MiRNAs.

    PubMed

    Berulava, Tea; Rahmann, Sven; Rademacher, Katrin; Klein-Hitpass, Ludgar; Horsthemke, Bernhard

    2015-01-01

    Methylation of N6-adenosine (m6A) has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs) has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression. PMID:25723394

  16. N6-Adenosine Methylation in MiRNAs

    PubMed Central

    Berulava, Tea; Rahmann, Sven; Rademacher, Katrin; Klein-Hitpass, Ludgar; Horsthemke, Bernhard

    2015-01-01

    Methylation of N6-adenosine (m6A) has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs) has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression. PMID:25723394

  17. Development and structural analysis of adenosine site binding tankyrase inhibitors.

    PubMed

    Haikarainen, Teemu; Waaler, Jo; Ignatev, Alexander; Nkizinkiko, Yves; Venkannagari, Harikanth; Obaji, Ezeogo; Krauss, Stefan; Lehtiö, Lari

    2016-01-15

    Tankyrases 1 and 2, the specialized members of the ARTD protein family, are druggable biotargets whose inhibition may have therapeutic potential against cancer, metabolic disease, fibrotic disease, fibrotic wound healing and HSV viral infections. We have previously identified a novel tankyrase inhibitor scaffold, JW55, and showed that it reduces mouse colon adenoma formation in vivo. Here we expanded the scaffold and profiled the selectivity of the compounds against a panel of human ARTDs. The scaffold also enables a fine modulation of selectivity towards either tankyrase 1 or tankyrase 2. In order to get insight about the binding mode of the inhibitors, we solved crystal structures of the compounds in complex with tankyrase 2. The compounds bind to the adenosine pocket of the catalytic domain and cause changes in the protein structure that are modulated by the chemical modifications of the compounds. The structural analysis allows further rational development of this compound class as a potent and selective tankyrase inhibitor. PMID:26706174

  18. Development and structural analysis of adenosine site binding tankyrase inhibitors.

    PubMed

    Haikarainen, Teemu; Waaler, Jo; Ignatev, Alexander; Nkizinkiko, Yves; Venkannagari, Harikanth; Obaji, Ezeogo; Krauss, Stefan; Lehtiö, Lari

    2016-01-15

    Tankyrases 1 and 2, the specialized members of the ARTD protein family, are druggable biotargets whose inhibition may have therapeutic potential against cancer, metabolic disease, fibrotic disease, fibrotic wound healing and HSV viral infections. We have previously identified a novel tankyrase inhibitor scaffold, JW55, and showed that it reduces mouse colon adenoma formation in vivo. Here we expanded the scaffold and profiled the selectivity of the compounds against a panel of human ARTDs. The scaffold also enables a fine modulation of selectivity towards either tankyrase 1 or tankyrase 2. In order to get insight about the binding mode of the inhibitors, we solved crystal structures of the compounds in complex with tankyrase 2. The compounds bind to the adenosine pocket of the catalytic domain and cause changes in the protein structure that are modulated by the chemical modifications of the compounds. The structural analysis allows further rational development of this compound class as a potent and selective tankyrase inhibitor.

  19. Extraction and analysis of adenosine triphosphate from aquatic environments

    USGS Publications Warehouse

    Stephens, Doyle W.; Shultz, David J.

    1981-01-01

    A variety of adenosine triphosphate (ATP) extraction procedures have been investigated for their applicability to samples from aquatic environments. The cold sulfuric-oxalic acid procedure was best suited to samples consisting of water, periphyton, and sediments. Due to cation and fulvic acid interferences, a spike with a known quantity of ATP was necessary to estimate losses when sediments were extracted. Variable colonization densities for periphyton required that several replicates be extracted to characterize accurately the periphyton community. Extracted samples were stable at room temperature for one to five hours, depending on the ATP concentration, if the pH was below 2. Neutralized samples which were quick frozen and stored at -30C were stable for months. (USGS)

  20. Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3',5'-monophosphate signaling.

    PubMed

    Rath, Martin F; Bailey, Michael J; Kim, Jong-So; Ho, Anthony K; Gaildrat, Pascaline; Coon, Steven L; Møller, Morten; Klein, David C

    2009-02-01

    Pax4 is a homeobox gene that is known to be involved in embryonic development of the endocrine pancreas. In this tissue, Pax4 counters the effects of the related protein, Pax6. Pax6 is essential for development of the pineal gland. In this study we report that Pax4 is strongly expressed in the pineal gland and retina of the rat. Pineal Pax4 transcripts are low in the fetus and increase postnatally; Pax6 exhibits an inverse pattern of expression, being more strongly expressed in the fetus. In the adult the abundance of Pax4 mRNA exhibits a diurnal rhythm in the pineal gland with maximal levels occurring late during the light period. Sympathetic denervation of the pineal gland by superior cervical ganglionectomy prevents the nocturnal decrease in pineal Pax4 mRNA. At night the pineal gland is adrenergically stimulated by release of norepinephrine from the sympathetic innervation; here, we found that treatment with adrenergic agonists suppresses pineal Pax4 expression in vivo and in vitro. This suppression appears to be mediated by cAMP, a second messenger of norepinephrine in the pineal gland, based on the observation that treatment with a cAMP mimic reduces pineal Pax4 mRNA levels. These findings suggest that the nocturnal decrease in pineal Pax4 mRNA is controlled by the sympathetic neural pathway that controls pineal function acting via an adrenergic-cAMP mechanism. The daily changes in Pax4 expression may influence gene expression in the pineal gland.

  1. Time- and dose-related interactions between glucocorticoid and cyclic adenosine 3',5'-monophosphate on CCAAT/enhancer-binding protein-dependent insulin-like growth factor I expression by osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Ji, C.; Chen, Y.; Kim, K.; Centrella, M.

    2000-01-01

    Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.

  2. WITHDRAWN: Anti-adipogenic effects of centipede grass extract in 3T3-L1 adipocytes and high fat diet induced obesity mice through activating adenosine monophosphate activated protein kinase.

    PubMed

    Kim, Sokho; Oh, Myung-Hoon; Kwon, Jungkee

    2013-11-01

    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

  3. Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels.

    PubMed

    Alexanian, Arshak R; Liu, Qing-song; Zhang, Zhiying

    2013-08-01

    Advances in cell reprogramming technologies to generate patient-specific cells of a desired type will revolutionize the field of regenerative medicine. While several cell reprogramming methods have been developed over the last decades, the majority of these technologies require the exposure of cell nuclei to reprogramming large molecules via transfection, transduction, cell fusion or nuclear transfer. This raises several technical, safety and ethical issues. Chemical genetics is an alternative approach for cell reprogramming that uses small, cell membrane penetrable substances to regulate multiple cellular processes including cell plasticity. Recently, using the combination of small molecules that are involved in the regulation chromatin structure and function and agents that favor neural differentiation we have been able to generate neural-like cells from human mesenchymal stem cells. In this study, to improve the efficiency of neuronal differentiation and maturation, two specific inhibitors of SMAD signaling (SMAD1/3 and SMAD3/5/8) that play an important role in neuronal differentiation of embryonic stem cells, were added to our previous neural induction recipe. Results demonstrated that human mesenchymal stem cells grown in this culture conditions exhibited higher expression of several mature neuronal genes, formed synapse-like structures and exerted electrophysiological properties of differentiating neural stem cells. Thus, an efficient method for production of mature neuronal-like cells from human adult bone marrow derived mesenchymal stem cells has been developed. We concluded that specific combinations of small molecules that target specific cell signaling pathways and chromatin modifying enzymes could be a promising approach for manipulation of adult stem cell plasticity.

  4. Somatostatin-14 and somatostatin-28 pretreatment down-regulate somatostatin-14 receptors and have biphasic effects on forskolin-stimulated cyclic adenosine, 3',5'-monophosphate synthesis and adrenocorticotropin secretion in mouse anterior pituitary tumor cells.

    PubMed

    Heisler, S; Srikant, C B

    1985-07-01

    Activation of somatostatin-14 (S-14) receptors on mouse AtT-20 pituitary tumor cells by S-14 or somatostatin-28 (S-28) inhibits forskolin-stimulated cAMP synthesis and ACTH secretion. In this study, the effects of prolonged exposure of cells to S-14 or S-28 was found to reduce, in a time- and concentration-dependent fashion, the density of S-14 receptors without affecting the affinity of these sites for [125I]Tyr11-S-14. This response was rapidly reversible after removal of peptide from incubation media. Additionally, S-14 and S-28 pretreatment also resulted in a time-dependent sensitizing effect on forskolin-stimulated cAMP formation and ACTH secretion which preceded S-14 receptor down-regulation. Enhancement of the forskolin response was concentration dependent, with maximal effects observed at 10(-8) M with either peptide. Higher pretreatment concentrations of S-14 resulted in an abolition of the enhanced biological response to forskolin; pretreatment with S-28 (10(-6) M) depressed forskolin- and (-)isoproterenol-induced cAMP formation below levels observed in nonpretreated cells. The enhancing effect of S-14 and S-28 required new protein synthesis, since it was partially blocked by cycloheximide; the depressor effect was independent of new protein synthesis. Both the enhanced and depressed forskolin responses after peptide pretreatment were reversible after withdrawal of S-14 or S-28; normalization of the forskolin response (cAMP formation and ACTH secretion) followed the return to control levels of S-14 receptor density. Pretreatment of cells with 10(-8) M or 10(-6) M S-28 increased and decreased, respectively, the ACTH secretory response to agonists which act in the absence of prior cAMP synthesis such as 8-bromo-cAMP, A-23187, and phorbol ester. The data suggest that S-14 receptor down-regulation is not causally associated with the sensitizing effects of S-14 and S-28 on adenylate cyclase and that the S-14 receptor may be also coupled to other effector systems which are involved in regulating the secretory function of AtT-20 cells.

  5. Prostaglandin E2-induced up-regulation of c-fos messenger ribonucleic acid is primarily mediated by 3',5'-cyclic adenosine monophosphate in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Dietz, T. J.; Hughes-Fulford, M.

    2000-01-01

    The mechanism by which the proto-oncogene, c-fos, is up-regulated in response to PGE2 in the mouse osteoblastic (MC3T3-E1) cell line was investigated using RT-PCR. c-fos messenger RNA up-regulation by dmPGE2 is rapid, starting 10 min post stimulation, and transient. The specific protein kinase A (PKA) inhibitor, H89, inhibited c-fos induction. Moreover, down-regulation of protein kinase C (PKC) activity by chronic TPA treatment had no effect on the induction of c-fos by dmPGE2. We conclude that up-regulation of c-fos by dmPGE2 is primarily dependent on PKA in MC3T3-E1 osteoblasts. In S49 lymphoma wild-type but not S49 cyc- cells, which are deficient in cAMP signaling, dmPGE2 up-regulates c-fos and increases cell growth compared with unstimulated cells. Thus in S49 lymphoma cells, c-fos induction by PGE2 is also dependent on cAMP signaling. The minimal c-fos promoter region required for dmPGE2-induced expression was identified by transfecting c-fos promoter deletion constructs coupled to the chloramphenicol acetyltransferase (CAT) reporter gene into Vero cells. Transfection of a plasmid containing 99 bp c-fos proximal promoter was sufficient to direct c-fos/CAT expression following stimulation with dmPGE2. Because induction of c-fos is mediated by cAMP, these data are consistent with activation of c-fos via the CRE/ATF cis element.

  6. WITHDRAWN: Anti-adipogenic effects of centipede grass extract in 3T3-L1 adipocytes and high fat diet induced obesity mice through activating adenosine monophosphate activated protein kinase.

    PubMed

    Kim, Sokho; Oh, Myung-Hoon; Kwon, Jungkee

    2013-11-01

    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy. PMID:24192213

  7. Use of potato tuber nucleotide pyrophosphatase to synthesize adenosine 5'-monophosphate methyl ester: evidence that the solvolytic preferences of the enzyme are regulated by pH and temperature.

    PubMed

    Agudo, A; Ribeiro, J M; Canales, J; Cameselle, J C

    1998-07-01

    Nucleotide alkyl esters are pharmacologically important as potential (ant)agonists of purinoceptors and inhibitors of enzymes. Potato nucleotide pyrophosphatase (PNP) was compared with snake venom phosphodiesterase (SVP) as a catalyst to synthesize nucleotide alkyl esters. In methanol-water mixtures, the methanolysis/hydrolysis ratio of PNP, but not SVP, changed with pH and temperature, being optimal at high pH and low temperature. In a semi-preparative experiment, a crude PNP preparation produced 0.17 mM AMP-O-methyl ester (AMP-OMe) from 1 mM diadenosine 5',5"'-P1,P2-diphosphate (AppA) and 5M methanol, at pH 9 and 0 degrees C. Drawbacks to large-scale use are: low rates inherent to low temperatures, ATP unsuitability as a substrate for alcoholysis, and high cost of AppA. Advantages of PNP vs. SVP are cheapness, non-toxicity, and availability of the enzyme source.

  8. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep.

    PubMed

    Datta, S; Siwek, D F; Stack, E C

    2009-09-29

    Recent studies have shown that in the pedunculopontine tegmental nucleus (PPT), increased neuronal activity and kainate receptor-mediated activation of intracellular protein kinase A (PKA) are important physiological and molecular steps for the generation of rapid eye movement (REM) sleep. In the present study performed on rats, phosphorylated cyclic AMP response element-binding protein (pCREB) immunostaining was used as a marker for increased intracellular PKA activation and as a reflection of increased neuronal activity. To identify whether activated cells were either cholinergic or noncholinergic, the PPT and laterodorsal tegmental nucleus (LDT) cells were immunostained for choline acetyltransferase (ChAT) in combination with pCREB or c-Fos. The results demonstrated that during high rapid eye movement sleep (HR, approximately 27%), significantly higher numbers of cells expressed pCREB and c-Fos in the PPT, of which 95% of pCREB-expressing cells were ChAT-positive. With HR, the numbers of pCREB-positive cells were also significantly higher in the medial pontine reticular formation (mPRF), pontine reticular nucleus oral (PnO), and dorsal subcoeruleus nucleus (SubCD) but very few in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). Conversely, with low rapid eye movement sleep (LR, approximately 2%), the numbers of pCREB expressing cells were very few in the PPT, mPRF, PnO, and SubCD but significantly higher in the LC and DRN. The results of regression analyses revealed significant positive relationships between the total percentages of REM sleep and numbers of ChAT+/pCREB+ (Rsqr=0.98) cells in the PPT and pCREB+ cells in the mPRF (Rsqr=0.88), PnO (Rsqr=0.87), and SubCD (Rsqr=0.84); whereas significantly negative relationships were associated with the pCREB+ cells in the LC (Rsqr=0.70) and DRN (Rsqr=0.60). These results provide evidence supporting the hypothesis that during REM sleep, the PPT cholinergic neurons are active, whereas the LC and DRN neurons are inactive. More importantly, the regression analysis indicated that pCREB activation in approximately 98% of PPT cholinergic neurons, was caused by REM sleep. Moreover the results indicate that during REM sleep, PPT intracellular PKA activation and a transcriptional cascade involving pCREB occur exclusively in the cholinergic neurons.

  9. Adenosine, Ketogenic Diet and Epilepsy: The Emerging Therapeutic Relationship Between Metabolism and Brain Activity

    PubMed Central

    Masino, S.A; Kawamura, M; Wasser, C.D.; Pomeroy, L.T; Ruskin, D.N

    2009-01-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a “retaliatory metabolite.” As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor–based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  10. Topical adenosine increases the proportion of thick hair in Caucasian men with androgenetic alopecia.

    PubMed

    Iwabuchi, Tokuro; Ideta, Ritsuro; Ehama, Ritsuko; Yamanishi, Haruyo; Iino, Masato; Nakazawa, Yosuke; Kobayashi, Takashi; Ohyama, Manabu; Kishimoto, Jiro

    2016-05-01

    Adenosine is an effective treatment for androgenetic alopecia (AGA) in Japanese men and women. Adenosine exerts its effects by significantly increasing the proportion of thick hair. In this study, we assessed the clinical outcome of adenosine treatment for 6 months in 38 Caucasian men. The change in proportion of thick hair (≥60 μm) compared with baseline in the adenosine group was significantly higher than that in the placebo group (P < 0.0001). The change in vellus hair proportion (<40 μm) was significantly lower in the adenosine group than that in the placebo group (P = 0.0154). The change in hair density compared with baseline of the adenosine group was also significantly higher compared with that of the placebo group (P = 0.0470). No adverse effects due to treatment were noted during this study by dermatological evaluation. Adenosine is effective in increasing the proportion of thick hair in Caucasian men with AGA as well as in Japanese men and women.

  11. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity.

    PubMed

    Masino, S A; Kawamura, M; Wasser, C D; Wasser, C A; Pomeroy, L T; Ruskin, D N

    2009-09-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a "retaliatory metabolite." As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor-based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  12. Evidence for an antagonism between caffeine and adenosine in the human cardiovascular system.

    PubMed

    Smits, P; Boekema, P; De Abreu, R; Thien, T; van 't Laar, A

    1987-08-01

    A randomized, double-blind and placebo-controlled study was performed in 10 normotensive male subjects to analyze a possible antagonism between caffeine and adenosine with respect to their effects on the cardiovascular system in humans. Caffeine alone, 250 mg intravenously (i.v.), increased blood pressure by 9/12 mm Hg, and resulted in a fall of heart rate (HR) of 3 beats/min. Plasma epinephrine (E) rose by 114% after caffeine. Adenosine alone, in an increasing dose of 0.04-0.16 mg/kg/min, induced an increase in systolic blood pressure (SBP) (17 mm Hg), and HR (33 beats/min), a moderate fall in diastolic blood pressure (DBP) (-4 mm Hg), and no change of mean arterial pressure (MAP). At the highest adenosine infusion rate, forearm blood flow, skin temperature (ST), and transcutaneous oxygen tension were lowered, whereas plasma (nor)epinephrine was increased 227.2 and 215.9%, respectively. Adenosine infusion after caffeine induced comparable effects, but the fractional adenosine-induced changes of SBP, HR, plasma catecholamines, plasma renin activity (PRA), and aldosterone all were significantly reduced by previous administration of caffeine. Our results indicate an antagonism between caffeine and adenosine in humans, which may support the suggestion that some circulatory effects of caffeine are caused by an interaction with endogenous adenosine. PMID:2441163

  13. Role of adenosine signalling and metabolism in β-cell regeneration

    SciTech Connect

    Andersson, Olov

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  14. The resurgence of A2B adenosine receptor signaling

    PubMed Central

    Aherne, Carol M.; Kewley, Emily M.; Eltzschig, Holger K.

    2010-01-01

    Since its discovery as a low-affinity adenosine receptor (AR), the A2B receptor (A2BAR), has proven enigmatic in its function. The previous discovery of the A2AAR, which shares many similarities with the A2BAR but demonstrates significantly greater affinity for its endogenous ligand, led to the original perception that the A2BAR was not of substantial physiologic relevance. In addition, lack of specific pharmacological agents targeting the A2BAR made its initial characterization challenging. However, the importance of this receptor was reconsidered when it was observed that the A2BAR is highly transcriptionally regulated by factors implicated in inflammatory hypoxia. Moreover, the notion that during ischemia or inflammation extracellular adenosine is dramatically elevated to levels sufficient for A2BAR activation, indicated that A2BAR signaling may be important to dampen inflammation particularly during tissue hypoxia. In addition, the recent advent of techniques for murine genetic manipulation along with development of pharmacological agents with enhanced A2BAR specificity has provided invaluable tools for focused studies on the explicit role of A2BAR signaling in different disease models. Currently, studies performed with combined genetic and pharmacological approaches have demonstrated that A2BAR signaling plays a tissue protective role in many models of acute diseases e.g. myocardial ischemia, or acute lung injury. These studies indicate that the A2BAR is expressed on a wide variety of cell types and exerts tissue/cell specific effects. This is an important consideration for future studies where tissue or cell type specific targeting of the A2BAR may be used as therapeutic approach. PMID:20546702

  15. Structural and Metabolic Specificity of Methylthiocoformycin for Malarial Adenosine Deaminases

    SciTech Connect

    Ho, M.; Cassera, M; Madrid, D; Ting, L; Tyler, P; Kim, K; Almo, S; Schramm, V

    2009-01-01

    Plasmodium falciparum is a purine auxotroph requiring hypoxanthine as a key metabolic precursor. Erythrocyte adenine nucleotides are the source of the purine precursors, making adenosine deaminase (ADA) a key enzyme in the pathway of hypoxanthine formation. Methylthioadenosine (MTA) is a substrate for most malarial ADAs, but not for human ADA. The catalytic site specificity of malarial ADAs permits methylthiocoformycin (MT-coformycin) to act as a Plasmodium-specific transition state analogue with low affinity for human ADA. The structural basis for MTA and MT-coformycin specificity in malarial ADAs is the subject of speculation. Here, the crystal structure of ADA from Plasmodium vivax (PvADA) in a complex with MT-coformycin reveals an unprecedented binding geometry for 5?-methylthioribosyl groups in the malarial ADAs. Compared to malarial ADA complexes with adenosine or deoxycoformycin, 5?-methylthioribosyl groups are rotated 130 degrees. A hydrogen bonding network between Asp172 and the 3?-hydroxyl of MT-coformycin is essential for recognition of the 5?-methylthioribosyl group. Water occupies the 5?-hydroxyl binding site when MT-coformycin is bound. Mutagenesis of Asp172 destroys the substrate specificity for MTA and MT-coformycin. Kinetic, mutagenic, and structural analyses of PvADA and kinetic analysis of five other Plasmodium ADAs establish the unique structural basis for its specificity for MTA and MT-coformycin. Plasmodium gallinaceum ADA does not use MTA as a substrate, is not inhibited by MT-coformycin, and is missing Asp172. Treatment of P. falciparum cultures with coformycin or MT-coformycin in the presence of MTA is effective in inhibiting parasite growth.

  16. Amp Synthesis in Aqueous Solution of Adenosine and Phosphorus Pentoxide

    NASA Astrophysics Data System (ADS)

    Yamagata, Y.; Kojima, H.; Ejiri, K.; Inomata, K.

    1982-12-01

    Possible formation of a P4O10 molecule in magma, the stability of the molecule in hydrous volcanic gas at high temperatures and a possible prebiotic phosphate cycle were discussed in relation to chemical evolution. To demonstrate the utility of phosphorus pentoxide as a phosphorylating agent, aqueous solutions of adenosine (0.02M) and phosphorus pentoxide (0.2M) were incubated at 37°C for 5 months. The pH of the solutions was adjusted every day or every few days to each fixed value (9.0, 10.5, 11.5, 12.5) with 10 N NaOH. The HPLC analysis showed the formation of 2'-AMP, 3'-AMP, 5'-AMP, cyclic (2' 3')-AMP and cyclic (3' 5')-AMP. The main components of the products were 2'- and 3'-AMP, though cyclic (2' 3')-AMP was the main component in the early period of the incubation at pH 9.0. The yields (conversion rate of adenosine to AMPs) were increased almost linearly with the incubation time for 5 months in the case of pH 9.0. The final yields were about 3% (pH 9.0), 6% (pH 9.0, 1 M NaCl), 5% (pH 9.0, 0.01 M CaCl2, 0.01 M MgCl2), 7% (pH 9.0, 0.5 M NaCl, 0.01 M CaCl2, 0.01 M MgCl2), 9% (pH 9.0, 1 M NaCl, 0.01 M CaCl2, 0.01 M MgCl2), 32% (pH 10.5), 43% (pH 11.5), 35% (pH 12.5).

  17. Role of Adenosine Signaling on Pentylenetetrazole-Induced Seizures in Zebrafish

    PubMed Central

    Siebel, Anna Maria; Menezes, Fabiano Peres; Capiotti, Katiucia Marques; Kist, Luiza Wilges; Schaefer, Isabel da Costa; Frantz, Juliana Zanetti; Bogo, Maurício Reis; Da Silva, Rosane Souza

    2015-01-01

    Abstract Adenosine is a well-known endogenous modulator of neuronal excitability with anticonvulsant properties. Thus, the modulation exerted by adenosine might be an effective tool to control seizures. In this study, we investigated the effects of drugs that are able to modulate adenosinergic signaling on pentylenetetrazole (PTZ)-induced seizures in adult zebrafish. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) decreased the latency to the onset of the tonic-clonic seizure stage. The adenosine A1 receptor agonist cyclopentyladenosine (CPA) increased the latency to reach the tonic-clonic seizure stage. Both the adenosine A2A receptor agonist and antagonist, CGS 21680 and ZM 241385, respectively, did not promote changes in seizure parameters. Pretreatment with the ecto-5′nucleotidase inhibitor adenosine 5′-(α,β-methylene) diphosphate (AMPCP) decreased the latency to the onset of the tonic-clonic seizure stage. However, when pretreated with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), or with the nucleoside transporter (NT) inhibitors, dipyridamole and S-(4-Nitrobenzyl)-6-thioinosine (NBTI), animals showed longer latency to reach the tonic-clonic seizure status. Finally, our molecular analysis of the c-fos gene expression corroborates these behavioral results. Our findings indicate that the activation of adenosine A1 receptors is an important mechanism to control the development of seizures in zebrafish. Furthermore, the actions of ecto-5′-nucleotidase, ADA, and NTs are directly involved in the control of extracellular adenosine levels and have an important role in the development of seizure episodes in zebrafish. PMID:25560904

  18. Adenosine modulates light responses of rat retinal ganglion cell photoreceptors througha cAMP-mediated pathway

    PubMed Central

    Sodhi, Puneet; Hartwick, Andrew T E

    2014-01-01

    Adenosine is an established neuromodulator in the mammalian retina, with A1 adenosine receptors being especially prevalent in the innermost ganglion cell layer. Activation of A1 receptors causes inhibition of adenylate cyclase, decreases in intracellular cyclic AMP (cAMP) levels and inhibition of protein kinase A (PKA). In this work, our aim was to characterize the effects of adenosine on the light responses of intrinsically photosensitive retinal ganglion cells (ipRGCs) and to determine whether these photoreceptors are subject to neuromodulation through intracellular cAMP-related signalling pathways. Using multielectrode array recordings from postnatal and adult rat retinas, we demonstrated that adenosine significantly shortened the duration of ipRGC photoresponses and reduced the number of light-evoked spikes fired by these neurons. The effects were A1 adenosine receptor-mediated, and the expression of this receptor on melanopsin-containing ipRGCs was confirmed by calcium imaging experiments on isolated cells in purified cultures. While inhibition of the cAMP/PKA pathway by adenosine shortened ipRGC light responses, stimulation of this pathway with compounds such as forskolin had the opposite effect and lengthened the duration of ipRGC spiking. Our findings reveal that the modification of ipRGC photoresponses through a cAMP/PKA pathway is a general feature of rat ganglion cell photoreceptors, and this pathway can be inhibited through activation of A1 receptors by adenosine. As adenosine levels in the retina rise at night, adenosinergic modulation of ipRGCs may serve as an internal regulatory mechanism to limit transmission of nocturnal photic signals by ipRGCs to the brain. Targeting retinal A1 adenosine receptors for ipRGC inhibition represents a potential therapeutic target for sleep disorders and migraine-associated photophobia. PMID:25038240

  19. Role of adenosine signaling on pentylenetetrazole-induced seizures in zebrafish.

    PubMed

    Siebel, Anna Maria; Menezes, Fabiano Peres; Capiotti, Katiucia Marques; Kist, Luiza Wilges; da Costa Schaefer, Isabel; Frantz, Juliana Zanetti; Bogo, Maurício Reis; Da Silva, Rosane Souza; Bonan, Carla Denise

    2015-04-01

    Adenosine is a well-known endogenous modulator of neuronal excitability with anticonvulsant properties. Thus, the modulation exerted by adenosine might be an effective tool to control seizures. In this study, we investigated the effects of drugs that are able to modulate adenosinergic signaling on pentylenetetrazole (PTZ)-induced seizures in adult zebrafish. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) decreased the latency to the onset of the tonic-clonic seizure stage. The adenosine A1 receptor agonist cyclopentyladenosine (CPA) increased the latency to reach the tonic-clonic seizure stage. Both the adenosine A2A receptor agonist and antagonist, CGS 21680 and ZM 241385, respectively, did not promote changes in seizure parameters. Pretreatment with the ecto-5'nucleotidase inhibitor adenosine 5'-(α,β-methylene) diphosphate (AMPCP) decreased the latency to the onset of the tonic-clonic seizure stage. However, when pretreated with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), or with the nucleoside transporter (NT) inhibitors, dipyridamole and S-(4-Nitrobenzyl)-6-thioinosine (NBTI), animals showed longer latency to reach the tonic-clonic seizure status. Finally, our molecular analysis of the c-fos gene expression corroborates these behavioral results. Our findings indicate that the activation of adenosine A1 receptors is an important mechanism to control the development of seizures in zebrafish. Furthermore, the actions of ecto-5'-nucleotidase, ADA, and NTs are directly involved in the control of extracellular adenosine levels and have an important role in the development of seizure episodes in zebrafish.

  20. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    PubMed

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists.

  1. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    PubMed

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists. PMID:25063794

  2. Adenosine Modulates the Oocyte Developmental Competence by Exposing Stages and Synthetic Blocking during In Vitro Maturation.

    PubMed

    Cheon, Yong-Pil

    2016-06-01

    Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. By the inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage caused of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence.. PMID:27660830

  3. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine

    PubMed Central

    Baron, L; Gombault, A; Fanny, M; Villeret, B; Savigny, F; Guillou, N; Panek, C; Le Bert, M; Lagente, V; Rassendren, F; Riteau, N; Couillin, I

    2015-01-01

    The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation. PMID:25654762

  4. Adenosine Modulates the Oocyte Developmental Competence by Exposing Stages and Synthetic Blocking during In Vitro Maturation

    PubMed Central

    Cheon, Yong-Pil

    2016-01-01

    Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. By the inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage caused of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence.. PMID:27660830

  5. Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats.

    PubMed

    Nakazawa, Taisuke; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-02-01

    Adenosine is a potent vasodilator of retinal blood vessels and is implicated to be a major regulator of retinal blood flow during metabolic stress, but little is known about the impact of diabetes on the role of adenosine in regulation of retinal hemodynamics. Therefore, we examined how diabetes affects adenosine-induced vasodilation of retinal arterioles. Male Wistar rats were treated with streptozotocin (80 mg/kg, intraperitoneally), and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 microg/kg, intravenously [i.v.]) to eliminate any nerve activity and prevent movement of the eye and infused with methoxamine continuously to maintain adequate systemic circulation. Fundus images were captured with a digital camera that was equipped with a special objective lens, and diameters of retinal arterioles were measured. Adenosine increased diameters of retinal arterioles and decreased systemic blood pressure. These responses were significantly attenuated by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) and the adenosine triphosphate-dependent K+ (K(ATP)) channel blocker glibenclamide (20 mg/kg, i.v.). The depressor responses to adenosine were reduced in diabetic rats, whereas diabetes did not alter vasodilation of retinal arterioles to adenosine. In contrast, both depressor response and vasodilation of retinal arteriole to acetylcholine were reduced in diabetic rats. The retinal vasodilator responses to adenosine and acetylcholine observed in diabetic rats were diminished by N(G)-nitro-L-arginine methyl ester. There were no differences in the responses to pinacidil, a K(ATP) channel opener, between the diabetic and nondiabetic rats. These results suggest that both the activation of nitric oxide synthase and opening of K(ATP) channels contribute to the vasodilator effects of adenosine in rats in vivo. However, diabetes has no significant impact on the vasodilation mediated by these mechanisms in

  6. Binding of adenosine and receptor-specific analogues to lymphocytes from control subjects and patients with common variable immunodeficiency.

    PubMed Central

    Shah, T; Simpson, R J; Webster, A D; Peters, T J

    1987-01-01

    Studies were performed on the binding of tritiated adenosine and its analogues, 5'-N-ethylcarboxamide adenosine (NECA) and N6-phenylisopropyladenosine (PIA), to human peripheral blood lymphocytes. These revealed binding only of adenosine (Kd, 1-10 microM, 14,000 binding sites/cell), which was abolished by dipyridamole, a specific adenosine transport inhibitor, suggesting that the binding is to the nucleoside transporter. The absence of high affinity (Kd less than or equal to 1 microM) binding of adenosine or of the two analogues. NECA and PIA suggests that the previously reported effects of adenosine on cAMP formation are not mediated by cell surface specific nucleoside receptors. Binding of adenosine to the carrier in lymphocytes from patients with common variable immunodeficiency was similar to those from control subjects. PMID:2958197

  7. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R2 = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis. PMID:26778273

  8. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R2 = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis.

  9. Photo-cycle dynamics of LOV1-His domain of phototropin from Chlamydomonas reinhardtii with roseoflavin monophosphate cofactor

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2010-09-01

    The wild-type phototropin protein phot from the green alga Chlamydomonas reinhardtii consists of two N-terminal LOV domains LOV1 and LOV2 with flavin mononucleotide (FMN) cofactor and a C-terminal serine-threonine kinase domain. It controls multiple steps in the sexual lifecycle of the alga. Here the LOV1-His domain of phot with modified cofactor is studied. FMN is replaced by roseoflavin monophosphate (8-dimethylamino-8-demethyl-FMN, RoFMN). The modified LOV1 domain is called RoLOV1. The photo-dynamics consequences of the cofactor change are studied. The absorption, emission, and photo-cyclic behaviour of LOV1-His and RoLOV1-His are compared. A spectroscopic characterisation of the cofactors FMN and RoFMN (roseoflavin) is given.

  10. Stereoselective aminoacylation of a dinucleoside monophosphate by the imidazolides of DL-alanine and N-(tert-butoxycarbonyl)-DL-alanine

    NASA Technical Reports Server (NTRS)

    Profy, A. T.; Usher, D. A.

    1984-01-01

    The aminoacylation of diinosine monophosphate was studied experimentally. When the acylating agent was the imidazolide of N-(tert-butoxycarbonyl)-DL-alanine, a 40 percent enantiomeric excess of the isomer was incorporated at the 2' site and the positions of equilibrium for the reversible 2'-3' migration reaction differed for the D and L enantiomers. The reactivity of the nucleoside hydroxyl groups was found to decrease on the order 2'(3') less than internal 2' and less than 5', and the extent of the reaction was affected by the concentration of the imidazole buffer. Reaction of IpI with imidazolide of unprotected DL-alanine, by contrast, led to an excess of the D isomer at the internal 2' site. Finally, reaction with the N-carboxy anhydride of DL-alanine occurred without stereoselection. These results are found to be relevant to the study of the evolution of optical chemical activity and the origin of genetically directed protein synthesis.

  11. PCR screening for carriers of bovine leukocyte adhesion deficiency (BLAD) and uridine monophosphate synthase (DUMPS) in Argentine Holstein cattle.

    PubMed

    Poli, M A; Dewey, R; Semorile, L; Lozano, M E; Albariño, C G; Romanowski, V; Grau, O

    1996-05-01

    BLAD (Bovine Leukocyte Adhesion Deficiency) and DUMPS (Deficiency of Uridine Monophosphate Synthase) are monogenic autosomal, recessive inherited diseases of Holstein cattle. Single nucleotide changes (point mutations) responsible for the genetic disorders were detected by polymerase chain reaction coupled with restriction fragment length polymorphism assays (PCR-RFLP). Using oligonucleotide primers, DNA fragments of predicted sizes were amplified, and the products' specificity was assessed by nucleotide sequencing. Mutations were detected in DNA samples from bovine blood and semen by the presence or absence of restriction sites within the PCR amplification products (Taq I, Hae III for BLAD, Ava I for DUMPS). The test included 104 bulls and 950 cows of Argentinean Holstein breed. Defective alleles frequencies were as follows: 2.88% BLAD in bulls used in artificial insemination, 1.79% in cows; 0.96% DUMPS in bulls and 0.11% in cows. PMID:8693839

  12. Nuclear magnetic resonance and molecular modeling study on mycophenolic acid: implications for binding to inosine monophosphate dehydrogenase.

    PubMed

    Makara, G M; Keserû, G M; Kajtár-Peredy, M; Anderson, W K

    1996-03-15

    The conformation of the sodium salt of mycophenolic acid (MPA), a potent inhibitor of inosine monophosphate dehydrogenase (IMPD), derived from 1D DIFNOE and 2D ROESY experiments in water and molecular dynamics (MD) is described. The hexenoic acid side chain conformation consistent with the NMR data was similar to that seen in the X-ray structure of MPA. The solution conformation was applied in a molecular modeling study in order to explore the potential features of enzyme binding. Our results, based on striking similarities in molecular volume and electrostatic isopotential between MPA and cofactor NAD+, lead to the suggestion that MPA is capable of binding to the nicotinamide site of IMPD and mimicking the NAD+ inverse regulation of the enzyme. In addition, our proposed model is in good agreement with the observed high affinity of the dinucleotide analogues thiazole- and selenazole-4-carboxamide adenine dinucleotide to IMPD.

  13. A2B adenosine receptors mediate relaxation of the pig intravesical ureter: adenosine modulation of non adrenergic non cholinergic excitatory neurotransmission

    PubMed Central

    Hernández, Medardo; Barahona, María Victoria; Bustamante, Salvador; García-Sacristán, Albino; Orensanz, Luis M

    1999-01-01

    The present study was designed to characterize the adenosine receptors involved in the relaxation of the pig intravesical ureter, and to investigate the action of adenosine on the non adrenergic non cholinergic (NANC) excitatory ureteral neurotransmission. In U46619 (10−7  M)-contracted strips treated with the adenosine uptake inhibitor, nitrobenzylthioinosine (NBTI, 10−6  M), adenosine and related analogues induced relaxations with the following potency order: 5′-N-ethylcarboxamidoadenosine (NECA)=5′-(N-cyclopropyl)-carboxamidoadenosine (CPCA)=2-chloroadenosine (2-CA)>adenosine>cyclopentyladenosine (CPA)=N6-(3-iodobenzyl)-adenosine-5′-N-methylcarboxamide (IB-MECA)=2-[p-(carboxyethyl)-phenylethylamino]-5′-N-ethylcarboxamidoadenosine (CGS21680). Epithelium removal or incubation with indomethacin (3×10−6  M) and L-NG-nitroarginine (L-NOARG, 3×10−5  M), inhibitors of prostanoids and nitric oxide (NO) synthase, respectively, failed to modify the relaxations to adenosine. 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10−8 M) and 4-(2-[7-amino-2-(2-furyl) [1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385, 3×10−8  M and 10−7  M), A1 and A2A receptor selective antagonists, respectively, did not modify the relaxations to adenosine or NECA. 8-phenyltheophylline (8-PT, 10−5  M) and DPCPX (10−6  M), which block A1/A2-receptors, reduced such relaxations. In strips treated with guanethidine (10−5  M), atropine (10−7  M), L-NOARG (3×10−5  M) and indomethacin (3×10−6  M), both electrical field stimulation (EFS, 5 Hz) and exogenous ATP (10−4  M) induced contractions of preparations. 8-PT (10−5  M) increased both contractions. DPCPX (10−8  M), NECA (10−4  M), CPCA, (10−4  M) and 2-CA (10−4  M) did not alter the contractions to EFS. The present results suggest that adenosine relaxes the pig intravesical ureter, independently of prostanoids

  14. Identification of Potent, Selective P2Y-Purinoceptor Agonists: Structure–Activity Relationships for 2-Thioether Derivatives of Adenosine 5′-Triphosphate†

    PubMed Central

    Fischer, Bilha; Boyer, José L.; Hoyle, Charles H. V.; Ziganshin, Airat U.; Brizzolara, Antonia L.; Knight, Gillian E.; Zimmet, Jeffrey; Burnstock, Geoffrey; Harden, T. Kendall; Jacobson, Kenneth A.

    2012-01-01

    Study of P2-purinoceptor subtypes has been difficult due to the lack of potent and selective ligands. With the goal of developing high affinity P2-purinoceptor-selective agonists, we have synthesized a series of analogues of adenine nucleotides modified on the purine ring as chain-extended 2-thioethers or as N6-methyl-substituted compounds. Chemical functionality incorporated in the thioether moiety included cyanoalkyl, nitroaromatic, amino, thiol, cycloalkyl, n-alkyl, and olefinic groups. Apparent affinity of the compounds for P2Y-purinoceptors was established by measurement of P2Y-purinoceptor-promoted phospholipase C activity in turkey erythrocyte membranes and relaxation of carbachol-contracted smooth muscle in three different preparations (guinea pig taenia coil, rabbit aorta, and rabbit mesenteric artery). Activity at P2X-purinoceptors was established by measurement of contraction of rabbit saphenous artery and of the guinea pig vas deferens and urinary bladder. All 11 of the 2-thioethers of ATP stimulated the production of inositol phosphates with K0.5 values of 1.5–770 nM, with an (aminophenyl)ethyl derivative being most potent. Two adenosine diphosphate analogues were equipotent to the corresponding ATP analogues. Adenosine monophosphate analogues were full agonists, although generally 4 orders of magnitude less potent. ATP 2-thioethers displayed pD2 values in the range of 6–8 in smooth muscle assay systems for activity at P2Y-receptors. There was a significant correlation for the 2-thioether compounds between the pK0.5 values for inositol phosphate production and the pD2 values for relaxation mediated via the P2Y-purinoceptors in the guinea pig taenia coli, but not for the vascular P2Y-receptors or for the P2X-receptors. At P2X-receptors, no activity was observed in the rabbit saphenous artery, but variable degrees of activity were observed in the guinea pig vas deferens and bladder depending on distal substituents of the thioether moiety. N6-Methyl

  15. In Search of Enzymes with a Role in 3′, 5′-Cyclic Guanosine Monophosphate Metabolism in Plants

    PubMed Central

    Gross, Inonge; Durner, Jörg

    2016-01-01

    In plants, nitric oxide (NO)-mediated 3′, 5′-cyclic guanosine monophosphate (cGMP) synthesis plays an important role during pathogenic stress response, stomata closure upon osmotic stress, the development of adventitious roots and transcript regulation. The NO-cGMP dependent pathway is well characterized in mammals. The binding of NO to soluble guanylate cyclase enzymes (GCs) initiates the synthesis of cGMP from guanosine triphosphate. The produced cGMP alters various cellular responses, such as the function of protein kinase activity, cyclic nucleotide gated ion channels and cGMP-regulated phosphodiesterases. The signal generated by the second messenger is terminated by 3′, 5′-cyclic nucleotide phosphodiesterase (PDEs) enzymes that hydrolyze cGMP to a non-cyclic 5′-guanosine monophosphate. To date, no homologues of mammalian cGMP-synthesizing and degrading enzymes have been found in higher plants. In the last decade, six receptor proteins from Arabidopsis thaliana have been reported to have guanylate cyclase activity in vitro. Of the six receptors, one was shown to be a NO dependent guanylate cyclase enzyme (NOGC1). However, the role of these proteins in planta remains to be elucidated. Enzymes involved in the degradation of cGMP remain elusive, albeit, PDE activity has been detected in crude protein extracts from various plants. Additionally, several research groups have partially purified and characterized PDE enzymatic activity from crude protein extracts. In this review, we focus on presenting advances toward the identification of enzymes involved in the cGMP metabolism pathway in higher plants. PMID:27200049

  16. Folding Properties of Cytosine Monophosphate Kinase from E. coli Indicate Stabilization through an Additional Insert in the NMP Binding Domain

    PubMed Central

    Beitlich, Thorsten; Lorenz, Thorsten; Reinstein, Jochen

    2013-01-01

    The globular 25 kDa protein cytosine monophosphate kinase (CMPK, EC ID: 2.7.4.14) from E. coli belongs to the family of nucleoside monophosphate (NMP) kinases (NMPK). Many proteins of this family share medium to high sequence and high structure similarity including the frequently found α/β topology. A unique feature of CMPK in the family of NMPKs is the positioning of a single cis-proline residue in the CORE-domain (cis-Pro124) in conjunction with a large insert in the NMP binding domain. This insert is not found in other well studied NMPKs such as AMPK or UMP/CMPK. We have analyzed the folding pathway of CMPK using time resolved tryptophan and FRET fluorescence as well as CD. Our results indicate that unfolding at high urea concentrations is governed by a single process, whereas refolding in low urea concentrations follows at least a three step process which we interpret as follows: Pro124 in the CORE-domain is in cis in the native state (Nc) and equilibrates with its trans-isomer in the unfolded state (Uc - Ut). Under refolding conditions, at least the Ut species and possibly also the Uc species undergo a fast initial collapse to form intermediates with significant amount of secondary structure, from which the trans-Pro124 fraction folds to the native state with a 100-fold lower rate constant than the cis-Pro124 species. CMPK thus differs from homologous NMP kinases like UMP/CMP kinase or AMP kinase, where folding intermediates show much lower content of secondary structure. Importantly also unfolding is up to 100-fold faster compared to CMPK. We therefore propose that the stabilizing effect of the long NMP-domain insert in conjunction with a subtle twist in the positioning of a single cis-Pro residue allows for substantial stabilization compared to other NMP kinases with α/β topology. PMID:24205218

  17. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  18. Adenosine: A Mediator of the Sleep-Inducing Effects of Prolonged Wakefulness

    PubMed Central

    Porkka-Heiskanen, Tarja; Strecker, Robert E.; Thakkar, Mahesh; Bjørkum, Alvhild A.; Greene, Robert W.; McCarley, Robert W.

    2013-01-01

    Both subjective and electroencephalographic arousal diminish as a function of the duration of prior wakefulness. Data reported here suggest that the major criteria for a neural sleep factor mediating the somnogenic effects of prolonged wakefulness are satisfied by adenosine, a neuromodulator whose extracellular concentration increases with brain metabolism and which, in vitro, inhibits basal forebrain cholinergic neurons. In vivo microdialysis measurements in freely behaving cats showed that adenosine extracellular concentrations in the basal forebrain cholinergic region increased during spontaneous wakefulness as contrasted with slow wave sleep; exhibited progressive increases during sustained, prolonged wakefulness; and declined slowly during recovery sleep. Furthermore, the sleep-wakefulness profile occurring after prolonged wakefulness was mimicked by increased extracellular adenosine induced by microdialysis perfusion of an adenosine transport inhibitor in the cholinergic basal forebrain but not by perfusion in a control noncholinergic region. PMID:9157887

  19. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles

    PubMed Central

    Galagudza, Michael; Korolev, Dmitry; Postnov, Viktor; Naumisheva, Elena; Grigorova, Yulia; Uskov, Ivan; Shlyakhto, Eugene

    2012-01-01

    Pharmacological agents suggested for infarct size limitation have serious side effects when used at cardioprotective doses which hinders their translation into clinical practice. The solution to the problem might be direct delivery of cardioprotective drugs into ischemic-reperfused myocardium. In this study, we explored the potential of silica nanoparticles for passive delivery of adenosine, a prototype cardioprotective agent, into ischemic-reperfused heart tissue. In addition, the biodegradation of silica nanoparticles was studied both in vitro and in vivo. Immobilization of adenosine on the surface of silica nanoparticles resulted in enhancement of adenosine-mediated infarct size limitation in the rat model. Furthermore, the hypotensive effect of adenosine was attenuated after its adsorption on silica nanoparticles. We conclude that silica nanoparticles are biocompatible materials that might potentially be used as carriers for heart-targeted drug delivery. PMID:22619519

  20. Effect of insulin and glucose on adenosine metabolizing enzymes in human B lymphocytes.

    PubMed

    Kocbuch, Katarzyna; Sakowicz-Burkiewicz, Monika; Grden, Marzena; Szutowicz, Andrzej; Pawelczyk, Tadeusz

    2009-01-01

    In diabetes several aspects of immunity are altered, including the immunomodulatory action of adenosine. Our study was undertaken to investigate the effect of different glucose and insulin concentrations on activities of adenosine metabolizing enzymes in human B lymphocytes line SKW 6.4. The activity of adenosine deaminase in the cytosolic fraction was very low and was not affected by different glucose concentration, but in the membrane fraction of cells cultured with 25 mM glucose it was decreased by about 35% comparing to the activity in cells maintained in 5 mM glucose, irrespective of insulin concentration. The activities of 5'-nucleotidase (5'-NT) and ecto-5'-NT in SKW 6.4 cells depended on insulin concentration, but not on glucose. Cells cultured with 10(-8) M insulin displayed an about 60% lower activity of cytosolic 5'-NT comparing to cells maintained at 10(-11) M insulin. The activity of ecto-5'-NT was decreased by about 70% in cells cultured with 10(-8) M insulin comparing to cells grown in 10(-11) M insulin. Neither insulin nor glucose had an effect on adenosine kinase (AK) activity in SKW 6.4 cells or in human B cells isolated from peripheral blood. The extracellular level of adenosine and inosine during accelerated catabolism of cellular ATP depended on glucose, but not on insulin concentration. Concluding, our study demonstrates that glucose and insulin differentially affect the activities of adenosine metabolizing enzymes in human B lymphocytes, but changes in those activities do not correlate with the adenosine level in cell media during accelerated ATP catabolism, implying that nucleoside transport is the primary factor determining the extracellular level of adenosine.

  1. Role of adenosine in the sympathetic activation produced by isometric exercise in humans.

    PubMed Central

    Costa, F; Biaggioni, I

    1994-01-01

    Isometric exercise increases sympathetic nerve activity and blood pressure. This exercise pressor reflex is partly mediated by metabolic products activating muscle afferents (metaboreceptors). Whereas adenosine is a known inhibitory neuromodulator, there is increasing evidence that it activates afferent nerves. We, therefore, examined the hypothesis that adenosine stimulates muscle afferents and participates in the exercise pressor reflex in healthy volunteers. Intraarterial administration of adenosine into the forearm, during venous occlusion to prevent systemic effects, mimicked the response to exercise, increasing muscle sympathetic nerve activity (MSNA, lower limb microneurography) and mean arterial blood pressure (MABP) at all doses studied (2, 3, and 4 mg). Heart rate increased only with the highest dose. Intrabrachial adenosine (4 mg) increased MSNA by 96 +/- 25% (n = 6, P < 0.01) and MABP by 12 +/- 3 mmHg (P < 0.01). Adenosine produced forearm discomfort, but equivalent painful stimuli (forearm ischemia and cold exposure) increased MSNA significantly less than adenosine. Furthermore, adenosine receptor antagonism with intrabrachial theophylline (1 microgram/ml forearm per min) blocked the increase in MSNA (92 +/- 15% vs. 28 +/- 6%, n = 7, P < 0.01) and MABP (38 +/- 6 vs. 27 +/- 4 mmHg, P = 0.01) produced by isometric handgrip (30% of maximal voluntary contraction) in the infused arm, but not the contralateral arm. Theophylline did not prevent the increase in heart rate produced by handgrip, a response mediated more by central command than muscle afferent activation. We propose that endogenous adenosine contributes to the activation of muscle afferents involved in the exercise pressor reflex in humans. PMID:8163667

  2. Cyclization of the phosphate side chain of adenosine triphosphate: formation of monoadenosine 5'-trimetaphosphate.

    PubMed

    Glonek, T; Kleps, R A; Myers, T C

    1974-07-26

    Monoadenosine 5'-trimetaphosphate has been prepared from adeno-sine 5'-triphosphate by a carbodiimide-mediated condensation. The molecule was characterized by (3l)P nuclear magnetic resonance, and its (31)P spectrum was simulated through the assumption of a three-phosphorus spin system. The molecule is highly reactive and is rapidly converted to adenosine triphosphate upon contact with water. PMID:4834364

  3. Adverse and Protective Influences of Adenosine on the Newborn and Embryo: Implications for Preterm White Matter Injury and Embryo Protection

    PubMed Central

    Rivkees, Scott A.; Wendler, Christopher C.

    2011-01-01

    Few signaling molecules have the potential to influence the developing mammal as the nucleoside adenosine. Adenosine levels increase rapidly with tissue hypoxia and inflammation. Adenosine antagonists include the methlyxanthines caffeine and theophylline. The receptors that transduce adenosine action are the A1, A2a, A2b, and A3 adenosine receptors (ARs). In the postnatal period, A1AR activation may contribute to white matter injury in the preterm infant by altering oligodendrocyte (OL) development. In models of perinatal brain injury, caffeine is neuroprotective against periventricular white matter injury (PWMI) and hypoxic-ischemic encephalopathy (HIE). Supporting the notion that blockade of adenosine action is of benefit in the premature infant, caffeine reduces the incidence of broncho-pulmonary dysplasia and cerebral palsy in clinical studies. In comparison with the adverse effects on the postnatal brain, adenosine acts via A1ARs to play an essential role in protecting the embryo from hypoxia. Embryo protective effects are blocked by caffeine, and caffeine intake during early pregnancy increases the risk of miscarriage and fetal growth retardation. Adenosine and adenosine antagonists play important modulatory roles during mammalian development. The protective and deleterious effects of adenosine depend on the time of exposure and target sites of action. PMID:21228731

  4. Ticagrelor Does Not Inhibit Adenosine Transport at Relevant Concentrations: A Randomized Cross-Over Study in Healthy Subjects In Vivo

    PubMed Central

    Rongen, G. A.; van den Broek, P. H. H.; Bilos, A.; Donders, A. R. T.; Gomes, M. E.; Riksen, N. P.

    2015-01-01

    Background and Purpose In patients with myocardial infarction, ticagrelor reduces cardiovascular and sepsis-related mortality, and can cause dyspnea. It is suggested that this is caused by adenosine receptor stimulation, because in preclinical studies, ticagrelor blocks the nucleoside transporter and increases cellular ATP release. We now investigated the effects of ticagrelor on the adenosine system in humans in vivo. Experimental Approach In a double-blinded, placebo-controlled cross-over trial in 14 healthy subjects, we have tested whether ticagrelor (180 mg) affects adenosine- and dipyridamole-induced forearm vasodilation, as surrogates of nucleoside uptake inhibition and adenosine formation, respectively. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was measured. Primary endpoint was adenosine-induced vasodilation. Key Results Ticagrelor did not affect adenosine- or dipyridamole-induced forearm vasodilation. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was not affected by ticagrelor. In vitro, ticagrelor dose-dependently inhibited nucleoside uptake, but only at supra-physiological concentrations. Conclusion and Implications In conclusion, at relevant plasma concentration, ticagrelor does not affect adenosine transport, nor adenosine formation in healthy subjects. Therefore, it is unlikely that this mechanism is a relevant pleiotropic effect of ticagrelor. Trial Registration ClinicalTrials.gov NCT01996735 PMID:26509673

  5. Design, Synthesis and Evaluation of Fe-S Targeted Adenosine 5′-Phosphosulfate Reductase Inhibitors

    PubMed Central

    Paritala, Hanumantharao; Suzuki, Yuta; Carroll, Kate S.

    2015-01-01

    Adenosine 5′-phosphosulfate reductase (APR) is an iron-sulfur enzyme that is vital for survival of Mycobacterium tuberculosis during dormancy and is an attractive target for the treatment of latent tuberculosis (TB) infection. The 4Fe-4S cluster is coordinated to APR by sulfur atoms of four cysteine residues, is proximal to substrate, adenosine 5′-phopsphosulfate (APS), and is essential for catalytic activity. Herein, we present an approach for the development of a new class of APR inhibitors. As an initial step, we have employed an improved solid-phase chemistry method to prepare a series of N6-substituted adenosine analogues and their 5′-phosphates as well as adenosine 5′-phosphate diesters bearing different Fe and S binding groups, such as thiols or carboxylic and hydroxamic acid moieties. Evaluation of the resulting compounds indicates a clearly defined spacing requirement between the Fe-S targeting group and adenosine scaffold and that smaller Fe-S targeting groups are better tolerated. Molecular docking analysis suggests that the S atom of the most potent inhibitor may establish a favorable interaction with an S atom in the cluster. In summary, this study showcases an improved solid-phase method that expedites the preparation of adenosine and related 5′-phosphate derivatives and presents a unique Fe-S targeting strategy for the development of APR inhibitors. PMID:25710356

  6. Striatal adenosine signaling regulates EAAT2 and astrocytic AQP4 expression and alcohol drinking in mice.

    PubMed

    Lee, Moonnoh R; Ruby, Christina L; Hinton, David J; Choi, Sun; Adams, Chelsea A; Young Kang, Na; Choi, Doo-Sup

    2013-02-01

    Adenosine signaling is implicated in several neuropsychiatric disorders, including alcoholism. Among its diverse functions in the brain, adenosine regulates glutamate release and has an essential role in ethanol sensitivity and preference. However, the molecular mechanisms underlying adenosine-mediated glutamate signaling in neuroglial interaction remain elusive. We have previously shown that mice lacking the ethanol-sensitive adenosine transporter, type 1 equilibrative nucleoside transporter (ENT1), drink more ethanol compared with wild-type mice and have elevated striatal glutamate levels. In addition, ENT1 inhibition or knockdown reduces glutamate transporter expression in cultured astrocytes. Here, we examined how adenosine signaling in astrocytes contributes to ethanol drinking. Inhibition or deletion of ENT1 reduced the expression of type 2 excitatory amino-acid transporter (EAAT2) and the astrocyte-specific water channel, aquaporin 4 (AQP4). EAAT2 and AQP4 colocalization was also reduced in the striatum of ENT1 null mice. Ceftriaxone, an antibiotic compound known to increase EAAT2 expression and function, elevated not only EAAT2 but also AQP4 expression in the striatum. Furthermore, ceftriaxone reduced ethanol drinking, suggesting that ENT1-mediated downregulation of EAAT2 and AQP4 expression contributes to excessive ethanol consumption in our mouse model. Overall, our findings indicate that adenosine signaling regulates EAAT2 and astrocytic AQP4 expressions, which control ethanol drinking in mice.

  7. Label-Free Sensing of Adenosine Based on Force Variations Induced by Molecular Recognition

    PubMed Central

    Li, Jingfeng; Li, Qing; Colombi Ciacchi, Lucio; Wei, Gang

    2015-01-01

    We demonstrate a simple force-based label-free strategy for the highly sensitive sensing of adenosine. An adenosine ssDNA aptamer was bound onto an atomic force microscopy (AFM) probe by covalent modification, and the molecular-interface adsorption force between the aptamer and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). In the presence of adenosine, the molecular recognition between adenosine and the aptamer resulted in the formation of a folded, hairpin-like DNA structure and hence caused a variation of the adsorption force at the graphite/water interface. The sensitive force response to molecular recognition provided an adenosine detection limit in the range of 0.1 to 1 nM. The addition of guanosine, cytidine, and uridine had no significant interference with the sensing of adenosine, indicating a strong selectivity of this sensor architecture. In addition, operational parameters that may affect the sensor, such as loading rate and solution ionic strength, were investigated. PMID:25808841

  8. A2B Adenosine Receptor–Mediated Induction of IL-6 Promotes CKD

    PubMed Central

    Dai, Yingbo; Zhang, Weiru; Wen, Jiaming; Zhang, Yujin; Kellems, Rodney E.

    2011-01-01

    Chronic elevation of adenosine, which occurs in the setting of repeated or prolonged tissue injury, can exacerbate cellular dysfunction, suggesting that it may contribute to the pathogenesis of CKD. Here, mice with chronically elevated levels of adenosine, resulting from a deficiency in adenosine deaminase (ADA), developed renal dysfunction and fibrosis. Both the administration of polyethylene glycol–modified ADA to reduce adenosine levels and the inhibition of the A2B adenosine receptor (A2BR) attenuated renal fibrosis and dysfunction. Furthermore, activation of A2BR promoted renal fibrosis in both mice infused with angiotensin II (Ang II) and mice subjected to unilateral ureteral obstruction (UUO). These three mouse models shared a similar profile of profibrotic gene expression in kidney tissue, suggesting that they share similar signaling pathways that lead to renal fibrosis. Finally, both genetic and pharmacologic approaches showed that the inflammatory cytokine IL-6 mediates adenosine-induced renal fibrosis downstream of A2BR. Taken together, these data suggest that A2BR-mediated induction of IL-6 contributes to renal fibrogenesis and shows potential therapeutic targets for CKD. PMID:21511827

  9. Label-free sensing of adenosine based on force variations induced by molecular recognition.

    PubMed

    Li, Jingfeng; Li, Qing; Ciacchi, Lucio Colombi; Wei, Gang

    2015-03-01

    We demonstrate a simple force-based label-free strategy for the highly sensitive sensing of adenosine. An adenosine ssDNA aptamer was bound onto an atomic force microscopy (AFM) probe by covalent modification, and the molecular-interface adsorption force between the aptamer and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). In the presence of adenosine, the molecular recognition between adenosine and the aptamer resulted in the formation of a folded, hairpin-like DNA structure and hence caused a variation of the adsorption force at the graphite/water interface. The sensitive force response to molecular recognition provided an adenosine detection limit in the range of 0.1 to 1 nM. The addition of guanosine, cytidine, and uridine had no significant interference with the sensing of adenosine, indicating a strong selectivity of this sensor architecture. In addition, operational parameters that may affect the sensor, such as loading rate and solution ionic strength, were investigated.

  10. Intravenous adenosine (adenoscan) versus exercise in the noninvasive assessment of coronary artery disease by SPECT

    SciTech Connect

    LaManna, M.M.; Mohama, R.; Slavich, I.L. 3d.; Lumia, F.J.; Cha, S.D.; Rambaran, N.; Maranhao, V. )

    1990-11-01

    Fifteen patients at a mean age of 58 underwent adenosine and maximal exercise thallium SPECT imaging. All scans were performed 1 week apart and within 4 weeks of cardiac catheterization. SPECT imaging was performed after the infusion of 140 micrograms/kg/min of adenosine for 6 minutes. Mean heart rate increment during adenosine administration was 67 +/- 3.7 to 77 +/- 4.1. Mean blood pressure was 136 +/- 7.2 to 135 +/- 6.2 systolic and 78 +/- 1.8 to 68 +/- 2.6 diastolic. No adverse hemodynamic effects were observed. There were no changes in PR or QRS in intervals. Five stress ECGs were ischemic. No ST changes were observed with adenosine. Although 68% of the patients had symptoms of flushing, light-headedness, and dizziness during adenosine infusion, symptoms resolved within 1 minute of dosage adjustment or termination of the infusion in all but one patient, who required theophylline. Sensitivity for coronary artery detection was 77% and specificity 100%. Concordance between adenoscans and exercise thallium scintigraphy was high (13/15 = 87%). In two patients, there were minor scintigraphic differences. The authors conclude that adenosine is a sensitive, specific, and safe alternative to exercise testing in patients referred for thallium imaging and may be preferable to dipyridamole.

  11. Ethanol-induced increase in portal blood glow: Role of adenosine

    SciTech Connect

    Orrego, H.; Carmichael, F.J.; Saldivia, V.; Giles, H.G.; Sandrin, S.; Israel, Y. )

    1988-04-01

    The mechanism by which ethanol induces an increase in portal vein blood flow was studied in rats using radiolabeled microspheres. Ethanol by gavage resulted in an increase of 50-70% in portal vein blood flow. The ethanol-induced increase in portal blood flow was suppressed by the adenosine receptor blocker 8-phenyltheophylline. By itself, 8-phenyltheophylline was without effect on cardiac output or portal blood flow. Adenosine infusion resulted in a dose-dependent increase in portal blood flow. This adenosine-induced increase in portal blood flow was inhibited by 8-phenyltheophylline in a dose-dependent manner. Both alcohol and adenosine significantly reduced preportal vascular resistance by 40% and 60%, respectively. These effects were fully suppressed by 8-phenyltheophylline. It is concluded that adenosine is a likely candidate to mediate the ethanol-induced increase in portal vein blood flow. It is suggested that an increase in circulating acetate and liver hypoxia may mediate the effects of alcohol by increasing tissue and interstitial adenosine levels.

  12. Adenosine Deaminase Deficiency – More Than Just an Immunodeficiency

    PubMed Central

    Whitmore, Kathryn V.; Gaspar, Hubert B.

    2016-01-01

    Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) that results from mutations in the gene encoding ADA. Affected patients present with clinical and immunological manifestations typical of a SCID. Therapies are currently available that can target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well-understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences. PMID:27579027

  13. Adenosine, type 1 receptors: role in proximal tubule Na+ reabsorption

    PubMed Central

    Welch, William J

    2015-01-01

    Adenosine type 1 receptor (A1-AR) antagonists induce diuresis and natriuresis in experimental animals and humans. Much of this effect is due to inhibition of A1-ARs in the proximal tubule, which is responsible for 60–70% of the reabsorption of filtered Na+ and fluid. Intratubular application of receptor antagonists indicates that A1-AR mediates a portion of Na+ uptake in PT and PT cells, via multiple transport systems, including Na+/H+ exchanger-3 (NHE3), Na+/PO4− co-transporter and Na+-dependent glucose transporter, SGLT. Renal microperfusion and recollection studies have shown that fluid reabsorption is reduced by A1-AR antagonists and is lower in A1-AR KO mice., compared to WT mice. Absolute proximal reabsorption (APR) measured by free-flow micropuncture is equivocal, with studies that show either lower APR or similar APR in A1-AR KO mice, compared to WT mice. Inhibition of A1-ARs lowers elevated blood pressure in models of salt-sensitive hypertension, partially due to their effects in the proximal tubule. PMID:25345761

  14. Adenosine Deaminase Activity in Chronic Lymphocytic Leukemia and Healthy Subjects

    PubMed Central

    Ghaderi, Bayazid; Amini, Sabrieh; Maroofi, Farzad; Jalali, Chiya; Javanmardi, Mitra; Roshani, Daem; Abdi, Mohammad

    2016-01-01

    Background B cell chronic lymphocytic leukemia is one of the most frequent hematologic malignancies in the world. Cellular surface CD markers and serum Beta-2-microglobulin may be used as a prognostic tool in CLL patients. Objectives In the present study we introduce serum adenosine deaminase as a diagnostic marker in CLL. Materials and Methods Blood samples were collected from B-CLL and healthy subjects. White blood cell, red blood cell and platelet count and blood Erythrocyte sedimentation rate was recorded and serum Beta-2-microglobulin, Lactate dehydrogenase and total ADA enzyme activity were determined. Results Serum ADA activity was significantly higher in patients group than that of controls. ADA had a significant and direct correlation with B2M, WBC, LDH and ESR. However, there was not any relation between ADA and the stages of disease. Diagnostic cut-off, sensitivity and specificity of the serum ADA test were 27.97 U/L, 91% and 94%, respectively. Conclusions A higher ADA activity in patients group and its correlation with CLL markers were seen in our study. High diagnostic value of serum ADA in our study suggests that it might be considered as a useful screening tool among the other markers in CLL. PMID:27703646

  15. Intracellular Adenosine Triphosphate Delivery Enhanced Skin Wound Healing in Rabbits

    PubMed Central

    Wang, Jianpu; Zhang, Qunwei; Wan, Rong; Mo, Yiqun; Li, Ming; Tseng, Michael T.; Chien, Sufan

    2016-01-01

    Small unilamellar lipid vesicles were used to encapsulate adenosine triphosphate (ATP-vesicles) for intracellular energy delivery. This technique was tested in full-thickness skin wounds in 16 adult rabbits. One ear was rendered ischemic by using a minimally invasive surgery. The other ear served as a normal control. Four circular full-thickness wounds were created on the ventral side of each ear. ATP-vesicles or saline was used and the wounds were covered with Tegaderm (3M, St. Paul, MN). Dressing was changed and digital photos were taken daily until all the wounds were healed. The mean healing times of ATP-vesicles–treated wounds were significantly shorter than that of saline-treated wounds on ischemic and nonischemic ears. Histologic study indicated better-developed granular tissue and reepithelial-ization in the ATP-vesicles–treated wounds. The wounds treated by ATP-vesicles exhibited extremely fast granular tissue growth. More CD31 positive cells were seen in the ATP-vesicles–treated wounds. This preliminary study shows that direct intracellular delivery of ATP can accelerate the healing process of skin wounds on ischemic and nonischemic rabbit ears. The extremely fast granular tissue growth was something never seen or reported in the past. PMID:19158531

  16. ADA (adenosine deaminase) gene therapy enters the competition

    SciTech Connect

    Culliton, B.J.

    1990-08-31

    Around the world, some 70 children are members of a select and deadly club. Born with an immune deficiency so severe that they will die of infection unless their immune systems can be repaired, they have captured the attention of would-be gene therapists who believe that a handful of these kids--the 15 or 20 who lack functioning levels of the enzyme adenosine deaminase (ADA)--could be saved by a healthy ADA gene. A team of gene therapists is ready to put the theory to the test. In April 1987, a team of NIH researchers headed by R. Michael Blaese and W. French Anderson came up with the first formal protocol to introduce a healthy ADA gene into an unhealthy human. After 3 years of line-by-line scrutiny by five review committees, they have permission to go ahead. Two or three children will be treated in the next year, and will be infused with T lymphocytes carrying the gene for ADA. If the experiment works, the ADA gene will begin producing normal amounts of ADA. An interesting feature of ADA deficiency, that makes it ideal for initial gene studies, is that the amount of ADA one needs for a healthy immune system is quite variable. Hence, once inside a patient's T cells, the new ADA gene needs only to express the enzyme in moderate amounts. No precise gene regulation is necessary.

  17. Detection of bacteriuria by luciferase assay of adenosine triphosphate.

    PubMed Central

    Thore, A; Anséhn, S; Lundin, A; Bergman, S

    1975-01-01

    A selective method for distinguishing bacterial and nonbacterial adenosine triphosphate (ATP) in clinical bacteriological specimens was studied. The method involved incubation of samples with the detergent Triton X-100 and the ATP-hydrolyzing enzyme apyrase. The incubation selectively destroyed ATP in suspensions of various human cells while not affecting the ATP content in microbial cells. ATP remaining in the sample after incubation was extracted in boiling buffer and assayed by the firefly luciferase assay. Application of the method to 469 clinical urine specimens showed that the ATP level after treatment with Triton/apyrase was correlated to bacterial counts and that the sensitivity of the assay was sufficient for the detection of 10(5) bacteria/ml. The ATP levels per bacterial cell remaining in the urine specimen after treatment with Triton/apyrase were close to values observed in laboratory-grown cultures. The specificity and sensitivity of the luciferase assay for the detection of urinary bacteria and its possible use as a bacteriuria screening method are discussed. PMID:1100645

  18. Sequence specificity of mRNA N6-adenosine methyltransferase.

    PubMed

    Csepany, T; Lin, A; Baldick, C J; Beemon, K

    1990-11-25

    The sequence specificity of chicken mRNA N6-adenosine methyltransferase has been investigated in vivo. Localization of six new N6-methyladenosine sites on Rous sarcoma virus (RSV) virion RNA has confirmed our extended consensus sequence for methylation: RGACU, where R is usually a G (7/12). We have also observed A (2/12) and U (3/12) at the -2 position (relative to m6A at +1) but never a C. At the +3 position, the U was observed 10/12 times; an A and a C were observed once each in weakly methylated sequences. The extent of methylation varied between the different sites up to a maximum of about 90%. To test the significance of this consensus sequence, it was altered by site-specific mutagenesis, and methylation was assayed after transfection of mutated RSV DNA into chicken embryo fibroblasts. We found that changing the G at -1 or the U at +3 to any other residue inhibited methylation. However, inhibition of methylation at all four of the major sites in the RSV src gene did not detectably alter the steady-state levels of the three viral RNA species or viral infectivity. Additional mutants that inactivated the src protein kinase activity produced less virus and exhibited relatively less src mRNA in infected cells. PMID:2173695

  19. Adenosine Deaminase Deficiency - More Than Just an Immunodeficiency.

    PubMed

    Whitmore, Kathryn V; Gaspar, Hubert B

    2016-01-01

    Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) that results from mutations in the gene encoding ADA. Affected patients present with clinical and immunological manifestations typical of a SCID. Therapies are currently available that can target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well-understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences. PMID:27579027

  20. An adenosine nucleoside analogue NITD008 inhibits EV71 proliferation.

    PubMed

    Shang, Luqing; Wang, Yaxin; Qing, Jie; Shu, Bo; Cao, Lin; Lou, Zhiyong; Gong, Peng; Sun, Yuna; Yin, Zheng

    2014-12-01

    Enterovirus 71 (EV71), one of the major causative agents of Hand-Foot-Mouth Disease (HFMD), causes severe pandemics and hundreds of deaths in the Asia-Pacific region annually and is an enormous public health threat. However, effective therapeutic antiviral drugs against EV71 are rare. Nucleoside analogues have been successfully used in the clinic for the treatment of various viral infections. We evaluated a total of 27 nucleoside analogues and discovered that an adenosine nucleoside analogue NITD008, which has been reported to be an antiviral reagent that specifically inhibits flaviviruses, effectively suppressed the propagation of different strains of EV71 in RD, 293T and Vero cells with a relatively high selectivity index. Triphosphorylated NITD008 (ppp-NITD008) functions as a chain terminator to directly inhibit the RNA-dependent RNA polymerase activity of EV71, and it does not affect the EV71 VPg uridylylation process. A significant synergistic anti-EV71 effect of NITD008 with rupintrivir (AG7088) (a protease inhibitor) was documented, supporting the potential combination therapy of NITD008 with other inhibitors for the treatment of EV71 infections.

  1. Biophysical Mapping of the Adenosine A2A Receptor

    PubMed Central

    2011-01-01

    A new approach to generating information on ligand receptor interactions within the binding pocket of G protein-coupled receptors has been developed, called Biophysical Mapping (BPM). Starting from a stabilized receptor (StaR), minimally engineered for thermostability, additional single mutations are then added at positions that could be involved in small molecule interactions. The StaR and a panel of binding site mutants are captured onto Biacore chips to enable characterization of the binding of small molecule ligands using surface plasmon resonance (SPR) measurement. A matrix of binding data for a set of ligands versus each active site mutation is then generated, providing specific affinity and kinetic information (KD, kon, and koff) of receptor–ligand interactions. This data set, in combination with molecular modeling and docking, is used to map the small molecule binding site for each class of compounds. Taken together, the many constraints provided by these data identify key protein–ligand interactions and allow the shape of the site to be refined to produce a high quality three-dimensional picture of ligand binding, thereby facilitating structure based drug design. Results of biophysical mapping of the adenosine A2A receptor are presented. PMID:21661720

  2. Geometry and cooperativity effects in adenosine-carboxylic acid complexes.

    PubMed

    Schlund, Sebastian; Mladenovic, Milena; Basílio Janke, Eline M; Engels, Bernd; Weisz, Klaus

    2005-11-23

    NMR experiments and theoretical investigations were performed on hydrogen bonded complexes of specifically 1- and 7-15N-labeled adenine nucleosides with carboxylic acids. By employing a freonic solvent of CDClF2 and CDF3, NMR spectra were acquired at temperatures as low as 123 K, where the regime of slow hydrogen bond exchange is reached and several higher-order complexes were found to coexist in solution. Unlike acetic acid, chloroacetic acid forms Watson-Crick complexes with the proton largely displaced from oxygen to the nitrogen acceptor in an ion pairing structure. Calculated geometries and chemical shifts of the proton in the hydrogen bridge favorably agree with experimentally determined values if vibrational averaging and solvent effects are taken into account. The results indicate that binding a second acidic ligand at the adenine Hoogsteen site in a ternary complex weakens the hydrogen bond to the Watson-Crick bound carboxylic acid. However, substituting a second adenine nucleobase for a carboxylic acid in the trimolecular complex leads to cooperative binding at Watson-Crick and Hoogsteen faces of adenosine.

  3. Adenosine Deaminase Inhibition Prevents Clostridium difficile Toxin A-Induced Enteritis in Mice ▿

    PubMed Central

    de Araújo Junqueira, Ana Flávia Torquato; Dias, Adriana Abalen Martins; Vale, Mariana Lima; Spilborghs, Graziela Machado Gruner Turco; Bossa, Aline Siqueira; Lima, Bruno Bezerra; Carvalho, Alex Fiorini; Guerrant, Richard Littleton; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne

    2011-01-01

    Toxin A (TxA) is able to induce most of the classical features of Clostridium difficile-associated disease in animal models. The objective of this study was to determine the effect of an inhibitor of adenosine deaminase, EHNA [erythro-9-(2-hydroxy-3-nonyl)-adenine], on TxA-induced enteritis in C57BL6 mice and on the gene expression of adenosine receptors. EHNA (90 μmol/kg) or phosphate-buffered saline (PBS) was injected intraperitoneally (i.p.) 30 min prior to TxA (50 μg) or PBS injection into the ileal loop. A2A adenosine receptor agonist (ATL313; 5 nM) was injected in the ileal loop immediately before TxA (50 μg) in mice pretreated with EHNA. The animals were euthanized 3 h later. The changes in the tissue were assessed by the evaluation of ileal loop weight/length and secretion volume/length ratios, histological analysis, myeloperoxidase assay (MPO), the local expression of inducible nitric oxide synthase (NOS2), pentraxin 3 (PTX3), NF-κB, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) by immunohistochemistry and/or quantitative reverse transcription-PCR (qRT-PCR). The gene expression profiles of A1, A2A, A2B, and A3 adenosine receptors also were evaluated by qRT-PCR. Adenosine deaminase inhibition, by EHNA, reduced tissue injury, neutrophil infiltration, and the levels of proinflammatory cytokines (TNF-α and IL-1β) as well as the expression of NOS2, NF-κB, and PTX3 in the ileum of mice injected with TxA. ATL313 had no additional effect on EHNA action. TxA increased the gene expression of A1 and A2A adenosine receptors. Our findings show that the inhibition of adenosine deaminase by EHNA can prevent Clostridium difficile TxA-induced damage and inflammation possibly through the A2A adenosine receptor, suggesting that the modulation of adenosine/adenosine deaminase represents an important tool in the management of C. difficile-induced disease. PMID:21115723

  4. Adenosine deaminase inhibition prevents Clostridium difficile toxin A-induced enteritis in mice.

    PubMed

    de Araújo Junqueira, Ana Flávia Torquato; Dias, Adriana Abalen Martins; Vale, Mariana Lima; Spilborghs, Graziela Machado Gruner Turco; Bossa, Aline Siqueira; Lima, Bruno Bezerra; Carvalho, Alex Fiorini; Guerrant, Richard Littleton; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne

    2011-02-01

    Toxin A (TxA) is able to induce most of the classical features of Clostridium difficile-associated disease in animal models. The objective of this study was to determine the effect of an inhibitor of adenosine deaminase, EHNA [erythro-9-(2-hydroxy-3-nonyl)-adenine], on TxA-induced enteritis in C57BL6 mice and on the gene expression of adenosine receptors. EHNA (90 μmol/kg) or phosphate-buffered saline (PBS) was injected intraperitoneally (i.p.) 30 min prior to TxA (50 μg) or PBS injection into the ileal loop. A(2A) adenosine receptor agonist (ATL313; 5 nM) was injected in the ileal loop immediately before TxA (50 μg) in mice pretreated with EHNA. The animals were euthanized 3 h later. The changes in the tissue were assessed by the evaluation of ileal loop weight/length and secretion volume/length ratios, histological analysis, myeloperoxidase assay (MPO), the local expression of inducible nitric oxide synthase (NOS2), pentraxin 3 (PTX3), NF-κB, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) by immunohistochemistry and/or quantitative reverse transcription-PCR (qRT-PCR). The gene expression profiles of A₁, A(2A), A(2B), and A₃ adenosine receptors also were evaluated by qRT-PCR. Adenosine deaminase inhibition, by EHNA, reduced tissue injury, neutrophil infiltration, and the levels of proinflammatory cytokines (TNF-α and IL-1β) as well as the expression of NOS2, NF-κB, and PTX3 in the ileum of mice injected with TxA. ATL313 had no additional effect on EHNA action. TxA increased the gene expression of A₁ and A(2A) adenosine receptors. Our findings show that the inhibition of adenosine deaminase by EHNA can prevent Clostridium difficile TxA-induced damage and inflammation possibly through the A(2A) adenosine receptor, suggesting that the modulation of adenosine/adenosine deaminase represents an important tool in the management of C. difficile-induced disease.

  5. Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle

    PubMed Central

    Shon, Young-Min; Chang, Su-Youne; Tye, Susannah J.; Kimble, Christopher J.; Bennet, Kevin E.; Blaha, Charles D.; Lee, Kendall H.

    2010-01-01

    Object The authors of previous studies have demonstrated that local adenosine efflux may contribute to the therapeutic mechanism of action of thalamic deep brain stimulation (DBS) for essential tremor. Real-time monitoring of the neurochemical output of DBS-targeted regions may thus advance functional neurosurgical procedures by identifying candidate neurotransmitters and neuromodulators involved in the physiological effects of DBS. This would in turn permit the development of a method of chemically guided placement of DBS electrodes in vivo. Designed in compliance with FDA-recognized standards for medical electrical device safety, the authors report on the utility of the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for real-time comonitoring of electrical stimulation–evoked adenosine and dopamine efflux in vivo, utilizing fast-scan cyclic voltammetry (FSCV) at a polyacrylonitrile-based (T-650) carbon fiber microelectrode (CFM). Methods The WINCS was used for FSCV, which consisted of a triangle wave scanned between −0.4 and +1.5 V at a rate of 400 V/second and applied at 10 Hz. All voltages applied to the CFM were with respect to an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single T-650 carbon fiber (r = 2.5 μm) into a glass capillary and pulling to a microscopic tip using a pipette puller. The exposed carbon fiber (the sensing region) extended beyond the glass insulation by ∼ 50 μm. Proof of principle tests included in vitro measurements of adenosine and dopamine, as well as in vivo measurements in urethane-anesthetized rats by monitoring adenosine and dopamine efflux in the dorsomedial caudate putamen evoked by high-frequency electrical stimulation of the ventral tegmental area and substantia nigra. Results The WINCS provided reliable, high-fidelity measurements of adenosine efflux. Peak oxidative currents appeared at +1.5 V and at +1.0 V for adenosine, separate from the peak oxidative current at +0.6 V

  6. On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction.

    PubMed Central

    Ribeiro, J A; Sebastião, A M

    1987-01-01

    1. The effects of adenosine deaminase, inosine, alkylxanthines (8-phenyltheophylline (8-PT), theophylline and isobutylmethylxanthine (IBMX], dipyridamole, alpha, beta-methylene ADP (AOPCP) and ATP analogues (alpha, beta-methylene ATP and beta, gamma-methylene ATP) on evoked end-plate potentials (e.p.p.s) were investigated in innervated sartorius muscles of the frog, in which twitches had been prevented with tubocurarine. The effects of 8-PT and IBMX on the amplitude and quantal content of e.p.p.s were also investigated in innervated sartorius muscles of the frog, in which twitches had been prevented with high-magnesium solutions. 2. Adenosine deaminase reversibly increased the amplitude of e.p.p.s and prevented the reduction caused by exogenously applied adenosine on e.p.p. amplitude. The increase caused by adenosine deaminase was equivalent to the decrease caused by 12 +/- 5.8 microM-adenosine on e.p.p. amplitude. 3. Inosine, the product of adenosine deamination, was virtually devoid of effect on e.p.p.s. 4. The adenosine receptor antagonists at the frog neuromuscular junction, 8-PT and theophylline, increased in a concentration-dependent manner the amplitude of e.p.p.s in the presence of tubocurarine. 8-PT increased the amplitude and quantal content of e.p.p.s in the presence of high magnesium. IBMX, which does not behave as an adenosine receptor antagonist at the frog neuromuscular junction, decreased the amplitude of e.p.p.s in the presence of tubocurarine or high-magnesium solutions. 5. Dipyridamole, an adenosine uptake blocker, decreased the amplitude of e.p.p.s, and in a concentration that did not affect neuromuscular transmission potentiated the depressing effect of adenosine, but not that of 2-chloroadenosine, on the amplitude of e.p.p.s. 6. AOPCP, an inhibitor of 5'-nucleotidase, increased the amplitude of e.p.p.s and markedly attenuated the depressing effect of ATP, but not that of adenosine, on e.p.p. amplitude. 7. The ATP analogue, alpha, beta

  7. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport.

    PubMed

    Kobayashi, S; Zimmermann, H; Millhorn, D E

    2000-02-01

    Acute exposure to hypoxia causes a release of adenosine (ADO) that is inversely related to the O2 levels in oxygen-sensitive pheochromocytoma (PC12) cells. In the current study, chronic exposure (48 h) of PC12 cells to moderate hypoxia (5% O2) significantly enhanced the release of ADO during severe, acute hypoxia (1% O2). Investigation into the intra- and extracellular mechanisms underpinning the secretion of ADO in PC12 cells chronically exposed to hypoxia revealed changes in gene ex