Science.gov

Sample records for adenosine stress cmr

  1. Caffeine intake inverts the effect of adenosine on myocardial perfusion during stress as measured by T1 mapping.

    PubMed

    Kuijpers, Dirkjan; Prakken, Niek H; Vliegenthart, Rozemarijn; van Dijkman, Paul R M; van der Harst, Pim; Oudkerk, Matthijs

    2016-10-01

    Caffeine intake before adenosine stress myocardial perfusion imaging may cause false negative findings. We hypothesized that the antagonistic effect of caffeine can be measured by T1 relaxation times in rest and adenosine stress cardiac magnetic resonance imaging (CMR), as T1 mapping techniques are sensitive to changes in myocardial blood volume. We prospectively analyzed 105 consecutive patients with adenosine stress perfusion CMR on a 1.5-T MRI system. Rest and stress T1 mapping was performed using Modified Look-Locker Inversion recovery. T1 reactivity was defined as difference in T1rest and T1stress (∆T1). Fifteen patients drank coffee within 4 h of CMR (<4H caffeine group), and 10 patients had coffee the day before (>8H caffeine group). Comparison was made to patients without self-reported coffee intake: 50 with normal CMR (control group), 18 with myocardial ischemia, and 12 with myocardial infarction. The national review board approved the study; all patients gave written informed consent. The <4H caffeine group showed inverted ∆T1 of -7.8 % (T1rest 975 ± 42 ms, T1stress 898 ± 51 ms, p < 0.0005). The >8H caffeine group showed reduced T1 reactivity (1.8 %; T1rest 979 ms, T1stress 997 ms) compared to the controls (4.3 %; T1rest 977 ± 40 ms, T1stress 1018 ± 40 ms), p < 0.0005. Ischemic and infarcted myocardium showed minimal T1 reactivity (0.2 and 0.3 %, respectively). Caffeine intake inverts the adenosine effect during stress perfusion CMR as measured by T1 mapping. T1 reactivity can assess the adequacy of adenosine-induced stress in perfusion CMR. PMID:27473274

  2. Vasodilator Stress Perfusion CMR Imaging Is Feasible and Prognostic in Obese Patients

    PubMed Central

    Shah, Ravi V.; Heydari, Bobak; Coelho-Filho, Otavio; Abbasi, Siddique A.; Feng, Jiazhuo H.; Neilan, Tomas G.; Francis, Sanjeev; Blankstein, Ron; Steigner, Michael; Jerosch-Herold, Michael; Kwong, Raymond Y.

    2014-01-01

    Objectives This study sought to determine feasibility and prognostic performance of stress cardiac magnetic resonance (CMR) in obese patients (body mass index [BMI] ≥30 kg/m2). Background Current stress imaging methods remain limited in obese patients. Given the impact of the obesity epidemic on cardiovascular disease, alternative methods to effectively risk stratify obese patients are needed. Methods Consecutive patients with a BMI ≥30 kg/m2 referred for vasodilating stress CMR were followed for major adverse cardiovascular events (MACE), defined as cardiac death or nonfatal myocardial infarction. Univariable and multivariable Cox regressions for MACE were performed to determine the prognostic association of inducible ischemia or late gadolinium enhancement (LGE) by CMR beyond traditional clinical risk indexes. Results Of 285 obese patients, 272 (95%) completed the CMR protocol, and among these, 255 (94%) achieved diagnostic imaging quality. Mean BMI was 35.4 ± 4.8 kg/m2, with a maximum weight of 200 kg. Reasons for failure to complete CMR included claustrophobia (n = 4), intolerance to stress agent (n = 4), poor gating (n = 4), and declining participation (n = 1). Sedation was required in 19 patients (7%; 2 patients with intravenous sedation). Sixteen patients required scanning by a 70-cm-bore system (6%). Patients without inducible ischemia or LGE experienced a substantially lower annual rate of MACE (0.3% vs. 6.3% for those with ischemia and 6.7% for those with ischemia and LGE). Median follow-up of the cohort was 2.1 years. In a multivariable stepwise Cox regression including clinical characteristics and CMR indexes, inducible ischemia (hazard ratio 7.5; 95% confidence interval: 2.0 to 28.0; p = 0.002) remained independently associated with MACE. When patients with early coronary revascularization (within 90 days of CMR) were censored on the day of revascularization, both presence of inducible ischemia and ischemia extent per segment maintained a strong

  3. Angiographic correlations of patients with small vessel disease diagnosed by adenosine-stress cardiac magnetic resonance imaging

    PubMed Central

    Pilz, Guenter; Klos, Markus; Ali, Eman; Hoefling, Berthold; Scheck, Roland; Bernhardt, Peter

    2008-01-01

    Cardiac magnetic resonance imaging (CMR) with adenosine-stress myocardial perfusion is gaining importance for the detection and quantification of coronary artery disease (CAD). However, there is little knowledge about patients with CMR-detected ischemia, but having no relevant stenosis as seen on coronary angiography (CA). The aims of our study were to characterize these patients by CMR and CA and evaluate correlations and potential reasons for the ischemic findings. 73 patients with an indication for CA were first scanned on a 1.5T whole-body CMR-scanner including adenosine-stress first-pass perfusion. The images were analyzed by two independent investigators for myocardial perfusion which was classified as subendocardial ischemia (n = 22), no perfusion deficit (n = 27, control 1), or more than subendocardial ischemia (n = 24, control 2). All patients underwent CA, and a highly significant correlation between the classification of CMR perfusion deficit and the degree of coronary luminal narrowing was found. For quantification of coronary blood flow, corrected Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) was evaluated for the left anterior descending (LAD), circumflex (LCX) and right coronary artery (RCA). The main result was that corrected TFC in all coronaries was significantly increased in study patients compared to both control 1 and to control 2 patients. Study patients had hypertension or diabetes more often than control 1 patients. In conclusion, patients with CMR detected subendocardial ischemia have prolonged coronary blood flow. In connection with normal resting flow values in CAD, this supports the hypothesis of underlying coronary microvascular impairment. CMR stress perfusion differentiates non-invasively between this entity and relevant CAD. PMID:18275591

  4. Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control

    PubMed Central

    Gallina, Irene; Colding, Camilla; Henriksen, Peter; Beli, Petra; Nakamura, Kyosuke; Offman, Judith; Mathiasen, David P.; Silva, Sonia; Hoffmann, Eva; Groth, Anja; Choudhary, Chunaram; Lisby, Michael

    2015-01-01

    DNA replication stress is a source of genomic instability. Here we identify changed mutation rate 1 (Cmr1) as a factor involved in the response to DNA replication stress in Saccharomyces cerevisiae and show that Cmr1—together with Mrc1/Claspin, Pph3, the chaperonin containing TCP1 (CCT) and 25 other proteins—define a novel intranuclear quality control compartment (INQ) that sequesters misfolded, ubiquitylated and sumoylated proteins in response to genotoxic stress. The diversity of proteins that localize to INQ indicates that other biological processes such as cell cycle progression, chromatin and mitotic spindle organization may also be regulated through INQ. Similar to Cmr1, its human orthologue WDR76 responds to proteasome inhibition and DNA damage by relocalizing to nuclear foci and physically associating with CCT, suggesting an evolutionarily conserved biological function. We propose that Cmr1/WDR76 plays a role in the recovery from genotoxic stress through regulation of the turnover of sumoylated and phosphorylated proteins. PMID:25817432

  5. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis. PMID:26081145

  6. Adenosine Stress and Rest T1 Mapping Can Differentiate Between Ischemic, Infarcted, Remote, and Normal Myocardium Without the Need for Gadolinium Contrast Agents

    PubMed Central

    Liu, Alexander; Wijesurendra, Rohan S.; Francis, Jane M.; Robson, Matthew D.; Neubauer, Stefan; Piechnik, Stefan K.; Ferreira, Vanessa M.

    2016-01-01

    Objectives The aim of this study was to evaluate the potential of T1 mapping at rest and during adenosine stress as a novel method for ischemia detection without the use of gadolinium contrast. Background In chronic coronary artery disease (CAD), accurate detection of ischemia is important because targeted revascularization improves clinical outcomes. Myocardial blood volume (MBV) may be a more comprehensive marker of ischemia than myocardial blood flow. T1 mapping using cardiac magnetic resonance (CMR) is highly sensitive to changes in myocardial water content, including MBV. We propose that T1 mapping at rest and during adenosine vasodilatory stress can detect MBV changes in normal and diseased myocardium in CAD. Methods Twenty normal controls (10 at 1.5-T; 10 at 3.0-T) and 10 CAD patients (1.5-T) underwent conventional CMR to assess for left ventricular function (cine), infarction (late gadolinium enhancement [LGE]) and ischemia (myocardial perfusion reserve index [MPRI] on first-pass perfusion imaging during adenosine stress). These were compared to novel pre-contrast stress/rest T1 mapping using the Shortened Modified Look-Locker Inversion recovery technique, which is heart rate independent. T1 values were derived for normal myocardium in controls and for infarcted, ischemic, and remote myocardium in CAD patients. Results Normal myocardium in controls (normal wall motion, MPRI, no LGE) showed normal resting T1 (954 ± 19 ms at 1.5-T; 1,189 ± 34 ms at 3.0-T) and significant positive T1 reactivity during adenosine stress compared to baseline (6.2 ± 0.5% at 1.5-T; 6.3 ± 1.1% at 3.0-T; all p < 0.0001). Infarcted myocardium showed the highest resting T1 of all tissue classes (1,442 ± 84 ms), without significant T1 reactivity (0.2 ± 1.5%). Ischemic myocardium showed elevated resting T1 compared to normal (987 ± 17 ms; p < 0.001) without significant T1 reactivity (0.2 ± 0.8%). Remote myocardium, although having comparable resting T1 to normal (955 ± 17 ms

  7. Central effects of adenosine analogs on stress-induced gastric ulcer formation.

    PubMed

    Westerberg, V S; Geiger, J D

    1987-11-01

    Rats subjected to restraint stress developed gastric lesions that could be reduced by R-phenylisopropyladenosine (R-PIA) administered intracerebroventricularly. This protective effect was reversed by 8-sulfophenyltheophylline given centrally, and by peripherally administered 8-phenyltheophylline. These results suggest that central adenosine receptors mediate the effect. In subsequent studies it was found that if the absolute level of ulcer formation in control rats was low, R-PIA had no ulcer protective effect. Thus, although it appears that adenosine receptors are important in attenuating pathological gastric responses to stress, this attenuation seems to be dependent on the level of ulcer formation in control animals. PMID:2890075

  8. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster.

    PubMed

    Zemanová, Milada; Stašková, Tereza; Kodrík, Dalibor

    2016-01-01

    The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects. PMID:27374982

  9. Oxidative Stress Biomarkers and Adenosine Deaminase over the Alopecic Area of the Patients with Alopecia Areata

    PubMed Central

    Öztürk, Perihan; Arıcan, Özer; Kurutaş, Ergül Belge; Mülayim, Kamil

    2016-01-01

    Background: Alopecia areata (AA) is an autoimmune, T-cell mediated, and chronic inflammatory disorder. The pathological mechanisms of disease are unclear, but oxidative stress may be involved. To our knowledge, no studies have examined the oxidative stress levels or biomarkers within the lesional area and skin surface in patients with AA. Similarly, adenosine deaminase (ADA) has not been characterized in AA. Aims: Therefore, we aimed to define ADA levels and the factors involved in oxidative stress from scalp-scrapes of patients with AA. Study Design: Case-control study. Method: A total of 60 patients (30 diagnosed AA patients and 30 healthy controls) were included in the study. ADA as well as oxidative stress factors, including malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analyzed from scalp-scrapes in both groups and quantified by spectrophotometry. Results: Activities of SOD (p=0.000), CAT (p=0.033), and ADA (p=0.004) as well as levels of GSH (p=0.000) and MDA (p=0.032) in patients with AA were higher than the controls statistically significant. Conclusion: Based on these results, factors associated with oxidative stress were elevated in AA patient scalp-scrapes compared to controls and may have a defined role the disease pathogenesis. Alterations in the activities of antioxidant enzymes from AA patient scraping samples may be a local effect of elevated oxidative stress levels. In this disease, oxidative stress may affect not only hair follicle but also any layers of the skin. PMID:27403388

  10. Mitochondrial Oxidative Stress Corrupts Coronary Collateral Growth by Activating Adenosine Monophosphate Activated Kinase-α Signaling

    PubMed Central

    Pung, Yuh Fen; Sam, Wai Johnn; Stevanov, Kelly; Enrick, Molly; Chen, Chwen-Lih; Kolz, Christopher; Thakker, Prashanth; Hardwick, James P.; Chen, Yeong-Renn; Dyck, Jason R.B.; Yin, Liya; Chilian, William M.

    2015-01-01

    Objective Our goal was to determine the mechanism by which mitochondrial oxidative stress impairs collateral growth in the heart. Approach and Results Rats were treated with rotenone (mitochondrial complex I inhibitor that increases reactive oxygen species production) or sham-treated with vehicle and subjected to repetitive ischemia protocol for 10 days to induce coronary collateral growth. In control rats, repetitive ischemia increased flow to the collateral-dependent zone; however, rotenone treatment prevented this increase suggesting that mitochondrial oxidative stress compromises coronary collateral growth. In addition, rotenone also attenuated mitochondrial complex I activity and led to excessive mitochondrial aggregation. To further understand the mechanistic pathway(s) involved, human coronary artery endothelial cells were treated with 50 ng/ mL vascular endothelial growth factor, 1 µmol/L rotenone, and rotenone/vascular endothelial growth factor for 48 hours. Vascular endothelial growth factor induced robust tube formation; however, rotenone completely inhibited this effect (P<0.05 rotenone versus vascular endothelial growth factor treatment). Inhibition of tube formation by rotenone was also associated with significant increase in mitochondrial superoxide generation. Immunoblot analyses of human coronary artery endothelial cells with rotenone treatment showed significant activation of adenosine monophosphate activated kinase (AMPK)-α and inhibition of mammalian target of rapamycin and p70 ribosomal S6 kinase. Activation of AMPK-α suggested impairments in energy production, which was reflected by decrease in O2 consumption and bioenergetic reserve capacity of cultured cells. Knockdown of AMPK-α (siRNA) also preserved tube formation during rotenone, suggesting the negative effects were mediated by the activation of AMPK-α. Conversely, expression of a constitutively active AMPK-α blocked tube formation. Conclusions We conclude that activation of AMPK

  11. Nuclear Scan Strategy and Outcomes in Chest Pain Patients Value of Stress Testing with Dipyridamole or Adenosine

    PubMed Central

    Conti, Alberto; Mariannini, Yuri; Canuti, Erica; Petrova, Tetyana; Innocenti, Francesca; Zanobetti, Maurizio; Gallini, Chiara; Costanzo, Egidio

    2014-01-01

    Objective: To update the prognostic value of scan strategy with pharmacological stress agent in chest pain (CP) patients presenting with normal electrocardiography (ECG) and troponin. Methods: Two consecutive nonrandomized series of patients with CP and negative first-line workup inclusive of serial ECG, serial troponin, and echocardiography underwent myocardial perfusion imaging single photon emission computed tomography (SPECT) in the emergency department. Of 170 patients enrolled, 52 patients underwent dipyridamole-SPECT and 118 adenosine-SPECT. Patients with perfusion defects underwent angiography, whereas the remaining patients were discharged and followed-up. Primary endpoint was the composite of nonfatal myocardial infarction, unstable angina, revascularization, and cardiovascular death at follow-up or the presence of coronary stenosis > 50% at angiography. Results: At multivariate analysis, the presence of perfusion defects or hypertension was independent predictor of the primary endpoint. Sensitivity and negative predictive value were higher in patients subjected to adenosine-SPECT (95% and 99%, respectively) versus dipyridamole-SPECT (56% and 89%; yield 70% and 11%, respectively; P < 0.03). Of note, sensitivity, negative, and positive predictive values were high in patients with hypertension (100%, 93%, and 60%, respectively) or nonischemic echocardiography alterations (100%, 100%, and 100%, respectively). Conclusions: In CP patients, presenting with normal ECG and troponin, adenosine-SPECT adds incremental prognostic values to dipyridamole-SPECT. Costly scan strategy is more appropriate and avoids unnecessary angiograms in patients with hypertension or nonischemic echocardiography alterations. PMID:25191123

  12. Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and ER stress damages induced by glutamate in PC12 cells.

    PubMed

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Ouyang, Zhen; Su, Zhaoliang; Wang, Dujun; Yu, Xiaofeng

    2016-06-01

    Glutamate has been proven to induce oxidative stress through the formation of reactive oxygen species (ROS) and increased calcium overload which results in neuronal injury, development of neurodegenerative diseases and death. Adenosine is one of the bioactive nucleosides found in Cordyceps cicadae and it has displayed several pharmacological activities including neuroprotection. In this study, the protective effects of adenosine from C. cicadae against glutamate-induce oxidative stress in PC12 cells were evaluated. The exposure of PC12 cells to glutamate (5mM) induced the formation of ROS, increased Ca(2+) influx, endoplasmic reticulum (ER) stress and up regulated the expression of pro-apoptotic factor Bax. However, pretreatment with adenosine markedly increased cell viability, decreased the elevated levels of ROS and Ca(2+) induced by glutamate. Furthermore adenosine increased the activities of GSH-Px and SOD, as well as retained mitochondria membrane potential (MMP), increased Bcl-2/Bax ratio, and reduced the expression of ERK, p38, and JNK. Overall, our results suggest that adenosine may be a promising potential therapeutic agent for the prevention and treatment of neurodegenerative disorders. PMID:27114365

  13. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    PubMed

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function. PMID:26056314

  14. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress

    PubMed Central

    Kaster, Manuella P.; Machado, Nuno J.; Silva, Henrique B.; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E.; Rodrigues, Ana Lúcia S.; Porciúncula, Lisiane O.; Chen, Jiang Fan; Tomé, Ângelo R.; Agostinho, Paula; Canas, Paula M.; Cunha, Rodrigo A.

    2015-01-01

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function. PMID:26056314

  15. European cardiovascular magnetic resonance (EuroCMR) registry – multi national results from 57 centers in 15 countries

    PubMed Central

    2013-01-01

    Abstract Background The EuroCMR registry sought to evaluate indications, image quality, safety and impact on patient management of clinical routine CMR in a multi-national European setting. Furthermore, interim analysis of the specific protocols should underscore the prognostic potential of CMR. Methods Multi-center registry with consecutive enrolment of patients in 57 centers in 15 countries. More than 27000 consecutive patients were enrolled. Results The most important indications were risk stratification in suspected CAD/Ischemia (34.2%), workup of myocarditis/cardiomyopathies (32.2%), as well as assessment of viability (14.6%). Image quality was diagnostic in more than 98% of cases. Severe complications occurred in 0.026%, always associated with stress testing. No patient died during or due to CMR. In 61.8% CMR findings impacted on patient management. Importantly, in nearly 8.7% the final diagnosis based on CMR was different to the diagnosis before CMR, leading to a complete change in management. Interim analysis of suspected CAD and risk stratification in HCM specific protocols revealed a low rate of adverse events for suspected CAD patients with normal stress CMR (1.0% per year), and for HCM patients without LGE (2.7% per year). Conclusion The most important indications in Europe are risk stratification in suspected CAD/Ischemia, work-up of myocarditis and cardiomyopathies, as well as assessment of viability. CMR imaging is a safe procedure, has diagnostic image quality in more than 98% of cases, and its results have strong impact on patient management. Interim analyses of the specific protocols underscore the prognostic value of clinical routine CMR in CAD and HCM. Condensed abstract The EuroCMR registry sought to evaluate indications, image quality, safety and impact on patient management of clinical routine CMR in a multi-national European setting in a large number of cases (n > 27000). Based on our data CMR is frequently performed in European

  16. Adenosine protects Sprague Dawley rats from high-fat diet and repeated acute restraint stress-induced intestinal inflammation and altered expression of nutrient transporters.

    PubMed

    Lee, C Y

    2015-04-01

    This study investigated the effect of repeated acute restraint stress and high-fat diet (HFD) on intestinal expression of nutrient transporters, concomitant to intestinal inflammation. The ability of adenosine to reverse any change was examined. Six-week-old male Sprague Dawley rats were divided into eight groups: control or non-stressed (C), rats exposed to restraint stress for 6 h per day for 14 days (S), control rats fed with HFD (CHF) and restraint-stressed rats fed with HFD (SHF); four additional groups received the same treatments and were also given 50 mg/l adenosine dissolved in drinking water. Fasting blood glucose, plasma insulin, adiponectin and corticosterone were measured. Intestinal expression of SLC5A1, SLC2A2, NPC1L1 and TNF-α was analysed. Histological evaluation was conducted to observe for morphological and anatomical changes in the intestinal tissues. Results showed that HFD feeding increased glucose and insulin levels, and repeated acute restraint stress raised the corticosterone level by 22%. Exposure to both stress and HFD caused a further increase in corticosterone to 41%, while decreasing plasma adiponectin level. Restraint stress altered intestinal expression of SLC5A1, SLC2A2 and NPC1L1. These changes were enhanced in SHF rats. Adenosine was found to alleviate HFD-induced increase in glucose and insulin levels, suppress elevation of corticosterone in S rats and improve the altered nutrient transporters expression profiles. It also prevented upregulation of TNF-α in the intestine of SHF rats. In summary, a combination of stress and HFD exaggerated stress- and HFD-induced pathophysiological changes in the intestine, and biochemical parameters related to obesity. Adenosine attenuated the elevation of corticosterone and altered expression of SLC5A1, NPC1L1 and TNF-α. PMID:25196093

  17. Myocardial uptake and clearance of T1-201 in healthy subjects: Comparison of adenosine-induced hyperemia and exercise stress

    SciTech Connect

    Siffring, P.A.; Gupta, N.C.; Mohiuddin, S.M.; Esterbrooks, D.J.; Hilleman, D.E.; Cheng, S.C.; Sketch, M.H. Sr.; Frick, M.P. )

    1989-12-01

    Pharmacologic stress testing with dipyridamole is useful in patients undergoing thallium-201 myocardial perfusion scintigraphy who cannot adequately exercise. Because dipyridamole increases coronary blood flow by reducing the metabolism of adenosine, the authors compared the uptake and clearance of T1-201 following exercise stress testing (EST) and resting intravenous infusion of adenosine (AI) in crossover fashion in 20 healthy men. No perfusion defects or areas of redistribution were noted in any of the scans. Mean absolute myocardial T1-201 uptake was 1.3 times greater with AI than with EST. Mean absolute extracardiac uptake was 2.0 times greater with AI. Mean T1-201 myocardial clearance was virtually the same in all AI and EST views. During AI, 70% of the subjects experienced subjective side effects, mean arterial blood pressure decreased by 15%, and heart rate increased by 48%. The effects of adenosine on T1-201 kinetics in the myocardium are similar to those of EST. Adenosine may be useful as a pharmacologic stress agent in patients undergoing T1-201 myocardial perfusion scintigraphy.

  18. CMR Catalog Service for the Web

    NASA Technical Reports Server (NTRS)

    Newman, Doug; Mitchell, Andrew

    2016-01-01

    With the impending retirement of Global Change Master Directory (GCMD) Application Programming Interfaces (APIs) the Common Metadata Repository (CMR) was charged with providing a collection-level Catalog Service for the Web (CSW) that provided the same level of functionality as GCMD. This talk describes the capabilities of the CMR CSW API with particular reference to the support of the Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS) Integrated Catalog (CWIC).

  19. Selective Attenuation of Norepinephrine Release and Stress-Induced Heart Rate Increase by Partial Adenosine A1 Agonism

    PubMed Central

    Bott-Flügel, Lorenz; Bernshausen, Alexandra; Schneider, Heike; Luppa, Peter; Zimmermann, Katja; Albrecht-Küpper, Barbara; Kast, Raimund; Laugwitz, Karl-Ludwig; Ehmke, Heimo; Knorr, Andreas; Seyfarth, Melchior

    2011-01-01

    The release of the neurotransmitter norepinephrine (NE) is modulated by presynaptic adenosine receptors. In the present study we investigated the effect of a partial activation of this feedback mechanism. We hypothesized that partial agonism would have differential effects on NE release in isolated hearts as well as on heart rate in vivo depending on the genetic background and baseline sympathetic activity. In isolated perfused hearts of Wistar and Spontaneously Hypertensive Rats (SHR), NE release was induced by electrical stimulation under control conditions (S1), and with capadenoson 6 · 10−8 M (30 µg/l), 6 · 10−7 M (300 µg/l) or 2-chloro-N6-cyclopentyladenosine (CCPA) 10−6 M (S2). Under control conditions (S1), NE release was significantly higher in SHR hearts compared to Wistar (766+/−87 pmol/g vs. 173+/−18 pmol/g, p<0.01). Capadenoson led to a concentration-dependent decrease of the stimulation–induced NE release in SHR (S2/S1 = 0.90±0.08 with capadenoson 6 · 10−8 M, 0.54±0.02 with 6 · 10−7 M), but not in Wistar hearts (S2/S1 = 1.05±0.12 with 6 · 10−8 M, 1.03±0.09 with 6 · 10−7 M). CCPA reduced NE release to a similar degree in hearts from both strains. In vivo capadenoson did not alter resting heart rate in Wistar rats or SHR. Restraint stress induced a significantly greater increase of heart rate in SHR than in Wistar rats. Capadenoson blunted this stress-induced tachycardia by 45% in SHR, but not in Wistar rats. Using a [35S]GTPγS assay we demonstrated that capadenoson is a partial agonist compared to the full agonist CCPA (74+/−2% A1-receptor stimulation). These results suggest that partial adenosine A1-agonism dampens stress-induced tachycardia selectively in rats susceptible to strong increases in sympathetic activity, most likely due to a presynaptic attenuation of NE release. PMID:21464936

  20. Efficacy of coronary fractional flow reserve using contrast medium compared to adenosine

    PubMed Central

    Tanboğa, Ibrahim Halil; Aksakal, Enbiya; Aksu, Uğur; Gulcu, Oktay; Birdal, Oğuzhan; Arısoy, Arif; Kalaycı, Arzu; Ulusoy, Fatih Rifat; Sevimli, Serdar

    2016-01-01

    Introduction Coronary fractional flow reserve (FFR) is recommended as the gold standard method in evaluating intermediate coronary stenoses. However, there are significant debates concerning the agents and the timing of the measurement. Aim To compare the contrast medium induced Pd/Pa ratio (CMR) with the FFR. Material and methods We enrolled 28 consecutive patients with 34 intermediate lesions who underwent coronary FFR measurement by intracoronary (i.c.) adenosine. After baseline Pd/Pa was calculated, a single contrast medium (Iomeron) injection of 6 ml (3 ml/s) was performed manually. Within 10 s after the contrast medium injection, the CMR was calculated. Bolus injection of i.c. adenosine was performed to induce maximal hyperemia (from 60 µg to 600 µg), and when it was ≤ 0.80, the intermediate lesion was considered as significant. Results After bolus i.c. adenosine, 12 lesions of 34 (35.3%) were identified as significant. The CMR value was 0.86 ±0.06 (range: 0.71–0.97). There were no significant differences between FFR and CMR values (p = 0.108). A substantial positive correlation between adenosine and contrast values was detected (0.886 and p < 0.001). Good agreement in Bland-Altman analysis was revealed (mean bias was 0.027, 95% confidence interval 0.038–0.092). Receiver operating characteristics curve analysis showed 90.9% sensitivity and 91.7% specificity for a cut-off value of 0.85 for the CMR compared to FFR (≤ 0.80). Conclusions Our study showed that measuring the CMR is a feasible method compared to FFR. The CMR may be used in situations where adenosine cannot be administered. PMID:27625683

  1. Safety of adenosine pharmacologic stress myocardial perfusion imaging in orthotopic cardiac transplant recipients: a single center experience of 102 transplant patients.

    PubMed

    Al-Mallah, Mouaz H; Arida, Muhammad; Garcia-Sayan, Enrique; Assal, Chafik; Zegarra, Gino Tapia; Czerska, Barbara; Ananthasubramaniam, Karthik

    2011-10-01

    Denervation super-sensitivity to adenosine is well described in cardiac transplant (CT) patients particularly early after transplant. The safety and hemodynamic effects of adenosine SPECT (A-SPECT) has not been described in a large series of CT patients. Single center retrospective study of 102 CT patients undergoing A-SPECT were compared to an age-gender matched patients in a 2:1 fashion who underwent A-SPECT in the same time period. Multivariate logistic regression model were used to identify independent predictors of advanced AV block. The average time from CT to A-SPECT was 8.5 ± 4.5 years. Average age was 57 years with 80% males. In comparison to the control group, adenosine infusion was associated with a higher incidence of sinus pause (4.9% vs. 0%), 2nd (11.8% vs. 4.9%) and 3rd degree AVB (2.9% vs. 0%) in CT patients (all P < 0.05). Prior use of aspirin and baseline 1st degree AVB were significant independent predictors of adenosine induced AVB. Baseline right or left bundle branch block, beta-blockers, calcium blockers or digoxin were not associated with occurrence of AVB. Only 1.9% of A-SPECT studies were terminated due to bradyarrythmia with 1 patient requiring aminophylline. There were no significant immediate or long term adverse events in these patients. Adenosine pharmacologic stress is associated with a higher incidence of AVB and sinus pause in CT patients reflecting persistence of super sensitivity late after CT. Nevertheless these bradyarrythmias are transient without any sequelae suggesting that A-SPECT can be performed safely in CT patients. PMID:21088992

  2. Comparison of adenosine and treadmill exercise thallium-201 stress tests for the detection of coronary artery disease.

    PubMed

    Abe, S; Takeishi, Y; Chiba, J; Ikeda, K; Tomoike, H

    1993-12-01

    To determine the clinical usefulness of adenosine Tl-201 imaging for the evaluation of coronary artery disease, 22 patients with suspected coronary artery disease who underwent adenosine and exercise Tl-201 single photon emission computed tomography (SPECT) were studied. The peak levels of heart rate (83 vs 123 bpm, p < 0.001), systolic blood pressure (124 vs 164 mmHg, p < 0.001), diastolic blood pressure (70 vs 86 mmHg, p < 0.01) and rate pressure products (10220 vs 20410 bpm x mmHg, p < 0.001) were markedly smaller during adenosine infusion than during exercise. Segmental agreements between adenosine and exercise tests were 90% (218 of 242 segments) regarding the presence of perfusion defects and 89% (215 of 242 segments) regarding the presence of redistribution. Regional Tl-201 uptake (r = 0.85, p < 0.001) and the extent (r = 0.75, p < 0.001) and intensity (r = 0.83, p < 0.001) of Tl-201 defects during adenosine testing were closely correlated with those of exercise testing. Adenosine and exercise tests showed similar sensitivities for the identification of individual coronary stenosis (85% vs 78%). However, in patients who were unable to perform adequate exercise (maximal heart rate < 120 bpm), the sensitivity of adenosine imaging tended to be higher than that of exercise imaging (92% vs 69%, p = 0.07). Adenosine Tl-201 imaging is an alternative to the exercise test for assessing the severity and loci of coronary artery disease, especially in patients who are unable to perform adequate physical exercise. PMID:8283603

  3. Making Metadata Better with CMR and MMT

    NASA Technical Reports Server (NTRS)

    Gilman, Jason Arthur; Shum, Dana

    2016-01-01

    Ensuring complete, consistent and high quality metadata is a challenge for metadata providers and curators. The CMR and MMT systems provide providers and curators options to build in metadata quality from the start and also assess and improve the quality of already existing metadata.

  4. Adenosine and sleep

    SciTech Connect

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  5. Adenosine transporters.

    PubMed

    Thorn, J A; Jarvis, S M

    1996-06-01

    1. In mammals, nucleoside transport is an important determinant of the pharmacokinetics, plasma and tissue concentration, disposition and in vivo biological activity of adenosine as well as nucleoside analogues used in antiviral and anticancer therapies. 2. Two broad types of adenosine transporter exist, facilitated-diffusion carriers and active processes driven by the transmembrane sodium gradient. 3. Facilitated-diffusion adenosine carriers may be sensitive (es) or insensitive (ei) to nanomolar concentrations of the transport inhibitor nitrobenzylthioinosine (NBMPR). Dipyridamole, dilazep and lidoflazine analogues are also more potent inhibitors of the es carrier than the ei transporter in cells other than those derived from rat tissues. 4. The es transporter has a broad substrate specificity (apparent Km for adenosine approximately 25 microM in many cells at 25 degrees C), is a glycoprotein with an average apparent Mr of 57,000 in human erythrocytes that has been purified to near homogeneity and may exist in situ as a dimer. However, there is increasing evidence to suggest the presence of isoforms of the es transporter in different cells and species, based on kinetic and molecular properties. 5. The ei transporter also has a broad substrate specificity with a lower affinity for some nucleoside permeants than the es carrier, is genetically distinct from es but little information exists as to the molecular properties of the protein. 6. Sodium-dependent adenosine transport is present in many cell types and catalysed by four distinct systems, N1-N4, distinguished by substrate specificity, sodium coupling and tissue distribution. 7. Two genes have been identified which encode sodium-dependent adenosine transport proteins, SNST1 from the sodium/glucose cotransporter (SGLT1) gene family and the rat intestinal N2 transporter (cNT1) from a novel gene family including a bacterial nucleoside carrier (NupC). Transcripts of cNT1, which encodes a 648-residue protein, are

  6. Regadenoson and adenosine are equivalent vasodilators and are superior than dipyridamole- a study of first pass quantitative perfusion cardiovascular magnetic resonance

    PubMed Central

    2013-01-01

    Background Regadenoson, dipyridamole and adenosine are commonly used vasodilators in myocardial perfusion imaging for the detection of obstructive coronary artery disease. There are few comparative studies of the vasodilator properties of regadenoson, adenosine and dipyridamole in humans. The specific aim of this study was to determine the relative potency of these three vasodilators by quantifying stress and rest myocardial perfusion in humans using cardiovascular magnetic resonance (CMR). Methods Fifteen healthy normal volunteers, with Framingham score less than 1% underwent vasodilator stress testing with regadenoson (400 μg bolus), dipyridamole (0.56 mg/kg) and adenosine (140 μg /kg/min) on separate days. Rest perfusion imaging was performed initially. Twenty minutes later, stress imaging was performed at peak vasodilation, i.e. 70 seconds after regadenoson, 4 minutes after dipyridamole infusion and between 3–4 minutes of the adenosine infusion. Myocardial blood flow (MBF) in ml/min/g and myocardial perfusion reserve (MPR) were quantified using a fully quantitative model constrained deconvolution. Results Regadenoson produced higher stress MBF than dipyridamole and adenosine (3.58 ± 0.58 vs. 2.81 ± 0.67 vs. 2.78 ± 0.61 ml/min/g, p = 0.0009 and p = 0.0008 respectively). Regadenoson had a much higher heart rate response than adenosine and dipyridamole respectively (95 ± 11 vs. 76 ± 13 vs. 86 ± 12 beats/ minute) When stress MBF was adjusted for heart rate, there were no differences between regadenoson and adenosine (37.8 ± 6 vs. 36.6 ± 4 μl/sec/g, p = NS), but differences between regadenoson and dipyridamole persisted (37.8 ± 6 vs. 32.6 ± 5 μl/sec/g, p = 0.03). The unadjusted MPR was higher with regadenoson (3.11 ± 0.63) when compared with adenosine (2.7 ± 0.61, p = 0.02) and when compared with dipyridamole (2.61 ± 0.57, p = 0.04). Similar to stress MBF, these differences in MPR between regadenoson and adenosine were abolished when adjusted

  7. The Role of CMR in Cardiomyopathies

    PubMed Central

    Kramer, Christopher M.

    2015-01-01

    Cardiac magnetic resonance imaging (CMR) has made major inroads in the new millenium in the diagnosis and assessment of prognosis for patients with cardiomyopathies. Imaging of left and right ventricular structure and function and tissue characterization with late gadolinium enhancement (LGE) as well as T1 and T2 mapping enable accurate diagnosis of the underlying etiology. In the setting of coronary artery disease, either transmurality of LGE or contractile reserve in response to dobutamine can assess the likelihood of recovery of function after revascularization. The presence of scar reduces the likelihood of response to medical therapy and to cardiac resynchronization therapy in heart failure. The presence and extent of LGE relate to overall cardiovascular outcome in cardiomyopathies. An emerging major role for CMR in cardiomyopathies is to identify myocardial scar for diagnostic and prognostic purposes. PMID:26033902

  8. Nuclear stress test

    MedlinePlus

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  9. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: a possible role for plasticity in adenosine receptors

    PubMed Central

    Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika

    2014-01-01

    Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571

  10. Interventional CMR: Clinical Applications and Future Directions

    PubMed Central

    Rogers, Toby

    2015-01-01

    Interventional cardiovascular magnetic resonance (iCMR) promises to enable radiation-free catheterization procedures and to enhance contemporary image guidance for structural heart and electrophysiological interventions. However, clinical translation of exciting pre-clinical interventions has been limited by availability of devices that are safe to use in the magnetic resonance (MR) environment. We discuss challenges and solutions for clinical translation, including MR-conditional and MR-safe device design, and how to configure an interventional suite. We review the recent advances that have already enabled diagnostic MR right heart catheterization and simple electrophysiologic ablation to be performed in humans and explore future clinical applications. PMID:25894793

  11. Melanin biosynthesis in the maize pathogen Cochliobolus heterostrophus depends on two mitogen-activated protein kinases, Chk1 and Mps1, and the transcription factor Cmr1.

    PubMed

    Eliahu, Noa; Igbaria, Aeid; Rose, Mark S; Horwitz, Benjamin A; Lev, Sophie

    2007-03-01

    The maize pathogen Cochliobolus heterostrophus requires two mitogen-activated protein kinases (MAPKs), Chk1 and Mps1, to produce normal pigmentation. Young colonies of mps1 and chk1 deletion mutants have a white and autolytic appearance, which was partially rescued by a hyperosmotic environment. We isolated the transcription factor Cmr1, an ortholog of Colletotrichum lagenarium Cmr1 and Magnaporthe grisea Pig1, which regulates melanin biosynthesis in C. heterostrophus. Deletion of CMR1 in C. heterostrophus resulted in mutants that lacked dark pigmentation and acquired an orange-pink color. In cmr1 deletion strains the expression of putative scytalone dehydratase (SCD1) and hydroxynaphthalene reductase (BRN1 and BRN2) genes involved in melanin biosynthesis was undetectable, whereas expression of PKS18, encoding a polyketide synthase, was only moderately reduced. In chk1 and mps1 mutants expression of PKS18, SCD1, BRN1, BRN2, and the transcription factor CMR1 itself was very low in young colonies, slightly up-regulated in aging colonies, and significantly induced in hyperosmotic conditions, compared to invariably high expression in the wild type. These findings indicate that two MAPKs, Chk1 and Mps1, affect Cmr1 at the transcriptional level and this influence is partially overridden in stress conditions including aging culture and hyperosmotic environment. Surprisingly, we found that the CMR1 gene was transcribed in both sense and antisense directions, apparently producing mRNA as well as a long noncoding RNA transcript. Expression of the antisense CMR1 was also Chk1 and Mps1 dependent. Analysis of chromosomal location of the melanin biosynthesis genes in C. heterostrophus resulted in identification of a small gene cluster comprising BRN1, CMR1, and PKS18. Since expression of all three genes depends on Chk1 and Mps1 MAPKs, we suggest their possible epigenetic regulation. PMID:17237364

  12. Adenosine and Ischemic Preconditioning

    PubMed Central

    Liang, Bruce T.; Swierkosz, Tomasz A.; Herrmann, Howard C.; Kimmel, Stephen; Jacobson, Kenneth A.

    2012-01-01

    Adenosine is released in large amounts during myocardial ischemia and is capable of exerting potent cardioprotective effects in the heart. Although these observations on adenosine have been known for a long time, how adenosine acts to achieve its anti-ischemic effect remains incompletely understood. However, recent advances on the chemistry and pharmacology of adenosine receptor ligands have provided important and novel information on the function of adenosine receptor subtypes in the cardiovascular system. The development of model systems for the cardiac actions of adenosine has yielded important insights into its mechanism of action and have begun to elucidate the sequence of signalling events from receptor activation to the actual exertion of its cardioprotective effect. The present review will focus on the adenosine receptors that mediate the potent anti-ischemic effect of adenosine, new ligands at the receptors, potential molecular signalling mechanisms downstream of the receptor, mediators for cardioprotection, and possible clinical applications in cardiovascular disorders. PMID:10607860

  13. Prognostic value of normal regadenoson stress perfusion cardiovascular magnetic resonance

    PubMed Central

    2013-01-01

    Background Regadenoson is a vasodilator stress agent that selectively activates the A2A receptor. Compared to adenosine, regadenoson is easier to administer and results in fewer side effects. Although extensively studied in patients undergoing nuclear perfusion imaging (MPI), its use for perfusion cardiovascular magnetic resonance (CMR) is not well described. The aim of this study was to determine the prognostic value of a normal regadenoson perfusion CMR in patients with known or suspected coronary artery disease. Methods Patients with known or suspected coronary artery disease were prospectively enrolled to receive perfusion CMR (Philips 1.5 T) with regadenoson. Three short-axis slices of the left ventricle (LV) were obtained during first pass of contrast using a hybrid GRE-EPI pulse sequence (0.075 mmol/kg Gadolinium-DTPA-BMA at 4 ml/sec). Imaging was performed 1 minute after injection of regadenoson (0.4 mg) and repeated 15 minutes after reversal of hyperemia with aminophylline (125 mg). Perfusion defects were documented if they persisted for ≥2 frames after peak enhancement of the LV cavity. CMR was considered abnormal if there was a resting wall motion abnormality, decreased LVEF (<40%), presence of LGE, or the presence of a perfusion defect during hyperemia. All patients were followed for a minimum of 1 year for major adverse cardiovascular event (MACE) defined as coronary revascularization, non-fatal myocardial infarction, and cardiovascular death. Results 149 patients were included in the final analysis. Perfusion defects were noted in 43/149 (29%) patients; 59/149 (40%) had any abnormality on CMR. During the mean follow-up period of 24 ± 9 months, 17/149 (11.4%) patients experienced MACE. The separation in the survival distributions for those with perfusion defects and those without perfusion defects was highly significant (log-rank p = 0.0001). When the absence of perfusion defects was added to the absence of other resting CMR

  14. Achieving Sub-Second Search in the CMR

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Baynes, K.; Pilone, D.; Mitchell, A. E.; Murphy, K. J.

    2014-12-01

    The Common Metadata Repository (CMR) is the next generation Earth Science Metadata catalog for NASA's Earth Observing data. It joins together the holdings from the EOS Clearing House (ECHO) and the Global Change Master Directory (GCMD), creating a unified, authoritative source for EOSDIS metadata. The CMR allows ingest in many different formats while providing consistent search behavior and retrieval in any supported format. Performance is a critical component of the CMR, ensuring improved data discovery and client interactivity. The CMR delivers sub-second search performance for any of the common query conditions (including spatial) across hundreds of millions of metadata granules. It also allows the addition of new metadata concepts such as visualizations, parameter metadata, and documentation. The CMR's goals presented many challenges. This talk will describe the CMR architecture, design, and innovations that were made to achieve its goals. This includes: * Architectural features like immutability and backpressure. * Data management techniques such as caching and parallel loading that give big performance gains. * Open Source and COTS tools like Elasticsearch search engine. * Adoption of Clojure, a functional programming language for the Java Virtual Machine. * Development of a custom spatial search plugin for Elasticsearch and why it was necessary. * Introduction of a unified model for metadata that maps every supported metadata format to a consistent domain model.

  15. Lattice effect in perovskite and pyrochlore CMR materials

    SciTech Connect

    Kwei, G.H.; Argyriou, D.N.; Lawson, A.C.; Neumeier, J.J.; Thompson, J.D.; Billinge, S.J.L.; Ramirez, A.P.; Subramanian, M.A.

    1997-09-01

    Colossal magnetoresistance (CMR) in doped La manganite thin films (La{sub 1-x}M{sub x}MnO{sub 3}, where M = divalent ion, either Ca or Pb) has been shown to result in a factor of 10{sup 6} suppression of the resistance. The driving force for the CMR transition is thought to be the double-exchange interaction. Many studies of both the crystal structure and the local structure of the La{sub 1-x}M{sub x}MnO{sub 3} (M = Ca, Sr, Ba, Pb) system have now been carried out. As expected, these systems all show a strong coupling of the lattice to the CMR transition. On the other hand, neutron diffraction and x-ray absorption for the Tl{sub 2}Mn{sub 2}O{sub 7} pyrochlore, which also exhibits CMR, shows no deviations from ideal stoichiometry, mixed valency, or Jahn-Teller distortions of the MnO{sub 6} octahedron. We present results of crystallographic and local structural studies of these two important classes of CMR materials, compare the differences in structural response, and discuss the implications of these findings to our understanding of these materials.

  16. Dietary effects of adenosine monophosphate to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major.

    PubMed

    Hossain, Md Sakhawat; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro; Sony, Nadia Mahjabin

    2016-09-01

    Our study explored the dietary effects of adenosine monophosphate (AMP) to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream. A semi-purified basal diet supplemented with 0% (Control), 0.1% (AMP-0.1), 0.2% (AMP-0.2), 0.4% (AMP-0.4) and 0.8% (AMP-0.8) purified AMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (mean initial weight 3.4 g) for 56 days. The results indicated that dietary AMP supplements tended to improve growth performances. One of the best ones was found in diet group AMP-0.2, followed by diet groups AMP-0.1, AMP-0.4 and AMP-0.8. The Apparent digestibility coefficients (dry matter, protein and lipid) also improved by AMP supplementation and the significantly highest dry matter digestibility was observed in diet group AMP-0.2. Fish fed diet groups AMP-0.2 and AMP-0.4 had significantly higher peroxidase and bactericidal activities than fish fed the control diet. Nitro-blue-tetrazolium (NBT) activity was found to be significantly (P < 0.05) greater in fish fed diet groups AMP-0.4 and AMP-0.8. Total serum protein, lysozyme activity and agglutination antibody titer were also increased (P > 0.05) by dietary supplementation. In contrast, catalase activity decreased with AMP supplementation. Moreover, the fish fed AMP supplemented diets had better improvement (P < 0.05) in body lipid contents, condition factor, hematocrit content and glutamyl oxaloacetic transaminase (GOT) level than the control group. Supplementation also improved both freshwater and oxidative stress resistances. Interestingly, the fish fed diet groups AMP-0.2 and AMP-0.4 showed the least oxidative stress condition. Finally it is concluded that, dietary AMP supplementation enhanced the growth, digestibility, immune response and stress resistance of red sea bream. The regression analysis revealed that a dietary AMP supplementation between 0.2 and 0.4% supported weight gain and

  17. Clinical characteristics of silent myocardial ischemia diagnosed with adenosine stress 99mTc-tetrofosmin myocardial scintigraphy in Japanese patients with acute cerebral infarction.

    PubMed

    Nomura, Tetsuya; Kusaba, Tetsuro; Kodama, Naotoshi; Terada, Kensuke; Urakabe, Yota; Nishikawa, Susumu; Keira, Natsuya; Matsubara, Hiroaki; Tatsumi, Tetsuya

    2013-01-01

    It is well known that silent myocardial ischemia (SMI) often complicates patients with cerebral infarction and that stroke patients often die of ischemic heart disease. Therefore, it is considered important to treat myocardial ischemia in stroke patients. This study investigated SMI complicating Japanese patients with fresh stroke, using (99m)Tc-tetrofosmin myocardial scintigraphy with pharmacologic stress testing to elucidate their clinical manifestations. This study included 41 patients (26 men, mean age 76.0 ± 10.7 years) with acute cerebral infarction and no history of coronary artery disease. All patients underwent (99m)Tc-tetrofosmin myocardial scintigraphy with intravenous administration of adenosine to diagnose SMI. Of the 41 patients, myocardial ischemia was confirmed in 17 patients (41.5%). Atherosclerotic etiology was the major cause of stroke in the ischemia(+) group and embolic origin was the major cause in the ischemia(-) group. Patients with myocardial ischemia had a higher incidence of diabetes mellitus (52.9 vs 20.8%; P = 0.0323) and more than two conventional cardiovascular risk factors (64.7 vs 25.0%; P = 0.0110) compared with the nonischemic patients. Infarction subtype of atherosclerotic origin was an independent positive predictor of asymptomatic myocardial ischemia in patients with stroke. These findings indicate that the prevalence of asymptomatic myocardial ischemia is relatively high, especially in patients with stroke of atherosclerotic origin. Therefore, it is beneficial for us to narrow the target population who are at the highest risk when screening for SMI in Japanese patients with acute cerebral infarction. PMID:22124530

  18. Chemical and Metallurgy Research (CMR) Sample Tracking System Design Document

    SciTech Connect

    Bargelski, C. J.; Berrett, D. E.

    1998-09-01

    The purpose of this document is to describe the system architecture of the Chemical and Metallurgy Research (CMR) Sample Tracking System at Los Alamos National Laboratory. During the course of the document observations are made concerning the objectives, constraints and limitations, technical approaches, and the technical deliverables.

  19. Oxidative Stress Parameters and Erythrocyte Membrane Adenosine Triphosphatase Activities in Streptozotocin-induced Diabetic Rats Administered Aqueous Preparation of Kalanchoe Pinnata Leaves

    PubMed Central

    Menon, Nikhil; Sparks, Jean; Omoruyi, Felix O.

    2016-01-01

    Background: Diabetes mellitus is a chronic metabolic disease that according to the World Health Organization affects more than 382 million people. The rise in diabetes mellitus coupled with the lack of an effective treatment has led many to investigate medicinal plants to identify a viable alternative. Objective: To evaluate red blood cell (RBC) membrane adenosine triphosphatase (ATPase) activities and antioxidant levels in streptozotocin-induced diabetic rats administered aqueous preparation of Kalanchoe pinnata leaves. Materials and Methods: Diabetes mellitus was induced in rats by a single administration of streptozotocin (60 mg/kg). Diabetic rats were then treated with aqueous K. pinnata preparation (three mature leaves ~ 9.96 g/70 kg body weight or about 0.14 g/kg body weight/day) for 30 days. Serum glucose, RBC membrane ATPase activities, and antioxidant levels were determined. Results: We noted weight loss and reduced food consumption in the treated diabetic group. Serum glucose levels were reduced in the treated diabetic group compared to the other groups. Superoxide dismutase activity and glutathione levels were not significantly elevated in the treated group compared to the diabetic group. However, serum catalase activity was significantly (P < 0.05) increased in the treated diabetic group compared to the other groups. Serum thiobarbituric acid reactive substances were not significantly altered among the groups. There was a significant (P < 0.05) increase in Mg2+ ATPase activity and a nonsignificant increase in Na+/K+ ATPase activity in the RBC membrane of the treated diabetic group compared to the diabetic group. Conclusion: The consumption of aqueous preparation of K. pinnata may accrue benefits in the management of diabetes by lowering oxidative stress often associated with the disease and improving the availability of cellular magnesium through an increase in the magnesium ATPase pump in the RBC membrane for increased cellular metabolism of glucose

  20. In adenosine A2B knockouts acute treatment with inorganic nitrate improves glucose disposal, oxidative stress, and AMPK signaling in the liver

    PubMed Central

    Peleli, Maria; Hezel, Michael; Zollbrecht, Christa; Persson, A. Erik G.; Lundberg, Jon O.; Weitzberg, Eddie; Fredholm, Bertil B.; Carlström, Mattias

    2015-01-01

    Rationale: Accumulating studies suggest that nitric oxide (NO) deficiency and oxidative stress are central pathological mechanisms in type 2 diabetes (T2D). Recent findings demonstrate therapeutic effects by boosting the nitrate-nitrite-NO pathway, which is an alternative pathway for NO formation. This study aimed at investigating the acute effects of inorganic nitrate on glucose and insulin signaling in adenosine A2B receptor knockout mice (A−/−2B), a genetic mouse model of impaired metabolic regulation. Methods: Acute effects of nitrate treatment were investigated in aged wild-type (WT) and A−/−2B mice. One hour after injection with nitrate (0.1 mmol/kg, i.p.) or placebo, metabolic regulation was evaluated by intraperitoneal glucose and insulin tolerance tests. NADPH oxidase-mediated superoxide production and AMPK phosphorylation were measured in livers obtained from non-treated or glucose-treated mice, with or without prior nitrate injection. Plasma was used to determine insulin resistance (HOMA-IR) and NO signaling. Results: A−/−2B displayed increased body weight, reduced glucose clearance, and attenuated overall insulin responses compared with age-matched WT mice. Nitrate treatment increased circulating levels of nitrate, nitrite and cGMP in the A−/−2B, and improved glucose clearance. In WT mice, however, nitrate treatment did not influence glucose clearance. HOMA-IR increased following glucose injection in the A−/−2B, but remained at basal levels in mice pretreated with nitrate. NADPH oxidase activity in livers from A−/−2B, but not WT mice, was reduced by nitrate treatment. Livers from A−/−2B displayed reduced AMPK phosphorylation compared with WT mice, and this was increased by nitrate treatment. Finally, injection with the anti-diabetic agent metformin induced similar therapeutic effects in the A−/−2B as observed with nitrate. Conclusion: The A−/−2B mouse is a genetic mouse model of metabolic syndrome. Acute treatment

  1. Use of adenosine echocardiography for diagnosis of coronary artery disease

    SciTech Connect

    Zoghbi, W.A. )

    1991-07-01

    Two-dimensional echocardiography combined with exercise is sensitive and specific in the detection of coronary artery disease (CAD) by demonstrating transient abnormalities in wall motion. Frequently, however, patients cannot achieve maximal exercise because of various factors. Pharmacologic stress testing with intravenous adenosine was evaluated as a means of detecting CAD in a noninvasive manner. Patients with suspected CAD underwent echocardiographic imaging and simultaneous thallium 201 single-photon emission computed tomography during the intravenous administration of 140 micrograms/kg/min of adenosine. An increase in heart rate, decrease in blood pressure, and increase in double product were observed during adenosine administration. Initial observations revealed that wall motion abnormalities were induced by adenosine in areas of perfusion defects. The adenosine infusion was well tolerated, and symptoms disappeared within 1 to 2 minutes after termination of the infusion. Therefore preliminary observations suggest that adenosine echocardiography appears to be useful in the assessment of CAD.

  2. Evaluation of cardiac masses by CMR-strengths and pitfalls: a tertiary center experience.

    PubMed

    Tumma, Roja; Dong, Wei; Wang, Jing; Litt, Harold; Han, Yuchi

    2016-06-01

    Cardiovascular magnetic resonance (CMR) imaging is often considered the reference method to assess cardiac tumors. However, little data exists concerning the effectiveness of CMR for the accurate diagnosis of cardiac masses. We sought to understand the diagnostic value of CMR for evaluation of suspected cardiac mass. A total of 249 consecutive CMR cases performed at a single center from January 2005 to June 2013 for evaluation of masses found on echocardiography or computed tomography (CT) were included. All the clinical data and imaging features of these patients were retrospectively reviewed and medical records were verified for follow up care. More than half of the patients referred for evaluation of masses found at echocardiography or CT were found to have no evidence of mass by CMR. CMR correctly differentiated between thrombus and myxoma in 88.4 % cases. Malignant masses were accurately diagnosed on CMR. However, CMR missed or misdiagnosed a few cases of benign masses. Diagnosing cardiac masses remains an important use for imaging, despite technical difficulties with current imaging modalities. CMR can play a key role in confirming presence or absence of a mass. Additionally, in the presence of a mass, CMR can provide accurate differentiation of pseudomasses, benign and malignant masses. However, the limitations of CMR must be recognized. PMID:26838354

  3. Adenosine induces G2/M cell-cycle arrest by inhibiting cell mitosis progression.

    PubMed

    Jia, Kun-Zhi; Tang, Bo; Yu, Lu; Cheng, Wei; Zhang, Rong; Zhang, Jian-Fa; Hua, Zi-Chun

    2010-01-01

    Cellular adenosine accumulates under stress conditions. Few papers on adenosine are concerned with its function in the cell cycle. The cell cycle is the essential mechanism by which all living things reproduce and the target machinery when cells encounter stresses, so it is necessary to examine the relationship between adenosine and the cell cycle. In the present study, adenosine was found to induce G-2/M cell-cycle arrest. Furthermore, adenosine was found to modulate the expression of some important proteins in the cell cycle, such as cyclin B and p21, and to inhibit the transition of metaphase to anaphase in mitosis. PMID:19947935

  4. Adenosine and Bone Metabolism

    PubMed Central

    Mediero, Aránzazu; Cronstein, Bruce N.

    2013-01-01

    Bone is a dynamic organ that undergoes continuous remodeling whilst maintaining a balance between bone formation and resorption. Osteoblasts, which synthesize and mineralize new bone, and osteoclasts, the cells that resorb bone, act in concert to maintain bone homeostasis. In recent years, there has been increasing appreciation of purinergic regulation of bone metabolism. Adenosine, released locally, mediates its physiologic and pharmacologic actions via interactions with G-protein coupled receptors and recent work has indicated that these receptors are involved in the regulation of osteoclast differentiation and function, as well as osteoblast differentiation and bone formation. Moreover, adenosine receptors also regulate chondrocyte and cartilage homeostasis. These recent findings underscore the potential therapeutic importance of adenosine receptors in regulating bone physiology and pathology. PMID:23499155

  5. Adenosine receptor interactions and anxiolytics.

    PubMed

    Bruns, R F; Katims, J J; Annau, Z; Snyder, S H; Daly, J W

    1983-12-01

    [3H]-N6-cyclohexyladenosine and [3H]-1,3-diethyl-8-phenylxanthine label the A1 subtype of adenosine receptor in brain membranes. The affinities of methylxanthines in competing for A1 adenosine receptors parallel their potencies as locomotor stimulants. The adenosine agonist N6-(phenylisopropyl) adenosine is a potent locomotor depressant. Both diazepam and N6-(L-phenylisopropyl)adenosine cause locomotor stimulation in a narrow range of subdepressant doses. Combined stimulant doses of the two agents depress motor activity, as do larger doses of either one, given separately. Evidence supporting and against the hypothesis that some of the actions of benzodiazepines are mediated via the adenosine system is reviewed. A number of compounds interact with both systems, probably because of physico-chemical similarities between adenosine and diazepam. It is concluded that of the four classic actions of benzodiazepines, the sedative and muscle relaxant (but not anxiolytic or anticonvulsant) actions could possibly be mediated by adenosine. PMID:6199685

  6. Adenosine-induced coronary vasospasm following drug-eluting stent implantation

    PubMed Central

    Matsumoto, Naoya; Nagao, Ken; Hirayama, Atsushi; Kasama, Shu

    2014-01-01

    We present the case of coronary vasospasm during adenosine stress in a patient with a prior drug-eluting stent implantation. The patient had a stent implantation in the left anterior descending coronary artery 3 years ago. Recently, he developed a chest pain and underwent adenosine stress myocardial perfusion single photon emission CT (SPECT). During the adenosine stress, he felt severe chest pain and ST elevation on electrocardiogram. An invasive coronary angiography showed no in-stent restenosis. This phenomenon deemed to be adenosine-induced coronary vasospasm after stent implantation. PMID:24518394

  7. The adenosine system modulates Toll-like receptor function: basic mechanisms, clinical correlates and translational opportunities

    PubMed Central

    Coombs, Melanie R. Power; Belderbos, Mirjam E.; Gallington, Leighanne C.; Bont, Louis; Levy, Ofer

    2014-01-01

    Adenosine is an endogenous purine metabolite whose concentration in human blood plasma rises from nanomolar to micromolar during stress or hypoxia. Leukocytes express seven-transmembrane adenosine receptors whose engagement modulates Toll-like receptor-mediated cytokine responses, in part via modulation of intracellular cyclic adenosine monophosphate (cAMP). Adenosine congeners are used clinically to treat arrhythmias and apnea of prematurity. Herein we consider the potential of adenosine congeners as innate immune response modifiers to prevent and/or treat infection. PMID:21342073

  8. Adenosine in fibrosis

    PubMed Central

    Chan, Edwin S. L.

    2011-01-01

    Adenosine is an endogenous autocoid that regulates a multitude of bodily functions. Its anti-inflammatory actions are well known to rheumatologists since it mediates many of the anti-inflammatory effects of a number of antirheumatic drugs such as methotrexate. However, inflammatory and tissue regenerative responses are intricately linked, with wound healing being a prime example. It has only recently been appreciated that adenosine has a key role in tissue regenerative and fibrotic processes. An understanding of these processes may shed new light on potential therapeutic options in diseases such as scleroderma where tissue fibrosis features prominently. PMID:19949965

  9. Impaired Myocardial Oxygenation Response to Stress in Patients With Chronic Kidney Disease

    PubMed Central

    Parnham, Susie; Gleadle, Jonathan M; Bangalore, Sripal; Grover, Suchi; Perry, Rebecca; Woodman, Richard J; De Pasquale, Carmine G; Selvanayagam, Joseph B

    2015-01-01

    Background Coronary artery disease and left ventricular hypertrophy are prevalent in the chronic kidney disease (CKD) and renal transplant (RT) population. Advances in cardiovascular magnetic resonance (CMR) with blood oxygen level–dependent (BOLD) technique provides capability to assess myocardial oxygenation as a measure of ischemia. We hypothesized that the myocardial oxygenation response to stress would be impaired in CKD and RT patients. Methods and Results Fifty-three subjects (23 subjects with CKD, 10 RT recipients, 10 hypertensive (HT) controls, and 10 normal controls without known coronary artery disease) underwent CMR scanning. All groups had cine and BOLD CMR at 3 T. The RT and HT groups also had late gadolinium CMR to assess infarction/replacement fibrosis. The CKD group underwent 2-dimensional echocardiography strain to assess fibrosis. Myocardial oxygenation was measured at rest and under stress with adenosine (140 μg/kg per minute) using BOLD signal intensity. A total of 2898 myocardial segments (1200 segments in CKD patients, 552 segments in RT, 480 segments in HT, and 666 segments in normal controls) were compared using linear mixed modeling. Diabetes mellitus (P=0.47) and hypertension (P=0.57) were similar between CKD, RT, and HT groups. The mean BOLD signal intensity change was significantly lower in the CKD and RT groups compared to HT controls and normal controls (−0.89±10.63% in CKD versus 5.66±7.87% in RT versus 15.54±9.58% in HT controls versus 16.19±11.11% in normal controls, P<0.0001). BOLD signal intensity change was associated with estimated glomerular filtration rate (β=0.16, 95% CI=0.10 to 0.22, P<0.0001). Left ventricular mass index and left ventricular septal wall diameter were similar between the CKD predialysis, RT, and HT groups. None of the CKD patients had impaired global longitudinal strain and none of the RT group had late gadolinium hyperenhancement. Conclusions Myocardial oxygenation response to stress is

  10. CMR Shuffler System: Passive Mode Calibration and Certification Report

    SciTech Connect

    Frame, Katherine C.; Gomez, Cipriano D.; Salazar, William R.; Mayo, Douglas R.; Vigil, Georgiana M.; Crooks, William J.; Stange, Sy

    2012-07-20

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. As debris is removed from the vessels, material will be placed in waste drums. Far-field gamma ray assay will be used to determine when a drum is nearing a {sup 239}Pu equivalent mass of less than 200 g. The drum will then be assayed using a waste drum shuffler operated in passive mode using a neutron coincidence counting method for accountability. This report focuses on the testing and calibration of the CMR waste drum shuffler in passive mode operation. Initial testing was performed to confirm previously accepted measurement parameters. The system was then calibrated using a set of weapons grade Pu (WGPu, {sup 239}Pu > 93%) oxide standards placed inside a 55 gallon drum. The calibration data ranges from Pu mass of 0.5 g to 188.9 g. The CMR waste drum shuffler has been tested and calibrated in passive mode in preparation for safeguards accountability measurements of waste drums containing material removed from CVs for the CVD project.

  11. Variational Reconstruction of Left Cardiac Structure from CMR Images

    PubMed Central

    Wan, Min; Huang, Wei; Zhang, Jun-Mei; Zhao, Xiaodan; Tan, Ru San; Wan, Xiaofeng; Zhong, Liang

    2015-01-01

    Cardiovascular Disease (CVD), accounting for 17% of overall deaths in the USA, is the leading cause of death over the world. Advances in medical imaging techniques make the quantitative assessment of both the anatomy and function of heart possible. The cardiac modeling is an invariable prerequisite for quantitative analysis. In this study, a novel method is proposed to reconstruct the left cardiac structure from multi-planed cardiac magnetic resonance (CMR) images and contours. Routine CMR examination was performed to acquire both long axis and short axis images. Trained technologists delineated the endocardial contours. Multiple sets of two dimensional contours were projected into the three dimensional patient-based coordinate system and registered to each other. The union of the registered point sets was applied a variational surface reconstruction algorithm based on Delaunay triangulation and graph-cuts. The resulting triangulated surfaces were further post-processed. Quantitative evaluation on our method was performed via computing the overlapping ratio between the reconstructed model and the manually delineated long axis contours, which validates our method. We envisage that this method could be used by radiographers and cardiologists to diagnose and assess cardiac function in patients with diverse heart diseases. PMID:26689551

  12. Variational Reconstruction of Left Cardiac Structure from CMR Images.

    PubMed

    Wan, Min; Huang, Wei; Zhang, Jun-Mei; Zhao, Xiaodan; Tan, Ru San; Wan, Xiaofeng; Zhong, Liang

    2015-01-01

    Cardiovascular Disease (CVD), accounting for 17% of overall deaths in the USA, is the leading cause of death over the world. Advances in medical imaging techniques make the quantitative assessment of both the anatomy and function of heart possible. The cardiac modeling is an invariable prerequisite for quantitative analysis. In this study, a novel method is proposed to reconstruct the left cardiac structure from multi-planed cardiac magnetic resonance (CMR) images and contours. Routine CMR examination was performed to acquire both long axis and short axis images. Trained technologists delineated the endocardial contours. Multiple sets of two dimensional contours were projected into the three dimensional patient-based coordinate system and registered to each other. The union of the registered point sets was applied a variational surface reconstruction algorithm based on Delaunay triangulation and graph-cuts. The resulting triangulated surfaces were further post-processed. Quantitative evaluation on our method was performed via computing the overlapping ratio between the reconstructed model and the manually delineated long axis contours, which validates our method. We envisage that this method could be used by radiographers and cardiologists to diagnose and assess cardiac function in patients with diverse heart diseases. PMID:26689551

  13. Real-time cine and myocardial perfusion with treadmill exercise stress cardiovascular magnetic resonance in patients referred for stress SPECT

    PubMed Central

    2010-01-01

    Background To date, stress cardiovascular magnetic resonance (CMR) has relied on pharmacologic agents, and therefore lacked the physiologic information available only with exercise stress. Methods 43 patients age 25 to 81 years underwent a treadmill stress test incorporating both Tc99m SPECT and CMR. After rest Tc99m SPECT imaging, patients underwent resting cine CMR. Patients then underwent in-room exercise stress using a partially modified treadmill. 12-lead ECG monitoring was performed throughout. At peak stress, Tc99m was injected and patients rapidly returned to their prior position in the magnet for post-exercise cine and perfusion imaging. The patient table was pulled out of the magnet for recovery monitoring. The patient was sent back into the magnet for recovery cine and resting perfusion followed by delayed post-gadolinium imaging. Post-CMR, patients went to the adjacent SPECT lab to complete stress nuclear imaging. Each modality's images were reviewed blinded to the other's results. Results Patients completed on average 9.3 ± 2.4 min of the Bruce protocol. Stress cine CMR was completed in 68 ± 14 sec following termination of exercise, and stress perfusion CMR was completed in 88 ± 8 sec. Agreement between SPECT and CMR was moderate (κ = 0.58). Accuracy in eight patients who underwent coronary angiography was 7/8 for CMR and 5/8 for SPECT (p = 0.625). Follow-up at 6 months indicated freedom from cardiovascular events in 29/29 CMR-negative and 33/34 SPECT-negative patients. Conclusions Exercise stress CMR including wall motion and perfusion is feasible in patients with suspected ischemic heart disease. Larger clinical trials are warranted based on the promising results of this pilot study to allow comparative effectiveness studies of this stress imaging system vs. other stress imaging modalities. PMID:20624294

  14. Adenosine kinase inhibitors attenuate opiate withdrawal via adenosine receptor activation.

    PubMed

    Kaplan, G B; Coyle, T S

    1998-11-27

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. This study examines the effects of indirect activation of adenosine receptors, via treatment with adenosine kinase inhibitors, on the expression of opiate withdrawal in mice. Mice receive chronic morphine treatment via implantation of subcutaneous morphine pellets (75 mg) for 72 h. Mice then receive parenteral treatment with adenosine kinase inhibitors, either 5'-amino-5'-deoxyadenosine (2, 5, 20, 40 mg/kg, intraperitoneal or i.p.) or iodotubericidin (1, 2, 5 mg/kg, i.p.), followed by naloxone injection and opiate withdrawal signs are measured over 20 min. Both adenosine kinase inhibitors significantly reduce the following opiate withdrawal signs in a dose-dependent manner compared to vehicle: withdrawal jumps, teeth chattering, forepaw tremors, and forepaw treads. Additionally, 5'-amino-5'-deoxyadenosine significantly reduces withdrawal-induced diarrhea and weight loss. Effects of 5'-amino-5'-deoxyadenosine (40 mg/kg) on opiate withdrawal signs appear to be mediated via adenosine receptor activation as they are reversed by pretreatment by adenosine receptor antagonist caffeine (20 mg, i.p.) but not by selective phosphodiesterase inhibitor Ro 20-1724 (10 mg/kg, i.p.). Adenosine receptor activation via adenosine kinase inhibitor treatment attenuates opiate withdrawal and these agents may be generally useful in the treatment of drug withdrawal syndromes. PMID:9865523

  15. Rabbit chronic ileitis leads to up-regulation of adenosine A1/A3 gene products, oxidative stress, and immune modulation.

    PubMed

    Sundaram, Uma; Hassanain, Hamdy; Suntres, Zacharias; Yu, Jun Ge; Cooke, Helen J; Guzman, Jorge; Christofi, Fievos L

    2003-05-01

    A rabbit model of chronic ileitis has helped decipher the mechanism of alteration of multiple electrolyte and nutrient malabsorptions in inflammatory bowel disease (IBD). This study examined alterations in the adenosine A1/A3 receptor, oxidant, antioxidant, and immune-inflammatory pathways in chronic ileitis. Chronic ileal inflammation was induced 13-15 days after infection with 10,000 Eimeria magna oocytes. Quantitative analysis in 16 rabbits was done for oxidants, antioxidants, A1 and A3 transcripts, transport, injury, and inflammatory mediators. Inflamed gut had villus blunting, crypt hyperplasia and fusion, and immune cell infiltration. Alkaline phosphatase and Na-glucose co-transport were reduced by 78% (P=0.001) and 89% (P=0.001), respectively. Real-time fluorescence monitoring (TaqMan)-polymerase chain reaction revealed a transcriptional up-regulation of 1.34-fold for A1 and 5.40-fold for A3 receptors in inflamed gut. Lipid peroxidation increased in the mucosa (78%, P=0.012), longitudinal muscle-myenteric plexus (118%, P=0.042), and plasma (104%, P=0.001). Mucosal antioxidants were altered by inflammation: reductions occurred in superoxide dismutase (32%, P=0.001) and catalase (43%, P=0.001), whereas increases occurred in glutathione (75%, P=0.0271) and glutathione reductase (86%, P=0.0007). Oxidant enzyme activities were elevated by 21% for xanthine oxidase (P=0.004), 172% for chloramine (P=0.022), 47% for gelatinase (P=0.041), and 190% for myeloperoxidase (P=0.002). Mast cell tryptase increased by 79% (P=0.006). Increases occurred in the plasma concentration of leukotriene B(4) (13-fold, P=0.003), thromboxane B(2) (61-fold, P=0.018), and tumor necrosis factor-alpha (9-fold, P=0.002). In conclusion, chronic ileitis and tissue injury are associated with discrete alterations in complex multi-level oxidant, antioxidant, and immune inflammatory components. The rabbit ileitis model is a suitable model to gain further insight into chronic inflammation and IBD. We

  16. Myocardial perfusion scintigraphy during maximal coronary artery vasodilation with adenosine

    SciTech Connect

    Verani, M.S.; Mahmarian, J.J. )

    1991-05-21

    Pharmacologic coronary vasodilation as an adjunct to thallium-201 myocardial perfusion scintigraphy provides an important alternative form of stress that has been increasingly used in patients unable to perform an exercise stress test. Although dipyridamole has traditionally been used for this purpose, there are several compelling reasons why adenosine may be a preferable agent. First, dipyridamole acts by blocking the reuptake and transport of adenosine, which is the effective substance responsible for coronary vasodilation. Second, exogenous adenosine has a very short half-life (less than 2 seconds), which explains its very short duration of action as well as the brief, self-limiting duration of its side effects. Third, the adenosine infusion is controllable and may be increased or decreased as desired. Fourth, the coronary vasodilation induced by the doses of adenosine we recommend (140 micrograms/kg/min) may be more profound than that induced by the standard dipyridamole dose. Our experience to date, with nearly 1,000 patients studied, shows the adenosine thallium-201 test to be practical and well tolerated, with high sensitivity (87%) and specificity (94%) for detecting coronary artery disease.

  17. Adenosine receptor desensitization and trafficking.

    PubMed

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. PMID:20550943

  18. Structure of the Cmr2 Subunit of the CRISPR-Cas RNA Silencing Complex

    SciTech Connect

    Cocozaki, Alexis I.; Ramia, Nancy F.; Shao, Yaming; Hale, Caryn R.; Terns, Rebecca M.; Terns, Michael P.; Li, Hong

    2012-08-10

    Cmr2 is the largest and an essential subunit of a CRISPR RNA-Cas protein complex (the Cmr complex) that cleaves foreign RNA to protect prokaryotes from invading genetic elements. Cmr2 is thought to be the catalytic subunit of the effector complex because of its N-terminal HD nuclease domain. Here, however, we report that the HD domain of Cmr2 is not required for cleavage by the complex in vitro. The 2.3 {angstrom} crystal structure of Pyrococcus furiosus Cmr2 (lacking the HD domain) reveals two adenylyl cyclase-like and two {alpha}-helical domains. The adenylyl cyclase-like domains are arranged as in homodimeric adenylyl cyclases and bind ADP and divalent metals. However, mutagenesis studies show that the metal- and ADP-coordinating residues of Cmr2 are also not critical for cleavage by the complex. Our findings suggest that another component provides the catalytic function and that the essential role by Cmr2 does not require the identified ADP- or metal-binding or HD domains in vitro.

  19. Genetics Home Reference: adenosine deaminase 2 deficiency

    MedlinePlus

    ... Health Conditions adenosine deaminase 2 deficiency adenosine deaminase 2 deficiency Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Adenosine deaminase 2 (ADA2) deficiency is a disorder characterized by abnormal ...

  20. [Adenosine and its role in physiology].

    PubMed

    Novotný, J

    2015-01-01

    Adenosine is not just a major component of adenine nucleotides and ribonucleic acids, but also has its own signaling functions. ExtraceIlular level of adenosine in an organism is strictly maintained through the balance between its formation, degradation and transport. Adenosine is formed by enzymatic degradation of adenosine triphosphate and eliminated by phosphorylation to adenosine monophosphate or by deamination to inosine. Transport of adenosine across the cell membrane is ensured by equilibrative and concentrative nucleoside transporters. All these processes participate in maintenance of adenosine level under normal conditions, but a balanced equilibrium can be disrupted in some pathophysiological situations. Extracellular adenosine as a signaling molecule binds to adenosine receptors, which may trigger via their cognate trimeric G proteins different signaling pathways. In this way, adenosine regulates energy homeostasis and affects the function of various organs. Targeted pharmacological manipulations of specific adenosine receptor subtypes or enzymes involved in its metabolism can potentially be used for therapeutic purposes. PMID:26738245

  1. Real-Time Color-Flow CMR in Adults with Congenital Heart Disease

    PubMed Central

    de la Pena, Erasmo; Nguyen, Patricia K.; Nayak, Krishna S.; Yang, Phillip C.; Rosenthal, David N.; Hu, Bob S.; Pauly, John M.; McConnell, Michael V.

    2015-01-01

    CMR is valuable in the evaluation of congenital heart disease (CHD). Traditional flow imaging sequences involve cardiac and respiratory gating, increasing scan time and susceptibility to arrhythmias. We studied a real-time color-flow CMR system for the detection of flow abnormalities in 13 adults with CHD. All 16 congenital flow abnormalities previously detected by echocardiography were visualized using color-flow CMR, including atrial septal defects (n = 4), ventricular septal defects (n = 9), aortic coarctation (n = 1), Blalock-Taussig shunt (n = 1) and Fontan shunt (n = 1). Real-time color-flow CMR can identify intra- and extra-cardiac flow abnormalities in adults with congenital heart disease. PMID:17060103

  2. Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE

    NASA Astrophysics Data System (ADS)

    Gao, Hao; Allan, Andrew; McComb, Christie; Luo, Xiaoyu; Berry, Colin

    2014-07-01

    Measurement of local strain provides insight into the biomechanical significance of viable myocardium. We attempted to estimate myocardial strain from cine cardiovascular magnetic resonance (CMR) images by using a b-spline deformable image registration method. Three healthy volunteers and 41 patients with either recent or chronic myocardial infarction (MI) were studied at 1.5 Tesla with both cine and DENSE CMR. Regional circumferential and radial left ventricular strains were estimated from cine and DENSE acquisitions. In all healthy volunteers, there was no difference for peak circumferential strain (- 0.18 ± 0.04 versus - 0.18 ± 0.03, p = 0.76) between cine and DENSE CMR, however peak radial strain was overestimated from cine (0.84 ± 0.37 versus 0.49 ± 0.2, p < 0.01). In the patient study, the peak strain patterns predicted by cine were similar to the patterns from DENSE, including the strain evolution related to recovery time and strain patterns related to MI scar extent. Furthermore, cine-derived strain disclosed different strain patterns in MI and non-MI regions, and regions with transmural and non-transmural MI as DENSE. Although there were large variations with radial strain measurements from cine CMR images, useful circumferential strain information can be obtained from routine clinical CMR imaging. Cine strain analysis has potential to improve the diagnostic yield from routine CMR imaging in clinical practice.

  3. Purine metabolism in adenosine deaminase deficiency.

    PubMed Central

    Mills, G C; Schmalstieg, F C; Trimmer, K B; Goldman, A S; Goldblum, R M

    1976-01-01

    Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides. PMID:1066699

  4. Adenosine-Associated Delivery Systems

    PubMed Central

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  5. Current status of A1 adenosine receptor allosteric enhancers.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Moorman, Allan R; Borea, Pier Andrea; Varani, Katia

    2015-01-01

    Adenosine is an ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1, A2A, A2B and A3 adenosine receptors (ARs). Allosteric enhancers to A1ARs may represent novel therapeutic agents because they increase the activity of these receptors by mediating a shift to their active form in the A1AR-G protein ternary complex. In this manner, they are able to amplify the action of endogenous adenosine, which is produced in high concentrations under conditions of metabolic stress. A1AR allosteric enhancers could be used as a justifiable alternative to the exogenous agonists that are characterized by receptor desensitization and downregulation. In this review, an analysis of some of the most interesting allosteric modulators of A1ARs has been reported. PMID:26144263

  6. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5′-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing γ-ECS, SO, or APR

    PubMed Central

    Scheerer, Ursula; Haensch, Robert; Mendel, Ralf R.; Kopriva, Stanislav; Rennenberg, Heinz; Herschbach, Cornelia

    2010-01-01

    Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5′-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [35S]sulphur flux from external sulphate into glutathione (GSH) and proteins was analysed to check whether APR controls the flux through the sulphate assimilation pathway in poplar roots under some stress conditions and in transgenic poplars. (i) O-Acetylserine (OAS) induced APR activity and the sulphur flux into GSH. (ii) The herbicide Acetochlor induced APR activity and results in a decline of GSH. Thereby the sulphur flux into GSH or protein remained unaffected. (iii) Cd treatment increased APR activity without any changes in sulphur flux but lowered sulphate uptake. Several transgenic poplar plants that were manipulated in sulphur metabolism were also analysed. (i) Transgenic poplar plants that overexpressed the γ-glutamylcysteine synthetase (γ-ECS) gene, the enzyme catalysing the key step in GSH formation, showed an increase in sulphur flux into GSH and sulphate uptake when γ-ECS was targeted to the cytosol, while no changes in sulphur flux were observed when γ-ECS was targeted to plastids. (ii) No effect on sulphur flux was observed when the sulphite oxidase (SO) gene from Arabidopsis thaliana, which catalyses the back reaction of APR, that is the reaction from sulphite to sulphate, was overexpressed. (iii) When Lemna minor APR was overexpressed in poplar, APR activity increased as expected, but no changes in sulphur flux were observed. For all of these experiments the flux control coefficient for APR was calculated. APR as a controlling step in sulphate assimilation seems obvious under OAS treatment, in γ-ECS and SO overexpressing poplars. A possible loss of control under certain conditions, that is Cd treatment, Acetochlor

  7. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.

    PubMed

    Scheerer, Ursula; Haensch, Robert; Mendel, Ralf R; Kopriva, Stanislav; Rennenberg, Heinz; Herschbach, Cornelia

    2010-01-01

    Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5'-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [(35)S]sulphur flux from external sulphate into glutathione (GSH) and proteins was analysed to check whether APR controls the flux through the sulphate assimilation pathway in poplar roots under some stress conditions and in transgenic poplars. (i) O-Acetylserine (OAS) induced APR activity and the sulphur flux into GSH. (ii) The herbicide Acetochlor induced APR activity and results in a decline of GSH. Thereby the sulphur flux into GSH or protein remained unaffected. (iii) Cd treatment increased APR activity without any changes in sulphur flux but lowered sulphate uptake. Several transgenic poplar plants that were manipulated in sulphur metabolism were also analysed. (i) Transgenic poplar plants that overexpressed the gamma-glutamylcysteine synthetase (gamma-ECS) gene, the enzyme catalysing the key step in GSH formation, showed an increase in sulphur flux into GSH and sulphate uptake when gamma-ECS was targeted to the cytosol, while no changes in sulphur flux were observed when gamma-ECS was targeted to plastids. (ii) No effect on sulphur flux was observed when the sulphite oxidase (SO) gene from Arabidopsis thaliana, which catalyses the back reaction of APR, that is the reaction from sulphite to sulphate, was overexpressed. (iii) When Lemna minor APR was overexpressed in poplar, APR activity increased as expected, but no changes in sulphur flux were observed. For all of these experiments the flux control coefficient for APR was calculated. APR as a controlling step in sulphate assimilation seems obvious under OAS treatment, in gamma-ECS and SO overexpressing poplars. A possible loss of control under certain conditions, that is Cd treatment

  8. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  9. Extracellular guanosine regulates extracellular adenosine levels

    PubMed Central

    Cheng, Dongmei; Jackson, Travis C.; Verrier, Jonathan D.; Gillespie, Delbert G.

    2013-01-01

    The aim of this investigation was to test the hypothesis that extracellular guanosine regulates extracellular adenosine levels. Rat preglomerular vascular smooth muscle cells were incubated with adenosine, guanosine, or both. Guanosine (30 μmol/l) per se had little effect on extracellular adenosine levels. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) were 0.125 ± 0.020 μmol/l, indicating rapid disposition of extracellular adenosine. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) plus guanosine (30 μmol/l) were 1.173 ± 0.061 μmol/l, indicating slow disposition of extracellular adenosine. Cell injury increased extracellular levels of endogenous adenosine and guanosine, and the effects of cell injury on endogenous extracellular adenosine were modulated by altering the levels of endogenous extracellular guanosine with exogenous purine nucleoside phosphorylase (converts guanosine to guanine) or 8-aminoguanosine (inhibits purine nucleoside phosphorylase). Extracellular guanosine also slowed the disposition of extracellular adenosine in rat preglomerular vascular endothelial cells, mesangial cells, cardiac fibroblasts, and kidney epithelial cells and in human aortic and coronary artery vascular smooth muscle cells and coronary artery endothelial cells. The effects of guanosine on adenosine levels were not mimicked or attenuated by 5-iodotubericidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)-adenine (adenosine deaminase inhibitor), 5-aminoimidazole-4-carboxamide (guanine deaminase inhibitor), aristeromycin (S-adenosylhomocysteine hydrolase inhibitor), low sodium (inhibits concentrative nucleoside transporters), S-(4-nitrobenzyl)−6-thioinosine [inhibits equilibrative nucleoside transporter (ENT) type 1], zidovudine (inhibits ENT type 2), or acadesine (known modulator of adenosine levels). Guanosine also increases extracellular inosine, uridine, thymidine, and cytidine, yet decreases

  10. Clinical Utility and Future Applications of PET/CT and PET/CMR in Cardiology.

    PubMed

    Pan, Jonathan A; Salerno, Michael

    2016-01-01

    Over the past several years, there have been major advances in cardiovascular positron emission tomography (PET) in combination with either computed tomography (CT) or, more recently, cardiovascular magnetic resonance (CMR). These multi-modality approaches have significant potential to leverage the strengths of each modality to improve the characterization of a variety of cardiovascular diseases and to predict clinical outcomes. This review will discuss current developments and potential future uses of PET/CT and PET/CMR for cardiovascular applications, which promise to add significant incremental benefits to the data provided by each modality alone. PMID:27598207

  11. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    MedlinePlus

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions adenosine monophosphate deaminase deficiency adenosine ...

  12. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas CMR12a was previously selected as an efficient biocontrol strain producing phenazines and cyclic lipopeptides (CLPs). In this study, biocontrol capacity of Pseudomonas CMR12a against Rhizoctonia root rot of bean and the involvement of phenazines and CLPs in this ability were tested. Two ...

  13. Involvement of phenazines and biosurfactants in biocontrol of Pythium myriotylum root rot on cocoyam by Pseudomonas sp. CMR12A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas sp. CMR12a was isolated from the rhizosphere of the tropical tuber crop cocoyam and produces both phenazines and cyclic lipopeptide (CLP) biosurfactants. CMR12a was shown to be an efficient biocontrol agent of P. myriotylum on cocoyam. To assess the importance of phenazine and biosurfact...

  14. Comodulation Masking Release (CMR) in Children and the Influence of Reading Status

    ERIC Educational Resources Information Center

    Zettler, Cynthia M.; Sevcik, Rose A.; Morris, Robin D.; Clarkson, Marsha G.

    2008-01-01

    Purpose: Research suggests that children with reading disabilities (RD) have difficulty processing temporal and spectral components of sounds. Comodulation masking release (CMR) measures a listener's ability to use temporal and spectral information in noise to identify a signal. The purpose of this study was to determine whether children with RD…

  15. ATP-Sensitive K+ Channels Regulate the Concentrative Adenosine Transporter CNT2 following Activation by A1 Adenosine Receptors

    PubMed Central

    Duflot, Sylvie; Riera, Bárbara; Fernández-Veledo, Sonia; Casadó, Vicent; Norman, Robert I.; Casado, F. Javier; Lluís, Carme; Franco, Rafael; Pastor-Anglada, Marçal

    2004-01-01

    This study describes a novel mechanism of regulation of the high-affinity Na+-dependent adenosine transporter (CNT2) via the activation of A1 adenosine receptors (A1R). This regulation is mediated by the activation of ATP-sensitive K+ (KATP) channels. The high-affinity Na+-dependent adenosine transporter CNT2 and A1R are coexpressed in the basolateral domain of the rat hepatocyte plasma membrane and are colocalized in the rat hepatoma cell line FAO. The transient increase in CNT2-mediated transport activity triggered by (−)-N6-(2-phenylisopropyl)adenosine is fully inhibited by KATP channel blockers and mimicked by a KATP channel opener. A1R agonist activation of CNT2 occurs in both hepatocytes and FAO cells, which express Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B mRNA channel subunits. With the available antibodies against Kir6.X, SUR2A, and SUR2B, it is shown that all of these proteins colocalize with CNT2 and A1R in defined plasma membrane domains of FAO cells. The extent of the purinergic modulation of CNT2 is affected by the glucose concentration, a finding which indicates that glycemia and glucose metabolism may affect this cross-regulation among A1R, CNT2, and KATP channels. These results also suggest that the activation of KATP channels under metabolic stress can be mediated by the activation of A1R. Cell protection under these circumstances may be achieved by potentiation of the uptake of adenosine and its further metabolization to ATP. Mediation of purinergic responses and a connection between the intracellular energy status and the need for an exogenous adenosine supply are novel roles for KATP channels. PMID:15024061

  16. Adenosine Receptors and Membrane Microdomains

    PubMed Central

    Lasley, Robert D.

    2010-01-01

    Adenosine receptors are a member of the large family of seven transmembrane spanning G protein coupled receptors (GPCR). The four adenosine receptor subtypes – A1, A2a, A2b, A3 – exert their effects via the activation of one or more heterotrimeric G proteins resulting in the modulation of intracellular signaling. Numerous studies over the past decade have documented the complexity of GPCR signaling at the level of protein-protein interactions as well as through signaling crosstalk. With respect to adenosine receptors the activation of one receptor subtype can have profound direct effects in one cell type, but little or no effect in other cells. There is significant evidence that the compartmentation of subcellular signaling plays a physiological role in the fidelity of GPCR signaling. This compartmentation is evident at the level of the plasma membrane in the form of membrane microdomains such as caveolae and lipid rafts. This review will summarize and critically assess our current understanding of the role of membrane microdomains in regulating adenosine receptor signaling. PMID:20888790

  17. Xanthines as Adenosine Receptor Antagonists

    PubMed Central

    Jacobson, Kenneth A.

    2013-01-01

    The natural plant alkaloids caffeine and theophylline were the first adenosine receptor (AR) antagonists described in the literature. They exhibit micromolar affinities and are non-selective. A large number of derivatives and analogs have subsequently been synthesized and evaluated as AR antagonists. Very potent antagonists have thus been developed with selectivity for each of the four AR subtypes. PMID:20859796

  18. Why do premature newborn infants display elevated blood adenosine levels?

    PubMed

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    infants may be regarded as those in which premature exposure to ambient oxygen concentrations and oxidative stress causes a premature functioning of the extra-mitochondrial oxidative phosphorylation primarily in axons and endothelium. Adenosine may become a biomarker of prematurity risk, whose implications further studies may assess. PMID:27063086

  19. Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods

    PubMed Central

    Kozerke, Sebastian; Plein, Sven

    2008-01-01

    Accelerated imaging is highly relevant for many CMR applications as competing constraints with respect to spatiotemporal resolution and tolerable scan times are frequently posed. Three approaches, all involving data undersampling to increase scan efficiencies, are discussed in this review. Zonal imaging can be considered a niche but nevertheless has found application in coronary imaging and CMR flow measurements. Current work on parallel-transmit systems is expected to revive the interest in zonal imaging techniques. The second and main approach to speeding up CMR sequences has been parallel imaging. A wide range of CMR applications has benefited from parallel imaging with reduction factors of two to three routinely applied for functional assessment, perfusion, viability and coronary imaging. Large coil arrays, as are becoming increasingly available, are expected to support reduction factors greater than three to four in particular in combination with 3D imaging protocols. Despite these prospects, theoretical work has indicated fundamental limits of coil encoding at clinically available magnetic field strengths. In that respect, alternative approaches exploiting prior knowledge about the object being imaged as such or jointly with parallel imaging have attracted considerable attention. Five to eight-fold scan accelerations in cine and dynamic CMR applications have been reported and image quality has been found to be favorable relative to using parallel imaging alone. With all acceleration techniques, careful consideration of the limits and the trade-off between acceleration and occurrence of artifacts that may arise if these limits are breached is required. In parallel imaging the spatially varying noise has to be considered when measuring contrast- and signal-to-noise ratios. Also, temporal fidelity in images reconstructed with prior knowledge driven methods has to be studied carefully. PMID:18534005

  20. Regulation of adenosine levels during cerebral ischemia

    PubMed Central

    Chu, Stephanie; Xiong, Wei; Zhang, Dali; Soylu, Hanifi; Sun, Chao; Albensi, Benedict C; Parkinson, Fiona E

    2013-01-01

    Adenosine is a neuromodulator with its level increasing up to 100-fold during ischemic events, and attenuates the excitotoxic neuronal injury. Adenosine is produced both intracellularly and extracellularly, and nucleoside transport proteins transfer adenosine across plasma membranes. Adenosine levels and receptor-mediated effects of adenosine are regulated by intracellular ATP consumption, cellular release of ATP, metabolism of extracellular ATP (and other adenine nucleotides), adenosine influx, adenosine efflux and adenosine metabolism. Recent studies have used genetically modified mice to investigate the relative contributions of intra- and extracellular pathways for adenosine formation. The importance of cortical or hippocampal neurons as a source or a sink of adenosine under basal and hypoxic/ischemic conditions was addressed through the use of transgenic mice expressing human equilibrative nucleoside transporter 1 (hENT1) under the control of a promoter for neuron-specific enolase. From these studies, we conclude that ATP consumption within neurons is the primary source of adenosine in neuronal cultures, but not in hippocampal slices or in vivo mice exposed to ischemic conditions. PMID:23064722

  1. Provider-Directed Imaging Stress Testing Reduces Health-Care Expenditures in Lower-Risk Chest Pain Patients Presenting to the Emergency Department

    PubMed Central

    Miller, Chadwick D.; Hoekstra, James W.; Lefebvre, Cedric; Blumstein, Howard; Hamilton, Craig A.; Harper, Erin N.; Mahler, Simon; Diercks, Deborah B.; Neiberg, Rebecca; Hundley, W. Gregory

    2012-01-01

    Background Among intermediate to high-risk patients with chest pain, we have shown that a cardiac magnetic resonance (CMR) stress-test strategy implemented in an observation unit (OU) reduces 1-year healthcare costs compared to inpatient care. In this study, we compare two OU strategies to determine among lower-risk patients if a mandatory CMR stress test strategy was more effective than a physicians’ ability to select a stress test modality. Methods and Results Upon ED arrival and referral to the OU for management of low to intermediate-risk chest pain, 120 individuals were randomized to receive an a) CMR stress imaging test (n=60), or b) a provider selected stress test (n=60: stress echo [62%], CMR (32%), cardiac catheterization (3%), nuclear (2%), and coronary CT [2%]). No differences were detected in length of stay (median CMR = 24.2 hours vs 23.8 hours, p=0.75), catheterization without revascularization (CMR=0% vs 3%), appropriateness of admission decisions (CMR 87% vs 93%, p=0.36), or 30-day ACS (both 3%). Median cost was higher among those randomized to the CMR mandated group ($2005 vs $1686, p<0.001). Conclusions In patients with lower-risk chest pain receiving ED-directed OU care, the ability of a physician to select a cardiac stress imaging modality (including echocardiography, CMR, or radionuclide testing) was more cost effective than a pathway that mandates a CMR stress test. Contrary to prior observations in individuals with intermediate to high-risk chest pain, in those with lower risk chest pain, these results highlight the importance of physician-related choices during ACS diagnostic protocols. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT00869245. PMID:22128195

  2. Fluorometric Determination of Adenosine Nucleotide Derivatives as Measures of the Microfouling, Detrital, and Sedimentary Microbial Biomass and Physiological Status

    PubMed Central

    Davis, William M.; White, David C.

    1980-01-01

    Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N6-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge. PMID:16345633

  3. Fluorometric determination of adenosine nucleotide derivatives as measures of the microfouling, detrital, and sedimentary microbial biomass and physiological status.

    PubMed

    Davis, W M; White, D C

    1980-09-01

    Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge. PMID:16345633

  4. Fluorescent Ligands for Adenosine Receptors

    PubMed Central

    Kozma, Eszter; Jayasekara, P Suresh; Squarcialupi, Lucia; Paoletta, Silvia; Moro, Stefano; Federico, Stephanie; Spalluto, Giampiero; Jacobson, Kenneth A.

    2012-01-01

    Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field. PMID:23200243

  5. Adenosine-induced activation of esophageal nociceptors.

    PubMed

    Ru, F; Surdenikova, L; Brozmanova, M; Kollarik, M

    2011-03-01

    Clinical studies implicate adenosine acting on esophageal nociceptive pathways in the pathogenesis of noncardiac chest pain originating from the esophagus. However, the effect of adenosine on esophageal afferent nerve subtypes is incompletely understood. We addressed the hypothesis that adenosine selectively activates esophageal nociceptors. Whole cell perforated patch-clamp recordings and single-cell RT-PCR analysis were performed on the primary afferent neurons retrogradely labeled from the esophagus in the guinea pig. Extracellular recordings were made from the isolated innervated esophagus. In patch-clamp studies, adenosine evoked activation (inward current) in a majority of putative nociceptive (capsaicin-sensitive) vagal nodose, vagal jugular, and spinal dorsal root ganglia (DRG) neurons innervating the esophagus. Single-cell RT-PCR analysis indicated that the majority of the putative nociceptive (transient receptor potential V1-positive) neurons innervating the esophagus express the adenosine receptors. The neural crest-derived (spinal DRG and vagal jugular) esophageal nociceptors expressed predominantly the adenosine A(1) receptor while the placodes-derived vagal nodose nociceptors expressed the adenosine A(1) and/or A(2A) receptors. Consistent with the studies in the cell bodies, adenosine evoked activation (overt action potential discharge) in esophageal nociceptive nerve terminals. Furthermore, the neural crest-derived jugular nociceptors were activated by the selective A(1) receptor agonist CCPA, and the placodes-derived nodose nociceptors were activated by CCPA and/or the selective adenosine A(2A) receptor CGS-21680. In contrast to esophageal nociceptors, adenosine failed to stimulate the vagal esophageal low-threshold (tension) mechanosensors. We conclude that adenosine selectively activates esophageal nociceptors. Our data indicate that the esophageal neural crest-derived nociceptors can be activated via the adenosine A(1) receptor while the placodes

  6. Bilayer splitting and c-axis coupling in CMR bilayer manganites

    SciTech Connect

    Jozwiak, Chris; Graf, Jeff; Zhou, Shuyun; Bostwick, Aaron; Rotenberg, Eli; Zheng, Hong; Mitchell, John; Lanzara, Alessandra

    2009-09-03

    By performing angle-resolved photoemission spectroscopy of the bilayer colossal magnetoresistive (CMR) manganite, La2-2xSr1+2xMn2O7, we provide the complete mapping of the Fermi-level spectral weight topology. Clear and unambiguous bilayer splitting of the in-plane 3dx2-y2 band, mapped throughout the Brillouin zone, and the full mapping of the 3d3z2-r2 band are reported. Peculiar doping and temperature dependencies of these bands imply that as transition from the ferromagnetic metallic phase approaches, either as a function of doping or temperature, coherence along the c-axis between planes within the bilayer is lost, resulting in reduced interplane coupling. These results suggest that interplane coupling plays a large role in the CMR transition.

  7. First Order CMR Transitions in the Two-Orbital Model for Manganites

    SciTech Connect

    Sen, Cengiz; Alvarez, Gonzalo; Dagotto, Elbio R

    2010-01-01

    Large-scale Monte Carlo simulation results for the two-orbital model for manganites, including Jahn-Teller lattice distortions, are presented here. At hole density x=1/4 and in the vicinity of the region of competition between the ferromagnetic metallic and spin-charge-orbital ordered insulating phases, the colossal magnetoresistance (CMR) phenomenon is observed with a magnetoresistance ratio {approx}10,000%. Our main result is that this CMR transition is found to be of first order in some portions of the phase diagram, in agreement with early results from neutron scattering, specific heat, and magnetization, thus solving a notorious discrepancy between experiments and previous theoretical studies. The first order characteristics of the transition survive, and are actually enhanced, when weak quenched disorder is introduced.

  8. Volume-based considerations for the metal-insulator transition of CMR oxides

    SciTech Connect

    Neumeier, J.J.; Hundley, M.F.; Cornelius, A.L.; Andres, K.

    1998-03-01

    The sensitivity of {rho} [electrical resistivity] to changes in volume which occur through: (1) applied pressure, (2) variations in temperature, and (3) phase transitions, is evaluated for some selected CMR oxides. It is argued that the changes in volume associated with phase changes are large enough to produce self pressures in the range of 0.18 to 0.45 GPa. The extreme sensitivity of the electrical resistivity to pressure indicates that these self pressures are responsible for large features in the electrical resistivity and are an important component for occurrence the metallicity below {Tc}. It is suggested that this is related to a strong volume dependence of the electron phonon coupling in the CMR oxides.

  9. Fabrication of hybrid thin film structures from HTS and CMR materials

    NASA Astrophysics Data System (ADS)

    Sojková, M.; Štrbík, V.; Nurgaliev, T.; Chromik, Š.; Dobročka, E.; Španková, M.; Blagoev, B.; Gál, N.

    2016-03-01

    We present the preparation of bilayers from high-temperature superconductors (HTS) and half-metallic ferromagnetic (FM) manganite with a colossal magnetoresistance (CMR). We used YBa2Cu3O7-x (YBCO) and Tl2Ba2CaCu2O8 (TBCCO) thin films as a HTS material and La0.67Sr0.33MnO3 (LSMO) film as a CMR material. In the case of YBCO/LSMO, we prepared FM/HTS heterostructure for studying the spin-polarized current injection effect on the electrical properties of the YBCO strip in dc or low-frequency regimes and on the microwave characteristics of the strip. For the first time, we report the preparation of a TBCCO/LSMO bilayer. In some applications, the TBCCO offers better parameters (higher working temperature, lower surface resistance, lower 1/f noise) than YBCO.

  10. Assessment of canine BEST1 variations identifies new mutations and establishes an independent bestrophinopathy model (cmr3)

    PubMed Central

    Wickström, Kaisa; Slavik, Julianna; Lindauer, Sarah J.; Ahonen, Saija; Schelling, Claude; Lohi, Hannes; Guziewicz, Karina E.; Aguirre, Gustavo D.

    2010-01-01

    Purpose Mutations in bestrophin 1 (BEST1) are associated with a group of retinal disorders known as bestrophinopathies in man and canine multifocal retinopathies (cmr) in the dog. To date, the dog is the only large animal model suitable for the complex characterization and in-depth studies of Best-related disorders. In the first report of cmr, the disease was described in a group of mastiff-related breeds (cmr1) and the Coton de Tulear (cmr2). Additional breeds, e.g., the Lapponian herder (LH) and others, subsequently were recognized with similar phenotypes, but linked loci are unknown. Analysis of the BEST1 gene aimed to identify mutations in these additional populations and extend our understanding of genotype–phenotype associations. Methods Animals were subjected to routine eye exams, phenotypically characterized, and samples were collected for molecular studies. Known BEST1 mutations were assessed, and the canine BEST1 coding exons were amplified and sequenced in selected individuals that exhibited a cmr compatible phenotype but that did not carry known mutations. Resulting sequence changes were genotyped in several different breeds and evaluated in the context of the phenotype. Results Seven novel coding variants were identified in exon 10 of cBEST1. Two linked mutations were associated with cmr exclusive to the LH breed (cmr3). Two individuals of Jämthund and Norfolk terrier breeds were heterozygous for two conservative changes, but these were unlikely to have disease-causing potential. Another three substitutions were found in the Bernese mountain dog that were predicted to have a deleterious effect on protein function. Previously reported mutations were excluded from segregation in these populations, but cmr1 was confirmed in another mastiff-related breed, the Italian cane corso. Conclusions A third independent canine model for human bestrophinopathies has been established in the LH breed. While exhibiting a phenotype comparable to cmr1 and cmr2, the

  11. Oral sucrose for heel lance enhances adenosine triphosphate use in preterm neonates with respiratory distress

    PubMed Central

    Angeles, Danilyn M; Asmerom, Yayesh; Boskovic, Danilo S; Slater, Laurel; Bacot-Carter, Sharon; Bahjri, Khaled; Mukasa, Joseph; Holden, Megan; Fayard, Elba

    2015-01-01

    Objective: To examine the effects of oral sucrose on procedural pain, and on biochemical markers of adenosine triphosphate utilization and oxidative stress in preterm neonates with mild to moderate respiratory distress. Study design: Preterm neonates with a clinically required heel lance that met study criteria (n = 49) were randomized into three groups: (1) control (n = 24), (2) heel lance treated with placebo and non-nutritive sucking (n = 15) and (3) heel lance treated with sucrose and non-nutritive sucking (n = 10). Plasma markers of adenosine triphosphate degradation (hypoxanthine, xanthine and uric acid) and oxidative stress (allantoin) were measured before and after the heel lance. Pain was measured using the Premature Infant Pain Profile. Data were analyzed using repeated measures analysis of variance, chi-square and one-way analysis of variance. Results: We found that in preterm neonates who were intubated and/or were receiving ⩾30% FiO2, a single dose of oral sucrose given before a heel lance significantly increased markers of adenosine triphosphate use. Conclusion: We found that oral sucrose enhanced adenosine triphosphate use in neonates who were intubated and/or were receiving ⩾30% FiO2. Although oral sucrose decreased pain scores, our data suggest that it also increased energy use as evidenced by increased plasma markers of adenosine triphosphate utilization. These effects of sucrose, specifically the fructose component, on adenosine triphosphate metabolism warrant further investigation. PMID:26770807

  12. Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats.

    PubMed

    Nakazawa, Taisuke; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-02-01

    Adenosine is a potent vasodilator of retinal blood vessels and is implicated to be a major regulator of retinal blood flow during metabolic stress, but little is known about the impact of diabetes on the role of adenosine in regulation of retinal hemodynamics. Therefore, we examined how diabetes affects adenosine-induced vasodilation of retinal arterioles. Male Wistar rats were treated with streptozotocin (80 mg/kg, intraperitoneally), and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 microg/kg, intravenously [i.v.]) to eliminate any nerve activity and prevent movement of the eye and infused with methoxamine continuously to maintain adequate systemic circulation. Fundus images were captured with a digital camera that was equipped with a special objective lens, and diameters of retinal arterioles were measured. Adenosine increased diameters of retinal arterioles and decreased systemic blood pressure. These responses were significantly attenuated by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) and the adenosine triphosphate-dependent K+ (K(ATP)) channel blocker glibenclamide (20 mg/kg, i.v.). The depressor responses to adenosine were reduced in diabetic rats, whereas diabetes did not alter vasodilation of retinal arterioles to adenosine. In contrast, both depressor response and vasodilation of retinal arteriole to acetylcholine were reduced in diabetic rats. The retinal vasodilator responses to adenosine and acetylcholine observed in diabetic rats were diminished by N(G)-nitro-L-arginine methyl ester. There were no differences in the responses to pinacidil, a K(ATP) channel opener, between the diabetic and nondiabetic rats. These results suggest that both the activation of nitric oxide synthase and opening of K(ATP) channels contribute to the vasodilator effects of adenosine in rats in vivo. However, diabetes has no significant impact on the vasodilation mediated by these mechanisms in

  13. Comparative study of CMR characteristics between arrhythmogenic right ventricular cardiomyopathy patients with/without syncope.

    PubMed

    Cheng, Huaibing; Lu, Minjie; Hou, Cuihong; Chen, Xuhua; Wang, Jing; Li, Li; Wan, Junyi; Yin, Gang; Chu, Jianmin; Prasad, Sanjay K; Zhang, Shu; Pu, Jielin; Zhao, Shihua

    2014-10-01

    To compare cardiovascular magnetic resonance (CMR) characteristics between arrhythmogenic right ventricular cardiomyopathy (ARVC) patients with syncope and without syncope and explore CMR parameters related with syncope. A consecutive series of 80 patients with ARVC were divided in two groups according to history of syncope prior to CMR examinations. The biventricular function and volumes were calculated and indexed by body surface area. Fatty infiltration and late-gadolinium enhancement (LGE) were self-quantitatively analyzed according to segmental model. Patients with syncope had statistically significant greater left ventricular end-diastolic volume index (LVEDVI) (79.6 ± 23.0 vs. 69.0 ± 17.9 mL/m(2), P = 0.030), right ventricular end-diastolic volume index (RVEDVI) (122.0 ± 30.0 vs. 107.4 ± 21.8 mL/m(2), P = 0.017), and LGE incidence (52.2 vs. 21.1 %, P = 0.006) than that of patients without syncope. Patients with syncope had a trend towards greater number of segments with LGE (8.6 ± 4.2 vs. 6.6 ± 3.1, P = 0.199) than that of patients without syncope in subgroup analyses of patients with LGE, but no statistical significance was reached. Multivariate regression analysis showed the presence of LGE was independently associated with syncope in patients with ARVC (odds ratios 8.827, 95 % confidence interval 1.945-40.068, P = 0.005). CMR is helpful in detection and management of the patients with ARVC. Patients with syncope had significantly higher LVEDVI, RVEDVI and LGE incidence, and larger studies with follow-up data are needed to elucidate the relationship between LGE and syncope in patients with ARVC. PMID:25026910

  14. Reduction of QTD - A Novel Marker of Successful Reperfusion in NSTEMI. Pathophysiologic Insights by CMR

    PubMed Central

    Jensen, Christoph J.; Lusebrink, Sarah; Wolf, Alexander; Schlosser, Thomas; Nassenstein, Kai; Naber, Christoph K.; Sabin, Georg V.; Bruder, Oliver

    2015-01-01

    Background/Objectives: Non-ST segment elevation myocardial infarction (MI) poses similar detrimental long-term prognosis as ST-segment elevation MI. No marker on ECG is established to predict successful reperfusion in NSTEMI. QT dispersion is increased by myocardial ischemia and reduced by successful restoration of epicardial blood flow by PCI. Whether QT dispersion reduction translates to smaller infarcts and thus indicates successful reperfusion is unknown. We hypothesized that the relative reduction of QT dispersion (QTD-Rrel ) on a standard ECG in acutely reperfused NSTEMI is related to infarct size and infarct transmurality as assessed by delayed enhancement CMR (DE-CMR). Methods and Results: 69 patients with a first acute NSTEMI were included. QTD-Rrel was stratified according to LV function and volumes, infarct transmurality and size as assessed by DE-CMR. Extensive myocardial infarction was defined as above median infarct size. LV function and end-systolic volume were only mildly related to QTD-Rrel . QTD-Rrel was inversely related to infarct size (r=-0.506,p=0.001) and infarct transmurality (r=-0.415, p=0.001). QTD-Rrel was associated with extensive myocardial infarction in univariate analysis (odds ratio (OR) 0.958, CI 0.935-0.982; p=0.001). Compared to clinical and angiographic data QTD-Rrel remained the only independent predictor of non-transmural infarcts (OR 1.110, CI 1.055-1.167; p=0.049). Conclusion: In patients with acute Non-ST-Segment Myocardial infarction QTd-Rrel calculated on a surface ECG prior and post PCI for restoration of epicardial blood flow detects small, non-transmural infarcts as assessed by delayed enhancement CMR. Thus, QTd-Rrel can indicate successful reperfusion therapy. PMID:26005372

  15. Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase.

    PubMed

    Green, H; Chan, T

    1973-11-23

    In the presence of 10(-4) to 10(-5) molar adenosine, established cell lines of fibroblastic or lymphoid origin die of pyrimidine starvation. Less than lethal concentrations inhibit cell growth. Over a broad concentration range, the effects of adenosine are prevented by providing a suitable pyrimidine source. We suggest that the recently described immune deficiency disease associated with absence of adenosine deaminase may be the result of pyrimidine starvation induced by adenosine nucleotides in cells of the lymphoid system. PMID:4795749

  16. The Role of CMR and Others in Project Implementation using the CM Method to Support the Government

    NASA Astrophysics Data System (ADS)

    Tada, Hiroshi; Miyatake, Ichiro; Mouri, Junji; Endo, Kenji; Fueta, Toshiharu

    In Japan, the construction management (CM) method has been introduced as a measure to support the governmental agencies, in developing and maintaining local infrastructures, or in executing public works projects in an appropriate manner, etc. The scope of work of the Construction Manager (CMR) of the CM method is specified as work items, in the special specification document for CM services contained in the contract documents, as a reflection of the client's expectations towards the performance of CMR. However, the CM services has been conducted as required on a case-by-case basis, because it is not possible to anticipate the actual construction status in advance, and thus the special specification document does not provide full detail of the scope of work of CMR. In such case, there may be a difference in the way the scope of work in the special specification document is recognized between the client and the CMR, which could make the CM method less effective. Moreover, there is a case in which the role sharing between the client and the CMR is not clearly defined, and both parties may engage in the same task in such case, causing an obstacle for smooth project implementation. For this reason, it is required to prepare the special specification document which clearly defines the scope of work of CMR, by examining the status of application of the CM method in actual project cases, and to improve the practices of the CM method as necessary. In view of this background, this study looks in to the actual project cases using the CM method, for the purpose of clarifying the actual scope of work of CMR for each task item defined in the special specification document, and the role sharing between the client and CMR, in the aim of contributing the promotion of the use and the effective application of the CM method.

  17. Probability mapping of scarred myocardium using texture and intensity features in CMR images

    PubMed Central

    2013-01-01

    Background The myocardium exhibits heterogeneous nature due to scarring after Myocardial Infarction (MI). In Cardiac Magnetic Resonance (CMR) imaging, Late Gadolinium (LG) contrast agent enhances the intensity of scarred area in the myocardium. Methods In this paper, we propose a probability mapping technique using Texture and Intensity features to describe heterogeneous nature of the scarred myocardium in Cardiac Magnetic Resonance (CMR) images after Myocardial Infarction (MI). Scarred tissue and non-scarred tissue are represented with high and low probabilities, respectively. Intermediate values possibly indicate areas where the scarred and healthy tissues are interwoven. The probability map of scarred myocardium is calculated by using a probability function based on Bayes rule. Any set of features can be used in the probability function. Results In the present study, we demonstrate the use of two different types of features. One is based on the mean intensity of pixel and the other on underlying texture information of the scarred and non-scarred myocardium. Examples of probability maps computed using the mean intensity of pixel and the underlying texture information are presented. We hypothesize that the probability mapping of myocardium offers alternate visualization, possibly showing the details with physiological significance difficult to detect visually in the original CMR image. Conclusion The probability mapping obtained from the two features provides a way to define different cardiac segments which offer a way to identify areas in the myocardium of diagnostic importance (like core and border areas in scarred myocardium). PMID:24053280

  18. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  19. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts

    PubMed Central

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-01-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats. PMID:25388908

  20. Towards the discovery of novel genetic component involved in stress resistance in Arabidopsis thaliana.

    PubMed

    Juraniec, Michal; Lequeux, Hélène; Hermans, Christian; Willems, Glenda; Nordborg, Magnus; Schneeberger, Korbinian; Salis, Pietrino; Vromant, Maud; Lutts, Stanley; Verbruggen, Nathalie

    2014-02-01

    The exposure of plants to high concentrations of trace metallic elements such as copper involves a remodeling of the root system, characterized by a primary root growth inhibition and an increase in the lateral root density. These characteristics constitute easy and suitable markers for screening mutants altered in their response to copper excess. A forward genetic approach was undertaken in order to discover novel genetic factors involved in the response to copper excess. A Cu(2+) -sensitive mutant named copper modified resistance1 (cmr1) was isolated and a causative mutation in the CMR1 gene was identified by using positional cloning and next-generation sequencing. CMR1 encodes a plant-specific protein of unknown function. The analysis of the cmr1 mutant indicates that the CMR1 protein is required for optimal growth under normal conditions and has an essential role in the stress response. Impairment of the CMR1 activity alters root growth through aberrant activity of the root meristem, and modifies potassium concentration and hormonal balance (ethylene production and auxin accumulation). Our data support a putative role for CMR1 in cell division regulation and meristem maintenance. Research on the role of CMR1 will contribute to the understanding of the plasticity of plants in response to changing environments. PMID:24134393

  1. Effects of adenosine on intrarenal oxygenation.

    PubMed

    Dinour, D; Brezis, M

    1991-11-01

    Although generally a vasodilator, adenosine vasoconstricts cortical vessels in the kidney, reduces glomerular filtration rate (GFR), and increases medullary blood flow, effects likely to improve the medullary O2 deficiency characteristic of mammalian kidneys. To evaluate a possible role of adenosine in medullary O2 balance, we investigated the effect of adenosine upon cortical and medullary tissue PO2. Adenosine was infused into renal interstitium through chronically implanted capsules. Cortical and medullary PO2 were measured using sensitive Clark-type O2 microelectrodes inserted into kidneys of anesthetized rats at the respective depths of 1.8 and 3.7 mm. Infusion of adenosine (0.1-0.5 mumol/min) increased medullary PO2 from 17 +/- 3 (SE) to 40 +/- 5 mmHG (P less than 0.001) and decreased cortical PO2 from 64 +/- 4 to 47 +/- 3 mmHg (P less than 0.001). After the infusion was stopped, PO2 returned to baseline at both sites. Coadministration of adenosine receptor antagonist 8-phenyltheophylline (0.01 mumol/min) prevented both cortical and medullary effects of adenosine. We concluded that adenosine could play an important protective and regulatory role in renal medullary O2 balance. PMID:1951710

  2. Adenosine Neuromodulation and Traumatic Brain Injury

    PubMed Central

    Lusardi, T.A

    2009-01-01

    Adenosine is a ubiquitous signaling molecule, with widespread activity across all organ systems. There is evidence that adenosine regulation is a significant factor in traumatic brain injury (TBI) onset, recovery, and outcome, and a growing body of experimental work examining the therapeutic potential of adenosine neuromodulation in the treatment of TBI. In the central nervous system (CNS), adenosine (dys)regulation has been demonstrated following TBI, and correlated to several TBI pathologies, including impaired cerebral hemodynamics, anaerobic metabolism, and inflammation. In addition to acute pathologies, adenosine function has been implicated in TBI comorbidities, such as cognitive deficits, psychiatric function, and post-traumatic epilepsy. This review presents studies in TBI as well as adenosine-related mechanisms in co-morbidities of and unfavorable outcomes resulting from TBI. While the exact role of the adenosine system following TBI remains unclear, there is increasing evidence that a thorough understanding of adenosine signaling will be critical to the development of diagnostic and therapeutic tools for the treatment of TBI. PMID:20190964

  3. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  4. Stratigraphy and Geologic Structure at the Chemical and Metallurgy (CMR) Building, Technical Area 3, Los Alamos National Laboratory

    SciTech Connect

    Alexis Lavine; Donathan Krier; Florie Caporuscio; Jamie Gardner

    1998-10-01

    Nine shallow (c70 ft), closely spaced core holes were continuously cored in the upper units of the 1.22 Ma Tshirege Member of the Bandelier Tuff at Technical Area (TA)-3 of the Los Alamos National Laboratory. The goal of the investigation was to identify faults that may have potential for earthquake-induced surface rupture at the site of the Chemistry and Metallurgy Research (CMR) building, a sensitive Laboratory facility that houses nuclear materials research functions. The holes were located from 25 ft to 115 ft from the building perimeter. Careful mapping of Lithologic sequences in cores, supplemented with focused sampling for geochemical analyses, yielded high confidence in the accuracy of delineating buried contacts within the Tshirege Member. Geologic analysis and investigation of the trends of surfaces interpolated from contacts in the core holes using commercially available software helped infer minor faulting in the strata beneath the building. Results show that gently north-northeast-dipping beds underlie the CMR building. The tilted beds are faulted by two small, closely spaced, parallel reverse faults with a combined vertical separation of approximately 8 ft. The faults are inferred from lithologically and geochemically repeated sections of core at about 55-ft depth in hole SHB-CMR-6. The data from nearby core holes SHB-CMR-2 and SHB-CMR-3 permit the extension of the faults, albeit with decreasing separation, toward the southwest beneath the CMR building. The fault trend is consistent with mapped lineaments from aerial photography and with nearby mapped structure, but direct evidence of the faults' orientations is lacking. No other faults were detected beneath the CMR building by this drilling and analysis method, which can detect faults with greater than about 2 ft separation.

  5. Intravenous adenosine (adenoscan) versus exercise in the noninvasive assessment of coronary artery disease by SPECT

    SciTech Connect

    LaManna, M.M.; Mohama, R.; Slavich, I.L. 3d.; Lumia, F.J.; Cha, S.D.; Rambaran, N.; Maranhao, V. )

    1990-11-01

    Fifteen patients at a mean age of 58 underwent adenosine and maximal exercise thallium SPECT imaging. All scans were performed 1 week apart and within 4 weeks of cardiac catheterization. SPECT imaging was performed after the infusion of 140 micrograms/kg/min of adenosine for 6 minutes. Mean heart rate increment during adenosine administration was 67 +/- 3.7 to 77 +/- 4.1. Mean blood pressure was 136 +/- 7.2 to 135 +/- 6.2 systolic and 78 +/- 1.8 to 68 +/- 2.6 diastolic. No adverse hemodynamic effects were observed. There were no changes in PR or QRS in intervals. Five stress ECGs were ischemic. No ST changes were observed with adenosine. Although 68% of the patients had symptoms of flushing, light-headedness, and dizziness during adenosine infusion, symptoms resolved within 1 minute of dosage adjustment or termination of the infusion in all but one patient, who required theophylline. Sensitivity for coronary artery detection was 77% and specificity 100%. Concordance between adenoscans and exercise thallium scintigraphy was high (13/15 = 87%). In two patients, there were minor scintigraphic differences. The authors conclude that adenosine is a sensitive, specific, and safe alternative to exercise testing in patients referred for thallium imaging and may be preferable to dipyridamole.

  6. Halobacterial adenosine triphosphatases and the adenosine triphosphatase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, Hordur; Sadler, Martha H.; Hochstein, Lawrence I.

    1986-01-01

    Membranes prepared from various members of the genus Halobacterium contained a Triton X-l00 activated adenosine triphosphatase. The enzyme from Halobacterium saccharovorum was unstable in solutions of low ionic strength and maximally active in the presence of 3.5 M NaCl. A variety of nucleotide triphosphates was hydrolyzed. MgADP, the product of ATP hydrolysis, was not hydrolyzed and was a competitive inhibitor with respect to MgATP. The enzyme from H. saccharovorum was composed of at least 2 and possibly 4 subunits. The 83-kDa and 60-kDa subunits represented about 90 percent of total protein. The 60-kDa subunit reacted with dicyclohexyl-carbodiimide when inhibition was carried out in an acidic medium. The enzyme from H. saccharovorum, possesses properties of an F(1)F(0) as well as an E(1)E(2) ATPase.

  7. Improved CMR properties of RE-doped (La,Sr)MnO3 single crystals

    NASA Astrophysics Data System (ADS)

    Shimoyama, Jun-Ichi; Ogata, Tetsuro; Yokota, Yuui; Ogino, Hiraku; Horii, Shigeru; Kishio, Kohji

    2008-03-01

    The relationships among crystal structure, TC and CMR effect have been eagerly studied for (La,Sr)MnO3 system mainly as a functions of the Sr composition, x thus far. In the present study, we have attempted to improve the CMR properties near room temperature of the present system by optimizations of TC and phase transition temperature between orthorhombic and rhombohedral through RE mixing and elimination of excess oxygen, i.e. cation vacancies, for (La1-xSrx)MnO3 single crystals with x = 0.2 and 0.25, which have higher TC than room temperature and essentially high electronic conductivity. Crystal boules with nominal compositions of La0.8-zREzSr0.2MnOy and La0.75-zREzSr0.25MnOy (RE = Pr, Nd, Sm : z = 0 ˜ 0.3) were grown by the floating zone method. Crystal structure of La0.75-zPrzSr0.25MnO3 at ˜300 K changed from rhombohedral (z = 0, 0.15, 0.25) to orthorhombic (z = 0.3) due to a decrease in mean ionic radius of A site. In addition, Pr-doping systematically decreased TC. Similar tendencies were confirmed for Nd- or Sm-doped samples. The RE-doped samples exhibited large CMR ratio at ˜300 K comparable to that of La0.825Sr0.175MnO3 and much higher conductivity reflecting high Sr concentration when phase transition temperature and TC were optimized.

  8. Fast left ventricle tracking in CMR images using localized anatomical affine optical flow

    NASA Astrophysics Data System (ADS)

    Queirós, Sandro; Vilaça, João. L.; Morais, Pedro; Fonseca, Jaime C.; D'hooge, Jan; Barbosa, Daniel

    2015-03-01

    In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 +/- 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction

  9. Optical Aptasensors for Adenosine Triphosphate

    PubMed Central

    Ng, Stella; Lim, Hui Si; Ma, Qian; Gao, Zhiqiang

    2016-01-01

    Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives. PMID:27446501

  10. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  11. Gas-phase protonation thermochemistry of adenosine.

    PubMed

    Touboul, David; Bouchoux, Guy; Zenobi, Renato

    2008-09-18

    The goal of this work was to obtain a detailed insight on the gas-phase protonation energetic of adenosine using both mass spectrometric experiments and quantum chemical calculations. The experimental approach used the extended kinetic method with nanoelectrospray ionization and collision-induced dissociation tandem mass spectrometry. This method provides experimental values for proton affinity, PA(adenosine) = 979 +/- 1 kJ.mol (-1), and for the "protonation entropy", Delta p S degrees (adenosine) = S degrees (adenosineH +) - S degrees (adenosine) = -5 +/- 5 J.mol (-1).K (-1). The corresponding gas-phase basicity is consequently equal to: GB(adenosine) = 945 +/- 2 kJ.mol (-1) at 298K. Theoretical calculations conducted at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level, including 298 K enthalpy correction, predict a proton affinity value of 974 kJ.mol (-1) after consideration of isodesmic proton transfer reactions with pyridine as the reference base. Moreover, computations clearly showed that N3 is the most favorable protonation site for adenosine, due to a strong internal hydrogen bond involving the hydroxyl group at the 2' position of the ribose sugar moiety, unlike observations for adenine and 2'-deoxyadenosine, where protonation occurs on N1. The existence of negligible protonation entropy is confirmed by calculations (theoretical Delta p S degrees (adenosine) approximately -2/-3 J.mol (-1).K (-1)) including conformational analysis and entropy of hindered rotations. Thus, the calculated protonation thermochemical properties are in good agreement with our experimental measurements. It may be noted that the new PA value is approximately 10 kJ.mol (-1) lower than the one reported in the National Institute of Standards and Technology (NIST) database, thus pointing to a correction of the tabulated protonation thermochemistry of adenosine. PMID:18720985

  12. Adenosine triphosphate inhibition of yeast trehalase.

    PubMed

    Panek, A D

    1969-09-01

    Yeast trehalase has been found to be inhibited non-competitively by adenosine triphosphate. Such a biological control could explain the accumulation of trehalose during the stationary phase of the growth curve. PMID:5370287

  13. Role of adenosine receptors in caffeine tolerance

    SciTech Connect

    Holtzman, S.G.; Mante, S.; Minneman, K.P. )

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  14. Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols

    PubMed Central

    Kramer, Christopher M; Barkhausen, Jorg; Flamm, Scott D; Kim, Raymond J; Nagel, Eike

    2008-01-01

    Index 1. General techniques 1.1. Stress and safety equipment 1.2. Left ventricular (LV) structure and function module 1.3. Right ventricular (RV) structure and function module 1.4. Gadolinium dosing module. 1.5. First pass perfusion 1.6. Late gadolinium enhancement (LGE) 2. Disease specific protocols 2.1. Ischemic heart disease 2.1.1. Acute myocardial infarction (MI) 2.1.2. Chronic ischemic heart disease and viability 2.1.3. Dobutamine stress 2.1.4. Adenosine stress perfusion 2.2. Angiography: 2.2.1. Peripheral magnetic resonance angiography (MRA) 2.2.2. Thoracic MRA 2.2.3. Anomalous coronary arteries 2.2.4. Pulmonary vein evaluation 2.3. Other 2.3.1. Non-ischemic cardiomyopathy 2.3.2. Arrhythmogenic right ventricular cardiomyopathy (ARVC) 2.3.3. Congenital heart disease 2.3.4. Valvular heart disease 2.3.5. Pericardial disease 2.3.6. Masses PMID:18605997

  15. Regulation of Lymphocyte Function by Adenosine

    PubMed Central

    Linden, Joel; Cekic, Caglar

    2014-01-01

    Adenosine regulates the interaction between lymphocytes and the vasculature and is important for controlling lymphocyte trafficking in response to tissue injury or infection. Adenosine can blunt the effects of T cell receptor (TCR) activation primarily by activating adenosine A2A receptors (A2AR) and signaling via cyclic AMP and protein kinase A (PKA). PKA reduces proximal TCR signaling by phosphorylation of C-terminal Src kinase (Csk), nuclear factor of activated T cells (NF-AT) and cyclic AMP response element binding protein (CREB). PKA activation can either enhance or inhibit the survival of T cells depending on the strength and duration of signaling. Inducible enzymes such as CD73 and CD39 regulate adenosine formation and degradation in vivo. The extravasation of lymphocytes through blood vessels is influenced by A2AR-mediated suppression of Intercellular Adhesion Molecule 1 (ICAM) expression on lymphocytes and diminished production of IFNγ and IFNγ-inducible chemokines that are chemotactic to activated lymphocytes. Adenosine also decreases the barrier function of vascular endothelium by activating A2BRs. In sum, adenosine signaling is influenced by tissue inflammation and injury through induction of receptors and enzymes and has generally inhibitory effects on lymphocyte migration into inflamed tissues due to PKA-mediated effects on adhesion molecules, IFNγ production and endothelial barrier function. PMID:22772752

  16. Adenosine receptor agonists attenuate and adenosine receptor antagonists exacerbate opiate withdrawal signs.

    PubMed

    Kaplan, G B; Sears, M T

    1996-01-01

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. Adenosine receptors and their functions have been shown to be regulated by chronic opiate treatment. This study examines the role of adenosine receptors in the expression of opiate withdrawal behaviors. The effects of single doses of parenterally administered adenosine receptor subtype-selective agonists and antagonists on opiate withdrawal signs in morphine-dependent mice were measured. Mice received subcutaneous morphine pellet treatment for 72 h and then underwent naloxone-precipitated withdrawal after pretreatment with adenosinergic agents. Adenosine agonists attenuated different opiate withdrawal signs. The A1 agonist R-N6(phenylisopropyl)adenosine (0, 0.01, 0.02 mg/kg, IP) significantly reduced wet dog shakes and withdrawal diarrhea, while the A2a-selective agonist 2-p-(2-carboxethyl)phenylethylamino-5'-N-ethylcarboxamido adenosine or CGS 21680 (0, 0.01, 0.05 mg/kg, IP) significantly inhibited teeth chattering and forepaw treads. Adenosine receptor antagonists enhanced different opiate withdrawal signs. The adenosine A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (0, 1, 10 mg/kg, IP) significantly increased weight loss and the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (0, 1 and 10 mg/kg, IP) enhanced wet dog shakes and withdrawal diarrhea. Treatment effects of adenosinergic agents were not due to nonspecific motor effects, as demonstrated by activity monitoring studies. These results support a role for adenosine receptors in the expression of opiate withdrawal and suggest the potential utility of adenosine agonists in its treatment. PMID:8741956

  17. Photoaffinity labeling of A1-adenosine receptors

    SciTech Connect

    Klotz, K.N.; Cristalli, G.; Grifantini, M.; Vittori, S.; Lohse, M.J.

    1985-11-25

    The ligand-binding subunit of the A1-adenosine receptor has been identified by photoaffinity labeling. A photolabile derivative of R-N6-phenylisopropyladenosine, R-2-azido-N6-p-hydroxyphenylisopropyladenosine (R-AHPIA), has been synthesized as a covalent specific ligand for A1-adenosine receptors. In adenylate cyclase studies with membranes of rat fat cells and human platelets, R-AHPIA has adenosine receptor agonist activity with a more than 60-fold selectivity for the A1-subtype. It competes for (TH)N6-phenylisopropyladenosine binding to A1-receptors of rat brain membranes with a Ki value of 1.6 nM. After UV irradiation, R-AHPIA binds irreversibly to the receptor, as indicated by a loss of (TH)N6-phenylisopropyladenosine binding after extensive washing; the Ki value for this photoinactivation is 1.3 nM. The p-hydroxyphenyl substituent of R-AHPIA can be directly radioiodinated to give a photoaffinity label of high specific radioactivity ( SVI-AHPIA). This compound has a KD value of about 1.5 nM as assessed from saturation and kinetic experiments. Adenosine analogues compete for SVI-AHPIA binding to rat brain membranes with an order of potency characteristic for A1-adenosine receptors. Dissociation curves following UV irradiation at equilibrium demonstrate 30-40% irreversible specific binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the probe is photoincorporated into a single peptide of Mr = 35,000. Labeling of this peptide can be blocked specifically and stereoselectively by adenosine receptor agonists and antagonists in a manner which is typical for the A1-subtype. The results indicate that SVI-AHPIA identifies the ligand-binding subunit of the A1-adenosine receptor, which is a peptide with Mr = 35,000.

  18. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    SciTech Connect

    1997-02-04

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

  19. Assessment of Myocardial Scar; Comparison Between 18F-FDG PET, CMR and 99Tc-Sestamibi

    PubMed Central

    Crean, Andrew; Khan, Sadia N.; Davies, L. Ceri; Coulden, Richard; Dutka, David P.

    2009-01-01

    Objective: Patients with heart failure and ischaemic heart disease may obtain benefit from revascularisation if viable dysfunctional myocardium is present. Such patients have an increased operative risk, so it is important to ensure that viability is correctly identified. In this study, we have compared the utility of 3 imaging modalities to detect myocardial scar. Design: Prospective, descriptive study. Setting: Tertiary cardiac centre. Patients: 35 patients (29 male, average age 70 years) with coronary artery disease and symptoms of heart failure (>NYHA class II). Intervention: Assessment of myocardial scar by 99Tc-Sestamibi (MIBI), 18F-flurodeoxyglucose (FDG) and cardiac magnetic resonance (CMR). Outcome Measure: The presence or absence of scar using a 20-segment model. Results: More segments were identified as nonviable scar using MIBI than with FDG or CMR. FDG identified the least number of scar segments per patient (7.4 +/− 4.8 with MIBI vs. 4.9 +/− 4.2 with FDG vs. 5.8 +/− 5.0 with CMR, p = 0.0001 by ANOVA). The strongest agreement between modalities was in the anterior wall with the weakest agreement in the inferior wall. Overall, the agreement between modalities was moderate to good. Conclusion: There is considerable variation amongst these 3 techniques in identifying scarred myocardium in patients with coronary disease and heart failure. MIBI and CMR identify more scar than FDG. We recommend that MIBI is not used as the sole imaging modality in patients undergoing assessment of myocardial viability. PMID:20508767

  20. Segmentation of Blood Vessels and 3D Representation of CMR Image

    NASA Astrophysics Data System (ADS)

    Jiji, G. W.

    2013-06-01

    Current cardiac magnetic resonance imaging (CMR) technology allows the determination of patient-individual coronary tree structure, detection of infarctions, and assessment of myocardial perfusion. The purpose of this work is to segment heart blood vessels and visualize it in 3D. In this work, 3D visualisation of vessel was performed into four phases. The first step is to detect the tubular structures using multiscale medialness function, which distinguishes tube-like structures from and other structures. Second step is to extract the centrelines of the tubes. From the centreline radius the cylindrical tube model is constructed. The third step is segmentation of the tubular structures. The cylindrical tube model is used in segmentation process. Fourth step is to 3D representation of the tubular structure using Volume . The proposed approach is applied to 10 datasets of patients from the clinical routine and tested the results with radiologists.

  1. Myocardial perfusion and oxygenation are impaired during stress in severe aortic stenosis and correlate with impaired energetics and subclinical left ventricular dysfunction

    PubMed Central

    2014-01-01

    Background Left ventricular (LV) hypertrophy in aortic stenosis (AS) is characterized by reduced myocardial perfusion reserve due to coronary microvascular dysfunction. However, whether this hypoperfusion leads to tissue deoxygenation is unknown. We aimed to assess myocardial oxygenation in severe AS without obstructive coronary artery disease, and to investigate its association with myocardial energetics and function. Methods Twenty-eight patients with isolated severe AS and 15 controls underwent cardiovascular magnetic resonance (CMR) for assessment of perfusion (myocardial perfusion reserve index-MPRI) and oxygenation (blood-oxygen level dependent-BOLD signal intensity-SI change) during adenosine stress. LV circumferential strain and phosphocreatine/adenosine triphosphate (PCr/ATP) ratios were assessed using tagging CMR and 31P MR spectroscopy, respectively. Results AS patients had reduced MPRI (1.1 ± 0.3 vs. controls 1.7 ± 0.3, p < 0.001) and BOLD SI change during stress (5.1 ± 8.9% vs. controls 18.2 ± 10.1%, p = 0.001), as well as reduced PCr/ATP (1.45 ± 0.21 vs. 2.00 ± 0.25, p < 0.001) and LV strain (−16.4 ± 2.7% vs. controls −21.3 ± 1.9%, p < 0.001). Both perfusion reserve and oxygenation showed positive correlations with energetics and LV strain. Furthermore, impaired energetics correlated with reduced strain. Eight months post aortic valve replacement (AVR) (n = 14), perfusion (MPRI 1.6 ± 0.5), oxygenation (BOLD SI change 15.6 ± 7.0%), energetics (PCr/ATP 1.86 ± 0.48) and circumferential strain (−19.4 ± 2.5%) improved significantly. Conclusions Severe AS is characterized by impaired perfusion reserve and oxygenation which are related to the degree of derangement in energetics and associated LV dysfunction. These changes are reversible on relief of pressure overload and hypertrophy regression. Strategies aimed at improving oxygen demand–supply balance to preserve myocardial

  2. Characterization of a cAMP responsive transcription factor, Cmr (Rv1675c), in TB complex mycobacteria reveals overlap with the DosR (DevR) dormancy regulon.

    PubMed

    Ranganathan, Sridevi; Bai, Guangchun; Lyubetskaya, Anna; Knapp, Gwendowlyn S; Peterson, Matthew W; Gazdik, Michaela; C Gomes, Antonio L; Galagan, James E; McDonough, Kathleen A

    2016-01-01

    Mycobacterium tuberculosis (Mtb) Cmr (Rv1675c) is a CRP/FNR family transcription factor known to be responsive to cAMP levels and during macrophage infections. However, Cmr's DNA binding properties, cellular targets and overall role in tuberculosis (TB) complex bacteria have not been characterized. In this study, we used experimental and computational approaches to characterize Cmr's DNA binding properties and identify a putative regulon. Cmr binds a 16-bp palindromic site that includes four highly conserved nucleotides that are required for DNA binding. A total of 368 binding sites, distributed in clusters among ~200 binding regions throughout the Mycobacterium bovis BCG genome, were identified using ChIP-seq. One of the most enriched Cmr binding sites was located upstream of the cmr promoter, and we demonstrated that expression of cmr is autoregulated. cAMP affected Cmr binding at a subset of DNA loci in vivo and in vitro, including multiple sites adjacent to members of the DosR (DevR) dormancy regulon. Our findings of cooperative binding of Cmr to these DNA regions and the regulation by Cmr of the DosR-regulated virulence gene Rv2623 demonstrate the complexity of Cmr-mediated gene regulation and suggest a role for Cmr in the biology of persistent TB infection. PMID:26358810

  3. Characterization of a cAMP responsive transcription factor, Cmr (Rv1675c), in TB complex mycobacteria reveals overlap with the DosR (DevR) dormancy regulon

    PubMed Central

    Ranganathan, Sridevi; Bai, Guangchun; Lyubetskaya, Anna; Knapp, Gwendowlyn S.; Peterson, Matthew W.; Gazdik, Michaela; C. Gomes, Antonio L.; Galagan, James E.; McDonough, Kathleen A.

    2016-01-01

    Mycobacterium tuberculosis (Mtb) Cmr (Rv1675c) is a CRP/FNR family transcription factor known to be responsive to cAMP levels and during macrophage infections. However, Cmr's DNA binding properties, cellular targets and overall role in tuberculosis (TB) complex bacteria have not been characterized. In this study, we used experimental and computational approaches to characterize Cmr's DNA binding properties and identify a putative regulon. Cmr binds a 16-bp palindromic site that includes four highly conserved nucleotides that are required for DNA binding. A total of 368 binding sites, distributed in clusters among ∼200 binding regions throughout the Mycobacterium bovis BCG genome, were identified using ChIP-seq. One of the most enriched Cmr binding sites was located upstream of the cmr promoter, and we demonstrated that expression of cmr is autoregulated. cAMP affected Cmr binding at a subset of DNA loci in vivo and in vitro, including multiple sites adjacent to members of the DosR (DevR) dormancy regulon. Our findings of cooperative binding of Cmr to these DNA regions and the regulation by Cmr of the DosR-regulated virulence gene Rv2623 demonstrate the complexity of Cmr-mediated gene regulation and suggest a role for Cmr in the biology of persistent TB infection. PMID:26358810

  4. Blood Oxygenation Level-Dependent CMR-Derived Measures in Critical Limb Ischemia and Changes With Revascularization

    PubMed Central

    Bajwa, Adnan; Wesolowski, Roman; Patel, Ashish; Saha, Prakash; Ludwinski, Francesca; Ikram, Mohammed; Albayati, Mostafa; Smith, Alberto; Nagel, Eike; Modarai, Bijan

    2016-01-01

    Background Use of blood oxygenation level-dependent cardiovascular magnetic resonance (BOLD-CMR) to assess perfusion in the lower limb has been hampered by poor reproducibility and a failure to reliably detect post-revascularization improvements in patients with critical limb ischemia (CLI). Objectives This study sought to develop BOLD-CMR as an objective, reliable clinical tool for measuring calf muscle perfusion in patients with CLI. Methods The calf was imaged at 3-T in young healthy control subjects (n = 12), age-matched control subjects (n = 10), and patients with CLI (n = 34). Signal intensity time curves were generated for each muscle group and curve parameters, including signal reduction during ischemia (SRi) and gradient during reactive hyperemia (Grad). BOLD-CMR was used to assess changes in perfusion following revascularization in 12 CLI patients. Muscle biopsies (n = 28), obtained at the level of BOLD-CMR measurement and from healthy proximal muscle of patients undergoing lower limb amputation (n = 3), were analyzed for capillary-fiber ratio. Results There was good interuser and interscan reproducibility for Grad and SRi (all p < 0.0001). The ischemic limb had lower Grad and SRi compared with the contralateral asymptomatic limb, age-matched control subjects, and young control subjects (p < 0.001 for all comparisons). Successful revascularization resulted in improvement in Grad (p < 0.0001) and SRi (p < 0.0005). There was a significant correlation between capillary-fiber ratio (p < 0.01) in muscle biopsies from amputated limbs and Grad measured pre-operatively at the corresponding level. Conclusions BOLD-CMR showed promise as a reliable tool for assessing perfusion in the lower limb musculature and merits further investigation in a clinical trial. PMID:26821631

  5. Inhibition of adenosine kinase by phosphonate and bisphosphonate derivatives.

    PubMed

    Park, Jae; Singh, Bhag; Gupta, Radhey S

    2006-02-01

    The enzyme adenosine kinase (AK) plays a central role in regulating the intracellular and interstitial concentration of the purine nucleoside adenosine (Ado). In view of the beneficial effects of Ado in protecting tissues from ischemia and other stresses, there is much interest in developing AK inhibitors, which can regulate Ado concentration in a site- and event-specific manner. The catalytic activity of AK from different sources is dependent upon the presence of activators such as phosphate (Pi). In this work we describe several new phosphorylated compounds which either activate or inhibit AK. The compounds acetyl phosphate, carbamoyl phosphate, dihydroxyacetone phosphate and imidodiphosphate were found to stimulate AK activity in a dose-dependent manner comparable to that seen with Pi. In contrast, a number of phosphonate and bisphosphonate derivatives, which included clodronate and etidronate, were found to inhibit the activity of purified AK in the presence of Pi. These AK inhibitors (viz. clodronate, etidronate, phosphonoacetic acid, 2-carboxyethylphosphonic acid, N-(phosphonomethyl)-glycine and N-(phosphonomethyl)iminodiacetic acid), at concentrations at which they inhibited AK, were also shown to inhibit the uptake of (3)H-adenosine and its incorporation into macromolecules in cultured mammalian cells, indicating that they were also inhibiting AK in intact cells. The drug concentrations at which these effects were observed showed limited toxicity to the cultured cells, indicating that these effects are not caused by cellular toxicity. These results indicate that the enzyme AK provides an additional cellular target for the clinically widely used bisphosphonates and related compounds, which could possibly be exploited for a new therapeutic application. Our structure-activity studies on different AK activators and inhibitors also indicate that all of the AK activating compounds have a higher partial positive charge (delta(+)) on the central phosphorous atom in

  6. Cardiac myocyte–secreted cAMP exerts paracrine action via adenosine receptor activation

    PubMed Central

    Sassi, Yassine; Ahles, Andrea; Truong, Dong-Jiunn Jeffery; Baqi, Younis; Lee, Sang-Yong; Husse, Britta; Hulot, Jean-Sébastien; Foinquinos, Ariana; Thum, Thomas; Müller, Christa E.; Dendorfer, Andreas; Laggerbauer, Bernhard; Engelhardt, Stefan

    2014-01-01

    Acute stimulation of cardiac β-adrenoceptors is crucial to increasing cardiac function under stress; however, sustained β-adrenergic stimulation has been implicated in pathological myocardial remodeling and heart failure. Here, we have demonstrated that export of cAMP from cardiac myocytes is an intrinsic cardioprotective mechanism in response to cardiac stress. We report that infusion of cAMP into mice averted myocardial hypertrophy and fibrosis in a disease model of cardiac pressure overload. The protective effect of exogenous cAMP required adenosine receptor signaling. This observation led to the identification of a potent paracrine mechanism that is dependent on secreted cAMP. Specifically, FRET-based imaging of cAMP formation in primary cells and in myocardial tissue from murine hearts revealed that cardiomyocytes depend on the transporter ABCC4 to export cAMP as an extracellular signal. Extracellular cAMP, through its metabolite adenosine, reduced cardiomyocyte cAMP formation and hypertrophy by activating A1 adenosine receptors while delivering an antifibrotic signal to cardiac fibroblasts by A2 adenosine receptor activation. Together, our data reveal a paracrine role for secreted cAMP in intercellular signaling in the myocardium, and we postulate that secreted cAMP may also constitute an important signal in other tissues. PMID:25401477

  7. Nucleoside transporter expression and adenosine uptake in the rat cochlea.

    PubMed

    Khan, Abdul F; Thorne, Peter R; Muñoz, David J B; Wang, Carol J H; Housley, Gary D; Vlajkovic, Srdjan M

    2007-02-12

    Even though extracellular adenosine plays multiple roles in the cochlea, the mechanisms that control extracellular adenosine concentrations in this organ are unclear. This study investigated the expression of nucleoside transporters and adenosine uptake in the rat cochlea. Reverse transcription-polymerase chain reaction revealed the expression of mRNA transcripts for two equilibrative (ENT1 and ENT2) and two concentrative (CNT1 and CNT2) nucleoside transporters. Exogenous adenosine perfused through the cochlear perilymphatic compartment was taken up by cells lining the compartment. Adenosine uptake was sensitive to changes in extracellular Na concentrations and inhibited by nitrobenzylthioinosine (an adenosine uptake blocker). The study suggests that the bi-directional nucleoside transport supports the uptake and recycling of purines and regulates the activation of adenosine receptors by altering adenosine concentrations in cochlear fluid spaces. PMID:17314663

  8. Novel adenosine receptors in rat hippocampus identification and characterization

    SciTech Connect

    Chin, J.H.; Mashman, W.E.; DeLorenzo, R.J.

    1985-05-06

    2-chloro(/sup 3/H)adenosine, a stable analog of adenosine, was used to investigate the presence of adenosine receptors in rat hippocampal membranes that may mediate the depressant effects of adenosine on synaptic transmission in this tissue. Equilibrium binding studies reveal the presence of a previously undescribed class of receptors with a K/sub D/ of 4.7 ..mu..M and a Bmax of 130 pmol/mg of protein. Binding is sensitive to alkylxanthines and to a number of adenosine-related compounds. The pharmacological properties of this binding site are distinct from those of the A1 and A2 adenosine receptors associated with adenylate cyclase. The results suggest that this adenosine binding site is a novel central purinergic receptor through which adenosine may regulate hippocampal excitability. 50 references, 2 figures, 1 table.

  9. High Concordance Between Mental Stress–Induced and Adenosine-Induced Myocardial Ischemia Assessed Using SPECT in Heart Failure Patients: Hemodynamic and Biomarker Correlates

    PubMed Central

    Wawrzyniak, Andrew J.; Dilsizian, Vasken; Krantz, David S.; Harris, Kristie M.; Smith, Mark F.; Shankovich, Anthony; Whittaker, Kerry S.; Rodriguez, Gabriel A.; Gottdiener, John; Li, Shuying; Kop, Willem; Gottlieb, Stephen S.

    2016-01-01

    Mental stress can trigger myocardial ischemia, but the prevalence of mental stress–induced ischemia in congestive heart failure (CHF) patients is unknown. We characterized mental stress–induced and adenosine-induced changes in myocardial perfusion and neurohormonal activation in CHF patients with reduced left-ventricular function using SPECT to precisely quantify segment-level myocardial perfusion. Methods Thirty-four coronary artery disease patients (mean age ± SD, 62 ± 10 y) with CHF longer than 3 mo and ejection fraction less than 40% underwent both adenosine and mental stress myocardial perfusion SPECT on consecutive days. Mental stress consisted of anger recall (anger-provoking speech) followed by subtraction of serial sevens. The presence and extent of myocardial ischemia was quantified using the conventional 17-segment model. Results Sixty-eight percent of patients had 1 ischemic segment or more during mental stress and 81% during adenosine. On segment-by-segment analysis, perfusion with mental stress and adenosine were highly correlated. No significant differences were found between any 2 time points for B-type natriuretic peptide, tumor necrosis factor-α, IL-1b, troponin, vascular endothelin growth factor, IL-17a, matrix metallopeptidase-9, or C-reactive protein. However, endothelin-1 and IL-6 increased, and IL-10 decreased, between the stressor and 30 min after stress. Left-ventricular end diastolic dimension was 179 ± 65 mL at rest and increased to 217 ± 71 after mental stress and 229 ± 86 after adenosine (P < 0.01 for both). Resting end systolic volume was 129 ± 60 mL at rest and increased to 158 ± 66 after mental stress (P < 0.05) and 171 ± 87 after adenosine (P < 0.07), with no significant differences between adenosine and mental stress. Ejection fraction was 30 ± 12 at baseline, 29 ± 11 with mental stress, and 28 ± 10 with adenosine (P = not significant). Conclusion There was high concordance between ischemic perfusion defects induced

  10. Adenosine metabolism in phytohemagglutinin-stimulated human lymphocytes.

    PubMed Central

    Snyder, F F; Mendelsohn, J; Seegmiller, J E

    1976-01-01

    The association of a human genetic deficiency of adenosine deaminase activity with combined immunodeficiency prompted a study of the effects of adenosine and of inhibition of adenosine deaminase activity on human lymphocyte transformation and a detailed study of adenosine metabolism throughout phytohemagglutinin-induced blastogenesis. The adenosine deaminase inhibitor, coformycin, at a concentration that inhibited adenosine deaminase activity more than 95%, or 50 muM adenosine, did not prevent blastogenesis by criteria of morphology or thymidine incorporation into acid-precipitable material. The combination of coformycin and adenosine, however, substantially reduced both the viable cell count and the incorporation of thymidine into DNA in phytohemagglutinin-stimulated lymphocytes. Incubation of lymphocytes with phytohemagglutinin for 72 h produced a 12-fold increase in the rate of deamination and a 6-fold increase in phosphorylation of adenosine by intact lymphocytes. There was no change in the apparent affinity for adenosine with either deamination or phosphorylation. The increased rates of metabolism, apparent as early as 3 h after addition of mitogen, may be due to increased entry of the nucleoside into stimulated lymphocytes. Increased adenosine metabolism was not due to changes in total enzyme activity; after 72 h in culture, the ratios of specific activities in extracts of stimulated to unstimulated lymphocytes were essentially unchanged for adenosine kinase, 0.92, and decreased for adenosine deaminase, 0.44. As much as 38% of the initial lymphocyte adenosine deaminase activity accumulated extracellularly after a 72-h culture with phytohemagglutinin. In phytohemagglutinin-stimulated lymphocytes, the principal route of adenosine metabolism was phosphorylation at less than 5 muM adenosine, and deamination at concentrations greater than 5 muM. In unstimulated lymphocytes, deamination was the principal route of adenosine metabolism over the range of adenosine

  11. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters.

    PubMed

    Lynge, J; Juel, C; Hellsten, Y

    2001-12-01

    1. The existence of adenosine transporters in plasma membrane giant vesicles from rat skeletal muscles and in primary skeletal muscle cell cultures was investigated. In addition, the contribution of intracellularly or extracellularly formed adenosine to the overall extracellular adenosine concentration during muscle contraction was determined in primary skeletal muscle cell cultures. 2. In plasma membrane giant vesicles, the carrier-mediated adenosine transport demonstrated saturation kinetics with Km = 177 +/- 36 microM and Vmax = 1.9 +/- 0.2 nmol x ml(-1) x s(-1) (0.7 nmol (mg protein)(-1) x s(-1)). The existence of an adenosine transporter was further evidenced by the inhibition of the carrier-mediated adenosine transport in the presence of NBMPR (nitrobenzylthioinosine; 72% inhibition) or dipyridamol (64% inhibition; P < 0.05). 3. In primary skeletal muscle cells, the rate of extracellular adenosine accumulation was 5-fold greater (P < 0.05) with electrical stimulation than without electrical stimulation. Addition of the adenosine transporter inhibitor NBMPR led to a 57% larger (P < 0.05) rate of extracellular adenosine accumulation in the electro-stimulated muscle cells compared with control cells, demonstrating that adenosine is taken up by the skeletal muscle cells during contractions. 4. Inhibition of ecto-5'-nucleotidase with AOPCP in electro-stimulated cells resulted in a 70% lower (P < 0.05) rate of extracellular adenosine accumulation compared with control cells, indicating that adenosine to a large extent is formed in the extracellular space during contraction. 5. The present study provides evidence for the existence of an NBMPR-sensitive adenosine transporter in rat skeletal muscle. Our data furthermore demonstrate that the increase in extracellular adenosine observed during electro-stimulation of skeletal muscle is due to production of adenosine in the extracellular space of skeletal muscle and that adenosine is taken up rather than released by the

  12. Adenosine reagent-free detection by co-immobilization of adenosine deaminase and phenol red on an optical biostrip.

    PubMed

    Bartzoka, Foteini; Venetsanou, Katerina; Clonis, Yannis

    2015-01-01

    Adenosine detection in human serum is important because this ribonucleoside has established clinical applications, modulating many physiological processes. Furthermore, a simple and cheap detection method is useful in adenosine production processes. Adenosine can be determined enzymatically using either S-adenosyl-homocysteine hydrolase and (3) [H]-adenosine, or adenosine kinase combined with GTP and luciferase, or an amperometric biosensor carrying adenosine deaminase (ADA), purine nucleoside phosphorylase, and xanthine oxidase. We developed a simple and cheap method relying on a transparent biostrip bearing ADA and the indicator phenol red (PR), co-immobilized to polyacrylamide, itself chemically adhered to a derivatized glass strip. The ADA-catalyzed conversion of adenosine to inosine and ammonia leads to a local pH alteration, changing the absorbance maximum of PR (from 425 to 567 nm), which is measured optically. The biostrip shows an analytical range 0.05-1.5 mM adenosine and is reusable when stored at 4 °C. When the biostrip was tested with serum, spiked with adenosine (70 and 100 μM), and filtered for protein and adenosine phosphates depletion, it showed good adenosine recovery. In summary, we show the proof-of-concept that adenosine can be determined reagent-free, at moderate sensitivity on an easy to construct, cheap, and reusable biostrip, based on commercially available molecular entities. PMID:25293641

  13. Internalization and desensitization of adenosine receptors

    PubMed Central

    Klaasse, Elisabeth C.; de Grip, Willem J.; Beukers, Margot W.

    2007-01-01

    Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A1, A2A, A2B and A3 receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are regulated, as a basis for designing therapeutic drugs that either avoid or make use of this regulation. The major GPCR regulatory pathway involves phosphorylation of activated receptors by G protein-coupled receptor kinases (GRKs), a process that is followed by binding of arrestin proteins. This prevents receptors from activating downstream heterotrimeric G protein pathways, but at the same time allows activation of arrestin-dependent signalling pathways. Upon agonist treatment, adenosine receptor subtypes are differently regulated. For instance, the A1Rs are not (readily) phosphorylated and internalize slowly, showing a typical half-life of several hours, whereas the A2AR and A2BR undergo much faster downregulation, usually shorter than 1 h. The A3R is subject to even faster downregulation, often a matter of minutes. The fast desensitization of the A3R after agonist exposure may be therapeutically equivalent to antagonist occupancy of the receptor. This review describes the process of desensitization and internalization of the different adenosine subtypes in cell systems, tissues and in vivo studies. In addition, molecular mechanisms involved in adenosine receptor desensitization are discussed. PMID:18368531

  14. Early manifestation of alteration in cardiac function in dystrophin deficient mdx mouse using 3D CMR tagging

    PubMed Central

    Li, Wei; Liu, Wei; Zhong, Jia; Yu, Xin

    2009-01-01

    Background Duchenne muscular dystrophy (DMD) is caused by the absence of the cytoskeletal protein, dystrophin. In DMD patients, dilated cardiomyopathy leading to heart failure may occur during adolescence. However, early cardiac dysfunction is frequently undetected due to physical inactivity and generalized debilitation. The objective of this study is to determine the time course of cardiac functional alterations in mdx mouse, a mouse model of DMD, by evaluating regional ventricular function with CMR tagging. Methods In vivo myocardial function was evaluated by 3D CMR tagging in mdx mice at early (2 months), middle (7 months) and late (10 months) stages of disease development. Global cardiac function, regional myocardial wall strains, and ventricular torsion were quantified. Myocardial lesions were assessed with Masson's trichrome staining. Results Global contractile indexes were similar between mdx and C57BL/6 mice in each age group. Histology analysis showed that young mdx mice were free of myocardial lesions. Interstitial fibrosis was present in 7 month mdx mice, with further development into patches or transmural lesions at 10 months of age. As a result, 10 month mdx mice showed significantly reduced regional strain and torsion. However, young mdx mice showed an unexpected increase in regional strain and torsion, while 7 month mdx mice displayed similar regional ventricular function as the controls. Conclusion Despite normal global ventricular function, CMR tagging detected a biphasic change in myocardial wall strain and torsion, with an initial increase at young age followed by progressive decrease at older ages. These results suggest that CMR tagging can provide more sensitive measures of functional alterations than global functional indexes in dystrophin-related cardiomyopathies. PMID:19849858

  15. Neuroprotective effects of adenosine deaminase in the striatum.

    PubMed

    Tamura, Risa; Ohta, Hiroyuki; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-04-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  16. X-ray induced insulator-metal transitions in CMR manganites

    SciTech Connect

    Kiryukhin, V.; Casa, D.; Keimer, B.; Hill, J.P.; Vigliante, A.; Tomioka, Y.; Tokura, Y. |

    1997-12-01

    In this work the authors report a study of the photoinduced insulator-to-metal transition in manganese oxide perovskites of the formula Pr{sub 1{minus}x}Ca{sub x}MnO{sub 3}. The transition is closely related to the magnetic field induced insulator-to-metal transition (CMR effect) observed in these materials. It is accompanied by a dramatic change in the magnetic properties and lattice structure: the material changes from an insulating charge-ordered canted antiferromagnet to a ferromagnetic metal. The authors present an investigation of the transport and structural properties of these materials over the course of the transition (which usually takes about an hour to complete). The current-voltage characteristics exhibited by the material during the transition are highly nonlinear, indicating a large inhomogeneity of the transitional state. Possible practical applications of this novel type of transition are briefly discussed. They also report a high resolution X-ray diffraction study of the charge ordering in these materials. The temperature dependent charge ordering structure observed in these compounds is more complex than previously reported.

  17. Structural studies on the substitution of Ag, Na doped LCSMO CMR manganites

    NASA Astrophysics Data System (ADS)

    Subhashini, P.; Munirathinam, B.; Krishnaiah, M.; Venkatesh, R.; Venkateswarlu, D.; Ganesan, V.

    2016-05-01

    Synthesis and characterization of colossal magnetoresistance (CMR) materials has been a subject of scientific research due to the unique transport, magnetotransport, and magnetic properties. The single phase polycrystalline La0.7Ca0.1Sr0.1M0.1MnO3 (LCSMO) (M=Ag and Na) samples prepared using nitrate route method. The structural properties are studied at different dopants by X-ray diffraction. The surface morphology and elemental analysis of both samples were carried out by scanning electron microscopy (SEM) and energy dispersive X-ray technique (EDAX) respectively. The structural analysis shows that the LCSMO is crystallized in an orthorhombic perovskite structure belonging to Pnma space group. The crystal size of the sample is calculated using Scherrer formula. The SEM images show that the polycrystalline grains are observed to be near spherical shape and uniform in size. EDAX spectra taken from the surface of the synthesized powders show a nominal composition near the desired one for M=Na sample where as some vacancies are present in the A-site in the case of Ag substitution as will be discussed in this paper.

  18. 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors.

    PubMed

    Gao, Zhan-Guo; Mamedova, Liaman K; Chen, Peiran; Jacobson, Kenneth A

    2004-11-15

    The affinity and efficacy at four subtypes (A(1), A(2A), A(2B) and A(3)) of human adenosine receptors (ARs) of a wide range of 2-substituted adenosine derivatives were evaluated using radioligand binding assays and a cyclic AMP functional assay in intact CHO cells stably expressing these receptors. Similar to previous studies of the N(6)-position, several 2-substituents were found to be critical structural determinants for the A(3)AR activation. The following adenosine 2-ethers were moderately potent partial agonists (K(i), nM): benzyl (117), 3-chlorobenzyl (72), 2-(3-chlorophenyl)ethyl (41), and 2-(2-naphthyl)ethyl (130). The following adenosine 2-ethers were A(3)AR antagonists: 2,2-diphenylethyl, 2-(2-norbornan)ethyl, R- and S-2-phenylbutyl, and 2-(2-chlorophenyl)ethyl. 2-(S-2-Phenylbutyloxy)adenosine as an A(3)AR antagonist right-shifted the concentration-response curve for the inhibition by NECA of cyclic AMP accumulation with a K(B) value of 212 nM, which is similar to its binding affinity (K(i) = 175 nM). These 2-substituted adenosine derivatives were generally less potent at the A(1)AR in comparison to the A(3)AR, but fully efficacious, with binding K(i) values over 100 nM. The 2-phenylethyl moiety resulted in higher A(3)AR affinity (K(i) in nM) when linked to the 2-position of adenosine through an ether group (54), than when linked through an amine (310) or thioether (1960). 2-[2-(l-Naphthyl)ethyloxy]adenosine (K(i) = 3.8 nM) was found to be the most potent and selective (>50-fold) A(2A) agonist in this series. Mixed A(2A)/A(3)AR agonists have been identified. Interestingly, although most of these compounds were extremely weak at the A(2B)AR, 2-[2-(2-naphthyl)ethyloxy]adenosine (EC(50) = 1.4 microM) and 2-[2-(2-thienyl)-ethyloxy]adenosine (EC(50) = 1.8 microM) were found to be relatively potent A(2B) agonists, although less potent than NECA (EC(50) = 140 nM). PMID:15476669

  19. Stress

    MedlinePlus

    ... sudden negative change, such as losing a job, divorce, or illness Traumatic stress, which happens when you ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  20. 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors

    PubMed Central

    Gao, Zhan-Guo; Mamedova, Liaman K.; Chen, Peiran; Jacobson, Kenneth A.

    2012-01-01

    The affinity and efficacy at four subtypes (A1, A2A, A2B and A3) of human adenosine receptors (ARs) of a wide range of 2-substituted adenosine derivatives were evaluated using radioligand binding assays and a cyclic AMP functional assay in intact CHO cells stably expressing these receptors. Similar to previous studies of the N6-position, several 2-substituents were found to be critical structural determinants for the A3AR activation. The following adenosine 2-ethers were moderately potent partial agonists (Ki, nM): benzyl (117), 3-chlorobenzyl (72), 2-(3-chlorophenyl)ethyl (41), and 2-(2-naphthyl)ethyl (130). The following adenosine 2-ethers were A3AR antagonists: 2,2-diphenylethyl, 2-(2-norbornan)ethyl, R- and S-2-phenylbutyl, and 2-(2-chlorophenyl)ethyl. 2-(S-2-Phenylbutyloxy)a-denosine as an A3AR antagonist right-shifted the concentration–response curve for the inhibition by NECA of cyclic AMP accumulation with a KB value of 212 nM, which is similar to its binding affinity (Ki = 175 nM). These 2-substituted adenosine derivatives were generally less potent at the A1AR in comparison to the A3AR, but fully efficacious, with binding Ki values over 100 nM. The 2-phenylethyl moiety resulted in higher A3AR affinity (Ki in nM) when linked to the 2-position of adenosine through an ether group (54), than when linked through an amine (310) or thioether (1960). 2-[2-(l-Naphthyl)ethyloxy]adenosine (Ki = 3.8 nM) was found to be the most potent and selective (>50-fold) A2A agonist in this series. Mixed A2A/A3AR agonists have been identified. Interestingly, although most of these compounds were extremely weak at the A2BAR, 2-[2-(2-naphthyl)ethyloxy]adenosine (EC50 = 1.4 µM) and 2-[2-(2-thienyl)-ethyloxy]adenosine (EC50 = 1.8 (M) were found to be relatively potent A2B agonists, although less potent than NECA (EC50 = 140 nM). PMID:15476669

  1. Silk polymer-based adenosine release: therapeutic potential for epilepsy.

    PubMed

    Wilz, Andrew; Pritchard, Eleanor M; Li, Tianfu; Lan, Jing-Quan; Kaplan, David L; Boison, Detlev

    2008-09-01

    Adenosine augmentation therapies (AAT) make rational use of the brain's own adenosine-based seizure control system and hold promise for the therapy of refractory epilepsy. In an effort to develop an AAT compatible with future clinical application, we developed a novel silk protein-based release system for adenosine. Adenosine releasing brain implants with target release doses of 0, 40, 200, and 1000ng adenosine per day were prepared by embedding adenosine containing microspheres into nanofilm-coated silk fibroin scaffolds. In vitro, the respective polymers released 0, 33.4, 170.5, and 819.0ng adenosine per day over 14 days. The therapeutic potential of the implants was validated in a dose-response study in the rat model of kindling epileptogenesis. Four days prior to the onset of kindling, adenosine releasing polymers were implanted into the infrahippocampal cleft and progressive acquisition of kindled seizures was monitored over a total of 48 stimulations. We document a dose-dependent retardation of seizure acquisition. In recipients of polymers releasing 819ng adenosine per day, kindling epileptogenesis was delayed by one week corresponding to 18 kindling stimulations. Histological analysis of brain samples confirmed the correct location of implants and electrodes. We conclude that silk-based delivery of around 1000ng adenosine per day is a safe and efficient strategy to suppress seizures. PMID:18514814

  2. Adenosine Signaling During Acute and Chronic Disease States

    PubMed Central

    Karmouty-Quintana, Harry; Xia, Yang; Blackburn, Michael R.

    2013-01-01

    Adenosine is a signaling nucleoside that is produced following tissue injury, particularly injury involving ischemia and hypoxia. The production of extracellular adenosine and its subsequent signaling through adenosine receptors plays an important role in orchestrating injury responses in multiple organs. There are four adenosine receptors that are widely distributed on immune, epithelial, endothelial, neuronal and stromal cells throughout the body. Interestingly, these receptors are subject to altered regulation following injury. Studies in mouse models and human cells and tissues have identified that the production of adenosine and its subsequent signaling through its receptors plays largely beneficial roles in acute disease states, with the exception of brain injury. In contrast, if elevated adenosine levels are sustained beyond the acute injury phase, adenosine responses can become detrimental by activating pathways that promote tissue injury and fibrosis. Understanding when during the course of disease adenosine signaling is beneficial as opposed to detrimental and defining the mechanisms involved will be critical for the advancement of adenosine based therapies for acute and chronic diseases. The purpose of this review is to discuss key observations that define the beneficial and detrimental aspects of adenosine signaling during acute and chronic disease states with an emphasis on cellular processes such as inflammatory cell regulation, vascular barrier function and tissue fibrosis. PMID:23340998

  3. Adenosine diphosphate-degrading activity in placenta.

    PubMed

    Barradas, M; Khokher, M; Hutton, R; Craft, I L; Dandona, P

    1983-02-01

    1. The degradation of ADP by the placenta and umbilical artery was investigated. 2. Supernatants from incubations of finely chopped placental and umbilical arterial tissue were incubated with [14C]ADP for various durations from 0 to 30 min. 3. Products of ADP degradation were separated by thin-layer chromatography and radioactivity incorporated into each product was measured. 4. Placental supernatants induced a more rapid degradation of ADP than the umbilical artery supernatants. The main product of ADP degradation by placental supernatants at 30 min was adenosine, whereas that of umbilical artery was AMP. 5. This conversion by placenta of ADP, a potent platelet aggregator and vasoconstrictor, into adenosine, a potent platelet anti-aggregator and vasodilator, may be important in the maintenance of perfusion of the foetoplacental unit. PMID:6822058

  4. Adenosine thallium 201 myocardial perfusion scintigraphy

    SciTech Connect

    Verani, M.S. )

    1991-07-01

    Pharmacologic coronary vasodilation as an adjunct to myocardial perfusion imaging has become increasingly important in the evaluation of patients with coronary artery disease, in view of the large number of patients who cannot perform an adequate exercise test or in whom contraindications render exercise inappropriate. Adenosine is a very potent coronary vasodilator and when combined with thallium 201 scintigraphy produces images of high quality, with the added advantages of a very short half-life (less than 10 seconds) and the ability to adjust the dose during the infusion, which may enhance safety and curtail the duration of side effects. The reported sensitivity and specificity of adenosine thallium 201 scintigraphy for the detection of coronary artery disease are high and at least comparable with imaging after exercise or dipyridamole administration. 23 refs.

  5. Chemoelectrical energy conversion of adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  6. Gulf of Mexico Monitoring Via The Remotely Controlled CMR SailBuoy

    NASA Astrophysics Data System (ADS)

    Wienders, N.; Hole, L. R.; Peddie, D.

    2013-12-01

    The CMR SailBuoy is an unmanned ocean vessel capable of traveling the oceans for extended periods of time. It navigates the oceans autonomously - transmitting data at regular intervals using the Iridium network for two way communication. The SailBuoy can be used for a wide variety of ocean applications from measuring ocean and atmospheric parameters to tracking oil spills or acting as a communication relay station for subsea instrumentation. As part of the Deep-C project(Deep Sea to Coast Connectivity in the Eastern Gulf of Mexico), a two month campaign was carried out from March to May 2013 with the purpose of collecting sea surface data (temperature, salinity and oxygen) during the spring bloom. The campaign was unique in that the SailBouy was remotely controlled from Norway after being deployed from the RV Apalachee. The SailBuoy was deployed approximately 11 nautical miles (nm) south of Cape San Blas. During its mission she sailed approximately 840nm on a cruise track across the Gulf coast, from the Florida Panhandle to Louisiana. The SailBuoy project is part of Deep-C's physical oceanography research which seeks to, among other things, understand how particles and dissolved substances (such as oil) travel from the deep sea to the Louisiana, Mississippi, Alabama and Florida shorelines. This involves cross-shelf transport and upwelling mechanisms, which the SailBuoy is capable of measuring. An other focus was the sampling of the Mississippi river plume, which has been shown to influence the distribution of particles, oil, dissolved substances in the water, at least at the surface level. Sea surface salinity measurement via satellite do not provide, at the moment, sufficient resolution and accuracy and instead, the SailBuoy seems to be a very convenient instrument to track river plumes. In this presentation we describe the collected data and include comparisons with high resolution ocean model outputs. We also present further plans for SailBuoy campaigns.

  7. Prevalence of unidirectional Na+-dependent adenosine transport and altered potential for adenosine generation in diabetic cardiac myocytes.

    PubMed

    Podgorska, M; Kocbuch, K; Grden, M; Szutowicz, A; Pawelczyk, T

    2006-05-01

    Adenosine is an important physiological regulator of the cardiovascular system. The goal of our study was to assess the expression level of nucleoside transporters (NT) in diabetic rat cardiomyocytes and to examine the activities of adenosine metabolizing enzymes. Isolated rat cardiomyocytes displayed the presence of detectable amounts of mRNA for ENT1, ENT2, CNT1, and CNT2. Overall adenosine (10 microM) transport in cardiomyocytes isolated from normal rat was 36 pmol/mg/min. The expression level of equilibrative transporters (ENT1, ENT2) decreased and of concentrative transporters (CNT1, CNT2) increased in myocytes isolated from diabetic rat. Consequently, overall adenosine transport decreased by 30%, whereas Na(+)-dependent adenosine uptake increased 2-fold, and equilibrative transport decreased by 60%. The activity ratio of AMP deaminase/5'-nucleotidase in cytosol of normal cardiomyocytes was 11 and increased to 15 in diabetic cells. The activity of ecto-5'-nucleotidase increased 2-fold in diabetic cells resulting in a rise of the activity ratio of ecto-5'-nucleotidase/adenosine deaminase from 28 to 56.These results indicate that in rat cardiomyocytes diabetes alters activities of adenosine metabolizing enzymes in such a way that conversion of AMP to IMP is favored in the cytosolic compartment, whereas the capability to produce adenosine extracellularly is increased. This is accompanied by an increased unidirectional Na(+)-dependent uptake of adenosine and significantly reduced bidirectional adenosine transport. PMID:16369729

  8. ATP- and adenosine-mediated signaling in the central nervous system: adenosine stimulates glutamate release from astrocytes via A2a adenosine receptors.

    PubMed

    Nishizaki, Tomoyuki

    2004-02-01

    Adenosine enhanced intracellular Ca(2+) concentrations in astrocytes via A(2a) adenosine receptors involving protein kinase A (PKA) activation. The Ca(2+) rise is inhibited by brefeldin A, an inhibitor of vesicular transport; but not by neomycin and U73122, phospholipase C inhibitors; xestospongin, an IP(3)-receptor inhibitor; ryanodine, a ryanodine-receptor inhibitor; TMB-8, an endoplasmic reticulum calcium-release blocker; octanol, a gap-junction inhibitor; or cadmium, a non-selective, calcium-channel blocker. Adenosine stimulates astrocytic glutamate release via an A(2a) adenosine receptors/PKA pathway, and the release is inhibited by the vesicular transport inhibitors brefeldin A and bafilomycin A1. A(2a) adenosine receptors and the ensuing PKA events, thus, are endowed with vesicular Ca(2+) release from an unknown intracellular calcium store and vesicular glutamate release from astrocytes. PMID:14978344

  9. Characterization of adenosine receptors involved in adenosine-induced bronchoconstriction in allergic rabbits.

    PubMed Central

    el-Hashim, A.; D'Agostino, B.; Matera, M. G.; Page, C.

    1996-01-01

    1. Recent work has suggested that adenosine may be involved in asthma via the activation of A1 receptors. However, the role of the recently cloned A3 receptor in airways is largely unknown. In the present study, we have investigated the role of the A3 receptor in adenosine-induced bronchoconstriction in allergic rabbits. 2. Aerosol challenge of antigen (Ag) immunized rabbits with the adenosine precursor, adenosine 5'-monophosphate (AMP), resulted in a dose-dependent fall in dynamic compliance (Cdyn). The maximum fall in Cdyn in these rabbits was significantly greater than that in litter matched, sham immunized animals (P < 0.05). However, there was no significant difference in the maximum increase in airways resistance (Rt) between Ag and sham immunized rabbits (P > 0.05). 3. Aerosol challenge of Ag immunized rabbits with cyclopentyl-adenosine (CPA) (A1-receptor agonist) elicited a dose-dependent fall in Cdyn in Ag immunized rabbits and the maximum fall in Cdyn in these rabbits was significantly greater than that observed in sham immunized rabbits (P < 0.05). Similarly, CPA induced dose-dependent increases in R1 in Ag immunized rabbits whereas sham immunized rabbits failed to respond to CPA within the same dose range. The maximum increase in RL in Ag immunized rabbits was significantly greater than that of sham immunized rabbits (P < 0.05). 4. Aerosol challenge of either Ag or sham immunized rabbits with the A3 agonist aminophenylethyladenosine (APNEA) did not elicit dose-dependent changes in either RL or Cdyn. Moreover, there was no significant difference in the maximum response, measured by either parameter, between the two animal groups (P > 0.05). 5. These data provide further evidence for a role of the A1 receptor in the airways, but do not support a role for the A3 receptor in adenosine-induced bronchoconstriction in the allergic rabbit. PMID:8937732

  10. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment

    PubMed Central

    Ohta, Akio

    2016-01-01

    Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia–adenosine pathway for cancer immunotherapy. PMID:27066002

  11. Effects of adenosine, adenosine triphosphate and structural analogues on glucagon secretion from the perfused pancreas of rat in vitro.

    PubMed Central

    Chapal, J.; Loubatières-Mariani, M. M.; Roye, M.; Zerbib, A.

    1984-01-01

    The effects of adenosine, adenosine triphosphate (ATP) and structural analogues have been studied on glucagon secretion from the isolated perfused pancreas of the rat in the presence of glucose (2.8 mM). Adenosine induced a transient increase of glucagon secretion. This effect was concentration-dependent in the range of 0.165 to 165 microM. ATP also induced an increase, but the effect was no greater at 165 microM than at 16.5 microM. 2-Chloroadenosine, an analogue more resistant to metabolism or uptake systems than adenosine, was more effective. Among the three structural analogues of ATP or ADP studied, beta, gamma-methylene ATP which can be hydrolyzed into AMP and adenosine had an effect similar to adenosine or ATP at the same concentrations (1.65 and 16.5 microM); in contrast alpha, beta-methylene ATP and alpha, beta-methylene ADP (resistant to hydrolysis into AMP and adenosine) were ineffective. Theophylline (50 microM) a specific blocker of the adenosine receptor, suppressed the glucagon peak induced by adenosine, 2-chloroadenosine, ATP and beta, gamma-methylene ATP (1.65 microM). An inhibitor of 5' nucleotidase, alpha, beta-methylene ADP (16.5 microM), reduced the glucagon increase induced by ATP and did not affect the response to adenosine (1.65 microM). These results support the hypothesis of adenosine receptors (P1-purinoceptors) on the pancreatic glucagon secretory cells and indicate that ATP acts after hydrolysis to adenosine. PMID:6097328

  12. Adenosine: Tipping the balance towards hepatic steatosis and fibrosis

    PubMed Central

    Robson, Simon C.; Schuppan, Detlef

    2010-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the histochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:20395005

  13. Adenosine augments interleukin-10 production by microglial cells through an A2B adenosine receptor-mediated process

    PubMed Central

    Koscsó, Balázs; Csóka, Balázs; Selmeczy, Zsolt; Himer, Leonóra; Pacher, Pál; Virág, László; Haskó, György

    2011-01-01

    Microglia are activated by pathogen-associated molecular patterns and produce pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-12, and the anti-inflammatory cytokine IL-10. Adenosine is an endogenous purine nucleoside and is a ligand of four G protein-coupled adenosine receptors (ARs), which are the A1AR, A2AAR, A2BAR and A3AR. ARs have been shown to suppress TNF-α production by microglia, but their role in regulating IL-10 production has not been studied. Here, we demonstrate that adenosine augments IL-10 production by activated murine microglia while suppressing the production of pro-inflammatory cytokines. Since the order of potency of selective AR agonists in inducing IL-10 production was 5′-N-ethylcarboxamidoadenosine (NECA) > N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA) > 2-chloro-N6-cyclopentyladenosine (CCPA) ≥ 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethyl-carboxamidoadenosine (CGS21680), and the A2BAR antagonist MRS-1754 prevented the effect of NECA, we conclude that the stimulatory effect of adenosine on IL-10 production is mediated by the A2BAR. Mechanistically, adenosine augmented IL-10 mRNA accumulation by a transcriptional process. Using mutant IL-10 promoter constructs we showed that a CREB-binding region in the promoter mediated the augmenting effect of adenosine on IL-10 transcription. Chromatin immunoprecipitation analysis demonstrated that adenosine induced CREB phosphorylation at the IL-10 promoter. Silencing CREB using lentivirally delivered shRNA blocked the enhancing effect of adenosine on IL-10 production confirming a role for CREB in mediating the stimulatory effect of adenosine on IL-10 production. In addition, adenosine augmented IL-10 production by stimulating p38 MAPK. Collectively, our results establish that A2BARs augment IL-10 production by activated murine microglia. PMID:22116830

  14. A(3) adenosine receptor ligands: history and perspectives.

    PubMed

    Baraldi, P G; Cacciari, B; Romagnoli, R; Merighi, S; Varani, K; Borea, P A; Spalluto, G

    2000-03-01

    Adenosine regulates many physiological functions through specific cell membrane receptors. On the basis of pharmacological studies and molecular cloning, four different adenosine receptors have been identified and classified as A(1), A(2A), A(2B), and A(3). These adenosine receptors are members of the G-protein-coupled receptor family. While adenosine A(1) and A(2A) receptor subtypes have been pharmacologically characterized through the use of selective ligands, the A(3) adenosine receptor subtype is presently under study in order to better understand its physio-pathological functions. Activation of adenosine A(3) receptors has been shown to stimulate phospholipase C and D and to inhibit adenylate cyclase. Activation of A(3) adenosine receptors also causes the release of inflammatory mediators such as histamine from mast cells. These mediators are responsible for processes such as inflammation and hypotension. It has also been suggested that the A(3) receptor plays an important role in brain ischemia, immunosuppression, and bronchospasm in several animal models. Based on these results, highly selective A(3) adenosine receptor agonists and/or antagonists have been indicated as potential drugs for the treatment of asthma and inflammation, while highly selective agonists have been shown to possess cardioprotective effects. The updated material related to this field of research has been rationalized and arranged in order to offer an overview of the topic. PMID:10723024

  15. Comorbidities in Neurology: Is adenosine the common link?

    PubMed

    Boison, Detlev; Aronica, Eleonora

    2015-10-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the 'adenosine hypothesis of comorbidities' implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic 'comorbidity model', in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain co-morbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions. PMID:25979489

  16. Adenosine: Essential for life but licensed to kill

    PubMed Central

    Gama, Vivian; Deshmukh, Mohanish

    2016-01-01

    In this issue of Molecular Cell, Long et al. (Long et al., 2013) report a cell death priming mechanism activated by p53 that senses extracellular adenosine accumulated following chemotherapy or hypoxia, providing a novel connection between adenosine signaling and apoptosis. PMID:25884366

  17. Targeting of Adenosine Receptors in Ischemia-Reperfusion Injury

    PubMed Central

    Laubach, Victor E.; French, Brent A.; Okusa, Mark D.

    2010-01-01

    Importance of the field Ischemia-reperfusion (IR) injury is a common clinical problem after transplantation as well as myocardial infarction and stroke. IR initiates an inflammatory response leading to rapid tissue damage. Adenosine, produced in response to IR, is generally considered as a protective signaling molecule and elicits its physiological responses through four distinct adenosine receptors. The short half-life, lack of specificity, and rapid metabolism limits the use of adenosine as a therapeutic agent. Thus intense research efforts have focused on the synthesis and implementation of specific adenosine receptor agonists and antagonists as potential therapeutic agents for a variety of inflammatory conditions including IR injury. Areas covered by this review This review summarizes current knowledge on IR injury with a focus on lung, heart, and kidney, and examines studies that have advanced our understanding of the role of adenosine receptors and the therapeutic potential of adenosine receptor agonists and antagonists for the prevention of IR injury. What the reader will gain The reader will gain insight into the role of adenosine receptor signaling in IR injury. Take home message No clinical therapies are currently available that specifically target IR injury; however, targeting of specific adenosine receptors may offer therapeutic strategies in this regard. PMID:21110787

  18. Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a.

    PubMed

    Olorunleke, Feyisara Eyiwumi; Hua, Gia Khuong Hoang; Kieu, Nam Phuong; Ma, Zongwang; Höfte, Monica

    2015-10-01

    We investigated the role of phenazines and cyclic lipopeptides (CLPs) (orfamides and sessilins), antagonistic metabolites produced by Pseudomonas sp. CMR12a, in the biological control of damping-off disease on Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani AG 2-1 and root rot disease on bean (Phaseolus vulgaris L.) caused by R. solani AG 4-HGI. A Pseudomonas mutant that only produced phenazines suppressed damping-off disease on Chinese cabbage to the same extent as CMR12a, while its efficacy to reduce root rot on bean was strongly impaired. In both pathosystems, the phenazine mutant that produced both CLPs was equally effective, but mutants that produced only one CLP lost biocontrol activity. In vitro microscopic assays revealed that mutants that only produced sessilins or orfamides inhibited mycelial growth of R. solani when applied together, while they were ineffective on their own. Phenazine-1-carboxamide suppressed mycelial growth of R. solani AG 2-1 but had no effect on AG 4-HGI. Orfamide B suppressed mycelial growth of both R. solani anastomosis groups in a dose-dependent way. Our results point to an additive interaction between both CLPs. Moreover, phenazines alone are sufficient to suppress Rhizoctonia disease on Chinese cabbage, while they need to work in tandem with the CLPs on bean. PMID:26085277

  19. Different mechanisms of extracellular adenosine accumulation by reduction of the external Ca(2+) concentration and inhibition of adenosine metabolism in spinal astrocytes.

    PubMed

    Eguchi, Ryota; Akao, Sanae; Otsuguro, Ken-ichi; Yamaguchi, Soichiro; Ito, Shigeo

    2015-05-01

    Extracellular adenosine is a neuromodulator in the central nervous system. Astrocytes mainly participate in adenosine production, and extracellular adenosine accumulates under physiological and pathophysiological conditions. Inhibition of intracellular adenosine metabolism and reduction of the external Ca(2+) concentration ([Ca(2+)]e) participate in adenosine accumulation, but the precise mechanisms remain unclear. This study investigated the mechanisms underlying extracellular adenosine accumulation in cultured rat spinal astrocytes. The combination of adenosine kinase and deaminase (ADK/ADA) inhibition and a reduced [Ca(2+)]e increased the extracellular adenosine level. ADK/ADA inhibitors increased the level of extracellular adenosine but not of adenine nucleotides, which was suppressed by inhibition of equilibrative nucleoside transporter (ENT) 2. Unlike ADK/ADA inhibition, a reduced [Ca(2+)]e increased the extracellular level not only of adenosine but also of ATP. This adenosine increase was enhanced by ENT2 inhibition, and suppressed by sodium polyoxotungstate (ecto-nucleoside triphosphate diphosphohydrolase inhibitor). Gap junction inhibitors suppressed the increases in adenosine and adenine nucleotide levels by reduction of [Ca(2+)]e. These results indicate that extracellular adenosine accumulation by ADK/ADA inhibition is due to the adenosine release via ENT2, while that by reduction of [Ca(2+)]e is due to breakdown of ATP released via gap junction hemichannels, after which ENT2 incorporates adenosine into the cells. PMID:26003082

  20. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation

    PubMed Central

    Wen, Jiaming; Grenz, Almut; Zhang, Yujin; Dai, Yingbo; Kellems, Rodney E.; Blackburn, Michael R.; Eltzschig, Holger K.; Xia, Yang

    2011-01-01

    Normal penile erection is under the control of multiple factors and signaling pathways. Although adenosine signaling is implicated in normal and abnormal penile erection, the exact role and the underlying mechanism for adenosine signaling in penile physiology remain elusive. Here we report that shear stress leads to increased adenosine release from endothelial cells. Subsequently, we determined that ecto-5′-nucleotidase (CD73) is a key enzyme required for the production of elevated adenosine from ATP released by shear-stressed endothelial cells. Mechanistically, we demonstrate that shear stress-mediated elevated adenosine functions through the adenosine A2B receptor (A2BR) to activate the PI3K/AKT signaling cascade and subsequent increased endothelial nitric oxide synthase (eNOS) phosphorylation. These in vitro studies led us to discover further that adenosine was induced during sustained penile erection and contributes to PI3K/AKT activation and subsequent eNOS phosphorylation via A2BR signaling in intact animal. Finally, we demonstrate that lowering adenosine in wild-type mice or genetic deletion of A2BR in mutant mice significantly attenuated PI3K/AKT activation, eNOS phosphorylation, and subsequent impaired penile erection featured with the reduction of ratio of maximal intracavernosal pressure to systemic arterial pressure from 0.49 ± 0.03 to 0.41 ± 0.05 and 0.38 ± 0.04, respectively (both P<0.05). Overall, using biochemical, cellular, genetic, and physiological approaches, our findings reveal that adenosine is a novel molecule signaling via A2BR activation, contributing to penile erection via PI3K/AKT-dependent eNOS activation. These studies suggest that this signaling pathway may be a novel therapeutic target for erectile disorders.—Wen, J., Grenz, A., Zhang, Y., Dai, Y., Kellems, R. E., Blackburn, M. R., Eltzschig, H. K., Xia, Y. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation. PMID

  1. Yeast gene CMR1/YDL156W is consistently co-expressed with genes participating in DNA-metabolic processes in a variety of stringent clustering experiments

    PubMed Central

    Abu-Jamous, Basel; Fa, Rui; Roberts, David J.; Nandi, Asoke K.

    2013-01-01

    The binarization of consensus partition matrices (Bi-CoPaM) method has, among its unique features, the ability to perform ensemble clustering over the same set of genes from multiple microarray datasets by using various clustering methods in order to generate tunable tight clusters. Therefore, we have used the Bi-CoPaM method to the most synchronized 500 cell-cycle-regulated yeast genes from different microarray datasets to produce four tight, specific and exclusive clusters of co-expressed genes. We found 19 genes formed the tightest of the four clusters and this included the gene CMR1/YDL156W, which was an uncharacterized gene at the time of our investigations. Two very recent proteomic and biochemical studies have independently revealed many facets of CMR1 protein, although the precise functions of the protein remain to be elucidated. Our computational results complement these biological results and add more evidence to their recent findings of CMR1 as potentially participating in many of the DNA-metabolism processes such as replication, repair and transcription. Interestingly, our results demonstrate the close co-expressions of CMR1 and the replication protein A (RPA), the cohesion complex and the DNA polymerases α, δ and ɛ, as well as suggest functional relationships between CMR1 and the respective proteins. In addition, the analysis provides further substantial evidence that the expression of the CMR1 gene could be regulated by the MBF complex. In summary, the application of a novel analytic technique in large biological datasets has provided supporting evidence for a gene of previously unknown function, further hypotheses to test, and a more general demonstration of the value of sophisticated methods to explore new large datasets now so readily generated in biological experiments. PMID:23349438

  2. Adenosine receptors and asthma in humans.

    PubMed

    Wilson, C N

    2008-10-01

    According to an executive summary of the GINA dissemination committee report, it is now estimated that approximately 300 million people (5% of the global population or 1 in 20 persons) have asthma. Despite the scientific progress made over the past several decades toward improving our understanding of the pathophysiology of asthma, there is still a great need for improved therapies, particularly oral therapies that enhance patient compliance and that target new mechanisms of action. Adenosine is an important signalling molecule in human asthma. By acting on extracellular G-protein-coupled ARs on a number of different cell types important in the pathophysiology of human asthma, adenosine affects bronchial reactivity, inflammation and airway remodelling. Four AR subtypes (A(1), A(2a), A(2b) and A(3)) have been cloned in humans, are expressed in the lung, and are all targets for drug development for human asthma. This review summarizes what is known about these AR subtypes and their function in human asthma as well as the pros and cons of therapeutic approaches to these AR targets. A number of molecules with high affinity and high selectivity for the human AR subtypes have entered clinical trials or are poised to enter clinical trials as anti-asthma treatments. With the availability of these molecules for testing in humans, the function of ARs in human asthma, as well as the safety and efficacy of approaches to the different AR targets, can now be determined. PMID:18852693

  3. The Role of Adenosine Signaling in Sickle Cell Therapeutics

    PubMed Central

    Field, Joshua J.; Nathan, David G.; Linden, Joel

    2014-01-01

    Recent data suggest a role for adenosine signaling in the pathogenesis of sickle cell disease (SCD). Signaling through the adenosine A2A receptor (A2AR) has demonstrated beneficial effects in SCD. Activation of A2ARs decreases inflammation in mice and patients with SCD largely by blocking activation of invariant NKT cells. Decreased inflammation may reduce the severity of vaso-occlusive crises. In contrast, adenosine signaling through the A2B receptor (A2BR) may be detrimental for patients with SCD. Priapism and the formation of sickle erythrocytes may be a consequence of A2BR activation on corpus cavernosal cells and erythrocytes, respectively. Whether adenosine signaling predominantly occurs through A2ARs or A2BRs may depend on differing levels of adenosine and disease state (steady state versus crisis). There may be opportunities to develop novel therapeutic approaches targeting A2ARs and/or A2BRs for patients with SCD. PMID:24589267

  4. Chronic benzodiazepine treatment and cortical responses to adenosine and GABA.

    PubMed

    Mally, J; Connick, J H; Stone, T W

    1990-10-22

    The effects of chronic treatment of mice with clonazepam have been examined on the responses of neocortical slices to adenosine, 5-hydroxytryptamine (5-HT) and gamma-aminobutyric acid (GABA). Responses to these agonists were measured as changes in the depolarisation induced by N-methyl-D-aspartate (NMDA). Added to the superfusion medium diazepam blocked responses to adenosine but not 5-HT; this effect was not observed with 2-chloroadenosine or in the presence of 2-hydroxynitrobenzylthioguanosine. GABA was inactive in control slices but chronic treatment with clonazepam induced responses to GABA and enhanced responses to adenosine but not 5-HT. It is suggested that the induction of GABA responses may reflect the up-regulation of GABA receptors, but the increase of adenosine responses by clonazepam implies that there is no simple relationship between adenosine receptor binding and functional responses. PMID:1979931

  5. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  6. An adenosine kinase inhibitor, ABT-702, inhibits spinal nociceptive transmission by adenosine release via equilibrative nucleoside transporters in rat.

    PubMed

    Otsuguro, Ken-ichi; Tomonari, Yuki; Otsuka, Saori; Yamaguchi, Soichiro; Kon, Yasuhiro; Ito, Shigeo

    2015-10-01

    Adenosine kinase (AK) inhibitor is a potential candidate for controlling pain, but some AK inhibitors have problems of adverse effects such as motor impairment. ABT-702, a non-nucleoside AK inhibitor, shows analgesic effect in animal models of pain. Here, we investigated the effects of ABT-702 on synaptic transmission via nociceptive and motor reflex pathways in the isolated spinal cord of neonatal rats. The release of adenosine from the spinal cord was measured by HPLC. ABT-702 inhibited slow ventral root potentials (sVRPs) in the nociceptive pathway more potently than monosynaptic reflex potentials (MSRs) in the motor reflex pathway. The inhibitory effects of ABT-702 were mimicked by exogenously applied adenosine, blocked by 8CPT (8-cyclopentyl-1,3-dipropylxanthine), an adenosine A1 receptor antagonist, and augmented by EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), an adenosine deaminase (ADA) inhibitor. Equilibrative nucleoside transporter (ENT) inhibitors reversed the effects of ABT-702, but not those of adenosine. ABT-702 released adenosine from the spinal cord, an effect that was also reversed by ENT inhibitors. The ABT-702-facilitated release of adenosine by way of ENTs inhibits nociceptive pathways more potently than motor reflex pathways in the spinal cord via activation of A1 receptors. This feature is expected to lead to good analgesic effects, but, caution may be required for the use of AK inhibitors in the case of ADA dysfunction or a combination with ENT inhibitors. PMID:26066576

  7. Chaperoning of the A1-adenosine receptor by endogenous adenosine - an extension of the retaliatory metabolite concept.

    PubMed

    Kusek, Justyna; Yang, Qiong; Witek, Martin; Gruber, Christian W; Nanoff, Christian; Freissmuth, Michael

    2015-01-01

    Cell-permeable orthosteric ligands can assist folding of G protein-coupled receptors in the endoplasmic reticulum (ER); this pharmacochaperoning translates into increased cell surface levels of receptors. Here we used a folding-defective mutant of human A1-adenosine receptor as a sensor to explore whether endogenously produced adenosine can exert a chaperoning effect. This A1-receptor-Y(288)A was retained in the ER of stably transfected human embryonic kidney 293 cells but rapidly reached the plasma membrane in cells incubated with an A1 antagonist. This was phenocopied by raising intracellular adenosine levels with a combination of inhibitors of adenosine kinase, adenosine deaminase, and the equilibrative nucleoside transporter: mature receptors with complex glycosylation accumulated at the cell surface and bound to an A1-selective antagonist with an affinity indistinguishable from the wild-type A1 receptor. The effect of the inhibitor combination was specific, because it did not result in enhanced surface levels of two folding-defective human V2-vasopressin receptor mutants, which were susceptible to pharmacochaperoning by their cognate antagonist. Raising cellular adenosine levels by subjecting cells to hypoxia (5% O2) reproduced chaperoning by the inhibitor combination and enhanced surface expression of A1-receptor-Y(288)A within 1 hour. These findings were recapitulated for the wild-type A1 receptor. Taken together, our observations document that endogenously formed adenosine can chaperone its cognate A1 receptor. This results in a positive feedback loop that has implications for the retaliatory metabolite concept of adenosine action: if chaperoning by intracellular adenosine results in elevated cell surface levels of A1 receptors, these cells will be more susceptible to extracellular adenosine and thus more likely to cope with metabolic distress. PMID:25354767

  8. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells

    PubMed Central

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-01-01

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5’-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a ‘calm down’ signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001 PMID:24668173

  9. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus.

    PubMed

    Zhang, Dali; Xiong, Wei; Jackson, Michael F; Parkinson, Fiona E

    2016-07-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5'-nucleotidase activity. Wild-type (CD73(+/+)) and ecto-5'-nucleotidase-deficient (CD73(-/-)) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73(+/+) mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73(+/+) mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg(2+) conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5'-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73(-/-) mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5'-nucleotidase activity. PMID:27189965

  10. Identification of possible adenosine receptors in vascular smooth muscle

    SciTech Connect

    Doctrow, S.R.

    1985-01-01

    Adenosine is a vasodilator and has been implicated in increased blood flow in tissues that undergo energy deficiency. During conditions such as hypoxia and ischemia, adenosine is produced and is said to increase blood flow by relaxing the vascular smooth muscle (VSM) lining the resistance vessels. The goal of this research was to identify receptors that might be responsible for adenosine-mediated VSM relaxation. When an insoluble fraction from calf aortic VSM was incubated with /sup 32/P-ATP, two components were phosphorylated. One was identified as myosin light chain by MW, pl, and immunoprecipitation. The other product was identified as phosphatidylinositol-4-phosphate (DPI) by tic. Both phosphorylations were inhibited by adenosine and by 5'-chloro-5'-deoxyadenosine (Cl-Ado). DPI production was much more sensitive to the nucleosides than was myosin phosphorylation. Neither inhibition involved change in cAMP production. Phosphatidylinositol (Pl) kinase in the VSM membranes required magnesium, was activated and solubilized by Triton X-100, and phosphorylated both endogenous and exogenous Pl. Cl-Ado inhibited Pl kinase in a manner competitive with respect to ATP and noncompetitive with respect to Pl. Adenosine and adenosine analogs modified in the ribose ring were inhibitors with potencies comparable to that of Cl-Ado. Adenine nucleotides and purine-modified adenosine analogs were weaker inhibitors than Cl-Ado.

  11. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus

    PubMed Central

    Zhang, Dali; Xiong, Wei; Jackson, Michael F.

    2016-01-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965

  12. Characteristic molecular vibrations of adenosine receptor ligands.

    PubMed

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. PMID:25622891

  13. No effect of nutritional adenosine receptor antagonists on exercise performance in the heat.

    PubMed

    Cheuvront, Samuel N; Ely, Brett R; Kenefick, Robert W; Michniak-Kohn, Bozena B; Rood, Jennifer C; Sawka, Michael N

    2009-02-01

    Nutritional adenosine receptor antagonists can enhance endurance exercise performance in temperate environments, but their efficacy during heat stress is not well understood. This double-blinded, placebo-controlled study compared the effects of an acute dose of caffeine or quercetin on endurance exercise performance during compensable heat stress (40 degrees C, 20-30% rh). On each of three occasions, 10 healthy men each performed 30-min of cycle ergometry at 50% Vo2peak followed by a 15-min performance time trial after receiving either placebo (Group P), caffeine (Group C; 9 mg/kg), or quercetin (Group Q; 2,000 mg). Serial blood samples, physiological (heart rate, rectal, and mean skin body temperatures), perceptual (ratings of perceived exertion, pain, thermal comfort, motivation), and exercise performance measures (total work and pacing strategy) were made. Supplementation with caffeine and quercetin increased preexercise blood concentrations of caffeine (55.62 +/- 4.77 microM) and quercetin (4.76 +/- 2.56 microM) above their in vitro inhibition constants for adenosine receptors. No treatment effects were observed for any physiological or perceptual measures, with the exception of elevated rectal body temperatures (0.20-0.30 degrees C; P < 0.05) for Group C vs. Groups Q and P. Supplementation did not affect total work performed (Groups P: 153.5 +/- 28.3, C: 157.3 +/- 28.9, and Q: 151.1 +/- 31.6 kJ; P > 0.05) or the self-selected pacing strategy employed. These findings indicate that the nutritional adenosine receptor antagonists caffeine and quercetin do not enhance endurance exercise performance during compensable heat stress. PMID:19020291

  14. Increased Cortical Extracellular Adenosine Correlates with Seizure Termination

    PubMed Central

    Van Gompel, Jamie J.; Bower, Mark R.; Worrell, Gregory A.; Stead, Matt; Chang, Su-Youne; Goerss, Stephan J.; Kim, Inyong; Bennet, Kevin E.; Meyer, Fredric B.; Marsh, W. Richard; Blaha, Charles D.; Lee, Kendall H.

    2014-01-01

    Objective Seizures are currently defined by their electrographic features. However, neuronal networks are intrinsically dependent upon neurotransmitters of which little is known regarding their peri-ictal dynamics. Evidence supports adenosine as having a prominent role in seizure termination, as its administration can terminate and reduce seizures in animal models. Further, microdialysis studies in humans suggest adenosine is elevated peri-ictally, but the relationship to the seizure is obscured by its temporal measurement limitations. Because electrochemical techniques can provide vastly superior temporal resolution, we test the hypothesis that extracellular adenosine concentrations rise during seizure termination in an animal model and humans using electrochemistry. Methods White farm swine (n=45) were used in an acute cortical model of epilepsy and 10 human epilepsy patients were studied during intraoperative electrocorticography (Ecog). Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) based fast scan cyclic voltametry (FSCV) and fixed potential amperometry were obtained utilizing an adenosine specific triangular waveform or biosensors respectively. Results Simultaneous Ecog and electrochemistry demonstrated an average adenosine rise of 260% compared to baseline at 7.5 ± 16.9 seconds with amperometry (n=75 events) and 2.6 ± 11.2 seconds with FSCV (n=15 events) prior to electrographic seizure termination. In agreement with these animal data, adenosine elevation prior to seizure termination in a human patient utilizing FSCV was also seen. Significance Simultaneous Ecog and electrochemical recording supports the hypothesis that adenosine rises prior to seizure termination, suggesting that adenosine itself may be responsible for seizure termination. Future work using intraoperative WINCS based FSCV recording may help to elucidate the precise relationship between adenosine and seizure termination. PMID:24483230

  15. Why do asthmatic subjects respond so strongly to inhaled adenosine?

    PubMed

    Meade, C J; Dumont, I; Worrall, L

    2001-08-01

    Bronchospasm induced by adenosine is blocked by representatives of all the major classes of drugs used in the treatment of asthma. Understanding the mechanism of this bronchospasm may help understand the way these drugs work. Clinical studies have suggested involvement of neural pathways, mast-like cells and mediators such as histamine, serotonin and lipoxygenase products. There is a strong link between responsiveness to adenosine and eosinophilia. In different animal models A1, A2b and A3 adenosine receptor subclasses have all been implicated in inducing bronchospasm. whilst occupation of the A2a receptor generally has no, or the opposite effect. At least two different mechanisms, both involving neural pathways, exist. One, involving the adenosine A1 receptor, functions in mast cell depleted animals; the other requires interaction with a population of mast-like cells activated over A2b or A3 receptors. Not only histamine but also serotonin and lipoxygenase products released from the mast-like cells are potential mediators. In animal models good reactivity to adenosine receptor agonists is generally only found when the animals are first sensitized and exposed to allergen in ways likely to induce an allergic inflammation. An exception is the BDE rat, which reacts to adenosine receptor agonists such as APNEA or NECA even without allergen exposure. This rat strain does however show evidence of spontaneous eosinophilic inflammation in the lung even without immunization. As mast cells both release adenosine and respond to adenosine, adenosine provides a non-specific method of amplifying specific signals resulting from IgE/antigen interaction. This mechanism may not only have a pathological significance in asthma; it may be part of a normal bodily defense response that in asthmatic subjects is inappropriately activated. PMID:11521747

  16. Adenosine reversal of in vivo hepatic responsiveness to insulin.

    PubMed

    McLane, M P; Black, P R; Law, W R; Raymond, R M

    1990-01-01

    Modulation by adenosine of hepatic responsiveness to insulin was investigated in vivo in 10 healthy mongrel dogs of both sexes by determining net hepatic glucose output (NHGO) in response to insulin during the presence or absence of exogenous adenosine infusion. In addition, two separate series of experiments were performed to study the effect of adenosine (n = 7) or glucagon (n = 5) on NHGO. Basal NHGO, quantitated via the Fick principle, was significantly decreased by insulin infusion (4 U/min; 4.8 +/- 0.6 vs. -1.7 +/- 2.6 mg.kg-1.min-1, P less than 0.05). The addition of an intrahepatic arterial infusion of adenosine (10 mumol/min) during insulin infusion caused glucose output to return to basal levels (insulin, -1.7 +/- 2.6 mg.kg-1.min-1; insulin + adenosine, 3.8 +/- 1.6 mg.kg-1.min-1, P less than 0.05). The addition of intrahepatic arterial saline (control) during insulin infusion had no effect on insulin's action (insulin, -1.0 +/- 1.9 mg.kg-1.min-1; insulin + saline, -1.2 +/- 1.6 mg.kg-1.min-1, P greater than 0.05). Hepatic glucose, lactate, and oxygen deliveries were not affected during either insulin or insulin plus adenosine infusion. Intrahepatic arterial infusion of adenosine alone had no effect on NHGO, whereas intrahepatic arterial infusion of glucagon alone stimulated glucose output approximately fivefold (basal, 2.7 +/- 0.4 mg.kg-1.min-1; glucagon, 15.5 +/- 1.2 mg.kg-1.min-1, P less than 0.01). These results show that adenosine completely reversed the inhibition by insulin of NHGO. These data suggest that adenosine may act as a modulator of insulin action on the liver. PMID:2210062

  17. Adenosine deaminase in disorders of purine metabolism and in immune deficiency

    SciTech Connect

    Tritsch, G.L.

    1985-01-01

    This book consists of five parts and a section of poster papers. Some of the selection titles are: Adenosine Deaminase Impairment and Ribonucleotide Reductase in Human Cells; Adenosine Deaminase and Malignant Cells; Inhibition of Adenosine Deaminase to Increase the Antitumor Activity of Adenine Nucleoside Analogues; and Molecular Biology of the Adenosine Deaminase Gene and Messenger RNA.

  18. Arabidopsis COPPER MODIFIED RESISTANCE1/PATRONUS1 is essential for growth adaptation to stress and required for mitotic onset control.

    PubMed

    Juraniec, Michal; Heyman, Jefri; Schubert, Veit; Salis, Pietrino; De Veylder, Lieven; Verbruggen, Nathalie

    2016-01-01

    The mitotic checkpoint (MC) guards faithful sister chromatid segregation by monitoring the attachment of spindle microtubules to the kinetochores. When chromosome attachment errors are detected, MC delays the metaphase-to-anaphase transition through the inhibition of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. In contrast to yeast and mammals, our knowledge on the proteins involved in MC in plants is scarce. Transient synchronization of root tips as well as promoter-reporter gene fusions were performed to analyze temporal and spatial expression of COPPER MODIFIED RESISTANCE1/PATRONUS1 (CMR1/PANS1) in developing Arabidopsis thaliana seedlings. Functional analysis of the gene was carried out, including CYCB1;2 stability in CMR1/PANS1 knockout and overexpressor background as well as metaphase-anaphase chromosome status. CMR1/PANS1 is transcriptionally active during M phase. Its deficiency provokes premature cell cycle exit and in consequence a rapid consumption of the number of meristematic cells in particular under stress conditions that are known to affect spindle microtubules. Root growth impairment is correlated with a failure to delay the onset of anaphase, resulting in anaphase bridges and chromosome missegregation. CMR1/PANS1 overexpression stabilizes the mitotic CYCB1;2 protein. Likely, CMR1/PANS1 coordinates mitotic cell cycle progression by acting as an APC/C inhibitor and plays a key role in growth adaptation to stress. PMID:26261921

  19. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

    PubMed Central

    Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2008-01-01

    Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377

  20. The relationship between electrocardiographic changes and CMR features in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy.

    PubMed

    Chen, Xiuyu; Zhao, Tao; Lu, Minjie; Yin, Gang; Xiangli, Wei; Jiang, Shiliang; Prasad, Sanjay; Zhao, Shihua

    2014-06-01

    To investigate the relationship between electrocardiographic (ECG) abnormalities and left ventricular (LV) segmental hypertrophy and myocardial fibrosis assessed by cardiovascular magnetic resonance (CMR) in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy (HCM). 118 asymptomatic or mildly symptomatic patients with HCM were examined with late gadolinium enhancement (LGE) CMR, 12-lead ECG, and echocardiography. The distribution and magnitude of LV segmental hypertrophy and LGE were assessed and analyzed in relation to ECG abnormalities. Abnormal electrocardiograms were found in 113 of 118 (95%) patients. Negative T waves were associated with greater apical septal thickness (P = 0.009) and an increased ratio of LV septum to free wall thickness (P = 0.01). Giant negative T waves (GNT) were found in 19 patients (16%), and were associated with apical HCM (P < 0.001), greater apical thickness (P = 0.004), and increased ratio of LV apical to basal wall thickness (P < 0.001). However, no significant association was demonstrated between GNT and apical LGE (P = 0.71). Abnormal Q waves were associated with greater basal anteroseptal thickness (P = 0.001), maximal basal thickness (P = 0.004), and more segments with extensive LGE (>75% wall thickness involved) (P = 0.001). LV hypertrophy was related to greater LV mass (P = 0.002) and LV end diastolic volume (P = 0.002). In addition, a modest but significant correlation was observed between maximum LV wall thickness and the Romhilt-Estes score (r = 0.41, P < 0.001). GNT were associated with apical HCM and an increased ratio of LV apical to basal wall thickness. Abnormal Q waves were related to basal anteroseptal hypertrophy and segmental extensive LGE. PMID:24723003

  1. Apparatus for nonresonant rf power absorption studies in high Tc superconductors and CMR materials using rf oscillators

    NASA Astrophysics Data System (ADS)

    Sarangi, S.; Bhat, S. V.

    2005-02-01

    The design, fabication, and performance of an apparatus for measurement of nonresonant rf power absorption (NRRA) in superconducting and CMR samples are described. The system consists of an effective self-resonant LC tank circuit driven by a NOT gate (Logic gate). The samples under investigation are placed in the core of an inductive coil and nonresonant power absorption is determined from the measured shift in total current supplies to the whole oscillator circuit. A customized low temperature insert is used to integrate the experiment with a commercial oxford cryostat and temperature controller. The system makes use of a sensitive digital multimeter (Keithley 2002 model) and is capable of measuring NRRA in superconducting and colossal magnetoresistance samples of volume as small as 1×10-3cm3 with a signal to noise ratio of 10. Further increase in the sensitivity of the experimental setup can be obtained by summing the results of repeated measurements obtained in the same temperature interval. The system has been tested for an IC 74LS04 oscillator at frequencies between 1MHz and 25MHz in the temperature range from 4.2Kto400K and in magnetic field from 0to1.4T. The system performance is evaluated by measuring the NRRA in YBa2Cu3O7 (YBCO) superconducting sample and La0.7Sr0.3MnO3 (LSMO) colossal magnetoresistive (CMR) manganite samples at different rf frequencies. During a measurement all operation are controlled automatically by computer from a menu-driven software system, with user input required only on initiation of measurement sequence.

  2. Quantification of myocardial perfusion using CMR with a radial data acquisition: comparison with a dual-bolus method

    PubMed Central

    2010-01-01

    Background Quantitative estimates of myocardial perfusion generally require accurate measurement of the arterial input function (AIF). The saturation of signal intensity in the blood that occurs with most doses of contrast agent makes obtaining an accurate AIF challenging. This work seeks to evaluate the performance of a method that uses a radial k-space perfusion sequence and multiple saturation recovery times (SRT) to quantify myocardial perfusion with cardiovascular magnetic resonance (CMR). Methods Perfusion CMR was performed at 3 Tesla with a saturation recovery radial turboFLASH sequence with 72 rays. Fourteen subjects were given a low dose (0.004 mmol/kg) of dilute (1/5 concentration) contrast agent (Gd-BOPTA) and then a higher non-dilute dose of the same volume (0.02 mmol/kg). AIFs were calculated from the blood signal in three sub-images with differing effective saturation recovery times. The full and sub-images were reconstructed iteratively with a total variation constraint. The images from the full 72 ray data were processed to obtain six tissue enhancement curves in two slices of the left ventricle in each subject. A 2-compartment model was used to determine absolute flows Results The proposed multi-SRT method resulted in AIFs that were similar to those obtained with the dual-bolus method. Myocardial blood flow (MBF) estimates from the dual-bolus and the multi-SRT methods were related by MBFmulti-SRT = 0.85MBFdual-bolus + 0.18 (r = 0.91). Conclusions The multi-SRT method, which uses a radial k-space perfusion sequence, can be used to obtain an accurate AIF and thus quantify myocardial perfusion for doses of contrast agent that result in a relatively saturated AIF. PMID:20653961

  3. Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors.

    PubMed

    Yan, Xiao-Feng; Zhang, Zhong-Miao; Yao, Hong-Yi; Guan, Yan; Zhu, Jian-Ping; Zhang, Lin-Hui; Jia, Yong-Liang; Wang, Ru-Wei

    2013-11-01

    Mycelia of cultured Cordyceps sinensis (CS) is one of the most common substitutes for natural CS and was approved for arrhythmia in China. However, the role of CS in ameliorating injury during ischemia-reperfusion (I/R) is still unclear. We examined effects of extracts from CS on I/R and investigated the possible mechanisms. Post-ischemic coronary perfusion pressure, ventricular function, and coronary flow were measured using the Langendorff mouse heart model. Oxidative stress of cardiac homogenates was performed using an ELISA. Our results indicate that CS affords cardioprotection possibly through enhanced adenosine receptor activation. Cardioprotection was demonstrated by reduced post-ischemic diastolic dysfunction and improved recovery of pressure development and coronary flow. Treatment with CS largely abrogates oxidative stress and damage in glucose- or pyruvate-perfused hearts. Importantly, observed reductions in oxidative stress [glutathione disulfide (GSSG)]/[GSSG + glutathione] and [malondialdehyde (MDA)]/[superoxide dismutase + MDA] ratios as well as the resultant damage upon CS treatment correlate with functional markers of post-ischemic myocardial outcome. These effects of CS were partially blocked by 8-ρ-sulfophenyltheophylline, an adenosine receptor antagonist. Our results demonstrate a suppressive role of CS in ischemic contracture. Meanwhile, the results also suggest pre-ischemic adenosine receptor activation may be involved in reducing contracture in hearts pretreated with CS. PMID:23192916

  4. Stress.

    PubMed

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself. PMID:18846841

  5. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  6. Alterations of adenosine A1 receptors in morphine dependence.

    PubMed

    Kaplan, G B; Leite-Morris, K A; Sears, M T

    1994-09-19

    The possibility that central adenosine A1 and A2a receptors mediate opiate dependence was examined in morphine-treated mice using radioligand binding methods. Mice treated with morphine for 72 h demonstrated significant increases in naloxone precipitated abstinence behaviors of jumping, wet-dog shakes, teeth chattering, forepaw trends, forepaw tremors and diarrhea compared to vehicle-treated mice. Increased concentrations of cortical adenosine A1 receptor sites, but not striatal adenosine A2a sites, were found in saturation binding studies from morphine-dependent mice. Decreases in cortical A1 agonist binding affinity values along with increases in agonist binding sites were demonstrated in competition binding studies. These results suggest that adaptive changes of upregulation and sensitization of adenosine A1 receptors play a role in mediating the opiate abstinence syndrome. PMID:7820640

  7. Proton transfer in oxidized adenosine self-aggregates.

    PubMed

    Capobianco, Amedeo; Caruso, Tonino; Celentano, Maurizio; La Rocca, Mario Vincenzo; Peluso, Andrea

    2013-10-14

    The UV-vis and the IR spectra of derivativized adenosine in dichloromethane have been recorded during potentiostatic oxidation at an optically transparent thin layer electrode. Oxidized adenosine shows a broad Zundel like absorption extending from 2800 up to 3600 cm(-1), indicating that a proton transfer process is occurring. Theoretical computations predict that proton transfer is indeed favored in oxidized 1:1 self-association complexes and allow to assign all the observed transient spectroscopic signals. PMID:24116647

  8. Myocardial Feature Tracking Reduces Observer-Dependence in Low-Dose Dobutamine Stress Cardiovascular Magnetic Resonance

    PubMed Central

    Schuster, Andreas; Paul, Matthias; Bettencourt, Nuno; Hussain, Shazia T.; Morton, Geraint; Kutty, Shelby; Bigalke, Boris; Chiribiri, Amedeo; Perera, Divaka

    2015-01-01

    Objectives To determine whether quantitative wall motion assessment by CMR myocardial feature tracking (CMR-FT) would reduce the impact of observer experience as compared to visual analysis in patients with ischemic cardiomyopathy (ICM). Methods 15 consecutive patients with ICM referred for assessment of hibernating myocardium were studied at 3 Tesla using SSFP cine images at rest and during low dose dobutamine stress (5 and 10 μg/kg/min of dobutamine). Conventional visual, qualitative analysis was performed independently and blinded by an experienced and an inexperienced reader, followed by post-processing of the same images by CMR-FT to quantify subendocardial and subepicardial circumferential (Eccendo and Eccepi) and radial (Err) strain. Receiver operator characteristics (ROC) were assessed for each strain parameter and operator to detect the presence of inotropic reserve as visually defined by the experienced observer. Results 141 segments with wall motion abnormalities at rest were eligible for the analysis. Visual scoring of wall motion at rest and during dobutamine was significantly different between the experienced and the inexperienced observer (p<0.001). All strain values (Eccendo, Eccepi and Err) derived during dobutamine stress (5 and 10 μg/kg/min) showed similar diagnostic accuracy for the detection of contractile reserve for both operators with no differences in ROC (p>0.05). Eccendo was the most accurate (AUC of 0.76, 10 μg/kg/min of dobutamine) parameter. Diagnostic accuracy was worse for resting strain with differences between operators for Eccendo and Eccepi (p<0.05) but not Err (p>0.05). Conclusion Whilst visual analysis remains highly dependent on operator experience, quantitative CMR-FT analysis of myocardial wall mechanics during DS-CMR provides diagnostic accuracy for the detection of inotropic reserve regardless of operator experience and hence may improve diagnostic robustness of low-dose DS-CMR in clinical practice. PMID:25848764

  9. The A3 adenosine receptor: history and perspectives.

    PubMed

    Borea, Pier Andrea; Varani, Katia; Vincenzi, Fabrizio; Baraldi, Pier Giovanni; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania

    2015-01-01

    By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health. PMID:25387804

  10. Detrimental effects of adenosine signaling in sickle cell disease

    PubMed Central

    Zhang, Yujin; Dai, Yingbo; Wen, Jiaming; Zhang, Weiru; Grenz, Almut; Sun, Hong; Tao, Lijian; Lu, Guangxiu; Alexander, Danny C; Milburn, Michael V; Carter-Dawson, Louvenia; Lewis, Dorothy E; Zhang, Wenzheng; Eltzschig, Holger K; Kellems, Rodney E; Blackburn, Michael R; Juneja, Harinder S; Xia, Yang

    2016-01-01

    Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A2B receptor (A2BR)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A2BR has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease. PMID:21170046

  11. Patients with reduced heart rate response to adenosine infusion have low myocardial flow reserve in (13)N-ammonia PET studies.

    PubMed

    Tomiyama, Takeshi; Kumita, Shin-ichiro; Ishihara, Keiichi; Suda, Masaya; Sakurai, Minoru; Hakozaki, Kenta; Hashimoto, Hidenobu; Takahashi, Naoto; Takano, Hitoshi; Kobayashi, Yasuhiro; Kiriyama, Tomonari; Fukushima, Yoshimitsu; Shimizu, Wataru

    2015-06-01

    To assess the effect of adenosine infusion by evaluating the relationship between heart rate (HR) response to adenosine and myocardial flow reserve (MFR) of remote regions supplied by normal coronary arteries in (13)N-ammonia PET. Thirty-one consecutive subjects (20 known coronary artery disease patients, 4 chronic heart failure patients, and 7 normal volunteers) except cases having 3-vessel disease underwent rest and adenosine stress (13)N-ammonia myocardial perfusion PET. Semi-quantitative, quantitative, and gated analyses were performed. Subjects were divided into two groups with regard to HR response to adenosine. Twenty-two subjects had normal HR response (peak/rest HR > 1.20), while reduced HR response (≤ 1.20) was observed in nine subjects. There were no differences in rest myocardial blood flow (MBF) of remote regions between the groups. Subjects with reduced HR response had significantly lower stress MBF and MFR of remote regions than those with normal HR response (stress MBF: 1.559 ± 0.517 vs. 2.279 ± 0.530, p = 0.004, MFR: 1.59 ± 0.36 vs. 2.35 ± 0.53, p = 0.001). There were no significant differences between the groups by means of semi-quantitative scoring. Rest and stress ejection fraction (EF) in the reduced HR response group was lower than that in the normal HR response group. In a multiple stepwise regression analysis, HR ratio, dyslipidemia, and Brinkman index were identified as predictors of the change in MFR of remote regions. Subjects with reduced HR response to adenosine had lower stress MBF and MFR of remote regions and lower EF. Moreover, HR response was one of the predictors of the change in MFR of remote regions. PMID:25846547

  12. Adenosine deaminase inhibition enhances the inotropic response mediated by A1 adenosine receptor in hyperthyroid guinea pig atrium.

    PubMed

    Kemeny-Beke, Adam; Jakab, Anita; Zsuga, Judit; Vecsernyes, Miklos; Karsai, Denes; Pasztor, Fanni; Grenczer, Maria; Szentmiklosi, Andras Jozsef; Berta, Andras; Gesztelyi, Rudolf

    2007-08-01

    The aim of the present study was to test the hypothesis that inhibition of adenosine deaminase (ADA) enhances the efficiency of signal-transduction of myocardial A1 adenosine receptors in hyperthyroidism. The inotropic response to N6-cyclopentyladenosine (CPA), a selective A1 adenosine receptor agonist resistant to ADA, was investigated in the absence or presence of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), an ADA and cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase (PDE2) inhibitor, or of pentostatin (2'-deoxycoformycin; DCF), an exclusive ADA inhibitor, in left atria isolated from eu- or hyperthyroid guinea pigs. Both ADA inhibitors enhanced the effect of CPA only in hyperthyroid atria. EHNA significantly increased the Emax (mean+/-S.E.M.) from 83.8+/-1.2% to 93.4+/-1.2%, while DCF significantly decreased the logEC50 from -7.5+/-0.07 to -7.83+/-0.07 in hyperthyroid samples. Conversely, EHNA also diminished the logEC50 (from -7.5+/-0.07 to -7.65+/-0.07) and DCF also raised the Emax (from 83.8+/-1.2% to 85.7+/-2%) in hyperthyroidism, but these changes were not significant. In conclusion, ADA inhibition moderately but significantly enhanced the efficiency of A(1) adenosine receptor signaling pathway in the hyperthyroid guinea pig atrium. This suggests that elevated intracellular adenosine level caused by ADA inhibition may improve the suppressed responsiveness to A1 adenosine receptor agonists associated with the hyperthyroid state. Alternatively or in addition, the role of decreased concentration of adenosine degradation products cannot be excluded. Furthermore, in the case of EHNA, inhibition of PDE2 also appears to contribute to the enhanced A1 adenosine receptor signaling in the hyperthyroid guinea pig atrium. PMID:17574432

  13. Interstitial adenosine concentration is increased by dipyridamole

    SciTech Connect

    Gorman, M.W.; Wangler, R.D.; DeWitt, D.F.; Wang, C.Y.; Bassingthwaighte, J.B.; Sparks, H.V.

    1986-03-01

    The authors used the multiple indicator dilution technique to observe the capillary transport of adenosine (ADO) in isolated guinea pig hearts. Radiolabelled albumin, sucrose and ADO were injected on the arterial side and measured in venous samples collected during the following 20 seconds. Transport parameters calculated from these data include permeability-surface area products (PS) for transendothelial diffusion, endothelial cell (EC) uptake at the lumenal and ablumenal membranes, and EC metabolism. With simultaneous measurements of arterial and venous ADO concentrations and flow, the authors calculated the steady-state interstitial fluid (ISF) ADO concentration. Under control conditions the venous ADO concentration was 7.1 +/- 2.8 nM. The calculated ISF concentration depends on whether they assume the venous ADO comes from the ISF, or directly from ECs. These ISF concentrations are 25 +/- 12 nM and 9.8 +/- 4.0 nM, respectively. During dipyridamole infusion (10 uM) the EC transport parameters became nearly zero. Venous and ISF ADO concentrations increased to 33 +/- 8.9 nM and 169 +/- 42 nM, respectively. The authors conclude that the ISF ADO concentration is 1.5-4 fold higher than the venous concentration at rest, and the ISF concentration increases greatly with dipyridamole.

  14. Role of A3 adenosine receptor in diabetic neuropathy.

    PubMed

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc. PMID:27319979

  15. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. PMID:21511036

  16. Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, via A2B adenosine receptor signaling

    PubMed Central

    Wen, Jiaming; Jiang, Xianzhen; Dai, Yingbo; Zhang, Yujin; Tang, Yuxin; Sun, Hong; Mi, Tiejuan; Phatarpekar, Prasad V.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2010-01-01

    Priapism is a condition of persistent penile erection in the absence of sexual excitation. Of men with sickle cell disease (SCD), 40% display priapism. The disorder is a dangerous and urgent condition, given its association with penile fibrosis and eventual erectile dysfunction. Current strategies to prevent its progression are poor because of a lack of fundamental understanding of the molecular mechanisms for penile fibrosis in priapism. Here we demonstrate that increased adenosine is a novel causative factor contributing to penile fibrosis in two independent animal models of priapism, adenosine deaminase (ADA)-deficient mice and SCD transgenic mice. An important finding is that chronic reduction of adenosine by ADA enzyme therapy successfully attenuated penile fibrosis in both mouse models, indicating an essential role of increased adenosine in penile fibrosis and a novel therapeutic possibility for this serious complication. Subsequently, we identified that both mice models share a similar fibrotic gene expression profile in penile tissue (including procollagen I, TGF-β1, and plasminogen activator inhibitor-1 mRNA), suggesting that they share similar signaling pathways for progression to penile fibrosis. Thus, in an effort to decipher specific cell types and underlying mechanism responsible for adenosine-mediated penile fibrosis, we purified corpus cavernosal fibroblast cells (CCFCs), the major cell type involved in this process, from wild-type mice. Quantitative RT-PCR showed that the major receptor expressed in these cells is the adenosine receptor A2BR. Based on this fact, we further purified CCFCs from A2BR-deficient mice and demonstrated that A2BR is essential for excess adenosine-mediated penile fibrosis. Finally, we revealed that TGF-β functions downstream of the A2BR to increase CCFC collagen secretion and proliferation. Overall, our studies identify an essential role of increased adenosine in the pathogenesis of penile fibrosis via A2BR signaling and

  17. Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.

    PubMed

    Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír

    2007-09-01

    Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine. PMID:17882653

  18. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity.

    PubMed

    Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung

    2015-02-01

    This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine. PMID:25604821

  19. Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter.

    PubMed

    de Paulis, Tomas; Schmidt, Dennis E; Bruchey, Aleksandra K; Kirby, Michael T; McDonald, Michael P; Commers, Patricia; Lovinger, David M; Martin, Peter R

    2002-05-10

    Preliminary screening of a minor, non-xanthine constituent of roasted coffee, 3,4-diferuloyl-1,5-quinolactone (DIFEQ), showed inhibition of the adenosine transporter at low micromolar concentration. DIFEQ is a neutral derivative of the chlorogenic acids, i.e. isomeric mono- and di-substituted coumaroyl-, caffeoyl-, and feruloyl-esters of quinic acid, formed in the roasting process of coffee. Displacement of the adenosine transporter antagonist [(3)H](S)-(nitrobenzyl)-6-thioinosine binding by DIFEQ in cultured U-937 cell preparations, expressing the human adenosine transporter protein (hENT1), showed a K(i) of 0.96+/-0.13 microM. Extracts of regular and decaffeinated coffee showed binding activities equivalent to 30-40 mg DIFEQ per three cups of coffee. Acute administration of a high dose of DIFEQ (100 mg/kg i.p.) reduced open field locomotion in mice for 20 min in correlation with brain levels of DIFEQ. Both 3,4-dicaffeoyl-1,5-quinide and 3,4-dicoumaroyl-1,5-quinide, two close structural analogs of DIFEQ also present in roasted coffee, showed similar affinities for the adenosine transporter, while the corresponding 3- and 4-mono caffeoyl- and feruloyl-quinides were one to two orders of magnitudes less active. This suggests that 3,4-dicinnamoyl-1,5-quinides in coffee could have the potential to raise extra-cellular adenosine levels, thereby counteracting the stimulant effect of caffeine. PMID:12065074

  20. Regulation of Adenosine Deaminase on Induced Mouse Experimental Autoimmune Uveitis.

    PubMed

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J; Sun, Deming

    2016-03-15

    Adenosine is an important regulator of the immune response, and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies showed that adenosine receptor agonists can be anti- or proinflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1-20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8-14 d postimmunization, shortly before EAU expression; however, ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses, and this effect was γδ T cell dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help to improve the design of ADA- and adenosine receptor-targeted therapies. PMID:26856700

  1. Prehospital use of adenosine by ambulance services in the Netherlands

    PubMed Central

    Adams, R.; Bon, V.

    2003-01-01

    Background The prehospital use of adenosine in the treatment of supraventricular arrhythmias has recently been implemented in standard ambulance care. However, establishing the origin and nature of the arrhythmia with certainty is an absolute requirement for using adenosine. Methods The ability of the ambulance nurse to predict supraventricular arrhythmias and the necessity of prehospital treatment of arrhythmias in general was evaluated. To do this, cardiologists at the Academic Medical Centre of Amsterdam were consulted and a literature search by means of an electronic search in Pubmed was performed. The search was complemented by a second survey concerning antagonists of adenosine using the keywords: adenosine and theophylline. Moreover, the Ambulance Nurse textbook, the National Protocol for Ambulance Care as well as the explanatory memorandum to the protocol were consulted. Results No strong indication for the prehospital use of adenosine was found, while detrimental effects of the drug can occur. There is no literature showing the ability of ambulance staff to correctly interpret complex cardiac arrhythmias in the Netherlands; the current ambulance protocol does not prevent an incorrect choice of therapy and medication. Conclusion It is strongly advised against using antiarrhythmic medication for the treatment of tachycardias in a prehospital setting if this treatment can be postponed to the hospital environment. PMID:25696211

  2. Adenosine signaling and the regulation of chronic lung disease

    PubMed Central

    Zhou, Yang; Schneider, Daniel J.; Blackburn, Michael R.

    2009-01-01

    Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and interstitial lung disease are characterized by inflammation and tissue remodeling processes that compromise pulmonary function. Adenosine is produced in the inflamed and damaged lung where it plays numerous roles in the regulation of inflammation and tissue remodeling. Extracellular adenosine serves as an autocrine and paracrine signaling molecule by engaging cell surface adenosine receptors. Preclinical and cellular studies suggest that adenosine plays an anti-inflammatory role in processes associated with acute lung disease, where activation of the A2AR and A2BR have promising implications for the treatment of these disorders. In contrast, there is growing evidence that adenosine signaling through the A1R, A2BR and A3R may serve pro-inflammatory and tissue remodeling functions in chronic lung diseases. This review discusses the current progress of research efforts and clinical trials aimed at understanding the complexities of this signaling pathway as they pertain to the development of treatment strategies for chronic lung diseases. PMID:19426761

  3. Antagonism by theophylline of respiratory inhibition induced by adenosine.

    PubMed

    Eldridge, F L; Millhorn, D E; Kiley, J P

    1985-11-01

    The effects on respiration of an analogue of adenosine, L-2-N6-(phenylisopropyl)adenosine (PIA), and of the methylxanthine, theophylline, were determined in 19 vagotomized glomectomized cats whose end-tidal PCO2 was kept constant by means of a servo-controlled ventilator. Integrated phrenic nerve activity was used to represent respiratory output. Our results show that PIA, whether given systemically or into the third cerebral ventricle, depressed respiration. Systemically administered theophylline stimulated respiration. Theophylline given intravenously, or into the third ventricle not only reversed the depressive effects of previously administered PIA but caused further increases of respiration above the control level. Prior systemic administration of theophylline blocked both respiratory and hypotensive effects of subsequently administered PIA. Effects of either agent on medullary extracellular fluid pH did not explain the results. We conclude that the adenosine analogue PIA, acts to inhibit neurons in the brain that are involved in the control of respiration and that its effects are blocked by theophylline. We suggest that adenosine acts as a tonic modulator of respiration and that theophylline stimulates breathing by competitive antagonism of adenosine at neuronal receptor sites. PMID:4066573

  4. Coronary computed tomography angiography (CCTA) and cardiac magnetic resonance (CMR) imaging in the assessment of patients presenting with chest pain suspected for acute coronary syndrome

    PubMed Central

    De Filippo, Massimo; Capasso, Raffaella

    2016-01-01

    Acute chest pain is an important clinical challenge and a major reason for presentation to the emergency department. Although multiple imaging techniques are available to assess patients with suspected acute coronary syndrome (ACS), considerable interest has been focused on the use of non-invasive imaging options as coronary computed tomography angiography (CCTA) and cardiac magnetic resonance (CMR). According to several recent evidences, CCTA has been shown to represent a useful tool to rapidly and accurately diagnose coronary artery disease (CAD) in patients with low to intermediate cardiovascular risk. CCTA examination has the unique ability to non-invasively depict the coronary anatomy, not only allowing visualization of the lumen of the arteries in order to detect severe stenosis or occlusion responsible of myocardial ischemia, but also allows the assessment of coronary artery wall by demonstrating the presence or absence of CAD. However, routine CCTA is not able to differentiate ischemic from non-ischemic chest pain in patients with known CAD and it does not provide any functional assessment of the heart. Conversely, CMR is considered the gold standard in the evaluation of morphology, function, viability and tissue characterization of the heart. CMR offers a wide range of tools for diagnosing myocardial infarction (MI) at least at the same time of the elevation of cardiac troponin values, differentiating infarct tissue and ischemic myocardium from normal myocardium or mimicking conditions, and distinguishing between new and old ischemic events. In high-risk patients, with acute and chronic manifestations of CAD, CMR may be preferable to CCTA, since it would allow detection, differential diagnosis, prognostic evaluation and management of MI. PMID:27500156

  5. Altered thermoregulation via sensitization of A1 adenosine receptors in dietary-restricted rats

    PubMed Central

    Jinka, Tulasi R.; Carlson, Zachary A.; Moore, Jeanette T.

    2010-01-01

    Rationale Evidence links longevity to dietary restriction (DR). A decrease in body temperature (Tb) is thought to contribute to enhanced longevity because lower Tb reduces oxidative metabolism and oxidative stress. It is as yet unclear how DR decreases Tb. Objective Here, we test the hypothesis that prolonged DR decreases Tb by sensitizing adenosine A1 receptors (A1AR) and adenosine-induced cooling. Methods and results Sprague–Dawley rats were dietary restricted using an every-other-day feeding protocol. Rats were fed every other day for 27 days and then administered the A1AR agonist, N6-cyclohexyladenosine (CHA; 0.5 mg/kg, i.p.). Respiratory rate (RR) and subcutaneous Tb measured using IPTT-300 transponders were monitored every day and after drug administration. DR animals displayed lower RR on day 20 and lower Tb on day 22 compared to animals fed ad libitum and displayed a larger response to CHA. In all cases, RR declined before Tb. Contrary to previous reports, a higher dose of CHA (5 mg/kg, i.p.) was lethal in both dietary groups. We next tested the hypothesis that sensitization to the effects of CHA was due to increased surface expression of A1AR within the hypothalamus. We report that the abundance of A1AR in the membrane fraction increases in hypothalamus, but not cortex of DR rats. Conclusion These results suggest that every-other-day feeding lowers Tb via sensitization of thermoregulatory effects of endogenous adenosine by increasing surface expression of A1AR. Discussion Evidence that diet can modulate purinergic signaling has implications for the treatment of stroke, brain injury, epilepsy, and aging. PMID:20186398

  6. Adenosine deaminase--the non-invasive marker of tuberculosis.

    PubMed

    Pal, Shyamali; Gupta, Sanjoy

    2012-01-01

    Pulmonary tuberculosis is the India's biggest health problem especially in rural areas. A quick and dependable investigation is absolutely essential. Adenosine deaminase was estimated from the biological fluids (ascitic/pleural/CSF) with the help of the kit obtained from Tulip India Pvt Ltd. The method is based on the principle of Galati & Giusti colorimetric method. The method is simple, inexpensive and results are also reproducible. Elevation of adenosine deaminase has shown high specificity in all biological fluids. As the estimation principle is based on synthesis of ammonia so there is limitation of the procedure when the site is kidney. Similarly if the site is skin, as fluid cannot be collected from the site, adenosine deaminase estimation is also not possible. PMID:23029824

  7. Stability of Diluted Adenosine Solutions in Polyolefin Infusion Bags

    PubMed Central

    Almagambetova, Elise; Hutchinson, David; Blais, Danielle M.; Zhao, Fang

    2013-01-01

    Background: Intravenous or intracoronary adenosine is used in the cardiac catherization lab to achieve maximal coronary blood flow and determine fractional flow reserve. Objective: To determine the stability of adenosine 10 and 50 µg/mL in either 0.9% sodium chloride injection or 5% dextrose injection in polyolefin infusion bags stored at 2 temperatures, refrigeration (2°C-8°C) or controlled room temperature (20°C-25°C). Methods: Adenosine 10 µg/mL and 50 µg/mL solutions were prepared in 50 mL polyolefin infusion bags containing 0.9% sodium chloride injection or 5% dextrose injection and stored at controlled room temperature or under refrigeration. Each combination of concentration, diluent, and storage was prepared in triplicate. Samples were assayed using stability-indicating, reversed-phase high-performance liquid chromatography immediately at time 0 and at 24 hours, 48 hours, 7 days, and 14 days. Stability was defined as retaining 90% to 110% of the initial adenosine concentration. The samples were also visually inspected against a light background for clarity, color, and the presence of particulate matter. Results: After 14 days, all samples retained 99% to 101% of the initial adenosine concentration. No considerable change in pH or visual appearance was noted. The stability data indicated no significant loss of drug due to chemical degradation or physical interactions during storage. Conclusion: Adenosine solutions of 10 and 50 µg/mL were stable for at least 14 days in 50 mL polyolefin infusion bags of 0.9% sodium chloride injection or 5% dextrose injection stored at controlled room temperature and refrigerated conditions. PMID:24421510

  8. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  9. Cyclic adenosine monophosphate phosphodiesterase in brain: effect on anxiety.

    PubMed

    Beer, B; Chasin, M; Clody, D E; Vogel, J R

    1972-04-28

    Drugs that reduce anxiety may be mediated by cyclic adenosine monophosphate in the brain because (i) potent anxiety-reducing drugs are also potent inhibitors of brain phosphodiesterase activity; (ii) dibutyryl cyclic adenosine monophosphate has the ability to reduce anxiety; (iii) the methylxanthines show significant anxiety-reducing effects; (iv) theophylline and chlordiazepoxide produce additive anxiety-reducing activity; and (v) there is a significant correlation between the anxiety-reducing property of drugs and their ability to inhibit phosphodiesterase activity in the brain. PMID:4402069

  10. In Emergency Department Patients with Acute Chest Pain, Stress Cardiac MRI Observation Unit Care Reduces 1- year Cardiac-Related Health Care Expenditures: A Randomized Trial

    PubMed Central

    Miller, Chadwick D.; Hwang, Wenke; Case, Doug; Hoekstra, James W.; Lefebvre, Cedric; Blumstein, Howard; Hamilton, Craig A.; Harper, Erin N.; Hundley, W. Gregory

    2013-01-01

    Objective To compare the direct cost of medical care and clinical events during the first year after patients with intermediate risk acute chest pain were randomized to stress cardiovascular magnetic resonance (CMR) observation unit (OU) testing, versus inpatient care. Background In a recent study, randomization to OU-CMR reduced median index hospitalization cost compared to inpatient care in patients presenting to the emergency department with intermediate risk acute chest pain. Methods Emergency department patients with intermediate risk chest pain were randomized to OU-CMR (OU care, cardiac markers, stress CMR) or inpatient care (admission, care per admitting provider). This analysis reports the direct cost of cardiac-related care and clinical outcomes (MI, revascularization, cardiovascular death) during the first year of follow-up subsequent to discharge. Consistent with health economics literature, provider cost was calculated from work-related relative value units using the Medicare conversion factor; facility charges were converted to cost using departmental specific cost-to-charge ratios. Linear models were used to compare cost accumulation among study groups. Results One-hundred nine (109) randomized subjects were included in this analysis (52 OU-CMR, 57 inpatient care). The median age was 56 years; baseline characteristics were similar in both groups. At 1 year, 6% of OU-CMR and 9% of inpatient care participants experienced a major cardiac event (p=0.72) with 1 patient in each group experiencing a cardiac event after discharge. First-year cardiac-related costs were significantly lower for participants randomized to OU-CMR compared to participants receiving inpatient care (geometric mean = $3101 vs $4742 including the index visit (p = .004) and $29 vs $152 following discharge (p = .012)). During the year following randomization, 6% of OU-CMR and 9% of inpatient care participants experienced a major cardiac event (p=0.72). Conclusions An OU-CMR strategy

  11. Phosphorylation of adenosine in renal brush-border membrane vesicles by an exchange reaction catalysed by adenosine kinase.

    PubMed Central

    Sayós, J; Solsona, C; Mallol, J; Lluis, C; Franco, R

    1994-01-01

    Uptake of [3H]adenosine in brush-border membrane (BBM) vesicles from either rat or pig kidney leads to an accumulation of intravesicular [3H]AMP. The lack of significant levels of ATP and the presence of AMP in BBM indicated that a phosphotransfer between [3H]adenosine and AMP occurs. The phosphotransfer activity is inhibited by iodotubercidin, which suggests that it is performed by adenosine kinase acting in an ATP-independent manner. The existence of a similar phosphotransferase activity was demonstrated in membrane-free extracts from pig kidney. From the compounds tested it was shown that a variety of mononucleotides could act as phosphate donors. The results suggest that phosphotransfer reactions may be physiologically relevant in kidney. PMID:8110185

  12. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning.

    PubMed Central

    Heurteaux, C; Lauritzen, I; Widmann, C; Lazdunski, M

    1995-01-01

    Preconditioning with sublethal ischemia protects against neuronal damage after subsequent lethal ischemic insults in hippocampal neurons. A pharmacological approach using agonists and antagonists at the adenosine A1 receptor as well as openers and blockers of ATP-sensitive K+ channels has been combined with an analysis of neuronal death and gene expression of subunits of glutamate and gamma-aminobutyric acid receptors, HSP70, c-fos, c-jun, and growth factors. It indicates that the mechanism of ischemic tolerance involves a cascade of events including liberation of adenosine, stimulation of adenosine A1 receptors, and, via these receptors, opening of sulfonylurea-sensitive ATP-sensitive K+ channels. Images Fig. 2 Fig. 3 PMID:7753861

  13. The Second Extracellular Loop of the Adenosine A1 Receptor Mediates Activity of Allosteric Enhancers

    PubMed Central

    Kennedy, Dylan P.; McRobb, Fiona M.; Leonhardt, Susan A.; Purdy, Michael; Figler, Heidi; Marshall, Melissa A.; Chordia, Mahendra; Figler, Robert; Linden, Joel

    2014-01-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists. PMID:24217444

  14. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias.

    PubMed

    Welihinda, Ajith A; Kaur, Manmeet; Greene, Kelly; Zhai, Yongjiao; Amento, Edward P

    2016-06-01

    Inosine is an endogenous purine nucleoside that is produced by catabolism of adenosine. Adenosine has a short half-life (approximately 10s) and is rapidly deaminated to inosine, a stable metabolite with a half-life of approximately 15h. Resembling adenosine, inosine acting through adenosine receptors (ARs) exerts a wide range of anti-inflammatory and immunomodulatory effects in vivo. The immunomodulatory effects of inosine in vivo, at least in part, are mediated via the adenosine A2A receptor (A2AR), an observation that cannot be explained fully by in vitro pharmacological characterization of inosine at the A2AR. It is unclear whether the in vivo effects of inosine are due to inosine or a metabolite of inosine engaging the A2AR. Here, utilizing a combination of label-free, cell-based, and membrane-based functional assays in conjunction with an equilibrium agonist-binding assay we provide evidence for inosine engagement at the A2AR and subsequent activation of downstream signaling events. Inosine-mediated A2AR activation leads to cAMP production with an EC50 of 300.7μM and to extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation with an EC50 of 89.38μM. Our data demonstrate that inosine produces ERK1/2-biased signaling whereas adenosine produces cAMP-biased signaling at the A2AR, highlighting pharmacological differences between these two agonists. Given the in vivo stability of inosine, our data suggest an additional, previously unrecognized, mechanism that utilizes inosine to functionally amplify and prolong A2AR activation in vivo. PMID:26903141

  15. Adenosine-dependent activation of tyrosine hydroxylase is defective in adenosine kinase-deficient PC12 cells.

    PubMed Central

    Erny, R; Wagner, J A

    1984-01-01

    (R)-N6-Phenylisopropyladenosine (PIA) stimulates dopa production 3- to 5-fold in PC12 cells, with a half-maximal effective concentration (EC50) of 50 nM. This increase can be explained by a stable activation of tyrosine hydroxylase [TyrOHase; L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] when it is phosphorylated by a cAMP-dependent protein kinase. The activation of TyrOHase is mediated by the adenosine-dependent activation of adenylate cyclase (EC50 = 600 nM). PIA (10 microM) is as effective as cholera toxin or dibutyryl cAMP in activating TyrOHase in wild-type cells. Adenosine kinase-deficient mutants of PC12 were found to be resistant to PIA-dependent activation of TyrOHase (EC50 = 100-1000 nM). This phenomenon was explored in detail in one adenosine kinase-deficient mutant and was shown to occur because the mutant was resistant to the adenosine-dependent activation of adenylate cyclase. In this mutant, TyrOHase was activated 14-fold by cholera toxin, suggesting that activated TyrOHase is about 14 times as active as unactivated TyrOHase. These studies with kinase-deficient PC12 cells provide genetic evidence that adenosine-dependent activation of TyrOHase is mediated by acute increases in cAMP. When the adenosine receptor found on PC12 cells is expressed in vivo, it might function as either a presynaptic (i.e., localized on the nerve terminal) or a postsynaptic (i.e., localized on the cell body or dendrite) receptor that regulates rates of transmitter synthesis in response to cell activity. PMID:6146982

  16. Anticancer effect of adenosine on gastric cancer via diverse signaling pathways

    PubMed Central

    Tsuchiya, Ayako; Nishizaki, Tomoyuki

    2015-01-01

    Extracellular adenosine induces apoptosis in a variety of cancer cells via intrinsic and extrinsic pathways. In the former pathway, adenosine uptake into cells triggers apoptosis, and in the latter pathway, adenosine receptors mediate apoptosis. Extracellular adenosine also induces apoptosis of gastric cancer cells. Extracellular adenosine is transported into cells through an adenosine transporter and converted to AMP by adenosine kinase. In turn, AMP activates AMP-activated protein kinase (AMPK). AMPK is the factor responsible for caspase-independent apoptosis of GT3-TKB gastric cancer cells. Extracellular adenosine, on the other hand, induces caspase-dependent apoptosis of MKN28 and MKN45 gastric cancer cells by two mechanisms. Firstly, AMP, converted from intracellularly transported adenosine, initiates apoptosis, regardless of AMPK. Secondly, the A3 adenosine receptor, linked to Gi/Gq proteins, mediates apoptosis by activating the Gq protein effector, phospholipase Cγ, to produce inositol 1,4,5-trisphosphate and diacylglycerol, which activate protein kinase C. Consequently, the mechanisms underlying adenosine-induced apoptosis vary, depending upon gastric cancer cell types. Understand the contribution of each downstream target molecule of adenosine to apoptosis induction may aid the establishment of tailor-made chemotherapy for gastric cancer. PMID:26494951

  17. Anticancer effect of adenosine on gastric cancer via diverse signaling pathways.

    PubMed

    Tsuchiya, Ayako; Nishizaki, Tomoyuki

    2015-10-21

    Extracellular adenosine induces apoptosis in a variety of cancer cells via intrinsic and extrinsic pathways. In the former pathway, adenosine uptake into cells triggers apoptosis, and in the latter pathway, adenosine receptors mediate apoptosis. Extracellular adenosine also induces apoptosis of gastric cancer cells. Extracellular adenosine is transported into cells through an adenosine transporter and converted to AMP by adenosine kinase. In turn, AMP activates AMP-activated protein kinase (AMPK). AMPK is the factor responsible for caspase-independent apoptosis of GT3-TKB gastric cancer cells. Extracellular adenosine, on the other hand, induces caspase-dependent apoptosis of MKN28 and MKN45 gastric cancer cells by two mechanisms. Firstly, AMP, converted from intracellularly transported adenosine, initiates apoptosis, regardless of AMPK. Secondly, the A3 adenosine receptor, linked to Gi/Gq proteins, mediates apoptosis by activating the Gq protein effector, phospholipase Cγ, to produce inositol 1,4,5-trisphosphate and diacylglycerol, which activate protein kinase C. Consequently, the mechanisms underlying adenosine-induced apoptosis vary, depending upon gastric cancer cell types. Understand the contribution of each downstream target molecule of adenosine to apoptosis induction may aid the establishment of tailor-made chemotherapy for gastric cancer. PMID:26494951

  18. Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus

    PubMed Central

    Wall, Mark J; Dale, Nicholas

    2013-01-01

    The neuromodulator adenosine plays an important role in many physiological and pathological processes within the mammalian CNS. However, the precise mechanisms of how the concentration of extracellular adenosine increases following neural activity remain contentious. Here we have used microelectrode biosensors to directly measure adenosine release induced by focal stimulation in stratum radiatum of area CA1 in mouse hippocampal slices. Adenosine release was both action potential and Ca2+ dependent and could be evoked with low stimulation frequencies and small numbers of stimuli. Adenosine release required the activation of ionotropic glutamate receptors and could be evoked by local application of glutamate receptor agonists. Approximately 40% of stimulated-adenosine release occurred by translocation of adenosine via equilibrative nucleoside transporters (ENTs). This component of release persisted in the presence of the gliotoxin fluoroacetate and thus results from the direct release of adenosine from neurons. A reduction of adenosine release in the presence of NTPDase blockers, in slices from CD73−/− and dn-SNARE mice, provides evidence that a component of adenosine release arises from the extracellular metabolism of ATP released from astrocytes. This component of release appeared to have slower kinetics than the direct ENT-mediated release of adenosine. These data suggest that activity-dependent adenosine release is surprisingly complex and, in the hippocampus, arises from at least two distinct mechanisms with different cellular sources. PMID:23713028

  19. Adenosine transporters and receptors: key elements for retinal function and neuroprotection.

    PubMed

    Dos Santos-Rodrigues, Alexandre; Pereira, Mariana R; Brito, Rafael; de Oliveira, Nádia A; Paes-de-Carvalho, Roberto

    2015-01-01

    Adenosine is an important neuroactive substance in the central nervous system, including in the retina where subclasses of adenosine receptors and transporters are expressed since early stages of development. Here, we review some evidence showing that adenosine plays important functions in the mature as well as in the developing tissue. Adenosine transporters are divided into equilibrative and concentrative, and the major transporter subtype present in the retina is the ENT1. This transporter is responsible for a bidirectional transport of adenosine and the uptake or release of this nucleoside appears to be regulated by different signaling pathways that are also controlled by activation of adenosine receptors. Adenosine receptors are also key players in retina physiology regulating a variety of functions in the mature and developing tissue. Regulation of excitatory neurotransmitter release and neuroprotection are the main functions played be adenosine in the mature tissue, while regulation of cell survival and neurogenesis are some of the functions played by adenosine in developing retina. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosine-related drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases. PMID:25817878

  20. Amelioration of adriamycin and daunorubicin myocardial toxicity by adenosine.

    PubMed

    Newman, R A; Hacker, M P; Krakoff, I H

    1981-09-01

    Primary cultures of rat myocardial cells were used to investigate the dose and time-dependent cellular enzyme release induced by either Adriamycin or daunorubicin, Concentrations of either anthracycline (1.8 or 18 microM) produced significant release of creatine phosphokinase and lactic dehydrogenase from myocardial cells within 24 hr of exposure without a detectable decrease in cell viability. Preincubation of the myocardial cells with varying concentrations of adenosine (10 microM to 1 mM) for 24 hr prior to the addition of anthracycline decreased or prevented drug-induced enzyme release. Other putative myocardial protectants, i.e., N-acetyl-L-cysteine, alpha-tocopherol, or carnitine, were ineffective in preventing anthracycline-induced enzyme release. Although adenosine was an effective myocardial protectant, it had no significant effect on cellular uptake of daunorubicin, nor did adenosine adversely affect the oncolytic activity of daunorubicin against L1210 leukemia cells in vitro. Anthramycin, another oncolytic agent having reported cardiotoxic effects, was also tested in the in vitro system. With this drug, however, no enzyme release was detected at less than lethal doses nor did adenosine have any protective potential against the toxicity of anthramycin. Finally, Adriamycin caused no significant lactic dehydrogenase release when incubated at 1.8 or 18 microM with H9c2 cells, a cell line having primarily skeletal muscle characteristics. This result suggests a specific toxicity of anthracyclines for myocardial but not skeletal muscle cells. PMID:7260911

  1. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  2. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  3. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  4. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  5. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  6. CD39/Adenosine Pathway Is Involved in AIDS Progression

    PubMed Central

    Limou, Sophie; Younas, Mehwish; Kök, Ayrin; Huë, Sophie; Seddiki, Nabila; Hulin, Anne; Delaneau, Olivier; Schuitemaker, Hanneke; Herbeck, Joshua T.; Mullins, James I.; Muhtarova, Maria; Bensussan, Armand; Zagury, Jean-François; Lelievre, Jean-Daniel; Lévy, Yves

    2011-01-01

    HIV-1 infection is characterized by a chronic activation of the immune system and suppressed function of T lymphocytes. Regulatory CD4+ CD25high FoxP3+CD127low T cells (Treg) play a key role in both conditions. Here, we show that HIV-1 positive patients have a significant increase of Treg-associated expression of CD39/ENTPD1, an ectoenzyme which in concert with CD73 generates adenosine. We show in vitro that the CD39/adenosine axis is involved in Treg suppression in HIV infection. Treg inhibitory effects are relieved by CD39 down modulation and are reproduced by an adenosine-agonist in accordance with a higher expression of the adenosine A2A receptor on patients' T cells. Notably, the expansion of the Treg CD39+ correlates with the level of immune activation and lower CD4+ counts in HIV-1 infected patients. Finally, in a genetic association study performed in three different cohorts, we identified a CD39 gene polymorphism that was associated with down-modulated CD39 expression and a slower progression to AIDS. PMID:21750674

  7. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  8. Manipulation of adenosine kinase affects sleep regulation in mice

    PubMed Central

    Palchykova, Svitlana; Winsky-Sommerer, Raphaelle; Shen, Hai-Ying; Boison, Detlev; Gerling, Andrea; Tobler, Irene

    2010-01-01

    Sleep and sleep intensity are enhanced by adenosine and its receptor agonists, while adenosine receptor antagonists induce wakefulness. Adenosine kinase (ADK) is the primary enzyme metabolizing adenosine in adult brain. To investigate whether adenosine metabolism or clearance affects sleep we recorded sleep in mice with engineered mutations in Adk. Adk-tg mice over-express a transgene encoding the cytoplasmic isoform of ADK in the brain, but lack the nuclear isoform of the enzyme. Wild-type mice and Adk+/− mice that have a 50% reduction of the cytoplasmic and the nuclear isoforms of ADK served as controls. Adk-tg mice showed a remarkable reduction of EEG power in low frequencies in all vigilance states and in theta activity (6.25–11 Hz) in REM sleep and waking. Adk-tg mice were awake 58 min more per day than wild-type mice and spent significantly less time in REM sleep (102±3 vs 128±3 min in wild-type). After sleep deprivation slow-wave activity (0.75–4 Hz), the intensity component of NREM sleep, increased significantly less in Adk-tg mice and their slow-wave energy was reduced. In contrast, the vigilance states and EEG spectra of Adk+/− and wild-type mice did not differ. Our data suggest that over-expression of the cytoplasmic isoform of ADK is sufficient to alter sleep physiology. ADK might orchestrate neurotransmitter pathways involved in the generation of EEG oscillations and regulation of sleep. PMID:20881134

  9. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    PubMed Central

    Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Dias, Ana Sofia; Pelletier, Julie

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders. PMID:25210228

  10. Efficacy of cimetidin in the prevention of ulcer formation in the stomach during immobilization stress

    NASA Technical Reports Server (NTRS)

    Dorofeyev, G. I.; Litovskiy, I. A.; Gavrovskaya, L. K.; Ivashkin, V. T.

    1982-01-01

    The effect of stress on the formation of ulcers in the mucous membrane of the stomach, the increase in cyclic adenosine monophosphate level in the gastric tissues, and parietal cell structure alteration. Use of cimetidin prevents these effects

  11. Erythrocyte 2,3-diphosphoglycerate and adenosine-triphosphate in cretins living at high altitude.

    PubMed

    Adams, W H

    1976-01-01

    A comparison of concentrations of 2,3-diphosphoglycerate (2,3-DPG) and adenosine-triphosphate (ATP) in the red cells of cretins and normal controls living at 3,700 m in the Nepal Himalayas has shown that 2,3-DPG and ATP levels were higher in the cretins. A negative correlation between hemoglobin and 2.3-DPG level was found. Chronic hypoxia appears to have provided the additional stress required to differentiate the significance of thyroid hormone deficiency in producing anemia from its effect on 2,3-DPG levels. If thyroid hormone is in fact one regulator of 2,3-DPG, the anemia of hypothyroidism appears to be more significant. This also suggest that the anemia of hypothyroidism, is at least in part, "pathologic" as opposed to "adaptive". PMID:822672

  12. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    PubMed Central

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A1 receptors with 2-chloro-N6-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A1 receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis. PMID:22552934

  13. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  14. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity

    PubMed Central

    Lovatt, Ditte; Xu, Qiwu; Liu, Wei; Takano, Takahiro; Smith, Nathan A.; Schnermann, Jurgen; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Adenosine is a potent anticonvulsant acting on excitatory synapses through A1 receptors. Cellular release of ATP, and its subsequent extracellular enzymatic degradation to adenosine, could provide a powerful mechanism for astrocytes to control the activity of neural networks during high-intensity activity. Despite adenosine's importance, the cellular source of adenosine remains unclear. We report here that multiple enzymes degrade extracellular ATP in brain tissue, whereas only Nt5e degrades AMP to adenosine. However, endogenous A1 receptor activation during cortical seizures in vivo or heterosynaptic depression in situ is independent of Nt5e activity, and activation of astrocytic ATP release via Ca2+ photolysis does not trigger synaptic depression. In contrast, selective activation of postsynaptic CA1 neurons leads to release of adenosine and synaptic depression. This study shows that adenosine-mediated synaptic depression is not a consequence of astrocytic ATP release, but is instead an autonomic feedback mechanism that suppresses excitatory transmission during prolonged activity. PMID:22421436

  15. Scan-rescan reproducibility of quantitative assessment of inflammatory carotid atherosclerotic plaque using dynamic contrast-enhanced 3T CMR in a multi-center study

    PubMed Central

    2014-01-01

    Background The aim of this study is to investigate the inter-scan reproducibility of kinetic parameters in atherosclerotic plaque using dynamic contrast-enhanced (DCE) cardiovascular magnetic resonance (CMR) in a multi-center setting at 3T. Methods Carotid arteries of 51 subjects from 15 sites were scanned twice within two weeks on 3T scanners using a previously described DCE-CMR protocol. Imaging data with protocol compliance and sufficient image quality were analyzed to generate kinetic parameters of vessel wall, expressed as transfer constant (Ktrans) and plasma volume (vp). The inter-scan reproducibility was evaluated using intra-class correlation coefficient (ICC) and coefficient of variation (CV). Power analysis was carried out to provide sample size estimations for future prospective study. Results Ten (19.6%) subjects were found to suffer from protocol violation, and another 6 (11.8%) had poor image quality (n = 6) in at least one scan. In the 35 (68.6%) subjects with complete data, the ICCs of Ktrans and vp were 0.65 and 0.28, respectively. The CVs were 25% and 62%, respectively. The ICC and CV for vp improved to 0.73 and 28% in larger lesions with analyzed area larger than 25 mm2. Power analysis based on the measured CV showed that 50 subjects per arm are sufficient to detect a 20% difference in change of Ktrans over time between treatment arms with 80% power without consideration of the dropout rate. Conclusion The result of this study indicates that quantitative measurement from DCE-CMR is feasible to detect changes with a relatively modest sample size in a prospective multi-center study despite the limitations. The relative high dropout rate suggested the critical needs for intensive operator training, optimized imaging protocol, and strict quality control in future studies. PMID:25084698

  16. Total Energy CMR Production

    SciTech Connect

    Friedrich, S; Kolagani, R M

    2008-08-11

    The following outlines the optimized pulsed laser deposition (PLD) procedure used to prepare Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} (NSMO) temperature sensors at Towson University (Prof. Rajeswari Kolagani) for the LCLS XTOD Total Energy Monitor. The samples have a sharp metal/insulator transition at T {approx} 200 K and are optimized for operation at T {approx} 180 K, where their sensitivity is the highest. These samples are epitaxial multilayer structures of Si/YSZ/CeO/NSMO, where these abbreviations are defined in table 1. In this heterostructure, YSZ serves as a buffer layer to prevent deleterious chemical reactions, and also serves to de-oxygenate the amorphous SiO{sub 2} surface layer to generate a crystalline template for epitaxy. CeO and BTO serve as template layers to minimize the effects of thermal and lattice mismatch strains, respectively. More details on the buffer and template layer scheme are included in the attached manuscript accepted for publication in Sensor Letters (G. Yong et al., 2008).

  17. Adenosine protected against pulmonary edema through transporter- and receptor A2-mediated endothelial barrier enhancement

    PubMed Central

    Lu, Qing; Harrington, Elizabeth O.; Newton, Julie; Casserly, Brian; Radin, Gregory; Warburton, Rod; Zhou, Yang; Blackburn, Michael R.

    2010-01-01

    We have previously demonstrated that adenosine plus homocysteine enhanced endothelial basal barrier function and protected against agonist-induced barrier dysfunction in vitro through attenuation of RhoA activation by inhibition of isoprenylcysteine-O-carboxyl methyltransferase. In the current study, we tested the effect of elevated adenosine on pulmonary endothelial barrier function in vitro and in vivo. We noted that adenosine alone dose dependently enhanced endothelial barrier function. While adenosine receptor A1 or A3 antagonists were ineffective, an adenosine transporter inhibitor, NBTI, or a combination of DPMX and MRS1754, antagonists for adenosine receptors A2A and A2B, respectively, partially attenuated the barrier-enhancing effect of adenosine. Similarly, inhibition of both A2A and A2B receptors with siRNA also blunted the effect of adenosine on barrier function. Interestingly, inhibition of both transporters and A2A/A2B receptors completely abolished adenosine-induced endothelial barrier enhancement. The adenosine receptor A2A and A2B agonist, NECA, also significantly enhanced endothelial barrier function. These data suggest that both adenosine transporters and A2A and A2B receptors are necessary for exerting maximal effect of adenosine on barrier enhancement. We also found that adenosine enhanced Rac1 GTPase activity and overexpression of dominant negative Rac1 attenuated adenosine-induced increases in focal adhesion complexes. We further demonstrated that elevation of cellular adenosine by inhibition of adenosine deaminase with Pentostatin significantly enhanced endothelial basal barrier function, an effect that was also associated with enhanced Rac1 GTPase activity and with increased focal adhesion complexes and adherens junctions. Finally, using a non-inflammatory acute lung injury (ALI) model induced by α-naphthylthiourea, we found that administration of Pentostatin, which elevated lung adenosine level by 10-fold, not only attenuated the

  18. Sustained adenosine exposure causes lung endothelial apoptosis: a possible contributor to cigarette smoke-induced endothelial apoptosis and lung injury

    PubMed Central

    Sakhatskyy, Pavlo; Newton, Julie; Shamirian, Paul; Hsiao, Vivian; Curren, Sean; Gabino Miranda, Gustavo Andres; Pedroza, Mesias; Blackburn, Michael R.; Rounds, Sharon

    2013-01-01

    Pulmonary endothelial cell (EC) apoptosis has been implicated in the pathogenesis of emphysema. Cigarette smoke (CS) causes lung EC apoptosis and emphysema. In this study, we show that CS exposure increased lung tissue adenosine levels in mice, an effect associated with increased lung EC apoptosis and the development of emphysema. Adenosine has a protective effect against apoptosis via adenosine receptor-mediated signaling. However, sustained elevated adenosine increases alveolar cell apoptosis in adenosine deaminase-deficient mice. We established an in vitro model of sustained adenosine exposure by incubating lung EC with adenosine in the presence of an adenosine deaminase inhibitor, deoxycoformicin. We demonstrated that sustained adenosine exposure caused lung EC apoptosis via nucleoside transporter-facilitated intracellular adenosine uptake, subsequent activation of p38 and JNK in mitochondria, and ultimately mitochondrial defects and activation of the mitochondria-mediated intrinsic pathway of apoptosis. Our results suggest that sustained elevated adenosine may contribute to CS-induced lung EC apoptosis and emphysema. Our data also reconcile the paradoxical effects of adenosine on apoptosis, demonstrating that prolonged exposure causes apoptosis via nucleoside transporter-mediated intracellular adenosine signaling, whereas acute exposure protects against apoptosis via activation of adenosine receptors. Inhibition of adenosine uptake may become a new therapeutic target in treatment of CS-induced lung diseases. PMID:23316066

  19. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice.

    PubMed

    Witts, Emily C; Nascimento, Filipe; Miles, Gareth B

    2015-10-01

    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output. PMID:26311185

  20. Abiotic regioselective phosphorylation of adenosine with borate in formamide.

    PubMed

    Furukawa, Yoshihiro; Kim, Hyo-Joong; Hutter, Daniel; Benner, Steven A

    2015-04-01

    Nearly 40 years ago, Schoffstall and his coworkers used formamide as a solvent to permit the phosphorylation of nucleosides by inorganic phosphate to give nucleoside phosphates, which (due to their thermodynamic instability with respect to hydrolysis) cannot be easily created in water by an analogous phosphorylation (the "water problem" in prebiotic chemistry). More recently, we showed that borate could stabilize certain carbohydrates against degradation (the "asphalt problem"). Here, we combine the two concepts to show that borate can work in formamide to guide the reactivity of nucleosides under conditions where they are phosphorylated. Specifically, reaction of adenosine in formamide with inorganic phosphate and pyrophosphate in the presence of borate gives adenosine-5'-phosphate as the only detectable phosphorylated product, with formylation (as opposed to hydrolysis) being the competing reaction. PMID:25826074

  1. Adenosine: an endogenous mediator in the pathogenesis of psoriasis*

    PubMed Central

    Festugato, Moira

    2015-01-01

    It is known that inflammatory and immune responses protect us from the invasion of micro-organisms and eliminate "wastes" from the injured sites, but they may also be responsible for significant tissue damage. Adenosine, as a purine nucleoside, which is produced in inflamed or injured sites, fulfills its role in limiting tissue damage. Although, it may have a pleiotropic effect, which signals it with a proinflammatory state in certain situations, it can be considered a potent anti-inflammatory mediator. The effects of adenosine, which acts through its receptors on T cell, on mast cell and macrophages, on endothelial cells, on neutrophils and dendritic cells, as they indicate TNF-alpha and cytokines, show that this mediator has a central role in the pathogenesis of psoriasis. The way it acts in psoriasis will be reviewed in this study. PMID:26734868

  2. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    PubMed Central

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  3. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis.

    PubMed

    Alsharif, Khalaf F; Thomas, Mark R; Judge, Heather M; Khan, Haroon; Prince, Lynne R; Sabroe, Ian; Ridger, Victoria C; Storey, Robert F

    2015-08-01

    In the PLATO study, ticagrelor was associated with fewer pulmonary infections and subsequent deaths than clopidogrel. Neutrophils are a first-line defence against bacterial lung infection; ticagrelor inhibits cellular uptake of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis. We assessed whether the inhibition of adenosine uptake by ticagrelor influences neutrophil chemotaxis and phagocytosis. Neutrophils and erythrocytes were isolated from healthy volunteers. Concentration-dependent effects of adenosine on IL-8-induced neutrophil chemotaxis were investigated and the involved receptors identified using adenosine receptor antagonists. The modulatory effects of ticagrelor on adenosine-mediated changes in neutrophil chemotaxis and phagocytosis of Streptococcus pneumoniae were determined in the presence of erythrocytes to replicate physiological conditions of cellular adenosine uptake. Low-concentration adenosine (10(-8)M) significantly increased IL-8-induced neutrophil chemotaxis (% neutrophil chemotaxis: adenosine 28.7%±4.4 vs. control 22.6%±2.4; p<0.01) by acting on the high-affinity A1 receptor. Erythrocytes attenuated the effect of adenosine, although this was preserved by ticagrelor and dipyridamole (another inhibitor of adenosine uptake) but not by control or by cangrelor. Similarly, in the presence of erythrocytes, a low concentration of adenosine (10(-8)M) significantly increased neutrophil phagocytic index compared to control when ticagrelor was present (37.6±6.6 vs. 28.0±6.6; p=0.028) but had no effect in the absence of ticagrelor. We therefore conclude that the inhibition of cellular adenosine reuptake by ticagrelor potentiates the effects of a nanomolar concentration of adenosine on neutrophil chemotaxis and phagocytosis. This represents a potential mechanism by which ticagrelor could influence host defence against bacterial lung infection. PMID:25869515

  4. Extracellular adenosine levels are associated with the progression and exacerbation of pulmonary fibrosis.

    PubMed

    Luo, Fayong; Le, Ngoc-Bao; Mills, Tingting; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Molina, Jose G; Davies, Jonathan; Philip, Kemly; Volcik, Kelly A; Liu, Hong; Xia, Yang; Eltzschig, Holger K; Blackburn, Michael R

    2016-02-01

    Idiopathic pulmonary fibrosis is a devastating lung disease with limited treatment options. The signaling molecule adenosine is produced in response to injury and serves a protective role in early stages of injury and is detrimental during chronic stages of disease such as seen in lung conditions such as pulmonary fibrosis. Understanding the association of extracellular adenosine levels and the progression of pulmonary fibrosis is critical for designing adenosine based approaches to treat pulmonary fibrosis. The goal of this study was to use various models of experimental lung fibrosis to understand when adenosine levels are elevated during pulmonary fibrosis and whether these elevations were associated with disease progression and severity. To accomplish this, extracellular adenosine levels, defined as adenosine levels found in bronchioalveolar lavage fluid, were determined in mouse models of resolvable and progressive pulmonary fibrosis. We found that relative bronchioalveolar lavage fluid adenosine levels are progressively elevated in association with pulmonary fibrosis and that adenosine levels diminish in association with the resolution of lung fibrosis. In addition, treatment of these models with dipyridamole, an inhibitor of nucleoside transporters that potentiates extracellular adenosine levels, demonstrated that the resolution of lung fibrosis is blocked by the failure of adenosine levels to subside. Furthermore, exacerbating adenosine levels led to worse fibrosis in a progressive fibrosis model. Increased adenosine levels were associated with elevation of IL-6 and IL-17, which are important inflammatory cytokines in pulmonary fibrosis. These results demonstrate that extracellular adenosine levels are closely associated with the progression of experimental pulmonary fibrosis and that this signaling pathway may mediate fibrosis by regulating IL-6 and IL-17 production. PMID:26527068

  5. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis

    PubMed Central

    Alsharif, Khalaf F.; Thomas, Mark R.; Judge, Heather M.; Khan, Haroon; Prince, Lynne R.; Sabroe, Ian; Ridger, Victoria C.; Storey, Robert F.

    2015-01-01

    In the PLATO study, ticagrelor was associated with fewer pulmonary infections and subsequent deaths than clopidogrel. Neutrophils are a first-line defence against bacterial lung infection; ticagrelor inhibits cellular uptake of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis. We assessed whether the inhibition of adenosine uptake by ticagrelor influences neutrophil chemotaxis and phagocytosis. Neutrophils and erythrocytes were isolated from healthy volunteers. Concentration-dependent effects of adenosine on IL-8-induced neutrophil chemotaxis were investigated and the involved receptors identified using adenosine receptor antagonists. The modulatory effects of ticagrelor on adenosine-mediated changes in neutrophil chemotaxis and phagocytosis of Streptococcus pneumoniae were determined in the presence of erythrocytes to replicate physiological conditions of cellular adenosine uptake. Low-concentration adenosine (10− 8 M) significantly increased IL-8-induced neutrophil chemotaxis (% neutrophil chemotaxis: adenosine 28.7% ± 4.4 vs. control 22.6% ± 2.4; p < 0.01) by acting on the high-affinity A1 receptor. Erythrocytes attenuated the effect of adenosine, although this was preserved by ticagrelor and dipyridamole (another inhibitor of adenosine uptake) but not by control or by cangrelor. Similarly, in the presence of erythrocytes, a low concentration of adenosine (10− 8 M) significantly increased neutrophil phagocytic index compared to control when ticagrelor was present (37.6 ± 6.6 vs. 28.0 ± 6.6; p = 0.028) but had no effect in the absence of ticagrelor. We therefore conclude that the inhibition of cellular adenosine reuptake by ticagrelor potentiates the effects of a nanomolar concentration of adenosine on neutrophil chemotaxis and phagocytosis. This represents a potential mechanism by which ticagrelor could influence host defence against bacterial lung infection. PMID:25869515

  6. Effects of adenosine metabolism in astrocytes on central nervous system oxygen toxicity.

    PubMed

    Chen, Yu-liang; Zhang, Ya-nan; Wang, Zhong-zhuang; Xu, Wei-gang; Li, Run-ping; Zhang, Jun-dong

    2016-03-15

    Hyperbaric oxygen (HBO) is widely used in military operations, especially underwater missions. However, prolonged and continuous inhalation of HBO can cause central nervous system oxygen toxicity (CNS-OT), which greatly limits HBO's application. The regulation of astrocytes to the metabolism of adenosine is involved in epilepsy. In our study, we aimed to observe the effects of HBO exposure on the metabolism of adenosine in the brain. Furthermore, we aimed to confirm the possible mechanism underlying adenosine's mediation of the CNS-OT. Firstly, anesthetized rats exposed to 5 atm absolute HBO for 80 min. The concentrations of extracellular adenosine, ATP, ADP, and AMP were detected. Secondly, free-moving rats were exposed to HBO at the same pressure for 20 min, and the activities of 5'-nucleotidase and ADK in brain tissues were measured. For the mechanism studies, we observed the effects of a series of different doses of drugs related to adenosine metabolism on the latency of CNS-OT. Results showed HBO exposure could increase adenosine content by inhibiting ADK activity and improving 5'-nucleotidase activity. And adenosine metabolism during HBO exposure may be a protective response against HBO-induced CNS-OT. Moreover, the improvement of adenosine concentration, activation of adenosine A1R, or suppression of ADK and adenosine A2AR, which are involved in the prevention of HBO-induced CNS-OT. This is the first study to demonstrate HBO exposure regulated adenosine metabolism in the brain. Adenosine metabolism and adenosine receptors are related to HBO-induced CNS-OT development. These results will provide new potential targets for the termination or the attenuation of CNS-OT. PMID:26806404

  7. Adenosine Signaling in Striatal Circuits and Alcohol Use Disorders

    PubMed Central

    Nam, Hyung Wook; Bruner, Robert C.; Choi, Doo-Sup

    2013-01-01

    Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, decreased A2AR function is associated with decreased CREB activity in the DMS, which enhances goal-oriented behaviors and contributes to excessive ethanol drinking in mice. Interestingly, caffeine, the most commonly used psychoactive substance, is known to inhibit both the A1R and A2AR. This dampened adenosine receptor function may mask some of the acute intoxicating effects of ethanol. Furthermore, based on the fact that A2AR activity plays a role in goal-directed behavior, caffeine may also promote ethanol-seeking behavior. The A2AR is enriched in the striatum and exclusively expressed in striatopallidal neurons, which may be responsible for the regulation of inhibitory behavioral control over drug rewarding processes through the indirect pathway of the basal ganglia circuit. Furthermore, the antagonistic interactions between adenosine and dopamine receptors in the striatum also play an integral role in alcoholism and addiction-related disorders. This review focuses on regulation of adenosine signaling in striatal circuits and the possible implication of caffeine in goal-directed behaviors and addiction. PMID:23912595

  8. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

    PubMed

    Casey, Darren P; Madery, Brandon D; Pike, Tasha L; Eisenach, John H; Dietz, Niki M; Joyner, Michael J; Wilkins, Brad W

    2009-10-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans. PMID:19661449

  9. Adenosine signaling in striatal circuits and alcohol use disorders.

    PubMed

    Nam, Hyung Wook; Bruner, Robert C; Choi, Doo-Sup

    2013-09-01

    Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, decreased A2AR function is associated with decreased CREB activity in the DMS, which enhances goal-oriented behaviors and contributes to excessive ethanol drinking in mice. Interestingly, caffeine, the most commonly used psychoactive substance, is known to inhibit both the A1R and A2AR. This dampened adenosine receptor function may mask some of the acute intoxicating effects of ethanol. Furthermore, based on the fact that A2AR activity plays a role in goal-directed behavior, caffeine may also promote ethanol-seeking behavior. The A2AR is enriched in the striatum and exclusively expressed in striatopallidal neurons, which may be responsible for the regulation of inhibitory behavioral control over drug rewarding processes through the indirect pathway of the basal ganglia circuit. Furthermore, the antagonistic interactions between adenosine and dopamine receptors in the striatum also play an integral role in alcoholism and addiction-related disorders. This review focuses on regulation of adenosine signaling in striatal circuits and the possible implication of caffeine in goal-directed behaviors and addiction. PMID:23912595

  10. Anxiolytic activity of adenosine receptor activation in mice.

    PubMed

    Jain, N; Kemp, N; Adeyemo, O; Buchanan, P; Stone, T W

    1995-10-01

    1. Purine analogues have been examined for anxiolytic- and anxiogenic-like activity in mice, by use of the elevated plus-maze. 2. The selective A1 receptor agonist, N6-cyclopentyladenosine (CPA) had marked anxiolytic-like activity at 10 and 50 microg kg(-1), with no effect on locomotor performance at these doses. 3. The A1 selective adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (CPX) had no significant effect on anxiety-related measures or locomotor behaviour, but blocked the anxiolytic-like activity of CPA. The hydrophilic xanthine, 8-(p-sulphophenyl) theophylline did not prevent anxiolysis by CPA. 4. Caffeine had anxiogenic-like activity at 30 mg kg(-1) which was prevented by CPA at 50 micro kg(-1). 5. The A2 receptor agonist, N6-[2-(3,5-dimethoxyphenyl)-2(2-methylphenyl)-ethyl]adenosine (DPMA) had no effect on anxiety behaviour but depressed locomotor activity at the highest dose tested of 1 mg kg(-1). The A2 receptor antagonist, 1,3-dimethyl-l-propargylxanthine (DMPX) had no effect on anxiety-related measures or locomotion and did not modify the anxiolytic-like activity of CPA. 6. Administration of DPMA in combination with anxiolytic doses of CPA prevented the anxiolytic-like activity of the latter. 7. The results suggest that the selective activation of central A1 adenosine receptors induces anxiolytic-like behaviour, while the activation of A2 sites causes locomotor depression and reduces the effects of A1 receptor activation. The absence of any effect of CPX alone suggests that the receptors involved in modulating behaviour in the elevated plus-maze in mice are not activated tonically by endogenous adenosine. PMID:8640355

  11. Anxiolytic activity of adenosine receptor activation in mice.

    PubMed Central

    Jain, N.; Kemp, N.; Adeyemo, O.; Buchanan, P.; Stone, T. W.

    1995-01-01

    1. Purine analogues have been examined for anxiolytic- and anxiogenic-like activity in mice, by use of the elevated plus-maze. 2. The selective A1 receptor agonist, N6-cyclopentyladenosine (CPA) had marked anxiolytic-like activity at 10 and 50 microg kg(-1), with no effect on locomotor performance at these doses. 3. The A1 selective adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (CPX) had no significant effect on anxiety-related measures or locomotor behaviour, but blocked the anxiolytic-like activity of CPA. The hydrophilic xanthine, 8-(p-sulphophenyl) theophylline did not prevent anxiolysis by CPA. 4. Caffeine had anxiogenic-like activity at 30 mg kg(-1) which was prevented by CPA at 50 micro kg(-1). 5. The A2 receptor agonist, N6-[2-(3,5-dimethoxyphenyl)-2(2-methylphenyl)-ethyl]adenosine (DPMA) had no effect on anxiety behaviour but depressed locomotor activity at the highest dose tested of 1 mg kg(-1). The A2 receptor antagonist, 1,3-dimethyl-l-propargylxanthine (DMPX) had no effect on anxiety-related measures or locomotion and did not modify the anxiolytic-like activity of CPA. 6. Administration of DPMA in combination with anxiolytic doses of CPA prevented the anxiolytic-like activity of the latter. 7. The results suggest that the selective activation of central A1 adenosine receptors induces anxiolytic-like behaviour, while the activation of A2 sites causes locomotor depression and reduces the effects of A1 receptor activation. The absence of any effect of CPX alone suggests that the receptors involved in modulating behaviour in the elevated plus-maze in mice are not activated tonically by endogenous adenosine. PMID:8640355

  12. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    SciTech Connect

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2013-01-24

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

  13. METABOLIC REGULATION OF ADENOSINE TRIPHOSPHATE SULFURYLASE IN YEAST

    PubMed Central

    de Vito, Peter C.; Dreyfuss, Jacques

    1964-01-01

    de Vito, Peter C. (Princeton University, Princeton, N.J.), and Jacques Dreyfuss. Metabolic regulation of adenosine triphosphate sulfurylase in yeast. J. Bacteriol. 88:1341–1348. 1964.—The metabolic regulation of adenosine triphosphate sulfurylase (ATP-sulfurylase) from baker's yeast was studied. The enzyme was strongly inhibited by low concentrations of adenosine-5′-phosphosulfate, 3′-phosphoadenosine-5′-phosphosulfate, and sulfide. Sulfide ion was a competitive inhibitor of ATP-sulfurylase. Cysteine, methionine, sulfite, and thiosulfate were not inhibitors of the enzyme. ATP-sulfurylase was repressed when yeast was grown in the presence of methionine, and derepressed when yeast was grown in the presence of cysteine. In contrast to these results, the enzyme sulfite reductase was repressed in cysteine-grown cells. Thus, the sulfate-reducing pathway in yeast appears to be regulated at its first step both by feedback inhibition (by sulfide) and by repression (by methionine). Other known controls in the cysteine biosynthetic pathway are discussed. PMID:14234791

  14. One-Pot Synthesis of Double Poly(Ionic Liquid) Block Copolymers by Cobalt-Mediated Radical Polymerization-Induced Self-Assembly (CMR-PISA) in Water.

    PubMed

    Cordella, Daniela; Debuigne, Antoine; Jérôme, Christine; Kochovski, Zdravko; Taton, Daniel; Detrembleur, Christophe

    2016-07-01

    Amphiphilic double poly(ionic liquid) (PIL) block copolymers are directly prepared by cobalt-mediated radical polymerization induced self-assembly (CMR-PISA) in water of N-vinyl imidazolium monomers carrying distinct alkyl chains. The cobalt-mediated radical polymerization of N-vinyl-3-ethyl imidazolium bromide (VEtImBr) is first carried out until high conversion in water at 30 °C, using an alkyl bis(acetylacetonate)cobalt(III) adduct as initiator and controlling agent. The as-obtained hydrophilic poly(N-vinyl-3-ethyl imidazolium bromide) (PVEtImBr) is then used as a macroinitiator for the CMR-PISA of N-vinyl-3-octyl imidazolium bromide (VOcImBr). Self-assembly of the amphiphilic PVEtImBr-b-PVOcImBr block copolymer, i.e., of PIL-b-PIL-type, rapidly takes place in water, forming polymer nanoparticles consisting of a hydrophilic PVEtImBr corona and a hydrophobic PVOcImBr core. Preliminary investigation into the effect of the size of the hydrophobic block on the dimension of the nanoparticles is also described. PMID:26991998

  15. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice

    PubMed Central

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-01

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238

  16. Genetic removal of the A2A adenosine receptor enhances pulmonary inflammation, mucin production, and angiogenesis in adenosine deaminase-deficient mice.

    PubMed

    Mohsenin, Amir; Mi, Tiejuan; Xia, Yang; Kellems, Rodney E; Chen, Jiang-Fan; Blackburn, Michael R

    2007-09-01

    Adenosine is generated at sites of tissue injury where it serves to regulate inflammation and damage. Adenosine signaling has been implicated in the regulation of pulmonary inflammation and damage in diseases such as asthma and chronic obstructive pulmonary disease; however, the contribution of specific adenosine receptors to key immunoregulatory processes in these diseases is still unclear. Mice deficient in the purine catabolic enzyme adenosine deaminase (ADA) develop pulmonary inflammation and mucous metaplasia in association with adenosine elevations making them a useful model for assessing the contribution of specific adenosine receptors to adenosine-mediated pulmonary disease. Studies suggest that the A(2A) adenosine receptor (A(2A)R) functions to limit inflammation and promote tissue protection; however, the contribution of A(2A)R signaling has not been examined in the ADA-deficient model of adenosine-mediated lung inflammation. The purpose of the current study was to examine the contribution of A(2A)R signaling to the pulmonary phenotype seen in ADA-deficient mice. This was accomplished by generating ADA/A(2A)R double knockout mice. Genetic removal of the A(2A)R from ADA-deficient mice resulted in enhanced inflammation comprised largely of macrophages and neutrophils, mucin production in the bronchial airways, and angiogenesis, relative to that seen in the lungs of ADA-deficient mice with the A(2A)R. In addition, levels of the chemokines monocyte chemoattractant protein-1 and CXCL1 were elevated, whereas levels of cytokines such as TNF-alpha and IL-6 were not. There were no compensatory changes in the other adenosine receptors in the lungs of ADA/A(2A)R double knockout mice. These findings suggest that the A(2A)R plays a protective role in the ADA-deficient model of pulmonary inflammation. PMID:17601796

  17. Supplemental fat for dairy calves during mild cold stress.

    PubMed

    Litherland, N B; Da Silva, D N L; LaBerge, R J; Schefers, J; Kertz, A

    2014-05-01

    Eighty-one Holstein and Holstein-cross dairy calves fed calf milk replacer (CMR) were used to determine response to increasing amounts of supplemental fat during mild cold stress. Calves (n=27) were randomly assigned to 1 of 3 treatments: (1) low fat [LF; 28% crude protein:15% fat milk replacer (28:15 MR)]; (2) medium fat [MF; 28:15 MR+113 g/d of commercial fat supplement (FS)]; (3) high fat (HF; 28:15 MR+227 g/d of FS). The MF and HF calves received FS from d 2 to 21, and all calves were fed LF from d 22 to 49. The CMR was fed at 1.4% of birth body weight (BBW) from d 1 to 10, at 1.8% of BBW from d 11 to 42, and at 0.9% of BBW from d 43 to 49. Calves were weaned on d 49 and remained in hutches until d 56. The CMR was reconstituted to 13% solids. Calves were fed a commercial starter grain (19.2% crude protein on a dry matter basis) ad libitum and offered warm water after CMR feeding. Calves were fed CMR twice daily at 0630 and 1730 h in hutches bedded with straw. Starter intake, CMR intake, and ambient temperature were measured daily, and body weight (BW), hip height, and body length were measured weekly. Data were analyzed using PROC MIXED in SAS (SAS Institute Inc., Cary, NC) as a randomized design with linear and quadratic contrasts. Calf BBW averaged 42.0 ± 1.0 kg, total serum protein averaged 5.8 ± 0.1mg/dL, and birth ambient temperature averaged 5.0 ± 1.1°C. Feeding FS increased metabolizable energy intake (MEI) over maintenance but decreased efficiency of conversion of BW gain:MEI. Starter intake by LF calves was greatest until the beginning of weaning, after which starter intake was similar among treatments. Because of higher starter intake, total MEI was similar among treatments. Feed efficiency through d 49 was greater for calves fed MF and HF. Average daily gain during fat supplementation was greater for MF and HF than for LF. Lack of increase in BW gain and feed efficiency between MF and HF treatments indicated that HF did not result in advantages

  18. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms. PMID:25509166

  19. Sustained Elevated Adenosine via ADORA2B Promotes Chronic Pain through Neuro-immune Interaction.

    PubMed

    Hu, Xia; Adebiyi, Morayo G; Luo, Jialie; Sun, Kaiqi; Le, Thanh-Thuy T; Zhang, Yujin; Wu, Hongyu; Zhao, Shushan; Karmouty-Quintana, Harry; Liu, Hong; Huang, Aji; Wen, Yuan Edward; Zaika, Oleg L; Mamenko, Mykola; Pochynyuk, Oleh M; Kellems, Rodney E; Eltzschig, Holger K; Blackburn, Michael R; Walters, Edgar T; Huang, Dong; Hu, Hongzhen; Xia, Yang

    2016-06-28

    The molecular mechanisms of chronic pain are poorly understood and effective mechanism-based treatments are lacking. Here, we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected chronic mechanical and thermal hypersensitivity due to sustained elevated circulating adenosine. Extending from Ada(-/-) mice, we further discovered that prolonged elevated adenosine contributed to chronic pain behaviors in two additional independent animal models: sickle cell disease mice, a model of severe pain with limited treatment, and complete Freund's adjuvant paw-injected mice, a well-accepted inflammatory model of chronic pain. Mechanistically, we revealed that activation of adenosine A2B receptors on myeloid cells caused nociceptor hyperexcitability and promoted chronic pain via soluble IL-6 receptor trans-signaling, and our findings determined that prolonged accumulated circulating adenosine contributes to chronic pain by promoting immune-neuronal interaction and revealed multiple therapeutic targets. PMID:27320922

  20. 2-Triazole-Substituted Adenosines: A New Class of Selective A3 Adenosine Receptor Agonists, Partial Agonists, and Antagonists

    PubMed Central

    Cosyn, Liesbet; Palaniappan, Krishnan K.; Kim, Soo-Kyung; Duong, Heng T.; Gao, Zhan-Guo; Jacobson, Kenneth A.; Van Calenbergh, Serge

    2016-01-01

    “Click chemistry” was explored to synthesize two series of 2-(1,2,3-triazolyl)adenosine derivatives (1–14). Binding affinity at the human A1, A2A, and A3ARs (adenosine receptors) and relative efficacy at the A3AR were determined. Some triazol-1-yl analogues showed A3AR affinity in the low nanomolar range, a high ratio of A3/A2A selectivity, and a moderate-to-high A3/A1 ratio. The 1,2,3-triazol-4-yl regiomers typically showed decreased A3AR affinity. Sterically demanding groups at the adenine C2 position tended to reduce relative A3AR efficacy. Thus, several 5′-OH derivatives appeared to be selective A3AR antagonists, i.e., 10, with 260-fold binding selectivity in comparison to the A1AR and displaying a characteristic docking mode in an A3AR model. The corresponding 5′-ethyluronamide analogues generally showed increased A3AR affinity and behaved as full agonists, i.e., 17, with 910-fold A3/A1 selectivity. Thus, N6-substituted 2-(1,2,3-triazolyl)-adenosine analogues constitute a novel class of highly potent and selective nucleoside-based A3AR antagonists, partial agonists, and agonists. PMID:17149867

  1. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine

    PubMed Central

    2011-01-01

    Background Prostatic acid phosphatase (PAP) and ecto-5'-nucleotidase (NT5E, CD73) produce extracellular adenosine from the nucleotide AMP in spinal nociceptive (pain-sensing) circuits; however, it is currently unknown if these are the main ectonucleotidases that generate adenosine or how rapidly they generate adenosine. Results We found that AMP hydrolysis, when measured histochemically, was nearly abolished in dorsal root ganglia (DRG) neurons and lamina II of spinal cord from Pap/Nt5e double knockout (dKO) mice. Likewise, the antinociceptive effects of AMP, when combined with nucleoside transport inhibitors (dipyridamole or 5-iodotubericidin), were reduced by 80-100% in dKO mice. In addition, we used fast scan cyclic voltammetry (FSCV) to measure adenosine production at subsecond resolution within lamina II. Adenosine was maximally produced within seconds from AMP in wild-type (WT) mice but production was reduced >50% in dKO mice, indicating PAP and NT5E rapidly generate adenosine in lamina II. Unexpectedly, we also detected spontaneous low frequency adenosine transients in lamina II with FSCV. Adenosine transients were of short duration (<2 s) and were reduced (>60%) in frequency in Pap-/-, Nt5e-/- and dKO mice, suggesting these ectonucleotidases rapidly hydrolyze endogenously released nucleotides to adenosine. Field potential recordings in lamina II and behavioral studies indicate that adenosine made by these enzymes acts through the adenosine A1 receptor to inhibit excitatory neurotransmission and nociception. Conclusions Collectively, our experiments indicate that PAP and NT5E are the main ectonucleotidases that generate adenosine in nociceptive circuits and indicate these enzymes transform pulsatile or sustained nucleotide release into an inhibitory adenosinergic signal. PMID:22011440

  2. Regulation by equilibrative nucleoside transporter of adenosine outward currents in adult rat spinal dorsal horn neurons.

    PubMed

    Liu, Tao; Fujita, Tsugumi; Kawasaki, Yasuhiko; Kumamoto, Eiichi

    2004-07-30

    A current response induced by superfusing adenosine was examined in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by using the whole-cell patch-clamp technique. In 78% of the neurons examined, adenosine induced an outward current at -70 mV [18.8 +/- 1.1 pA (n = 98) at 1mM] in a dose-dependent manner (EC(50) = 177 microM). A similar current was induced by A(1) agonist N(6)-cyclopentyladenosine (1 microM), whereas A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (1 microM) reversed the adenosine action. The adenosine current reversed its polarity at a potential being close to the equilibrium potential for K(+), and was attenuated by Ba(2+) (100 microM) and 4-aminopyridine (5mM) but not tetraethylammonium (5mM). The adenosine current was enhanced in duration by equilibrative nucleoside-transport (rENT1) inhibitor S-(4-nitrobenzyl)-6-thioinosine (1 microM) and adenosine deaminase (ADA) inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (1 microM), and slowed in falling phase by adenosine kinase (AK) inhibitor iodotubercidine (1 microM). We conclude that a Ba(2+)- and 4-aminopyridine-sensitive K(+) channel in SG neurons is opened via the activation of A(1) receptors by adenosine whose level is possibly regulated by rENT1, adenosine deaminase and adenosine kinase. Considering that intrathecally-administered adenosine analogues produce antinociception, the regulatory systems of adenosine may serve as targets for antinociceptive drugs. PMID:15275960

  3. Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.

    2000-01-01

    It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.

  4. Synthesis and biological evaluation of clitocine analogues as adenosine kinase inhibitors.

    PubMed

    Lee, C H; Daanen, J F; Jiang, M; Yu, H; Kohlhaas, K L; Alexander, K; Jarvis, M F; Kowaluk, E L; Bhagwat, S S

    2001-09-17

    Adenosine kinase (AK) is the primary enzyme responsible for adenosine metabolism. Inhibition of AK effectively increases extracellular adenosine concentrations and represents an alternative approach to enhance the beneficial actions of adenosine as compared to direct-acting receptor agonists. Clitocine (3), isolated from the mushroom Clitocybe inversa, has been found to be a weak inhibitor of AK. We have prepared a number of analogues of clitocine in order to improve its potency and demonstrated that 5'-deoxy-5'-amino-clitocine (7) improved AK inhibitory potency by 50-fold. PMID:11549437

  5. Characterization and regulation of adenosine transport in T84 intestinal epithelial cells.

    PubMed

    Mun, E C; Tally, K J; Matthews, J B

    1998-02-01

    Adenosine release from mucosal sources during inflammation and ischemia activates intestinal epithelial Cl- secretion. Previous data suggest that A2b receptor-mediated Cl- secretory responses may be dampened by epithelial cell nucleoside scavenging. The present study utilizes isotopic flux analysis and nucleoside analog binding assays to directly characterize the nucleoside transport system of cultured T84 human intestinal epithelial cells and to explore whether adenosine transport is regulated by secretory agonists, metabolic inhibition, or phorbol ester. Uptake of adenosine across the apical membrane displayed characteristics of simple diffusion. Kinetic analysis of basolateral uptake revealed a Na(+)-independent, nitrobenzylthioinosine (NBTI)-sensitive facilitated-diffusion system with low affinity but high capacity for adenosine. NBTI binding studies indicated a single population of high-affinity binding sites basolaterally. Neither forskolin, 5'-(N-ethylcarboxamido)-adenosine, nor metabolic inhibition significantly altered adenosine transport. However, phorbol 12-myristate 13-acetate significantly reduced both adenosine transport and the number of specific NBTI binding sites, suggesting that transporter number may be decreased through activation of protein kinase C. This basolateral facilitated adenosine transporter may serve a conventional function in nucleoside salvage and a novel function as a regulator of adenosine-dependent Cl- secretory responses and hence diarrheal disorders. PMID:9486178

  6. Molecular vibration-activity relationship in the agonism of adenosine receptors.

    PubMed

    Chee, Hyun Keun; Oh, S June

    2013-12-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  7. Adenosine A2A receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC

    PubMed Central

    Brand, Frank; Klutz, Athena; Jacobson, Kenneth A.; Fredholm, Bertil B.; Schulte, Gunnar

    2009-01-01

    G protein-coupled receptors, such as the adenosine A2A receptor, are dynamic proteins, which undergo agonist-dependent redistribution from the cell surface to intracellular membranous compartments, such as endosomes. In order to study the kinetics of adenosine A2A receptor redistribution in living cells, we synthesized a novel fluorescent agonist, Alexa488-APEC. Alexa488-APEC binds to adenosine A2A (Ki = 149 ± 27 nM) as well as A3 receptors (Ki= 240 ± 160 nM) but not to adenosine A1 receptors. Further, we characterized the dose-dependent increase in Alexa488-APEC-induced cAMP production as well as cAMP response element binding (CREB) protein phosphorylation, verifying the ligand’s functionality at adenosine A2A but not A2B receptors. In live cell imaging studies, Alexa488-APEC induced adenosine A2A receptor internalization, which was blocked by the competitive reversible antagonist ZM 241385 and hyperosmolaric sucrose. Further, internalized adenosine A2A receptors co-localized with clathrin and Rab5, indicating that agonist stimulation promotes adenosine A2A receptor uptake through a clathrin-dependent mechanism to Rab5-positive endosomes. The basic characterization of Alexa488-APEC provided here showed that it provides a usefultool for tracing adenosine A2A receptors in vitro. PMID:18603240

  8. Endogenous adenosine is an autacoid feedback inhibitor of chloride transport in the shark rectal gland.

    PubMed Central

    Kelley, G G; Aassar, O S; Forrest, J N

    1991-01-01

    The present studies define the physiologic role of endogenous adenosine in the perfused shark rectal gland, a model epithelia for hormone-stimulated chloride transport. Chloride ion secretion, and venous adenosine and inosine concentrations increased in parallel in response to hormone stimulation. From a basal rate of 157 +/- 26 mu eq/h per g, chloride secretion increased to 836 +/- 96 and 2170 +/- 358 with 1 and 10 microM forskolin, venous adenosine increased from 5.0 +/- 1 to 126 +/- 29 and 896 +/- 181 nM, and inosine increased from 30 +/- 9 to 349 +/- 77 and 1719 +/- 454 nM (all P less than 0.01). Nitrobenzylthioinosine (NBTI), a nucleoside transport inhibitor, completely blocked the release of adenosine and inosine. Inhibition of chloride transport with bumetanide, an inhibitor of the Na+/K+/2Cl- cotransporter, or ouabain, an inhibitor of Na+/K+ ATPase activity, reduced venous adenosine and inosine to basal values. When the interaction of endogenous adenosine with extracellular receptors was prevented by adenosine deaminase, NBTI, or 8-phenyltheophylline, the chloride transport response to secretagogues increased by 1.7-2.3-fold. These studies demonstrate that endogenous adenosine is released in response to hormone-stimulated cellular work and acts at A1 adenosine receptors as a feedback inhibitor of chloride transport. Images PMID:1752953

  9. Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism.

    PubMed

    Nguyen, Michael D; Ross, Ashley E; Ryals, Matthew; Lee, Scott T; Venton, B Jill

    2015-12-01

    Adenosine is a neuromodulator that regulates neurotransmission in the brain and central nervous system. Recently, spontaneous adenosine release that is cleared in 3-4 sec was discovered in mouse spinal cord slices and anesthetized rat brains. Here, we examined the clearance of spontaneous adenosine in the rat caudate-putamen and exogenously applied adenosine in caudate brain slices. The V max for clearance of exogenously applied adenosine in brain slices was 1.4 ± 0.1 μmol/L/sec. In vivo, the equilibrative nucleoside transport 1 (ENT1) inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI) (1 mg/kg, i.p.) significantly increased the duration of adenosine, while the ENT1/2 inhibitor, dipyridamole (10 mg/kg, i.p.), did not affect duration. 5-(3-Bromophenyl)-7-[6-(4-morpholinyl)-3-pyrido[2,3-d]byrimidin-4-amine dihydrochloride (ABT-702), an adenosine kinase inhibitor (5 mg/kg, i.p.), increased the duration of spontaneous adenosine release. The adenosine deaminase inhibitor, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) (10 mg/kg, i.p.), also increased the duration in vivo. Similarly, NBTI (10 μmol/L), ABT-702 (100 nmol/L), or EHNA (20 μmol/L) also decreased the clearance rate of exogenously applied adenosine in brain slices. The increases in duration for blocking ENT1, adenosine kinase, or adenosine deaminase individually were similar, about 0.4 sec in vivo; thus, the removal of adenosine on a rapid time scale occurs through three mechanisms that have comparable effects. A cocktail of ABT-702, NBTI, and EHNA significantly increased the duration by 0.7 sec, so the mechanisms are not additive and there may be additional mechanisms clearing adenosine on a rapid time scale. The presence of multiple mechanisms for adenosine clearance on a time scale of seconds demonstrates that adenosine is tightly regulated in the extracellular space. PMID:27022463

  10. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    PubMed Central

    Chee, Hyun Keun

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  11. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish.

    PubMed

    Bortolotto, Josiane Woutheres; Melo, Gabriela Madalena de; Cognato, Giana de Paula; Vianna, Mônica Ryff Moreira; Bonan, Carla Denise

    2015-02-01

    Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment. PMID:25490060

  12. Effects of adenosine and adenosine A2A receptor agonist on motor nerve conduction velocity and nerve blood flow in experimental diabetic neuropathy.

    PubMed

    Kumar, Sokindra; Arun, K H S; Kaul, Chaman L; Sharma, Shyam S

    2005-01-01

    This study examined the effects of chronic administration of adenosine and CGS 21680 hydrochloride (adenosine A(2A) receptor agonist) on motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and histology of sciatic nerve in animal model of diabetic neuropathy. Adenosinergic agents were administered for 2 weeks after 6 weeks of streptozotocin-induced (50 mg/kg i.p.) diabetes in male Sprague-Dawley rats. Significant reduction in sciatic MNCV and NBF were observed after 8 weeks in diabetic animals in comparison with control (non diabetic) rats. Adenosine (10 mg/kg, i.p.) significantly improved sciatic MNCV and NBF in diabetic rats. The protective effect of adenosine on MNCV and NBF was completely reversed by theophylline (50 mg/kg, i.p.), a non-selective adenosine receptor antagonist, suggesting that the adenosine effect was mediated via adenosinergic receptors. CGS 21680 (0.1 mg/kg, i.p.) significantly improved NBF; however, MNCV was not significantly improved in diabetic rats. At a dose of 1 mg/kg, neither MNCV nor NBF was improved by CGS 21680 in diabetic rats. ZM 241385 (adenosine A(2A) receptor antagonist) prevented the effect of CGS 21680 (0.1 mg/kg, i.p.). Histological changes observed in sciatic nerve were partially improved by the adenosinergic agents in diabetic rats. Results of the present study, suggest the potential of adenosinergic agents in the therapy of diabetic neuropathy. PMID:15829161

  13. Multi-vendor, multicentre comparison of contrast-enhanced SSFP and T2-STIR CMR for determining myocardium at risk in ST-elevation myocardial infarction

    PubMed Central

    Nordlund, David; Klug, Gert; Heiberg, Einar; Koul, Sasha; Larsen, Terje H.; Hoffmann, Pavel; Metzler, Bernhard; Erlinge, David; Atar, Dan; Aletras, Anthony H.; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2016-01-01

    Aims Myocardial salvage, determined by cardiac magnetic resonance imaging (CMR), is used as end point in cardioprotection trials. To calculate myocardial salvage, infarct size is related to myocardium at risk (MaR), which can be assessed by T2-short tau inversion recovery (T2-STIR) and contrast-enhanced steady-state free precession magnetic resonance imaging (CE-SSFP). We aimed to determine how T2-STIR and CE-SSFP perform in determining MaR when applied in multicentre, multi-vendor settings. Methods and results A total of 215 patients from 17 centres were included after percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction. CMR was performed within 1–8 days. These patients participated in the MITOCARE or CHILL-MI cardioprotection trials. Additionally, 8 patients from a previous study, imaged 1 day post-CMR, were included. Late gadolinium enhancement, T2-STIR, and CE-SSFP images were acquired on 1.5T MR scanners (Philips, Siemens, or GE). In 65% of the patients, T2-STIR was of diagnostic quality compared with 97% for CE-SSFP. In diagnostic quality images, there was no difference in MaR by T2-STIR and CE-SSFP (bias: 0.02 ± 6%, P = 0.96, r2 = 0.71, P < 0.001), or between treatment and control arms. No change in size or quality of MaR nor ability to identify culprit artery was seen over the first week after the acute event (P = 0.44). Conclusion In diagnostic quality images, T2-STIR and CE-SSFP provide similar estimates of MaR, were constant over the first week, and were not affected by treatment. CE-SSFP had a higher degree of diagnostic quality images compared with T2 imaging for sequences from two out of three vendors. Therefore, CE-SSFP is currently more suitable for implementation in multicentre, multi-vendor clinical trials. PMID:27002140

  14. Adenosine influences myeloid cells to inhibit aeroallergen sensitization.

    PubMed

    Pei, Hong; Linden, Joel

    2016-05-15

    Agonists of adenosine A2A receptors (A2ARs) suppress the activation of most immune cells and reduce acute inflammatory responses. Asthma is characterized by sensitization in response to initial allergen exposure and by airway hyperreactivity in response to allergen rechallenge. We sought to determine if A2AR activation with CGS-21680 (CGS) is more effective when CGS is administered during sensitization or rechallenge. C57BL/6 wild-type mice and Adora2a(f/f)LysMCre(+/-) mice, which lack A2ARs on myeloid cells, were sensitized with intranasal ovalbumin (OVA) and LPS. Airway sensitization was characterized by a rapid increase in numbers of IL-6(+) and IL-12(+) macrophages and dendritic cells in lungs. A2AR activation with CGS (0.1 μg·kg(-1)·min(-1) sc) only during sensitization reduced numbers of IL-6(+) and IL-12(+) myeloid cells in the lungs and reversed the effects of OVA rechallenge to increase airway hyperresponsiveness to methacholine. CGS treatment during sensitization also reduced the expansion of lung T helper (Th1 and Th17) cells and increased expansion of regulatory T cells in response to OVA rechallenge. Most of the effects of CGS administered during sensitization were eliminated by myeloid-selective A2AR deletion. Administration of CGS only during OVA rechallenge failed to reduce airway hyperresponsiveness. We conclude that myeloid cells are key targets of adenosine during sensitization and indirectly modify T cell polarization. The results suggest that a clinically useful strategy might be to use A2AR agonists to inhibit sensitization to new aeroallergens. We speculate that adenosine production by macrophages engulfing bacteria contributes to the curious suppression of sensitization in response to early-life infections. PMID:27016586

  15. Outcomes and costs of positron emission tomography: comparison of intravenous adenosine and intravenous dipyridamole.

    PubMed

    Holmberg, M J; Mohiuddin, S M; Hilleman, D E; Lucas, B D; Wadibia, E C

    1997-01-01

    The objective of this study was to compare the cost of intravenous adenosine and intravenous dipyridamole in positron emission tomography (PET) in patients with coronary artery disease. A retrospective, open-label, case-control, cost-effectiveness analysis was performed in the out-patient nuclear medicine department of a university hospital. Thirty-six patients underwent dipyridamole PET, and 72 matched patients underwent adenosine PET. A cost-effectiveness analysis was conducted using a direct cost accounting approach to estimate institutional costs. Key costs evaluated included acquisition cost, administration cost, monitoring cost, cost of management of side effects, and cost of follow-up care. The total cost of adenosine PET and dipyridamole PET was divided by their respective predictive accuracies to provide a total cost adjusted for efficacy. Adenosine increased heart rate and lowered systolic blood pressure to a significantly greater extent than dipyridamole. The number of patients experiencing adverse drug reactions was significantly greater for adenosine (82%) than for dipyridamole (67%), but the frequency of prolonged (> 5 minutes) and late-onset side effects was significantly greater for dipyridamole than for adenosine. The frequency of side effects requiring medical intervention was also significantly greater for dipyridamole (53%) than for adenosine (6%). Although adenosine had a significantly greater acquisition cost than dipyridamole, costs of monitoring, management of side effects, and follow-up care were significantly less for adenosine than for dipyridamole. As a result, the total cost of using dipyridamole is significantly greater ($928.00 per patient) than the total cost of using adenosine ($672.00 per patient). Based on these results, adenosine may be the drug of choice for pharmacologic vasodilation for PET. PMID:9220220

  16. Presynaptic action of adenosine on a 4-aminopyridine-sensitive current in the rat carotid body

    PubMed Central

    Vandier, C; Conway, A F; Landauer, R C; Kumar, P

    1999-01-01

    Plasma adenosine concentration increases during hypoxia to a level that excites carotid body chemoreceptors by an undetermined mechanism. We have examined this further by determining the electrophysiological responses to exogenous adenosine of sinus nerve chemoafferents in vitro and of whole-cell currents in isolated type I cells.Steady-state, single-fibre chemoafferent discharge was increased approximately 5-fold above basal levels by 100 μM adenosine. This adenosine-stimulated discharge was reversibly and increasingly reduced by methoxyverapamil (D600, 100 μM), by application of nickel chloride (Ni2+, 2 mM) and by removal of extracellular Ca2+. These effects strongly suggest a presynaptic, excitatory action of adenosine on type I cells of the carotid body.Adenosine decreased whole-cell outward currents at membrane potentials above -40 mV in isolated type I cells recorded during superfusion with bicarbonate-buffered saline solution at 34–36 °C. This effect was reversible and concentration dependent with a maximal effect at 10 μM.The degree of current inhibition induced by 10 μM adenosine was voltage independent (45.39 ± 2.55% (mean ± s.e.m.) between −40 and +30 mV) and largely (∼75%), but not entirely, Ca2+ independent. 4-Aminopyridine (4-AP, 5 mM) decreased the amplitude of the control outward current by 80.60 ± 3.67% and abolished the effect of adenosine.Adenosine was without effect upon currents near the resting membrane potential of approximately −55 mV and did not induce depolarization in current-clamp experiments.We conclude that adenosine acts to inhibit a 4-AP-sensitive current in isolated type I cells of the rat carotid body and suggest that this mechanism contributes to the chemoexcitatory effect of adenosine in the whole carotid body. PMID:10050009

  17. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting.

    PubMed

    Swami, Rajan; Singh, Indu; Jeengar, Manish Kumar; Naidu, V G M; Khan, Wahid; Sistla, Ramakrishna

    2015-01-01

    Delivering chemotherapeutics by nanoparticles into tumor is impeded majorly by two factors: nonspecific targeting and inefficient penetration. Targeted delivery of anti-cancer agents solely to tumor cells introduces a smart strategy because it enhances the therapeutic index compared with untargeted drugs. The present study was performed to investigate the efficiency of adenosine (ADN) to target solid lipid nanoparticles (SLN) to over expressing adenosine receptor cell lines such as human breast cancer and prostate cancer (MCF-7 and DU-145 cells), respectively. SLN were prepared by emulsification and solvent evaporation process using docetaxel (DTX) as drug and were characterized by various techniques like dynamic light scattering, differential scanning calorimeter and transmission electron microscopy. DTX loaded SLNs were surface modified with ADN, an adenosine receptors ligand using carbodiimide coupling. Conjugation was confirmed using infrared spectroscopy and quantified using phenol-sulfuric acid method. Conjugated SLN were shown to have sustained drug release as compared to unconjugated nanoparticles and drug suspension. Compared with free DTX and unconjugated SLN, ADN conjugated SLN showed significantly higher cytotoxicity of loaded DTX, as evidenced by in vitro cell experiments. The IC50 was 0.41 μg/ml for native DTX, 0.30 μg/ml for unconjugated SLN formulation, and 0.09 μg/ml for ADN conjugated SLN formulation in MCF-7 cell lines. Whereas, in DU-145, there was 2 fold change in IC50 of ADN-SLN as compared to DTX. IC50 was found to be 0.44 μg/ml for free DTX, 0.39 μg/ml for unconjugated SLN and 0.22 μg/ml for ADN-SLN. Annexin assay and cell cycle analysis assay further substantiated the cell cytotoxicity. Fluorescent cell uptake and competitive ligand-receptor binding assay corroborated the receptor mediated endocytosis pathway indicated role of adenosine receptors in internalization of conjugated particles. Pharmacokinetic studies of lipidic

  18. Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses

    PubMed Central

    2014-01-01

    Adenosine triphosphatases (ATPases) of double-stranded (ds) DNA archaeal viruses are structurally related to the AAA+ hexameric helicases and translocases. These ATPases have been implicated in viral life cycle functions such as DNA entry into the host, and viral genome packaging into preformed procapsids. We summarize bioinformatical analyses of a wide range of archaeal ATPases, and review the biochemical and structural properties of those archaeal ATPases that have measurable ATPase activity. We discuss their potential roles in genome delivery into the host, virus assembly and genome packaging in comparison to hexameric helicases and packaging motors from bacteriophages. PMID:25105011

  19. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  20. Short range spin correlations in the CMR material La{sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7}.

    SciTech Connect

    Kelley, T. M.

    1998-03-23

    The (La{sub 1{minus}} x Sr{sub x}){sub 3}Mn{sub 2}O{sub 7} compounds are layered materials that exhibit higher magneto-resistance than the corresponding 3D manganite perovskites. Quasi-elastic neutron scattering on a polycrystalline sample of La{sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} shows that the spin fluctuation spectrum of the these layered CMR materials is qualitatively similar to those found in the perovskite manganites (La,Ca)MnO{sub 3}; their concentration, lifetime, and coherence length increase as T decreases to T{sub c}. Unlike the perovskites we find a lower spin-diffusion constant above T{sub c} of {approximately}5 meV {angstrom}{sup 2}.

  1. Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes

    PubMed Central

    Bolcato, Chiara; Cusan, Claudia; Pastorin, Giorgia; Cacciari, Barbara; Klotz, Karl Norbert; Morizzo, Erika

    2007-01-01

    In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach. PMID:18368532

  2. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  3. Spreading depolarization-induced adenosine accumulation reflects metabolic status in vitro and in vivo

    PubMed Central

    Lindquist, Britta E; Shuttleworth, C William

    2014-01-01

    Spreading depolarization (SD), a pathologic feature of migraine, stroke and traumatic brain injury, is a propagating depolarization of neurons and glia causing profound metabolic demand. Adenosine, the low-energy metabolite of ATP, has been shown to be elevated after SD in brain slices and under conditions likely to trigger SD in vivo. The relationship between metabolic status and adenosine accumulation after SD was tested here, in brain slices and in vivo. In brain slices, metabolic impairment (assessed by nicotinamide adenine dinucleotide (phosphate) autofluorescence and O2 availability) was associated with prolonged extracellular direct current (DC) shifts indicating delayed repolarization, and increased adenosine accumulation. In vivo, adenosine accumulation was observed after SD even in otherwise healthy mice. As in brain slices, in vivo adenosine accumulation correlated with DC shift duration and increased when DC shifts were prolonged by metabolic impairment (i.e., hypoglycemia or middle cerebral artery occlusion). A striking pattern of adenosine dynamics was observed during focal ischemic stroke, with nearly all the observed adenosine signals in the periinfarct region occurring in association with SDs. These findings suggest that adenosine accumulation could serve as a biomarker of SD incidence and severity, in a range of clinical conditions. PMID:25160669

  4. A method of the rapid preparation of adenosine 5'-gamma-[32P] triphosphate by chemical synthesis.

    PubMed

    Koziołkiewicz, W; Pankowski, J; Janecka, A

    1978-01-01

    A new chemical method for the synthesis of adenosine 5'-gamma-[32P] triphosphate has been developed based on the reaction of adenosine 5'-diphosphate with ethyl chloroformate. The resulting active mixed anhydride was able to react with [32P]-triethylammonium orthophosphate to give gamma-[32P]ATP. PMID:219425

  5. Adenosine inhibition of gamma-aminobutyric acid release from slices of rat cerebral cortex.

    PubMed Central

    Hollins, C.; Stone, T. W.

    1980-01-01

    1 The effect of purine compounds on the potassium-evoked release of 14C-labelled gamma-aminobutyric acid (GABA) has been studied in 400 micrometers slices of rat cerebral cortex in vitro. 2 Adenosine and adenosine 5' monophosphate (AMP) inhibited the release of GABA at 10(-5) to 10(-3) M. Adenosine triphosphate (ATP) produced a significant inhibition of release only at 10(-3) M. 3 Theophylline 10(-4) or 10(-3) M reduced the inhibitory effect of adenosine, but did not change basal release of GABA. 4 Dipyridamole 10(-5) M itself reduced evoked GABA release, but did not prevent the inhibitory effect of adenosine, implying that adenosine was acting at an extracellularly directed receptor. 5 Calcium removal or antagonism by verapamil reduced the evoked release of GABA, but adenosine did not produce any further reduction of the calcium-independent release. This may indicate that the inhibitory effect of adenosine on GABA release results from interference with calcium influx or availability within the terminals. PMID:7378648

  6. Adenosine-Activated Nanochannels Inspired by G-Protein-Coupled Receptors.

    PubMed

    Li, Pei; Kong, Xiang-Yu; Xie, Ganhua; Xiao, Kai; Zhang, Zhen; Wen, Liping; Jiang, Lei

    2016-04-01

    A bioinspired adenosine activated nanodevice is demonstrated in which the conformations of the designed aptamer change and cause signal transmission according to the emergence of adenosine. This bioinspired system exhibits very high response ratios (activated/nonactivated ratio up to 614) and excellent stability and reversibility, and shows promising applications in the fields of biosensors, pharmaceutica, and healthcare systems. PMID:26915491

  7. Inhibition of renal Na+, K+-adenosine triphosphatase by gentamicin

    SciTech Connect

    Williams, P.D.; Trimble, M.E.; Crespo, L.; Holohan, P.D.; Freedman, J.C.; Ross, C.R.

    1984-11-01

    Inhibition of renal Na+,K+-adenosine triphosphatase is an early biochemical manifestation of gentamicin treatment in rats. Studies with isolated, perfused rat kidneys in filtering and nonfiltering modes indicate that gentamicin is transported across the brush border membrane before enzyme inhibition. The drug caused enzyme inhibition (42%) only in filtering kidneys, and this inhibition was blocked by spermine, an inhibitor of gentamicin binding. In purified rat renal basolateral membranes, bound (/sup 3/H)gentamicin was displaced 88% by unlabeled gentamicin. After in vivo exposure to (/sup 3/H)gentamicin, the radioactivity associated with the isolated basolateral membranes was displaced only 46% by unlabeled drug. These results suggest that inhibition of renal Na+,K+-adenosine triphosphatase by gentamicin is probably due to an interaction at the cytoplasmic face of the basolateral membrane. Scatchard plots of (/sup 3/H)gentamicin binding to basolateral and brush border membranes revealed a single class of noninteracting sites in each membrane. Gentamicin did not change the bulk membrane lipid fluidity, as estimated by the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene.

  8. Adenosine signaling and the energetic costs of induced immunity.

    PubMed

    Lazzaro, Brian P

    2015-04-01

    Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected. PMID:25915419

  9. Adenosine Amine Congener as a Cochlear Rescue Agent

    PubMed Central

    Vlajkovic, Srdjan M.; Chang, Hao; Paek, Song Yee; Chi, Howard H.-T.; Sreebhavan, Sreevalsan; Telang, Ravindra S.; Tingle, Malcolm; Housley, Gary D.; Thorne, Peter R.

    2014-01-01

    We have previously shown that adenosine amine congener (ADAC), a selective A1 adenosine receptor agonist, can ameliorate noise- and cisplatin-induced cochlear injury. Here we demonstrate the dose-dependent rescue effects of ADAC on noise-induced cochlear injury in a rat model and establish the time window for treatment. Methods. ADAC (25–300 μg/kg) was administered intraperitoneally to Wistar rats (8–10 weeks old) at intervals (6–72 hours) after exposure to traumatic noise (8–16 kHz, 110 dB sound pressure level, 2 hours). Hearing sensitivity was assessed using auditory brainstem responses (ABR) before and 12 days after noise exposure. Pharmacokinetic studies investigated ADAC concentrations in plasma after systemic (intravenous) administration. Results. ADAC was most effective in the first 24 hours after noise exposure at doses >50 μg/kg, providing up to 21 dB protection (averaged across 8–28 kHz). Pharmacokinetic studies demonstrated a short (5 min) half-life of ADAC in plasma after intravenous administration without detection of degradation products. Conclusion. Our data show that ADAC mitigates noise-induced hearing loss in a dose- and time-dependent manner, but further studies are required to establish its translation as a clinical otological treatment. PMID:25243188

  10. Purification and characterization of Plasmodium yoelii adenosine deaminase.

    PubMed

    Yadav, Sarika; Saxena, Jitendra Kumar; Dwivedi, U N

    2011-12-01

    Plasmodium lacks the de novo pathway for purine biosynthesis and relies exclusively on the salvage pathway. Adenosine deaminase (ADA), first enzyme of the pathway, was purified and characterized from Plasmodium yoelii, a rodent malarial species, using ion exchange and gel exclusion chromatography. The purified enzyme is a 41 kDa monomer. The enzyme showed K(m) values of 41 μM and 34 μM for adenosine and 2'-deoxyadenosine, respectively. Erythro-9-(2-hydroxy-3-nonyl) adenine competitively inhibited P. yoelii ADA with K(i) value of 0.5 μM. The enzyme was inhibited by DEPC and protein denaturing agents, urea and GdmCl. Purine analogues significantly inhibited ADA activity. Inhibition by p-chloromercuribenzoate (pCMB) and N-ethylmaleimide (NEM) indicated the presence of functional -SH groups. Tryptophan fluorescence maxima of ADA shifted from 339 nm to 357 nm in presence of GdmCl. Refolding studies showed that higher GdmCl concentration irreversibly denatured the purified ADA. Fluorescence quenchers (KI and acrylamide) quenched the ADA fluorescence intensity to the varied degree. The observed differences in kinetic properties of P. yoelii ADA as compared to the erythrocyte enzyme may facilitate in designing specific inhibitors against ADA. PMID:21945268

  11. Adenosine-to-inosine RNA editing and human disease

    PubMed Central

    2013-01-01

    A-to-I RNA editing is a post-transcriptional modification that converts adenosines to inosines in both coding and noncoding RNA transcripts. It is catalyzed by ADAR (adenosine deaminase acting on RNA) enzymes, which exist throughout the body but are most prevalent in the central nervous system. Inosines exhibit properties that are most similar to those of guanosines. As a result, ADAR-mediated editing can post-transcriptionally alter codons, introduce or remove splice sites, or affect the base pairing of the RNA molecule with itself or with other RNAs. A-to-I editing is a mechanism that regulates and diversifies the transcriptome, but the full biological significance of ADARs is not understood. ADARs are highly conserved across vertebrates and are essential for normal development in mammals. Aberrant ADAR activity has been associated with a wide range of human diseases, including cancer, neurological disorders, metabolic diseases, viral infections and autoimmune disorders. ADARs have been shown to contribute to disease pathologies by editing of glutamate receptors, editing of serotonin receptors, mutations in ADAR genes, and by other mechanisms, including recently identified regulatory roles in microRNA processing. Advances in research into many of these diseases may depend on an improved understanding of the biological functions of ADARs. Here, we review recent studies investigating connections between ADAR-mediated RNA editing and human diseases. PMID:24289319

  12. Distribution of adenosine receptors in human sclera fibroblasts

    PubMed Central

    Cui, Dongmei; Trier, Klaus; Chen, Xiang; Zeng, Junwen; Yang, Xiao; Hu, Jianmin

    2008-01-01

    Purpose Systemic treatment with adenosine receptor antagonists has been reported to affect the biochemistry and ultrastructure of rabbit sclera. This study was conducted to determine whether adenosine receptors (ADORs) are present in human scleral fibroblasts (HSF). Methods Primary HSF were cultured in vitro and identified with anti-vimentin, anti-keratin, anti-desmin, and anti-S-100 antibodies. Confocal fluorescence microscopy was used to study the distribution of ADORs in the HSF cell lines and in the frozen human scleral sections. ADOR protein expression in HSF and human sclera was confirmed by western blot analysis of cell lysates. Results ADORs were expressed in both HSF and human sclera. This was confirmed by western blot. ADORA1 expression was concentrated in the nucleus. ADORA2A was concentrated mainly in one side of the cytoplasm, and ADORA2B was found both in the nucleus and the cytoplasm. ADORA3 was expressed weakly in the cytoplasm. Conclusions All four subtypes of ADOR were found in HSF and may play a role in scleral remodeling. PMID:18385786

  13. Cloning, expression and pharmacological characterization of rabbit adenosine A1 and A3 receptors.

    PubMed

    Hill, R J; Oleynek, J J; Hoth, C F; Kiron, M A; Weng, W; Wester, R T; Tracey, W R; Knight, D R; Buchholz, R A; Kennedy, S P

    1997-01-01

    The role of adenosine A1 and A3 receptors in mediating cardioprotection has been studied predominantly in rabbits, yet the pharmacological characteristics of rabbit adenosine A1 and A3 receptor subtypes are unknown. Thus, the rabbit adenosine A3 receptor was cloned and expressed, and its pharmacology was compared with that of cloned adenosine A1 receptors. Stable transfection of rabbit A1 or A3 cDNAs in Chinese hamster ovary-K1 cells resulted in high levels of expression of each of the receptors, as demonstrated by high-affinity binding of the A1/A3 adenosine receptor agonist N6-(4-amino-3-[125I]iodobenzyl)adenosine (125I-ABA). For both receptors, binding of 125I-ABA was inhibited by the GTP analog 5'-guanylimidodiphosphate, and forskolin-stimulated cyclic AMP accumulation was inhibited by the adenosine receptor agonist (R)-phenylisopropyladenosine. The rank orders of potency of adenosine receptor agonists for inhibition of 125I-ABA binding were as follows: rabbit A1, N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N-ethylcarboxamidoadenosine > or = I-ABA > or = N6-2-(4-aminophenyl) ethyladenosine > > N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > N6-(4-amino-3-benzyl)adenosine; rabbit A3, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > or = I-ABA > > N-ethylcarboxamidoadenosine > N6-2-(4-aminophenyl) ethyladenosine = N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N6-(4-amino-3-benzyl)adenosine. The adenosine receptor antagonist rank orders were as follow: rabbit A1, 8-cyclopentyl-1,3-dipropylxanthine > 1,3- dipropyl-8-(4-acrylate)phenylxanthine > or = xanthine amine congener > > 8-(p-sulfophenyl)theophylline; rabbit A3, xanthine amine congener > 1,3-dipropyl-8-(4-acrylate)phenylxanthine > or = 8-cyclopentyl-1,3-dipropylxanthine > > 8-(p-sulfophenyl)theophylline. These observations confirm the identity of the expressed proteins as A1 and A3 receptors. The results will facilitate further in-depth studies of the roles of A1 and A3 receptors in

  14. Elevated synovial fluid concentration of adenosine triphosphate in dogs with osteoarthritis or sodium urate-induced synovitis of the stifle.

    PubMed

    Torres, Bryan T; Jimenez, David A; Budsberg, Steven C

    2016-07-19

    Adenosine triphosphate has been shown to stimulate nociceptive nerve terminals in joints. Elevated synovial fluid adenosine triphosphate concentrations as well as a correlation between synovial fluid adenosine triphosphate concentrations and osteoarthritic knee pain has been demonstrated in humans, but not yet in dogs. This study documented elevated synovial fluid adenosine triphosphate concentrations in the stifles of dogs with secondary osteoarthritis and urate-induced synovitis, as compared to normal stifles. PMID:27432274

  15. Purification and Properties of Adenosine Diphosphoglucose Pyrophosphorylase from Sweet Corn 1

    PubMed Central

    Amir, Jacob; Cherry, Joe H.

    1972-01-01

    A 40-fold purification of adenosine diphosphoglucose pyrophosphorylase from sweet corn (Zea mays var. Golden Beauty) revealed the enzyme to be specific for adenosine triphosphate. The enzyme has an absolute requirement for Mg2+ and is activated by 3-phosphoglycerate and to a lesser extent by ribose-5-phosphate and fructose-6-phosphate. The apparent Km values of the enzyme for glucose-1-phosphate, adenosine triphosphate, pyrophosphate, and adenosine diphosphoglucose are 1.9 × 10−4, 3.2 × 10−5, 3.3 × 10−5, and 6.2 × 10−4m, respectively. Pyrophosphate inhibits adenosine diphosphoglucose synthesis competitively (Ki = 3.8 × 10−7m), while orthophosphate and sulfate appear to inhibit the reacion noncompetitively. These results show that the production of this sugar nucleotide can be controlled by the concentration of pyrophosphate. PMID:16658078

  16. Respiratory stimulant effects of adenosine in man after caffeine and enprofylline.

    PubMed Central

    Smits, P; Schouten, J; Thien, T

    1987-01-01

    In a double-blind and randomized study the respiratory stimulant effect of continuous intravenous adenosine infusion was studied after previous administration of caffeine, placebo and enprofylline in 10 healthy young volunteers. After placebo, adenosine induced an increase of minute ventilation (from 6.3 to 12.5 l min-1), tidal volume (from 0.60 to 0.96 l), and breathing rate (from 11.0 to 14.8 min-1). Venous pCO2 fell and pH rose after adenosine. Caffeine significantly reduced the adenosine-induced changes of minute ventilation, tidal volume, venous pCO2 and pH, whereas no changes occurred after enprofylline. Our results suggest that adenosine stimulates respiration in man by binding with specific P1-purinoceptors, which can be blocked by caffeine, but not by enprofylline. PMID:3440102

  17. Suppression of adenosine 2a receptor (A2aR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Ng, Seng Kah; Higashimori, Haruki; Tolman, Michaela; Yang, Yongjie

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease in which the majority of upper and lower motor neurons are degenerated. Despite intensive efforts to identify drug targets and develop neuroprotective strategies, effective therapeutics for ALS remains unavailable. The identification and characterization of novel targets and pathways remain crucial in the development of ALS therapeutics. Adenosine is a major neuromodulator that actively regulates synaptic transmission. Interestingly, adenosine levels are significantly elevated in the cerebrospinal fluid (CSF) of progressing human ALS patients. In the current study, we showed that adenosine 2a receptor (A2aR), but not adenosine 1 receptor (A1R), is highly enriched in spinal (motor) neurons. A2aR expression is also selectively increased at the symptomatic onset in the spinal cords of SOD1G93A mice and end-stage human ALS spinal cords. Interestingly, we found that direct adenosine treatment is sufficient to induce embryonic stem cell-derived motor neuron (ESMN) cell death in cultures. Subsequent pharmacological inhibition and partial genetic ablation of A2aR (A2aR(+/-)) significantly protect ESMN from SOD1G93A(+) astrocyte-induced cell death and delay disease progression of SOD1G93A mice. Taken together, our results provide compelling novel evidence that A2aR-mediated adenosine signaling contributes to the selective spinal motor neuron degeneration observed in the SOD1G93A mouse model of ALS. PMID:25779930

  18. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    PubMed

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production. PMID:16023100

  19. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine.

    PubMed

    Konno, Takashi; Murakami, Akira; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-04-01

    The aim of the present study is to clarify the mechanism for the decrease in intraocular pressure by 2-alkynyladenosine derivatives in rabbits. The receptor binding analysis revealed that 2-(1-octyn-1-yl)adenosine (2-O-Ado) and 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) selectively bound to the A(2a) receptor with a high affinity. Ocular hypotensive responses to 2-O-Ado and 2-CN-Ado were inhibited by the adenosine A(2a)-receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), but not by the adenosine A(1)-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or the adenosine A(2b)-receptor antagonist alloxazine. In addition, 2-O-Ado and 2-CN-Ado caused an increase in outflow facility, which was inhibited by CSC, but not by DPCPX or alloxazine. Moreover, 2-O-Ado and 2-CN-Ado increased cAMP in the aqueous humor, and the 2-O-Ado-induced an increase in cAMP was inhibited by CSC. These results suggest that 2-O-Ado and 2-CN-Ado reduced intraocular pressure via an increase in outflow facility. The ocular hypotension may be mainly mediated through the activation of adenosine A(2a) receptor, although a possible involvement of adenosine A(1) receptor cannot be completely ruled out. 2-O-Ado and 2-CN-Ado are useful lead compounds for the treatment of glaucoma. PMID:15821340

  20. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis.

    PubMed

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-08-28

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[(3)H]-Adenosine NAs and [(14)C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. PMID:26087468

  1. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis

    PubMed Central

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-01-01

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[3H]-Adenosine NAs and [14C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1 h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. PMID:26087468

  2. Specificity of synergistic coronary flow enhancement by adenosine and pulsatile perfusion in the dog.

    PubMed

    Pagliaro, P; Senzaki, H; Paolocci, N; Isoda, T; Sunagawa, G; Recchia, F A; Kass, D A

    1999-10-01

    1. Coronary flow elevation from enhanced perfusion pulsatility is synergistically amplified by adenosine. This study determined the specificity of this interaction and its potential mechanisms. 2. Mean and phasic coronary flow responses to increasing pulsatile perfusion were assessed in anaesthetized dogs, with the anterior descending coronary artery servoperfused to regulate real-time physiological flow pulsatility at constant mean pressure. Pulsatility was varied between 40 and 100 mmHg. Hearts ejected into the native aorta whilst maintaining stable loading. 3. Increasing pulsatility elevated mean coronary flow +11.5 +/- 1.7 % under basal conditions. Co-infusion of adenosine sufficient to raise baseline flow 66 % markedly amplified this pulsatile perfusion response (+82. 6 +/- 14.3 % increase in mean flow above adenosine baseline), due to a leftward shift of the adenosine-coronary flow response curve at higher pulsatility. Flow augmentation with pulsatility was not linked to higher regional oxygen consumption, supporting direct rather than metabolically driven mechanisms. 4. Neither bradykinin, acetylcholine nor verapamil reproduced the synergistic amplification of mean flow by adenosine and higher pulsatility, despite being administered at doses matching basal flow change with adenosine. 5. ATP-sensitive potassium (KATP) activation (pinacidil) amplified the pulse-flow response 3-fold, although this remained significantly less than with adenosine. Co-administration of the phospholipase A2 inhibitor quinacrine virtually eliminated adenosine-induced vasodilatation, yet synergistic interaction between adenosine and pulse perfusion persisted, albeit at a reduced level. 6. Thus, adenosine and perfusion pulsatility specifically interact to enhance coronary flow. This synergy is partially explained by KATP agonist action and additional non-flow-dependent mechanisms, and may be important for modulating flow reserve during exercise or other high output states where

  3. Adenosine regulates the proinflammatory signaling function of thrombin in endothelial cells

    PubMed Central

    Hassanian, Seyed Mahdi; Dinarvand, Peyman; Rezaie, Alireza R.

    2014-01-01

    The plasma level of the regulatory metabolite adenosine increases during the activation of coagulation and inflammation. Here we investigated the effect of adenosine on modulation of thrombin-mediated proinflammatory responses in HUVECs. We found that adenosine inhibits the barrier-disruptive effect of thrombin in HUVECs by a concentration-dependent manner. Analysis of cell surface expression of adenosine receptors revealed that A2A and A2B are expressed at the highest level among the four receptor subtypes (A2B>A2A>A1>A3) on HUVECs. The barrier-protective effect of adenosine in response to thrombin was recapitulated by the A2A specific agonist, CGS 21680, and abrogated both by the siRNA knockdown of the A2A receptor and by the A2A-specific antagonists, ZM-241385 and SCH-58261. The thrombin-induced RhoA activation and its membrane translocation were both inhibited by adenosine in a cAMP-dependent manner, providing a molecular mechanism through which adenosine exerts a barrier-protective function. Adenosine also inhibited thrombin-mediated activation of NF-κB and decreased adhesion of monocytic THP-1 cells to stimulated HUVECs via down-regulation of expression of cell surface adhesion molecules, VCAM-1, ICAM-1 and E-selectin. Moreover, adenosine inhibited thrombin-induced elevated expression of proinflammatory cytokines, IL-6 and HMGB-1; and chemokines, MCP-1, CXCL-1 and CXCL-3. Taken together, these results suggest that adenosine may inhibit thrombin-mediated proinflammatory signaling responses, thereby protecting the endothelium from injury during activation of coagulation and inflammation. PMID:24477600

  4. Real-time monitoring of extracellular adenosine using enzyme-linked microelectrode arrays.

    PubMed

    Hinzman, Jason M; Gibson, Justin L; Tackla, Ryan D; Costello, Mark S; Burmeister, Jason J; Quintero, Jorge E; Gerhardt, Greg A; Hartings, Jed A

    2015-12-15

    Throughout the central nervous system extracellular adenosine serves important neuroprotective and neuromodulatory functions. However, current understanding of the in vivo regulation and effects of adenosine is limited by the spatial and temporal resolution of available measurement techniques. Here, we describe an enzyme-linked microelectrode array (MEA) with high spatial (7500 µm(2)) and temporal (4 Hz) resolution that can selectively measure extracellular adenosine through the use of self-referenced coating scheme that accounts for interfering substances and the enzymatic breakdown products of adenosine. In vitro, the MEAs selectively measured adenosine in a linear fashion (r(2)=0.98±0.01, concentration range=0-15 µM, limit of detection =0.96±0.5 µM). In vivo the limit of detection was 0.04±0.02 µM, which permitted real-time monitoring of the basal extracellular concentration in rat cerebral cortex (4.3±1.5 µM). Local cortical injection of adenosine through a micropipette produced dose-dependent transient increases in the measured extracellular concentration (200 nL: 6.8±1.8 µM; 400 nL: 19.4±5.3 µM) [P<0.001]. Lastly, local injection of dipyridamole, which inhibits transport of adenosine through equilibrative nucleoside transporter, raised the measured extracellular concentration of adenosine by 120% (5.6→12.3 µM) [P<0.001]. These studies demonstrate that MEAs can selectively measure adenosine on temporal and spatial scales relevant to adenosine signaling and regulation in normal and pathologic states. PMID:26183072

  5. Adenosine Deaminase Enzyme Therapy Prevents and Reverses the Heightened Cavernosal Relaxation in Priapism

    PubMed Central

    Wen, Jiaming; Jiang, Xianzhen; Dai, Yingbo; Zhang, Yujin; Tang, Yuxin; Sun, Hong; Mi, Tiejuan; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2010-01-01

    Introduction Priapism featured with painful prolonged penile erection is dangerous and commonly seen in sickle cell disease (SCD). The preventive approaches or effective treatment options for the disorder are limited because of poor understanding of its pathogenesis. Recent studies have revealed a novel role of excess adenosine in priapism caused by heightened cavernosal relaxation, and therefore present an intriguing mechanism-based therapeutic possibility. Aim The aim of this study was to determine the therapeutic effects of adenosine deaminase (ADA) enzyme therapy to lower adenosine in priapism. Methods Both ADA-deficient mice and SCD transgenic (Tg) mice display priapism caused by excessive adenosine. Thus, we used these two distinct lines of mouse models of priapism as our investigative tools. Specifically, we treated both of these mice with different dosages of polyethylene glycol–modified ADA (PEG–ADA) to reduce adenosine levels in vivo. At the end points of the experiments, we evaluated the therapeutic effects of PEG–ADA treatment by measuring adenosine levels and monitoring the cavernosal relaxation. Main Outcome Measures Adenosine levels in penile tissues were measured by high-performance liquid chromatography, and cavernosal relaxation was quantified by electrical field stimulation (EFS)-induced corporal cavernosal strip (CCS) assays. Results We found that lowering adenosine levels in penile tissues by PEG–ADA treatment from birth in ADA-deficient mice prevented the increased EFS-induced CCS relaxation associated with priapism. Intriguingly, in both ADA-deficient mice and SCD Tg mice with established priapism, we found that normalization of adenosine levels in penile tissues by PEG–ADA treatment relieved the heightened EFS-induced cavernosal relaxation in priapism. Conclusions Our studies have identified that PEG–ADA is a novel, safe, and mechanism-based drug to prevent and correct excess adenosine-mediated increased cavernosal relaxation

  6. Role of Perfusion at Rest in the Diagnosis of Myocardial Infarction Using Vasodilator Stress Cardiovascular Magnetic Resonance.

    PubMed

    Patel, Mita B; Mor-Avi, Victor; Kawaji, Keigo; Nathan, Sandeep; Kramer, Christopher M; Lang, Roberto M; Patel, Amit R

    2016-04-01

    In clinical practice, perfusion at rest in vasodilator stress single-photon emission computed tomography is commonly used to confirm myocardial infarction (MI) and ischemia and to rule out artifacts. It is unclear whether perfusion at rest carries similar information in cardiovascular magnetic resonance (CMR). We sought to determine whether chronic MI is associated with abnormal perfusion at rest on CMR. We compared areas of infarct and remote myocardium in 31 patients who underwent vasodilator stress CMR (1.5 T), had MI confirmed by late gadolinium enhancement (LGE scar), and coronary angiography within 6 months. Stress perfusion imaging during gadolinium first pass was followed by reversal with aminophylline (75 to 125 mg), rest perfusion, and LGE imaging. Resting and peak-stress time-intensity curves were used to obtain maximal upslopes (normalized by blood pool upslopes), which were compared between infarcted and remote myocardial regions of interest. At rest, there was no significant difference between the slopes in the regions of interest supplied by arteries with and without stenosis >70% (0.31 ± 0.16 vs 0.26 ± 0.15 1/s), irrespective of LGE scar. However, at peak stress, we found significant differences (0.20 ± 0.11 vs 0.30 ± 0.22 1/s; p <0.05), reflecting the expected stress-induced ischemia. Similarly, at rest, there was no difference between infarcted and remote myocardium (0.27 ± 0.14 vs 0.30 ± 0.17 1/s), irrespective of stenosis, but significant differences were seen during stress (0.21 ± 0.16 vs 0.28 ± 0.18 1/s; p <0.001), reflecting inducible ischemia. In conclusion, abnormalities in myocardial perfusion at rest associated with chronic MI are not reliably detectable on CMR images. Accordingly, unlike single-photon emission computed tomography, normal CMR perfusion at rest should not be used to rule out chronic MI. PMID:26830261

  7. A novel fused 1,2,4-triazine aryl derivative as antioxidant and nonselective antagonist of adenosine A(2A) receptors in ethanol-activated liver stellate cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Sztanke, Krzysztof; Kandefer-Szerszeń, Martyna

    2012-01-01

    It has been detected that hepatic adenosine A(2A) receptors play an active role in the pathogenesis of hepatic fibrosis and suggest a novel therapeutic target in the treatment and prevention of hepatic cirrhosis. In this paper we examined if our new triazine derivative (IMT) can inhibit ethanol-induced activation of HSCs measured as increased α-SMA, collagen synthesis and enhanced oxidative stress in rat liver stellate cells. We also investigated its influence on cytokines (TGF-β, TNF-α) synthesis, MMP-2 and TIMP-1 production and ethanol-induced intracellular signal transduction. Moreover, with using of known adenosine A(2A) receptor agonist (CGS 21680), and antagonist (SCH 58261) we examined if this triazine derivative acts on adenosine receptors. We detected a strong antagonistic action of new triazine derivative (IMT) on ethanol-induced rat liver stellate cells activation, observed as a significant decrease in α-SMA, collagen synthesis, reactive oxygen species production, TGF-β, TNF-α, MMP-2 and TIMP-1 production as well as JNK, p38MAPK, NFκB, IκB, Smad3 phosphorylation. Moreover, IMT strongly inhibited activation of stellate cells by known selective agonist of adenosine A(2A) receptor (CGS 21680). When known A(2A) receptor antagonist (SCH 58261) was used together with IMT this effect was not spectacular. Additionally, only slight enhancement of inhibition was observed when cells were pretreated both IMT with SCH 58261, hence we suppose that IMT acts as nonselective antagonist of A(2A) receptors, and, besides its antioxidant activity, also by this way inhibited ethanol-induced stellate cell activation. PMID:22063920

  8. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE PAGESBeta

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; et al

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  9. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    SciTech Connect

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; Li, Huilin; Darwin, K. Heran

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.

  10. Role of adenosine signalling and metabolism in β-cell regeneration

    SciTech Connect

    Andersson, Olov

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  11. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity.

    PubMed

    Masino, S A; Kawamura, M; Wasser, C D; Wasser, C A; Pomeroy, L T; Ruskin, D N

    2009-09-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a "retaliatory metabolite." As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor-based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  12. The Role of Adenosine in Pulmonary Vein Isolation: A Critical Review

    PubMed Central

    Dallaglio, Paolo D.; Betts, Timothy R.; Ginks, Matthew; Bashir, Yaver; Anguera, Ignasi; Rajappan, Kim

    2016-01-01

    The cornerstone of atrial fibrillation (AF) ablation is pulmonary vein isolation (PVI), which can be achieved in more than 95% of patients at the end of the procedure. However, AF recurrence rates remain high and are related to recovery of PV conduction. Adenosine testing is used to unmask dormant pulmonary vein conduction (DC). The aim of this study is to review the available literature addressing the role of adenosine testing and determine the impact of ablation at sites of PV reconnection on freedom from AF. Adenosine infusion, by restoring the excitability threshold, unmasks reversible injury that could lead to recovery of PV conduction. The studies included in this review suggest that adenosine is useful to unmask nontransmural lesions at risk of reconnection and that further ablation at sites of DC is associated with improvement in freedom from AF. Nevertheless it has been demonstrated that adenosine is not able to predict all veins at risk of later reconnection, which means that veins without DC are not necessarily at low risk. The role of the waiting period in the setting of adenosine testing has also been analyzed, suggesting that in the acute phase adenosine use should be accompanied by enough waiting time. PMID:26981309

  13. Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine.

    PubMed

    Faingold, Carl L; Randall, Marc; Kommajosyula, Srinivasa P

    2016-08-01

    Sudden unexpected death in epilepsy (SUDEP) is rare but is an important public health burden due to the number of patient years lost. Respiratory dysfunction following generalized convulsive seizure is a common sequence of events in witnessed SUDEP cases. The DBA/2 mouse model of SUDEP exhibits generalized convulsive audiogenic seizures (AGSz), which result in seizure-induced respiratory arrest (S-IRA) in ∼75% of these animals, while the remaining DBA/2 mice exhibit AGSz without S-IRA. SUDEP induction may involve actions of adenosine, which is released during generalized seizures in animals and patients and is known to depress respiration. This study examined the effects of systemic administration of agents that alter the actions of adenosine on the incidence of S-IRA in DBA/2 mice. DBA/2 mice that consistently exhibited AGSz without S-IRA showed a significantly increased incidence of S-IRA following treatment with 5-iodotubercidin, which blocks adenosine metabolism. Treatment of DBA/2 mice that consistently exhibited AGSz followed by S-IRA with a non-selective adenosine antagonist, caffeine, or an A2A adenosine receptor subtype-selective antagonist (SCH 442416) significantly reduced S-IRA incidence. By contrast, an A1 adenosine receptor antagonist (DPCPX) was not effective in reducing S-IRA incidence. These findings suggest that preventative approaches for SUDEP should consider agents that reduce the actions of adenosine. PMID:27259068

  14. Topical adenosine increases the proportion of thick hair in Caucasian men with androgenetic alopecia.

    PubMed

    Iwabuchi, Tokuro; Ideta, Ritsuro; Ehama, Ritsuko; Yamanishi, Haruyo; Iino, Masato; Nakazawa, Yosuke; Kobayashi, Takashi; Ohyama, Manabu; Kishimoto, Jiro

    2016-05-01

    Adenosine is an effective treatment for androgenetic alopecia (AGA) in Japanese men and women. Adenosine exerts its effects by significantly increasing the proportion of thick hair. In this study, we assessed the clinical outcome of adenosine treatment for 6 months in 38 Caucasian men. The change in proportion of thick hair (≥60 μm) compared with baseline in the adenosine group was significantly higher than that in the placebo group (P < 0.0001). The change in vellus hair proportion (<40 μm) was significantly lower in the adenosine group than that in the placebo group (P = 0.0154). The change in hair density compared with baseline of the adenosine group was also significantly higher compared with that of the placebo group (P = 0.0470). No adverse effects due to treatment were noted during this study by dermatological evaluation. Adenosine is effective in increasing the proportion of thick hair in Caucasian men with AGA as well as in Japanese men and women. PMID:26508659

  15. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    SciTech Connect

    Schousboe, A.; Frandsen, A.; Drejer, J. )

    1989-09-01

    Evoked release of ({sup 3}H)-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and (3H)-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP.

  16. Improvement of Cold Tolerance by Selective A1 Adenosine Receptor Antagonists in Rats

    PubMed Central

    Lee, T. F.; Li, D. J.; Jacobson, K. A.; Wang, L. C. H.

    2015-01-01

    Previously we have shown that the improvement of cold tolerance by theophylline is due to antagonism at adenosine receptors rather than inhibition of phosphodiesterase. Since theophylline is a nonselective adenosine receptor antagonist for both A1 and A2 receptors, the present study investigated the adenosine receptor subtype involved in theophylline’s action. Acute systemic injection of selective A1 receptor antagonists (1,3-dialkyl-8-aryl or 1,3-dialkyl-8-cyclopentyl xanthine derivatives) significantly increased both the total and maximal heat production as well as cold tolerance. In contrast, injection of a relatively selective A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (compound No. 19), failed to significantly alter the thermogenic response of the rat under cold exposure. Further, the relative effectiveness of these compounds in increasing total thermogenesis was positively correlated with their potency in blocking the A1 adenosine receptor (r= .52, p<0.01), but not in A2 adenosine receptor (r= .20, p<0.2). It is likely that the thermally beneficial effects of adenosine A1 antagonists are due to their attenuation of the inhibitory effects of endogenously released adenosine on lipolysis and glucose utilization, resulting in increased substrate mobilization and utilization for enhanced thermogenesis. PMID:2263650

  17. Expression of adenosine A2b receptor in rat type II and III taste cells.

    PubMed

    Nishida, Kentaro; Dohi, Yukari; Yamanaka, Yuri; Miyata, Ai; Tsukamoto, Katsunobu; Yabu, Miharu; Ohishi, Akihiro; Nagasawa, Kazuki

    2014-05-01

    We previously demonstrated that equilibrative nucleoside transporter 1 was expressed in taste cells, suggesting the existence of an adenosine signaling system, but whether or not the expression of an adenosine receptor occurs in rat taste buds remains unknown. Therefore, we examined the expression profiles of adenosine receptors and evaluated their functionality in rat circumvallate papillae. Among adenosine receptors, the mRNA for an adenosine A2b receptor (A2bR) was expressed by the rat circumvallate papillae, and its expression level was significantly greater in the circumvallate papillae than in the non-taste lingual epithelium. A2bR-immunoreactivity was detected primarily in type II taste cells, and partial, but significant expression was also observed in type III ones, but there was no immunoreactivity in type I ones. The cAMP generation in isolated epithelium containing taste buds treated with 500 μM adenosine or 10 μM BAY60-6583 was significantly increased compared to in the controls. These findings suggest that adenosine plays a role in signaling transmission via A2bR between taste cells in rats. PMID:24327108

  18. Adenosine-5'-phosphosulfate kinase is essential for Arabidopsis viability.

    PubMed

    Mugford, Sarah G; Matthewman, Colette A; Hill, Lionel; Kopriva, Stanislav

    2010-01-01

    In Arabidopsis thaliana, adenosine-5'-phosphosulfate kinase (APK) provides activated sulfate for sulfation of secondary metabolites, including the glucosinolates. We have successfully isolated three of the four possible triple homozygous mutant combinations of this family. The APK1 isoform alone was sufficient to maintain WT levels of growth and development. Analysis of apk1 apk2 apk3 and apk1 apk3 apk4 mutants suggests that APK3 and APK4 are functionally redundant, despite being located in cytosol and plastids, respectively. We were, however, unable to isolate apk1 apk3 apk4 mutants, most probably because the apk1 apk3 apk4 triple mutant combination is pollen lethal. Therefore, we conclude that APS kinase is essential for plant reproduction and viability. PMID:19903478

  19. N6-adenosine methylation in MiRNAs.

    PubMed

    Berulava, Tea; Rahmann, Sven; Rademacher, Katrin; Klein-Hitpass, Ludgar; Horsthemke, Bernhard

    2015-01-01

    Methylation of N6-adenosine (m6A) has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs) has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression. PMID:25723394

  20. N6-Adenosine Methylation in MiRNAs

    PubMed Central

    Berulava, Tea; Rahmann, Sven; Rademacher, Katrin; Klein-Hitpass, Ludgar; Horsthemke, Bernhard

    2015-01-01

    Methylation of N6-adenosine (m6A) has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs) has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression. PMID:25723394

  1. Role of adenosine A2B receptors in inflammation

    PubMed Central

    Feoktistov, Igor; Biaggioni, Italo

    2013-01-01

    Recent progress in our understanding of the unique role of A2B receptors in the regulation of inflammation, immunity and tissue repair was considerably facilitated with the introduction of new pharmacological and genetic tools. However, it also led to seemingly conflicting conclusions on the role of A2B adenosine receptors in inflammation with some publications indicating pro-inflammatory effects and others suggesting the opposite. This chapter reviews the functions of A2B receptors in various cell types related to inflammation and integrated effects of A2B receptor modulation in several animal models of inflammation. It is argued that translation of current findings into novel therapies would require a better understanding of A2B receptors functions in diverse types of inflammatory responses in various tissues and at different points of their progression. PMID:21586358

  2. Extraction and analysis of adenosine triphosphate from aquatic environments

    USGS Publications Warehouse

    Stephens, Doyle W.; Shultz, David J.

    1981-01-01

    A variety of adenosine triphosphate (ATP) extraction procedures have been investigated for their applicability to samples from aquatic environments. The cold sulfuric-oxalic acid procedure was best suited to samples consisting of water, periphyton, and sediments. Due to cation and fulvic acid interferences, a spike with a known quantity of ATP was necessary to estimate losses when sediments were extracted. Variable colonization densities for periphyton required that several replicates be extracted to characterize accurately the periphyton community. Extracted samples were stable at room temperature for one to five hours, depending on the ATP concentration, if the pH was below 2. Neutralized samples which were quick frozen and stored at -30C were stable for months. (USGS)

  3. Adenosine Monophosphate-Based Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  4. Structural and Metabolic Specificity of Methylthiocoformycin for Malarial Adenosine Deaminases

    SciTech Connect

    Ho, M.; Cassera, M; Madrid, D; Ting, L; Tyler, P; Kim, K; Almo, S; Schramm, V

    2009-01-01

    Plasmodium falciparum is a purine auxotroph requiring hypoxanthine as a key metabolic precursor. Erythrocyte adenine nucleotides are the source of the purine precursors, making adenosine deaminase (ADA) a key enzyme in the pathway of hypoxanthine formation. Methylthioadenosine (MTA) is a substrate for most malarial ADAs, but not for human ADA. The catalytic site specificity of malarial ADAs permits methylthiocoformycin (MT-coformycin) to act as a Plasmodium-specific transition state analogue with low affinity for human ADA. The structural basis for MTA and MT-coformycin specificity in malarial ADAs is the subject of speculation. Here, the crystal structure of ADA from Plasmodium vivax (PvADA) in a complex with MT-coformycin reveals an unprecedented binding geometry for 5?-methylthioribosyl groups in the malarial ADAs. Compared to malarial ADA complexes with adenosine or deoxycoformycin, 5?-methylthioribosyl groups are rotated 130 degrees. A hydrogen bonding network between Asp172 and the 3?-hydroxyl of MT-coformycin is essential for recognition of the 5?-methylthioribosyl group. Water occupies the 5?-hydroxyl binding site when MT-coformycin is bound. Mutagenesis of Asp172 destroys the substrate specificity for MTA and MT-coformycin. Kinetic, mutagenic, and structural analyses of PvADA and kinetic analysis of five other Plasmodium ADAs establish the unique structural basis for its specificity for MTA and MT-coformycin. Plasmodium gallinaceum ADA does not use MTA as a substrate, is not inhibited by MT-coformycin, and is missing Asp172. Treatment of P. falciparum cultures with coformycin or MT-coformycin in the presence of MTA is effective in inhibiting parasite growth.

  5. Role of Adenosine Signaling on Pentylenetetrazole-Induced Seizures in Zebrafish

    PubMed Central

    Siebel, Anna Maria; Menezes, Fabiano Peres; Capiotti, Katiucia Marques; Kist, Luiza Wilges; Schaefer, Isabel da Costa; Frantz, Juliana Zanetti; Bogo, Maurício Reis; Da Silva, Rosane Souza

    2015-01-01

    Abstract Adenosine is a well-known endogenous modulator of neuronal excitability with anticonvulsant properties. Thus, the modulation exerted by adenosine might be an effective tool to control seizures. In this study, we investigated the effects of drugs that are able to modulate adenosinergic signaling on pentylenetetrazole (PTZ)-induced seizures in adult zebrafish. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) decreased the latency to the onset of the tonic-clonic seizure stage. The adenosine A1 receptor agonist cyclopentyladenosine (CPA) increased the latency to reach the tonic-clonic seizure stage. Both the adenosine A2A receptor agonist and antagonist, CGS 21680 and ZM 241385, respectively, did not promote changes in seizure parameters. Pretreatment with the ecto-5′nucleotidase inhibitor adenosine 5′-(α,β-methylene) diphosphate (AMPCP) decreased the latency to the onset of the tonic-clonic seizure stage. However, when pretreated with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), or with the nucleoside transporter (NT) inhibitors, dipyridamole and S-(4-Nitrobenzyl)-6-thioinosine (NBTI), animals showed longer latency to reach the tonic-clonic seizure status. Finally, our molecular analysis of the c-fos gene expression corroborates these behavioral results. Our findings indicate that the activation of adenosine A1 receptors is an important mechanism to control the development of seizures in zebrafish. Furthermore, the actions of ecto-5′-nucleotidase, ADA, and NTs are directly involved in the control of extracellular adenosine levels and have an important role in the development of seizure episodes in zebrafish. PMID:25560904

  6. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    PubMed

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists. PMID:25063794

  7. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine

    PubMed Central

    Baron, L; Gombault, A; Fanny, M; Villeret, B; Savigny, F; Guillou, N; Panek, C; Le Bert, M; Lagente, V; Rassendren, F; Riteau, N; Couillin, I

    2015-01-01

    The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation. PMID:25654762

  8. Airway hyperresponsiveness to adenosine induced by lipopolysaccharide in Brown Norway rats

    PubMed Central

    Tigani, B; Hannon, J P; Rondeau, C; Mazzoni, L; Fozard, J R

    2002-01-01

    We have explored the effects of bacterial endotoxin (lipopolysaccharide; LPS) on the response of the airways of Brown Norway (BN) rats to adenosine. Comparisons have been drawn with the effects on responses to methacholine and 5-hydroxytryptamine.In vehicle-challenged animals, adenosine, given i.v. was only a weak bronchoconstrictor. In contrast, 1 h following intratracheal administration of LPS, 0.3 mg kg−1, bronchoconstrictor responses to adenosine were markedly and selectively enhanced. At this time point, there were no significant changes in leukocyte numbers, eosinophil peroxidase and myeloperoxidase activities or protein concentrations in bronchoalveolar lavage (BAL) fluid. Twenty-four hours after challenge, the sensitivity of the airways to both adenosine and methacholine was reduced relative to the earlier time point and there were substantial increases in each marker of inflammation in BAL fluid.The bronchoconstrictor response to adenosine was blocked selectively by methysergide, disodium cromoglycate and the broad-spectrum adenosine receptor antagonist, 8-SPT, but not by DPCPX or ZM 243185, selective antagonists for the A1 and A2A receptors, respectively.Thus, the response to adenosine augmented following LPS is mast cell mediated and involves a receptor which can be blocked by 8-SPT but not by selective A1 or A2A receptor antagonists. It thus bears similarity to the augmented response to adenosine induced by allergen challenge in actively sensitized BN rats. Exposure to LPS could be a factor along with allergen in determining the increased sensitivity of the airways of asthmatics to adenosine. PMID:11976275

  9. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine.

    PubMed

    Baron, L; Gombault, A; Fanny, M; Villeret, B; Savigny, F; Guillou, N; Panek, C; Le Bert, M; Lagente, V; Rassendren, F; Riteau, N; Couillin, I

    2015-01-01

    The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation. PMID:25654762

  10. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production.

    PubMed

    Clayton, Aled; Al-Taei, Saly; Webber, Jason; Mason, Malcolm D; Tabi, Zsuzsanna

    2011-07-15

    Extracellular adenosine is elevated in cancer tissue, and it negatively regulates local immune responses. Adenosine production from extracellular ATP has attracted attention as a mechanism of regulatory T cell-mediated immune regulation. In this study, we examined whether small vesicles secreted by cancer cells, called exosomes, contribute to extracellular adenosine production and hence modulate immune effector cells indirectly. We found exosomes from diverse cancer cell types exhibit potent ATP- and 5'AMP-phosphohydrolytic activity, partly attributed to exosomally expressed CD39 and CD73, respectively. Comparable levels of activity were seen with exosomes from pleural effusions of mesothelioma patients. In such fluids, exosomes accounted for 20% of the total ATP-hydrolytic activity. Exosomes can perform both hydrolytic steps sequentially to form adenosine from ATP. This exosome-generated adenosine can trigger a cAMP response in adenosine A(2A) receptor-positive but not A(2A) receptor-negative cells. Similarly, significantly elevated cAMP was also triggered in Jurkat cells by adding exosomes with ATP but not by adding exosomes or ATP alone. A proportion of healthy donor T cells constitutively express CD39 and/or CD73. Activation of T cells by CD3/CD28 cross-linking could be inhibited by exogenously added 5'AMP in a CD73-dependent manner. However, 5'AMP converted to adenosine by exosomes inhibits T cell activation independently of T cell CD73 expression. This T cell inhibition was mediated through the adenosine A(2A) receptor. In summary, the data highlight exosome enzymic activity in the production of extracellular adenosine, and this may play a contributory role in negative modulation of T cells in the tumor environment. PMID:21677139

  11. Possible therapeutic benefits of adenosine-potentiating drugs in reducing age-related degenerative disease in dogs and cats.

    PubMed

    Scaramuzzi, R J; Baker, D J

    2003-10-01

    Adenosine is a ubiquitous, biologically important molecule that is a precursor of other biologically active molecules. It also is a component of some co-factors and has distinct physiological actions in its own right. Levels are maintained by synthesis from dietary precursors and re-cycling. The daily turnover of adenosine is very high. Adenosine can act either as a hormone by binding to adenosine receptors, four adenosine receptor subtypes have been identified, and as an intracellular modulator, after transport into the cell by membrane transporter proteins. One of the principal intracellular actions of adenosine is inhibition of the enzyme phosphodiesterase. Extracellular adenosine also has specific neuromodulatory actions on dopamine and glutamate. Selective and nonselective agonists and antagonists of adenosine are available. The tasks of developing, evaluating and exploiting the therapeutic potential of these compounds is still in its infancy. Adenosine has actions in the central nervous system (CNS), heart and vascular system, skeletal muscle and the immune system and the presence of receptors suggests potential actions in the gonads and other organs. Adenosine agonists improve tissue perfusion through actions on vascular smooth muscle and erythrocyte fluidity and they can be used to improve the quality of life in aged dogs. This article reviews the therapeutic potential of adenosine-potentiating drugs in the treatment of age-related conditions in companion animals, some of which may be exacerbated by castration or spaying at an early age. PMID:14633184

  12. Cyclic adenosine 3', 5'-monophosphate in cerebrospinal fluid during thermoregulation and fever.

    PubMed Central

    Dascombe, M J; Milton, A S

    1976-01-01

    1. Samples of cerebrospinal fluid (c.s.f.) have been taken from the cisterna magna of unanaesthetized cats, whilst rectal temperature was recorded, during exposure of the animals to various ambient temperatures and during fever induced by pyrogen. The concentration of adenosine 3', 5'-monophosphate (cyclic AMP) in samples of c.s.f. has been assayed. 2. Cats exposed to low ambient temperatures (-2 to +2 degrees C) for 3 h maintained body temperature by both behavioural and autonomic heat gain activity. Exposure of cats to high ambient temperatures (44 - 45 degrees C) for 3.5 h caused a rise in body temperatures of about 2.5 degrees C, despite behavioural and autonomic heat loss activity. Neither cold nor heat stress had a significant effect on c.s.f. cyclic AMP. 3. Fever induced by intravenous Shigella dysenteriae (2 and 20 mug/kg) was associated with a dose-related increase in the concentration of cyclic AMP in c.s.f. Paracetamol (75 mg/kg) injected I.P. before the onset of fever, suppressed the increase in both temperature and c.s.f. cyclic AMP in response to pyrogen. Paracetamol (50 and 100 mg/kg), injected after the onset of fever, caused a fall in temperature, which was not associated with a decrease in the concentration of cyclic AMP in c.s.f. 4. Fever induced in cats by intravenous Shigella dysenteriae (20 mug/kg) was associated with an increase in the concentration of cyclic AMP in plasma as well as in c.s.f. 5. The sodium salt of cyclic AMP (0.1-10 mg/kg) injected I.V. into unanaesthetized cats caused a dose-related hypothermia, which was associated with autonomic heat loss activity and a dose-related increase in the concentration of cyclic AMP in cisternal c.s.f., which was not mimicked by adenosine. 6. It is concluded that the raised concentrations of cyclic AMP in c.s.f., in response to pyrogen I.V., do not mediate fever in the cat and that the concentration of cyclic AMP in cisternal c.s.f. may be affected by changes in the plasma concentration of the

  13. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R2 = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis. PMID:26778273

  14. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R2 = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis.

  15. Renoprotective Effects of a Highly Selective A3 Adenosine Receptor Antagonist in a Mouse Model of Adriamycin-induced Nephropathy.

    PubMed

    Min, Hye Sook; Cha, Jin Joo; Kim, Kitae; Kim, Jung Eun; Ghee, Jung Yeon; Kim, Hyunwook; Lee, Ji Eun; Han, Jee Young; Jeong, Lak Shin; Cha, Dae Ryong; Kang, Young Sun

    2016-09-01

    The concentration of adenosine in the normal kidney increases markedly during renal hypoxia, ischemia, and inflammation. A recent study reported that an A3 adenosine receptor (A3AR) antagonist attenuated the progression of renal fibrosis. The adriamycin (ADX)-induced nephropathy model induces podocyte injury, which results in severe proteinuria and progressive glomerulosclerosis. In this study, we investigated the preventive effect of a highly selective A3AR antagonist (LJ1888) in ADX-induced nephropathy. Three groups of six-week-old Balb/c mice were treated with ADX (11 mg/kg) for four weeks and LJ1888 (10 mg/kg) for two weeks as following: 1) control; 2) ADX; and 3) ADX + LJ1888. ADX treatment decreased body weight without a change in water and food intake, but this was ameliorated by LJ1888 treatment. Interestingly, LJ1888 lowered plasma creatinine level, proteinuria, and albuminuria, which had increased during ADX treatment. Furthermore, LJ1888 inhibited urinary nephrin excretion as a podocyte injury marker, and urine 8-isoprostane and kidney lipid peroxide concentration, which are markers of oxidative stress, increased after injection of ADX. ADX also induced the activation of proinflammatory and profibrotic molecules such as TGF-β1, MCP-1, PAI-1, type IV collagen, NF-κB, NOX4, TLR4, TNFα, IL-1β, and IFN-γ, but they were remarkably suppressed after LJ1888 treatment. In conclusion, our results suggest that LJ1888 has a renoprotective effect in ADX-induced nephropathy, which might be associated with podocyte injury through oxidative stress. Therefore, LJ1888, a selective A3AR antagonist, could be considered as a potential therapeutic agent in renal glomerular diseases which include podocyte injury and proteinuria. PMID:27510383

  16. A2B adenosine receptors mediate relaxation of the pig intravesical ureter: adenosine modulation of non adrenergic non cholinergic excitatory neurotransmission

    PubMed Central

    Hernández, Medardo; Barahona, María Victoria; Bustamante, Salvador; García-Sacristán, Albino; Orensanz, Luis M

    1999-01-01

    The present study was designed to characterize the adenosine receptors involved in the relaxation of the pig intravesical ureter, and to investigate the action of adenosine on the non adrenergic non cholinergic (NANC) excitatory ureteral neurotransmission. In U46619 (10−7  M)-contracted strips treated with the adenosine uptake inhibitor, nitrobenzylthioinosine (NBTI, 10−6  M), adenosine and related analogues induced relaxations with the following potency order: 5′-N-ethylcarboxamidoadenosine (NECA)=5′-(N-cyclopropyl)-carboxamidoadenosine (CPCA)=2-chloroadenosine (2-CA)>adenosine>cyclopentyladenosine (CPA)=N6-(3-iodobenzyl)-adenosine-5′-N-methylcarboxamide (IB-MECA)=2-[p-(carboxyethyl)-phenylethylamino]-5′-N-ethylcarboxamidoadenosine (CGS21680). Epithelium removal or incubation with indomethacin (3×10−6  M) and L-NG-nitroarginine (L-NOARG, 3×10−5  M), inhibitors of prostanoids and nitric oxide (NO) synthase, respectively, failed to modify the relaxations to adenosine. 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10−8 M) and 4-(2-[7-amino-2-(2-furyl) [1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385, 3×10−8  M and 10−7  M), A1 and A2A receptor selective antagonists, respectively, did not modify the relaxations to adenosine or NECA. 8-phenyltheophylline (8-PT, 10−5  M) and DPCPX (10−6  M), which block A1/A2-receptors, reduced such relaxations. In strips treated with guanethidine (10−5  M), atropine (10−7  M), L-NOARG (3×10−5  M) and indomethacin (3×10−6  M), both electrical field stimulation (EFS, 5 Hz) and exogenous ATP (10−4  M) induced contractions of preparations. 8-PT (10−5  M) increased both contractions. DPCPX (10−8  M), NECA (10−4  M), CPCA, (10−4  M) and 2-CA (10−4  M) did not alter the contractions to EFS. The present results suggest that adenosine relaxes the pig intravesical ureter, independently of prostanoids

  17. Association of adenosine receptor gene polymorphisms and in vivo adenosine A1 receptor binding in the human brain.

    PubMed

    Hohoff, Christa; Garibotto, Valentina; Elmenhorst, David; Baffa, Anna; Kroll, Tina; Hoffmann, Alana; Schwarte, Kathrin; Zhang, Weiqi; Arolt, Volker; Deckert, Jürgen; Bauer, Andreas

    2014-12-01

    Adenosine A1 receptors (A1ARs) and the interacting adenosine A2A receptors are implicated in neurological and psychiatric disorders. Variants within the corresponding genes ADORA1 and ADORA2A were shown associated with pathophysiologic alterations, particularly increased anxiety. It is unknown so far, if these variants might modulate the A1AR distribution and availability in different brain regions. In this pilot study, the influence of ADORA1 and ADORA2A variants on in vivo A1AR binding was assessed with the A1AR-selective positron emission tomography (PET) radioligand [(18)F]CPFPX in brains of healthy humans. Twenty-eight normal control subjects underwent PET procedures to calculate the binding potential BPND of [(18)F]CPFPX in cerebral regions and to assess ADORA1 and ADORA2A single nucleotide polymorphism (SNP) effects on regional BPND data. Our results revealed SNPs of both genes associated with [(18)F]CPFPX binding to the A1AR. The strongest effects that withstood even Bonferroni correction of multiple SNP testing were found in non-smoking subjects (N=22) for ADORA2A SNPs rs2236624 and rs5751876 (corr. Pall<0.05). SNP alleles previously identified at risk for increased anxiety like the rs5751876 T-allele corresponded to consistently higher A1AR availability in all brain regions. Our data indicate for the first time that variation of A1AR availability was associated with ADORA SNPs. The finding of increased A1AR availability in regions of the fear network, particularly in ADORA2A risk allele carriers, strongly warrants evaluation and replication in further studies including individuals with increased anxiety. PMID:24943643

  18. DIFFUSIVE-Magnetoresistance(DMR) Proton(PMR)/Hydrogen-ion WATER: PRE-``Fert''/``Grunberg'' GMR[and CMR]: Quo-Vadis ``Honesty''???: PLAGIARISM!!!

    NASA Astrophysics Data System (ADS)

    Fart, Albart; Gruntbug, Peter; Siegel, Edward

    2011-03-01

    Proton/Hydrogen-ion Diffusive-Magnetoresistance(DMR) of Siegel[APS March-Mtgs.(70s)] based upon Siegel[Int'l. Conf. Mag.-Alloys and Oxides("ICMAO"), The Technion(77); J. Mag. Mag. Mtls. 7, 312(78)] FIRST experimental-discovery of GMR and FIRST theoretical prediction of CMR[ibid. 7, 338 (78)], facilitates NEW water production in global-warming exacerbated dry arid/semi-arid regions: Only HYDROGEN is/can be "FLYING-WATER"!!! (aka "chemical-rain-in-pipelines"). EMET/TRUTH-in-the-``SEANCES'', would-be "Sciences": C. Perelman-Corredoira [Against the Tide(07)] featuring Martin-Bradshaw ["Healing the SHAME That BINDS You"(80s)] systemic sociological-dysfunctionality(S-D), and Grigory Perelman's HEROIC ETHICS (refusal of both pure-maths Poincare-conjecture proof 2007 Fields-medal and 2010 Clay-Institute so-called/media-hyped/P.Red/spin-doctored millennium-prize million-dollar would-be award, militates as well in the current "SEANCE" of physics/maths politics/media-hype/P.R /spin-doctoring VS. Siegel FIRST experimental GMR a never-acknowledged full decade PRE-"Fert"(88) /"Grunberg(89)" ``Phales-GroPE''/Thompson-CSF/ KFZ-JEWlich 2007 physics Wolf/Japan/Nobel-prizes!!!

  19. The preparation of adenosine 5′-pyrophosphate by a non-enzymic method

    PubMed Central

    Dawson, R. M. C.; Ford, M.; Eichberg, J.

    1965-01-01

    1. A non-enzymic method for the preparation of adenosine 5′-diphosphate is described, in which the terminal phosphate of adenosine 5′-triphosphate is transferred to methanol in the presence of hydrochloric acid. The final purified product can be obtained in 60% yield. 2. Experiments with [14C]methanol showed that no methylation of the adenosine diphosphate occurs during the reaction. 3. Confirmation that the pyrophosphate moiety of the adenosine diphosphate produced was in the 5′-position was obtained by: (a) periodate oxidation; (b) treatment with apyrase and examination of the resulting adenylic acid isomer by paper chromatography. 4. The method appears to be generally applicable to the preparation of nucleoside 5′-diphosphates from the corresponding nucleoside 5′-triphosphates. PMID:14333545

  20. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles

    PubMed Central

    Galagudza, Michael; Korolev, Dmitry; Postnov, Viktor; Naumisheva, Elena; Grigorova, Yulia; Uskov, Ivan; Shlyakhto, Eugene

    2012-01-01

    Pharmacological agents suggested for infarct size limitation have serious side effects when used at cardioprotective doses which hinders their translation into clinical practice. The solution to the problem might be direct delivery of cardioprotective drugs into ischemic-reperfused myocardium. In this study, we explored the potential of silica nanoparticles for passive delivery of adenosine, a prototype cardioprotective agent, into ischemic-reperfused heart tissue. In addition, the biodegradation of silica nanoparticles was studied both in vitro and in vivo. Immobilization of adenosine on the surface of silica nanoparticles resulted in enhancement of adenosine-mediated infarct size limitation in the rat model. Furthermore, the hypotensive effect of adenosine was attenuated after its adsorption on silica nanoparticles. We conclude that silica nanoparticles are biocompatible materials that might potentially be used as carriers for heart-targeted drug delivery. PMID:22619519

  1. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  2. LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase

    PubMed Central

    Filippov, Sergey; Pinkosky, Stephen L.; Newton, Roger S.

    2014-01-01

    Purpose of review To review the profile of ETC-1002, as shown in preclinical and clinical studies, including LDL-cholesterol (LDL-C)-lowering activity and beneficial effects on other cardiometabolic risk markers as they relate to the inhibition of adenosine triphosphate-citrate lyase and the activation of adenosine monophosphate-activated protein kinase. Recent findings ETC-1002 is an adenosine triphosphate-citrate lyase inhibitor/adenosine monophosphate-activated protein kinase activator currently in Phase 2b clinical development. In seven Phase 1 and Phase 2a clinical studies, ETC-1002 dosed once daily for 2–12 weeks has lowered LDL-C and reduced high-sensitivity C-reactive protein by up to 40%, with neutral to positive effects on glucose levels, blood pressure, and body weight. Importantly, use of ETC-1002 in statin-intolerant patients has shown statin-like lowering of LDL-C without the muscle pain and weakness responsible for discontinuation of statin use by many patients. ETC-1002 has also been shown to produce an incremental benefit, lowering LDL-C as an add-on therapy to a low-dose statin. In over 300 individuals in studies of up to 12 weeks, ETC-1002 has been well tolerated with no serious adverse effects. Summary Because adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase play central roles in regulating lipid and glucose metabolism, pharmacological modulation of these two enzymes could provide an important therapeutic alternative for statin-intolerant patients with hypercholesterolemia. PMID:24978142

  3. Role of adenosine deaminase, ecto-(5'-nucleotidase) and ecto-(non-specific phosphatase) in cyanide-induced adenosine monophosphate catabolism in rat polymorphonuclear leucocytes.

    PubMed Central

    Newby, A C

    1980-01-01

    1. The role of adenosine deaminase (EC 3.5.4.4), ecto-(5'-nucleotidase) (EC 3.1.3.5) and ecto-(non-specific phosphatase) in the CN-induced catabolism of adenine nucleotides in intact rat polymorphonuclear leucocytes was investigated by inhibiting the enzymes in situ. 2. KCN (10mM for 90 min) induced a 20-30% fall in ATP concentration accompanied by an approximately equimolar increase in hypoxanthine, ADP, AMP and adenosine concentrations were unchanged, and IMP and inosine remained undetectable ( less than 0.05 nmol/10(7) cells). 3. Cells remained 98% intact, as judged by loss of the cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27). 4. Pentostatin (30 microM), a specific inhibitor of adenosine deaminase, completely inhibited hypoxanthine production from exogenous adenosine (55 microM), but did not black CN-induced hypoxanthine production or cause adenosine accumulation in intact cells. This implied that IMP rather than adenosine was an intermediate in AMP breakdown in response to cyanide. 5. Antibodies raised against purified plasma-membrane 5'-nucleotidase inhibited the ecto-(5'-nucleotidase) by 95-98%. Non-specific phosphatases were blocked by 10 mM-sodium beta-glycerophosphate. 6. These two agents together blocked hypoxanthine production from exogenous AMP and IMP (200 microM) by more than 90%, but had no effect on production from endogenous substrates. 7. These data suggest that ectophosphatases do not participate in CN-induced catabolism of intracellular AMP in rat polymorphonuclear leucocytes. 8. A minor IMPase, not inhibited by antiserum, was detected in the soluble fraction of disrupted cells. PMID:6249264

  4. Elevated Ecto-5’-nucleotidase-Mediated Increased Renal Adenosine Signaling Via A2B Adenosine Receptor Contributes to Chronic Hypertension

    PubMed Central

    Zhang, Weiru; Zhang, Yujin; Wang, Wei; Dai, Yingbo; Ning, Chen; Luo, Renna; Sun, Kaiqi; Glover, Louise; Grenz, Almut; Sun, Hong; Tao, Lijian; Zhang, Wenzheng; Colgan, Sean P.; Blackburn, Michael R.; Eltzschig, Holger K.; Kellems, Rodney E.; Xia, Yang

    2013-01-01

    Rationale Hypertension is the most prevalent life-threatening disease worldwide and is frequently associated with chronic kidney disease (CKD). However, the molecular basis underlying hypertensive CKD is not fully understood. Objective We sought to identify specific factors and signaling pathways that contribute to hypertensive CKD and thereby exacerbate disease progression. Methods and Results Using high-throughput quantitative reverse-transcription polymerase chain reaction profiling, we discovered that the expression level of 5′-ectonucleotidase (CD73), a key enzyme that produces extracellular adenosine, was significantly increased in the kidneys of angiotensin II–infused mice, an animal model of hypertensive nephropathy. Genetic and pharmacological studies in mice revealed that elevated CD73-mediated excess renal adenosine preferentially induced A2B adenosine receptor (ADORA2B) production and that enhanced kidney ADORA2B signaling contributes to angiotensin II–induced hypertension. Similarly, in humans, we found that CD73 and ADORA2B levels were significantly elevated in the kidneys of CKD patients compared with normal individuals and were further elevated in hypertensive CKD patients. These findings led us to further discover that elevated renal CD73 contributes to excess adenosine signaling via ADORA2B activation that directly stimulates endothelin-1 production in a hypoxia-inducible factor-α–dependent manner and underlies the pathogenesis of the disease. Finally, we revealed that hypoxia-inducible factor-α is an important factor responsible for angiotensin II–induced CD73 and ADORA2B expression at the transcriptional level. Conclusions Overall, our studies reveal that angiotensin II–induced renal CD73 promotes the production of renal adenosine that is a prominent driver of hypertensive CKD by enhanced ADORA2B signaling–mediated endothelin-1 induction in a hypoxia-inducible factor-α–dependent manner. The inhibition of excess adenosine

  5. Stress echocardiography

    MedlinePlus

    Echocardiography stress test; Stress test - echocardiography; CAD - stress echocardiography; Coronary artery disease - stress Echocardiography; Chest pain - stress echocardiography; Angina - stress echocardiography; ...

  6. Effect of adenosine on the formation of prostacyclin in the rabbit isolated heart.

    PubMed Central

    Karwatowska-Prokopczuk, E.; Ciabattoni, G.; Wennmalm, A.

    1988-01-01

    1. The effect of adenosine on cardiac biosynthesis of prostacyclin (PGI2) was investigated. Rabbit hearts were perfused according to Langendorff at controlled pressure (with or without theophylline), or at controlled flow. The content of 6-keto-prostaglandin1 alpha (6-keto-PGF1 alpha, metabolite of PGI2) in the coronary effluent under basal conditions and during infusion of adenosine was determined using a highly specific radioimmunoassay. 2. In other experiments, rings of rabbit aorta were incubated with or without adenosine and the production of 6-keto-PGF1 alpha was analysed as above. 3. Administration of adenosine (10 micron) to hearts perfused at controlled pressure increased the coronary flow by up to 38%. The peak concentration of 6-keto-PGF1 alpha in the effluent exceeded the control by 177% (P less than 0.01), and the total efflux of 6-keto-PGF1 alpha exceeded the control by 179% (P less than 0.001). Theophylline (50 micron) reduced these effects of adenosine by 23%, 43% and 51%, respectively, without influencing the uptake of adenosine into the heart. 4. When adenosine (1-10 micron) was administered to hearts perfused at controlled flow, a dose-dependent decrease in the perfusion pressure, by 27% and 44% respectively, was observed. In parallel, the resulting increase in 6-keto-PGF1 alpha efflux was considerably lower (49% (P less than 0.05) and 43% (NS), respectively). A similar decrease in perfusion pressure induced in the absence of adenosine decreased the efflux of 6-keto-PGF1 alpha, by 15% (P less than 0.01) and 32% (P less than 0.001), respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3052678

  7. Role of adenosine in the sympathetic activation produced by isometric exercise in humans.

    PubMed Central

    Costa, F; Biaggioni, I

    1994-01-01

    Isometric exercise increases sympathetic nerve activity and blood pressure. This exercise pressor reflex is partly mediated by metabolic products activating muscle afferents (metaboreceptors). Whereas adenosine is a known inhibitory neuromodulator, there is increasing evidence that it activates afferent nerves. We, therefore, examined the hypothesis that adenosine stimulates muscle afferents and participates in the exercise pressor reflex in healthy volunteers. Intraarterial administration of adenosine into the forearm, during venous occlusion to prevent systemic effects, mimicked the response to exercise, increasing muscle sympathetic nerve activity (MSNA, lower limb microneurography) and mean arterial blood pressure (MABP) at all doses studied (2, 3, and 4 mg). Heart rate increased only with the highest dose. Intrabrachial adenosine (4 mg) increased MSNA by 96 +/- 25% (n = 6, P < 0.01) and MABP by 12 +/- 3 mmHg (P < 0.01). Adenosine produced forearm discomfort, but equivalent painful stimuli (forearm ischemia and cold exposure) increased MSNA significantly less than adenosine. Furthermore, adenosine receptor antagonism with intrabrachial theophylline (1 microgram/ml forearm per min) blocked the increase in MSNA (92 +/- 15% vs. 28 +/- 6%, n = 7, P < 0.01) and MABP (38 +/- 6 vs. 27 +/- 4 mmHg, P = 0.01) produced by isometric handgrip (30% of maximal voluntary contraction) in the infused arm, but not the contralateral arm. Theophylline did not prevent the increase in heart rate produced by handgrip, a response mediated more by central command than muscle afferent activation. We propose that endogenous adenosine contributes to the activation of muscle afferents involved in the exercise pressor reflex in humans. PMID:8163667

  8. Role of adenosine A1 and A2A receptors in the alcohol withdrawal syndrome.

    PubMed

    Kaplan, G B; Bharmal, N H; Leite-Morris, K A; Adams, W R

    1999-10-01

    The role of adenosine receptor-mediated signaling was examined in the alcohol withdrawal syndrome. CD-1 mice received a liquid diet containing ethanol (6.7%, v/v) or a control liquid diet that were abruptly discontinued after 14 days of treatment. Mice consuming ethanol showed a progressive increase in signs of intoxication throughout the drinking period. Following abrupt discontinuation of ethanol diet, mice demonstrated reversible signs of handling-induced hyperexcitability that were maximal between 5-8 h. Withdrawing mice received treatment with adenosine receptor agonists at the onset of peak withdrawal (5.5 h) and withdrawal signs were blindly rated (during withdrawal hours 6 and 7). Adenosine A1-receptor agonist R-N6(phenylisopropyl)adenosine (0.15 and 0.3 mg/ kg) reduced withdrawal signs 0.5 and 1.5 h after drug administration in a dose-dependent fashion. Adenosine A2A-selective agonist 2-p-(2-carboxyethyl)phenylethyl-amino-5'-N-ethylcarboxamidoadenosine (0.3 mg/kg) reduced withdrawal signs at both time points. In ethanol-withdrawing mice, there were significant decreases in adenosine transporter sites in striatum without changes in cortex or cerebellum. In ethanol-withdrawing mice, there were no changes in adenosine A1 and A2A receptor concentrations in cortex, striatum, or cerebellum. There appears to be a role for adenosine A1 and A2A receptors in the treatment of the ethanol withdrawal syndrome. Published by Elsevier Science Inc. PMID:10548160

  9. Ticagrelor Does Not Inhibit Adenosine Transport at Relevant Concentrations: A Randomized Cross-Over Study in Healthy Subjects In Vivo

    PubMed Central

    Rongen, G. A.; van den Broek, P. H. H.; Bilos, A.; Donders, A. R. T.; Gomes, M. E.; Riksen, N. P.

    2015-01-01

    Background and Purpose In patients with myocardial infarction, ticagrelor reduces cardiovascular and sepsis-related mortality, and can cause dyspnea. It is suggested that this is caused by adenosine receptor stimulation, because in preclinical studies, ticagrelor blocks the nucleoside transporter and increases cellular ATP release. We now investigated the effects of ticagrelor on the adenosine system in humans in vivo. Experimental Approach In a double-blinded, placebo-controlled cross-over trial in 14 healthy subjects, we have tested whether ticagrelor (180 mg) affects adenosine- and dipyridamole-induced forearm vasodilation, as surrogates of nucleoside uptake inhibition and adenosine formation, respectively. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was measured. Primary endpoint was adenosine-induced vasodilation. Key Results Ticagrelor did not affect adenosine- or dipyridamole-induced forearm vasodilation. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was not affected by ticagrelor. In vitro, ticagrelor dose-dependently inhibited nucleoside uptake, but only at supra-physiological concentrations. Conclusion and Implications In conclusion, at relevant plasma concentration, ticagrelor does not affect adenosine transport, nor adenosine formation in healthy subjects. Therefore, it is unlikely that this mechanism is a relevant pleiotropic effect of ticagrelor. Trial Registration ClinicalTrials.gov NCT01996735 PMID:26509673

  10. Hypertonic NaCl enhances adenosine release and hormonal cAMP production in mouse thick ascending limb.

    PubMed

    Baudouin-Legros, M; Badou, A; Paulais, M; Hammet, M; Teulon, J

    1995-07-01

    Adenosine 3',5'-cyclic monophosphate (cAMP), accumulated in the presence of adenosine, was measured in medullary portions of mouse thick ascending limbs of Henle's loop, suspended either in classic extracellular buffer or in the presence of added NaCl. Under control conditions (140 mmol/l NaCl), adenosine (< 10(-5) mol/l) and N6-cyclohexyladenosine, an A1 adenosine receptor agonist, inhibit the cAMP accumulation induced by arginine vasopressin (AVP). On the other hand, high concentrations of adenosine and CGS-21680, an A2 adenosine receptor agonist, stimulate cAMP formation. Addition of NaCl (+300 mmol/l) to extracellular buffer stimulates the release of endogenous adenosine. It also enhances A2 receptor-induced cAMP accumulation but suppresses A1 receptor-mediated inhibition of adenylyl cyclase. This hypertonic NaCl medium also potentiates the stimulatory action of AVP on adenylyl cyclase. The modifications of tubular responses to both AVP and A1 and A2 agonists, brought about by hypertonic NaCl, were all inhibited by adenosine deaminase, thereby demonstrating the involvement of endogenous adenosine. Adenosine, the release and the effects of which are modulated by hypertonic NaCl, thus appears to act as an endogenous physiological modulator of kidney medulla function. PMID:7631823

  11. Respiratory arrest during dipyridamole stress testing.

    PubMed Central

    Hillis, G. S.; al-Mohammad, A.; Jennings, K. P.

    1997-01-01

    There is an increasing usage of radionuclide scanning to assess myocardial perfusion, with dipyridamole, the most commonly used stress agent. Although this is an effective, and usually very safe, means by which to assess myocardial blood supply, there have been several incidents of acute bronchospasm in asthmatic patients. There have, however, been no previous reports of respiratory arrest occurring in patients with emphysema. This case illustrates the dangers of administering intravenous dipyridamole, or even adenosine, to patients with chronic lung disease. PMID:9196707

  12. K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study

    PubMed Central

    Heinrich, A; Andó, RD; Túri, G; Rózsa, B; Sperlágh, B

    2012-01-01

    BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K+ concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K+, with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca2+-free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K+-evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels. LINKED ARTICLE This article is commented on by Sershen, pp. 1000–1002 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02072.x PMID:22394324

  13. Inhibition of Enterovirus 71 by Adenosine Analog NITD008

    PubMed Central

    Deng, Cheng-Lin; Yeo, Huimin; Ye, Han-Qing; Liu, Si-Qing; Shang, Bao-Di; Gong, Peng; Alonso, Sylvie

    2014-01-01

    ABSTRACT Enterovirus 71 (EV71) is a major viral pathogen in China and Southeast Asia. There is no clinically approved vaccine or antiviral therapy for EV71 infection. NITD008, an adenosine analog, is an inhibitor of flavivirus that blocks viral RNA synthesis. Here we report that NITD008 has potent antiviral activity against EV71. In cell culture, the compound inhibits EV71 at a 50% effective concentration of 0.67 μM and a 50% cytotoxic concentration of 119.97 μM. When administered at 5 mg/kg in an EV71 mouse model, the compound reduced viral loads in various organs and completely prevented clinical symptoms and death. To study the antiviral mechanism and drug resistance, we selected escape mutant viruses by culturing EV71 with increasing concentrations of NITD008. Resistance mutations were reproducibly mapped to the viral 3A and 3D polymerase regions. Resistance analysis with recombinant viruses demonstrated that either a 3A or a 3D mutation alone could lead to resistance to NITD008. A combination of both 3A and 3D mutations conferred higher resistance, suggesting a collaborative interplay between the 3A and 3D proteins during viral replication. The resistance results underline the importance of combination therapy required for EV71 treatment. IMPORTANCE Human enterovirus 71 (EV71) has emerged as a major cause of viral encephalitis in children worldwide, especially in the Asia-Pacific region. Vaccines and antivirals are urgently needed to prevent and treat EV71 infections. In this study, we report the in vitro and in vivo efficacy of NITD008 (an adenosine analog) as an inhibitor of EV71. The efficacy results validated the potential of nucleoside analogs as antiviral drugs for EV71 infections. Mechanistically, we showed that mutations in the viral 3A and 3D polymerases alone or in combination could confer resistance to NITD008. The resistance results suggest an intrinsic interaction between viral proteins 3A and 3D during replication, as well as the importance of

  14. Cardiac endothelial transport and metabolism of adenosine and inosine

    PubMed Central

    Schwartz, Lisa M.; Bukowski, Thomas R.; Revkin, James H.; Bassingthwaighte, James B.

    2010-01-01

    The influence of transmembrane flux limitations on cellular metabolism of purine nucleosides was assessed in whole organ studies. Transcapillary transport of the purine nucleosides adenosine (Ado) and inosine (Ino) via paracellular diffusion through interendothelial clefts in parallel with carrier-mediated transendothelial fluxes was studied in isolated, Krebs-Henseleit-perfused rabbit and guinea pig hearts. After injection into coronary inflow, multiple-indicator dilution curves were obtained from coronary outflow for 90 s for 131I-labeled albumin (intravascular reference tracer), [3H]arabinofuranosyl hypoxanthine (AraH; extracellular reference tracer and nonreactive adenosine analog), and either [14C]Ado or [14C]Ino. Ado or Ino was separated from their degradative products, hypoxanthine, xanthine, and uric acid, in each outflow sample by HPLC and radioisotope counting. Ado and Ino, but not AraH, permeate the luminal membrane of endothelial cells via a saturable transporter with permeability-surface area product PSecl and also diffuse passively through interendothelial clefts with the same conductance (PSg) as AraH. These parallel conductances were estimated via fitting with an axially distributed, multi-pathway, four-region blood-tissue exchange model. PSg for AraH were ~4 and 2.5 ml · g−1 · min−1 in rabbits and guinea pigs, respectively. In contrast, transplasmalemmal conductances (endothelial PSecl) were ~0.2 ml · g−1 · min−1 for both Ado and Ino in rabbit hearts but ~2 ml · g−1 · min−1 in guinea pig hearts, an order of magnitude different. Purine nucleoside metabolism also differs between guinea pig and rabbit cardiac endothelium. In guinea pig heart, 50% of the tracer Ado bolus was retained, 35% was washed out as Ado, and 15% was lost as effluent metabolites; 25% of Ino was retained, 50% washed out, and 25% was lost as metabolites. In rabbit heart, 45% of Ado was retained and 5% lost as metabolites, and 7% of Ino was retained and 3% lost as

  15. AMID Mediates Adenosine-Induced Caspase-Independent HuH-7 Cell Apoptosis

    PubMed Central

    Yang, Dongqin; Yaguchi, Takahiro; Nagata, Tetsu; Gotoh, Akinobu; Dovat, Sinisa; Song, Chunhua; Nishizaki, Tomoyuki

    2011-01-01

    Background/Aims: The mechanism underlying extracellular adenosine-induced caspase-independent apoptosis in HuH-7 human hepatoma cells is not fully understood. The present study investigated the role for apoptosis-inducing factor (AIF)-homologous mitochondrion-associated inducer of death (AMID) in the pathway. Methods: To see the implication of AMID in adenosine-induced HuH-7 cell apoptosis, real-time reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescent cytochemistry, time-laps GFP monitoring, cell cycle analysis, flow cytometry, Western blotting, cell viability assay, and TUNEL staining were carried out. Results: Adenosine upregulated AMID expression in HuH-7 cells, and translocated AMID from the cytosol into the nucleus. Adenosine induced HuH-7 cell apoptosis, and the effect was further enhanced by overexpressing AMID. Adenosine-induced HuH-7 cell apoptosis, alternatively, was inhibited by knocking-down AMID. Conclusion: The results of the present study provide evidence for AMID as a critical factor for adenosine-induced caspase-independent HuH-7 cell apoptosis. PMID:21325820

  16. Synaptic mechanisms of adenosine A2A receptor-mediated hyperexcitability in the hippocampus.

    PubMed

    Rombo, Diogo M; Newton, Kathryn; Nissen, Wiebke; Badurek, Sylvia; Horn, Jacqueline M; Minichiello, Liliana; Jefferys, John G R; Sebastiao, Ana M; Lamsa, Karri P

    2015-05-01

    Adenosine inhibits excitatory neurons widely in the brain through adenosine A1 receptor, but activation of adenosine A2A receptor (A2A R) has an opposite effect promoting discharge in neuronal networks. In the hippocampus A2A R expression level is low, and the receptor's effect on identified neuronal circuits is unknown. Using optogenetic afferent stimulation and whole-cell recording from identified postsynaptic neurons we show that A2A R facilitates excitatory glutamatergic Schaffer collateral synapses to CA1 pyramidal cells, but not to GABAergic inhibitory interneurons. In addition, A2A R enhances GABAergic inhibitory transmission between CA1 area interneurons leading to disinhibition of pyramidal cells. Adenosine A2A R has no direct modulatory effect on GABAergic synapses to pyramidal cells. As a result adenosine A2A R activation alters the synaptic excitation - inhibition balance in the CA1 area resulting in increased pyramidal cell discharge to glutamatergic Schaffer collateral stimulation. In line with this, we show that A2A R promotes synchronous pyramidal cell firing in hyperexcitable conditions where extracellular potassium is elevated or following high-frequency electrical stimulation. Our results revealed selective synapse- and cell type specific adenosine A2A R effects in hippocampal CA1 area. The uncovered mechanisms help our understanding of A2A R's facilitatory effect on cortical network activity. PMID:25402014

  17. Unraveling the role of adenosine in remote ischemic preconditioning-induced cardioprotection.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2016-06-15

    Remote ischemic preconditioning (RIPC) induced by alternate cycles of preconditioning ischemia and reperfusion protects the heart against sustained ischemia-reperfusion-induced injury. This technique has been translated to clinical levels in patients undergoing various surgical interventions including coronary artery bypass graft surgery, abdominal aortic aneurysm repair, percutaneous coronary intervention and heart valve surgery. Adenosine is a master regulator of energy metabolism and reduces myocardial ischemia-reperfusion-induced injury. Furthermore, adenosine is a critical trigger as well as a mediator in RIPC-induced cardioprotection and scientists have demonstrated the role of adenosine by showing an increase in its levels in the systemic circulation during RIPC delivery. Furthermore, the blockade of cardioprotective effects of RIPC in the presence of specific adenosine receptor blockers and transgenic animals with targeted ablation of A1 receptors has also demonstrated its critical role in RIPC. The studies have shown that adenosine may elicit cardioprotection via activation of neurogenic pathway. The present review describes the possible role and mechanism of adenosine in mediating RIPC-induced cardioprotection. PMID:27157518

  18. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells

    SciTech Connect

    Cronstein, B.N.; Eberle, M.A.; Levin, R.I. ); Gruber, H.E. )

    1991-03-15

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, the authors determined whether a 48-hr pretreatment with methotrexate affected adenosine release from ({sup 14}C)adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts. The effect of methotrexate on adenosine release was not due to cytotoxicity since cells treated with maximal concentrations of methotrexate took up ({sup 14}C)adenine and released {sup 14}C-labeled purine (a measure of cell injury) in a manner identical to control cells. Methotrexate treatment of fibroblasts dramatically inhibited adherence to fibroblasts by both unstimulated neutrophils and stimulated neutrophils. One hypothesis that explains the effect of methotrexate on adenosine release is that, by inhibition of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase, methotrexate induces the accumulation of AICAR, the nucleoside precursor of which has previously been shown to cause adenosine release from ischemic cardiac tissue. The observation that the antiinflammatory actions of methotrexate are due to the capacity of methotrexate to induce adenosine release may form the basis for the development of an additional class of antiinflammatory drugs.

  19. Functional proteomics of adenosine triphosphatase system in the rat striatum during aging☆

    PubMed Central

    Villa, Roberto Federico; Ferrari, Federica; Gorini, Antonella

    2012-01-01

    The maximum rates of adenosine triphosphatase (ATPase) systems related to energy consumption were systematically evaluated in synaptic plasma membranes isolated from the striata of male Wistar rats aged 2, 6, 12, 18, and 24 months, because of their key role in presynaptic nerve ending homeostasis. The following enzyme activities were evaluated: sodium-potassium-magnesium adenosine triphosphatase (Na+, K+, Mg2+-ATPase); ouabain-insensitive magnesium adenosine triphosphatase (Mg2+-ATPase); sodium-potassium adenosine triphosphatase (Na+, K+-ATPase); direct magnesium adenosine triphosphatase (Mg2+-ATPase); calcium-magnesium adenosine triphosphatase (Ca2+, Mg2+-ATPase); and acetylcholinesterase. The results showed that Na+, K+-ATPase decreased at 18 and 24 months, Ca2+, Mg2+-ATPase and acetylcholinesterase decreased from 6 months, while Mg2+-ATPase was unmodified. Therefore, ATPases vary independently during aging, suggesting that the ATPase enzyme systems are of neuropathological and pharmacological importance. This could be considered as an experimental model to study regeneration processes, because of the age-dependent modifications of specific synaptic plasma membranes. ATPases cause selective changes in some cerebral functions, especially bioenergetic systems. This could be of physiopathological significance, particularly in many central nervous system diseases, where, during regenerative processes, energy availability is essential. PMID:25806051

  20. Adenosine as an Adjunct Therapy in ST Elevation Myocardial Infarction Patients: Myth or Truth?

    PubMed

    Kassimis, George; Davlouros, Periklis; Patel, Niket; De Maria, Gianluigi; Kallistratos, Manolis S; Kharbanda, Rajesh K; Manolis, Athanasios J; Alexopoulos, Dimitrios; Banning, Adrian P

    2015-10-01

    Early reperfusion represents the key strategy in ST elevation myocardial infarction. However, reperfusion may induce myocardial damage due to the reperfusion myocardial injury, compromising the full potential of reperfusion therapy and accounting for unfavourable results in high risk patients. Adenosine seems to attenuate ischemia reperfusion injury, and thus represents a promising therapeutic option for treating such patients. However, previous randomized clinical trials have collectively failed to demonstrate whether adenosine can effectively reduce measures of myocardial injury and improve clinical outcome, despite its good basic evidence. The failure of such trials to show a real beneficial action may be in part related to specific factors other than adenosine's clinical efficacy. The purpose of this review is to explain the rationale for the use of adenosine as an adjunctive pharmacological cardio-protective agent following reperfusion of the ischemic myocardium, to address the weakness of previous trials and to summarize the current state of knowledge regarding the effect of adenosine administration on reperfusion myocardial injury in patients with myocardial infarction. Although some preclinical and clinical studies point towards the beneficial role of adenosine in the prevention and treatment of no-reflow phenomenon in myocardial infarction, many unanswered questions still remain, including the optimal clinical indication, mode, dosage, duration and timing of application, and the exact mechanisms leading to potential benefits. Clarifying these issues will depend on further properly designed, adequately powered and well conducted clinical trials, which will probably provide us with the definite answers. PMID:26150100

  1. Label-Free Sensing of Adenosine Based on Force Variations Induced by Molecular Recognition

    PubMed Central

    Li, Jingfeng; Li, Qing; Colombi Ciacchi, Lucio; Wei, Gang

    2015-01-01

    We demonstrate a simple force-based label-free strategy for the highly sensitive sensing of adenosine. An adenosine ssDNA aptamer was bound onto an atomic force microscopy (AFM) probe by covalent modification, and the molecular-interface adsorption force between the aptamer and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). In the presence of adenosine, the molecular recognition between adenosine and the aptamer resulted in the formation of a folded, hairpin-like DNA structure and hence caused a variation of the adsorption force at the graphite/water interface. The sensitive force response to molecular recognition provided an adenosine detection limit in the range of 0.1 to 1 nM. The addition of guanosine, cytidine, and uridine had no significant interference with the sensing of adenosine, indicating a strong selectivity of this sensor architecture. In addition, operational parameters that may affect the sensor, such as loading rate and solution ionic strength, were investigated. PMID:25808841

  2. A2B Adenosine Receptor–Mediated Induction of IL-6 Promotes CKD

    PubMed Central

    Dai, Yingbo; Zhang, Weiru; Wen, Jiaming; Zhang, Yujin; Kellems, Rodney E.

    2011-01-01

    Chronic elevation of adenosine, which occurs in the setting of repeated or prolonged tissue injury, can exacerbate cellular dysfunction, suggesting that it may contribute to the pathogenesis of CKD. Here, mice with chronically elevated levels of adenosine, resulting from a deficiency in adenosine deaminase (ADA), developed renal dysfunction and fibrosis. Both the administration of polyethylene glycol–modified ADA to reduce adenosine levels and the inhibition of the A2B adenosine receptor (A2BR) attenuated renal fibrosis and dysfunction. Furthermore, activation of A2BR promoted renal fibrosis in both mice infused with angiotensin II (Ang II) and mice subjected to unilateral ureteral obstruction (UUO). These three mouse models shared a similar profile of profibrotic gene expression in kidney tissue, suggesting that they share similar signaling pathways that lead to renal fibrosis. Finally, both genetic and pharmacologic approaches showed that the inflammatory cytokine IL-6 mediates adenosine-induced renal fibrosis downstream of A2BR. Taken together, these data suggest that A2BR-mediated induction of IL-6 contributes to renal fibrogenesis and shows potential therapeutic targets for CKD. PMID:21511827

  3. Characterization of agonist radioligand interactions with porcine atrial A1 adenosine receptors

    SciTech Connect

    Leid, M.; Schimerlik, M.I.; Murray, T.F.

    1988-09-01

    The agonist radioligand (-)-N6-(125I)-p-hydroxyphenylisopropyl-adenosine (( 125I)HPIA) was used to characterize adenosine recognition sites in porcine atrial membranes. (125I)HPIA showed saturable binding to an apparently homogeneous population of sites with a maximum binding capacity of 35 +/- 3 fmol/mg of protein and an equilibrium dissociation constant of 2.5 +/- 0.4 nM. Kinetic experiments were performed to address the molecular mechanism of (125I)HPIA binding in porcine atrial membranes. (125I)HPIA apparently interacts with the cardiac adenosine receptor in a simple bimolecular reaction. A kinetically derived (125I) HPIA dissociation constant (2.4 nM) was in good agreement with that parameter measured at equilibrium. Guanyl nucleotides negatively modulated (125I)HPIA binding by increasing its rate of dissociation. This finding is consonant with the formation of a ternary complex in porcine atrial membranes, consisting of ligand, receptor, and guanyl nucleotide-binding protein. Prototypic adenosine receptor agonists and antagonists inhibited specific binding in a manner consistent with the labeling of an A1 adenosine receptor. The results of these experiments suggest that the adenosine receptor present in porcine atrial membranes, as labeled by (125I)HPIA, is of the A1 subtype.

  4. Online cleanup of accelerated solvent extractions for determination of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly using high-performance liquid chromatography.

    PubMed

    Xue, Xiaofeng; Wang, Feng; Zhou, Jinhui; Chen, Fang; Li, Yi; Zhao, Jing

    2009-06-10

    Determination of the levels of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly is important for the study of its pharmacological activities, health benefits, and adenosine phosphate degradation. In this study was developed a novel method to determine ATP, ADP, and AMP levels in royal jelly using accelerated solvent extraction (ASE) followed by online cleanup and high-performance liquid chromatography (HPLC) with diode array detection (DAD). The optimum extraction conditions were obtained using an 11 mL ASE cell, ethanol/water (5:5 v/v) as the extraction solvent, 1500 psi, 80 degrees C, a 5 min static time, and a 60% flush volume. Optimum separation of the three compounds was achieved in <25 min using a Waters XBridge Shield RP18 column with 0.05 mol L(-1) NH(4)H(2)PO(4) (pH 5.70) and acetonitrile as the mobile phase. Detection was performed at 257 nm. The method was sensitive (LOD adenosine phosphate extraction procedures (perchloric acid). The results indicate that the two techniques are similar in terms of recovery and reproducibility, but when other factors such as extraction time, environmental protection, and worker's health are considered, ASE is preferable to the classical extraction method. With this ASE-HPLC method, a minisurvey of ATP, ADP, and AMP levels in 15 samples of royal jelly of different origins was performed. Sample results indicated that the AMP concentration was 24.2-2214.4 mg kg(-1), whereas ATP and ADP were not detectable or present only at low levels. PMID:19435312

  5. ADA (adenosine deaminase) gene therapy enters the competition

    SciTech Connect

    Culliton, B.J.

    1990-08-31

    Around the world, some 70 children are members of a select and deadly club. Born with an immune deficiency so severe that they will die of infection unless their immune systems can be repaired, they have captured the attention of would-be gene therapists who believe that a handful of these kids--the 15 or 20 who lack functioning levels of the enzyme adenosine deaminase (ADA)--could be saved by a healthy ADA gene. A team of gene therapists is ready to put the theory to the test. In April 1987, a team of NIH researchers headed by R. Michael Blaese and W. French Anderson came up with the first formal protocol to introduce a healthy ADA gene into an unhealthy human. After 3 years of line-by-line scrutiny by five review committees, they have permission to go ahead. Two or three children will be treated in the next year, and will be infused with T lymphocytes carrying the gene for ADA. If the experiment works, the ADA gene will begin producing normal amounts of ADA. An interesting feature of ADA deficiency, that makes it ideal for initial gene studies, is that the amount of ADA one needs for a healthy immune system is quite variable. Hence, once inside a patient's T cells, the new ADA gene needs only to express the enzyme in moderate amounts. No precise gene regulation is necessary.

  6. Erythrocyte Adenosine Deaminase: Diagnostic Value for Diamond-Blackfan Anaemia

    PubMed Central

    Fargo, John H.; Kratz, Christian P.; Giri, Neelam; Savage, Sharon A.; Wong, Carolyn; Backer, Karen; Alter, Blanche P.; Glader, Bertil

    2012-01-01

    Summary Diamond-Blackfan anaemia (DBA) is an inherited bone marrow failure syndrome (IBMFS) characterized by red cell aplasia. Mutations in ribosomal genes are found in more than 50% of cases. Elevated erythrocyte adenosine deaminase (eADA) was first noted in DBA in 1983. In this study we determined the value of eADA for the diagnosis of DBA compared with other IBMFS; the association of eADA in DBA with age, gender or other haematological parameters; and the association with known DBA-related gene mutations. For the diagnosis of DBA compared with non-DBA patients with other bone marrow failure syndromes, eADA had a sensitivity of 84%, specificity 95%, and positive and negative predictive values of 91%. In patients with DBA there was no association between eADA and gender, age, or other haematological parameters. Erythrocyte ADA segregated with, as well as independent of, known DBA gene mutations. While eADA was an excellent confirmatory test for DBA, 16% of patients with classical clinical DBA had a normal eADA. PMID:23252420

  7. Sequence specificity of mRNA N6-adenosine methyltransferase.

    PubMed

    Csepany, T; Lin, A; Baldick, C J; Beemon, K

    1990-11-25

    The sequence specificity of chicken mRNA N6-adenosine methyltransferase has been investigated in vivo. Localization of six new N6-methyladenosine sites on Rous sarcoma virus (RSV) virion RNA has confirmed our extended consensus sequence for methylation: RGACU, where R is usually a G (7/12). We have also observed A (2/12) and U (3/12) at the -2 position (relative to m6A at +1) but never a C. At the +3 position, the U was observed 10/12 times; an A and a C were observed once each in weakly methylated sequences. The extent of methylation varied between the different sites up to a maximum of about 90%. To test the significance of this consensus sequence, it was altered by site-specific mutagenesis, and methylation was assayed after transfection of mutated RSV DNA into chicken embryo fibroblasts. We found that changing the G at -1 or the U at +3 to any other residue inhibited methylation. However, inhibition of methylation at all four of the major sites in the RSV src gene did not detectably alter the steady-state levels of the three viral RNA species or viral infectivity. Additional mutants that inactivated the src protein kinase activity produced less virus and exhibited relatively less src mRNA in infected cells. PMID:2173695

  8. Adenosine, type 1 receptors: role in proximal tubule Na+ reabsorption.

    PubMed

    Welch, W J

    2015-01-01

    Adenosine type 1 receptor (A1 -AR) antagonists induce diuresis and natriuresis in experimental animals and humans. Much of this effect is due to inhibition of A1 -ARs in the proximal tubule, which is responsible for 60-70% of the reabsorption of filtered Na(+) and fluid. Intratubular application of receptor antagonists indicates that A1 -AR mediates a portion of Na(+) uptake in PT and PT cells, via multiple transport systems, including Na(+) /H(+) exchanger-3 (NHE3), Na(+) /PO4(-) co-transporter and Na(+) -dependent glucose transporter, SGLT. Renal microperfusion and recollection studies have shown that fluid reabsorption is reduced by A1 -AR antagonists and is lower in A1 -AR KO mice, compared to WT mice. Absolute proximal reabsorption (APR) measured by free-flow micropuncture is equivocal, with studies that show either lower APR or similar APR in A1 -AR KO mice, compared to WT mice. Inhibition of A1 -ARs lowers elevated blood pressure in models of salt-sensitive hypertension, partially due to their effects in the proximal tubule. PMID:25345761

  9. Adenosine signaling in reserpine-induced depression in rats.

    PubMed

    Minor, Thomas R; Hanff, Thomas C

    2015-06-01

    A single, 6 mg/kg intraperitoneal injection of reserpine increased floating time during forced swim testing 24h after administration in rats in five experiments. Although such behavioral depression traditionally is attributed to drug-induced depletion of brain monoamines, we examined the potential contribution of adenosine signaling, which is plausibly activated by reserpine treatment and contributes to behavioral depression in other paradigms. Whereas peripheral administration of the highly selective A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.5, 1.0, or 5.0mg/kg i.p.) 15 min before swim testing failed to improve performance in reserpine-treated rats, swim deficits were completely reversed by 7 mg/kg of the nonselective receptor antagonist caffeine. Performance deficits were also reversed by the nonselective A2 antagonist 3,7-dimethylxanthine (0, 0.5, 1.0mg/kg i.p.), and the highly selective A2A receptor antagonist (CSC: 8-(3 chlorostyral)caffeine) (0.01, 0.1, or 1.0mg/kg i.p.) in a dose-dependent manner. The highly selective A2B antagonist alloxazine had no beneficial effect on swim performance at any dose under study (0.1, 1.0, and 5.0mg/kg i.p.). PMID:25721738

  10. Getting personal: Endogenous adenosine receptor signaling in lymphoblastoid cell lines.

    PubMed

    Hillger, J M; Diehl, C; van Spronsen, E; Boomsma, D I; Slagboom, P E; Heitman, L H; IJzerman, A P

    2016-09-01

    Genetic differences between individuals that affect drug action form a challenge in drug therapy. Many drugs target G protein-coupled receptors (GPCRs), and a number of receptor variants have been noted to impact drug efficacy. This, however, has never been addressed in a systematic way, and, hence, we studied real-life genetic variation of receptor function in personalized cell lines. As a showcase we studied adenosine A2A receptor (A2AR) signaling in lymphoblastoid cell lines (LCLs) derived from a family of four from the Netherlands Twin Register (NTR), using a non-invasive label-free cellular assay. The potency of a partial agonist differed significantly for one individual. Genotype comparison revealed differences in two intron SNPs including rs2236624, which has been associated with caffeine-induced sleep disorders. While further validation is needed to confirm genotype-specific effects, this set-up clearly demonstrated that LCLs are a suitable model system to study genetic influences on A2AR response in particular and GPCR responses in general. PMID:27297283

  11. Adenosine to Inosine editing frequency controlled by splicing efficiency.

    PubMed

    Licht, Konstantin; Kapoor, Utkarsh; Mayrhofer, Elisa; Jantsch, Michael F

    2016-07-27

    Alternative splicing and adenosine to inosine (A to I) RNA-editing are major factors leading to co- and post-transcriptional modification of genetic information. Both, A to I editing and splicing occur in the nucleus. As editing sites are frequently defined by exon-intron basepairing, mRNA splicing efficiency should affect editing levels. Moreover, splicing rates affect nuclear retention and will therefore also influence the exposure of pre-mRNAs to the editing-competent nuclear environment. Here, we systematically test the influence of splice rates on RNA-editing using reporter genes but also endogenous substrates. We demonstrate for the first time that the extent of editing is controlled by splicing kinetics when editing is guided by intronic elements. In contrast, editing sites that are exclusively defined by exonic structures are almost unaffected by the splicing efficiency of nearby introns. In addition, we show that editing levels in pre- and mature mRNAs do not match. This phenomenon can in part be explained by the editing state of an RNA influencing its splicing rate but also by the binding of the editing enzyme ADAR that interferes with splicing. PMID:27112566

  12. Adenosine Deaminase Deficiency – More Than Just an Immunodeficiency

    PubMed Central

    Whitmore, Kathryn V.; Gaspar, Hubert B.

    2016-01-01

    Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) that results from mutations in the gene encoding ADA. Affected patients present with clinical and immunological manifestations typical of a SCID. Therapies are currently available that can target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well-understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences. PMID:27579027

  13. Adenosine Deaminase Deficiency - More Than Just an Immunodeficiency.

    PubMed

    Whitmore, Kathryn V; Gaspar, Hubert B

    2016-01-01

    Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) that results from mutations in the gene encoding ADA. Affected patients present with clinical and immunological manifestations typical of a SCID. Therapies are currently available that can target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well-understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences. PMID:27579027

  14. Adenosine preconditioning attenuates hepatic reperfusion injury in the rat by preventing the down-regulation of endothelial nitric oxide synthase

    PubMed Central

    Serracino-Inglott, Ferdinand; Virlos, Ioannis T; Habib, Nagy A; Williamson, Robin CN; Mathie, Robert T

    2002-01-01

    Background Previous work has suggested that in the liver, adenosine preconditioning is mediated by nitric oxide. Whether the endothelial isoform of nitric oxide synthase plays a part in this mechanism has however not yet been investigated. Methods Wistar rats were used (6 in each group) – Groups: (1) sham, (2) ischemia-reperfusion, (3) adenosine + ischemia-reperfusion, (4) endothelial isoform inhibitor + adenosine + ischemia-reperfusion. Results Using immunohistochemistry, this study has revealed a decrease in the expression of endothelial nitric oxide synthase following hepatic ischemia-reperfusion. This was prevented by adenosine pre-treatment. When an inhibitor of endothelial nitric oxide synthase was administered prior to adenosine pre-treatment, pre-conditioning did not occur despite normal expression of endothelial nitric oxide synthase. Conclusions These findings suggest that adenosine attenuates hepatic injury by preventing the downregulation of endothelial nitric oxide synthase that occurs during ischemia-reperfusion. PMID:12241560

  15. Sleep-Wake Sensitive Mechanisms of Adenosine Release in the Basal Forebrain of Rodents: An In Vitro Study

    PubMed Central

    Sims, Robert Edward; Wu, Houdini Ho Tin; Dale, Nicholas

    2013-01-01

    Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state. PMID:23326515

  16. Enhanced release of adenosine in rat hind paw following spinal nerve ligation: involvement of capsaicin-sensitive sensory afferents.

    PubMed

    Liu, X J; White, T D; Sawynok, J

    2002-01-01

    Modulation of endogenous adenosine levels by inhibition of adenosine metabolism produces a peripheral antinociceptive effect in a neuropathic pain model. The present study used microdialysis to investigate the neuronal mechanisms modulating extracellular adenosine levels in the rat hind paw following tight ligation of the L5 and L6 spinal nerves. Subcutaneous injection of 50 microl saline into the nerve-injured paw induced a rapid and short-lasting increase in extracellular adenosine levels in the subcutaneous tissues of the rat hind paw ipsilateral to the nerve injury. Saline injection did not increase adenosine levels in sham-operated rats or non-treated rats. The adenosine kinase inhibitor 5'-amino-5'-deoxyadenosine and the adenosine deaminase inhibitor 2'-deoxycoformycin, at doses producing a peripheral antinociceptive effect, did not further enhance subcutaneous adenosine levels in the nerve-injured paw. Systemic pretreatment with capsaicin, a neurotoxin selective for small-diameter sensory afferents, markedly reduced the saline-evoked release of adenosine in rat hind paw following spinal nerve ligation. Systemic pretreatment with 6-hydroxydopamine, a neurotoxin selective for sympathetic afferent nerves, did not affect release. These results suggest that following nerve injury, peripheral capsaicin-sensitive primary sensory afferent nerve terminals are hypersensitive, and are able to release adenosine following a stimulus that does not normally evoke release in sham-operated or intact rats. Sympathetic postganglionic afferents do not appear to be involved in such release. The lack of effect on such release by the inhibitors of adenosine metabolism suggests an altered peripheral adenosine system following spinal nerve ligation. PMID:12204207

  17. Adenosine deaminase regulates Treg expression in autologous T cell-dendritic cell cocultures from patients infected with HIV-1.

    PubMed

    Naval-Macabuhay, Isaac; Casanova, Víctor; Navarro, Gemma; García, Felipe; León, Agathe; Miralles, Laia; Rovira, Cristina; Martinez-Navio, José M; Gallart, Teresa; Mallol, Josefa; Gatell, José M; Lluís, Carme; Franco, Rafael; McCormick, Peter J; Climent, Núria

    2016-02-01

    Regulatory T cells have an important role in immune suppression during HIV-1 infection. As regulatory T cells produce the immunomodulatory molecule adenosine, our aim here was to assess the potential of adenosine removal to revert the suppression of anti-HIV responses exerted by regulatory T cells. The experimental setup consisted of ex vivo cocultures of T and dendritic cells, to which adenosine deaminase, an enzyme that hydrolyzes adenosine, was added. In cells from healthy individuals, adenosine hydrolysis decreased CD4(+)CD25(hi) regulatory T cells. Addition of 5'-N-ethylcarboxamidoadenosine, an adenosine receptor agonist, significantly decreased CD4(+)CD25(lo) cells, confirming a modulatory role of adenosine acting via adenosine receptors. In autologous cocultures of T cells with HIV-1-pulsed dendritic cells, addition of adenosine deaminase led to a significant decrease of HIV-1-induced CD4(+)CD25(hi) forkhead box p3(+) cells and to a significant enhancement of the HIV-1-specific CD4(+) responder T cells. An increase in the effector response was confirmed by the enhanced production of CD4(+) and CD8(+) CD25(-)CD45RO(+) memory cell generation and secretion of Th1 cytokines, including IFN-γ and IL-15 and chemokines MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5. These ex vivo results show, in a physiologically relevant model, that adenosine deaminase is able to enhance HIV-1 effector responses markedly. The possibility to revert regulatory T cell-mediated inhibition of immune responses by use of adenosine deaminase, an enzyme that hydrolyzes adenosine, merits attention for restoring T lymphocyte function in HIV-1 infection. PMID:26310829

  18. Structural basis and evolution of redox regulation in plant adenosine-5;#8242;-phosphosulfate kinase

    SciTech Connect

    Ravilious, Geoffrey E.; Nguyen, Amelia; Francois, Julie A.; Jez, Joseph M.

    2012-05-08

    Adenosine-5'-phosphosulfate (APS) kinase (APSK) catalyzes the phosphorylation of APS to 3'-phospho-APS (PAPS). In Arabidopsis thaliana, APSK is essential for reproductive viability and competes with APS reductase to partition sulfate between the primary and secondary branches of the sulfur assimilatory pathway; however, the biochemical regulation of APSK is poorly understood. The 1.8-{angstrom} resolution crystal structure of APSR from A. thaliana (AtAPSK) in complex with {beta},{gamma}-imidoadenosine-5'-triphosphate, Mg{sup 2+}, and APS provides a view of the Michaelis complex for this enzyme and reveals the presence of an intersubunit disulfide bond between Cys86 and Cys119. Functional analysis of AtAPSK demonstrates that reduction of Cys86-Cys119 resulted in a 17-fold higher kcat/Km and a 15-fold increase in Ki for substrate inhibition by APS compared with the oxidized enzyme. The C86A/C119A mutant was kinetically similar to the reduced WT enzyme. Gel- and activity-based titrations indicate that the midpoint potential of the disulfide in AtAPSK is comparable to that observed in APS reductase. Both cysteines are invariant among the APSK from plants, but not other organisms, which suggests redox-control as a unique regulatory feature of the plant APSK. Based on structural, functional, and sequence analyses, we propose that the redox-sensitive APSK evolved after bifurcation of the sulfur assimilatory pathway in the green plant lineage and that changes in redox environment resulting from oxidative stresses may affect partitioning of APS into the primary and secondary thiol metabolic routes by having opposing effects on APSK and APS reductase in plants.

  19. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport.

    PubMed

    Kobayashi, S; Zimmermann, H; Millhorn, D E

    2000-02-01

    Acute exposure to hypoxia causes a release of adenosine (ADO) that is inversely related to the O2 levels in oxygen-sensitive pheochromocytoma (PC12) cells. In the current study, chronic exposure (48 h) of PC12 cells to moderate hypoxia (5% O2) significantly enhanced the release of ADO during severe, acute hypoxia (1% O2). Investigation into the intra- and extracellular mechanisms underpinning the secretion of ADO in PC12 cells chronically exposed to hypoxia revealed changes in gene expression and activities of several key enzymes associated with ADO production and metabolism, as well as the down-regulation of a nucleoside transporter. Decreases in the enzymatic activities of ADO kinase and ADO deaminase accompanied by an increase in those of cytoplasmic and ecto-5'-nucleotidases bring about an increased capacity to produce intra- and extracellular ADO. This increased potential to generate ADO and decreased capacity to metabolize ADO indicate that PC12 cells shift toward an ADO producer phenotype during hypoxia. The reduced function of the rat equilibrative nucleoside transporter rENT1 also plays a role in controlling extracellular ADO levels. The hypoxia-induced alterations in the ADO metabolic enzymes and the rENT1 transporter seem to increase the extracellular concentration of ADO. The biological significance of this regulation is unclear but is likely to be associated with modulating cellular activity during hypoxia. PMID:10646513

  20. Involvement of Peripheral Adenosine A2 Receptors in Adenosine A1 Receptor–Mediated Recovery of Respiratory Motor Function After Upper Cervical Spinal Cord Hemisection

    PubMed Central

    James, Elysia; Nantwi, Kwaku D

    2006-01-01

    Background/Objective: In an animal model of spinal cord injury, a latent respiratory motor pathway can be pharmacologically activated through central adenosine A1 receptor antagonism to restore respiratory function after cervical (C2) spinal cord hemisection that paralyzes the hemidiaphragm ipsilateral to injury. Although respiration is modulated by central and peripheral mechanisms, putative involvement of peripheral adenosine A2 receptors in functional recovery in our model is untested. The objective of this study was to assess the effects of peripherally located adenosine A2 receptors on recovery of respiratory function after cervical (C2) spinal cord hemisection. Methods: Respiratory activity was electrophysiologically assessed (under standardized recording conditions) in C2-hemisected adult rats with the carotid bodies intact (H-CBI; n =12) or excised (H-CBE; n =12). Animals were administered the adenosine A2 receptor agonist, CGS-21680, followed by the A1 receptor antagonist, 1, 3-dipropyl-8-cyclopentylxanthine (DPCPX), or administered DPCPX alone. Recovered respiratory activity, characterized as drug-induced activity in the previously quiescent left phrenic nerve of C2-hemisected animals in H-CBI and H-CBE rats, was compared. Recovered respiratory activity was calculated by dividing drug-induced activity in the left phrenic nerve by activity in the right phrenic nerve. Results: Administration of CGS-21680 before DPCPX (n = 6) in H-CBI rats induced a significantly greater recovery (58.5 ± 3.6%) than when DPCPX (42.6 ± 4.6%) was administered (n = 6) alone. In H-CBE rats, prior administration of CGS-21680 (n = 6) did not enhance recovery over that induced by DPCPX (n = 6) alone. Recovery in H-CBE rats amounted to 39.7 ± 3.7% and 38.4 + 4.2%, respectively. Conclusions: Our results suggest that adenosine A2 receptors located in the carotid bodies can enhance the magnitude of adenosine A1 receptor–mediated recovery of respiratory function after C2 hemisection

  1. Quantitative Tissue‐Tracking Cardiac Magnetic Resonance (CMR) of Left Atrial Deformation and the Risk of Stroke in Patients With Atrial Fibrillation

    PubMed Central

    Inoue, Yuko Y.; Alissa, Abdullah; Khurram, Irfan M.; Fukumoto, Kotaro; Habibi, Mohammadali; Venkatesh, Bharath A.; Zimmerman, Stefan L.; Nazarian, Saman; Berger, Ronald D.; Calkins, Hugh; Lima, Joao A.; Ashikaga, Hiroshi

    2015-01-01

    Background Recent evidence suggests that left atrial (LA) dysfunction may be mechanistically contributing to cerebrovascular events in patients with atrial fibrillation (AF). We investigated the association between regional LA function and a prior history of stroke during sinus rhythm in patients referred for catheter ablation of AF. Methods and Results A total of 169 patients (59±10 years, 74% male, 29% persistent AF) with a history of AF in sinus rhythm at the time of pre‐ablation cardiac magnetic resonance (CMR) were analyzed. The LA volume, emptying fraction, strain (S), and strain rate (SR) were assessed by tissue‐tracking cardiac magnetic resonance. The patients with a history of stroke or transient ischemic attack (n=18) had greater LA volumes (Vmax and Vmin; P=0.02 and P<0.001, respectively), lower LA total emptying fraction (P<0.001), lower LA maximum and pre‐atrial contraction strains (Smax and SpreA; P<0.001 and P=0.01, respectively), and lower absolute values of LA SR during left ventricular (LV) systole and early diastole (SRs and SRe; P=0.005 and 0.03, respectively) than those without stroke/transient ischemic attack (n=151). Multivariable analysis demonstrated that the LA reservoir function, including total emptying fraction, Smax, and SRs, was associated with stroke/transient ischemic attack (odds ratio 0.94, 0.91, and 0.17; P=0.03, 0.02, and 0.04, respectively) after adjusting for the CHA2DS2‐VASc score and LA Vmin. Conclusions Depressed LA reservoir function assessed by tissue‐tracking cardiac magnetic resonance is significantly associated with a prior history of stroke/transient ischemic attack in patients with AF. Our findings suggest that assessment of LA reservoir function can improve the risk stratification of cerebrovascular events in AF patients. PMID:25917441

  2. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    SciTech Connect

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E.

    2012-03-01

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2–1.4 Å). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  3. Mechanism of airway hyperresponsiveness to adenosine induced by allergen challenge in actively sensitized Brown Norway rats

    PubMed Central

    Hannon, J P; Tigani, B; Williams, I; Mazzoni, L; Fozard, J R

    2001-01-01

    We have explored the role of allergen sensitization and challenge in defining the response of the airways of the Brown Norway (BN) rat to adenosine. In naïve animals or in rats sensitized to ovalbumin (OA) adenosine induced only weak bronchoconstrictor responses. Challenge of sensitized animals with OA induced a marked airway hyperresponsiveness to adenosine which was not seen with methacholine or bradykinin. The augmented bronchoconstrictor response to adenosine was not affected by acute bivagotomy or atropine nor mimicked by an i.v. injection of capsaicin. It was, however, blocked selectively by disodium cromoglycate methysergide or ketanserin and reduced in animals treated sub-chronically with compound 48/80. The augmented response to adenosine was associated with increases in the plasma concentrations of both histamine and 5-hydroxytryptamine (5-HT), which were attenuated by pretreatment with disodium cromoglycate, and degranulation of mast cells in the lung. Parenchymal strips from lungs removed from sensitized rats challenged with OA gave augmented bronchoconstrictor responses to adenosine relative to strips from sensitized animals challenged with saline. Responses were inhibited by methysergide and disodium cromoglycate. These data demonstrate a marked augmentation of the bronchoconstrictor response to adenosine in actively sensitized BN rats challenged with OA. The augmented response is primarily a consequence of mast cell activation, leading to the release of 5-HT, which in turn induces bronchoconstriction. Our data further suggest the involvement of a discrete lung-based population of mast cells containing and releasing mainly 5-HT and brought into play by prior exposure to allergen. PMID:11264245

  4. Angina pectoris-like pain provoked by intravenous adenosine in healthy volunteers.

    PubMed

    Sylvén, C; Beermann, B; Jonzon, B; Brandt, R

    1986-07-26

    In a study to characterise the chest pain induced by adenosine this agent was given as a bolus into a peripheral vein to six healthy volunteers (five men) aged 30-44. On the first day the maximum tolerable dose was determined in each case. On the second day three doses of adenosine (one third, two thirds, and the full maximum tolerable dose) and three doses of saline were given single blind in randomised order. Thereafter aminophylline 5 mg/kg was given and the procedure repeated in a different randomised order. On the third day between two thirds and the full maximum tolerable dose was given followed by 10 mg dipyridamole intravenously and a second injection of the same dose of adenosine. Heart rate and atrioventricular blocks were recorded by electrocardiography. One minute after each dose of adenosine the chest pain was scored. The maximum tolerable dose of adenosine ranged from 10.6 to 37.1 mg. All subjects experienced uneasy central chest pain provoking anxiety. The pain radiated to the shoulders, ulnar aspect of the arms, epigastric area, back, and into the throat. The pain began about 20 seconds after the injection and lasted 10-15 seconds. Increasing the dose of adenosine increased the intensity of the pain. Administration of aminophylline reduced the pain significantly. Second degree heart block was recorded in five of the six subjects during the time that the pain was experienced. After aminophylline no block was observed. Dipyridamole increased the intensity of pain. The duration of second degree heart block increased in four of the subjects, and in two of these third degree heart block occurred. These findings suggest that adenosine released from the myocardium during ischaemia induces angina pectoris by stimulating theophylline sensitive receptors. PMID:3089465

  5. Inhibition of adenosine kinase attenuates inflammation and neurotoxicity in traumatic optic neuropathy.

    PubMed

    Ahmad, Saif; Elsherbiny, Nehal M; Bhatia, Kanchan; Elsherbini, Ahmed M; Fulzele, Sadanand; Liou, Gregory I

    2014-12-15

    Traumatic optic neuropathy (TON) is associated with apoptosis of retinal ganglion cells. Local productions of reactive oxygen species and inflammatory mediators from activated microglial cells have been hypothesized to underlie apoptotic processes. We previously demonstrated that the anti-inflammatory effect of adenosine, through A2A receptor activation had profound protective influence against retinal injury in traumatic optic neuropathy. This protective effect is limited due to rapid cellular re-uptake of adenosine by equilibrative nucleotside transporter-1 (ENT1) or break down by adenosine kinase (AK), the key enzyme in adenosine clearance pathway. Further, the use of adenosine receptors agonists are limited by systemic side effects. Therefore, we seek to investigate the potential role of amplifying the endogenous ambient level of adenosine by pharmacological inhibition of AK. We tested our hypothesis by comparing TON-induced retinal injury in mice with and without ABT-702 treatment, a selective AK inhibitor (AKI). The retinal-protective effect of ABT-702 was demonstrated by significant reduction of Iba-1, ENT1, TNF-α, IL-6, and iNOS/nNOS protein or mRNA expression in TON as revealed by western blot and real time PCR. TON-induced superoxide anion generation and nitrotyrosine expression were reduced in ABT-702 treated mice retinal sections as determined by immunoflourescence. In addition, ABT-702 attenuated p-ERK1/2 and p-P38 activation in LPS induced activated mouse microglia cells. The results of the present investigation suggested that ABT-702 had a protective role against marked TON-induced retinal inflammation and damage by augmenting the endogenous therapeutic effects of site- and event-specific accumulation of extracellular adenosine. PMID:25457840

  6. Relaxation of isolated taenia coli of guinea-pig by enantiomers of 2-azido analogues of adenosine and adenine nucleotides.

    PubMed Central

    Cusack, N. J.; Planker, M.

    1979-01-01

    1 2-Azido photoaffinity analogues of adenosine 5'triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine have been synthesized and tested on guinea-pig taenia coli. 2 2-Azido-ATP and 2-azido-ADP were approximately 20 times more potent than ATP as relaxants of taenia coli, and required prolonged washout times before recovery of the muscle. 3 2-Azido-AMP and 2-azidoadenosine were 2 to 12 times more potent than ATP, but took much longer (up to 100 s) to reach maximal relaxation. This behaviour is different from that of AMP and adenosine which were much less potent than ATP. 4 L-Enantiomers of adenosine and adenine nucleotides were also tested. L-ATP and L-ADP were 3 to 6 times less potent than ATP and ADP, and L-AMP and L-adenosine were inactive. 2-Azido-L-ATP and 2-azido-L-ADP were approximately 120 times less potent than 2-Azido-ATP and 6 times less potent than ATP as relaxants of taenia coli. 2-Azido-L-AMP and 2-azidio-L-adenosine were almost inactive. 5 2-Azido derivatives are photolysed by u.v. irradiation to reactive intermediates. 2-Azido-ATP and 2-azidoadenosine might be suitable photoaffinity ligands for labelling putative P2 and P1 purine receptors respectively. 2-Azido-L-ATP and 2-azido-L-adenosine could be useful controls for nonspecific labelling. PMID:497519

  7. Rapid adenosine release in the nucleus tractus solitarii during defence response in rats: real-time measurement in vivo

    PubMed Central

    Dale, Nicholas; Gourine, Alexander V; Llaudet, Enrique; Bulmer, David; Thomas, Teresa; Spyer, K Michael

    2002-01-01

    We have measured the release of adenosine and inosine from the dorsal surface of the brainstem and from within the nucleus tractus solitarii (NTS) during the defence response evoked by hypothalamic stimulation in the anaesthetised rat. At the surface of the brainstem, only release of inosine was detected on hypothalamic defence area stimulation. This inosine signal was greatly reduced by addition of the ecto-5′-nucleotidase inhibitor α,β-methylene ADP (200 μM), suggesting that the inosine arose from adenosine that was produced in the extracellular space by the prior release of ATP. By placing a microelectrode biosensor into the NTS under stereotaxic control we have recorded release of adenosine within this nucleus. By contrast to the brainstem surface, a fast increase in adenosine, accompanied only by a much smaller change in inosine levels, was seen following stimulation of the hypothalamic defence area. The release of adenosine following hypothalamic stimulation was mainly confined to a narrow region of the NTS some 500 μm in length around the level of the obex. Interestingly the release of adenosine was depletable: when the defence reaction was evoked at short time intervals, much less adenosine was released on the second stimulus. Our novel techniques have given unprecedented real-time measurement and localisation of adenosine release in vivo and demonstrate that adenosine is released at the right time and in sufficient quantities to contribute to the cardiovascular components of the defence reaction. PMID:12356888

  8. Nonresolving Inflammation in gp91phox-/- Mice, a Model of Human Chronic Granulomatous Disease, Has Lower Adenosine and Cyclic Adenosine 5′-Monophoshate

    PubMed Central

    Rajakariar, Ravindra; Newson, Justine; Jackson, Edwin K.; Sawmynaden, Precilla; Smith, Andrew; Rahman, Farooq; Yaqoob, Muhammad M; Gilroy, Derek W

    2009-01-01

    In chronic granulomatous disease (CGD) there is failure to generate reactive oxygen metabolites resulting in recurrent infections and persistent inflammatory events. As responses to sterile stimuli in murine models of CGD also result in non-resolving inflammation, we investigated whether defects in endogenous counter-regulatory mechanisms and/or pro-resolution pathways contribute to the aetiology of CGD. To this end we carried out a series of experiments finding, in the first instance that adenosine and cAMP, which dampen innate immune-mediated responses, show a biphasic profile in resolving peritonitis; peaking at onset, waning as inflammation progresses and rising again at resolution. We also found elevations in adenosine and cAMP in resolving human peritonitis. In gp91phox-/- mice, an experimental model of CGD, levels of adenosine and cAMP were significantly lower at onset and again at resolution. Corroborating the finding of others, we show that adenosine, signalling through its A2A receptor and therefore elevating cAMP is not only anti-inflammatory but, importantly, it does not impair pro-resolution pathways, properties typical of nonsteroidal anti-inflammatory drugs. Conversely, antagonising the A2A receptor worsens acute inflammation and prolongs resolution. Taking this further, activating the A2A receptor in gp91phox-/- mice was dramatically anti-inflammatory regardless of the phase of the inflammatory response A2A agonists were administered i.e. onset or resolution demonstrating wide and robust pharmacological flexibility that is unlikely to subvert pro-resolution pathways. Therefore, we describe the biphasic profile of adenosine and cAMP throughout the time course of acute inflammation that is dysregulated in CGD. PMID:19234224

  9. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    PubMed

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects. PMID:26732366

  10. Equilibrium and kinetic selectivity profiling on the human adenosine receptors.

    PubMed

    Guo, Dong; Dijksteel, Gabrielle S; van Duijl, Tirsa; Heezen, Maxime; Heitman, Laura H; IJzerman, Adriaan P

    2016-04-01

    Classical evaluation of target selectivity is usually undertaken by measuring the binding affinity of lead compounds against a number of potential targets under equilibrium conditions, without considering the kinetics of the ligand-receptor interaction. In the present study we propose a combined strategy including both equilibrium- and kinetics-based selectivity profiling. The adenosine receptor (AR) was chosen as a prototypical drug target. Six in-house AR antagonists were evaluated in a radioligand displacement assay for their affinity and in a competition association assay for their binding kinetics on three AR subtypes. One of the compounds with a promising kinetic selectivity profile was also examined in a [(35)S]-GTPγS binding assay for functional activity. We found that XAC and LUF5964 were kinetically more selective for the A1R and A3R, respectively, although they are non-selective in terms of their affinity. In comparison, LUF5967 displayed a strong equilibrium-based selectivity for the A1R over the A2AR, yet its kinetic selectivity thereon was less pronounced. In a GTPγS assay, LUF5964 exhibited insurmountable antagonism on the A3R while having a surmountable effect on the A1R, consistent with its kinetic selectivity profile. This study provides evidence that equilibrium and kinetic selectivity profiling can both be important in the early phases of the drug discovery process. Our proposed combinational strategy could be considered for future medicinal chemistry efforts and aid the design and discovery of different or even better leads for clinical applications. PMID:26930564

  11. Cerebral adenosine A₁ receptors are upregulated in rodent encephalitis.

    PubMed

    Paul, Soumen; Khanapur, Shivashankar; Boersma, Wytske; Sijbesma, Jurgen W; Ishiwata, Kiichi; Elsinga, Philip H; Meerlo, Peter; Doorduin, Janine; Dierckx, Rudi A; van Waarde, Aren

    2014-05-15

    Adenosine A1 receptors (A1Rs) are implied in the modulation of neuroinflammation. Activation of cerebral A1Rs acts as a brake on the microglial response after traumatic brain injury and has neuroprotective properties in animal models of Parkinson's disease and multiple sclerosis. Neuroinflammatory processes in turn may affect the expression of A1Rs, but the available data is limited and inconsistent. Here, we applied an animal model of encephalitis to assess how neuroinflammation affects the expression of A1Rs. Two groups of animals were studied: Infected rats (n=7) were intranasally inoculated with herpes simplex virus-1 (HSV-1, 1 × 10(7) plaque forming units), sham-infected rats (n=6) received only phosphate-buffered saline. Six or seven days later, microPET scans (60 min with arterial blood sampling) were made using the tracer 8-dicyclopropyl-1-(11)C-methyl-3-propyl-xanthine ((11)C-MPDX). Tracer clearance from plasma and partition coefficient (K₁/k₂ estimated from a 2-tissue compartment model fit) were not significantly altered after virus infection. PET tracer distribution volume calculated from a Logan plot was significantly increased in the hippocampus (+37%) and medulla (+27%) of virus infected rats. Tracer binding potential (k₃/k₄ estimated from the model fit) was significantly increased in the cerebellum (+87%) and the medulla (+148%) which may indicate increased A1R expression. This was confirmed by immunohistochemical analysis showing a strong increase of A1R immunoreactivity in the cerebellum of HSV-1-infected rats. Both the quantitative PET data and immunohistochemical analysis indicate that A1Rs are upregulated in brain areas where active virus is present. PMID:24513151

  12. Adenosine 2A receptors modulate reward behaviours for methamphetamine.

    PubMed

    Chesworth, Rose; Brown, Robyn M; Kim, Jee Hyun; Ledent, Catherine; Lawrence, Andrew J

    2016-03-01

    Addiction to methamphetamine (METH) is a global health problem for which there are no approved pharmacotherapies. The adenosine 2A (A2 A ) receptor presents a potential therapeutic target for METH abuse due to its modulatory effects on striatal dopamine and glutamate transmission. Notably, A2 A receptor signalling has been implicated in the rewarding effects of alcohol, cocaine and opiates; yet, the role of this receptor in METH consumption and seeking is essentially unknown. Therefore, the current study used A2 A knockout (KO) mice to assess the role of A2 A in behaviours relevant to METH addiction. METH conditioned place preference was absent in A2 A KO mice compared with wild-type (WT) littermates. Repeated METH treatment produced locomotor sensitization in both genotypes; however, sensitization was attenuated in A2 A KO mice in a dose-related manner. METH intravenous self-administration was intact in A2 A KO mice over a range of doses and schedules of reinforcement. However, the motivation to self-administer was reduced in A2 A KO mice. Regression analysis further supported the observation that the motivation to self-administer METH was reduced in A2 A KO mice even when self-administration was similar to WT mice. Sucrose self-administration was also reduced in A2 A KO mice but only at higher schedules of reinforcement. Collectively, these data suggest that A2 A signalling is critically required to integrate rewarding and motivational properties of both METH and natural rewards. PMID:25612195

  13. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    PubMed

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems. PMID:27295623

  14. Autoimmune Dysregulation and Purine Metabolism in Adenosine Deaminase Deficiency

    PubMed Central

    Sauer, Aisha Vanessa; Brigida, Immacolata; Carriglio, Nicola; Aiuti, Alessandro

    2012-01-01

    Genetic defects in the adenosine deaminase (ADA) gene are among the most common causes for severe combined immunodeficiency (SCID). ADA-SCID patients suffer from lymphopenia, severely impaired cellular and humoral immunity, failure to thrive, and recurrent infections. Currently available therapeutic options for this otherwise fatal disorder include bone marrow transplantation (BMT), enzyme replacement therapy with bovine ADA (PEG-ADA), or hematopoietic stem cell gene therapy (HSC-GT). Although varying degrees of immune reconstitution can be achieved by these treatments, breakdown of tolerance is a major concern in ADA-SCID. Immune dysregulation such as autoimmune hypothyroidism, diabetes mellitus, hemolytic anemia, and immune thrombocytopenia are frequently observed in milder forms of the disease. However, several reports document similar complications also in patients on long-term PEG-ADA and after BMT or GT treatment. A skewed repertoire and decreased immune functions have been implicated in autoimmunity observed in certain B-cell and/or T-cell immunodeficiencies, but it remains unclear to what extent specific mechanisms of tolerance are affected in ADA deficiency. Herein we provide an overview about ADA-SCID and the autoimmune manifestations reported in these patients before and after treatment. We also assess the value of the ADA-deficient mouse model as a useful tool to study both immune and metabolic disease mechanisms. With focus on regulatory T- and B-cells we discuss the lymphocyte subpopulations particularly prone to contribute to the loss of self-tolerance and onset of autoimmunity in ADA deficiency. Moreover we address which aspects of immune dysregulation are specifically related to alterations in purine metabolism caused by the lack of ADA and the subsequent accumulation of metabolites with immunomodulatory properties. PMID:22969765

  15. Adenosine and the adenosine A2A receptor agonist, CGS21680, upregulate CD39 and CD73 expression through E2F-1 and CREB in regulatory T cells isolated from septic mice.

    PubMed

    Bao, Rui; Shui, Xianqi; Hou, Jiong; Li, Jinbao; Deng, Xiaoming; Zhu, Xiaoyan; Yang, Tao

    2016-09-01

    The number of regulatory T cells (Treg cells) and the expression of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1; also known as CD39) and 5'-ectonucleotidase (NT5E; also known as CD73) on the Treg cell surface are increased during sepsis. In this study, to determine the factors leading to the high expression of CD39 and CD73, and the regulation of the CD39/CD73/adenosine pathway in Treg cells under septic conditions, we constructed a mouse model of sepsis and separated the Treg cells using a flow cytometer. The Treg cells isolated from the peritoneal lavage and splenocytes of the mice were treated with adenosine or the specific adenosine A2A receptor agonist, CGS21680, and were transfected with specific siRNA targeting E2F transcription factor 1 (E2F-1) or cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), which are predicted transcription regulatory factors of CD39 or CD73. The regulatory relationships among these factors were then determined by western blot analysis and dual-luciferase reporter assay. In addition, changes in adenosine metabolism were measured in the treated cells. The results revealed that adenosine and CGS21680 significantly upregulated CD39 and CD73 expression (P<0.01). E2F-1 and CREB induced CD39 and CD73 expression, and were upregulated by adenosine and CGS21680. Adenosine triphosphate (ATP) hydrolysis and adenosine generation were inhibited by the knockdown of E2F-1 or CREB, and were accelerated in the presence of CGS21680. Based on these results, it can be inferred that adenosine, the adenosine A2A receptor agonist, E2F-1 and CREB are the possible factors contributing to the high expression of CD39 and CD73 on the Treg cell surface during sepsis. Adenosine and its A2A receptor agonist served as the signal transducer factors of the CD39/CD73/adenosine pathway, accelerating adenosine generation. Our study may benefit further research on adenosine metabolism for the treatment of sepsis

  16. Adenosine stimulates DNA fragmentation in human thymocytes by Ca(2+)-mediated mechanisms.

    PubMed

    Szondy, Z

    1994-12-15

    Incubation of human thymocytes with an optimum concentration of adenosine and its receptor site agonist, 2-chloroadenosine, induced increases in intracellular cyclic AMP (cAMP) (from a resting 0.6 +/- 0.1 to 4.1 +/- 0.2 pmol/10(7) cells within 5 min) and Ca2+ (from the resting 85 +/- 7 nM to a peak of 210 +/- 25 nM) levels and resulted in internucleosomal DNA fragmentation and cell death (apoptosis). Other adenosine analogues were also effective at inducing DNA fragmentation, the order of potency being 2-p-(carboxyethylphenylethylamino)-5'-carboxyamidoadenosine < 5'-(N-ethylcarboxamide)adenosine < or = cyclopentyladenosine < 2-chloroadenosine (2-CA). 2-CA treatment (with an optimum concentration of 40 microM) selectively depleted a thymocyte subpopulation (15-20% of the total cells) which expressed higher levels of the CD3 molecule and which was found mainly in the CD4+CD8+ double positive immature thymocyte population. DNA fragmentation was prevented by the addition of actinomycin D or cycloheximide to the thymocyte suspension, indicating that this process required both mRNA and protein synthesis. Endonuclease activation and cell killing were dependent on an early, sustained increase in cytosolic Ca2+ concentration, most of which was of extracellular origin and was a result of an adenosine-induced inositol trisphosphate release. Other agents known to elevate intracellular cAMP levels by different mechanisms failed to induce similar DNA fragmentation, but enhanced the effect of adenosine. This suggested a supporting role for cAMP in adenosine-induced DNA fragmentation. Phorbol dibutyrate, a protein kinase. C activator, previously shown to inhibit Ca(2+)-dependent DNA fragmentation and cell killing in human thymocytes [McConkey, Hartzell, Jondal and Orrenius (1989) J. Biol. Chem. 264, 13399-13402], at 60 ng/ml concentration also prevented adenosine-induced DNA fragmentation when added prior to adenosine. This suggested a complex cross-talk between the adenosine

  17. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose.

    PubMed

    Scharbarg, Emeric; Daenens, Marion; Lemaître, Frédéric; Geoffroy, Hélène; Guille-Collignon, Manon; Gallopin, Thierry; Rancillac, Armelle

    2016-01-01

    Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity. PMID:26755200

  18. Neurochemical measurement of adenosine in discrete brain regions of five strains of inbred mice.

    PubMed

    Pani, Amar K; Jiao, Yun; Sample, Kenneth J; Smeyne, Richard J

    2014-01-01

    Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754

  19. Transport mechanisms for adenosine and uridine in primary-cultured rat cortical neurons and astrocytes.

    PubMed

    Nagai, Katsuhito; Nagasawa, Kazuki; Fujimoto, Sadaki

    2005-09-01

    Endogenous adenosine and uridine are important modulators of neural survival and activity. In the present study, we examined transport mechanisms of adenosine and uridine in primary-cultured rat cortical neurons, and compared the results for neurons with those for astrocytes. Reverse transcription-polymerase chain reaction identified the mRNAs for ENT1, ENT2, and CNT2, but not CNT1 and CNT3, in neurons and astrocytes. [3H]Adenosine and [3H]uridine were time-, temperature-, and concentration-dependently taken up into neurons and astrocytes. In kinetic analyses, the uptake of both substrates by neurons and astrocytes consisted of two and one, respectively, saturable transport components. The uptake clearance for both substrates by neurons was greater than that by astrocytes. The relative contribution of the high-affinity major component of both substrates to total uptake was estimated to be approximately 80% in neurons. The uptake of [3H]adenosine and [3H]uridine by both neurons and astrocytes was almost entirely Na+-independent, and sensitive to micro, but not nano, molar concentrations of nitrobenzylmercaptopurine riboside, which are transport characteristics of ENT2. Therefore, it was indicated that adenosine and uridine are more efficiently taken up into neurons than into astrocytes, and ENT2 may predominantly contribute to the transport of the nucleosides as a high-affinity transport system in neurons, as in the case of astrocytes. PMID:16043124

  20. Repeated Electroacupuncture Persistently Elevates Adenosine and Ameliorates Collagen-Induced Arthritis in Rats

    PubMed Central

    Ye, Tian-shen; Du, Zhong-heng; Li, Zhi-hui; Xie, Wen-xia; Huang, Ka-te; Chen, Yong; Chen, Zhou-yang; Hu, Huan; Wang, Jun-lu; Fang, Jian-Qiao

    2016-01-01

    The aim of this paper was to investigate the effect of repeated electroacupuncture (EA) over 21 days on the adenosine concentration in peripheral blood of rats with collagen-induced arthritis (CIA). Wistar rats were divided into three groups of 6 animals each: sham-control, CIA-control, and CIA-EA. We determined the adenosine concentration in peripheral blood and assessed pathological changes of ankle joints. Quantitative reverse-transcription-polymerase chain reaction was used to determine mRNA levels of ecto-5′-nucleotidase (CD73), adenosine deaminase (ADA), and tumor necrosis factor-alpha (TNF-α). Immunohistochemical staining was used to detect expression of ADA and CD73 in synovial tissue. Repeated EA treatment on CIA resulted in the persistence of high concentrations of adenosine in peripheral blood, significantly reduced pathological scores, TNF-α mRNA concentrations, and synovial hyperplasia. Importantly, EA treatment led to a significant increase in CD73 mRNA levels in peripheral blood but was associated with a decrease of CD73 immunostaining in synovial tissue. In addition, EA treatment resulted in a significant decrease of both ADA mRNA levels in peripheral blood and ADA immunostaining in synovial tissue. Thus, repeated EA treatment exerts an anti-inflammatory and immunoregulatory effect on CIA by increasing the concentration of adenosine. The mechanism of EA action may involve the modulation of CD73 and ADA expression levels. PMID:26941824

  1. Extracellular Adenosine Production by ecto-5'-Nucleotidase (CD73) Enhances Radiation-Induced Lung Fibrosis.

    PubMed

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V; Gau, Eva; Thompson, Linda F; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W; Blackburn, Michael R; Westendorf, Astrid M; Stuschke, Martin; Jendrossek, Verena

    2016-05-15

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks postirradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately 3-fold. Histologic evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P < 0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacologic strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. Cancer Res; 76(10); 3045-56. ©2016 AACR. PMID:26921334

  2. Modulation of GABA-augmented norepinephrine release in female rat brain slices by opioids and adenosine.

    PubMed

    Fiber, J M; Etgen, A M

    2001-07-01

    GABAA receptor activation augments electrically-stimulated release of norepinephrine (NE) from rat brain slices. Because this effect is not observed in synaptoneurosomes, GABA probably acts on inhibitory interneurons to disinhibit NE release. To determine whether opioids or adenosine influence GABA-augmented NE release, hypothalamic and cortical slices from female rats were superfused with GABA or vehicle in the presence and absence of 10 microM morphine or 100 microM adenosine. GABA augments [3H]NE release in the cortex and hypothalamus. Morphine alone has no effect on [3H]NE release, but attenuates GABA augmentation of [3H]NE release in both brain regions. Adenosine alone modestly inhibits [3H]NE release in the cortex, but not in the hypothalamus. Adenosine inhibits GABA-augmented [3H]NE release in both brain regions. The general protein kinase inhibitor H-7, augments [3H]NE release in both brain regions and may have additive effects with GABA in cortical slices. These results implicate opioid and adenosine interneurons and possibly protein kinases in regulating GABAergic influences on NE transmission. PMID:11565619

  3. Squalenoyl Adenosine Nanoparticles provide Neuroprotection after Stroke and Spinal Cord Injury

    PubMed Central

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepêtre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Fevzi Sargon, Mustafa; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-01-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, like adenosine, are inefficient upon systemic administration because of their fast metabolisation and rapid clearance from the bloodstream. Here, we show that the conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allow a prolonged circulation of this nucleoside, to provide neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This paper shows, for the first time, that a hydrophilic and rapidly metabolised molecule like adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene. PMID:25420034

  4. The Effect of Endogenous Adenosine on Neuronal Activity in Rats: An FDG PET Study.

    PubMed

    Parkinson, Fiona E; Paul, Soumen; Zhang, Dali; Mzengeza, Shadreck; Ko, Ji Hyun

    2016-07-01

    2-(18) F-fluorodeoxy-D-glucose (FDG) is a glucose analog that is taken up by cells and phosphorylated. The amount of FDG accumulated by cells is a measure of the rate of glycolysis, which reflects cellular activity. As the levels and actions of the neuromodulator adenosine are dynamically regulated by neuronal activity, this study was designed to test whether endogenous adenosine affects tissue accumulation of FDG as assessed by positron emission tomography (PET) or by postmortem analysis of tissue radioactivity. Rats were given an intraperitoneal injection of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropyl-xanthine (DPCPX, 3 mg/kg), the adenosine kinase inhibitor ABT-702 (3 mg/kg), or vehicle 10 minutes prior to an intravenous injection of FDG (15.4 ± 0.7 MBq per rat). Rats were then subjected to a 15 minute static PET scan. Reconstructed images were normalized to FDG PET template for rats and standard uptake values (SUVs) were calculated. To examine the regional effect of active treatment compared to vehicle, statistical parametric mapping analysis was performed. Whole-brain FDG uptake was not affected by drug treatment. Significant regional hypometabolism was detected, particularly in cerebellum, of DPCPX- and ABT-702 treated rats, relative to vehicle-treated rats. Thus, endogenous adenosine can affect FDG accumulation although this effect is modest in quiescent rats. PMID:27082948

  5. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose

    PubMed Central

    Scharbarg, Emeric; Daenens, Marion; Lemaître, Frédéric; Geoffroy, Hélène; Guille-Collignon, Manon; Gallopin, Thierry; Rancillac, Armelle

    2016-01-01

    Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity. PMID:26755200

  6. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase.

    PubMed Central

    O'Connell, M A; Krause, S; Higuchi, M; Hsuan, J J; Totty, N F; Jenny, A; Keller, W

    1995-01-01

    Double-stranded RNA (dsRNA)-specific adenosine deaminase converts adenosine to inosine in dsRNA. The protein has been purified from calf thymus, and here we describe the cloning of cDNAs encoding both the human and rat proteins as well as a partial bovine clone. The human and rat clones are very similar at the amino acid level except at their N termini and contain three dsRNA binding motifs, a putative nuclear targeting signal, and a possible deaminase motif. Antibodies raised against the protein encoded by the partial bovine clone specifically recognize the calf thymus dsRNA adenosine deaminase. Furthermore, the antibodies can immunodeplete a calf thymus extract of dsRNA adenosine deaminase activity, and the activity can be restored by addition of pure bovine deaminase. Staining of HeLa cells confirms the nuclear localization of the dsRNA-specific adenosine deaminase. In situ hybridization in rat brain slices indicates a widespread distribution of the enzyme in the brain. PMID:7862132

  7. Phosphorylation potential and adenosine release during norepinephrine infusion in guinea pig heart

    SciTech Connect

    He, Miao-Xiang; Wangler, R.D.; Dillon, P.F.; Romig, G.D.; Sparks, H.V. )

    1987-11-01

    This study tested the hypothesis that adenosine released from isolated guinea pig hearts in response to norepinephrine is related to the cellular phosphorylation potential (PP;(ATP)/(ADP)(P{sub i})), where P{sub i} is inorganic phosphate. {sup 31}P-nuclear magnetic resonance (NMR) was used to measure the relative concentrations of P{sub i}, phosphocreatine (PCr), and ATP. After a control period, norepinephrine was infused for 20 min during which {sup 31}P-NMR spectra and samples of venous effluent were collected every minute. With norepinephrine infusion, PCr decreased rapidly to 72% of control by 8 min and then recovered to 80% of control for the remaining 12 min. ATP fell slowly to 70% of control over 20 min. P{sub i} increased to a peak at 2 min, then declined slowly to a steady state from 8 to 20 min. Adenosine release increased at 7 min and then slowly fell to a steady state from 10 to 20 min. There is hyperbolic relationship between adenosine release and PP; when the PP declines, a level is reached below which there is a rapid increase in adenosine release. These data support the hypothesis that adenosine release is regulated by the cellular PP as a closely related variable.

  8. Adenosine receptor antagonists inhibit the development of morphine sensitization in the C57BL/6 mouse.

    PubMed

    Weisberg, S P; Kaplan, G B

    1999-04-01

    We examined the effects of adenosine antagonists on the development of morphine sensitization in C57BL/6 mice. Adenosine antagonists or vehicle were repeatedly co-administered intraperitoneally with morphine (10 mg/kg, s.c.) to mice once every other day for 9 days. Two days later, a 10 mg/kg morphine-only challenge was administered to each group. Consistent with sensitization, mice receiving morphine alone developed enhanced ambulatory activity responses to subsequent morphine administrations and, upon morphine-only challenge, had a significantly greater response to morphine than vehicle pretreated animals. The nonselective adenosine antagonist, caffeine, at 10 and 20 mg/kg but not at 5 mg/kg, attenuated the development of sensitization during co-administration with morphine and also following morphine-only challenge. The adenosine A1 selective antagonist 1,3-dipropyl-8-(2-amino-4-chlorophenyl)-xanthine (PACPX), at 0.001 and 0.002 mg/kg but not at 0.2 mg/kg, similarly attenuated the development of morphine sensitization. We propose a mechanism which involves an adenosine receptor role in the mesolimbic dopamine system. PMID:10320021

  9. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    NASA Astrophysics Data System (ADS)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  10. Reduced ability to release adenosine by diabetic rat cardiac fibroblasts due to altered expression of nucleoside transporters

    PubMed Central

    Podgorska, Marzena; Kocbuch, Katarzyna; Grden, Marzena; Szutowicz, Andrzej; Pawelczyk, Tadeusz

    2006-01-01

    Adenosine produced by cardiac cells is known to attenuate the proliferation of cardiac fibroblasts (CFs), inhibit collagen synthesis, and protect the myocardium against ischaemic and reperfusion injury. Diabetic patients' hearts exhibit ventricular hypertrophy and demonstrate reduced tolerance to hypoxia or ischaemia. In this study, we characterize the effects of glucose and insulin on processes that determine the release of adenosine from CFs. We showed that during ATP depletion, rat CFs cultured in the absence of insulin release significantly less adenosine compared to cells grown in the presence of insulin. Moreover, under both conditions the quantity of released adenosine depends on glucose concentration. We demonstrate that this is due to altered expression of nucleoside transporters. High glucose (25 mm) induced 85% decrease in nucleoside transporter ENT1 mRNA levels. Decrease of the insulin level below 10−11m resulted in over 3-fold increase in the nucleoside transporter CNT2 mRNA content. Measurements of adenosine transport in CFs cultured in the presence of 5 mm glucose and 10 nm insulin showed that the bidirectional equilibrative adenosine transport accounted for 70% of the overall adenosine uptake. However, cells grown in the presence of high glucose (25 mm) demonstrated 65% decrease of the bidirectional equilibrative adenosine transport. Experiments on CFs cultured in the absence of insulin showed that the unidirectional Na+-dependent adenosine uptake rose in these cells more than 4-fold. These results indicate that the development of diabetes may result in an increased uptake of interstitial adenosine by CFs, and reduction of the ability of these cells to release adenosine during ATP deprivation. PMID:16873415

  11. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells.

    PubMed

    Hayashi, M; Inagaki, A; Novak, I; Matsuda, H

    2016-07-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl(-) channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (V te) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl(-) currents in Capan-1 single cells. The effects of adenosine on V te, an equivalent short-circuit current (I sc), and whole-cell Cl(-) currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased I sc and whole-cell Cl(-) currents through CFTR Cl(-) channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of I sc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl(-) currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl(-) channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion. PMID:26965147

  12. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    PubMed

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P < 0.05) in detrusor strips from BPH patients. The extracellular hydrolysis of ATP and, subsequent, adenosine formation was slower (t (1/2) 73 vs. 36 min, P < 0.05) in BPH detrusor strips. The A(1) receptor-mediated inhibition of evoked [(3)H]ACh release by adenosine (100 μM), NECA (1 μM), and R-PIA (0.3 μM) was enhanced in BPH bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients. PMID:26521170

  13. Role of adenosine in the antiepileptic effects of deep brain stimulation

    PubMed Central

    Miranda, Maisa F.; Hamani, Clement; de Almeida, Antônio-Carlos G.; Amorim, Beatriz O.; Macedo, Carlos E.; Fernandes, Maria José S.; Nobrega, José N.; Aarão, Mayra C.; Madureira, Ana Paula; Rodrigues, Antônio M.; Andersen, Monica L.; Tufik, Sergio; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Despite the effectiveness of anterior thalamic nucleus (AN) deep brain stimulation (DBS) for the treatment of epilepsy, mechanisms responsible for the antiepileptic effects of this therapy remain elusive. As adenosine modulates neuronal excitability and seizure activity in animal models, we hypothesized that this nucleoside could be one of the substrates involved in the effects of AN DBS. We applied 5 days of stimulation to rats rendered chronically epileptic by pilocarpine injections and recorded epileptiform activity in hippocampal slices. We found that slices from animals given DBS had reduced hippocampal excitability and were less susceptible to develop ictal activity. In live animals, AN DBS significantly increased adenosine levels in the hippocampus as measured by microdialysis. The reduced excitability of DBS in vitro was completely abolished in animals pre-treated with A1 receptor antagonists and was strongly potentiated by A1 receptor agonists. We conclude that some of the antiepileptic effects of DBS may be mediated by adenosine. PMID:25324724

  14. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    SciTech Connect

    Florio, C.; Rosati, A.M.; Traversa, U.; Vertua, R. )

    1991-01-01

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-({sup 3}H)adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system.

  15. Autoradiographic localization of adenosine receptors in rat brain using (/sup 3/H)cyclohexyladenosine

    SciTech Connect

    Goodman, R.R.; Synder, S.H.

    1982-09-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of (/sup 3/H)N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.

  16. Autoradiographic localization of adenosine uptake sites in rat brain using (/sup 3/H)nitrobenzylthioinosine

    SciTech Connect

    Bisserbe, J.C.; Patel, J.; Marangos, P.J.

    1985-02-01

    The adenosine uptake site has been localized in rat brain by an in vitro light microscopic autoradiographic method, using (/sup 3/H)nitrobenzylthioinosine ((/sup 3/H)NBI) as the probe. The binding characteristics of (/sup 3/H)NBI on slide-mounted sections are comparable to those seen in studies performed on brain homogenates. A very high density of uptake sites occurs in the nucleus tractus solitarius, in the superficial layer of the superior colliculus, in several thalamic nuclei, and also in geniculate body nuclei. A high density of sites are also observed in the nucleus accumbens, the caudate putamen, the dorsal tegmentum area, the substantia nigra, and the central gray. The localization of the adenosine uptake site in brain may provide information on the functional activity of the site and suggests the involvement of the adenosine system in the central regulation of cardiovascular function.

  17. Structure of the DNA Ligase-Adenylate Intermediate: Lysine (ε-amino)-Linked Adenosine Monophosphoramidate*

    PubMed Central

    Gumport, Richard I.; Lehman, I. R.

    1971-01-01

    Proteolytic degradation of the Escherichia coli DNA ligase-adenylate intermediate releases adenosine 5′-monophosphate linked to the ε-amino group of lysine by a phosphoamide bond. Measurements of the rate of hydroxylaminolysis of the ligase-adenylate provide further support for a phosphoamide linkage in the native enzyme. Lysine (ε-amino)-linked adenosine monophosphoramidate has also been isolated from the T4 phage-induced ligase-adenylate intermediate. These results indicate that an initial step of the DNA ligase reaction consists of the nucleophilic attack of the ε-amino group of a lysine residue of the enzyme on the adenylyl phosphorus of DPN or ATP that leads to the formation of enzyme-bound lysine (εamino)-linked adenosine monophosphoramidate. PMID:4944632

  18. CD73-adenosine: a next-generation target in immuno-oncology.

    PubMed

    Allard, David; Allard, Bertrand; Gaudreau, Pierre-Olivier; Chrobak, Pavel; Stagg, John

    2016-02-01

    Cancer immunotherapy has entered in a new era with the development of first-generation immune checkpoint inhibitors targeting the PD1/PD-L1 and CTLA-4 pathways. In this context, considerable research effort is being deployed to find the next generation of cancer immunotherapeutics. The CD73-adenosine axis constitutes one of the most promising pathways in immuno-oncology. We and others have demonstrated the immunosuppressive role of CD73-adenosine in cancer and established proof-of-concept that the targeted blockade of CD73 or adenosine receptors could effectively promote anti-tumor immunity and enhance the activity of first-generation immune checkpoint blockers. With Phase I clinical trials now underway evaluating anti-CD73 or anti-A2A therapies in cancer patients, we here discuss the fundamental, preclinical and clinical findings related to the role of the CD73-adenosinergic pathway in tumor immunity. PMID:26808918

  19. Lack of effect of adenosine on the function of rodent osteoblasts and osteoclasts in vitro.

    PubMed

    Hajjawi, Mark O R; Patel, Jessal J; Corcelli, Michelangelo; Arnett, Timothy R; Orriss, Isabel R

    2016-06-01

    Extracellular ATP, signalling through P2 receptors, exerts well-documented effects on bone cells, inhibiting mineral deposition by osteoblasts and stimulating the formation and resorptive activity of osteoclasts. The aims of this study were to determine the potential osteotropic effects of adenosine, the hydrolysis product of ATP, on primary bone cells in vitro. We determined the effect of exogenous adenosine on (1) the growth, alkaline phosphatase (TNAP) activity and bone-forming ability of osteoblasts derived from the calvariae of neonatal rats and mice and the marrow of juvenile rats and (2) the formation and resorptive activity of osteoclasts from juvenile mouse marrow. Reverse transcription polymerase chain reaction (RT-PCR) analysis showed marked differences in the expression of P1 receptors in osteoblasts from different sources. Whilst mRNA for the A1 and A2B receptors was expressed by all primary osteoblasts, A2A receptor expression was limited to rat bone marrow and mouse calvarial osteoblasts and the A3 receptor to rat bone marrow osteoblasts. We found that adenosine had no detectable effects on cell growth, TNAP activity or bone formation by rodent osteoblasts in vitro. The analogue 2-chloroadenosine, which is hydrolysed more slowly than adenosine, had no effects on rat or mouse calvarial osteoblasts but increased TNAP activity and bone formation by rat bone marrow osteoblasts by 30-50 % at a concentration of 1 μM. Osteoclasts were found to express the A2A, A2B and A3 receptors; however, neither adenosine (≤100 μM) nor 2-chloroadenosine (≤10 μM) had any effect on the formation or resorptive activity of mouse osteoclasts in vitro. These results suggest that adenosine, unlike ATP, is not a major signalling molecule in the bone. PMID:26861849

  20. Nucleoside transporter subtype expression: effects on potency of adenosine kinase inhibitors

    PubMed Central

    Sinclair, C J D; Powell, A E; Xiong, W; LaRivière, C G; Baldwin, S A; Cass, C E; Young, J D; Parkinson, F E

    2001-01-01

    Adenosine kinase (AK) inhibitors can enhance adenosine levels and potentiate adenosine receptor activation. As the AK inhibitors 5′ iodotubercidin (ITU) and 5-amino-5′-deoxyadenosine (NH2dAdo) are nucleoside analogues, we hypothesized that nucleoside transporter subtype expression can affect the potency of these inhibitors in intact cells.Three nucleoside transporter subtypes that mediate adenosine permeation of rat cells have been characterized and cloned: equilibrative transporters rENT1 and rENT2 and concentrative transporter rCNT2. We stably transfected rat C6 glioma cells, which express rENT2 nucleoside transporters, with rENT1 (rENT1-C6 cells) or rCNT2 (rCNT2-C6 cells) nucleoside transporters.We tested the effects of ITU and NH2dAdo on [3H]-adenosine uptake and conversion to [3H]-adenine nucleotides in the three cell types. NH2dAdo did not show any cell type selectivity. In contrast, ITU showed significant inhibition of [3H]-adenosine uptake and [3H]-adenine nucleotide formation at concentrations ⩽100 nM in rENT1-C6 cells, while concentrations ⩾3 μM were required for C6 or rCNT2-C6 cells.Nitrobenzylthioinosine (NBMPR; 100 nM), a selective inhibitor of rENT1, abolished the effects of nanomolar concentrations of ITU in rENT1-C6 cells.This study demonstrates that the effects of ITU, but not NH2dAdo, in whole cell assays are dependent upon nucleoside transporter subtype expression. Thus, cellular and tissue differences in expression of nucleoside transporter subtypes may affect the pharmacological actions of some AK inhibitors. PMID:11682452

  1. Alcohol Worsens Acute Lung Injury by Inhibiting Alveolar Sodium Transport through the Adenosine A1 Receptor

    PubMed Central

    Urich, Daniela; Soberanes, Saul; Manghi, Tomas S.; Chiarella, Sergio E.; Chandel, Navdeep S.; Budinger, G. R. Scott; Mutlu, Gökhan M.

    2012-01-01

    Objective Alcohol intake increases the risk of acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) and is associated with poor outcomes in patients who develop these syndromes. No specific therapies are currently available to treat or decrease the risk of ARDS in patients with alcoholism. We have recently shown increased levels of lung adenosine inhibit alveolar fluid clearance, an important predictor of outcome in patients with ARDS. We hypothesized that alcohol might worsen lung injury by increasing lung adenosine levels, resulting in impaired active Na+ transport in the lung. Methods We treated wild-type mice with alcohol administered i.p. to achieve blood alcohol levels associated with moderate to severe intoxication and measured the rate of alveolar fluid clearance and Na,K-ATPase expression in peripheral lung tissue and assessed the effect of alcohol on survival during exposure to hyperoxia. We used primary rat alveolar type II cells to investigate the mechanisms by which alcohol regulates alveolar Na+ transport. Results Exposure to alcohol reduced alveolar fluid clearance, downregulated Na,K-ATPase in the lung tissue and worsened hyperoxia-induced lung injury. Alcohol caused an increase in BAL fluid adenosine levels. A similar increase in lung adenosine levels was observed after exposure to hyperoxia. In primary rat alveolar type II cells alcohol and adenosine decreased the abundance of the Na,K-ATPase at the basolateral membrane via a mechanism that required activation of the AMPK. Conclusions Alcohol decreases alveolar fluid clearance and impairs survival from acute lung injury. Alcohol induced increases in lung adenosine levels may be responsible for reduction in alveolar fluid clearance and associated worsening of lung injury. PMID:22272351

  2. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    PubMed Central

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  3. Effect of adenosine system in the action of oseltamivir on behavior in mice.

    PubMed

    Uchiyama, Hidemori; Hiromura, Makoto; Shiratani, Tomonori; Kuroki, Hiroaki; Honda, Sinichiro; Kosako, Kazuhiro; Soeda, Shinji; Inoue, Kazuhide; Toda, Akihisa

    2015-07-10

    Abnormal behaviors and death associated with the use of oseltamivir (Tamiflu(®)) have emerged as a major issue in influenza patients. We have previously reported that the mechanisms underlying the effects of caffeine, a non-selective adenosine A1/A2 receptor antagonist, combined with oseltamivir. Oseltamivir is rapidly hydrolyzed to its active form (oseltamivir carboxylate, OCB). In this study, we investigated the effects of an adenosine system and OCB on the action of oseltamivir on mice behavior. Oseltamivir for 1 day (150 mg/kg, intraperitoneally (i.p.)) alone did not affect ambulation at 2 h post-injection. However, caffeine (10 mg/kg, i.p.) in combination with oseltamivir for 1 day increased ambulation. Moreover, caffeine (30 mg/kg, i.p.) in combination with oseltamivir for 3 days increased ambulation, but caffeine (10 mg/kg, i.p.) in combination with oseltamivir for 3 days did not increase. These enhancements were inhibited by an adenosine A2 receptor agonist, CGS21680 (0.2 mg/kg, subcutaneously (s.c.)). Furthermore, an adenosine A2 receptor antagonist, SCH58261 (1 and 3 mg/kg, i.p.) in combination with oseltamivir for 1 day increased ambulation. Moreover, SCH58261 (3 mg/kg, i.p.) in combination with oseltamivir for 3 days increased ambulation, but SCH58261 (1 mg/kg, i.p.) in combination with oseltamivir for 3 days did not. Conversely, in phenobarbital (PB)-treated mice, caffeine (3 mg/kg, i.p.) in combination with oseltamivir for 1 day increased ambulation. Moreover, OCB for 1 day (0.3 μg/mouse intracerebroventricular (i.c.v.)) alone increased ambulation. These findings suggest that the actions of oseltamivir may involve the adenosine systems and its metabolism. Our findings suggest an interaction between the central blockade of adenosine A2 receptors by caffeine and OCB-induced behavioral changes. PMID:25980995

  4. Cloning and expression of an A1 adenosine receptor from rat brain

    SciTech Connect

    Mahan, L.C.; McVittie, L.D.; Smyk-Randall, E.M.; Nakata, H.; Monsma, F.J. Jr.; Gerfen, C.R.; Sibley, D.R. )

    1991-07-01

    The authors have used the polymerase chain reaction technique to selectively amplify guanine nucleotide-binding regulatory protein (G protein)-coupled receptor cDNA sequences from rat striatal mRNA, using sets of highly degenerate primers derived from transmembrane sequences of previously cloned G protein-coupled receptors. A novel cDNA fragment was identified, which exhibits considerable homology to various members of the G protein-coupled receptor family. This fragment was used to isolate a full-length cDNA from a rat striatal library. A 2.2-kilobase clone was obtained that encodes a protein of 326 amino acids with seven transmembrane domains, as predicted by hydropathy analysis. Stably transfected mouse A9-L cells and Chinese hamster ovary cells that expressed mRNA for this clone were screened with putative receptor ligands. Saturable and specific binding sites for the A1 adenosine antagonist (3H)-1,3-dipropyl-8-cyclopentylxanthine were identified on membranes from transfected cells. The rank order of potency and affinities of various adenosine agonist and antagonist ligands confirmed the identity of this cDNA clone as an A1 adenosine receptor. The high affinity binding of A1 adenosine agonists was shown to be sensitive to the nonhydrolyzable GTP analog guanylyl-5{prime}-imidodiphosphate. In adenylyl cyclase assays, adenosine agonists inhibited forskolin-stimulated cAMP production by greater than 50%, in a pharmacologically specific fashion. Northern blot and in situ hybridization analyses of receptor mRNA in brain tissues revealed two transcripts of 5.6 and 3.1 kilobases, both of which were abundant in cortex, cerebellum, hippocampus, and thalamus, with lower levels in olfactory bulb, striatum, mesencephalon, and retina. These regional distribution data are in good agreement with previous receptor autoradiographic studies involving the A1 adenosine receptor.

  5. Adenosine enhances myocardial glucose uptake only in the presence of insulin.

    PubMed

    Law, W R; McLane, M P

    1991-09-01

    Better understood in other tissues, the effects of adenosine on insulin-stimulated glucose uptake in the heart are poorly understood. Under pentobarbital anesthesia, we instrumented mongrel dogs to obtain general hemodynamics (blood pressure and heart rate), and arterial and coronary sinus blood samples for measuring oxygen and glucose concentrations. An electromagnetic blood flow probe around the circumflex coronary artery allowed determinations of blood flow, and calculation of substrate uptake by the heart (Fick principle). Somatostatin (SRIF) was infused intravenously (0.8 micrograms/kg/min) along with 0, 0.5, 1.0, 5.0, or 10 mU/kg/min regular insulin, and variable quantities of glucose to maintain euglycemia. Concomitant with the SRIF, insulin, and glucose infusions, adenosine was infused in logarithmically increasing rates (0, 0.01, 0.1, 1.0, 10 or 100 mumol/min) for 30 minutes each into the main left coronary arteries. Insulin infusions increased myocardial glucose uptake in a dose-dependent manner. The heart displayed exquisite sensitivity to insulin, with an ED50 of approximately 14 microU/mL (serum insulin). Adenosine infusions in the absence of insulin (SRIF infusion) increased coronary blood flow, but did not alter myocardial glucose uptake. In the presence of insulin, adenosine increased the maximal value for glucose uptake without changing sensitivity to insulin. These results indicate that adenosine enhances myocardial responsiveness to insulin, with respect to glucose uptake, independent of changes in blood flow. Since glucose can be used for anaerobic metabolism, and adenosine levels are known to increase under situations in which myocardial oxygenation is inadequate, these data have serious implications for conditions such as myocardial ischemia or hypoxia, when glycolytic substrate availability is vital. PMID:1680214

  6. Increase of adenosine plasma levels after oral trimetazidine: a pharmacological preconditioning?

    PubMed

    Blardi, Patrizia; de Lalla, Arianna; Volpi, Luciana; Auteri, Alberto; Di Perri, Tullio

    2002-01-01

    Trimetazidine (1-[2,3,4-trimethoxybenzyl] piperazine) (TMZ) is a cellular anti-ischemic agent able to prevent intracellular ATP decrease, limit intracellular acidosis, protect against oxygen-free radical-induced toxicity and inhibit neutrophil infiltration. However, its definitive mechanism of action had not been identified. Recent studies showed the existence of an endogenous mechanism of cellular protection against ischemia, defined as 'ischemic preconditioning'. This mechanism was related mainly to cellular liberation of adenosine, a nucleoside with protective effects in myocardial ischemia. Since TMZ acts by increasing cell tolerance to ischemia and adenosine is the mediator of ischemic preconditioning, in this study we investigated a possible interaction between TMZ and adenosine. Two groups of patients affected by angina pectoris, were admitted to the study. They received a single oral dose of TMZ. One group was treated, during different sessions, with TMZ 10 and 20 mg, the other group with TMZ 40 and 80 mg. After a 3 day wash-out from drug administration, each group received a placebo. Blood samples were collected at baseline (time 0) and 1, 2, 3, 4, 6, 8 h after drug administration, in order to detect plasma levels of adenosine by a high-performance liquid chromatography method. We observed that the administration of TMZ at doses of 10, 20, 40 and 80 mg induced an increase of adenosine plasma levels of 19, 50, 62 and 62%, respectively. We hypothesized that the activity of TMZ could depend, at least in part, on adenosine mediation and this interaction opens a new interpretation of the drug antischemic effect. PMID:11820865

  7. Role of extracellular cysteine residues in the adenosine A2A receptor.

    PubMed

    De Filippo, Elisabetta; Namasivayam, Vigneshwaran; Zappe, Lukas; El-Tayeb, Ali; Schiedel, Anke C; Müller, Christa E

    2016-06-01

    The G protein-coupled A2A adenosine receptor represents an important drug target. Crystal structures and modeling studies indicated that three disulfide bonds are formed between ECL1 and ECL2 (I, Cys71(2.69)-Cys159(45.43); II, Cys74(3.22)-Cys146(45.30), and III, Cys77(3.25)-Cys166(45.50)). However, the A2BAR subtype appears to require only disulfide bond III for proper function. In this study, each of the three disulfide bonds in the A2AAR was disrupted by mutation of one of the cysteine residues to serine. The mutant receptors were stably expressed in Chinese hamster ovary cells and analyzed in cyclic adenosine monophosphate (cAMP) accumulation and radioligand binding studies using structurally diverse agonists: adenosine, NECA, CGS21680, and PSB-15826. Results were rationalized by molecular modeling. The observed effects were dependent on the investigated agonist. Loss of disulfide bond I led to a widening of the orthosteric binding pocket resulting in a strong reduction in the potency of adenosine, but not of NECA or 2-substituted nucleosides. Disruption of disulfide bond II led to a significant reduction in the agonists' efficacy indicating its importance for receptor activation. Disulfide bond III disruption reduced potency and affinity of the small adenosine agonists and NECA, but not of the larger 2-substituted agonists. While all the three disulfide bonds were essential for high potency or efficacy of adenosine, structural modification of the nucleoside could rescue affinity or efficacy at the mutant receptors. At present, it cannot be excluded that formation of the extracellular disulfide bonds in the A2AAR is dynamic. This might add another level of G protein-coupled receptor (GPCR) modulation, in particular for the cysteine-rich A2A and A2BARs. PMID:26969588

  8. Interstitial adenosine concentration during norepinephrine infusion in isolated guinea pig hearts

    PubMed Central

    GORMAN, MARK W.; WANGLER, ROGER D.; BASSINGTHWAIGHTE, JAMES B.; MOHRMAN, DAVID E.; WANG, C. Y.; SPARKS, HARVEY V.

    2010-01-01

    This study determined the effect of norepinephrine (NE) on cardiac interstitial fluid adenosine concentration ([ADO]isf). Isolated guinea pig hearts were perfused with a Krebs-Henseleit buffer solution. Radiolabeled albumin, sucrose, and adenosine were injected under control conditions and after 3 and 20 min of NE infusion to obtain multiple indicator dilution curves that were used to determine capillary transport parameters for adenosine. These parameters together with venous adenosine concentrations were used in a mathematical model to calculate [ADO]isf. Capillary transport parameters were not changed significantly by NE infusion. Because of uncertainty regarding two model parameters, two sets of [ADO]isf values were calculated. One set used best-fit values obtained from indicator dilution curves, and a second set used parameters chosen to provide the highest [ADO]isf values consistent with indicator dilution curves. Venous adenosine concentrations were 1.9 ± 0.4 nM under control conditions and 243 ± 110 and 45 ± 25 nM after 3 and 20 min of NE infusion, respectively. Calculated [ADO]isf was 2.6–9.4, 591–1,288, and 166–324 nM, respectively, under these same conditions. We conclude that NE infusion greatly increases [ADO]isf, and adenosine is responsible for most of the vasodilation at 3 min. The subsequent fall in venous concentration is due to a fall in [ADO]isf rather than to decreased capillary permeability. Vascular resistance remained low while [ADO]isf fell, which suggests that additional vasodilators are important during maintained NE infusion. PMID:1887934

  9. The effects of adenosine ligands R-PIA and CPT on ethanol withdrawal.

    PubMed

    Gatch, M B; Wallis, C J; Lal, H

    1999-08-01

    The potential anxiogenic or anxiolytic effects of R(-)-N6-(2-phenylisopropyl)adenosine (R-PIA), an adenosine agonist, and 8-cyclopentyl-1,3,dimethylxanthine (CPT), an adenosine antagonist, were tested during chronic exposure to ethanol and to ethanol-induced withdrawal in rats. Effects on anxiety were measured by the elevated plus maze and dark-light box. Ethanol consumption and preference was tested in an additional experiment. In testing of elevated plus maze performance during withdrawal from ethanol, R-PIA produced no change in the anxiety-related behaviors of total arm entries and percent open arm entries, but produced a significant decrease in percent open arm time. CPT produced at least partial recovery from the anxiogenic effects of ethanol withdrawal on all three measures of elevated plus maze performance, although peak effects were seen at the intermediate dose of CPT (0.08 mg/kg) for total arm entries and percent open arm time. CPT also showed anxiolytic effects at low to intermediate doses (0.04, 0.08 mg/kg) in the dark-light box. CPT did not reduce the preference for ethanol over water or the total consumption of ethanol over a range of ethanol doses. In summary, the adenosine agonist, R-PIA, exacerbated the effects of ethanol withdrawal, whereas the adenosine antagonist, CPT, at least partially blocked the anxiogenic effects produced by ethanol withdrawal. These results suggest that adenosine antagonists, at least at some doses, may be useful for ameliorating the anxiogenic effects produced by ethanol withdrawal, although it does not appear useful for reducing consumption. PMID:10487382

  10. Bench-to-bedside review: Adenosine receptors – promising targets in acute lung injury?

    PubMed Central

    Schepp, Carsten P; Reutershan, Jörg

    2008-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening disorders that have substantial adverse effects on outcomes in critically ill patients. ALI/ARDS develops in response to pulmonary or extrapulmonary injury and is characterized by increased leakage from the pulmonary microvasculature and excessive infiltration of polymorphonuclear cells into the lung. Currently, no therapeutic strategies are available to control these fundamental pathophysiological processes in human ALI/ARDS. In a variety of animal models and experimental settings, the purine nucleoside adenosine has been demonstrated to regulate both endothelial barrier integrity and polymorphonuclear cell trafficking in the lung. Adenosine exerts its effects through four G-protein-coupled receptors (A1, A2A, A2B, and A3) that are expressed on leukocytes and nonhematopoietic cells, including endothelial and epithelial cells. Each type of adenosine receptor (AR) is characterized by a unique pharmacological and physiological profile. The development of selective AR agonists and antagonists, as well as the generation of gene-deficient mice, has contributed to a growing understanding of the cellular and molecular processes that are critically involved in the development of ALI/ARDS. Adenosine-dependent pathways are involved in both protective and proinflammatory effects, highlighting the need for a detailed characterization of the distinct pathways. This review summarizes current experimental observations on the role of adenosine signaling in the development of acute lung injury and illustrates that adenosine and ARs are promising targets that may be exploited in the development of innovative therapeutic strategies. PMID:18828873

  11. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    SciTech Connect

    Johnston, M.E.; Geiger, J.D. )

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than did mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.

  12. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration.

    PubMed

    Galvao, Joana; Elvas, Filipe; Martins, Tiago; Cordeiro, M Francesca; Ambrósio, António Francisco; Santiago, Ana Raquel

    2015-11-01

    Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases. PMID:26297614

  13. 75 FR 8981 - Prospective Grant of Exclusive License: Treatment of Glaucoma by Administration of Adenosine A3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ...,'' filed July 3, 1996 [HHS Ref. No. E-225-1995/1-US-1], PCT Application PCT/US97/01252, entitled... adenosine receptor antagonists,'' filed January 29, 1997 [HHS Ref. No. E-225-1995/2-PCT- 1], U.S. Patent 6.../092,292, entitled ``A3 Adenosine Receptor Antagonists,'' filed July 10, 1998 , PCT Application...

  14. Rat fat-cells have three types of adenosine receptors (Ra, Ri and P). Differential effects of pertussis toxin.

    PubMed Central

    García-Sáinz, J A; Torner, M L

    1985-01-01

    Activation of rat adipocyte R1 adenosine receptors by phenylisopropyladenosine (PIA) decreased cyclic AMP and lipolysis; this effect was blocked in cells from pertussis-toxin-treated rats. In contrast, the ability of 2',5'-dideoxyadenosine to decrease cyclic AMP was not affected by pertussis-toxin treatment. Addition of adenosine deaminase to the medium in which adipocytes from control animals were incubated resulted in activation of lipolysis. Interestingly, adipocytes from toxin-treated rats (which had an already increased basal lipolysis) responded in an opposite fashion to the addition of adenosine deaminase, i.e. the enzyme decreased lipolysis, which suggested that adenosine might be increasing lipolysis in these cells. Studies with the selective agonists N-ethylcarboxamidoadenosine (NECA) and PIA indicated that adenosine increases lipolysis and cyclic AMP accumulation in these cells and that these actions are mediated through Ra adenosine receptors. Adenosine-mediated accumulation of cyclic AMP was also observed in cells preincubated with pertussis toxin (2 micrograms/ml) for 3 h. In these studies NECA was also more effective than PIA. Our results indicate that there are three types of adenosine receptors in fat-cells, whose actions are affected differently by pertussis toxin, i.e. Ri-mediated actions are abolished, Ra-mediated actions are revealed and P-mediated actions are not affected. PMID:3004405

  15. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    PubMed

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism. PMID:25910812

  16. Immunoregulation of IL-6 secretion by endogenous and exogenous adenosine and by exogenous purinergic agonists in splenic tissue slices.

    PubMed

    Straub, Rainer H; Pongratz, Georg; Günzler, Christian; Michna, Andreas; Baier, Simone; Kees, Frieder; Falk, Werner; Schölmerich, Jürgen

    2002-04-01

    In recent years, the role of norepinephrine, opioids, and neuropeptide Y for sympathetic regulation of murine spleen cells has been characterised. In this study, we describe the role of exogenous and endogenous adenosine and exogenous P2X(1) and P2Y(1) agonists for spontaneous splenic IL-6 secretion from spleen slices. The P2X(1) agonist beta,gamma-methylene ATP inhibited IL-6 secretion at 10(-5) M, whereas the P2Y(1) agonist 2-methylthio ATP increased IL-6 secretion at 10(-6) to 10(-8) M. Furthermore, adenosine (at 5 x 10(-8), 10(-7), 5 x 10(-7) M) inhibited IL-6 secretion via A1 adenosine receptors, whereas an A2(A) adenosine receptor agonist increased IL-6 secretion in the presence of 10(-7) M cortisol. To determine the effects of endogenous adenosine, electrical field stimulation was applied in order to release endogenous ATP, which yields adenosine after conversion from ATP. Electrical field stimulation markedly reduced IL-6 secretion, which was attenuated by the A1 antagonist DPCPX but not by the A2 antagonist 8-(3-Chlorostyryl)caffeine. Thus, via A1 adenosine receptors, adenosine was found to be a strong inhibitor of splenic IL-6 secretion. This study further expands our earlier description of the complexity of the local dialogue of sympathetic nerves and macrophages in lymphoid organs. PMID:11960643

  17. Rapid Induction of Ion Pulses in Tomato, Cucumber, and Maize Plants following a Foliar Application of L(+)-Adenosine.

    PubMed Central

    Ries, S.; Savithiry, S.; Wert, V.; Widders, I.

    1993-01-01

    Application of picomole quantities of (+)-adenosine, a plant growth-regulating second messenger elicited by triacontanol, to tomato (Lycopersicon esculentum Mill.), maize (Zea mays L.), and cucumber (Cucumis sativa L.) foliage, increased Ca2+, Mg2+, and K+ concentrations in the exudate from the stumps of excised plants by 20 to 60% within 5 s after treatment. The change in ionic concentration of the exudate was transitory. When L(+)-adenosine and triacontanol were applied to different tomato plants at the same time, the L(+)-adenosine caused an increase in Ca2+ flux within 3 s, whereas a significant increase from triacontanol was not detectable until 5 min after application. This was expected because triacontanol elicits the formation of L(+)-adenosine. The enantiomer of L(+)-adenosine, D(-)-adenosine, had no effect on the cation concentration in tomato and inhibited the effect of L(+)-adenosine at equimolar or lower concentrations. These observations suggest that L(+)-adenosine acts by eliciting a rapidly propagated signal that increases the concentration of several ions in the apoplast. We postulate that modulations in apoplastic ion concentration, especially increases in Ca2+ concentration, constitute a mechanism by which plants regulate metabolic activity and growth in response to certain stimuli. PMID:12231664

  18. Evidence for deactivation of both ectosolic and cytosolic 5'-nucleotidase by adenosine A1 receptor activation in the rat cardiomyocytes.

    PubMed Central

    Kitakaze, M; Hori, M; Minamino, T; Takashima, S; Komamura, K; Node, K; Kurihara, T; Morioka, T; Sato, H; Inoue, M

    1994-01-01

    Adenosine, an important regulator of many cardiac functions, is produced by ectosolic and cytosolic 5'-nucleotidase. The activity of these enzymes is influenced by several ischemia-sensitive metabolic factors, e.g., ATP, ADP, H+, and inorganic phosphate. However, there is no clear evidence that adenosine itself affects 5'-nucleotidase activity. This study tested whether adenosine decreases the activity of ectosolic and cytosolic 5'-nucleotidase. Cardiomyocytes were isolated from adult male Wistar rats and suspended in the modified Hepes-Tyrode buffer solution. After stabilization, isolated cardiomyocytes were incubated with and without adenosine (10(-9) - 10(-4) M). Ectosolic and cytosolic 5'-nucleotidase activity was decreased by exogenous adenosine (ectosolic 5'-nucleotidase activity, 20.6 +/- 2.3 vs. 8.6 +/- 1.6 mumol/min per 10(6) cells [P < 0.05]; cytosolic 5'-nucleotidase activity, 2.47 +/- 0.58 vs. 1.61 +/- 0.54 mumol/min per 10(6) cells [P < 0.05] at 10(-6) M adenosine) after 30 min. The decrease in ectosolic and cytosolic 5'-nucleotidase activity was inhibited by 8-phenyltheophylline and pertussis toxin, and was mimicked by N6-cyclohexyladenosine, an adenosine A1 receptor agonist. Neither CGS21680C, and A2 receptor agonist, nor cycloheximide deactivated ectosolic and cytosolic 5'-nucleotidase. Thus, we conclude that activation of adenosine A1 receptors is coupled to Gi proteins and attenuates ectosolic and cytosolic 5'-nucleotidase activity in rat cardiomyocytes. Images PMID:7989602

  19. Molecular expression of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 human ovarian cancer cell lines

    PubMed Central

    Hajiahmadi, S.; Panjehpour, M.; Aghaei, M.; Mousavi, S.

    2015-01-01

    Adenosine receptors (A1, A2a, A2b and A3) have several physiological and pathological roles in cancer cell lines. The present study was carried out to evaluate the mRNA and protein expression profile and functional role of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 ovarian cancer cell lines. The levels of mRNA and protein expression of A1, A2a, A2b and A3 adenosine receptors in the ovarian cancer cell lines were measured by Real-time PCR and western blotting. The functional roles of adenosine receptors were investigated through measurement of cAMP levels after agonist treatment. The mRNA and protein of all adenosine receptors subtypes were expressed in the ovarian cancer cell lines. Our findings demonstrated that A2b and A3 had the most mRNA and protein expression. Moreover, cAMP assay confirmed the functional role of A2b and A3 adenosine receptors. This findings demonstrated that A2b and A3 subtypes are most important adenosine receptors in humn ovarian cancer cell lines. This information provide a strong possibility into the relationship of A2b and A3 adenosine receptor and ovarian cancer. PMID:26430456

  20. Molecular expression of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 human ovarian cancer cell lines.

    PubMed

    Hajiahmadi, S; Panjehpour, M; Aghaei, M; Mousavi, S

    2015-01-01

    Adenosine receptors (A1, A2a, A2b and A3) have several physiological and pathological roles in cancer cell lines. The present study was carried out to evaluate the mRNA and protein expression profile and functional role of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 ovarian cancer cell lines. The levels of mRNA and protein expression of A1, A2a, A2b and A3 adenosine receptors in the ovarian cancer cell lines were measured by Real-time PCR and western blotting. The functional roles of adenosine receptors were investigated through measurement of cAMP levels after agonist treatment. The mRNA and protein of all adenosine receptors subtypes were expressed in the ovarian cancer cell lines. Our findings demonstrated that A2b and A3 had the most mRNA and protein expression. Moreover, cAMP assay confirmed the functional role of A2b and A3 adenosine receptors. This findings demonstrated that A2b and A3 subtypes are most important adenosine receptors in humn ovarian cancer cell lines. This information provide a strong possibility into the relationship of A2b and A3 adenosine receptor and ovarian cancer. PMID:26430456

  1. Regulation of photoreceptor gap junction phosphorylation by adenosine in zebrafish retina

    PubMed Central

    Li, Hongyan; Chuang, Alice Z.; O’Brien, John

    2014-01-01

    Electrical coupling of photoreceptors through gap junctions suppresses voltage noise, routes rod signals into cone pathways, expands the dynamic range of rod photoreceptors in high scotopic and mesopic illumination, and improves detection of contrast and small stimuli. In essentially all vertebrates, connexin 35/36 (gene homologues Cx36 in mammals, Cx35 in other vertebrates) is the major gap junction protein observed in photoreceptors, mediating rod-cone, cone-cone, and possibly rod-rod communication. Photoreceptor coupling is dynamically controlled by the day/night cycle and light/dark adaptation, and is directly correlated with phosphorylation of Cx35/36 at two sites, serine110 and serine 276/293 (homologous sites in teleost fish and mammals respectively). Activity of protein kinase A (PKA) plays a key role during this process. Previous studies have shown that activation of dopamine D4 receptors on photoreceptors inhibits adenylyl cyclase, down-regulates cAMP and PKA activity, and leads to photoreceptor uncoupling, imposing the daytime/light condition. In this study we explored the role of adenosine, a nighttime signal with a high extracellular concentration at night and a low concentration in the day, in regulating photoreceptor coupling by examining photoreceptor Cx35 phosphorylation in zebrafish retina. Adenosine enhanced photoreceptor Cx35 phosphorylation in daytime, but with a complex dose-response curve. Selective pharmacological manipulations revealed that adenosine A2a receptors provide a potent positive drive to phosphorylate photoreceptor Cx35 under the influence of endogenous adenosine at night. A2a receptors can be activated in the daytime as well by micromolar exogenous adenosine. However, the higher affinity adenosine A1 receptors are also present and have an antagonistic though less potent effect. Thus the nighttime/darkness signal adenosine provides a net positive drive on Cx35 phosphorylation at night, working in opposition to dopamine to

  2. Postirradiation administration of adenosine monophosphate combined with dipyridamole reduces early cellular damage in mice

    SciTech Connect

    Bohacek, J.; Hosek, B.; Pospisil, M. )

    1993-01-01

    The administration of dipyridamole and adenosine 5'-monophosphate (AMP) to mice 5 to 25 min after 1 Gy of total-body gamma irradiation was found to decrease cellular damage, as indicated by the thymidine level in plasma and the amount of saline soluble polynucleotides in the thymus. The drug combination used did not influence similar cytotoxic effects of hydrocortisone. Furthermore, it was shown that the addition of dipyridamole and AMP to in vitro irradiated suspensions of thymocytes enhanced the rejoining processes of DNA strand breaks. Receptor-mediated action of extracellular adenosine may be responsible for the therapeutic effects observed.

  3. Regulation of photoreceptor gap junction phosphorylation by adenosine in zebrafish retina.

    PubMed

    Li, Hongyan; Chuang, Alice Z; O'Brien, John

    2014-05-01

    Electrical coupling of photoreceptors through gap junctions suppresses voltage noise, routes rod signals into cone pathways, expands the dynamic range of rod photoreceptors in high scotopic and mesopic illumination, and improves detection of contrast and small stimuli. In essentially all vertebrates, connexin 35/36 (gene homologs Cx36 in mammals, Cx35 in other vertebrates) is the major gap junction protein observed in photoreceptors, mediating rod-cone, cone-cone, and possibly rod-rod communication. Photoreceptor coupling is dynamically controlled by the day/night cycle and light/dark adaptation, and is directly correlated with phosphorylation of Cx35/36 at two sites, serine110 and serine 276/293 (homologous sites in teleost fish and mammals, respectively). Activity of protein kinase A (PKA) plays a key role during this process. Previous studies have shown that activation of dopamine D4 receptors on photoreceptors inhibits adenylyl cyclase, down-regulates cAMP and PKA activity, and leads to photoreceptor uncoupling, imposing the daytime/light condition. In this study, we explored the role of adenosine, a nighttime signal with a high extracellular concentration at night and a low concentration in the day, in regulating photoreceptor coupling by examining photoreceptor Cx35 phosphorylation in zebrafish retina. Adenosine enhanced photoreceptor Cx35 phosphorylation in daytime, but with a complex dose-response curve. Selective pharmacological manipulations revealed that adenosine A2a receptors provide a potent positive drive to phosphorylate photoreceptor Cx35 under the influence of endogenous adenosine at night. A2a receptors can be activated in the daytime as well by micromolar exogenous adenosine. However, the higher affinity adenosine A1 receptors are also present and have an antagonistic though less potent effect. Thus, the nighttime/darkness signal adenosine provides a net positive drive on Cx35 phosphorylation at night, working in opposition to dopamine to

  4. Impaired Erectile Function in CD73-deficient Mice with Reduced Endogenous Penile Adenosine Production

    PubMed Central

    Wen, Jiaming; Dai, Yingbo; Zhang, Yujin; Zhang, Weiru; Kellems, Rodney E.; Xia, Yang

    2012-01-01

    Introduction Adenosine has been implicated in normal and abnormal penile erection. However, a direct role of endogenous adenosine in erectile physiology and pathology has not been established. Aim To determine the functional role of endogenous adenosine production in erectile function. Methods CD73-deficient mice (CD73−/−) and age-matched wild-type (WT) mice were used. Some WT mice were treated with alpha, beta-methylene adenosine diphosphate (ADP) (APCP), a CD73-specific inhibitor. High-performance liquid chromatography was used to measure adenosine levels in mouse penile tissues. In vivo assessment of intracorporal pressure (ICP) normalized to mean arterial pressure (MAP) in response to electrical stimulation (ES) of the cavernous nerve was used. Main Outcome Measurement The main outcome measures of this study were the in vivo assessment of initiation and maintenance of penile erection in WT mice and mice with deficiency in CD73 (ecto-5′-nucleotidase), a key cell-surface enzyme to produce extracellular adenosine. Results Endogenous adenosine levels were elevated in the erected state induced by ES of cavernous nerve compared to the flaccid state in WT mice but not in CD73−/− mice. At cellular levels, we identified that CD73 was highly expressed in the neuronal, endothelial cells, and vascular smooth muscle cells in mouse penis. Functionally, we found that the ratio of ES-induced ICP to MAP in CD73−/− mice was reduced from 0.48 ± 0.03 to 0.33 ± 0.05 and ES-induced slope was reduced from 0.30 ± 0.13 mm Hg/s to 0.15 ± 0.05 mm Hg/s (both P < 0.05). The ratio of ES-induced ICP to MAP in APCP-treated WT mice was reduced from 0.49 ± 0.03 to 0.38 ± 0.06 and ES-induced slope was reduced from 0.29 ± 0.11 mm Hg/s to 0.19 ± 0.04 mm Hg/s (both P < 0.05). Conclusion Overall, our findings demonstrate that CD73-dependent production of endogenous adenosine plays a direct role in initiation and maintenance of penile erection. PMID:21595838

  5. Adenosine-mediated effects of ticagrelor: evidence and potential clinical relevance.

    PubMed

    Cattaneo, Marco; Schulz, Rainer; Nylander, Sven

    2014-06-17

    This review constitutes a critical evaluation of recent publications that have described an additional mode of action of the P2Y12 receptor antagonist ticagrelor. The effect is mediated by inhibition of the adenosine transporter ENT1 (type 1 equilibrative nucleoside transporter), which provides protection for adenosine from intracellular metabolism, thus increasing its concentration and biological activity, particularly at sites of ischemia and tissue injury where it is formed. Understanding the mode of action of ticagrelor is of particular interest given that its clinical profile, both in terms of efficacy and adverse events, differs from that of thienopyridine P2Y12 antagonists. PMID:24768873

  6. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor.

    PubMed

    Kobayashi, S; Conforti, L; Pun, R Y; Millhorn, D E

    1998-04-01

    1. The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. 2. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. 3. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. 4. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. 5. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6-22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. 6. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in

  7. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor

    PubMed Central

    Kobayashi, Shuichi; Conforti, Laura; Pun, Raymund Y K; Millhorn, David E

    1998-01-01

    The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6–22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in PC12 cells and

  8. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    PubMed

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction. PMID:23181321

  9. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  10. Recent developments in A2B adenosine receptor ligands.

    PubMed

    Kalla, Rao V; Zablocki, Jeff; Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni

    2009-01-01

    A selective, high-affinity A(2B) adenosine receptor (AR) antagonist will be useful as a pharmacological tool to help determine the role of the A(2B)AR in inflammatory diseases and angiogenic diseases. Based on early A(2B)AR-selective ligands with nonoptimal pharmaceutical properties, such as 15 (MRS 1754: K(i)(hA(2B)) = 2 nM; K(i)(hA(1)) = 403 nM; K(i)(hA(2A)) = 503 NM, and K(i)(hA(3)) = 570 nM), several groups have discovered second-generation A(2B)AR ligands that are suitable for development. Scientists at CV Therapeutics have discovered the selective, high-affinity A(2B)AR antagonist 22, a 8-(4-pyrazolyl)-xanthine derivative, (CVT-6883, K(i)(hA(2B)) = 22 nM; K(i)(hA(1)) = 1,940 nM; K(i)(hA(2A)) = 3,280; and K(i)(hA(3)) = 1,070 nM). Compound 22 has demonstrated favorable pharmacokinetic (PK) properties (T(1/2) = 4 h and F > 35% rat), and it is a functional antagonist at the A(2B)AR(K (B) = 6 nM). In a mouse model of asthma, compound 22 demonstrated a dose-dependent efficacy supporting the role of the A(2B)AR in asthma. In two Phase I clinical trails, 22 (CVT-6883) was found to be safe, well tolerated, and suitable for once-daily dosing. Baraldi et al. have independently discovered a selective, high-affinity A(2B)AR antagonist, 30 (MRE2029F20), 8-(5-pyrazolyl)-xanthine (K(i)(hA(2B)) = 5.5 nM; K(i)(hA(1)) = 200 nM; K(i)(hA(2A), A(3)) > 1,000, that has been selected for development in conjunction with King Pharmaceuticals. Compound 30 has been demonstrated to be a functional antagonist of the A(2B)AR, and it has been radiolabeled for use in pharmacological studies. A third compound, 58 (LAS-38096), is a 2-aminopyrimidine derivative (discovered by the Almirall group) that has high A(2B)AR affinity and selectivity (K(i)(hA(2B)) = 17 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 2,500; and K(i)(hA(3)) > 1,000 nM), and 58 has been moved into preclinical safety testing. A fourth selective, high-affinity A(2B)AR antagonist, 54 (OSIP339391 K(i))(hA(2B)) = 0.5 nM; K(i))(hA(1

  11. John Montgomery's legacy: carbocyclic adenosine analogues as SAH hydrolase inhibitors with broad-spectrum antiviral activity.

    PubMed

    De Clercq, Erik

    2005-01-01

    Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626-629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3 Ado), neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3 Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in thefirst place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola. PMID:16438025

  12. Role of endogenous adenosine as a modulator of the renin response to salt restriction.

    PubMed

    Kuan, C J; Wells, J N; Jackson, E K

    1987-01-01

    Numerous studies indicate that exogenous adenosine can inhibit renin release. However, the hypothesis that endogenous adenosine functions to restrain the renin response to physiological and/or pharmacological stimuli remains untested. To address this hypothesis, we examined the effects of a novel adenosine receptor antagonist, 1,3-dipropyl-8-para-sulfophenylxanthine (DPSPX), on renin release in rats on a normal versus a low salt diet. DPSPX did not affect renal blood flow, glomerular filtration rate, filtration fraction, urine volume, or sodium excretion in rats on either a normal or low salt diet. In contrast, in rats on a low salt diet, DPSPX significantly increased arterial and renal venous plasma renin activity and the gradient of plasma renin activity across the kidney. DPSPX did not alter these indices of renin release in rats on a normal salt diet. These data support the hypothesis that endogenous adenosine functions to restrain the renin response to salt depletion. Finally, if these findings are applicable to man, caffeine consumption could account for the variable antihypertensive effect of a low salt diet. PMID:3330576

  13. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    SciTech Connect

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E.

    2012-10-08

    Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2{prime}-deoxy)nucleosides, generating the corresponding free base and (2{prime}-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2-1.4 {angstrom}). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  14. Purine nucleoside metabolism in the erythrocytes of patients with adenosine deaminase deficiency and severe combined immunodeficiency.

    PubMed Central

    Agarwal, R P; Crabtree, G W; Parks, R E; Nelson, J A; Keightley, R; Parkman, R; Rosen, F S; Stern, R C; Polmar, S H

    1976-01-01

    Deficiency of erythrocytic and lymphocytic adenosine deaminase (ADA) occurs in some patients with severe combined immunodeficiency disease (SCID). SCID with ADA deficiency is inherited as an autosomal recessive trait. ADA is markedly reduced or undetectable in affected patients (homozygotes), and approximately one-half normal levels are found in individuals heterozygous for ADA deficiency. The metabolism of purine nucleosides was studied in erythrocytes from normal individuals, four ADA-deficiency patients, and two heterozygous individuals. ADA deficiency in intake erythrocytes was confirmed by a very sensitive ammonia-liberation technique. Erythrocytic ADA activity in three heterozygous individuals (0.07,0.08, and 0.14 mumolar units/ml of packed cells) was between that of the four normal controls (0.20-0.37 mumol/ml) and the ADA-deficient patients (no activity). In vitro, adenosine was incorporated principally into IMP in the heterozygous and normal individuals but into the adenosine nucleotides in the ADa-deficient patients. Coformycin (3-beta-D-ribofuranosyl-6,7,8-trihydroimidazo[4,5-4] [1,3] diazepin-8 (R)-ol), a potent inhibitor of ADA, made possible incorporation of adenosine nucleotides in the ADA-deficient patients... PMID:947948

  15. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    PubMed Central

    Pedata, Felicita; Pugliese, Anna Maria; Coppi, Elisabetta; Dettori, Ilaria; Maraula, Giovanna; Cellai, Lucrezia; Melani, Alessia

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke. PMID:25165414

  16. Blockade of striatal neurone responses to morphine by aminophylline: evidence for adenosine mediation of opiate action.

    PubMed Central

    Perkins, M. N.; Stone, T. W.

    1980-01-01

    1 The responses of cortical and striatal neurones to morphine and adenosine applied iontophoretically have been studied in the male rat. 2 The majority of cells (57%) within the corpus striatum were profoundly inhibited, and a smaller proportion (18%) excited by morphine. Adenosine depressed the firing rate of 30/44 cells in the striatum, excitation never being observed. In contrast, the responses of cortical cells to morphine were typically weak and required longer ejection pulses to effect comparable changes in firing rate. 3 Aminophylline applied iontophoretically, as an anion, proved able to antagonize reversibly both morphine and adenosine in parallel. 4 On a number of cells, gamma-aminobutyric acid (GABA) was used as a control depressant but aminophylline did not appear to reduce these responses. 5 The responses to morphine (both inhibitory and excitatory) were not easily antagonized by naloxone. Typically, excitatory reponses were easier to antagonize than the inhibitory ones. 6 It is concluded that a consequence of the interaction of morphine with its receptors may be the release of adenosine which subsequently produces the inhibition observed with morphine. PMID:7378652

  17. Theory of Polymer Entrapped Enzyme Ultramicroelectrodes: Application to Glucose and Adenosine Triphosphate Detection

    PubMed Central

    Kottke, Peter A.; Kranz, Christine; Kwon, Yong Koo; Masson, Jean-Francois; Mizaikoff, Boris; Fedorov, Andrei G.

    2010-01-01

    We validate, by comparison with experimental data, a theoretical description of the amperometric response of microbiosensors formed via enzyme entrapment. The utility of the theory is further illustrated with two relevant examples supported by experiments: (1) quantitative detection of glucose and (2) quantitative detection of adenosine triphosphate (ATP). PMID:20445817

  18. SELECTIVE IMMUNOTOXIC EFFECTS IN MICE TREATED WITH THE ADENOSINE DEAMINASE INHIBITOR 2-DEOXYCOFORMYCIN (JOURNAL VERSION)

    EPA Science Inventory

    Mice given the adenosine deaminase inhibitor 2-deoxycoformycin, for five days were evaluated 24 h, 72 h and 6 days after the final dose. Spleen weight was decreased for up to 6 days after treatment. The number and relative percentage of circulating lymphocytes were decreased 24 a...

  19. Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics.

    PubMed

    Janes, K; Symons-Liguori, A M; Jacobson, K A; Salvemini, D

    2016-04-01

    Chronic pain negatively impacts the quality of life in a variety of patient populations. The current therapeutic repertoire is inadequate in managing patient pain and warrants the development of new therapeutics. Adenosine and its four cognate receptors (A1 , A2A , A2B and A3 ) have important roles in physiological and pathophysiological states, including chronic pain. Preclinical and clinical studies have revealed that while adenosine and agonists of the A1 and A2A receptors have antinociceptive properties, their therapeutic utility is limited by adverse cardiovascular side effects. In contrast, our understanding of the A3 receptor is only in its infancy, but exciting preclinical observations of A3 receptor antinociception, which have been bolstered by clinical trials of A3 receptor agonists in other disease states, suggest pain relief without cardiovascular side effects and with sufficient tolerability. Our goal herein is to briefly discuss adenosine and its receptors in the context of pathological pain and to consider the current data regarding A3 receptor-mediated antinociception. We will highlight recent findings regarding the impact of the A3 receptor on pain pathways and examine the current state of selective A3 receptor agonists used for these studies. The adenosine-to-A3 receptor pathway represents an important endogenous system that can be targeted to provide safe, effective pain relief from chronic pain. PMID:26804983

  20. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor.

    PubMed

    Johansson, B; Halldner, L; Dunwiddie, T V; Masino, S A; Poelchen, W; Giménez-Llort, L; Escorihuela, R M; Fernández-Teruel, A; Wiesenfeld-Hallin, Z; Xu, X J; Hårdemark, A; Betsholtz, C; Herlenius, E; Fredholm, B B

    2001-07-31

    Caffeine is believed to act by blocking adenosine A(1) and A(2A) receptors (A(1)R, A(2A)R), indicating that some A(1) receptors are tonically activated. We generated mice with a targeted disruption of the second coding exon of the A(1)R (A(1)R(-/-)). These animals bred and gained weight normally and had a normal heart rate, blood pressure, and body temperature. In most behavioral tests they were similar to A(1)R(+/+) mice, but A(1)R(-/-) mice showed signs of increased anxiety. Electrophysiological recordings from hippocampal slices revealed that both adenosine-mediated inhibition and theophylline-mediated augmentation of excitatory glutamatergic neurotransmission were abolished in A(1)R(-/-) mice. In A(1)R(+/-) mice the potency of adenosine was halved, as was the number of A(1)R. In A(1)R(-/-) mice, the analgesic effect of intrathecal adenosine was lost, and thermal hyperalgesia was observed, but the analgesic effect of morphine was intact. The decrease in neuronal activity upon hypoxia was reduced both in hippocampal slices and in brainstem, and functional recovery after hypoxia was attenuated. Thus A(1)Rs do not play an essential role during development, and although they significantly influence synaptic activity, they play a nonessential role in normal physiology. However, under pathophysiological conditions, including noxious stimulation and oxygen deficiency, they are important. PMID:11470917

  1. Phenylephrine stimulated breakdown of phosphoinositides in brown adipocytes is attenuated by adenosine

    SciTech Connect

    Schimmel, R.J.

    1986-03-01

    Selective activation of alpha adrenergic receptors on brown adipocytes brings about increased mitochondrial respiration. This response is associated with a rapid breakdown of phosphoinositides in the plasma membrane. The authors have shown that respiration increased by alpha receptor activation can be inhibited by adenosine but the mechanisms underlying this effect are unknown. The present study probes the possibility that adenosine inhibition of alpha receptor stimulated respiration is secondary to an inhibition of stimulated breakdown of inositol phospholipids. Phospholipids were labeled with (/sup 32/P) by incubation with (/sup 32/P)-Pi for up to four hours. Phenylephrine and other ligands were then added and the radioactivity present in individual lipids determined following their resolution by thin layer chromatography. Addition of 2-chloroadenosine or phenylisopropyl adenosine, but not 2',5'-dideoxyadenosine, inhibited phenylephrine promoted breakdown of phosphoinositides. The dose response relation for this effect was similar to that for attenuation of stimulated respiration. This finding demonstrates adenosine inhibition of a phospholipase in brown fat cells and suggests the possibility that breakdown of inositol phospholipids is a critical control site for stimulation and attenuation of respiration.